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Assume zero depreciation rate of capital for simplicity. Positive depreciation will not

essentially change the results of the paper. Denote consumption expenditures by E:

E =

∫ Nmax

Nmin

PiCidi , (A.1)

along the same range of existing sectors to condense notation.

Consumption of the individual good i is given by

Ci = E
P−εi∫ Nmax

Nmin
P 1−ε
j dj

. (A.2)

with E being total consumption expenditures.

The standard Euler equation implies that the optimal growth rate for expenditures is

given by

Ė

E
= (r − T )− ρ , (A.3)

B Goods Producers

Goods producers employ labour and buy technology from the R&D sector. With these

inputs they produce the goods which they sell to the consumer. Output of good i is given

by:

∀i ∈ [Nmin(t);Nmax(t)] : Yi = Aαi Li , (B.1)

The only use for output of all goods i is consumption, so that Ci = Yi. The only

product used for investments is financial capital a which is excluded from this spectrum.
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Firm i, therefore, sets its price to

Pi =
ε

ε− 1
A−αi . (B.2)

This is the price defined only for the products in the range Nmax − Nmin. All products

out of the range Nmax −Nmin have a price of zero:

Pi =


0, t < τmax(i), τmax(i) : Πi = 0, Π̇i > 0,

ε
ε−1A

−α
i , τmax(i) < t ≤ τmin(i), τmin(i) : Πi = 0, Π̇i < 0,

0, t > τmin(i).

(B.3)

Here and throughout the paper the following notation is used:

• τmin = N−1min(i), time when product (technology) i becomes out-dated and profit of

manufacturing decreases below zero;

• τmax = N−1max(i), time when product (technology) i becomes profitable and manu-

facturing sector starts production of positive amounts;

• τ0 = N−1(i), time when technology i is invented through horizontal innovations

process.

Inserting (A.2) and (B.2) into (B.1) yields labour demand

LDi =
ε− 1

ε
E

A
−α(1−ε)
i

Nmax∫
Nmin

A
−α(1−ε)
j dj

. (B.4)

Labour employed in sector i is thus a function of the relative productivity of labour

in sector i. Repeating the arguments made with respect to the price formation, we get a
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piecewise-defined labour demand:

LD(i) =



0, t < τmax(i), τmax(i) : Πi = 0, Π̇i > 0,

ε−1
ε
E

A
−α(1−ε)
i

Nmax∫
Nmin

A
−α(1−ε)
j dj

, τmax(i) < t ≤ τmin(i), τmin(i) : Πi = 0, Π̇i < 0,

0, t > τmin(i).

(B.5)

The technology is acquired by the goods producers in the form of a patent and the

pricing for this patent follows Nordhaus (1967), Romer (1990) and Grimaud and Rouge

(2004). The price of the patent (blueprint) equals the total value of profits which can be

derived from it. The manufacturing firm can extract positive profits only for a limited

period of time. Thus the patent price is defined as:

pA(i)
def
=

τmin∫
τmax

e−r(t−τ0)Πidt. (B.6)

The date at which patent i starts, τmax, is endogenously determined by the productivity

threshold necessary to gain positive profits, while the effective duration of the patent is

endogenously determined from the demand for the manufactured product i, by the point

in time, τmin, when the final producer can no longer earn positive profits. Thus, the

duration of the patent is determined by two zero-profits conditions.

Further, the patent price is independent of time. It only depends on the ratio of

productivity in sector i at time points τmax, τmin. This observation directly follows the

benchmark model.
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C R&D Sector

C.1 Horizontal innovations

The incentive for horizontal innovations is the potential profit from selling the technology

to manufacturing firms, as given in the main text:

πR(i) = pA(i)− 1

2

τmin∫
τ0

e−r(t−τ0)g2(i, t)dt, (C.1)

Assume that the horizontal R&D firm which invents technology i later develops it through

vertical innovations. The two-step sequential optimization is equivalent to the joint opti-

mization in this setup, see Bondarev (2016) for example.

Next observation concerns the free entry of R&D firms:

Lemma C.1. Under the free entry of firms into R&D sector (no strategic behavior of

incumbents) the potential profit for each new technology is constant, πR(i) = const.

Proof. Free-entry implies that any firm may enter the horizontal innovations process at

any stage. If some technology i∗ has higher potential profit, the potential entrant would

wait until this technology would become available for research (N approaches this i∗). But

then all potential entrants would do the same for any technology with higher potential

profit. This implies in the limit all technologies would have the same potential profit.

This immediately implies that independently of the form of the cross-technologies

interactions the horizontal technologies expansion remains linear as in the benchmark

case:
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Corollary 1. The horizontal expansion of technologies’ range has constant speed

Ṅ = πR(N) = const (C.2)

Proof. Construction of HJB (Hamilton-Jacobi-Bellman) equation for the problem (C.3)-

(C.4):

Ṅ = u(t) , (C.3)

VN = max
u(•)

∞∫
0

e−rt
(
πR(i)|i=Nu(t)− 1

2
u2(t)

)
dt. (C.4)

yields optimal investments as a function of πR(N) and marginal expansion value ∂VN
∂N

. It

then follows that once πR(N) = const via Lemma C.1, the only value function which

satisfies this HJB equation is a constant one, implying ∂VN
∂N

= 0 and thus Ṅ = u =

πR(N) = const.

We then may define the resources available for vertical innovations in the same way

as for the benchmark model:

πR +

N(t)∫
Nmin(t)

g(i, t)di = aD(t);

G(t)
def
=

N(t)∫
Nmin(t)

g(i, t)di = a(t)− πR (C.5)

where G(t) denotes the financial resources available for vertical innovations at time t.

6



C.2 Vertical innovations

Productivity-improving innovations (vertical innovations) lead to a rise in efficiency of

technologies that have zero productivity upon their invention. This productivity can be

developed through specific investments for every product.

Profits in R&D results from sales of blueprints to manufacturing firms. These sales

come in the form of patents for each new technology i and all of the investments into the

development of each new technology (vertical innovations) are financed from this patent

payment. Costs of R&D are costs of development of the productivity through technology-

specific investments gi. These investments are financed from household assets a forming

part of assets demand aD in (7):

u(t) +

N(t)∫
Nmin(t)

g(i, t)di = aD(t) , (C.6)

We first observe that the productivity of any technology is zero before it is invented

and after it is not used in manufacturing:

Lemma C.2. For all non-operational technologies the individually optimal productivity

investments are zero

∀i /∈ [Nmin(t), N(t)] : gP (i, t) = 0 (C.7)

Proof. As soon as i > N(t) the technology is not yet invented and thus there is no asso-

ciated manufacturing sector demand for it. Thus profit incentive is zero and investments

are zero. Once i < Nmin(t) the manufacturing sector associated with technology i does

no longer generate positive profit and again investment incentives are zero.
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Apart from individual investments there exist externalities experienced by each R&D

firm from all other existing R&D firms. This impact is described by the interactions

operator Θ such that:

ȦSP (i, t) = ΘA(j, t)
def
=

∫ N(t)

Nmin(t)

Θ(i, j)A(j, t)dj (C.8)

so any technology is subject to potential impact of those technologies present at t. The

cross-technologies interactions are state-dependent and their intensity is given by the in-

teractions operator Θ with Θ(i, j) measuring the impact of technology j on technology

i. This operator then is a natural generalization of the commonly employed knowledge

spillover, which acts as a main growth driver in the majority of endogenous growth liter-

ature (see Peretto and Smulders (2002) for discussion of knowledge spillovers).

However the general operator like (C.8) is difficult to analyze, since it might be the

case that already outdated technologies would experience a revival due to new spillovers

from emerging technologies. We thus impose the simplifying assumption on the structure

of cross-technologies interactions to make sure this is impossible in the model:

Assumption C.1. For any technology i the range of technologies influencing it is limited:

∀i ∈ [0,∞) : Θ(i, j) =


θ(i, j), if Nmin(τ0(i)) ≤ j ≤ N(τmin(i)),

0, otherwise

(C.9)

Here N(τmin(i)) denotes the newest invented technology at the time technology i

becomes outdated (τmin(i)) and Nmin(τ0(i)) denotes the oldest technology at the time

technology invented (τ0(i)). Assumption C.9 thus requires that those technologies, which

appear after i is outdated, cannot influence it and those, which are already outdated when
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i is just invented cannot impact it too. In this way the introduced assumption seems to

be not very much binding.

In fact this is the statement that spillovers are sufficiently local : there is a limit on the

range of technologies which is influenced by any given technology.

This assumption makes the operator Θ time-invariant: the overall impact on any

technology varies over time because of state-dependency, but the operator of these impacts

is fixed for any i. We thus may proceed as in Bondarev and Krysiak (2017) with analysis of

cross-technologies interactions1. The total evolution of productivity for every (invented)

technology i ∈ [Nmin, N ] is thus a sum of controlled individual investments and the

externalities impact:

ȦT (i, t) = ȦP (i, t) +

∫ N(τmin(i))

Nmin(τ0(i))

θ(i, j)A(j, t)dj (C.10)

where we use Assumption C.1 replacing ȦSP (i, t) with a simpler bounded domain operator.

Observe that once j > N(t) the productivity for technology j is zero by the Lemma C.2,

and thus in an effect the spillover operator takes into account only already invented

technologies.

We next assume that in the decentralized economy individual R&D firms cannot track

the individual impacts of different technologies on each other (non-atomicity assumption):

Assumption C.2. For any R&D firm i the impact of cross-technologies interactions is

a function of time only, independent of the state of any individual technology:

∫ N(τmin(i))

Nmin(τ0(i))

θ(i, j)A(j, t)dj
def
= Θ(i, t) :

∂Θ(i, t)

∂A(j, t)
= 0 (C.11)
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Using this assumption we can set up the R&D firm problem as a standard optimal

control problem in finite time (see Seierstad and Sydsaeter (1999) for example) and apply

the Maximum Principle. As a result we obtain optimal investments and productivity

evolution for each i as:

gP (i) =


∂pA(i)/∂Ai

1+r
(1− e(1+r)(t−τmin(i))), if τmin(i) ≥ t ≥ τ0(i),

0, otherwise

(C.12)

ȦP (i, t) =



∂pA(i)/∂Ai
1+r

(1− e(1+r)(t−τmin(i)))− AP (i, t) + Θ(i, t), if τmin(i) ≥ t ≥ τ0(i),

−AP (i, t) + Θ(i, t), if t > τmin(i),

0, if t < τ0(i)

(C.13)

with Θ(i, t) defined by (C.11) and ∂pA(i)/∂Ai being the marginal return to the increase

in productivity of i in terms of the patent price. Observe that this last is time-invariant

(since the patent price itself is time-invariant) for each i, but varies across i. So for

mathematical derivations this quantity may be treated as constant in time.

Given this observation the evolution of each technology, (C.13) is a linear non-autonomous

differential equation within operational phase τmin(i) ≤ t ≤ τ0(i). Once t > τmin(i) pro-

ductivity investments are zero, but the spillover part may still affect the productivity

evolution. By Assumption C.1 the spillover affecting outdated technologies is limited:

after τmin(N(τmin(i))) (which is the time when the last invented during the development

of i technology becomes outdated) it is strictly zero and the technology decays to zero as

in the baseline model. During the period t ∈ [τmin(i), τmin(N(τmin(i)))] the manufactur-

ing firm may still use the technology as it may remain competitive even in the absence
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of R&D investments. This type of producers we refer to as imitators as their behavior

resembles one in Acemoglu and Cao (2015).

So every technology potentially exhibits up to three phases of dynamics:

1. Normal R&D development till τmin(i) when productivity is supported by the asso-

ciated R&D firm receiving patent payments;

2. Free-rider development may start at any time after τmin(i) and continues at max till

τmin(N(τmin(i))) but can stop earlier;

3. Irreversible decay of technology after τmin(N(τmin(i)))

The second phase is novel and appears due to the presence of cross-technologies interac-

tions Θ in the model. Depending on the structure of these interactions this phase may

have different duration and the development of technology may even exceed that during

the normal phase.

These firms would stay operational for some positive time as soon as the accumulated

profit during this spillover phase is non-negative. However, this will increase the compe-

tition at the labor market. We thus assume throughout the main part of the paper that

spillovers intensity is bounded in some precise sense:

Definition C.1. Technology i is normal, if intensity of spillovers it experiences is not

high enough for potential free-riders to make positive profit:

∫ τ(N(τmin(i)))

τmin(i)

er(t−τmin(i))Πidt ≤ 0 (C.14)

Otherwise technology i is free-riding.

We thus assume
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Assumption C.3. Operator Θ is such that all technologies are normal in the sense of

Definition C.1.

It follows that once we adopt Assumption C.3, every technology has only one opera-

tional cycle which corresponds to the time when investments are positive2.

D Government

As soon as there exist externalities across R&D, characterized by the operator Θ, there

might be a need for government interventions. To account for this opportunity we include

a government into the model, thus diverging from the benchmark case.

The government is caring only for market failures corrections, thus social planners’

problem is to maximize welfare coming from R&D only:

JG = max
g(•),u(•)

∫ ∞
0

e−ρt
{∫ N

Nmin

e−ρ(t−τ0(i))
{
b(i)− 1

2
g2(i, t)

}
di− 1

2
u2(t)

}
dt (D.1)

with b(i) being the social value of the technology i. The focus of this paper is the market

inefficiency stemming from cross-technologies interactions so I make a simplifying assump-

tion concerning the social value of technologies, letting ∀i ∈ [0,∞) : b(i) = πR(i). All the

main results would hold for b(i) 6= πR(i) under suitable assumptions on this social welfare

wedge (like boundedness) but will unnecessarily overcomplicate the exposition.

The objective (D.1) together with constraints (C.6), (C.10), (C.3) defines the optimiza-

tion problem for the government which would yield a first-best schedule of technologies’

development. Next, once this is different from the market solution, government would

need subsidies (positive or negative) to different technologies. If this would be the case,

we require government to run a balanced budget3:
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∀t ∈ [0,∞) : S(t)
def
=

∫ N

Nmin

{s(i, t)di+ s(N(t), t)} dt = T (t)a(t) (D.2)

where S(t) is defined to be a total sum of subsidies (positive or negative), T (t) is the

income tax rate levied on households’ assets4. Once S(t) 6= 0 the government optimization

problem has to take (D.2) into account.

The social planner’s solution differs from the decentralized one exactly by the impact of

each technology on all others. Formally the social planner’s problem is maximizing (D.1)

subject to (C.3) and (C.10). This constitutes an infinite-dimensional infinite-horizon opti-

mal control problem. As soon as τ0,min,max(i) are taken as given the problem is equivalent

to the one considered in Bondarev (2018). Using Maximum Principle as of Skritek et

al. (2011), we may derive socially-optimal horizontal and vertical investments. The time

of emergence and profitability of technologies are then obtained as inverse functions of

variety expansion:

g∗(i, t) = ψ∗(i, t) = ψR(i, t) +
1

1 + r
(1− e(1+r)(t−τ

∗
min(i)))

∫ Nmax

Nmin

Θ(j, i)ψ∗(j, t)dj,

Ȧ∗(i, t)) = ψ∗(i, t)− A∗(i, t) +

∫ Nmax

Nmin

Θ(i, j)A∗(j, t)dj,

u∗(t) = λ∗(t),

Ṅ∗(t) = Ṅ∗min(t) = Ṅ∗max(t) = λ∗(t),

τ ∗0 (i) = (N∗(t)|N=i)
−1, τ ∗min(i) = (N∗min(t)|N=i)

−1, τ ∗max(i) = (N∗max(t)|N=i)
−1 (D.3)

In (D.3) we used the fact that outdating and operational phase entering of technologies

are proportional to the emergence of new ones (otherwise the economy would collapse in

finite time) and once b(i) = πR(i) the variety expansion is still linear. Then we get
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Lemma D.1 (Timing lemma).

Under the assumption b(i) = πR(i) and free entry the timing for all new technologies

coincide under social planner’s and market solutions:

∀i ∈ [N0,∞) : τ ∗0 (i) = τP0 (i), τ ∗min(i) = τPmin(i), τ ∗max(i) = τPmax(i). (D.4)

This provides consistency for government policy.

Proof. Once free entry holds, we get πR(i) = C. Then under social planner’s regime we

still get constant returns to every technology. This grants linear expansion rate and thus

equal timing for both economies.

This lemma is necessary to implement policies, since otherwise the mass of technologies

in operational phase/in existence would not coincide and any policy instrument targeted

at more than a single technology would be ill-posed.

Once Lemma D.1 holds it is immediate to design the first-best subsidies schedule:

Lemma D.2. The first-best subsidy to R&D is given by

s(i, t) :=
1

1 + r
(1− e(1+r)(t−τ

∗
min(i)))

∫ Nmax

Nmin

Θ(j, i)ψ∗(j, t)dj (D.5)

It is feasible as long as Θ is a compact operator and (D.2) holds.

Proof. Comparing decentralised and centralised solutions (C.13) and (D.3) we observe

that investments differ solely by the term 1
1+r

(1−e(1+r)(t−τ
∗
min(i)))

∫ Nmax
Nmin

Θ(j, i)ψ∗(j, t)dj. It

thus suffices to assign a subsidy at this level to each technology to correct the decentralised

solution to the first-best one.

This subsidy is well-defined for each i only if the associated integral equation (Fredholm

equation) ψ∗(i, t) = ∂pA(i)/∂Ai
1+r

(1−e(1+r)(t−τmin(i)))+ 1
1+r

(1−e(1+r)(t−τ
∗
min(i)))

∫ Nmax
Nmin

Θ(j, i)ψ∗(j, t)dj
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has a solution. This is the case as long as Θ is a compact operator and ψ∗(i, t) is defined

for each i.

At last, the budget constraint has to hold for the subsidy to be feasible, i. e. there

are sufficient funds to cover all additional expenditures.

Lemma D.2 states that first-best subsidy schedule exists, but the requirement of com-

pactness is rather strong, since the operator changes its value every time new technology

arrives. In the absence of structural change this is almost always the case, since Θ be-

comes time-invariant. However under structural change as it is understood in this paper,

first.best subsidies are not always feasible, as the following analysis demonstrates.

To complete the description of the model we list market clearing conditions, which are

exactly the same as in the benchmark model.

E Markets clearing

First, observe that Ė = 0, since prices are moving in the opposite direction of productivi-

ties, total labor force is constant and labor income is a numeraire. Then the expenditures

are a cosntant fraction of the labor income:

E =
ε

ε− 1
L (E.1)

implying more or less that the labor income is consumed depending on ε value (for ε > 2

some capital income is consumed, for 2 > ε > 1 fraction of labor income is saved).

Next, using Ė = 0 and the Euler equation, we can derive the interest rate in equilib-

rium:

Ė

E
= r − T − ρ = 0→ r = T + ρ. (E.2)
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For the real interest rate to be constant, taxes should be constant in time also, implying

the requirement of government dynamic consistency.

Labour market clearing condition is given if the following holds:

N∫
Nmin

LD(i, t)di = L = L

N∫
Nmin

A
−α(1−ε)
i

N∫
Nmin

A
−α(1−ε)
j dj

di,

N∫
Nmin

A
−α(1−ε)
i

N∫
Nmin

A
−α(1−ε)
j dj

di =

N∫
Nmin

A
−α(1−ε)
i di

N∫
Nmin

A
−α(1−ε)
j dj

= 1. (E.3)

But this last condition is automatically satisfied, hence the labour market is cleared.

At last assets are growing in the economy once the initial endowment is sufficiently

high and taxes are low enough:

ȧ = (r − T )a− 1

ε− 1
L, (E.4)

which can be solved to obtain the assets as a function of time,

a(t) = e(r−T )t
(
a0 −

1

(ε− 1)(r − T )
L

)
+

1

(r − T )(ε− 1)
L. (E.5)

Assets accumulation is positive as long as the initial assets of households are sufficiently

large:

a0 >
1

ε− 1

1

r
L. (E.6)

As long as (E.6) holds, assets increase exponentially. Since horizontal investments are

constant implying at most linear growth of assets demand from the horizontal R&D we

have under assumption of horizontal R&D having the priority5
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Lemma E.1. As long as (E.6) holds, T < r, then

∃!τsuff : ∀t > τsuff : G(t) > 0, (E.7)

Proof. Follows from the fact that a(t) grows exponentially and N(t) linearly. There exists

at most one intersection point of two monotonically growing functions of such types.

Denote it τsuff and the result follows.

F Definitions of spectral properties

It uses the operator spectral theory to some extent, so for exposition to be self-contained

I list here some additional definitions.

Definition F.1. The spectrum of Θ, denoted σ(Θ) is the set of λ such that for any x

σ(Θ) = {λ : λx = Θx}.

The spectral radius of operator Θ, denoted ρ(Θ) is the maximal absolute size of its

spectrum

ρ(Θ)
def
= max{|λ|}. (F.1)

In particular for spillover operators defined over the Hilbert space we have σ(Θ) =

σp ∪ σc ∪ σr where subscripts p, c, r denote pointwise, continuous and residual spectral

components respectively and ρ(Θ) = ||Θ||op, spectral radius equals the operator norm of

Θ which is its maximal value (see e. g. Kolmogorov and Fomin (1999)).

Definition F.2. The operator Θ is scalar, if ∀i 6= j : θ(i, j) = 0 and ∀i : θ(i, i) = θ > 0,

i. e. it is a scalar multiple of the identity operator.
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This definition simply resembles that of a scalar matrix but for possibly infinite-

dimensional setting.

Definition F.3. The operator Θ is of scalar type, if it admits the resolution of identity

similar to the multiplication operator.

We thus call Θ scalar-type if it resembles either the infinite-dimensional diagonal

matrix, or by proper choice of the eigenbasis may be transformed into such a diagonal

matrix (multiplication operator).

The next class limiting finite-dimensional case is the class of compact operators:

Definition F.4. Operator Θ : X 7→ Y is compact if it maps every bounded subset of X

to relatively compact subset of Y

In particular this means for any given technology i the total spillover size is bounded.

Next we use the notion of the nilpotent operator which is an extension of the nilpotent

matrix notion:

Definition F.5. The operator Θ is nilpotent if ∃n ∈ N : Θn = 0. It is topological nilpotent

if σ(Θ) = 0.

Observe that these two notions coincide only for finite-dimensional operators. In

general case the nilpotent operator does not need to dissipate. This is an important

subclass called spectral class n operators.

At last we follow Dunford (1954) and define

Definition F.6. The operator Θ is spectral, if it admits the canonical decomposition into

the scalar-type and nilpotent parts.

Observe that not every spectral operator is compact, but every compact operator is

spectral.
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For results of Section 4 we also need an infinite-dimensional version of Jordan-Chevalley

decomposition (JCD) which is for completeness listed here.

Once we consider compact operators, they all have only point-wise spectrum (except

zero) and thus we get full correspondence with the finite-dimensional Jordan-Chevalley

decomposition (JCD, see Helgason (2001) for example).

Lemma F.1 (Infinite-dimensional JCD).

Any compact spectral operator over Hilbert space admits the canonical decomposition into

the semi-simple part and the nilpotent part.

Proof. Follows from definitions of the semi-simple, spectral and nilpotent operators and

from the canonical decomposition of the spectral operator in Dunford (1954).

G Proof of Proposition 2

Proof. As long as Θ is scalar in the sense of Definition F.2 and its spectral radius is

bounded by 1, it means it represents the scalar multiple θ ≤ 1 and the spillover qualita-

tively does not change the dynamics for the symmetric model. To see that just con-

sider the symmetric case where gP (i, t) = G(t)
N−Nmin following the baseline model and

Θ(i, t) = θA(i, t). The long-run growth rate ḡA is then independent of θ and equals r

by direct computations. This implies BGP exists as defined by Definition 1 in the main

text.

Once ρ(Θ) > 1, every technology has increasing growth due to spillover. However

the growth rate converges to the same value for any technology because of the turnpike

property of the governing dynamical system in the same way as in the benchmark case

(see e. g. Yano (1984) for details). Direct computation shows that ḡA = θ − 1 in this

case.
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Once Θ is not a scalar, it has some heterogeneity and under assumption θ(i, j) > 0

some technologies have competitive advantage and grow faster than others. Then either

the economy collapses into one-sector either it experiences explosive growth as follows

from Corollary 1. In both cases no BGP exists and sustained growth requires government

interventions.

H Proof of Proposition 3

Proof. As soon as cross-technologies interactions are such that the spillover operator is

unitary similar to the multiplication one, it is always possible to redefine ’technologies’

in such a way, that they become separated and the R&D system (D.3) admits solution

as an infinite-dimensional ODE system. Since in the social optimum the shadow costs of

investments for every technology take into account all possible interactions, the resulting

solution is welfare- maximizing and as such admits the BGP.

On the other hand, once the operator is not necessarily of the scalar type, but is

compact, its spectrum contains only pointwise eigenvalues (discrete spectrum) and the

continuous spectrum is restricted to zero (see e. g. Kolmogorov and Fomin (1999)). Thus

even if the spillover operator contains the non-zero nilpotent part, this last has at most

countable non-zero entries which can be corrected for by appropriate subsidies/taxes (see

Bondarev and Krysiak (2017) for details).

Once the operator is not compact, the nilpotent part may contain continuous spectrum

components and usual regulation cannot correct for cascading cross-technologies spillovers.

Thus the first-best solution will eventually be unstable and the BGP as of Definition 1

would not exist.
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I Proof of Proposition 4

Proof. For all t when Θ|t∈F = S, the BGP exists by Proposition 2. Since there are no

interactions between technologies not accounted for by individual R&D firms, the welfare

theorems grant the optimality of the decentralized solution.

As soon as Θ|t∈F 6= S, there exist at least some technologies with interactions not

accounted for by market participants. This leads to the non-balanced development of the

mass of technologies, whereas some are more efficient then others. Resources are thus

concentrated by the market in the most efficient ones, while other technologies start to

degrade. Even if at the next time instance it happens that t ∈ F , the distortion caused on

the previous step by the interactions is not smoothed out, since the competitive advantage

builds up. Then the economy will slip off the decentralized BGP and cannot return there

without government intervention. Thus as soon as t = tS as defined above, and operator’s

projection is no longer scalar(-type), the decentralized BGP is destroyed and cannot be

recovered without government intervention.

J Proof of Proposition 5

Proof. 1. Follows from Proposition 3: once Θ remains compact, the socially optimal

BGP exists and is feasible. Thus without further restrictions on subsidies it can be

implemented.

2. If Θ is not compact, the social BGP does not exist by Proposition 3. The spectral

decomposition implies that spectrum of Θ consists exactly of three parts: pointwise,

continuous and residual components. By assertion the residual component is empty,

thus only pointwise and continuous components have to be considered. Now observe
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that (optimal) subsidy is proportional to the eigenvalues of Θ: indeed, these measure

the difference between social and private values of the spillover as in Bondarev and

Krysiak (2017). Still continuous spectrum components cannot be precisely defined

and only approximate eigenvalues may exist for this part of the spectrum (and

does not necessarily exist). Thus any government subsidy policy will differ from

the potential optimal to the extent of the continuous spectrum. The sustained

growth path which is approximated is exactly the one with all the spillovers being

internalized and the proximity to it is then defined by the size of the continuous

component of the spectrum.

3. If the residual component of the spectrum is not empty, operator becomes not dense

in some part of its domain. This means there are sparse spillovers where the source

cannot be even approximated. Thus the optimal SGP cannot be approximated

either. Still by correcting for the overall effect of cross-technologies spillovers, the

government may achieve some SGP (not close to the optimal one) which is an

improvement over not following SGP at all (since positive welfare at infinite horizon

is always better then the finite-time collapse of the economy).

K Proof of Proposition 6

Proof. 1. Under this assertion the operator can be made similar to the multiplication

one (diagonal). Thus all the spillovers may be delineated through appropriate choice

of the basis (eigenbasis). At the same time all spillovers are inessential in a sense

that they do not grant crucial competitive advantage to the associated technology.
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Thus the symmetry is fully restores by the proper rearrangement of property rights

(basis change).

2. Under this assertion the operator can be made diagonal but some technologies ex-

perience high positive spillovers which make then more efficient than others. For

each such a technology i1 the associated eigenvalue measures the intensity of its im-

pact and in the renormalized form of the spillover Θ this exactly corresponds to its

competitive advantage. Duration of a subsidy is then given by the time technology

stays operational.

3. If Θ contains non-zero nilpotent part, not all impacts may be reassigned through

property rights (the full diagonalization is not feasible). Still if the complexity is

finite, it corresponds to finite cascades of technologies subject to the spillover and

thus given the ongoing structural change, the duration of the subsidy is still finite

and given by the timeframe of the cascade of technologies subjected by the impact.

4. At last if simultaneously nilpotent part is nonempty, and its complexity is infinite,

there are cascades of spillovers, which are not limited to certain range of technologies,

but are persistent. In this case the regulation has to be permanent.
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Notes

1it is of interest to account for interactions operators with unbounded dynamic range (non-local ones),

that is, relaxing Assumption C.1. However this rises substantial technical difficulties and involve non-local

operators theory, which is still under development, see e. g. Bernardis et al. (2016).

2again it would be of interest to allow for free-riding technologies, but this may lead to chaotic and

even non-deterministic dynamics because of piecewise-smooth system resulting from (C.13), see e. g.

Colombo and Jeffrey (2011) for details.

3we neglect the possibility of deficit-run budget for the sake of simplicity, but again this would not

influence the main results of the paper

4it has been shown by Greiner and Bondarev (2015) that consumption tax actively discussed recently

may cause instability of the taxed economy so we limit exposition to the income tax only

5if on the contrary, vertical R&D are prioritized, there is no structural change and the economy follows

the setup of Peretto and Connolly (2007) with productivity growth only.
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