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Abstract: We study the discrete β function of SU(3) gauge theory with Nf = 12

massless fermions in the fundamental representation. Using an nHYP-smeared staggered

lattice action and an improved gradient flow running coupling g̃2
c (L) we determine the

continuum-extrapolated discrete β function up to g2
c ≈ 8.2. We observe an IR fixed point

at g2
? = 7.3

(
+8
−2

)
in the c =

√
8t/L = 0.25 scheme, and g2

? = 7.3
(

+6
−3

)
with c = 0.3, com-

bining statistical and systematic uncertainties in quadrature. The systematic effects we

investigate include the stability of the (a/L)→ 0 extrapolations, the interpolation of g̃2
c (L)

as a function of the bare coupling, the improvement of the gradient flow running coupling,

and the discretization of the energy density. In an appendix we observe that the result-

ing systematic errors increase dramatically upon combining smaller c . 0.2 with smaller

L ≤ 12, leading to an IR fixed point at g2
? = 5.9(1.9) in the c = 0.2 scheme, which resolves to

g2
? = 6.9

(
+6
−1

)
upon considering only L ≥ 16. At the IR fixed point we measure the leading

irrelevant critical exponent to be γ?g = 0.26(2), comparable to perturbative estimates.
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1 Introduction

SU(3) gauge theory with Nf = 12 flavors of massless fermions in the fundamental repre-

sentation has been considered by many independent lattice studies in recent years. This

effort is motivated by the expectation that the 12-flavor system exhibits conformal or near-

conformal dynamics qualitatively different than QCD. That is, Nf = 12 is likely either

within or close to the lower boundary of the SU(3) conformal window N
(c)
f ≤ Nf < 16.5,

where the theory flows to a chirally symmetric conformal fixed point in the infrared

(IRFP) [1, 2]. Should the system undergo spontaneous chiral symmetry breaking (i.e.,

12 < N
(c)
f ), then it provides an example of a strongly coupled theory in which lattice cal-

culations have observed a light 0++ scalar [3, 4]. In this case investigations of Nf = 12

are relevant to explore possible strongly coupled new physics beyond the standard model

(BSM), in which such a light composite scalar could be consistent with the observed SM-like

Higgs boson [5, 6]. Alternatively, if the 12-flavor system is within the conformal window,

as our results indicate, it provides a useful testbed in which to develop and apply non-

perturbative methods to investigate IR-conformal systems. Even in this case there can be

connections to BSM phenomenology, in models where the mass of some of the fermions is

lifted to guarantee spontaneous chiral symmetry breaking. Lattice investigations of this

situation have shown that this system follows hyperscaling, a highly non-QCD-like behav-

ior, exhibiting natural large scale separation and UV dynamics dominated by the 12-flavor

IRFP [7, 8].
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Initial indications that Nf = 12 would be interesting came from continuum field the-

ory analyses. For example, two-, three-, and four-loop perturbative computations of the β

function all predict an IRFP for the system [1, 2, 9, 10].1 Analyses that combine perturba-

tion theory with Schwinger–Dyson equations [17, 18] produce estimates for the location of

the lower boundary of the SU(3) conformal window that range from N
(c)
f ≈ 8 in ref. [19] to

N
(c)
f ≈ 12 in refs. [17, 18, 20]. Similarly, functional renormalization group (RG) methods

suggest N
(c)
f ≈ 10–13 [21, 22] while a conjectured thermal inequality predicts the bound

N
(c)
f . 12 [23].

Numerical studies of the 12-flavor system have employed a wide variety of methods,

including investigation of the running coupling and its discrete β function [24–35]; explo-

ration of the phase diagram through calculations at zero and finite temperature [36–48];

analysis of hadron masses and decay constants [3, 4, 36, 37, 41, 42, 49–60]; study of the

eigenmodes of the Dirac operator [49, 61–64]; and more [65–73]. See also the recent re-

views [74–76]. Except for refs. [47, 48], all of these studies use staggered fermions (with

or without various forms of improvement), which conveniently represent Nf = 12 contin-

uum flavors as three (unrooted) lattice fields.2 The different approaches considered have

complementary strengths, and the most reliable information about the IR dynamics of the

system is obtained by attempting to integrate the available results.

For example, step-scaling studies of the discrete β function directly search for an

IRFP within a particular range of renormalized couplings. The exactly massless fermions

typically employed by such studies make it more difficult for them to explore sponta-

neous chiral symmetry breaking, which finite-temperature or spectral techniques are better

suited to investigate. If no IRFP is observed by step-scaling studies (as in recent work on

Nf = 8 [79, 80]), then additional computations with am > 0 are needed to investigate chiral

symmetry breaking in the considered range of couplings. Without identifying spontaneous

chiral symmetry breaking in the am = 0 limit it remains possible for there to be an IRFP

at some stronger coupling beyond the range in which the discrete β function was explored.

As spontaneous chiral symmetry breaking is an inherently non-perturbative phenomenon

we wish to probe it using lattice calculations rather than relying on imprecise estimates of

the critical coupling strength g2
MS
∼ 10 [17, 18].

In the case of Nf = 12, the pioneering step-scaling study of refs. [24, 25] identified

an IRFP at g2
SF ≈ 5 in the Schrödinger functional scheme (with purely statistical uncer-

tainties & 10%). Subsequent investigations [26–35] have attempted to improve upon this

result by considering larger lattice volumes, different schemes for the running coupling,

and improved lattice actions with smaller discretization artifacts. Two recent large-scale

projects are of particular note. Ref. [34] explores the discrete β function up to g2
c . 6 in the

1A recent five-loop β function computation [11, 12] appears to change this trend, although the subsequent

refs. [13–16] argue that all systems with 9 ≤ Nf ≤ 16 exhibit IRFPs at the five-loop level. We address this

development in section 6.
2At the perturbative g2 = 0 fixed point staggered lattice fermions are equivalent to continuum fermions.

At a non-trivial IRFP this is not necessarily the case; instead, the different chiral symmetry properties of

different lattice fermion formulations could correspond to different fixed points. Such behavior has been

studied in three-dimensional spin systems [77, 78].
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c =
√

8t/L = 0.45 and 0.5 gradient flow schemes with color-twisted boundary conditions

(BCs) and an unimproved lattice action. Although the resulting step-scaling function ap-

proaches zero it does not vanish in the accessible range of couplings, and a bulk transition

into a lattice phase obstructs progress to larger g2
c . Ref. [35] employs very large lattice

volumes and an improved action to explore the very narrow region 6 . g2
c . 6.4 in the

c = 0.2 gradient flow scheme, also obtaining a non-zero discrete β function.3 As we show

in figure 5, both of these investigations are consistent with our full c = 0.25 and 0.3 re-

sults that predict an IRFP at g2
? = 7.3

(
+8
−3

)
(despite the slightly different renormalization

schemes considered).

In addition to the step-scaling studies summarized above, most other Nf = 12 investi-

gations offer further evidence supporting the existence of a conformal, chirally symmetric

IR fixed point. Investigations of the phase diagram both at zero and finite temperature

have observed a first-order bulk phase transition that extends from the am = 0 chiral

limit to non-zero mass [36, 39, 42–47]. At finite temperature T = 1/(aNt), where a is

the lattice spacing and Nt is the temporal extent of the lattice, the chiral transition lines

run into the bulk phase at non-zero mass [43, 46]. This is a necessary condition for IR-

conformality, where the finite-temperature transitions in the chiral limit must accumulate

at a finite coupling as Nt → ∞, and remain separated from the weak-coupling conformal

phase. No lattice investigations of the 12-flavor phase diagram have been able to identify

spontaneous chiral symmetry breaking in the form of chiral transitions that remain in the

weakly coupled phase upon extrapolation to the chiral limit.

Spectral studies offer another means to explore the IR dynamics, by confronting

nonzero-mass lattice data with expectations based on either chiral perturbation theory

or conformal finite-size scaling. While refs. [54, 57, 59] observe consistency with conformal

hyperscaling for Nf = 12, ref. [50] reported a very low level of confidence in conformal-

ity. However, subsequent re-analyses of the data published by ref. [50] suggest that this

conclusion is sensitive to the details of the analyses [51, 52, 57]. In particular, by taking

into account corrections to scaling arising from the nearly marginal (i.e., slowly running)

nature of the gauge coupling, in ref. [57] we were able to carry out consistent finite-size

scaling analyses that included both our own spectrum data as well as those published by

refs. [50, 54].

Our finite-size scaling study predicted the scheme-independent mass anomalous dimen-

sion γ?m = 0.235(15) at the 12-flavor IR fixed point. A similar result γ?m = 0.235(46) was

reported by ref. [59].4 In addition, our studies of the massless Dirac operator eigenmodes

independently predict γ?m ≈ 0.25 [62, 63]. These results are quite close to the four-loop

3This particular range of g2c was chosen based on some results in our earlier publication [32], which

identified a 12-flavor IRFP at g2? = 6.2(2). In appendix B we compare that previous work with the full

results presented here.
4Finite-size scaling analyses without corrections to scaling typically obtained larger values that often

varied non-universally depending on the observables analyzed: 0.2 . γm . 0.4 [55], γ?m = 0.403(13) [51],

γ?m ' 0.35 [52] and γ?m = 0.4–0.5 [54]. A recent study of the mass dependence of the topological susceptibility

obtained a similar γ?m = 0.3–0.5 by fitting χt ∝ (am)4/(1+γ
?
m) [73]. These results are all consistent with

an upper bound γ?m ≤ 1.29 from the conformal bootstrap program [81], though not with the perturbative

γ?m ≈ 1.3–1.5 reported by ref. [82].
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perturbative prediction γ?m = 0.253 in the MS scheme [9], and the new five-loop result

γ?m = 0.255 [14], though a recent scheme-independent series expansion [83] obtains a larger

γ?m = 0.400(5) [15, 16]. This small, potentially perturbative mass anomalous dimension,

in combination with the assumption that γ?m ' 1 around the lower edge of the conformal

window, may suggest that Nf = 12 is quite deep within the conformal regime.

Despite the many high-quality, large-scale investigations of the 12-flavor system sum-

marized above, there is still progress to be made in resolving its IR properties. In this

work we report our final results on the step-scaling calculation of the discrete β function

for Nf = 12. These results supersede the partial analysis included in ref. [32], and predict

a conformal IR fixed point at g2
? = 7.3

(
+8
−2

)
in the gradient flow scheme with c = 0.25. We

also investigate the slope of the step-scaling function at the IRFP, both directly and via

finite-size scaling as in refs. [25, 34]. This slope is related to the leading irrelevant critical

exponent γ?g , for which we find γ?g = 0.26(2), consistent with the four-loop perturbative

prediction γ?g = 0.282.

Compared to ref. [32] we have accumulated significantly more data, in particular gen-

erating several new lattice ensembles at relatively strong couplings βF . 4 on each lattice

volume up to 364. This allows us to explore the discrete β function up to g2
c . 8.2, ex-

tending past the IRFP that we observe (though it would be nice to push further into the

regime of backward flow in future work). We now compare multiple discretizations of the

energy density E(t) in the gradient flow renormalized coupling, obtaining consistent re-

sults. Finally, we add two new lattice volumes, 204 and 304, that allow us to omit the 124

volume used in ref. [32]. As we show in appendix B, analyses that include 124 volumes

in the c = 0.2 gradient flow scheme suffer from particularly large systematic uncertainties

that were not comprehensively considered in ref. [32].

Although our 12-flavor results are qualitatively different than those we previously ob-

tained for the 8-flavor discrete β function [79], much of our analysis follows the same

procedure as that work, and the next three sections are organized in the same way. We

begin by reviewing gradient flow step scaling in the next section, including the improve-

ment of the gradient flow running coupling. In section 3 we describe our numerical setup

and lattice ensembles. We use an nHYP-smeared staggered fermion lattice action [84, 85],

with both fundamental and adjoint plaquette terms in the gauge action [39, 43, 46, 66].

We employ this same action in our 12-flavor finite-temperature [39, 43, 46], spectral [57]

and eigenmode [62, 63] studies summarized above, which can therefore be consistently

compared. On each of eight L4 volumes with 12 ≤ L ≤ 36 we generate between 14–35

ensembles at different bare couplings in the range 3 ≤ βF ≤ 9.

Our step-scaling analyses and results are presented in section 4, including discussion

of systematic uncertainties from the stability of the (a/L) → 0 extrapolations, the inter-

polation of g̃2
c as a function of the bare coupling, and the improvement of the gradient flow

running coupling. We compare the clover and plaquette discretizations of E(t) as another

consistency check, obtaining agreement in all cases we consider. Finally, we also confirm

the consistency of our results with those recently reported by refs. [34, 35]. In section 5

we investigate the leading irrelevant critical exponent from the slope of the step-scaling

function at the IRFP, observing γ?g = 0.26(2), comparable to perturbative estimates. We
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check this result by carrying out a finite-size scaling analysis. We conclude in section 6

with some brief discussion of how our new results affect the broader context of 12-flavor

lattice investigations summarized above, and highlight a few directions that merit further

study in the future.

We include three appendices collecting some supplemental checks of our results. In

appendix A we briefly consider the discrete β functions resulting from two scale changes

s = 2 and s = 4/3 different from the s = 3/2 considered in the body of the paper. In

contrast to s = 3/2, for both of s = 2 and 4/3 we are forced to include small-volume

124 lattice ensembles in our analyses. We obtain consistent results from all three scale

changes, as summarized in table 2. However, as we show in appendix B, systematic uncer-

tainties increase dramatically when combining smaller c . 0.2 with smaller L ≤ 12. These

systematic uncertainties were not comprehensively considered in the partial analysis we

included in ref. [32], which reported g2
? = 6.2(2) with c = 0.2 and L ≥ 12, compared to the

g2
? = 5.9(1.9) we now obtain with this choice of c and Lmin (table 2). Finally, appendix C

provides a subset of our data.

2 Gradient flow step scaling and its improvement

We investigate a renormalized coupling defined through the gradient flow, which is a con-

tinuous transformation that smooths lattice gauge fields to systematically remove short-

distance lattice cutoff effects [86]. The demonstration that the gradient flow is mathe-

matically well defined and invertible [87] inspired its use in a wide variety of applications

(recently reviewed by ref. [88]). Here we consider the coupling [89]

g2
GF(µ) =

1

N
〈
t2E(t)

〉
=

128π2

3(N2 − 1)

〈
t2E(t)

〉
, (2.1)

where the energy density E(t) is evaluated after ‘flow time’ t, corresponding to the energy

scale µ = 1/
√

8t. We will compare two lattice operators that can be used to define the en-

ergy density, first E(t) = −1
2ReTr [Gµν(t)Gµν(t)] with the symmetric clover-leaf definition

of Gµν , and second E(t) = 12(3 − �(t)) where � is the plaquette normalized to 3. The

overall normalization N is set by matching g2
GF(µ) with the continuum MS coupling at

tree level. To carry out step-scaling analyses we tie the energy scale to the lattice volume

L4 by fixing the ratio c =
√

8t/L, as proposed by refs. [90–92]. Each choice of c defines a

different renormalization scheme, producing different results for the renormalized coupling

g2
c (L) and for the discrete β function in the continuum limit. When periodic BCs are used

for the gauge fields, these β functions are only one-loop (and not two-loop) universal [90].

Extrapolating (a/L)→ 0 is required to remove cutoff effects in the gradient flow renor-

malized couplings g2
c .

5 These cutoff effects depend on the lattice action used to generate

the configurations, on the gauge action used in the gradient flow transformation, and on

the lattice operator used to define the energy density E(t). It is possible to systematically

remove lattice artifacts by improving all three quantities simultaneously [93, 94]. Here we

5We refer to these as ‘continuum extrapolations’ in some places, but this is strictly true only for couplings

weaker than the g2? of the IR fixed point.
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take a simpler approach, using the Wilson plaquette action in the gradient flow transfor-

mation (i.e., the “Wilson flow”) and combining two improvements that suffice to greatly

reduce—and often essentially remove—cutoff effects. First, following ref. [95], we modify

the definition of the renormalized coupling to perturbatively correct for cutoff effects,

g2
c (L) =

128π2

3(N2 − 1)

1

C(L, c)

〈
t2E(t)

〉
. (2.2)

In this expression C(L, c) is a four-dimensional finite-volume sum in lattice perturbation

theory, which depends on the action, flow and operator. We use the tree-level computation

of C(L, c) from ref. [95], including a term that accounts for the zero-mode contributions

allowed by the periodic BCs for the gauge fields.

As we will see in figure 2, even this perturbatively improved gradient flow coupling can

exhibit significant cutoff effects. While larger values of c & 0.3 reduce these artifacts to

some extent, this is accomplished only at the price of increased statistical uncertainties [92].

A better option, introduced in ref. [32], is to slightly shift the flow time at which the energy

density is computed:

g̃2
GF(µ; a) = g2

GF(µ; a)

〈
E(t+ τ0a

2)
〉

〈E(t)〉
(2.3)

with |τ0| � t/a2. This t-shift τ0 can be either positive or negative. Its effects vanish in the

continuum limit where τ0a
2 → 0 so that g̃2

GF(µ) = g2
GF(µ). For O(a)-improved actions like

those we use, choosing an optimal τ0 value τopt allows the removal of all O(a2) corrections of

the coupling g̃2
GF(µ; a) defined in eq. 2.3. Although this optimal τopt changes as a function

of g̃2
GF(µ), in this work we observe that τopt depends only weakly on g̃2

GF(µ), as in our

previous studies of 4-, 8- and 12-flavor SU(3) systems [32, 79]. Therefore we simply use

a constant value of τopt for all g̃2
GF(µ), which suffices to remove most observable lattice

artifacts throughout the ranges of couplings we explore.

Since we optimize τ0 after applying the tree-level perturbative corrections discussed

above, these two improvements do not interfere with each other. Nor do either of them

require any additional computation, since the numerical integration through which we

evaluate the gradient flow already provides all the data needed to shift t→ t+ τ0a
2. Using

the resulting g̃2
c gradient flow running coupling, we will investigate the 12-flavor discrete β

function corresponding to scale change s,

βs(g̃
2
c ;L) =

g̃2
c (sL; a)− g̃2

c (L; a)

log(s2)
. (2.4)

We will also refer to this quantity as the step-scaling function σs(u, L) with u ≡ g̃2
c (L; a). To

obtain our final results for the continuum discrete β function βs(g
2
c ) = lim(a/L)→0 βs(g̃

2
c , L)

we extrapolate (a/L)→ 0.

We emphasize that different values of τ0 should all produce the same βs(g
2
c ) in the

continuum limit [32]. In appendix B we will show that this requirement is not satisfied

for the lattice volumes we can access when c . 0.2. In this case continuum extrapolations

with different t-shifts disagree by statistically significant amounts, which likely contributes

to the discrepancy between refs. [32] and [35]. In this work, when such sensitivity to the
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s = 2 s = 3/2 s = 4/3

L = 12→ 24 12→ 18 12→ 16

L = 16→ 32 16→ 24 18→ 24

L = 18→ 36 20→ 30 24→ 32

24→ 36

Table 1. Pairs of lattice volumes available for the three scale changes s = 2, 3/2 and 4/3.

t-shift is present we will account for it as a source of systematic uncertainty, which was not

done in ref. [32].

The different discretizations of E(t) should also produce the same βs(g
2
c ) in the contin-

uum limit. We will separately analyze the plaquette and clover definitions of E(t), and find

that they produce consistent results within uncertainties when c ≥ 0.25 and L ≥ 16. In

appendix A we note that reducing L ≥ 12 requires increasing c ≥ 0.3 in order to maintain

the good agreement between these two sets of results. When identifying the location of the

IR fixed point, we will include the predictions of both discretizations in our determination

of the total uncertainties on g2
?.

3 Numerical setup and lattice ensembles

Our numerical calculations use nHYP-smeared staggered fermions [84, 85] with smearing

parameters α = (0.5, 0.5, 0.4), and a gauge action including fundamental and adjoint pla-

quette terms with couplings related by βA/βF = −0.25 [39, 43, 46, 66]. The fermions are

exactly massless (am = 0), which freezes the topological charge at Q = 0. We impose

anti-periodic BCs for the fermions in all four directions, while the gauge fields are periodic.

Previous studies of this lattice action observed an “��S4” lattice phase in which the single-

site shift symmetry (S4) of the staggered action is spontaneously broken [39, 43, 46]. At

am = 0 a first-order transition into the ��S4 phase occurs at β
(c)
F ≈ 2.75. In this work we

only consider weaker couplings safely distant from the ��S4 lattice phase.

We generate ensembles of gauge configurations with eight different L4 lattice volumes

with L = 12, 16, 18, 20, 24, 30, 32 and 36. Depending on L we study 14–35 values of the

bare coupling in the range 3 ≤ βF ≤ 9. The 158 resulting ensembles are summarized in

tables 3–10 in appendix C. These volumes allow us to consider three scale changes s = 2,

3/2 and 4/3, each with at least three pairs of volumes for continuum extrapolations as

listed in table 1. In the body of the paper we focus on s = 3/2 where we can retain three

points with L ≥ 16; we will see in the next section that the L = 12 ensembles exhibit

potentially significant cutoff effects. Even so, we obtain comparable results for s = 2 and

4/3 analyses including L = 12 data, which are collected in appendix A.

We use the hybrid Monte Carlo (HMC) algorithm to generate configurations. Even

at the strongest bare couplings we investigate we retain good HMC acceptance and re-

versibility in the am = 0 chiral limit with unit-length molecular dynamics trajectories and

step sizes δτ ≈ 0.1 at the outer level of our standard multi-timescale Omelyan integra-
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Figure 1. Gradient flow renormalized coupling g̃2
c (L) vs. βF for c = 0.25 (left) and c = 0.3

(right), both with optimal τopt = 0.08. The lines are interpolations using the rational function

form in eq. 4.1. The left edge of the plots in the top row indicates the boundary of the ��S4 phase,

β
(c)
F ≈ 2.75. The plots in the bottom row zoom in on the narrow regions around βF . 5 where the

results from different lattice volumes all cross each other. For clarity we omit the uncertainties on

the interpolations. Within uncertainties the crossings for L ≥ 16 and c = 0.3 are all consistent.

tor. While the performance of the HMC algorithm is not a robust means to monitor the

phase structure of the system, this behavior indicates that none of our ensembles exhibit

chiral symmetry breaking. This conclusion is supported by our observation of a gap in the

Dirac operator eigenvalue spectrum on many of these ensembles, including the strongest

couplings βF ≥ 3 that we consider [62, 63].

In figure 1 we show the gradient flow renormalized coupling g̃2
c (L) measured on each

ensemble for c = 0.25 and 0.3 (using the clover discretization of the energy density). These

data use the optimal t-shift value τopt = 0.08 that we discuss in the next section, and also

include the tree-level perturbative correction factor C(L, c) in eq. 2.2. The perturbative

corrections are fairly mild for our lattice action, Wilson flow, and clover or plaquette

discretization of the energy density. The largest is C(12, 0.25) ≈ 1.12 for the plaquette

discretization, with all others smaller than 6.2% effects. From these plots we can already

see that the 12-flavor coupling runs very slowly, with little change in g̃2
c (L) as the volume

increases by a factor of three, especially for βF > 4.0. This feature of the system was

mentioned in section 1, as the reason that finite-size scaling analyses need to account for

the corresponding corrections to scaling.
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The lines in figure 1 are interpolations using the rational function form in eq. 4.1.

The plots in the bottom row zoom in on narrow regions of width ∆βF = 0.5 where the

interpolations from different lattice volumes all cross each other. At the weak-coupling edge

of these plots, βF = 5 (4.9) for c = 0.25 (0.3), the interpolated g̃2
c monotonically increase

with L from 12 to 36. At the strong-coupling edge, βF = 4.5 (4.4), the order has completely

reversed and the interpolated g̃2
c monotonically decrease as the lattice volume increases.

Of course there are statistical uncertainties in the data that make the full analysis more

complicated: To reduce clutter in these figures we don’t display the uncertainties on the

interpolations, within which most of the interpolations remain consistent with each other

throughout much or all of this range.

The finite-volume crossings visible in these plots could be extrapolated to the infinite-

volume limit to predict a 12-flavor IRFP, as in the c = 0.2 analysis of ref. [32].6 With

c = 0.25 the crossings occur at g2
?(L) . 7 but extrapolate to a slightly larger value g2

? ≈ 7.3

in the continuum limit. With c = 0.3 the crossings all cluster around g2
?(L) . 7.3, with

a nearly constant continuum extrapolation. Instead of taking this approach, however, in

this work we construct the full continuum-extrapolated discrete β function across a broad

range of couplings, the topic to which we now turn.

4 Step-scaling analyses and results

Following the standard procedure for lattice step-scaling analyses, for each L we first

fit the renormalized couplings g̃2
c (L) to some interpolating function in the bare coupling

βF ≡ 12/g2
0, then use those interpolations to determine the finite-volume discrete β func-

tions βs(g̃
2
c , L) from eq. 2.4, which we extrapolate to the (a/L)→ 0 limit. We will refer to

the last step as the ‘continuum extrapolation’, although this is strictly true only for cou-

plings weaker than the g2
? of the IR fixed point. While the choice of interpolating function

is essentially arbitrary, typically some functional form motivated by lattice perturbation

theory is used. For example, refs. [25, 80, 90] fit 1
g2
− 1

g20
to polynomials in g2

0. Following

refs. [79, 97] we instead use the rational function

g̃2
c (L) =

(
12

βF

)
1 + a1βF + a2β

2
F

b0 + b1βF + b2β2
F

, (4.1)

which also produces the expected g̃2
c ∝ g2

0 at weak coupling. These interpolations are shown

in figure 1. Most of the fits shown are of good quality, although there are some outliers

with χ2/d.o.f. & 1 corresponding to confidence levels CL . 0.1. For reference we collect all

this information in tables 23–25 in appendix C. Notably, the worst-quality interpolations

are for the L = 12 data that we omit from our s = 3/2 step-scaling analyses.

6The finite-volume crossings in figure 3 of ref. [32] are at weaker couplings βF ≈ 6 due to the absence of

t-shift improvement as well as the smaller value of c = 0.2. Crossing analyses for c = 0.25 and 0.3, using the

same data sets and procedures as ref. [32], previously predicted g2? = 6.8(3) and 7.1(5), respectively [96].
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Figure 2. Linear (a/L)2 → 0 extrapolations of the s = 3/2 discrete β function for c = 0.25

(left) and 0.3 (right), at two values of u = 4 (top) and 8 (bottom) on either side of the IR fixed

point. In each plot we compare τ0 = 0 and 0.16 to the optimal τopt = 0.08, and also include

results from the plaquette discretization of the energy density E(t) in eq. 2.3 at the corresponding

optimal τ
(plaq)
opt = 0.12. As required, all different τ0 produce extrapolations to consistent values in

the (a/L)2 → 0 limit. Only L ≥ 16 are included in the fits, though L = 12→ 18 points are shown

for comparison. The bottom row of plots shows that restricting L ≥ 20 at u = 8 would produce

(a/L)2 → 0 extrapolations farther below zero, reinforcing the existence of the IR fixed point.

To investigate potential systematic effects from our choice of interpolating function we

also carry out analyses using [80]

1

g̃2
c (L)

=
βF
12

4∑
i=0

ci

(
12

βF

)i
, (4.2)

where we include five terms to produce the same number of fit parameters as eq. 4.1.

Although these interpolations appear satisfactory upon visual inspection, they generally

produce much larger χ2/d.o.f. than the rational function in eq. 4.1 (tables 23–25). Therefore

we will use the rational function for our final results, and treat any statistically significant

differences between these two analyses as another source of systematic uncertainty.

Turning to the (a/L) → 0 extrapolations, we show several representative extrapola-

tions in figure 2, for c = 0.25 and 0.3 at two values of the renormalized coupling u = 4 and 8

on either side of the IR fixed point. Since staggered fermions are O(a) improved, we extrap-

olate linearly in (a/L)2. In each figure we compare results from the clover discretization of

the energy density E(t) in eq. 2.3 for several values of the t-shift improvement parameter

τ0, including τ0 = 0 and the optimal τopt = 0.08. We also include one set of results from
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Figure 3. χ2/d.o.f. from linear (a/L)2 → 0 extrapolations of the s = 3/2 discrete β function vs.

the renormalized coupling u. For each of the clover (left, with τopt = 0.08) and plaquette (right,

with τ
(plaq)
opt = 0.12) discretizations of the energy density E(t) in eq. 2.3 we compare three-point

extrapolations using L ≥ 16 against four-point extrapolations using L ≥ 12, for both c = 0.25 and

0.3. While the larger c improves the quality of the extrapolations as expected [92], for most u the

dominant contribution to the χ2 comes from the L = 12→ 18 point. Dropping L = 12 significantly

improves the (a/L)2 → 0 extrapolations, except for u & 7. In this regime figure 2 shows that

additionally dropping L = 16 would produce results for βs farther below zero, reinforcing the

existence of the IR fixed point.

the plaquette discretization of E(t), at the corresponding optimal τ
(plaq)
opt = 0.12. We use

the same vertical scale for both c = 0.25 and 0.3, to illustrate how the larger value of c

reduces the size of cutoff effects for fixed τ0, as expected [92].

The unshifted (τ0 = 0) results in figure 2 all show significant dependence on (a/L)2,

despite the tree-level perturbative correction discussed in section 2. We optimize τ0 by

finding the value τopt for which these cutoff effects are minimized. Since we use constant

τopt for all couplings, at most values of u the O(a2) effects are only reduced and not entirely

removed. For both c = 0.25 and 0.3 we find that τopt = 0.08 (0.12) for the clover (plaquette)

discretization of E(t) is satisfactory for the full range of couplings we consider. Figure 2

demonstrates the resulting reduction of cutoff effects on both sides of the IR fixed point.

At u = 4 the expected linear dependence on (a/L)2 provides a good description of the

data for L ≥ 16, with average confidence levels of 0.70 for c = 0.25 and 0.58 for c = 0.3.

However, the L = 12 → 18 points clearly deviate from this linear scaling, which is our

motivation for omitting these data from our main analyses. Figure 3 illustrates the effects

of the L = 12→ 18 data on the quality of the (a/L)2 → 0 extrapolations, by plotting the

resulting χ2/d.o.f. for the full range of u that we access. While the larger c = 0.3 improves

the quality of the extrapolations as expected [92], for most u the dominant contribution

to the χ2 comes from the L = 12 → 18 point. The exception is the region at stronger

couplings u & 7, where figure 2 suggests that the L = 16→ 24 points start to deviate from

the larger-volume results. To account for this effect we repeat all continuum extrapolations

with only the two points involving L ≥ 20, and include any differences between these results

and the full L ≥ 16 prediction as another systematic uncertainty. From figure 2 we note

that dropping L = 16 at strong coupling will produce (a/L)2 → 0 extrapolations farther

below zero, reinforcing the existence of the IR fixed point.
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Ref. [34] comments that ‘Symanzik-type’ continuum extrapolations of the form shown

in figure 2—employing polynomials in (a/L)2—are guaranteed to be valid only in the basin

of attraction of the gaussian UV fixed point, and not necessarily in the vicinity of the non-

trivial IR fixed point. Our improvement of the gradient flow running coupling, discussed

in section 2, addresses this issue. First, for any u we can find a value of the t-shift τ0

for which the extrapolation is independent of L and therefore insensitive to the power of

(a/L) in the extrapolation. Then, by demanding that all τ0 produce the same result upon

extrapolating (a/L)2 → 0 we can check the validity of these extrapolations, and include

any deviations as a systematic uncertainty. In this context, it is interesting to note that the

resulting systematic uncertainties often increase significantly at couplings comparable to

and stronger than g2
? (cf. figure 11 in appendix B), which may be related to this underlying

issue.

So far we have discussed three potential sources of systematic error that we account

for in our analyses. For convenience we briefly summarize them here:

Interpolation: We interpolate g̃2
c (L) as functions of βF on each lattice volume, fitting the

data to both a rational function (eq. 4.1) and a polynomial (eq. 4.2). We take our

final results from the rational function interpolations, and include any discrepancies

between the two approaches as a systematic error. For c = 0.25 and intermediate

u ≈ 5–6 this is the source of the largest systematic uncertainty, which is comparable

to the statistical uncertainty. For c = 0.3 the different interpolations are much more

consistent.

Extrapolation: To assess the stability of the linear (a/L)2 → 0 extrapolations we repeat

all analyses without including the smallest-volume L = 16 → 24 data, considering

only 20 → 30 and 24 → 36 points. We take our final results from the three-point

extrapolations, with another systematic uncertainty defined by any disagreement be-

tween the two- and three-point analyses. This systematic uncertainty is largest at

our stronger couplings u & 7, where it can be approximately 2.5 times the statistical

uncertainty, for both c = 0.25 and 0.3. As we emphasized in figure 2, the larger vol-

umes produce extrapolated results for βs farther below zero, reinforcing the existence

of the IR fixed point.

Optimization: Finally, we account for any sensitivity to the t-shift improvement param-

eter τ0. Recall from section 2 that different values of τ0 should all produce the same

βs(g̃
2
c ) in the continuum limit. Whenever our final results using the optimal τopt

differ from the results we would have obtained from unshifted (τ0 = 0) analyses, we

include the difference as a third systematic error. This is a conservative prescription,

because we introduced the t-shift improvement to remove these cutoff artifacts, by

enabling more reliable (a/L) → 0 extrapolations. Even so, this systematic uncer-

tainty vanishes for all the s = 3/2 analyses considered in the body of this paper,

which involve c ≥ 0.25 and L ≥ 16. In appendices A and B we report that this is not

the case for some supplemental checks that include L = 12 data. Including L = 12,

this systematic uncertainty vanishes only for c ≥ 0.3, and can even be the largest

source of uncertainty if we consider the small c = 0.2 analyzed by refs. [32, 35].
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In all three cases, to ensure that statistical fluctuations are not double-counted as both

statistical and systematic errors we take the latter to correspond to the amount by which

the results being compared differ beyond their 1σ statistical uncertainties. That is, the sys-

tematic error estimates vanish when the results being compared agree within 1σ statistical

uncertainties, ensuring that no spurious systematic errors are assigned as a consequence

of statistical fluctuations. Different schemes to estimate systematic uncertainties could be

explored in future works, or by re-analysis of the raw data we provide in appendix C. We

carry out separate error analyses for each of the clover and plaquette discretizations of the

energy density E(t) in eq. 2.3. Additional systematic effects from the choice of E(t) dis-

cretization can be assessed by comparing the two sets of numerical results that we include

in figure 4.

We now present our final results for the 12-flavor system in figure 4, which shows

the continuum-extrapolated s = 3/2 discrete β function for two different renormalization

schemes, c = 0.25 and 0.3. In each panel we include our non-perturbative results for both

the clover and plaquette discretizations of the energy density E(t) in eq. 2.3. Statistical

uncertainties are shown by the darker error bands, while the lighter error bands indicate

the total uncertainties, with statistical and systematic errors added in quadrature.

Along with our numerical results, figure 4 also shows the two-, four- and five-loop

perturbative predictions for the s = 3/2 discrete β function. These perturbative predictions

are based on

β(g2) ≡ Ldg
2

dL
=

2g4

16π2

∑
i=0

bi

(
g2

16π2

)i
(4.3)

b0 =
11

3
C2(G)− 4

3
NfT (R)

b1 =
34

3
[C2(G)]2 −NfT (R)

[
20

3
C2(G) + 4C2(R)

]
for Nf fermions transforming in representation R of the gauge group. For the fundamental

representation of SU(3) gauge theory we have

C2(G) = 3 T (F ) =
1

2
C2(F ) =

4

3
, (4.4)

so that Nf = 12 gives b0 = 3 and b1 = −50. Higher-order coefficients bi depend on the

renormalization scheme. In the MS scheme, ref. [9] reports numerical values b2 ≈ −1060

and b3 ≈ 6808 for 12-flavor SU(3) gauge theory (see also ref. [10]). For most g2
c our results

in figure 4 lie in between the two- and four-loop perturbative curves, both of which predict

an IR fixed point. At the weakest couplings we explore our results agree with the four- and

five-loop predictions, which remain slightly below the two-loop value. Since the discrete β

function is scheme dependent these various results do not need to agree at non-zero u, and

the five-loop curve suggests that perturbation theory does not converge for g2
MS
& 4. Our

comparisons with perturbation theory are for illustration only.
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Figure 4. Continuum-extrapolated discrete β function for scale change s = 3/2 with c = 0.25

(left) and 0.3 (right). In each plot we include both the plaquette (solid red) and clover (dashed

blue) discretizations of E(t) using the optimal τ
(plaq)
opt = 0.12 and τopt = 0.08, respectively, as well

as two-loop perturbation theory (solid line) and the four- and five-loop perturbative predictions

in the MS scheme (dash-dotted and dash-double-dotted lines, respectively). Both gradient flow

renormalization schemes indicate an IR fixed point at g2
? = 7.26. The darker error bands indicate

statistical uncertainties, while the lighter error bands show the total uncertainties, with statistical

and systematic errors added in quadrature. Although the systematic errors are symmetrized, fig-

ure 2 shows that at strong coupling the larger lattice volumes would produce results for βs farther

below zero, reinforcing the existence of the IR fixed point.

Finally, in figure 5 we compare our new results with the two recent large-scale step-

scaling projects discussed in section 1 [34, 35]. We overlay our c = 0.25 and 0.3 results from

figure 4, adding c = 0.45 results from ref. [34] and c = 0.2 results from ref. [35], all using

the clover discretization of E(t). Both of the latter analyses employ scale change s = 2

rather than the s = 3/2 that we use. Considering that all four sets of numerical results in

figure 5 use different renormalization schemes, they are in good agreement throughout their

common range of couplings. Had refs. [34, 35] been able to explore the stronger couplings

u . 8 that we reach, we expect that they would have observed the same IR fixed point

that we report.7 In addition, because ref. [35] considers larger sL ≤ 56 than we do, the

good agreement with our results provides evidence that our continuum extrapolations with

sL ≤ 36 are stable and our results would not change if we were to explore larger lattice

volumes. By coincidence, our IRFP is located at the same g2
? = 7.26 for both c = 0.25

and 0.3. Combining statistical and systematic errors in quadrature produces the lighter

error bands shown in figures 4 and 5, which cross the β3/2 = 0 axis at g2
? = 7.26

(
+80
−17

)
for

c = 0.25 and g2
? = 7.26

(
+64
−25

)
for c = 0.3.

7Note added: While this paper was under review, the authors of ref. [35] presented some preliminary

results at stronger couplings u ' 7, which suggest potential tension with the IR fixed point that we

observe [98, 99]. While the authors of ref. [35] emphasize the large lattice volumes they consider, we note

that their L = 16, 18, 20, 24 and 28 are mostly the same as the L = 16, 20 and 24 that we use; their

larger sL = 32, 36, 40, 48 and 56 mainly result from the larger scale change s = 2 they consider compared

to our s = 3/2. Therefore the continuum extrapolation appears unlikely to be an issue and instead,

should the final results resemble these preliminary reports, we would be most interested in investigating

the different forms of improvement used in the two studies, in particular comparing the “Symanzik flow”

used by refs. [35, 98, 99] with the Wilson flow we employ.

– 14 –



Figure 5. Comparison of our discrete β function results with data from refs. [34] and [35] at

couplings g2
c . 6.4. All four data sets use the clover discretization of E(t) but different gradient

flow renormalization schemes: We overlay our c = 0.25 (dashed blue) and c = 0.3 (solid red) results

(both with τopt = 0.08 and scale change s = 3/2) along with c = 0.45 results from ref. [34] and

c = 0.2 results from ref. [35] (both with s = 2). Given the different renormalization schemes and

analysis details the results are all in good agreement. (The perturbative curves continue to use

s = 3/2 as in figure 4.)

5 The leading irrelevant critical exponent

Now that we have observed an IR fixed point at g2
? = 7.26, we will extract the universal

critical exponent related to the slope of the discrete β function at this IRFP. Linearizing

β(g2) ≈ γ?g
(
g2 − g2

?

)
around the fixed point, eq. 4.3 implies

log s =

∫ sL

L
d logL =

∫ g2+∆

g2

du

β(u)
≈ 1

γ?g
log

(
1 +

βs log(s2)

g2 − g2
?

)
, (5.1)

where ∆ ≡ g2(sL) − g2(L) = βs log(s2) from eq. 2.4. Solving for the discrete β function

allows us to relate its slope at the IRFP to γ?g ,

βs(g
2) ≈ β′s

(
g2 − g2

?

)
with β′s =

sγ
?
g − 1

log(s2)
=⇒ γ?g =

log (1 + 2β′s log s)

log s
. (5.2)

Our convention in eq. 4.3 of considering the RG flow from the UV to the IR, L → sL,

produces both β′s < 0 and γ?g < 0. We omit this negative sign to simplify comparisons with

continuum predictions. Figure 4 already shows that we should obtain results comparable

to four-loop perturbation theory in the MS scheme, which predicts γ?g = 0.282 about

20% smaller than the two-loop result γ?g = 0.360. A recent scheme-independent estimate

γ?g = 0.228 from ref. [16] is somewhat smaller still.

Directly fitting the data shown in figure 4 to a linear form in the range g2
? ± 0.25

produces c = 0.25 c = 0.3

Clover γ?g = 0.253 γ?g = 0.280

Plaquette γ?g = 0.249 γ?g = 0.275
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Figure 6. Raw data for finite-size scaling analyses of the critical exponent γ?g . The scaling relation

in eq. 5.3 corresponds to straight lines on these log–log plots of |g̃2
c−g2

?| vs. L. For both the plaquette

discretization of E(t) at c = 0.25 (left, with τ
(plaq)
opt = 0.12) and the clover discretization at c = 0.3

(right, with τopt = 0.08) we see g̃2
c increase towards g2

? = 7.26 as the bare coupling increases

from βF = 5.5 to 4.75 (empty symbols), then move to even stronger renormalized couplings for

4.25 ≤ βF ≤ 3.75 (filled symbols). Around βF ≈ 4.5 the signal effectively vanishes since g̃2
c is so

close to g2
? for all L. The other combinations of c and E(t) discretizations produce similar figures.

The high degree of correlation evident in figure 4 makes it challenging to determine mean-

ingful statistical uncertainties from these fits. Since both observables as well as the c = 0.25

and 0.3 renormalization schemes should produce the same universal critical exponent, we

can estimate a systematic uncertainty from the spread in the numbers above. If we make

the reasonable assumption that this systematic effect dominates over the statistical uncer-

tainties and other systematics, then we end up with γ?g = 0.26(2).

Alternately, we can carry out a finite-size scaling analysis to determine γ?g , as in

refs. [25, 34]. The basic scaling relation is

g̃2
c (βF , L)− g2

? ∝ Lγ
?
g (5.3)

for fixed bare coupling βF . In principle we could attempt to extract both g2
? and γ?g

from these fits, but to simplify the analysis we will use as input our determination of g2
?

from figure 4. In figure 6 we show some of the data available to be analyzed, plotting

|g̃2
c (βF , L)− g2

?| vs. L on log–log axes for the c = 0.25 plaquette discretization and c = 0.3

clover discretization. The other two data sets (c = 0.25 clover and c = 0.3 plaquette) are

similar. In all cases we can see g̃2
c (βF , L) passing through the fixed-point g2

? = 7.26 around

βF ≈ 4.5, causing the signal to vanish.

The finite-size scaling analysis amounts to linear fits of these data, the slopes of which

correspond to γ?g . Several significant systematic effects are visible in figure 6. First we

can see that the slopes of linear fits will change slightly for different bare couplings βF .

The scaling relation becomes more accurate closer to the IR fixed point, but the slow

evolution of the coupling with L (figure 1) means that near the IRFP the signal in |g̃2
c −g2

?|
effectively vanishes for all L. Next, the slopes also depend on the range of L included in

the fits. Empirically, we find that omitting the L = 12 data significantly increases the

confidence levels of the fits. Additionally omitting L = 16 also tends to improve fit quality,

while there are no obvious trends upon omitting larger L. Therefore we fit only L ≥ 18,

and should account for any sensitivity to the fit range as a systematic uncertainty. We
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Figure 7. Finite-size scaling results for γ?g using rational-function interpolations of the data in

figure 6, for the same plaquette discretization of E(t) at c = 0.25 (left, with τ
(plaq)
opt = 0.12) and

clover discretization at c = 0.3 (right, with τopt = 0.08). As expected, the signal vanishes around

βF ≈ 4.5 where g̃2
c is close to g2

? for all L, but the results are clearly consistent with the more precise

predictions for γ?g from the slopes of the discrete β functions in figure 4 (dashed lines). In each plot

the three curves correspond to the central value of g2
? = 7.26 (green crosses) plus the minimum and

maximum values of g2
? consistent with the combined statistical and systematic errors (red circles

and blue squares, respectively).

can also expect some systematic dependence on c and the E(t) discretization, as in the

inline table above, which should be included in the final uncertainties as well. Finally, and

most significantly, we obtain figure 6 by fixing g2
? = 7.26. Allowing g2

? to vary within the

total uncertainties determined in the previous section leads to very wide variations in the

resulting γ?g .

In combination, these systematic uncertainties only allow us to use the finite-size scal-

ing analysis as a consistency check on the value γ?g = 0.26(2) determined directly from the

slopes of the discrete β functions. This is shown in figure 7, where we plot finite-size scaling

results for the critical exponent vs. the bare coupling βF , considering the same data sets

shown in figure 6. In order to fill in more values of βF we interpolate these data, using the

rational function discussed in section 4 (eq. 4.1). We see that the finite-size scaling results

for fixed g2
? = 7.26 are clearly consistent with the γ?g obtained from the corresponding

β′s (shown as dashed lines). As expected, the fit uncertainties blow up around βF ≈ 4.5

where the signal in |g̃2
c − g2

?| effectively vanishes. Accounting for the uncertainties on g2
?

produces the other two curves in each plot. Although the systematic spread of the results

is enormous around the IRFP, the uncertainties are more manageable for βF & 5, where

they show a steady evolution towards the γ?g = 0.26(2) determined above.

6 Discussion and conclusions

We have presented our final results for step-scaling calculations of the 12-flavor SU(3)

discrete β function, using nHYP-smeared staggered fermions and an improved gradient

flow running coupling. In the gradient flow scheme with c = 0.25 we observe an IR fixed

point at g2
? = 7.3

(
+8
−2

)
, which changes to g2

? = 7.3
(

+6
−3

)
when c = 0.3. We are able

to explore the discrete β function up to g2
c . 8.2, extending past the IRFP, if not as
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far past as might be ideal. We account for systematic effects from the stability of the

(a/L) → 0 extrapolations, the interpolation of g̃2
c (L) as a function of the bare coupling,

the improvement of the gradient flow running coupling, and the discretization of the energy

density. These results, including systematic uncertainties, are collected in figure 4. At the

IRFP we measure the leading irrelevant critical exponent to be γ?g = 0.26(2), comparable

to perturbative estimates. This value for γ?g comes from the slope of the discrete β function

and we checked that it is consistent with a finite-size scaling analysis, even though the very

slow running of the 12-flavor coupling makes finite-size scaling challenging for 12 ≤ L ≤ 36.

We have also shown (figure 5) that our results are consistent with the two recent large-

scale step-scaling projects discussed in section 1 [34, 35], which were able to investigate only

g2
c . 6.4. Ref. [34] emphasized the importance of comparing multiple discretizations of the

energy density E(t) in the definition of the gradient flow running coupling (eq. 2.3), which

motivated our investigation of both the plaquette- and clover-based observables. Consider-

ing L = 8→ 16, 10→ 20 and 12→ 24, ref. [34] found that c ≥ 0.45 was required to avoid

systematic dependence on the choice of discretization. By moving to larger volumes L ≥ 16,

we find good agreement between both discretizations for c ≥ 0.25. In appendix A we report

that investigations including L = 12 need c ≥ 0.3 to obtain comparably good behavior.

In particular, c = 0.2 analyses that include L = 12 data suffer from severe systematic

uncertainties, which were not comprehensively considered in ref. [32] where we reported

g2
? = 6.2(2). With c = 0.2 and L ≥ 12 we now obtain g2

? = 5.9(1.9), where the uncertainties

are almost entirely systematic as we discuss in appendix B (table 2 and figure 9).

Compared to perturbation theory, our results for the scheme-dependent g2
? lie in be-

tween the two-loop and four-loop MS values. At the weakest couplings we explore our

s = 3/2 discrete β function agrees with the four-loop scheme, which remains slightly below

the two-loop case. The scheme-independent critical exponent γ?g = 0.26(2) that we obtain

is consistent with the value 0.282 predicted by four-loop perturbation theory, which was

also the case for the mass anomalous dimension γ?m ≈ 0.235 found by refs. [57, 59]. This

close agreement with four-loop MS perturbation theory may be partly coincidental. Recent

investigations of a scheme-independent series expansion [83] predict slightly different values

γ?g = 0.228 and γ?m = 0.400(5) [15, 16], while an initial investigation of the five-loop MS

β function [11, 12] finds that the perturbative expansion breaks down at couplings weaker

than g2
?, despite the apparently convergent behavior of the two-, three- and four-loop con-

tributions. Even so, subsequent investigations using the five-loop β function as input argue

that all systems with 9 ≤ Nf ≤ 16 exhibit perturbative IRFPs [13–16].

The accumulating evidence for an IR fixed point in the discrete β function [24–35], in

addition to further supporting evidence (summarized in section 1) from the phase diagram

at zero and finite temperature [36, 39, 42–47] as well as hyperscaling of the hadron masses

and decay constants [54, 57, 59] increases our confidence in the conclusion that the 12-flavor

system is conformal in the IR. The many existing investigations leave open a few directions

that are particularly important to explore in the future. First, the existence of a conformal

IRFP makes Nf = 12 a useful basis for lattice studies of composite Higgs models in

which the mass of some of the fermions is lifted to guarantee spontaneous chiral symmetry

breaking [7, 8]. Although there is some motivation for moving to a smaller Nf ' 10
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where the mass anomalous dimension may be larger, γ?m ' 1, it is still advantageous to

test this approach for Nf = 12 where we have more information about the existence and

characteristics of the IR fixed point. (There are relatively few lattice studies of the 10-

flavor system so far [100–102].) Finally, the fact that almost all 12-flavor lattice studies

have employed staggered fermions makes it important to investigate the universality (or

lack thereof) of the observed IRFP. As in three-dimensional spin systems [77, 78], it is

not guaranteed that different lattice fermion formulations with different chiral symmetry

properties will produce identical predictions at a non-trivial fixed point. This provides

particular motivation for studies using Ginsparg–Wilson (overlap or domain wall) fermions

that possess continuum-like chiral symmetries, despite their increased computational cost.
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A Results with different scale changes

As shown by table 1 in section 3, our data also allow us to carry out step-scaling analyses

with scale changes s = 2 and 4/3 in addition to the s = 3/2 considered in the body of

the paper, if we are willing to include the smallest lattice volume 124. Following the same

procedures described in section 4 produces the continuum-extrapolated discrete β function

results shown in figure 8 for c = 0.25 and 0.3. While all of these analyses predict an IR fixed

point consistent with that found for s = 3/2, the inclusion of the L = 12 data increases

the systematic uncertainties, especially for the smaller s = 4/3 where the slow flow of the

coupling is more difficult to resolve.

In particular, it is interesting to note that in the s = 2 case (L ≥ 12) where the

uncertainties are better controlled, we need c ≥ 0.3 in order to obtain good agreement

between results from the plaquette vs. clover discretizations of the energy density E(t) in

eq. 2.3. This contrasts with the good agreement we observe even for c = 0.25 in figure 4

when considering only L ≥ 16. That is, larger lattice volumes improve the agreement

between these two discretizations, which is consistent with expectations and with the results

reported by ref. [34]: considering L ≥ 8, ref. [34] found that c ≥ 0.45 was needed to obtain

comparable agreement. One other notable change from the L ≥ 16 results in the body

of the paper is that the systematic uncertainty due to t-shift optimization discussed in
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Figure 8. Continuum-extrapolated discrete β function for scale changes s = 2 (top) and s = 4/3

(bottom) with c = 0.25 (left) and 0.3 (right), plotted in the same style as figure 4 and also predicting

an IR fixed point consistent with the s = 3/2 analyses considered in the body of the paper. The

inclusion of L = 12 data in the analyses leads to larger systematic uncertainties, especially for the

smaller s = 4/3 where the slow flow of the coupling is more difficult to resolve.

section 4 no longer vanishes for c = 0.25. However, this systematic uncertainty continues

to vanish for c = 0.3, suggesting that it—like the effect of E(t) discretization—is also

sensitive to the combination of c and lattice volume.

From figure 8 we can again estimate the leading irrelevant critical exponent γ?g from

the slopes of the discrete β functions at the IRFP. (The finite-size scaling consistency

check discussed in section 5 already included all of the data going into the s = 2 and 4/3

analyses.) Following the same procedure described in section 5 (i.e., neglecting statistical

uncertainties and setting systematic uncertainties by demanding agreement for c = 0.25

and 0.3 with both plaquette and clover discretizations) produces γ?g = 0.24(3) from s = 2

and γ?g = 0.22(6) from s = 4/3. Both of these values agree with our result γ?g = 0.26(2)

from s = 3/2 with L ≥ 16, as well as the four-loop perturbative value 0.282 and the scheme-

independent 0.228 from ref. [16]. In summary, all scale changes s that we can consider with

our data set consistently predict a 12-flavor IR fixed point and a leading irrelevant critical

exponent comparable to perturbative estimates.

B Results with smaller c = 0.2

One advantage of the gradient flow running coupling is that it is straightforward to re-run

analyses for an entire family of renormalization schemes parameterized by c =
√

8t/L. In

general the renormalized coupling has smaller statistical uncertainties for smaller c, while
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Figure 9. Continuum-extrapolated discrete β function for c = 0.2, plotted in the same style as

figure 4. In the top row the scale change is s = 3/2, with L ≥ 16 for the top-left plot (as in the

body of the paper). In the top-right plot, including L ≥ 12 dramatically increases the systematic

uncertainties, and leads to questionable plaquette-based results βs < 0 for all couplings we can

access. Similar behavior persists in the bottom row of plots considering s = 2 (left) and s = 4/3

(right), both of which necessarily include L ≥ 12. As always, all errors are computed exactly as in

figures 4 and 8.

larger c can help to reduce systematic effects [92]. We have already seen in figures 2 and 3

that c = 0.3 reduces cutoff effects and improves the quality of (a/L)2 → 0 extrapolations

compared to c = 0.25. In appendix A we discussed how analyses including L = 12 require

c ≥ 0.3 in order to obtain good agreement between results employing the clover vs. pla-

quette discretizations of the energy density E(t) in eq. 2.3. This agreement persists even

with c = 0.25 when L ≥ 16 as in the body of the paper, motivating our choice to focus on

c = 0.25 and 0.3 for our main analyses.

However, since some previous works [32, 35] used c = 0.2, here we consider what

results our current data and analyses would produce in this scheme. Following the same

procedures described in section 4 leads to the continuum-extrapolated discrete β function

results shown in figure 9 for scale changes s = 3/2 (top), 2 (bottom left) and 4/3 (bottom

right). In the top row of plots we contrast s = 3/2 analyses with L ≥ 16 as in the

body of the paper (left), or L ≥ 12 as is required for the other scale changes (right).

While the L ≥ 16 plot is well behaved and predicts an IR fixed point at g2
? = 6.93

(
+61
−11

)
,

adding statistical and systematic uncertainties in quadrature, the combination of L = 12

and c = 0.2 dramatically increases the systematic uncertainties. Even though the other

three analyses still produce an IR fixed point with the clover discretization, they prefer

significantly smaller g2
? = 6.04, 5.88 and 5.60 for s = 2, 3/2 and 4/3, respectively, with
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c = 0.2 c = 0.25 c = 0.3

Main analyses

s = 3/2, L ≥ 16

g2
? = 6.93

(
+11
−10

)
stat

g2
? = 7.26

(
+18
−17

)
stat

g2
? = 7.26

(
+25
−25

)
stat

g2
? = 6.93

(
+12
−11

)
clov

g2
? = 7.26

(
+33
−17

)
clov

g2
? = 7.26

(
+41
−25

)
clov

g2
? = 6.93

(
+61
−11

)
tot

g2
? = 7.26

(
+80
−17

)
tot

g2
? = 7.26

(
+64
−25

)
tot

Supplemental checks

s = 2, L ≥ 12

g2
? = 6.04

(
+11
−10

)
stat

g2
? = 7.15

(
+16
−16

)
stat

g2
? = 7.47

(
+21
−22

)
stat

g2
? = 6.04

(
+1.02
−1.14

)
clov

g2
? = 7.15

(
+16
−17

)
clov

g2
? ≥ 7.25clov

g2
? = 6.04

(
+1.74
−1.14

)
tot

g2
? ≥ 6.98tot g2

? ≥ 7.25tot

s = 3/2, L ≥ 12

g2
? = 5.88

(
+7
−8

)
stat

g2
? = 7.20

(
+10
−10

)
stat

g2
? = 7.55

(
+12
−13

)
stat

g2
? = 5.88

(
+1.25
−1.91

)
clov

g2
? = 7.20

(
+19
−25

)
clov

g2
? = 7.55

(
+12
−13

)
clov

g2
? = 5.88

(
+1.93
−1.91

)
tot

g2
? = 7.20

(
+56
−25

)
tot

g2
? = 7.55

(
+25
−13

)
tot

s = 4/3, L ≥ 12

g2
? = 5.60

(
+7
−7

)
stat

g2
? = 7.19

(
+14
−13

)
stat

g2
? = 7.81

(
+17
−18

)
stat

g2
? = 5.60

(
+1.56
−2.27

)
clov

g2
? ≥ 6.34clov g2

? ≥ 7.60clov

Unconstrainedtot g2
? ≥ 6.34tot g2

? ≥ 7.60tot

Table 2. Results for g2
? from various combinations of scale change s, gradient flow renormalization

scheme parameter c, and (in the case of s = 3/2) restriction on the lattice volume. The central

values and statistical uncertainties in the top row of each entry come from the clover discretization

of E(t). The middle row of each entry continues to consider the clover discretization, also accounting

for the three sources of systematic uncertainties summarized in section 4. The third row presents

the total uncertainties that include all systematics for both the clover and plaquette discretizations.

significantly larger systematic uncertainties. This is relevant since the result g2
? = 6.2(2)

from ref. [32] came from using c = 0.2 and L ≥ 12, without comprehensively considering

the systematic uncertainties that we investigate in this work.

For ease of reference, in table 2 we summarize predictions for g2
? from all the different

scale changes s and values of c we have analyzed. In each case we take the central value for

g2
? from the clover discretization, and present three different estimates for the uncertainties.

First, in the top row of each entry, we consider only the statistical uncertainties on the

clover-discretization results, corresponding to the dark blue error bands in Figs. 4, 8 and

9. In the middle row we include as well the three sources of systematic error discussed in

the body of the paper (and summarized in section 4), again considering only the clover

discretization. These uncertainty estimates correspond to the light blue error bands in

Figs. 4, 8 and 9. Finally, in the bottom row of each entry we combine all sources of

uncertainties for both the clover and plaquette discretizations, including both the blue and

red error bands in Figs. 4, 8 and 9.8

8Note added: While this paper was under review we corrected a minor numerical bug in the analysis

of the plaquette-discretization results, which affected the combined uncertainty estimates in the bottom

row of each entry in table 2.

– 22 –



Figure 10. Linear (a/L)2 → 0 extrapolations of the s = 3/2 discrete β function for c = 0.2, at two

values of u = 4 (left) and 7.5 (right) on either side of the IR fixed point. In each plot we compare

τ0 = 0 and 0.16 to the optimal τopt = 0.08, and also include results from the plaquette discretization

of the energy density E(t) in eq. 2.3 at the corresponding optimal τ
(plaq)
opt = 0.12. Unlike figure 2,

the different τ0 do not extrapolate to consistent values in the (a/L)2 → 0 limit.

It is worthwhile to try to understand the origin of the large systematic uncertainties

that arise when c = 0.2 and L ≥ 12. One issue when c = 0.2 is that different values of

the t-shift improvement parameter τ0 no longer produce consistent results for βs(g
2
c ) upon

extrapolating (a/L)2 → 0. This is shown in figure 10, for renormalized couplings u = 4

and 7.5 similar to those considered in figure 2. (With c = 0.2 and τ0 = 0.16 we access

only u ≤ 7.97, and can’t consider the u = 8 shown in figure 2.) Although the uncertainties

on the points are rather small, it is possible to see statistically significant discrepancies

between the extrapolated values.

Since we account for such discrepancies as a source of systematic error, an easier way

to assess them is to inspect the ‘error budgets’ shown in figure 11. For each renormalized

coupling u these plots show the statistical uncertainties and the three systematic uncer-

tainties summarized in section 4, along with their combination in quadrature. (Recall from

section 4 that we take systematic errors to vanish when their effects are indistinguishable

from statistical fluctuations, to avoid double-counting the latter.) The top-right plot cor-

responds to one of the main analyses discussed in the body of the paper, with s = 3/2,

c = 0.25 and L ≥ 16. As described in section 4, the optimization uncertainties vanish

for all u, the interpolation uncertainties are comparable to the statistical uncertainties for

intermediate u ≈ 5–6, and the extrapolation uncertainties dominate for stronger couplings

u & 7 (where the larger volumes L ≥ 20 would produce βs farther below zero). When we

move to c = 0.2 in the top-left plot we see that the optimization uncertainties are now

non-zero, in accordance with figure 10.

Thanks to L ≥ 16, in the top-left plot of figure 11 the optimization uncertainties

remain comparable to the statistical uncertainties. This changes when L = 12 is included

in the bottom row of plots. Now the optimization uncertainties are much larger than the

statistical uncertainties, and for s = 2 (bottom left) they dominate the total error budget.

The even larger extrapolation uncertainties for s = 4/3 (bottom right) are likely related to

the difficulty resolving the slow flow of the coupling in such a small change of scale.
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Figure 11. Statistical and systematic ‘error budgets’ for four of our analyses, as functions of

the renormalized coupling u. Each plot shows the statistical uncertainty and the three systematic

uncertainties summarized in section 4, as well as their combination in quadrature. In the top row

we compare s = 3/2 analyses with L ≥ 16 and c = 0.2 (left) vs. 0.25 (right). Even with L ≥ 16 the

small c = 0.2 introduces non-zero optimization uncertainties as in accordance with figure 10, though

these remain comparable to the statistical uncertainties. When L = 12 is included the optimization

uncertainties become much larger than the statistical uncertainties, as shown in the bottom row of

plots for s = 2 (left) and s = 4/3 (right). Note the different vertical scale in each plot.

Finally, we can also go back to the basics and investigate the ‘raw data’ going into our

step-scaling analyses, namely the renormalized couplings g̃2
c (L) as functions of the finite-

volume gradient flow scale c =
√

8t/L. Representative samples of these data are shown

in figure 12, for the clover discretization of the energy density E(t) at βF = 4.25 and the

plaquette discretization at βF = 5. As c → 0 for fixed L, the renormalized couplings are

dominated by lattice artifacts and fall to unphysically small values. The initial rise from

c = 0 occurs as the gradient flow removes those short-distance cutoff effects, and we must

ensure that these artifacts are sufficiently well removed for the values of c at which we

carry out our analyses. Although figure 12 shows that c = 0.2 is acceptable for L ≥ 16,

for L = 12 it is not clear whether this initial rise is complete before c = 0.2. Larger values

of c ≥ 0.25 appear to be needed for L = 12, in agreement with the other results discussed

in the text. The key conclusion is that c = 0.2 was a poor choice in our previous L ≥ 12

study [32], which we have now corrected in this work by using both larger c and larger L.
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Figure 12. Renormalized couplings g̃2
c (L) vs. the finite-volume gradient flow scale c =

√
8t/L for

all eight L4 lattice volumes we study. Two representative values of βF are considered, βF = 4.25

for the clover discretization of the energy density (left) and βF = 5 for the plaquette discretization

(right). Lattice artifacts are non-negligible in the initial rise of the coupling from c = 0, and for

L = 12 it is not clear whether this initial rise is complete for c = 0.2. Larger values of L are not

affected by this issue at c = 0.2, while larger c ≥ 0.25 are needed for L = 12, in agreement with the

other results discussed in the text. Vertical lines mark the c = 0.2, 0.25 and 0.3 that we analyze.

C Data sets and interpolations

Tables 3–10 summarize the lattice ensembles considered in this work, with a separate table

for each L = 12, 16, 18, 20, 24, 30, 32 and 36. In all cases we use exactly massless

fermions with anti-periodic BCs in all four directions, while the gauge fields are periodic.

For each ensemble specified by L and the bare coupling βF , the tables report results

for the renormalized gradient flow couplings g2
c (L; a) with τ0 = 0 and g̃2

c (L; a) with the

optimal τopt = 0.08, in both cases considering the clover discretization of E(t) for two

values of c = 0.25 and 0.3. Tables 11–14 contain the corresponding data for c = 0.2, while

tables 15–22 provide the corresponding data for the plaquette discretization of E(t) for all

three c = 0.2, 0.25 and 0.3. All these results are obtained from the number of thermalized

measurements listed in tables 3–10. Each measurement is separated by ten molecular

dynamics time units (MDTU) generated with the HMC algorithm, and combined into ten-

measurement (100-MDTU) jackknife blocks to reduce autocorrelations. The data in these

tables provide all the necessary information for interested readers to reproduce our results

or experiment with alternate systematic error analyses. We also list the average plaquette

(normalized to 3) in tables 3–10, to illustrate the roughness of the gauge fields.

Tables 23–25 summarize the quality of the g̃2
c (L; a) interpolations vs. βF on each lattice

volume, with a separate table for each c = 0.2, 0.25 and 0.3. Considering both the rational

function interpolations that produce our final results (eq. 4.1) as well as the polynomial

interpolations that we use to check for potential systematic effects from our choice of

interpolating function (eq. 4.2), each table records the χ2, the number of degrees of

freedom (d.o.f.) and the corresponding confidence level

CL = 1− P (a, x) =
1

Γ(a)

∫ ∞
x

dt e−t ta−1, (C.1)

where a = d.o.f./2 and x = χ2/2.
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βF Meas. g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3 Plaq.

(τ0 = 0) (τopt = 0.08) (τ0 = 0) (τopt = 0.08)

3.40 910 11.688(12) 10.052(12) 10.919(18) 9.826(17) 0.868310(54)

3.60 950 11.041(12) 9.502(11) 10.349(18) 9.317(17) 0.915143(41)

3.75 1020 10.603(9) 9.131(9) 9.962(13) 8.971(12) 0.950552(39)

3.80 970 10.449(9) 9.000(9) 9.827(14) 8.850(13) 0.962506(41)

4.00 910 9.856(9) 8.497(8) 9.314(13) 8.393(12) 1.010129(45)

4.20 940 9.315(10) 8.041(9) 8.853(14) 7.983(14) 1.057876(59)

4.25 1060 9.153(9) 7.901(8) 8.704(12) 7.848(12) 1.070025(40)

4.40 950 8.731(10) 7.542(9) 8.326(15) 7.509(14) 1.106201(65)

4.50 960 8.466(8) 7.317(8) 8.100(12) 7.309(12) 1.130441(43)

4.60 940 8.187(9) 7.078(8) 7.839(13) 7.073(12) 1.154627(57)

4.75 920 7.787(8) 6.738(8) 7.485(13) 6.757(12) 1.190920(44)

4.80 890 7.647(7) 6.617(7) 7.349(11) 6.634(10) 1.202951(54)

5.00 970 7.159(8) 6.202(7) 6.919(12) 6.250(12) 1.251122(65)

5.20 970 6.667(8) 5.781(8) 6.471(13) 5.847(12) 1.298844(68)

5.40 950 6.204(7) 5.384(6) 6.043(10) 5.463(9) 1.346092(69)

5.50 980 5.975(6) 5.185(6) 5.821(10) 5.262(9) 1.369364(46)

5.60 970 5.772(7) 5.013(6) 5.641(11) 5.102(10) 1.392192(64)

5.80 960 5.355(5) 4.653(5) 5.247(8) 4.746(7) 1.437232(63)

6.00 910 4.977(6) 4.326(6) 4.882(9) 4.416(9) 1.480518(56)

6.20 960 4.658(5) 4.052(5) 4.593(8) 4.158(8) 1.522388(53)

6.40 960 4.343(5) 3.780(4) 4.287(7) 3.881(7) 1.562354(48)

6.50 1050 4.185(4) 3.642(4) 4.130(6) 3.738(5) 1.581715(40)

6.60 970 4.060(4) 3.535(4) 4.016(7) 3.636(7) 1.600593(50)

6.80 950 3.796(4) 3.305(4) 3.754(6) 3.399(6) 1.636906(69)

7.00 970 3.570(4) 3.109(4) 3.534(6) 3.200(6) 1.671457(67)

7.20 960 3.374(3) 2.940(3) 3.349(5) 3.033(5) 1.704372(71)

7.40 970 3.185(4) 2.775(4) 3.158(6) 2.860(6) 1.735602(103)

7.50 1070 3.098(3) 2.700(3) 3.077(5) 2.787(5) 1.750695(45)

7.60 970 3.012(3) 2.624(3) 2.989(5) 2.707(5) 1.765354(97)

7.80 940 2.868(3) 2.500(3) 2.850(5) 2.581(5) 1.793602(71)

8.00 970 2.733(2) 2.382(2) 2.719(4) 2.463(4) 1.820579(49)

8.50 940 2.435(2) 2.123(2) 2.425(3) 2.197(3) 1.882565(52)

9.00 970 2.198(2) 1.917(2) 2.189(3) 1.984(3) 1.937947(46)

Table 3. 124 lattice ensembles used in this work. For each bare coupling βF we report the renor-

malized gradient flow couplings for the clover discretization of E(t) at two values of c = 0.25 and 0.3

with both τ0 = 0 and the optimal τopt = 0.08, all obtained from the given number of thermalized

measurements. The thermalized measurements are separated by ten molecular dynamics time units

(MDTU) generated with the HMC algorithm, and combined into ten-measurement (100-MDTU)

jackknife blocks to reduce autocorrelations. We also list the average plaquette (normalized to 3),

to illustrate the roughness of the gauge fields.
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βF Meas. g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3 Plaq.

(τ0 = 0) (τopt = 0.08) (τ0 = 0) (τopt = 0.08)

3.00 970 11.503(12) 10.568(12) 10.989(20) 10.364(19) 0.775557(25)

3.20 960 10.969(13) 10.082(13) 10.505(21) 9.909(21) 0.821721(29)

3.40 950 10.418(14) 9.577(13) 9.989(21) 9.423(20) 0.868279(33)

3.60 920 9.957(11) 9.158(11) 9.593(18) 9.052(17) 0.915119(34)

3.75 950 9.585(12) 8.818(12) 9.252(19) 8.731(19) 0.950548(29)

3.80 920 9.470(12) 8.712(11) 9.141(18) 8.626(18) 0.962439(26)

4.00 970 9.000(11) 8.283(11) 8.719(17) 8.230(17) 1.010072(27)

4.20 950 8.549(10) 7.872(10) 8.323(17) 7.860(17) 1.057965(40)

4.25 910 8.419(9) 7.752(9) 8.183(14) 7.726(14) 1.070027(27)

4.40 950 8.088(11) 7.449(11) 7.872(17) 7.433(17) 1.106227(35)

4.50 940 7.862(9) 7.242(9) 7.671(14) 7.243(14) 1.130410(40)

4.60 970 7.621(9) 7.020(9) 7.429(14) 7.014(14) 1.154541(31)

4.75 920 7.291(9) 6.719(8) 7.126(14) 6.730(14) 1.190845(42)

4.80 970 7.188(11) 6.624(11) 7.039(18) 6.648(18) 1.202931(35)

5.00 960 6.771(7) 6.243(7) 6.656(12) 6.288(12) 1.251156(28)

5.20 960 6.362(9) 5.868(8) 6.270(14) 5.924(13) 1.298956(31)

5.40 960 5.940(7) 5.480(7) 5.858(11) 5.536(11) 1.346089(30)

5.50 970 5.745(6) 5.300(6) 5.672(10) 5.360(9) 1.369383(40)

5.60 970 5.555(9) 5.126(9) 5.495(14) 5.194(13) 1.392225(42)

5.80 940 5.196(8) 4.796(8) 5.146(12) 4.863(12) 1.437176(36)

6.00 970 4.846(7) 4.473(7) 4.808(12) 4.545(12) 1.480582(36)

6.20 950 4.531(6) 4.184(6) 4.498(9) 4.252(9) 1.522361(30)

6.40 960 4.248(6) 3.923(6) 4.224(9) 3.994(9) 1.562367(30)

6.50 950 4.117(5) 3.803(5) 4.100(9) 3.876(9) 1.581722(44)

6.60 940 3.987(5) 3.683(5) 3.970(8) 3.753(8) 1.600544(30)

6.80 930 3.743(5) 3.458(5) 3.729(7) 3.525(7) 1.636961(29)

7.00 970 3.531(5) 3.262(5) 3.523(7) 3.331(7) 1.671506(31)

7.20 970 3.334(4) 3.080(4) 3.323(6) 3.141(6) 1.704406(33)

7.40 970 3.162(5) 2.922(4) 3.157(7) 2.985(7) 1.735580(28)

7.50 960 3.074(3) 2.840(3) 3.066(5) 2.898(5) 1.750665(40)

7.60 960 2.999(3) 2.771(3) 2.995(5) 2.832(5) 1.765353(25)

7.80 960 2.850(4) 2.633(3) 2.847(5) 2.692(5) 1.793660(31)

8.00 950 2.714(3) 2.508(3) 2.710(5) 2.562(5) 1.820578(25)

8.50 970 2.426(3) 2.242(3) 2.422(4) 2.290(4) 1.882603(27)

9.00 960 2.191(2) 2.025(2) 2.189(3) 2.070(3) 1.937953(30)

Table 4. 164 lattice ensembles used in this work, with columns as in table 3.
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βF Meas. g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3 Plaq.

(τ0 = 0) (τopt = 0.08) (τ0 = 0) (τopt = 0.08)

3.00 940 11.085(20) 10.375(20) 10.703(30) 10.223(29) 0.775545(36)

3.50 960 9.841(12) 9.215(12) 9.543(19) 9.118(19) 0.891614(20)

3.75 970 9.287(11) 8.699(11) 9.027(18) 8.625(18) 0.950557(20)

4.00 1960 8.755(9) 8.204(9) 8.546(15) 8.167(14) 1.010030(20)

4.25 1970 8.224(8) 7.708(7) 8.048(12) 7.692(12) 1.070044(17)

4.50 1970 7.694(7) 7.214(7) 7.554(11) 7.221(11) 1.130368(16)

4.75 1940 7.173(7) 6.728(7) 7.066(11) 6.756(11) 1.190856(17)

5.00 1960 6.656(7) 6.244(7) 6.568(11) 6.280(11) 1.251169(20)

5.50 910 5.692(7) 5.342(6) 5.646(10) 5.399(10) 1.369266(27)

6.00 950 4.813(7) 4.519(7) 4.793(12) 4.585(12) 1.480602(31)

6.50 940 4.089(6) 3.840(6) 4.079(10) 3.902(10) 1.581665(26)

7.00 950 3.517(6) 3.303(6) 3.512(9) 3.360(9) 1.671550(27)

7.50 950 3.073(5) 2.887(5) 3.075(8) 2.942(7) 1.750663(25)

8.00 970 2.711(3) 2.547(3) 2.712(5) 2.595(5) 1.820510(25)

8.50 420 2.424(4) 2.277(4) 2.423(7) 2.317(7) 1.882583(30)

9.00 440 2.194(4) 2.061(4) 2.191(6) 2.095(6) 1.937922(30)

Table 5. 184 lattice ensembles used in this work, with columns as in table 3.

βF Meas. g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3 Plaq.

(τ0 = 0) (τopt = 0.08) (τ0 = 0) (τopt = 0.08)

3.75 600 9.108(13) 8.641(13) 8.934(20) 8.612(20) 0.950548(19)

4.00 610 8.595(14) 8.156(14) 8.445(22) 8.142(22) 1.010043(21)

4.25 500 8.080(13) 7.668(13) 7.958(21) 7.673(20) 1.069997(23)

4.50 620 7.595(11) 7.210(11) 7.507(18) 7.238(18) 1.130303(33)

4.75 580 7.064(11) 6.707(10) 6.982(17) 6.732(17) 1.190868(27)

5.00 680 6.578(13) 6.246(13) 6.517(21) 6.285(20) 1.251121(33)

5.50 540 5.647(12) 5.364(11) 5.632(18) 5.433(17) 1.369242(48)

6.00 530 4.792(9) 4.553(9) 4.785(14) 4.616(14) 1.480568(29)

6.50 510 4.072(7) 3.869(7) 4.064(12) 3.920(12) 1.581665(30)

7.00 550 3.531(7) 3.356(7) 3.544(11) 3.419(10) 1.671436(40)

7.50 550 3.064(6) 2.913(6) 3.070(10) 2.962(10) 1.750695(30)

8.00 540 2.718(5) 2.584(5) 2.726(8) 2.630(8) 1.820554(38)

8.50 550 2.430(5) 2.310(5) 2.436(8) 2.350(7) 1.882595(35)

9.00 540 2.193(3) 2.084(3) 2.195(6) 2.117(6) 1.937907(32)

Table 6. 204 lattice ensembles used in this work, with columns as in table 3.
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βF Meas. g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3 Plaq.

(τ0 = 0) (τopt = 0.08) (τ0 = 0) (τopt = 0.08)

3.75 540 8.816(15) 8.500(15) 8.688(23) 8.470(23) 0.950567(15)

4.00 580 8.365(15) 8.066(15) 8.279(24) 8.072(24) 1.010030(16)

4.25 590 7.929(19) 7.648(19) 7.884(30) 7.688(30) 1.070018(20)

4.50 550 7.439(14) 7.175(14) 7.381(23) 7.197(22) 1.130384(15)

4.75 520 6.992(15) 6.746(15) 6.976(25) 6.803(25) 1.190821(18)

5.00 570 6.506(13) 6.278(13) 6.497(21) 6.336(21) 1.251152(21)

5.25 540 6.047(16) 5.835(16) 6.043(24) 5.893(24) 1.310814(24)

5.50 570 5.589(13) 5.394(13) 5.594(21) 5.455(20) 1.369265(18)

5.75 560 5.168(12) 4.987(12) 5.173(19) 5.045(19) 1.426070(18)

6.00 560 4.764(12) 4.597(11) 4.769(17) 4.651(17) 1.480586(20)

6.25 560 4.408(10) 4.255(10) 4.422(16) 4.313(16) 1.532498(17)

6.50 540 4.082(11) 3.940(10) 4.092(17) 3.991(16) 1.581690(19)

6.75 540 3.787(8) 3.655(8) 3.800(12) 3.706(12) 1.627972(19)

7.00 540 3.521(7) 3.398(7) 3.539(11) 3.452(11) 1.671502(17)

7.50 520 3.083(8) 2.976(8) 3.100(12) 3.024(12) 1.750676(20)

8.00 520 2.717(5) 2.623(5) 2.729(7) 2.662(7) 1.820554(17)

8.50 430 2.436(5) 2.351(4) 2.447(7) 2.387(7) 1.882590(22)

9.00 300 2.211(7) 2.135(7) 2.226(11) 2.171(11) 1.937892(34)

Table 7. 244 lattice ensembles used in this work, with columns as in table 3.

βF Meas. g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3 Plaq.

(τ0 = 0) (τopt = 0.08) (τ0 = 0) (τopt = 0.08)

3.75 470 8.621(18) 8.423(18) 8.562(30) 8.424(30) 0.950577(11)

4.00 510 8.211(22) 8.024(22) 8.187(33) 8.056(33) 1.010042(11)

4.25 560 7.778(18) 7.601(18) 7.761(29) 7.637(29) 1.070013(9)

4.50 550 7.323(21) 7.157(21) 7.323(34) 7.207(34) 1.130373(10)

4.75 560 6.898(16) 6.742(15) 6.902(25) 6.792(25) 1.190859(9)

5.00 550 6.446(14) 6.300(14) 6.444(22) 6.341(22) 1.251157(10)

5.50 550 5.593(13) 5.467(13) 5.629(21) 5.540(21) 1.369320(9)

6.00 520 4.765(12) 4.658(12) 4.784(20) 4.708(19) 1.480543(11)

6.50 500 4.107(11) 4.015(11) 4.138(18) 4.072(18) 1.581666(12)

7.00 530 3.542(9) 3.462(9) 3.557(13) 3.501(13) 1.671488(12)

7.50 540 3.103(6) 3.034(6) 3.128(10) 3.079(10) 1.750674(10)

8.00 510 2.749(7) 2.688(7) 2.768(10) 2.725(10) 1.820560(10)

8.50 520 2.459(6) 2.404(6) 2.478(9) 2.439(9) 1.882567(9)

9.00 520 2.209(5) 2.159(5) 2.215(8) 2.179(7) 1.937922(10)

Table 8. 304 lattice ensembles used in this work, with columns as in table 3.
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βF Meas. g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3 Plaq.

(τ0 = 0) (τopt = 0.08) (τ0 = 0) (τopt = 0.08)

3.75 440 8.610(24) 8.437(23) 8.562(37) 8.441(37) 0.950563(12)

4.00 950 8.166(16) 8.002(16) 8.134(26) 8.019(25) 1.010050(7)

4.25 420 7.755(19) 7.600(19) 7.758(32) 7.649(32) 1.070015(9)

4.50 960 7.320(15) 7.174(15) 7.336(25) 7.234(25) 1.130357(7)

4.75 950 6.873(13) 6.736(13) 6.890(20) 6.794(20) 1.190867(9)

5.00 960 6.469(14) 6.341(14) 6.512(22) 6.421(22) 1.251145(7)

5.25 930 6.007(13) 5.888(13) 6.043(22) 5.959(21) 1.310802(9)

5.50 960 5.576(12) 5.466(12) 5.608(19) 5.530(19) 1.369291(8)

5.75 950 5.176(11) 5.073(11) 5.211(17) 5.138(17) 1.426046(9)

6.00 940 4.800(7) 4.705(7) 4.847(12) 4.780(12) 1.480556(7)

6.50 950 4.095(8) 4.014(8) 4.117(13) 4.059(13) 1.581660(9)

7.00 950 3.573(7) 3.503(7) 3.615(12) 3.565(12) 1.671509(8)

8.00 920 2.743(5) 2.688(5) 2.756(9) 2.718(9) 1.820556(9)

9.00 540 2.225(6) 2.181(6) 2.240(9) 2.209(9) 1.937924(9)

Table 9. 324 lattice ensembles used in this work, with columns as in table 3.

βF Meas. g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3 Plaq.

(τ0 = 0) (τopt = 0.08) (τ0 = 0) (τopt = 0.08)

3.75 350 8.413(22) 8.278(21) 8.333(36) 8.239(36) 0.950560(7)

4.00 390 8.097(24) 7.969(23) 8.086(34) 7.996(33) 1.010043(10)

4.25 460 7.668(20) 7.547(19) 7.663(31) 7.578(31) 1.070014(7)

4.50 550 7.297(20) 7.182(19) 7.328(30) 7.247(30) 1.130365(7)

4.75 510 6.855(17) 6.747(17) 6.865(26) 6.789(26) 1.190839(7)

5.00 550 6.423(18) 6.322(18) 6.454(29) 6.383(29) 1.251143(9)

5.50 550 5.612(14) 5.525(14) 5.657(21) 5.594(21) 1.369282(9)

6.00 560 4.817(12) 4.742(12) 4.865(19) 4.811(19) 1.480557(11)

6.50 550 4.114(14) 4.050(13) 4.145(20) 4.099(20) 1.581667(10)

7.00 390 3.577(10) 3.521(10) 3.606(16) 3.567(16) 1.671496(10)

7.50 390 3.111(10) 3.062(10) 3.138(16) 3.103(15) 1.750672(9)

8.00 560 2.770(8) 2.726(8) 2.794(12) 2.764(12) 1.820547(9)

8.50 380 2.470(7) 2.431(7) 2.489(11) 2.462(11) 1.882548(9)

9.00 390 2.239(7) 2.204(7) 2.255(10) 2.230(10) 1.937906(8)

Table 10. 364 lattice ensembles used in this work, with columns as in table 3.
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L = 12 L = 16

βF g2
c=0.2 g̃2

c=0.2 βF g2
c=0.2 g̃2

c=0.2

(τ0 = 0) (τopt = 0.08) (τ0 = 0) (τopt = 0.08)

3.00 12.551(7) 10.980(7)

3.20 11.915(8) 10.430(7)

3.40 12.838(7) 10.268(6) 3.40 11.286(8) 9.885(8)

3.60 12.092(7) 9.673(6) 3.60 10.718(6) 9.396(6)

3.75 11.566(6) 9.256(5) 3.75 10.282(6) 9.018(6)

3.80 11.388(5) 9.116(4) 3.80 10.146(6) 8.901(6)

4.00 10.687(5) 8.561(5) 4.00 9.590(6) 8.420(6)

4.20 10.029(6) 8.045(5) 4.20 9.056(5) 7.957(5)

4.25 9.843(5) 7.898(4) 4.25 8.918(5) 7.837(5)

4.40 9.353(6) 7.509(5) 4.40 8.536(6) 7.506(5)

4.50 9.034(4) 7.260(4) 4.50 8.270(5) 7.276(5)

4.60 8.715(5) 7.006(4) 4.60 8.010(5) 7.048(5)

4.75 8.251(5) 6.639(4) 4.75 7.630(4) 6.719(4)

4.80 8.097(4) 6.516(3) 4.80 7.510(6) 6.614(6)

5.00 7.524(4) 6.065(4) 5.00 7.031(4) 6.199(4)

5.20 6.966(4) 5.622(4) 5.20 6.575(4) 5.801(4)

5.40 6.443(4) 5.207(3) 5.40 6.120(4) 5.402(4)

5.50 6.192(4) 5.007(3) 5.50 5.906(4) 5.215(3)

5.60 5.964(3) 4.825(3) 5.60 5.697(5) 5.033(4)

5.80 5.510(3) 4.462(2) 5.80 5.309(4) 4.693(4)

6.00 5.105(3) 4.137(3) 6.00 4.939(4) 4.367(4)

6.20 4.749(3) 3.854(3) 6.20 4.608(3) 4.076(3)

6.40 4.416(2) 3.586(2) 6.40 4.307(3) 3.812(3)

6.50 4.254(2) 3.455(2) 6.50 4.168(3) 3.690(2)

6.60 4.119(2) 3.346(2) 6.60 4.034(2) 3.571(2)

6.80 3.847(2) 3.126(2) 6.80 3.782(2) 3.349(2)

7.00 3.611(2) 2.936(2) 7.00 3.561(2) 3.154(2)

7.20 3.402(2) 2.768(1) 7.20 3.359(2) 2.976(2)

7.40 3.211(2) 2.612(2) 7.40 3.181(2) 2.819(2)

7.50 3.120(1) 2.539(1) 7.50 3.093(1) 2.741(1)

7.60 3.034(2) 2.469(1) 7.60 3.014(2) 2.671(1)

7.80 2.885(2) 2.348(1) 7.80 2.862(2) 2.537(2)

8.00 2.745(1) 2.235(1) 8.00 2.726(1) 2.416(1)

8.50 2.443(1) 1.989(1) 8.50 2.435(1) 2.159(1)

9.00 2.203(1) 1.795(1) 9.00 2.197(1) 1.948(1)

Table 11. Renormalized gradient flow couplings in the c = 0.2 scheme for the 124 and 164 lattice

ensembles used in this work, for the clover discretization of E(t) with both τ0 = 0 and the optimal

τopt = 0.08.
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L = 18 L = 20

βF g2
c=0.2 g̃2

c=0.2 βF g2
c=0.2 g̃2

c=0.2

(τ0 = 0) (τopt = 0.08) (τ0 = 0) (τopt = 0.08)

3.00 11.912(12) 10.725(11)

3.50 10.487(7) 9.452(6)

3.75 9.841(6) 8.877(6) 3.75 9.535(7) 8.774(7)

4.00 9.223(5) 8.325(4) 4.00 8.961(7) 8.250(7)

4.25 8.615(4) 7.782(4) 4.25 8.386(7) 7.724(7)

4.50 8.018(4) 7.247(3) 4.50 7.839(6) 7.224(6)

4.75 7.431(3) 6.721(3) 4.75 7.273(6) 6.705(6)

5.00 6.864(3) 6.212(3) 5.00 6.740(7) 6.217(7)

5.50 5.812(3) 5.267(3) 5.50 5.731(6) 5.291(6)

6.00 4.882(4) 4.428(4) 6.00 4.840(4) 4.471(4)

6.50 4.128(3) 3.746(3) 6.50 4.103(3) 3.791(3)

7.00 3.539(3) 3.213(3) 7.00 3.536(4) 3.269(4)

7.50 3.083(2) 2.800(2) 7.50 3.070(3) 2.839(3)

8.00 2.717(1) 2.468(1) 8.00 2.717(2) 2.513(2)

8.50 2.429(2) 2.206(2) 8.50 2.429(2) 2.246(2)

9.00 2.197(2) 1.996(2) 9.00 2.193(1) 2.028(1)

Table 12. Renormalized gradient flow couplings in the c = 0.2 scheme for the 184 and 204 lattice

ensembles used in this work, with columns as in table 11.
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L = 24 L = 30

βF g2
c=0.2 g̃2

c=0.2 βF g2
c=0.2 g̃2

c=0.2

(τ0 = 0) (τopt = 0.08) (τ0 = 0) (τopt = 0.08)

3.75 9.117(8) 8.609(8) 3.75 8.796(10) 8.482(10)

4.00 8.606(9) 8.129(9) 4.00 8.342(12) 8.045(12)

4.25 8.113(10) 7.666(10) 4.25 7.883(10) 7.604(10)

4.50 7.595(8) 7.179(7) 4.50 7.400(11) 7.139(11)

4.75 7.101(7) 6.714(7) 4.75 6.948(8) 6.704(8)

5.00 6.592(7) 6.234(7) 5.00 6.484(7) 6.257(7)

5.25 6.107(9) 5.776(9)

5.50 5.635(7) 5.331(7) 5.50 5.593(6) 5.398(6)

5.75 5.198(7) 4.918(6)

6.00 4.786(6) 4.529(6) 6.00 4.761(6) 4.595(6)

6.25 4.417(5) 4.180(5)

6.50 4.086(5) 3.868(5) 6.50 4.086(6) 3.945(6)

6.75 3.786(4) 3.584(3)

7.00 3.515(3) 3.328(3) 7.00 3.525(5) 3.403(4)

7.50 3.073(4) 2.910(4) 7.50 3.081(3) 2.974(3)

8.00 2.711(2) 2.567(2) 8.00 2.729(3) 2.635(3)

8.50 2.427(2) 2.298(2) 8.50 2.441(3) 2.357(3)

9.00 2.199(3) 2.082(3) 9.00 2.201(2) 2.125(2)

Table 13. Renormalized gradient flow couplings in the c = 0.2 scheme for the 244 and 304 lattice

ensembles used in this work, with columns as in table 11.
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L = 32 L = 36

βF g2
c=0.2 g̃2

c=0.2 βF g2
c=0.2 g̃2

c=0.2

(τ0 = 0) (τopt = 0.08) (τ0 = 0) (τopt = 0.08)

3.75 8.749(13) 8.475(13) 3.75 8.565(11) 8.352(11)

4.00 8.281(9) 8.022(9) 4.00 8.183(13) 7.981(13)

4.25 7.830(11) 7.587(10) 4.25 7.734(11) 7.544(11)

4.50 7.375(8) 7.146(8) 4.50 7.323(11) 7.144(11)

4.75 6.911(7) 6.697(7) 4.75 6.880(10) 6.711(10)

5.00 6.473(7) 6.274(7) 5.00 6.430(10) 6.273(10)

5.25 6.010(7) 5.825(7)

5.50 5.572(6) 5.401(6) 5.50 5.582(8) 5.447(8)

5.75 5.160(6) 5.002(6)

6.00 4.772(4) 4.626(4) 6.00 4.781(6) 4.665(6)

6.50 4.077(4) 3.953(4) 6.50 4.087(7) 3.988(7)

7.00 3.537(3) 3.430(3) 7.00 3.545(5) 3.460(5)

7.50 3.085(5) 3.011(5)

8.00 2.726(3) 2.643(3) 8.00 2.743(4) 2.677(4)

8.50 2.450(4) 2.391(4)

9.00 2.210(3) 2.143(3) 9.00 2.220(3) 2.167(3)

Table 14. Renormalized gradient flow couplings in the c = 0.2 scheme for the 324 and 364 lattice

ensembles used in this work, with columns as in table 11.
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βF g2
c=0.2 g̃2

c=0.2 g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3

(τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12)

3.40 16.544(9) 10.662(7) 12.999(13) 10.023(11) 11.507(18) 9.701(16)

3.60 15.366(8) 9.938(6) 12.210(12) 9.435(11) 10.878(18) 9.180(16)

3.75 14.541(7) 9.439(5) 11.678(9) 9.040(8) 10.455(13) 8.827(12)

3.80 14.267(6) 9.270(5) 11.492(9) 8.902(8) 10.307(13) 8.704(13)

4.00 13.204(6) 8.619(5) 10.781(9) 8.372(8) 9.744(12) 8.238(11)

4.20 12.219(7) 8.019(5) 10.133(10) 7.891(9) 9.239(14) 7.821(13)

4.25 11.959(6) 7.856(4) 9.942(8) 7.746(7) 9.077(12) 7.685(11)

4.40 11.245(6) 7.415(5) 9.447(10) 7.374(8) 8.668(15) 7.344(14)

4.50 10.792(5) 7.136(4) 9.137(8) 7.141(7) 8.421(12) 7.140(11)

4.60 10.339(6) 6.854(4) 8.814(8) 6.895(7) 8.142(12) 6.904(11)

4.75 9.700(5) 6.455(4) 8.354(8) 6.547(7) 7.760(12) 6.587(11)

4.80 9.486(4) 6.319(3) 8.193(7) 6.423(6) 7.616(10) 6.464(9)

5.00 8.706(5) 5.832(4) 7.633(7) 6.000(7) 7.154(12) 6.079(11)

5.20 7.970(4) 5.364(3) 7.076(7) 5.574(7) 6.675(12) 5.678(11)

5.40 7.290(4) 4.929(3) 6.555(6) 5.174(6) 6.221(9) 5.296(9)

5.50 6.975(4) 4.726(3) 6.301(6) 4.977(5) 5.988(9) 5.098(8)

5.60 6.680(3) 4.536(3) 6.074(6) 4.803(6) 5.796(10) 4.938(9)

5.80 6.116(3) 4.168(2) 5.614(4) 4.446(4) 5.381(7) 4.587(7)

6.00 5.620(3) 3.843(2) 5.201(5) 4.124(5) 4.998(8) 4.262(8)

6.20 5.187(3) 3.560(2) 4.849(5) 3.853(4) 4.694(8) 4.007(7)

6.40 4.792(2) 3.297(2) 4.509(4) 3.586(4) 4.375(6) 3.736(6)

6.50 4.605(2) 3.171(1) 4.341(3) 3.453(3) 4.212(5) 3.597(5)

6.60 4.444(2) 3.064(2) 4.205(4) 3.347(3) 4.092(6) 3.497(6)

6.80 4.129(2) 2.852(1) 3.923(3) 3.124(3) 3.822(5) 3.265(5)

7.00 3.859(2) 2.669(1) 3.682(3) 2.934(3) 3.594(5) 3.071(5)

7.20 3.619(2) 2.508(1) 3.472(3) 2.770(2) 3.401(4) 2.909(4)

7.40 3.403(2) 2.361(2) 3.273(4) 2.612(3) 3.206(6) 2.741(5)

7.50 3.304(1) 2.294(1) 3.182(2) 2.540(2) 3.122(4) 2.670(4)

7.60 3.207(2) 2.227(1) 3.091(3) 2.467(2) 3.032(5) 2.592(4)

7.80 3.039(1) 2.113(1) 2.939(3) 2.348(2) 2.888(4) 2.471(4)

8.00 2.884(1) 2.007(1) 2.796(2) 2.235(2) 2.753(3) 2.356(3)

8.50 2.553(1) 1.779(1) 2.485(2) 1.988(1) 2.452(3) 2.099(3)

9.00 2.292(1) 1.600(1) 2.239(2) 1.791(1) 2.212(3) 1.893(2)

Table 15. Renormalized gradient flow couplings based on the plaquette discretization of E(t) for

the 124 lattice ensembles used in this work at three values of c = 0.2, 0.25 and 0.3, with both τ0 = 0

and the optimal τopt = 0.12 as in table 11.

– 35 –



βF g2
c=0.2 g̃2

c=0.2 g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3

(τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12)

3.00 13.811(8) 11.015(7) 12.016(12) 10.500(11) 11.258(19) 10.278(19)

3.20 13.046(8) 10.424(7) 11.434(13) 9.998(12) 10.749(21) 9.816(20)

3.40 12.303(9) 9.846(8) 10.842(14) 9.484(13) 10.211(21) 9.326(20)

3.60 11.632(7) 9.328(6) 10.343(11) 9.056(10) 9.797(17) 8.952(16)

3.75 11.122(6) 8.931(6) 9.943(11) 8.710(11) 9.441(18) 8.629(18)

3.80 10.964(7) 8.809(6) 9.820(11) 8.604(11) 9.327(18) 8.525(17)

4.00 10.320(6) 8.307(6) 9.316(11) 8.168(10) 8.887(17) 8.126(16)

4.20 9.704(5) 7.827(5) 8.833(10) 7.752(9) 8.475(16) 7.754(16)

4.25 9.548(5) 7.704(5) 8.697(9) 7.631(8) 8.332(14) 7.622(13)

4.40 9.112(6) 7.363(5) 8.345(10) 7.327(10) 8.011(16) 7.328(16)

4.50 8.810(5) 7.126(4) 8.104(9) 7.118(8) 7.801(14) 7.139(13)

4.60 8.517(5) 6.894(5) 7.851(9) 6.896(8) 7.553(14) 6.910(13)

4.75 8.090(4) 6.558(4) 7.501(8) 6.593(8) 7.240(14) 6.626(13)

4.80 7.955(6) 6.451(5) 7.391(11) 6.498(10) 7.149(17) 6.544(17)

5.00 7.419(4) 6.028(3) 6.951(7) 6.116(6) 6.753(11) 6.185(11)

5.20 6.912(4) 5.626(4) 6.521(8) 5.741(8) 6.356(13) 5.823(13)

5.40 6.413(4) 5.227(3) 6.080(7) 5.355(6) 5.935(10) 5.437(10)

5.50 6.178(4) 5.039(3) 5.875(6) 5.176(6) 5.744(9) 5.263(9)

5.60 5.951(4) 4.858(4) 5.677(8) 5.003(8) 5.562(13) 5.098(13)

5.80 5.528(4) 4.519(4) 5.302(7) 4.675(7) 5.205(12) 4.770(11)

6.00 5.129(4) 4.197(3) 4.939(7) 4.356(6) 4.860(11) 4.455(11)

6.20 4.772(3) 3.909(2) 4.613(5) 4.070(5) 4.543(8) 4.165(8)

6.40 4.451(3) 3.649(3) 4.319(5) 3.813(5) 4.264(8) 3.910(8)

6.50 4.303(2) 3.529(2) 4.184(5) 3.694(5) 4.137(8) 3.794(8)

6.60 4.159(2) 3.413(2) 4.050(4) 3.576(4) 4.004(7) 3.672(7)

6.80 3.893(2) 3.196(2) 3.799(4) 3.355(4) 3.759(7) 3.448(6)

7.00 3.659(2) 3.006(2) 3.580(4) 3.163(4) 3.550(7) 3.256(6)

7.20 3.446(2) 2.833(2) 3.378(3) 2.984(3) 3.347(6) 3.070(5)

7.40 3.259(2) 2.680(2) 3.202(4) 2.829(4) 3.179(6) 2.916(6)

7.50 3.167(1) 2.605(1) 3.112(3) 2.750(3) 3.087(5) 2.831(5)

7.60 3.084(2) 2.537(1) 3.035(3) 2.682(3) 3.014(5) 2.765(5)

7.80 2.925(2) 2.407(1) 2.882(3) 2.547(3) 2.865(5) 2.628(5)

8.00 2.783(1) 2.291(1) 2.744(3) 2.425(3) 2.726(5) 2.501(4)

8.50 2.481(1) 2.043(1) 2.450(2) 2.166(2) 2.435(4) 2.234(3)

9.00 2.234(1) 1.841(1) 2.211(2) 1.955(1) 2.200(3) 2.018(3)

Table 16. Renormalized gradient flow couplings based on the plaquette discretization of E(t) for

the 164 lattice ensembles used in this work, with columns as in table 15.
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βF g2
c=0.2 g̃2

c=0.2 g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3

(τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12)

3.00 12.683(12) 10.691(11) 11.428(20) 10.303(19) 10.892(30) 10.148(29)

3.50 11.087(7) 9.369(6) 10.113(12) 9.125(11) 9.694(19) 9.036(18)

3.75 10.371(6) 8.777(6) 9.530(11) 8.604(10) 9.163(17) 8.541(17)

4.00 9.688(5) 8.211(4) 8.972(9) 8.105(8) 8.667(14) 8.082(14)

4.25 9.022(4) 7.657(4) 8.415(7) 7.606(7) 8.155(12) 7.607(11)

4.50 8.370(4) 7.114(3) 7.862(7) 7.110(6) 7.648(11) 7.136(10)

4.75 7.734(3) 6.582(3) 7.319(6) 6.623(6) 7.148(10) 6.672(10)

5.00 7.123(3) 6.070(3) 6.783(6) 6.140(6) 6.640(10) 6.198(10)

5.50 5.997(3) 5.123(3) 5.784(6) 5.241(6) 5.699(10) 5.321(9)

6.00 5.014(4) 4.291(3) 4.879(7) 4.424(7) 4.830(11) 4.512(11)

6.50 4.222(3) 3.619(3) 4.137(6) 3.753(5) 4.106(9) 3.836(9)

7.00 3.609(3) 3.096(3) 3.552(5) 3.224(5) 3.532(8) 3.300(8)

7.50 3.136(2) 2.692(2) 3.100(4) 2.814(4) 3.090(7) 2.887(7)

8.00 2.758(1) 2.369(1) 2.732(3) 2.480(3) 2.724(5) 2.546(5)

8.50 2.462(2) 2.115(2) 2.441(4) 2.216(3) 2.432(6) 2.273(6)

9.00 2.224(2) 1.911(1) 2.208(3) 2.004(3) 2.199(5) 2.054(5)

Table 17. Renormalized gradient flow couplings based on the plaquette discretization of E(t) for

the 184 lattice ensembles used in this work, with columns as in table 15.

βF g2
c=0.2 g̃2

c=0.2 g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3

(τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12)

3.75 9.901(7) 8.678(7) 9.287(12) 8.560(12) 9.036(20) 8.543(19)

4.00 9.286(7) 8.146(7) 8.756(13) 8.072(13) 8.537(21) 8.072(21)

4.25 8.672(7) 7.614(7) 8.222(12) 7.583(12) 8.039(20) 7.603(20)

4.50 8.089(6) 7.109(6) 7.721(11) 7.124(11) 7.579(18) 7.169(17)

4.75 7.490(6) 6.587(5) 7.175(10) 6.621(10) 7.045(17) 6.664(16)

5.00 6.926(7) 6.097(7) 6.674(13) 6.161(12) 6.573(20) 6.218(20)

5.50 5.866(6) 5.173(6) 5.717(11) 5.282(11) 5.672(17) 5.368(17)

6.00 4.937(4) 4.358(4) 4.843(8) 4.476(8) 4.815(14) 4.557(13)

6.50 4.173(3) 3.687(3) 4.109(7) 3.798(7) 4.086(11) 3.867(11)

7.00 3.588(4) 3.173(3) 3.559(6) 3.291(6) 3.560(10) 3.370(10)

7.50 3.110(3) 2.751(3) 3.086(6) 2.854(6) 3.082(10) 2.918(9)

8.00 2.748(2) 2.432(2) 2.735(4) 2.530(4) 2.735(7) 2.590(7)

8.50 2.454(2) 2.172(2) 2.443(4) 2.260(4) 2.443(7) 2.313(7)

9.00 2.214(1) 1.959(1) 2.204(3) 2.038(3) 2.201(5) 2.083(5)

Table 18. Renormalized gradient flow couplings based on the plaquette discretization of E(t) for

the 204 lattice ensembles used in this work, with columns as in table 15.
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βF g2
c=0.2 g̃2

c=0.2 g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3

(τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12)

3.75 9.327(9) 8.532(8) 8.928(15) 8.442(14) 8.753(23) 8.421(22)

4.00 8.793(9) 8.048(8) 8.464(15) 8.006(15) 8.336(23) 8.022(23)

4.25 8.279(10) 7.582(10) 8.018(18) 7.587(18) 7.936(30) 7.638(29)

4.50 7.742(8) 7.094(7) 7.518(14) 7.114(13) 7.428(22) 7.148(22)

4.75 7.229(7) 6.627(7) 7.062(15) 6.685(14) 7.017(25) 6.755(25)

5.00 6.704(7) 6.147(7) 6.567(13) 6.217(13) 6.533(21) 6.289(21)

5.25 6.203(9) 5.691(8) 6.100(15) 5.775(15) 6.074(23) 5.847(23)

5.50 5.717(7) 5.246(7) 5.635(13) 5.336(12) 5.620(20) 5.411(20)

5.75 5.269(7) 4.836(6) 5.207(12) 4.931(11) 5.196(18) 5.002(18)

6.00 4.846(6) 4.449(6) 4.798(11) 4.544(11) 4.789(16) 4.610(16)

6.25 4.468(5) 4.104(4) 4.437(9) 4.203(9) 4.438(16) 4.273(15)

6.50 4.130(5) 3.794(5) 4.107(10) 3.890(10) 4.107(16) 3.954(16)

6.75 3.824(3) 3.513(3) 3.808(7) 3.607(7) 3.812(12) 3.670(11)

7.00 3.548(3) 3.260(3) 3.539(6) 3.353(6) 3.549(10) 3.418(10)

7.50 3.098(4) 2.848(4) 3.097(7) 2.934(7) 3.108(11) 2.992(11)

8.00 2.731(2) 2.510(2) 2.729(4) 2.585(4) 2.735(6) 2.634(6)

8.50 2.443(2) 2.246(2) 2.444(4) 2.316(4) 2.452(7) 2.361(6)

9.00 2.212(3) 2.034(3) 2.219(6) 2.102(6) 2.230(10) 2.147(10)

Table 19. Renormalized gradient flow couplings based on the plaquette discretization of E(t) for

the 244 lattice ensembles used in this work, with columns as in table 15.

βF g2
c=0.2 g̃2

c=0.2 g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3

(τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12)

3.75 8.911(10) 8.428(9) 8.685(18) 8.384(18) 8.601(30) 8.392(30)

4.00 8.445(12) 7.990(12) 8.268(21) 7.984(21) 8.222(33) 8.024(32)

4.25 7.975(10) 7.547(10) 7.830(18) 7.561(18) 7.792(28) 7.605(28)

4.50 7.483(11) 7.082(11) 7.369(21) 7.116(20) 7.351(33) 7.175(33)

4.75 7.021(8) 6.647(8) 6.939(15) 6.702(15) 6.927(25) 6.761(25)

5.00 6.547(7) 6.200(7) 6.482(13) 6.260(13) 6.466(22) 6.311(22)

5.50 5.641(6) 5.343(6) 5.620(12) 5.429(12) 5.645(20) 5.510(20)

6.00 4.796(6) 4.544(6) 4.785(12) 4.623(11) 4.796(19) 4.682(19)

6.50 4.112(6) 3.897(6) 4.122(11) 3.982(11) 4.146(17) 4.048(17)

7.00 3.544(4) 3.359(4) 3.553(8) 3.433(8) 3.564(13) 3.479(13)

7.50 3.095(3) 2.934(3) 3.112(6) 3.007(6) 3.133(10) 3.059(10)

8.00 2.741(3) 2.598(3) 2.756(6) 2.663(6) 2.772(10) 2.706(10)

8.50 2.450(3) 2.323(3) 2.464(5) 2.381(5) 2.481(9) 2.422(9)

9.00 2.209(2) 2.094(2) 2.214(4) 2.139(4) 2.217(7) 2.164(7)

Table 20. Renormalized gradient flow couplings based on the plaquette discretization of E(t) for

the 304 lattice ensembles used in this work, with columns as in table 15.
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βF g2
c=0.2 g̃2

c=0.2 g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3

(τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12)

3.75 8.846(13) 8.427(12) 8.666(23) 8.402(23) 8.596(37) 8.413(36)

4.00 8.369(9) 7.973(9) 8.216(16) 7.966(16) 8.165(25) 7.991(25)

4.25 7.909(11) 7.537(10) 7.799(19) 7.564(19) 7.785(31) 7.621(31)

4.50 7.445(8) 7.095(8) 7.360(15) 7.139(15) 7.360(25) 7.205(25)

4.75 6.973(7) 6.647(7) 6.908(13) 6.701(13) 6.911(20) 6.766(20)

5.00 6.527(7) 6.224(7) 6.501(13) 6.306(13) 6.530(22) 6.394(21)

5.25 6.057(7) 5.776(7) 6.034(13) 5.853(13) 6.060(21) 5.933(21)

5.50 5.613(6) 5.352(6) 5.600(11) 5.432(11) 5.622(18) 5.504(18)

5.75 5.195(6) 4.955(6) 5.196(10) 5.041(10) 5.223(17) 5.114(17)

6.00 4.802(4) 4.581(4) 4.817(7) 4.674(7) 4.857(11) 4.756(11)

6.50 4.099(4) 3.911(4) 4.108(8) 3.986(8) 4.125(13) 4.038(12)

7.00 3.554(3) 3.391(3) 3.583(7) 3.477(7) 3.621(12) 3.545(12)

8.00 2.736(2) 2.611(2) 2.749(5) 2.667(5) 2.760(8) 2.702(8)

9.00 2.217(3) 2.115(3) 2.229(5) 2.163(5) 2.242(9) 2.195(9)

Table 21. Renormalized gradient flow couplings based on the plaquette discretization of E(t) for

the 324 lattice ensembles used in this work, with columns as in table 15.

βF g2
c=0.2 g̃2

c=0.2 g2
c=0.25 g̃2

c=0.25 g2
c=0.3 g̃2

c=0.3

(τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12) (τ0 = 0) (τopt = 0.12)

3.75 8.638(11) 8.313(11) 8.455(21) 8.251(21) 8.359(35) 8.217(35)

4.00 8.249(13) 7.941(12) 8.135(23) 7.941(23) 8.110(33) 7.974(33)

4.25 7.794(11) 7.503(11) 7.703(19) 7.519(19) 7.684(31) 7.555(30)

4.50 7.377(11) 7.103(11) 7.328(19) 7.154(19) 7.347(30) 7.225(30)

4.75 6.927(10) 6.671(10) 6.883(17) 6.719(17) 6.882(25) 6.767(25)

5.00 6.472(10) 6.233(10) 6.447(18) 6.294(18) 6.469(28) 6.362(28)

5.50 5.614(8) 5.408(8) 5.631(14) 5.498(14) 5.668(21) 5.574(20)

6.00 4.804(6) 4.629(6) 4.830(11) 4.717(11) 4.873(19) 4.792(18)

6.50 4.104(7) 3.954(7) 4.125(13) 4.027(13) 4.151(20) 4.082(19)

7.00 3.558(5) 3.429(5) 3.585(9) 3.501(9) 3.611(15) 3.551(15)

7.50 3.096(5) 2.983(5) 3.117(10) 3.044(9) 3.141(15) 3.089(15)

8.00 2.751(4) 2.651(4) 2.774(7) 2.709(7) 2.797(12) 2.751(12)

8.50 2.456(4) 2.367(4) 2.474(7) 2.416(7) 2.491(10) 2.450(10)

9.00 2.226(3) 2.145(3) 2.242(6) 2.189(6) 2.257(10) 2.219(10)

Table 22. Renormalized gradient flow couplings based on the plaquette discretization of E(t) for

the 364 lattice ensembles used in this work, with columns as in table 15.
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L d.o.f. Rational function Polynomial

χ2 CL χ2 CL

12 28 114.9 1.8×10−12 1294 <10−16

16 30 96.0 7.8×10−9 2190 <10−16

18 11 25.6 0.01 789.4 <10−16

20 9 20.0 0.02 68.2 3.5×10−11

24 13 5.1 0.97 42.6 5.3×10−5

30 9 14.6 0.10 33.9 9.2×10−5

32 9 14.4 0.11 46.3 5.2×10−7

36 9 13.0 0.16 50.0 1.1×10−7

Table 23. Quality of c = 0.2 renormalized coupling interpolations as functions of the bare coupling,

g̃2
c=0.2(βF ) on each L4 lattice volume. Both the rational function interpolations using eq. 4.1 and the

polynomial interpolations using eq. 4.2 use the clover discretization of E(t) with optimal τopt = 0.08

and involve the same number of fit parameters producing the same number of degrees of freedom.

The confidence level (CL) is computed from the χ2 and d.o.f. through eq. C.1.

L d.o.f. Rational function Polynomial

χ2 CL χ2 CL

12 28 64.7 1.0×10−4 463.6 <10−16

16 30 44.3 0.04 705.1 <10−16

18 11 10.9 0.45 236.8 <10−16

20 9 16.4 0.06 29.7 5.0×10−4

24 13 4.6 0.98 17.7 0.17

30 9 10.5 0.32 13.4 0.14

32 9 17.3 0.04 27.4 1.2×10−3

36 9 11.6 0.24 27.0 1.4×10−3

Table 24. Quality of c = 0.25 renormalized coupling interpolations g̃2
c=0.25(βF ), with τopt = 0.08

and columns as in table 23.

L d.o.f. Rational function Polynomial

χ2 CL χ2 CL

12 28 50.0 0.01 212.2 <10−16

16 30 32.5 0.34 281.7 <10−16

18 11 7.0 0.80 85.8 3.5×10−11

20 9 15.3 0.08 19.2 0.02

24 13 6.2 0.94 12.1 0.52

30 9 11.2 0.26 12.0 0.22

32 9 19.9 0.02 24.5 3.6×10−3

36 9 11.1 0.27 18.9 0.03

Table 25. Quality of c = 0.3 renormalized coupling interpolations g̃2
c=0.3(βF ), with τopt = 0.08

and columns as in table 23.
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