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1. INTRODUCTION 

The development of a methodology for the accurate and reliable assessment of structural 

damage is very essential to ensure the integrity and stability of structures, reduce the cost of 

maintenance and prevent catastrophic failure. There has been great effort in developing 

structural health monitoring (SHM) methodologies utilizing vibration measurements over the 

last few decades [1,2]. The majority of the methods in the literature have been validated by 

various types of structural components or systems, such as truss-type structures [3-6], 

beam-type structures [7-11], plate-type structures [12-15], frame structures [16-21], shear 

building structures [22-25], bridge structures [26-28], and periodic structural systems [29-32]. 

Most of these mentioned research works are based on the framework of finite element (FE) 

model updating by utilizing dynamic characteristics [33,34], where an objective function is 

usually defined in terms of the discrepancies between the experimental measurements and 

those calculated from a FE model, and it is then minimized for the examination of the stiffness 

parameter changes to indicate the structural damage. 

For the FE model updating-based SHM procedure mentioned above, the accuracy of FE model 

is essential for its successful implementation. However, due to assumption and uncertainty 

arisen from the theoretical hypothesis, boundary condition, and geometric and material 

properties, there is an unavoidable mismatch between the model-predicted and measured 

dynamic properties. In order to obtain higher accuracy for structural analysis, the FE model of 

the target structure tends to be fine enough to approximate the structural details, leading to the 

increase of the model complexity. This, however, is not beneficial for the efficient 

implementation of FE model updating-based SHM, which is typically an inverse problem of 

structural dynamics. Since the repeated solution of the large eigenvalue problem is usually 

required in the process of FE model updating, the computational cost of this procedure 

eventually resulted unaffordable when dealing with complex models with large amount of 

degrees of freedom (DOFs). In addition, the measured modal data is incomplete due to the 

problems of limited number of sensors, measurement noise and truncation error of higher order 

modes, etc., which cause the inability to capture the full dynamics of the structure, rendering 

the inverse problem of FE model updating procedure uncertain and ill-posed [35,36]. Moreover, 

for forming the above-mentioned measure-of-fit objective function by utilizing modal 

parameters, it is necessary to ensure that the measured modes are well matched with the 

calculated ones by employing the modal assurance criterion (MAC) technique, which is 

especially difficult in the situation of a complex structural model together with a limited 

number of measured DOFs. Such mode matching becomes even more difficult by noting the 
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fact that the present of damage might sometimes cause changes in the order of the modes. 

In order to resolve the difficulties arisen from the limited number of measurement channels, the 

methods usually start from computing the missing components of the mode shapes through 

mode shape expansion procedure [37]. However, it has been revealed that this would aggregate 

the modeling error, experimental noise and other sources of uncertainties into the resultant 

mode shapes [38,39], affecting substantially the damage detection results. In such 

circumstances, the FE model reduction method originally developed for the purpose of 

reducing the computation effort for large-scale structural models [40-43], particularly for the 

dynamic-reduction method [43], becomes a more practical alternative since it does not 

introduce any error in the transformation process within a certain frequency range [20,44,45], 

and also avoids the mode matching problem for using modal data. By employing the FE model 

reduction technique, the original full system matrices are condensed to the reduced system 

matrices corresponding to only the measured DOFs, so the matrix dimension of the inverse 

problem for damage identification could be significantly reduced, especially efficient for 

large-scale structural models with a huge number of DOFs. Nevertheless, there usually exist 

multitudinous FE models with varying level of complexity that can be developed from the 

engineering judgment. The inverse problem may be non-uniquely solvable for FE models with 

higher parameterization complexity due to the large number of uncertain parameters to be 

identified as compared to the limited measurement information available. Thus, it is 

particularly important to choose the FE model with the suitable complexity for the purpose of 

the FE model updating-based SHM. 

In this paper, a methodology is proposed to investigate the problem of choosing suitable class 

of parameterized FE models for the dynamic reduction-based SHM following the Bayesian 

evidence inference method. Within the concept of information theory, the amount of 

information needed to be extracted from the measured data for the prescribed set of 

parameterized model classes is explicitly quantified during the dynamic model reduction-based 

SHM procedure. Then, this information measure is utilized for penalizing the parameterization 

complexity of a given FE model to ensure a FE parameterization scheme with suitable 

complexity. There are two stages involved in the proposed methodology. In the calibration 

stage, Bayesian approach is employed for updating the initial FE model with modal parameters 

from the intact structure to obtain the most probable values and associated uncertainties of 

model parameters by implementing the delayed rejection adaptive Metropolis (DRAM) 

algorithm. In the subsequent monitoring stage, the information achieved from the previous 

stage is utilized as pseudo-data in order to further improve the model parameter estimation. 
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The proposed methodology is validated through both the numerical case studies and laboratory 

experiment conducted for steel frames with semi-rigid connections. 

2. THE PROPOSED METHODOLOGY 

2.1 Dynamic reduction-based damage identification 

The eigen-system equations of a 𝑁𝑑-DOF FE model can be written as 

 𝐊(𝛉)𝛟𝑛 = 𝜆𝑛𝐌𝛟𝑛,   𝐊(𝛉) = 𝐊 −∑𝜃𝑖𝐊
(𝑖)

𝑁𝜃

𝑖=1

 (1) 

where the global stiffness matrix 𝐊(𝛉) is parameterized by the non-dimensional stiffness 

scaling parameter vector 𝛉 = {𝜃1, 𝜃2, ⋯ , 𝜃𝑁𝜃}
T
∈ ℝ𝑁𝜃×1 describing reduction of stiffness for 

the potentially damaged structural elements or substructures. It allows the nominal stiffness 

matrix given by 𝐊(𝛉0) to be updated based on the identified modal parameters through the 

model updating procedure. 𝑁𝜃 is the number of uncertain scaling parameters to be updated. 

𝐊(𝑖), for 𝑖 = 1,2,⋯ ,𝑁𝜃, denotes the contribution of the 𝑖th element or substructure to the 

global stiffness matrix of the FE model, and 𝜃𝑖 is the 𝑖th element in the uncertain parameter 

vector 𝛉. 𝐊, 𝐌 ∈ ℝ𝑁𝑑×𝑁𝑑 are constant matrices independent of 𝛉. 𝜆𝑛 = (2𝜋𝑓𝑛)
2, and 𝑓𝑛 is 

the 𝑛th natural frequency, for 𝑛 = 1,2,⋯ ,𝑁𝑡. 𝑁𝑡 is the number of measured modes. 𝜆𝑛 and 

𝛟𝑛 ∈ ℝ
𝑁𝑑×1 are the 𝑛th eigenvalue and eigenvector, respectively. In this study, damage is due 

to the reduction of rotational stiffness of semi-rigid connections, and it is assumed that there is 

no change in the mass distribution of the structural system before and after the occurrence of 

damage. 

According to the master (or measured) set of DOF (index 𝑚) and the slave (or unmeasured) 

set of DOF (index 𝑠) of the FE model, Eq. (1) can be partitioned into the master and slave sets 

of DOFs, respectively as 

[
 
 
 
 
 
𝐊𝑚𝑚 −∑𝜃𝑖

𝑁𝜃

𝑖=1

𝐊𝑚𝑚
(𝑖) 𝐊𝑚𝑠 −∑𝜃𝑖

𝑁𝜃

𝑖=1

𝐊𝑚𝑠
(𝑖)

𝐊𝑠𝑚 −∑𝜃𝑖

𝑁𝜃

𝑖=1

𝐊𝑠𝑚
(𝑖) 𝐊𝑠𝑠 −∑𝜃𝑖

𝑁𝜃

𝑖=1

𝐊𝑠𝑠
(𝑖)

]
 
 
 
 
 

{
𝛟𝑛,𝑚
𝛟𝑛,𝑠

} = 𝜆𝑛 [
𝐌𝑚𝑚 𝐌𝑚𝑠

𝐌𝑠𝑚 𝐌𝑠𝑠
] {
𝛟𝑛,𝑚
𝛟𝑛,𝑠

} (2) 

where 𝛟𝑛,𝑚 ∈ ℝ
𝑁𝑚×1  and 𝛟𝑛,𝑠 ∈ ℝ

𝑁𝑠×1  are the measured and unmeasured parts of full 

mode shape vector 𝛟𝑛, respectively, 𝑁𝑚 + 𝑁𝑠 = 𝑁𝑑. From the second set of equations in Eq. 

(2), one obtains that 
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 𝛟𝑛,𝑠 = 𝐃𝑛𝛟𝑛,𝑚 (3) 

where 𝐃𝑛 ∈ ℝ
𝑁𝑠×𝑁𝑚 depending on both eigenvalue 𝜆𝑛 and parameter vector 𝛉, is given by 

 𝐃𝑛 = (𝐊𝑠𝑠 − 𝜆𝑛𝐌𝑠𝑠 −∑𝜃𝑖

𝑁𝜃

𝑖=1

𝐊𝑠𝑠
(𝑖))

−1

(𝐊𝑠𝑚 − 𝜆𝑛𝐌𝑠𝑚 −∑𝜃𝑖

𝑁𝜃

𝑖=1

𝐊𝑠𝑚
(𝑖) ) (4) 

Based on Eq. (3), the full mode shape vector 𝛟𝑛 can be represented by 

 𝛟𝑛 = {
𝛟𝑛,𝑚
𝛟𝑛,𝑠

} = 𝐓𝑛𝛟𝑛,𝑚 = [
𝐈𝑁𝑚
𝐃𝑛
]𝛟𝑛,𝑚 (5) 

where 𝐓𝑛 ∈ ℝ
𝑁𝑑×𝑁𝑚 expanding the measured partial mode shape vector to the full model 

shape vector of the FE model is the system transformation matrix for the 𝑛th mode. 𝐈𝑁𝑚  is 

the identity matrix with dimension 𝑁𝑚 × 𝑁𝑚. 

Substituting Eq. (5) into Eq. (2), and pre-multiplying the system transformation matrix 𝐓𝑛 to 

both sides of the resultant equations leads to the following eigen-system equations for the 

reduced system model corresponding to the 𝑁𝑚 master DOFs, i.e., 

 (𝐊𝑛
𝑅 −∑𝜃𝑖𝐊𝑛

(𝑖)𝑅

𝑁𝜃

𝑖=1

)𝛟𝑛,𝑚 = 𝜆𝑛𝐌𝑛
𝑅𝛟𝑛,𝑚 (6) 

where 𝐊𝑛
𝑅 , 𝐌𝑛

𝑅 ∈ ℝ𝑁𝑚×𝑁𝑚 are the reduced system stiffness and mass matrices with respect to 

the 𝑛th mode, respectively. 𝐊𝑛
(𝑖)𝑅 ∈ ℝ𝑁𝑚×𝑁𝑚, related to the 𝑛th mode, is reduced matrix of 

𝐊(𝑖). These three matrices are given by 

 𝐊𝑛
𝑅 = 𝐓𝑛

T𝐊̅𝐓𝑛,  𝐌𝑛
𝑅 = 𝐓𝑛

T𝐌̅𝐓𝑛,  𝐊𝑛
(𝑖)𝑅 = 𝐓𝑛

T𝐊̅(𝑖)𝐓𝑛 (7) 

and 

 𝐊̅ = [
𝐊𝑚𝑚 𝐊𝑚𝑠
𝐊𝑠𝑚 𝐊𝑠𝑠

],  𝐌̅ = [
𝐌𝑚𝑚 𝐌𝑚𝑠

𝐌𝑠𝑚 𝐌𝑠𝑠
],  𝐊̅(𝑖) = [

𝐊𝑚𝑚
(𝑖) 𝐊𝑚𝑠

(𝑖)

𝐊𝑠𝑚
(𝑖) 𝐊𝑠𝑠

(𝑖)
] (8) 

Thus, by gathering all the measured modes, Eq. (6) can be expressed in a matrix form as 

 𝐇(𝛉)𝛉 = 𝐡(𝛉) (9) 

where both the matrix 𝐇 ∈ ℝ(𝑁𝑚𝑁𝑡)×𝑁𝜃 and vector 𝐡 ∈ ℝ(𝑁𝑚𝑁𝑡)×1 are the implicit functions 
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of the parameter vector 𝛉 and they are given below as 

 𝐇(𝛉) = [

𝐇1
𝐇2
⋮
𝐇𝑁𝑡

] =

[
 
 
 
 𝐊1

(1)𝑅 𝛟1,𝑚 𝐊1
(2)𝑅 𝛟1,𝑚

𝐊2
(1)𝑅 𝛟2,𝑚 𝐊2

(2)𝑅 𝛟2,𝑚

⋯ 𝐊1
(𝑁𝜃)𝑅 𝛟1,𝑚

⋯ 𝐊2
(𝑁𝜃)𝑅 𝛟2,𝑚

⋮ ⋮

𝐊𝑁𝑡
(1)𝑅 𝛟𝑁𝑡,𝑚 𝐊𝑁𝑡

(2)𝑅 𝛟𝑁𝑡,𝑚

⋱ ⋮

⋯ 𝐊𝑁𝑡
(𝑁𝜃)𝑅 𝛟𝑁𝑡,𝑚]

 
 
 
 

 (10) 

and 

 𝐡(𝛉) = {

𝐡1
𝐡2
⋮
𝐡𝑁𝑡

} =

{
 
 

 
 (𝐊1

𝑅 − 𝜆1𝐌1
𝑅)𝛟1,𝑚

(𝐊2
𝑅 − 𝜆2𝐌2

𝑅)𝛟2,𝑚
⋮

(𝐊𝑁𝑡
𝑅 − 𝜆𝑁𝑡𝐌𝑁𝑡

𝑅 )𝛟𝑁𝑡,𝑚}
 
 

 
 

 (11) 

where 𝐇𝑛 ∈ ℝ
𝑁𝑚×𝑁𝜃  and 𝐡𝑛 ∈ ℝ

𝑁𝑚×1  for 𝑛 = 1,2,⋯ , 𝑁𝑡  are the 𝑛 th submatrix and 

subvector of the matrix 𝐇 and vector 𝐡, respectively. By implementing Eq. (9) with the 

measured modal parameters before and after the present of damage through the model updating 

procedure, the health status of the structure being monitored can be quantified by the change of 

unknown parameter vector 𝛉. It is noted that there is still a question yet to be solved, i.e., the 

class of parameterized models of the reduced structural system should be specified before 

carrying out the monitoring procedure, which will be addressed in a statistic manner in the 

following part of the paper. 

2.2 Bayesian evidence statistic 

In principle, the proposed methodology is intended to efficiently monitor the service status of 

large-scale structures with the FE parameterization scheme of suitable complexity from a 

probabilistic point of view. Provided the sets of measured dynamic data 𝔻𝑁, the goal of model 

class selection is to use 𝔻𝑁 to select the most probable class of models representing the 

system out of 𝑁𝑀 given classes of parameterized models 𝕄 = {𝕄1,𝕄2, ⋯ ,𝕄𝑁𝑀}, where 𝕄𝑗 

specifies not only a class of deterministic dynamic models derived from Eq. (9), but also the 

probability descriptions for the prediction error variance. It is noted that the parameter vector 

𝛉𝑗 ∈ ℝ
𝑁𝑗×1 depends on the model class 𝕄𝑗 even though it is not explicitly reflected in the 

symbol for simplicity, and 𝑁𝑗 denotes the number of uncertain stiffness scaling parameters to 

be identified with respect to the model class 𝕄𝑗 . Let 𝔻𝑁  denote the modal parameters 

measured from the target structural system through modal testing, i.e., 
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 𝔻𝑁 =⋃{(𝑓𝑛
(𝑠), 𝛟̂𝑛,𝑚

(𝑠) ),   𝑛 = 1,⋯ ,𝑁𝑡}

𝑁

𝑠=1

 (12) 

where 𝑁  is the number of repeatedly measured modal parameter pairs, which can be 

identified from recorded time-domain responses with sufficient duration by utilizing suitable 

modal parameter identification techniques [46,47]. The superscript ^ denotes the measured 

quantities. 

By utilizing the set of measured data 𝔻𝑁 and Eq. (9), the eigen-equation errors 𝐞𝑛,𝑗 ∈ ℝ
𝑁𝑚×1 

of the reduced structural system for the 𝑛th mode (𝑛 = 1,⋯ ,𝑁𝑡) can be expressed as 

 𝐇𝑛(𝛉𝑗; 𝔻𝑁 ,𝕄𝑗)𝛉𝑗 − 𝐡𝑛(𝛉𝑗; 𝔻𝑁 ,𝕄𝑗) = 𝐞𝑛,𝑗 (13) 

where the covariance matrix 𝚺𝑛,𝑗 ∈ ℝ
𝑁𝑚×𝑁𝑚 of 𝐞𝑛,𝑗 controls the size of the eigen-equation 

errors of the 𝑛th mode with an assumption of Gaussian probability model. In addition, it is 

also assumed that the uncertainty in the equation errors of the reduced structural system for the 

𝑛th mode are modeled as independent and identically distributed, so the covariance matrix of 

𝐞𝑛,𝑗 can be given by 

 𝚺𝑛,𝑗 = 𝜎𝑗
2𝐈𝑁𝑚 (14) 

where 𝐈𝑁𝑚  is the 𝑁𝑚 -dimensional identity matrix, and 𝜎𝑗
2  denotes the variance of 

eigen-equation errors with respect to the 𝑗th class of models. 

By providing the dynamic data set 𝔻𝑁 and specifying the model class 𝕄𝑗, the likelihood 

function 𝑝(𝔻𝑁|𝛉𝑗, 𝕄𝑗) is defined by 

 𝑝(𝔻𝑁|𝛉𝑗,𝕄𝑗) = (2𝜋𝜎𝑗
2)
−
𝑁𝑚𝑁𝑡
2 exp [−

𝑁𝑚𝑁𝑡

2𝜎𝑗
2 𝒥(𝛉𝑗; 𝔻𝑁 ,𝕄𝑗)] (15) 

where 𝒥(𝛉𝑗; 𝔻𝑁 ,𝕄𝑗) is the measure-of-fit function quantifying the eigen-equation errors of 

the reduced structural system, i.e., 

 𝒥(𝛉𝑗; 𝔻𝑁 ,𝕄𝑗) =
1

𝑁𝑚𝑁𝑡
∑‖𝐇𝑛(𝛉𝑗; 𝔻𝑁 ,𝕄𝑗)𝛉𝑗 − 𝐡𝑛(𝛉𝑗; 𝔻𝑁 ,𝕄𝑗)‖

2

𝑁𝑡

𝑛=1

 (16) 

It is noted that, the proposed health monitoring methodology consists of two stages, i.e., the 
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calibration stage and the subsequent monitoring stage, denoted by Stage-I and Stage-II, 

respectively. In the first stage, based on the identified modal parameters of the intact structure, 

Bayesian approach is employed for updating the initial FE model to find the MAP (maximum a 

posteriori) estimate of stiffness scaling parameter vector 𝛉̂𝑗
𝑐  and the associated diagonal 

covariance matrix 𝚺̂𝑗
𝒄 = diag[(𝛔̂𝑗

𝑐)2] ∈ ℝ𝑁𝑗×𝑁𝑗. Where 𝛔̂𝑗
𝑐 = {𝜎̂𝑗,1

𝑐 , 𝜎̂𝑗,2
𝑐 , ⋯ , 𝜎̂𝑗,𝑁𝑗

𝑐 }T ∈ ℝ𝑁𝑗×1 is 

the identified standard deviation of all parameters, and 𝜎̂𝑗,𝑖
𝑐  is the 𝑖th component of 𝛔̂𝑗

𝑐. It is 

further assumed that the MAP estimate 𝛉̂𝑗
𝑐 obtained from the first stage is unique with a large 

amount of dynamic measurements available for simplicity. In the subsequent stage, the values 

of stiffness scaling parameters 𝛉𝑗  are continuously monitored by utilizing the measured 

dynamic data 𝔻𝑁  to update the previously obtained refined FE model. In the proposed 

methodology, motivated by the concept of automatic relevance determination (ARD) [48-50] 

and also utilizing the MAP estimate 𝛉̂𝑗
𝑐 achieved in the foregoing calibration stage, one can 

get that 

 𝑝(Δ𝛉𝑗|𝛂𝑗 ,𝕄𝑗) = ℕ(Δ𝛉𝑗|𝟎, 𝐀𝑗) (17) 

where Δ𝛉𝑗 = 𝛉𝑗 − 𝛉̂𝑗
𝑐  represents the change of stiffness scaling parameters, and 𝐀𝑗 =

diag(𝛂𝑗) ∈ ℝ
𝑁𝑗×𝑁𝑗 is a diagonal covariance matrix defined by 𝛂𝑗 = {𝛼𝑗,1, 𝛼𝑗,2,⋯ , 𝛼𝑗,𝑁𝑗}

T ∈

ℝ𝑁𝑗×1, which is the hyper-parameter vector for the 𝑗th class of models 𝕄𝑗 and represents the 

prediction-error variance for the stiffness change vector Δ𝛉𝑗. 

A likelihood function for 𝛉𝑗 can be further defined to exploit the information that Δ𝛉𝑗 should 

be reasonably a sparse vector with most of its components being zero during the early stage of 

damage development. By defining the pseudo-data 𝛝̂𝑗
𝑐 = 𝛉̂𝑗

𝑐, this likelihood function can be 

defined as 

 𝑝(𝛝̂𝑗
𝑐|𝛉𝑗 , 𝛂𝑗 ,𝕄𝑗) = (2𝜋)

−𝑁𝑗/2det(𝐀𝑗)
−1/2

exp [−
1

2
𝒢(𝛉𝑗; 𝛝̂𝑗

𝑐, 𝛂𝑗 ,𝕄𝑗)] (18) 

with 

 𝒢(𝛉𝑗; 𝛝̂𝑗
𝑐, 𝛂𝑗 ,𝕄𝑗) = (𝛉𝑗 − 𝛉̂𝑗

𝑐)
T
𝐀𝑗
−1(𝛉𝑗 − 𝛉̂𝑗

𝑐) (19) 

It is noted that the above choice of likelihood function based on the pseudo-data 𝛝̂𝑗
𝑐 would 

lead to a sparse representation of the parameter change vector Δ𝛉𝑗 during the optimization of 

the hyper-parameter vector 𝛂𝑗. This choice is motivated by the sparse Bayesian learning 

framework [48] which is known to provide an effective tool for pruning large numbers of 
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irrelevant or redundant features in a linear regression model that are not supported by the data.  

By using the Bayes’ theorem [51], the pseudo-posterior PDF of the model parameter vector 𝛉𝑗 

conditional on the pseudo-data 𝛝̂𝑗
𝑐 can be given as 

 𝑝(𝛉𝑗|𝛝̂𝑗
𝑐, 𝛂𝑗 ,𝕄𝑗) = 𝑐0𝑝(𝛝̂𝑗

𝑐|𝛉𝑗, 𝛂𝑗 ,𝕄𝑗)𝑝(𝛉𝑗|𝕄𝑗) (20) 

where 𝑐0  is a normalizing constant for ensuring that the integration of the PDF over 

predefined domain is equal to unity. 𝑝(𝛉𝑗|𝕄𝑗) is the prior PDF specified by the user, and it is 

chosen as a non-information distribution within the predefined parameter domain here. It 

should be pointed out that the pseudo-posterior PDF of scaling parameter 𝛉𝑗 given in Eq. (20) 

is treated as a prior PDF for these uncertain parameters within the Bayesian statistic framework 

in the later part of the paper. 

By employing the Bayes’ theorem, the posterior PDF of unknown model parameters 

conditional on the observed quantities can be given by 

 𝑝(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐 , 𝛂𝑗 ,𝕄𝑗) = 𝑐1𝑝(𝔻𝑁|𝛉𝑗 ,𝕄𝑗)𝑝(𝛉𝑗|𝛝̂𝑗

𝑐 , 𝛂𝑗 , 𝕄𝑗) (21) 

where 𝑐1 = 𝑝(𝔻𝑁|𝛝̂𝑗
𝑐, 𝛂𝑗 ,𝕄𝑗)

−1
 is also a normalizing constant to ensure the integration of the 

PDF over predefined domain to be unity, and 𝑝(𝔻𝑁|𝛝̂𝑗
𝑐, 𝛂𝑗 ,𝕄𝑗), denoting the evidence for 

model class 𝕄𝑗  provided by both the measured data 𝔻𝑁  and pseudo-data 𝛝̂𝑗
𝑐 , can be 

obtained by following the theorem of total probability. 

By substituting Eq. (20) into Eq. (21), the posterior PDF of model parameter 𝛉𝑗 for the 𝑗th 

model class 𝕄𝑗 can be further written by 

 𝑝(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐 , 𝛂𝑗 ,𝕄𝑗) ∝ 𝑝(𝔻𝑁|𝛉𝑗, 𝕄𝑗)𝑝(𝛝̂𝑗

𝑐|𝛉𝑗, 𝛂𝑗 ,𝕄𝑗)𝑝(𝛉𝑗|𝕄𝑗) (22) 

It is noted that the most probable values of uncertain model parameters 𝛉𝑗 can be estimated by 

maximizing the posterior PDF 𝑝(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐, 𝛂𝑗, 𝕄𝑗) given in Eq. (22), which is equivalent to 

maximizing the product of two individual likelihood functions, i.e., 𝑝(𝔻𝑁|𝛉𝑗,𝕄𝑗)  and 

𝑝(𝛝̂𝑗
𝑐|𝛉𝑗 , 𝛂𝑗 ,𝕄𝑗) . In practice, the most probable values of unknown parameters can be 

conveniently obtained by maximizing the logarithm of the product of these two likelihoods, 

i.e., 



 10 

 

ln[𝑝(𝔻𝑁|𝛉𝑗,𝕄𝑗)𝑝(𝛝̂𝑗
𝑐|𝛉𝑗, 𝛂𝑗 ,𝕄𝑗)] = ln[𝑝(𝔻𝑁|𝛉𝑗,𝕄𝑗)] + ln[𝑝(𝛝̂𝑗

𝑐|𝛉𝑗, 𝛂𝑗 ,𝕄𝑗)]

= −
𝑁𝑚𝑁𝑡
2

ln(2𝜋) − 𝑁𝑚𝑁𝑡ln(𝜎𝑗) −
𝑁𝑚𝑁𝑡

2𝜎𝑗
2 𝒥(𝛉𝑗; 𝔻𝑁 ,𝕄𝑗) −

𝑁𝑗

2
ln(2𝜋)

−
1

2
ln[det(𝐀𝑗)] −

1

2
𝒢(𝛉𝑗; 𝛝̂𝑗

𝑐 , 𝛂𝑗 ,𝕄𝑗) 

(23) 

For a given parameter vector 𝛉𝑗, maximization ln[𝑝(𝔻𝑁|𝛉𝑗, 𝕄𝑗)𝑝(𝛝̂𝑗
𝑐|𝛉𝑗, 𝛂𝑗 ,𝕄𝑗)] in Eq. (23) 

with respect to the 𝑖th hyper-parameter 𝛼𝑗,𝑖, for 𝑖 = 1,⋯ ,𝑁𝑗, requires that 

 
∂ln[𝑝(𝔻𝑁|𝛉𝑗,𝕄𝑗)𝑝(𝛝̂𝑗

𝑐|𝛉𝑗 , 𝛂𝑗 ,𝕄𝑗)]

𝜕𝛼𝑗,𝑖
=
𝜕ln[𝑝(𝛝̂𝑗

𝑐|𝛉𝑗 , 𝛂𝑗 ,𝕄𝑗)]

𝜕𝛼𝑗,𝑖
= 0 (24) 

It follows: 

 
∂ln[det(𝐀𝑗)]

𝜕𝛼𝑗,𝑖
+
𝜕𝒢(𝛉𝑗; 𝛝̂𝑗

𝑐, 𝛂𝑗 ,𝕄𝑗)

𝜕𝛼𝑗,𝑖
= 0 (25) 

where 

 
∂ln[det(𝐀𝑗)]

𝜕𝛼𝑗,𝑖
=

1

det(𝐀𝑗)

∂det(𝐀𝑗)

𝜕𝛼𝑗,𝑖
= tr (𝐀𝑗

−1
∂𝐀𝑗

𝜕𝛼𝑗,𝑖
) = 𝛼𝑗,𝑖

−1 (26) 

and 

 
𝜕𝒢(𝛉𝑗; 𝛝̂𝑗

𝑐, 𝛂𝑗 ,𝕄𝑗)

𝜕𝛼𝑗,𝑖
=
𝜕(𝛉𝑗 − 𝛉̂𝑗

𝑐)
T
𝐀𝑗
−1(𝛉𝑗 − 𝛉̂𝑗

𝑐)

𝜕𝛼𝑗,𝑖
= −𝛼𝑗,𝑖

−2(𝜃𝑗,𝑖 − 𝜃𝑗,𝑖
𝑐 )

2
 (27) 

By substituting Eqs. (26) and (27) into Eq. (25), one can obtain for 𝑖 = 1,⋯ ,𝑁𝑗 that 

 𝛼̂𝑗,𝑖(𝜃𝑗,𝑖) = (𝜃𝑗,𝑖 − 𝜃𝑗,𝑖
𝑐 )

2
 (28) 

This shows how the most probable hyper-parameter 𝛂̂𝑗 depends on the uncertain scaling 

parameters 𝛉𝑗. Further substituting Eq. (28) into Eq. (23) yields: 



 11 

 

ln[𝑝(𝔻𝑁|𝛉𝑗,𝕄𝑗)𝑝(𝛝̂𝑗
𝑐|𝛉𝑗, 𝛂̂𝑗(𝛉𝑗),𝕄𝑗)]

= −
𝑁𝑚𝑁𝑡
2

ln(2𝜋) − 𝑁𝑚𝑁𝑡ln(𝜎𝑗) −
𝑁𝑗

2
ln(2𝜋) −

𝑁𝑗

2

−
𝑁𝑚𝑁𝑡

2𝜎𝑗
2 𝒥(𝛉𝑗; 𝔻𝑁 ,𝕄𝑗) −

1

2
ln[det(𝐀̂𝑗(𝛉𝑗))] 

(29) 

It should be pointed out that the above procedure does not consider the uncertainty of stiffness 

scaling parameter estimate 𝛉̂𝑗
𝑐, i.e., treating the parameters 𝛉̂𝑗

𝑐 to be a deterministic vector. To 

be more practical, by also involving the covariance matrix 𝚺̂𝑗
𝒄 achieved from the calibration 

stage as the pseudo-data, the diagonal covariance matrix 𝐀̂𝑗(𝛉𝑗) defined by the most probable 

hyper-parameter vector 𝛂̂𝑗(𝛉𝑗) in Eq. (29) should be replaced by the diagonal covariance 

matrix 𝐁̂𝑗(𝛉𝑗) = diag[𝛃̂𝑗(𝛉𝑗)] = 𝐀̂𝑗(𝛉𝑗) + 𝚺̂𝑗
𝒄, and meanwhile the pseudo-data is updated to 

be 𝛝̂𝑗
𝑐 = {(𝛉̂𝑗

𝑐)
T
, (𝛔̂𝑗

𝑐)T}T accordingly. 

In globally identifiable cases, the posterior PDF 𝑝(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐, 𝛃̂𝑗(𝛉𝑗),𝕄𝑗) provided in Eq. (22) 

given a large amount of data 𝔻𝑁 may be approximated accurately by a Gaussian distribution, 

so the evidence 𝑝(𝔻𝑁|𝛝̂𝑗
𝑐,𝕄𝑗)  can be approximated by using Laplace’s method for 

asymptotic expansion [52]. However, this asymptotic expansion would be not valid for the 

general case where the posterior PDF may not be approximated by the Gaussian distribution. 

Motivated by the procedure proposed in [53] and also noticing Eq. (21), the following identity 

of logarithm of evidence can be considered as 

 

ln[𝑝(𝔻𝑁|𝛝̂𝑗
𝑐,𝕄𝑗)] =

= ∫ ln [
𝑝(𝔻𝑁|𝛉𝑗,𝕄𝑗)𝑝(𝛉𝑗|𝛝̂𝑗

𝑐, 𝛃̂𝑗(𝛉𝑗),𝕄𝑗)

𝑝(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐, 𝛃̂𝑗(𝛉𝑗),𝕄𝑗)

] 𝑝(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐, 𝛃̂𝑗(𝛉𝑗),𝕄𝑗)d𝛉𝑗 

(30) 

By utilizing Eq. (20), the log-evidence can be further expressed as 
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ln[𝑝(𝔻𝑁|𝛝̂𝑗
𝑐,𝕄𝑗)]

∝ ∫ ln [
𝑝(𝔻𝑁|𝛉𝑗,𝕄𝑗)𝑝(𝛝̂𝑗

𝑐|𝛉𝑗, 𝛃̂𝑗(𝛉𝑗),𝕄𝑗)𝑝(𝛉𝑗|𝕄𝑗)

𝑝(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐 , 𝛃̂𝑗(𝛉𝑗),𝕄𝑗)

] 𝑝(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐, 𝛃̂𝑗(𝛉𝑗),𝕄𝑗)d𝛉𝑗

= ∫ ln[𝑝(𝔻𝑁|𝛉𝑗,𝕄𝑗)𝑝(𝛝̂𝑗
𝑐|𝛉𝑗, 𝛃̂𝑗(𝛉𝑗),𝕄𝑗)]𝑝(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗

𝑐, 𝛃̂𝑗(𝛉𝑗),𝕄𝑗)d𝛉𝑗

−∫ ln [
𝑝(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗

𝑐, 𝛃̂𝑗(𝛉𝑗),𝕄𝑗)

𝑝(𝛉𝑗|𝕄𝑗)
] 𝑝(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗

𝑐, 𝛃̂𝑗(𝛉𝑗),𝕄𝑗)d𝛉𝑗 

(31) 

The first term in the right hand side of Eq. (31) is a measure of the average data-fit of the 

model class 𝕄𝑗, accounting for the log-goodness of fit for different combinations of the 

parameters weighted by the posterior PDF. The second term is the Kullback–Leibler 

information, which is a non-negative measure of the information gain about 𝕄𝑗 from the data 

𝔻𝑁. If the selection of a model class is solely determined by the data-fit term, then more 

complex models will usually be preferred over simpler ones. This often leads to over-fitting of 

the data and the updated model depending too much on the details of the specific data will be 

unreliable. The combination of these two factors in the log evidence for 𝕄𝑗  provides a 

mathematically rigorous and robust way to build in a trade-off between the data-fit of the 

model class and its information-theoretic complexity. 

The probability of model class 𝕄𝑗 conditional on both the dynamic data 𝔻𝑁 and pseudo-data 

𝛝̂𝑗
𝑐 can be obtained by following the Bayes’ theorem as 

 𝑝(𝕄𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐,𝕄) =

𝑝(𝔻𝑁|𝛝̂𝑗
𝑐,𝕄𝑗)𝑝(𝕄𝑗|𝕄)

∑ 𝑝(𝔻𝑁|𝛝̂𝑗
𝑐,𝕄𝑗)𝑝(𝕄𝑗|𝕄)

𝑁𝑀
𝑗=1

 (32) 

where the denominator is given by the theorem of total probability. 𝑝(𝕄𝑗|𝕄) represents the 

judgment on the initial plausibility of the model classes expressed as the prior plausibility 

𝑝(𝕄𝑗|𝕄) on the model class 𝕄𝑗, 𝑗 = 1,2,⋯ ,𝑁𝑀. The prior plausibilities are normalized as 

∑ 𝑝(𝕄𝑗|𝕄)
𝑁𝑀
𝑗=1 = 1, and it is simply assumed here that each class of models has the same 

initial plausibility. The evidence 𝑝(𝔻𝑁|𝛝̂𝑗
𝑐,𝕄𝑗)  expressing how likely the data 𝔻𝑁  is 

obtained with the specified model class 𝕄𝑗 is obtained previously by Eq. (31). 

It is shown in Eq. (32) that the most probable class of models is the one that maximizes 

𝑝(𝕄𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐,𝕄)  which is equivalent to maximizing the evidence 𝑝(𝔻𝑁|𝛝̂𝑗

𝑐,𝕄𝑗)  with 

respect to 𝑗. However, it should be noted that for evaluating the plausibility of different model 
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classes, directly taking the exponential of the log-evidence and then normalizing the 

plausibility may cause computational problems due to the existence of zero or infinity values. 

As a solution, the maximum log-evidence is calculated and subtracted from the log-evidence of 

each individual model class and then taking the exponential of the resulting quantities [54]. 

This operation does not affect the relative plausibility between different model classes and the 

problem of numerical difficulties can be well resolved. Thus, the plausibility of the 𝑗th model 

class 𝕄𝑗 can be obtained through the following normalizing form as 

 𝑝(𝕄𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐,𝕄) =

exp (ln[𝑝(𝔻𝑁|𝛝̂𝑗
𝑐,𝕄𝑗)] − max

𝑗
ln[𝑝(𝔻𝑁|𝛝̂𝑗

𝑐,𝕄𝑗)])

∑ exp (ln[𝑝(𝔻𝑁|𝛝̂𝑗
𝑐,𝕄𝑗)] − max

𝑗
ln[𝑝(𝔻𝑁|𝛝̂𝑗

𝑐,𝕄𝑗)])
𝑁𝑀
𝑗=1

 (33) 

2.3 Delayed rejection adaptive Metropolis algorithm 

The high-dimensional integrals in log-evidence provided in Eq. (31) can be evaluated 

numerically by the MCMC algorithm. For this purpose, the samples are required to be drawn 

from the posterior PDF 𝑝(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐, 𝛃̂𝑗(𝛉𝑗),𝕄𝑗), and they are obtained by implementing the 

DRAM algorithm in the present paper. This algorithm combines two powerful ideas, i.e., 

adaptive Metropolis algorithm and delayed rejection strategy [55], which has been proved to be 

more effective than traditional MCMC algorithms. To ensure that this paper is self-contained, 

the principle of implementing DRAM methods to solve the specific problem presented in the 

previous section is briefly summarized, and interested readers are directed to Ref. [56] for 

detailed explanation. Hereafter, the logarithm of product of two likelihood functions is defined 

for convenience by 

 ℒ(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗
𝑐,𝕄𝑗) = ln[𝑝(𝔻𝑁|𝛉𝑗,𝕄𝑗)𝑝(𝛝̂𝑗

𝑐|𝛉𝑗, 𝛃̂𝑗(𝛉𝑗),𝕄𝑗)] (34) 

with the present of the measured data set 𝔻𝑁, the pseudo-data 𝛝̂𝑗
𝑐 and the specified class of 

modes 𝕄𝑗.  

Initially the DRAM algorithm requires the selection of a covariance design parameter 𝑠𝑑, the 

adaptation interval length  0 and the maximum number of allowed chain iterates  . The 

parameter  0 determines when the covariance matrix 𝚺( ) of the chain should be updated. 

The choice of  0 is critical in adaptive Metropolis for achieving a good balance mixing in the 

initial stages and for generating non-singular covariance matrices. The fundamental steps are 

briefly summarized as following: 

1. To begin with, set design parameters 𝑠𝑑 and  0 and the number of simulations K. 
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2. Estimate the initial state 𝛉𝑗
(0)

 by 

 𝛉𝑗
(0): = arg min𝛉𝑗{−ℒ(𝛉𝑗|𝔻𝑁 , 𝛝̂𝑗

𝑐,𝕄𝑗)} (35) 

and also specify a positive define covariance matrix 𝚺(0). 

3. For the  th simulation step, generate the candidate state 𝛉𝑗
 1 by utilizing the current state 

𝛉𝑗
( )

 and the specified proposal distribution as 𝛉𝑗
 1  1(𝛉𝑗

 1|𝛉𝑗
( )
). 

4. Calculate the acceptance ratio for the current candidate 𝛉𝑗
 1 as 

 𝜏1(𝛉𝑗
 1|𝛉𝑗

( )
) = min {1,

ℒ(𝛉𝑗
 1|𝔻𝑁 , 𝛝̂𝑗

𝑐,𝕄𝑗) 1(𝛉𝑗
( )
|𝛉𝑗
 1)

ℒ (𝛉𝑗
( )
|𝔻𝑁 , 𝛝̂𝑗

𝑐,𝕄𝑗)  1 (𝛉𝑗
 1|𝛉𝑗

( )
)
} (36) 

5. Sample from a uniform distribution, i.e.,  1  (0,1). If  1  𝜏1, accept 𝛉𝑗
 1 by setting 

𝛉𝑗
(  1)

= 𝛉𝑗
 1. 

6. Otherwise, enter the delayed rejection algorithm, and generate another candidate sate 𝛉𝑗
 2 

through the proposal distribution as 𝛉𝑗
 2  2(𝛉𝑗

 2|𝛉𝑗
( ), 𝛉𝑗

 1). 

7. Calculate the acceptance ratio 𝜏2 by 

𝜏2(𝛉𝑗
 2|𝛉𝑗

( ), 𝛉𝑗
 1)

= min{1,
ℒ(𝛉𝑗

 2|𝔻𝑁 , 𝛝̂𝑗
𝑐,𝕄𝑗) 1(𝛉𝑗

 1|𝛉𝑗
 2) 2(𝛉𝑗

( )
|𝛉𝑗
 1, 𝛉𝑗

 2)[1 − 𝜏1(𝛉𝑗
 1|𝛉𝑗

 2)]

ℒ (𝛉𝑗
( )
|𝔻𝑁 , 𝛝̂𝑗

𝑐 ,𝕄𝑗)  1 (𝛉𝑗
 1|𝛉𝑗

( )
)  2 (𝛉𝑗

 2|𝛉𝑗
( ), 𝛉𝑗

 1) [1 − 𝜏1 (𝛉𝑗
 1|𝛉𝑗

( )
)]
} 

(37) 

8. Sample from a uniform distribution again, i.e.,  2  (0,1). If  2  𝜏2, accept 𝛉𝑗
 2 by 

setting 𝛉𝑗
(  1)

= 𝛉𝑗
 2; Otherwise, reject 𝛉𝑗

 2, and set 𝛉𝑗
(  1)

= 𝛉𝑗
( )

. 

9. If    0, follow the adaptive Metropolis rule, update the covariance matrix 𝚺(  1) =

𝑠𝑑   (𝛉𝑗
(0)
, 𝛉𝑗
(1)
, ⋯ , 𝛉𝑗

(  1)
); Otherwise, set 𝚺(  1) = 𝚺( ). 

It should be pointed out that, although only two proposal stages are outlined here, the above 

algorithm allows for as many proposal stages to be performed as desired in principle. 
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3. NUMERICAL SIMULATIONS 

3.1 Introduction of the four-storey two-bay frame example 

For verifying the proposed methodology, a four-storey two-bay plane frame with standard 10# 

I-steel columns and beams as shown in Fig. 1 is employed in this section. The sectional and 

material properties of this frame are provided in Table 1. In this present study, the column-base 

and beam-column connections of the frame are all treated as semi-rigid with rotational stiffness. 

For convenience, the semi-rigid connections for both column-base and beam-column 

connections are simulated by beam elements of very short length with relatively smaller 

flexural rigidity as compared to the regular beam and column components. The connection 

statuses are quantified by the flexural stiffness of these short beam elements, and they are 

further considered as uncertain modeling parameters to be identified. Referring to Fig. 1, there 

are 19 such semi-rigid connections, denoted by S1, S2, …, and S19, respectively, where S1 to 

S3 are utilized to simulate the semi-rigid column-base connections by three short beams, and 

S4 to S19 are designed to quantify all the beam-column semi-rigid connections. 

The four-storey steel frame is discretized by plane beam elements (each node with two 

translational and one rotational DOFs) into two FE models with different discretizing schemes 

in order to purposely introduce modeling error effect. The first FE model (FEM1, with 94 

nodes and 273 DOFs) with a level of 5% Gaussian white noise of zero-mean added into the 

sectional properties is utilized for generating simulated modal data, while the second one 

(FEM2, with 54 nodes and 153 DOFs) is employed for connection damage detection using 

simulated data got from FEM1. It is noted that the various numbers next to the markers shown 

in Fig. 1 denote the FE node numbers, and two numbers separated by a slash represent the 

corresponding nodes belonging to FEM1 and FEM2, respectively. 

There are twelve sensors utilized for this frame as shown in Fig. 1. The first four sensors are 

used to measure the horizontal vibration of the left column, while the latter eight are employed 

to monitor the vertical motion of the two beams. Although the complete set of modal 

parameters can be easily obtained from eigen-system solution for this numerical model, only 

the first two modes with partial DOFs are employed to investigate the performance of this 

approach with relatively less information about the dynamics of the structure. The 

measurement includes the eigenvalues and partial mode shapes at the measured DOFs of the 

first two modes under both healthy and damaged situations. They are calculated from FEM1 

with measurement error assumed to be an i.i.d. Gaussian white noise of zero-mean with a level 

of 1% without losing the generality. In the following calibration as well as damage detection 

stages, the identification model, i.e., FEM2 is employed. 
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Table 2 shows the six classes of models considered for this four-storey frame. The complexity 

of model parameterization increases gradually from 𝕄1 to 𝕄5. Specifically, 𝕄1 with one 

parameter 𝜃1 to scale all rotational stiffness possesses the lowest degree of complexity among 

all considered model classes. 𝕄2 is a little bit more complex than 𝕄1, and the former has two 

parameters 𝜃1  and 𝜃2  to scale the rotational stiffness of all the column-base and 

beam-column connections, respectively. With one more parameters involved, 𝕄3 is proposed 

to distinguish the beam-column connections of the first two stories from the last two. 𝕄4 is 

developed based on 𝕄3 to further discriminate the semi-rigid stiffness of middle column-base 

connection (S1) from the remaining two column-base connections (S1 and S3). As the most 

complex parameterization scheme among all six model classes, 𝕄5  uses five scaling 

parameters to update all column-base connections as well as all beam-column connections with 

respect to each storey. 𝕄6 is designed to be a comparison model class originated from 𝕄2 

with one more parameters involved to discriminate the middle column-base connection from 

the rest two. This model class is intended to be comparable with 𝕄3 for investigating the 

effect of different parameterization scheme by keeping the same number of unknown 

parameters. 

There are three cases considered for this four-storey frame as showed in Table 3. It is assumed 

that the rotational stiffness of column-based and beam-column connections are consistent for 

convenience.  𝑐 denotes the magnitude of nominal or baseline values of rotational stiffness, 

and it is set to be 0.02 times of the flexural rigidity of the beam and column elements. Case 1 

considers the damage on single column-based connection, and the rotational stiffness of left 

beam-column connection S1 of the first storey is set to be 0.7 times of nominal values, while 

all the remaining unknown modeling parameters are kept to be their baseline values. Case 2 

investigates the situation that all the column-base connections are damaged with different 

extents. Case 3 is also a multi-damage case, where six damaged beam-column connections are 

located in two adjacent columns, which is employed to verify the ability of proposed 

methodology in a more difficult situation for detecting larger number of damaged connections. 

3.2 Numerical simulation results 

The prior probability distributions for the stiffness scaling parameters are chosen as a 

zero-mean Gaussian distribution with standard deviation of 0.3 to ensure that most of the prior 

samples fall within a prescribed range between -1 and 1, and the samples going beyond this 

scope are discarded. It is recalled that the proposed methodology consists of two stages, i.e., 

the calibration stage (denoted by Stage-I) and subsequent monitoring stage (denoted by 

Stage-II). In the first stage, by applying the proposed methodology to each class of models, 
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FEM2 corresponding to various FE parameterization schemes are updated by utilizing the 

simulated modal parameters obtained from FEM1 under intact status, and the pseudo-posterior 

samples of uncertain scaling parameters in this stage can be achieved for each model class. It is 

noted that the so-called MAP estimates and associated uncertainties of the uncertain stiffness 

parameters in Stage-I are obtained from the statistical properties of MCMC samples achieved 

in this stage. Then, in the second stage, FEM2 for each model class is updated again by using 

simulated modal data from FEM1 in damaged situation as well as the information provided by 

the previously obtained samples of uncertain parameters. 

By applying the proposed methodology, a total of 3×10
4
 samples are obtained, and those within 

the ‘burn-in’ period are further excluded. Table 4 shows the results of Bayesian model class 

selection performed for different cases with the prescribed set of model classes, where the 

results corresponding to the most probable model class are highlighted in bold. As for Case 1, 

it is found that the most probable class of models is 𝕄1 , possessing the simplest 

parameterization scheme with one single parameter. Referring to the damage configuration of 

this case as shown in Table 3, this seems to be some counterintuitive at the first glance by 

inspecting the log-evidence value. As it is our common sense that this simplest modeling 

strategy is unable to distinguish the rotational stiffness reduction of column-base connections 

from that of beam-column connections, and we would expect more complex class of models be 

selected in this case. This result may be understandable if we examine the measure of data-fit 

as well as the Kullback information of the uncertain parameters with respect to the chosen prior 

probability distributions. In this case, as shown in Table 4, data-match of model class 𝕄2 is 

larger than 𝕄1  since one more parameter is involved. Accordingly, larger amount of 

information is extracted for 𝕄2  to update its extra parameter as indicated by the 

information-gain value. However, from model classes 𝕄1  to 𝕄2 , the amount of the 

information extraction (4.22-2.24=1.98) exceed the benefits of the data-match improvement 

(-194.00+195.53=1.53), resulting in a lower log-evidence for model class 𝕄2 . With 

continuous increase of the model complexity, more information is generally expected to be 

extracted to update the excessive parameters, which overshadow the improvement of data-fit 

measure, making 𝕄1 to be the most probable class of modes for this case.  

Case 2 investigates more serious damage situation where all the column-base connections are 

damaged with various extent as compared to the previous case. As shown in Table 4, 𝕄2 is 

identified as the most probable class of models in this case by utilizing the proposed Bayesian 

evidence measure, while the plausibility of the simplest model class 𝕄1 is extremely low for 

this case. This is expected and can be explained by examining the values of both data-match 
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and information gain. Specifically, it is clearly found that data-match of 𝕄1 is far less than 

others in the prescribed set of model classes. This is not surprised since the present of damage 

in all column-base connections for this case induces more significant change of structural 

dynamic properties as compared to the previous case. In such circumstances, the matching 

between the single-parameter model class 𝕄1 and the damaged structural model is very poor, 

making the log-evidence of 𝕄1 to be at a very low level regardless of its relatively less 

information extraction. For other model classes in this case, although more complex models 

generally match experimental data better, the proposed Bayesian evidence measure penalizes 

the complexity of model parameterization by assessing the amount of information extracted. 

Thus, 𝕄2 outperforms the other pre-defined classes of models for this case. 

Case 3 considers a more complex damage configuration, where damaged beam-column 

connections are located within the first three storeys. For this case, it is seen from Table 4 that 

𝕄3 is identified to be the most probable class of models class. This is not surprised since it’s 

well anticipated that this model class possessing a relative simple parameterization scheme 

discriminates the beam-column connections belonging to two separated groups (i.e., the first 

two and last two stories), and matches well with the prescribed damage configuration. In 

addition, it is also observed that 𝕄2 is chosen as the second-best model class and outperforms 

the most complex one 𝕄5. This is also expected by examination of the data-fit measure as 

well as Kullback information for this case. It is found that although the data-match measure of 

𝕄2 is not as good as that of 𝕄5 due to its deficiency for identifying the beam-column 

connection damage located in each storey, the amount of information extracted to update its 

two uncertain parameters is obviously less than that required by 𝕄5 with the five parameters. 

As for the model class 𝕄6, although its parameterization complexity is comparable with 𝕄3, 

i.e., both with three parameters, it is clearly found that log-evidence of the former is less than 

the latter. The main reason is due to the fact that there is only single parameter utilized in 𝕄6 

for characterizing the status of all the beam-column connections, the data-fit measure of 𝕄6 

would be much worse than 𝕄3, even though the amount of information extracted of the former 

model class is relatively less, rendering 𝕄6 to be less plausible as compared to 𝕄3. 

By taking the most probable model class 𝕄3 in Case 3 as an example, Fig. 2 shows the 

samples of prior and posterior distribution of all stiffness scaling parameters after excluding the 

samples in ‘burn-in’ period within both calibration and monitoring stages. It’s obvious that the 

degree of dispersion of the samples obtained from Stage-II is relatively smaller than those from 

the previous stage. This is anticipated since in the proposed methodology, the Markov chain 

samples of unknown parameters achieved in the calibration stage are taken as the pseudo-data 
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for further estimating the distribution of these uncertain parameters in the subsequent 

monitoring stage. This implies that a certain amount of information has been learned from the 

samples of the calibration stage to update the estimation of unknown parameters during the 

monitoring stage, and the uncertainty of parameter estimation in the latter stage is thus reduced. 

In addition, it can also be found that there exist obvious shifts along positive direction between 

samples of two stages for the scaling parameters 𝜃2 and 𝜃3, indicating that the statuses of 

these parameters are highly suspected to be changed due to the present of damage, which 

coincides with the actual damage configuration for this case. This can be further verified 

through the marginal posterior PDF of the most probable model class 𝕄3 for this case as 

shown in Fig. 3. It is clear that the uncertainties of all scaling parameters in the second stage 

are less than the first stage due to the present of pseudo-data provided in the first stage. Also, 

the changes of stiffness parameters 𝜃2 and 𝜃3 are found to be more obvious in this figure, 

and thus damage occurred in the corresponding element group is validated. 

With the generated samples, Fig. 4 shows a normal probability plot of all scaling parameters in 

𝕄3 for Case 3 from both two stages. It plots the empirical cumulative distribution of the 

sample data versus the theoretical cumulative distribution function of a normal distribution, 

which is employed to assess graphically whether these samples of each parameter come from a 

population with a normal distribution. It’s clearly found that the sample data for each scaling 

parameter appears to be a normal distribution. In addition, since the line slope indicates the 

relative uncertainty, it’s obviously shown that the uncertainties of θ1 and θ3 are very similar 

due to their similar slopes, which can also be verified through the results of Fig. 3. Furthermore, 

in order to better interpret the damage identification results obtained by the proposed 

methodology, based on the marginal posterior PDFs achieved from both the calibration and 

monitoring stages as presented in Fig. 3, the probability that the 𝑖th stiffness scaling parameter 

𝜃𝑖 has been reduced by a certain fraction 𝑑 compared to the intact status of the structure [22] 

is suggested to be calculated. In this note, an asymptotic Gaussian approximation is utilized to 

give 

 

𝑝𝑖
𝑑𝑎𝑚(𝑑|𝔻𝑁 ,𝕄𝑗) = 𝑝(𝜃𝑖  𝑑|𝔻𝑁 ,𝕄𝑗)

=
1

√2𝜋𝜎̂𝑖
∫ exp [−

1

2𝜎̂𝑖
2 (𝜃𝑖 − 𝜃𝑖)

2
]

𝑑

0

d𝜃𝑖 
(38) 

where 𝑖 = 1,2,⋯ ,𝑁𝜃, 𝜃𝑖 and 𝜎̂𝑖 denote the most probable value and standard deviation of 

the 𝑖th stiffness scaling parameter 𝜃𝑖 obtained from either calibration or monitoring stage. 
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The corresponding results are shown in Fig. 5, and the offset of probability curves between two 

stages indicates the damage extent of the corresponding element groups. It’s clearly revealed 

again that the actually damaged element groups for the four-storey frame are well identified, 

and the corresponding change of probability curves of the scaling parameters related to the 

potentially damaged element groups is more significant than others. 

4. EXPERIMENTAL VERIFICATIONS 

In order to further verify the proposed methodology, a laboratory two-storey bolt-connected 

steel frame is utilized in this section, as shown in Fig. 6, for demonstration. The span of the 

frame is 1.95 m and the height is 1.25 m for each storey. All beams and columns are built with 

I-steel possessing the same size, and corresponding sectional and material properties are shown 

in Table 5. Fig. 7 shows the details of beam-column and column-base connections for this two 

storey frame. The beams and columns are connected through two pairs of angle steel with 

different sizes, which are used to fix the top and bottom flanges of beam to the inner flange of 

column, and also connect the beam web with the column inner flange. Each column is firstly 

welded to a square steel plate and then fixed to the ground by four bolts, and all bolts in 

beam-column and column-base connections are tightened by utilizing the wrench. The 

column-base and beam-column connections of the frame are considered as semi-rigid and they 

are treated in the same way in the FE model as in the previous numerical simulations. Damage 

on column-base connection is considered for the laboratory two-storey frame, and two bolts 

(marked in red circle shown in Fig. 7(e)) of the left column-based connection are loosen by 

using the wrench. 

The experimental equipment utilized for the laboratory two-storey frame is shown in Fig. 8. A 

DYTRAN 5805A impact hammer with a load cell, as shown in Fig. 8(a), is used to excite the 

frame, and the excitation points are chosen to avoid the stationary nodes of the first few modes. 

The dynamic responses are acquired by KISTLER accelerometers (Type 8776A50M3) shown 

in Fig. 8(b) with sensitivity around 100mV/g attached to both columns and beams, and then 

collected by the 16-channeled DEWETRON signal conditioning box together with data 

acquisition software DEWESoft (referring to Fig. 8(c) to (f)). It is noted that only the free 

vibration responses are measured for modal parameter identification by utilizing the ERA 

technique. 

Fig. 9 shows the FE model of the experimental two-storey bolt-connected frame utilized for 

damage detection. By using the same plane beam element as in the previous numerical 

example, the frame is discretized into a FE model of 30 elements and 30 nodes with 84 DOFs. 
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Six potential damaged connections, i.e., two column-base connections and four beam-column 

connections denoted by S1, S2, …, and S6, respectively. In addition, as shown in the same 

figure, fourteen measurement channels are utilized. The first eight sensors are used to measure 

the horizontal vibration of the frame, while the left ones are employed to monitor the vertical 

motion of the two beams. Table 6 shows the natural frequencies of the first four modes 

calculated from the FE model and identified from experimental modal testing. It is clear that 

the results of FE model matches well with those of the experimental measurement, implying 

that the proposed FE model is sufficient to capture the dynamic characteristics of the laboratory 

frame in its healthy situation. In addition, it is also obvious that influence of the prescribed 

damage configuration, i.e., loosening of column-base connection, on the fundamental mode is 

much more significant than others. In addition, Fig. 10 shows the measured mode shapes of the 

first four modes under both healthy and damaged situations together with the calculated results 

from the FE model of the two-storey frame plotted for reference. It’s seen that the measured 

mode shapes are well matched with those predicted by the FE model in the intact status. It’s 

also noted that although the damage-induced changes due to the connection bolt loosening in 

mode shapes are found to be very small as expected, it can still be noticed that the effect of bolt 

loosening of left column-based connection with respect to the first two modes seems to be a 

little more obvious than the latter two ones. 

There are six model classes considered for this two-storey portal frame as shown in Table 7. 

The complexity of model parameterization increases gradually from 𝕄1 to 𝕄6. For instance, 

𝕄1 with one parameter 𝜃1  to scale all six rotational stiffness has the lowest degree of 

complexity among all considered model classes. 𝕄2 is a little bit more complex than 𝕄1, and 

it has two separate parameters 𝜃1  and 𝜃2  to scale the rotational stiffness of all the 

column-base and beam-column connections, respectively. 𝕄6 is the class of models with the 

most complex parameterization among all six model classes, and there are six scaling 

parameters in this class of models to update all column-base and beam-column connections 

separately. 

The prior probability distributions for the stiffness scaling parameters are taken to be the same 

as the previous numerical case studies. Table 8 shows the results of model class selection 

performed for this laboratory frame by applying the proposed methodology with a total of 

3×10
4
 samples. The results corresponding to the identified most probable model class are 

highlighted in bold, and it’s clear that the most probable model class is 𝕄2 . In the 

parameterization scheme of this model class, the semi-rigid connections are divided into two 

groups, which are parameterized by 𝜃1 and 𝜃2, respectively, to discriminate the column-base 
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connections from beam-column connections. Referring to the actual damage configuration, it is 

not surprised that the model class 𝕄2 is chosen to be the most probable one by the proposed 

evidence measure as this class of models is able to discriminate the damaged element group of 

column-base connections with a relatively simple parameterization. When further inspecting 

the data-match and information gain, it is found that the data-fit measure of model class 𝕄2 

with respect to the real damage case is comparable with other model classes, while the amount 

of information extracted to update its two parameters of 𝕄2  are much less than its 

counterparts possessing more complex parameterization scheme. Thus, the combination of 

data-match and information gain measure in the proposed Bayesian evidence measure 

pinpoints the most probable model class in a mathematically rigorous way. 

Fig. 11 shows the samples of prior and posterior distribution of some selected stiffness scaling 

parameters for the model class 𝕄6 within both two stages. Similar to the previous numerical 

case studies, it is also found that the degree of dispersion of the samples obtained from the 

monitoring stage is relatively smaller than the calibration stage. The uncertainty reduction is 

also due to the fact that some information is learned from the Markov chain samples achieved 

in the calibration stage. In addition, it is also clear from Fig. 11(a) that for the scaling 

parameter 𝜃1, there exists a certain extent of movement along positive direction for samples of 

the monitoring stage with respect to the calibration stage, implying that the damage is highly 

suspected to occur in the left column-base connection, which accords with the actual damage 

configuration. Moreover, by comparing Fig. 2 with Fig. 11, it’s also very clear that the scaling 

parameters obtained in experimental situation are more uncertain than those in the numerical 

simulation cases. This is not surprised as there are more unpredictable uncertain sources which 

would affect the parameter estimation in real application circumstance. 

Figs. 12 and 13 show the marginal posterior PDF and the probability of damage for model 

class 𝕄6, respectively. It is obvious that the uncertainties of all scaling parameters in the 

second stage are lower than those of the first stage due to the present of pseudo-data provided 

in the first stage. Also, as clearly shown in both figures, the changes of stiffness parameter 𝜃1 

are more obvious than others, indicating the present of damage in the corresponding element or 

element group.  

Table 9 shows the mean values and standard deviations of identified stiffness scaling 

parameters during the calibration stage and the subsequent monitoring stage for all considered 

model classes. By comparing the most probable model class 𝕄2 with its most complex 

counterpart 𝕄6, it is clear that the uncertainty of the former is less than the latter for both two 

stages, implying that with less information extracted, the parameters of the most probable 
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model class can be identified with a relatively higher accuracy. Thus, the identified most 

probable model class by the proposed Bayesian evidence measure presents a reasonable 

compromise related to the degree of agreement with the experimental values and the amount of 

extracted information. In addition, in order to verify the updated FE model corresponding to 

the most probable model class identified by the proposed methodology, by utilizing the 

difference between mean values of identified stiffness scaling parameters from both stages in 

Table 9, the predicted natural frequencies from the updated most probable class of models is 

calculated to be 14.04 Hz, 64.40 Hz, 105.48 Hz, and 110.12 Hz, respectively, which well match 

the natural frequencies measured in the damaged status as listed in Table 6. 

5. CONCLUSIONS 

This paper addresses the issues of choosing suitable parameterized models for dynamic 

reduction-based structural health monitoring through the model-class selection procedure by 

utilizing the Bayesian evidence inference. The concept of information divergence is employed 

to quantify the amount of information needed to be extracted from the measured data for 

achieving a trade-off between the parameterization complexity of a prescribed model class and 

that of its corresponding information-theoretic interpretation. The proposed methodology is 

verified through both numerical simulations of a four-storey two-bay frame with semi-rigid 

connections and experimental studies conducted for a laboratory two-storey bolt-connected 

steel frame. In the proposed methodology, only noisy incomplete modal parameters with 

limited number of sensors are utilized, and one of the significant features is that the method 

does not require the mode matching, which is vital for real applications as the mode order may 

occasionally change due to the present of damage. 

The obtained results show that the combination of data-fit measure and Kullback information 

measure provides an efficient and mathematically rigorous way to select the most probable 

class of reduced FE models possessing a relatively simple parameterization scheme for the 

purpose of structural health monitoring. In addition, it is also found that the degree of 

dispersion of the samples obtained from the monitoring stage is relatively smaller than that 

from the calibration stage. This phenomenon of uncertainty reduction is mainly due to the fact 

that there is some information learned from the Markov chain samples achieved in the 

calibration stage for refining the subsequent estimation during the monitoring stage within the 

proposed framework of model selection. Furthermore, the estimation of unknown parameters 

in the most plausible class of models is found to be comparatively less uncertain and also more 

efficient than those models with more parameterization complexity. The reason of efficiency 

mainly comes from the fact that the required computation effort of the inverse problem to 



 24 

identify the unknown parameters of a relatively simpler model is generally less than that of 

more complex models with a larger amount of uncertain parameters. This is especially crucial 

for the fast diagnose of structural damage for the in-service structural health monitoring. It 

should be pointed out that the results of model class selection depend on the form of prior 

probability distributions assumed for the stiffness scaling parameters, which will be further 

investigated in the coming publications. In addition, it is also noted that this paper mainly 

focuses on the identification of damage in a group of elements by inspecting the 

information-theoretic complexity of all prescribed model classes to ensure a relatively simple 

parameterization scheme, and the issue of fine localization of some specific damage within the 

suspected damaged groups of elements is worth further research. 
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Fig. 1. Two FE models for the four-storey portal frame (FEM1 (nodes marked with blue circles) for 

generating simulated modal data; FEM2 (nodes marked with pink squares) for damage identification) 
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Fig. 2. Samples of prior and posterior PDFs for the most probable class of models 𝕄3 in Case 3: (a) 

{𝜃1, 𝜃2}; (b) {𝜃1, 𝜃3}; (c) {𝜃2, 𝜃3} 
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Fig. 3. Prior and marginal posterior PDFs of the two stages for the model class 𝕄3 in Case 3. 
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Fig. 4. Normal probability plots of scaling parameters from posterior distribution of two stages for the model 

class 𝕄3 in Case 3: (a) Stage-I; (b) Stage-II. 
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Fig. 5. Probability of damage (POD) of the two stages for the model class 𝕄3 in Case 3: (a) 𝜃1; (b) 𝜃2; 

(c) 𝜃3 
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Fig. 6. The two-storey bolt-connected steel frame in laboratory. 
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(a) Beam-column connection on the left hand side 
of the second storey 

 

(b) Beam-column connection on the right hand side 
of the second storey 

 

(c) Beam-column connection on the left hand side 
of the first storey 

 

(d) Beam-column connection on the right hand side 
of the first storey 

 

(e) Column-base connection on the left 

 

(f) Column-base connection on the right 

Fig. 7. Beam-column and column-base connections of the two-storey frame. 
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(a) Impact hammer 

 

(b) KISTELER accelerometers 

 

(c) DEWETRON signal conditioning box 

 

(d) Cables 

  

(e) Computer system with DEWESoft 

 

(f) Response in DEWESoft 

Fig. 8. Main experimental instruments of the laboratory two-storey frame. 
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Fig. 9. FE model of the experimental two-storey bolt-connected steel frame. 
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Fig. 10. Experimental and FE mode shapes of the two-storey bolt-connected frame (unit: m; red line with 

square marker: experimental results in healthy status; blue line with triangle marker: experimental results in 

damaged status; green line with circle marker: FE results in healthy status; black dotted line with circle 

marker: original undeformed shape): (a) to (d) modes 1 to 4. 

  



 38 

 

Fig. 11. Samples of prior and posterior PDFs of the two stages for the model class 𝕄6: (a) {𝜃1, 𝜃5}; (b) 

{𝜃2, 𝜃5} 
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Fig. 12. Prior and marginal posterior PDFs of the two stages for the model class 𝕄6. 
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Fig. 13. Probability of damage (POD) of the two stages for the model class 𝕄6: (a) 𝜃1; (b) 𝜃2; (c) 𝜃3; (d) 𝜃4; 

(e) 𝜃5; (f) 𝜃6 
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Table 1 

Sectional and material properties of the four-storey bolt-connected frame. 

Parameter names Values 

Overall height of cross section 100 mm 

Flange width of cross section 68 mm 

Web thickness of cross section 4.5 mm 

Young’s modulus 2.00×10
11

 N/m
2
 

Mass density 7.85×10
3 

kg/m
3
 

Cross-sectional area 1.43×10
-3 

m
2
 

Moment of inertia 2.45×10
-6 

m
4
 

 

 

 

 

 

Table 2 

Definition of different model classes for the four-storey frame. 

Model classes No. parameters Parameter names Element grouping 

𝕄1 1 𝜃1 {S1 − S12} 

𝕄2 2 𝜃1 {S1 − S3} 

  𝜃2 {S4 − S19} 

𝕄3 3 𝜃1 {S1 − S3} 

  𝜃2 {S4 − S11} 

  𝜃3 {S12 − S19} 

𝕄4 4 𝜃1 {S1, S3} 

  𝜃2 {S2} 

  𝜃3 {S4 − S11} 

  𝜃4 {S12 − S19} 

𝕄5 5 𝜃1 {S1 − S3} 

  𝜃2 {S4 − S7} 

  𝜃3 {S8 − S11} 

  𝜃4 {S12 − S15} 

  𝜃5 {S16 − S19} 

𝕄6 3 𝜃1 {S1, S3} 

  𝜃2 {S2} 

  𝜃3 {S4 − S19} 
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Table 3 

Cases considered for the numerical simulations. 

 Case descriptions 

Case 1  1 = 0.7 𝑐,  2 =  3 = ⋯ =  19 =  𝑐 

Case 2  1 = 0.7 𝑐,  2 = 0.8 𝑐,  3 = 0.6 𝑐,  4 =  5 = ⋯ =  19 =  𝑐 

Case 3  4 = 0.7 𝑐 ,   5 = 0.8 𝑐,   8 = 0.6 𝑐,   9 = 0.8 𝑐,   12 = 0.7 𝑐 ,   13 = 0.6 𝑐 

 1 =  2 =  3 =  6 =  7 =  10 =  11 =  14 =  15 = ⋯ =  19 =  𝑐 

 

 

Table 4 

Results of model class selection for each numerical case. 

 
Model 

classes 
𝒑(𝔻𝑵|𝛝̂𝒋

𝒄,𝕄𝒋) Log-evidence Data-match 
Information 

gain 

Case 1 

𝕄1 26.85% -197.77 -195.53 2.24 

𝕄2 17.12 -198.22 -194.00 4.22 

𝕄3 11.59 -198.61 -192.75 5.86 

𝕄4 15.96 -198.29 -192.28 6.01 

𝕄5 12.68 -198.52 -191.36 7.16 

 𝕄6 15.80 -198.30 -193.63 4.67 

Case 2 

𝕄1  0.01% -208.28 -205.99 2.29 

𝕄2 24.72% -200.47 -195.48 4.99 

𝕄3 23.05% -200.54 -194.25 6.29 

𝕄4 20.44% -200.66 -193.81 6.85 

𝕄5 12.91% -201.12 -192.80 8.32 

 𝕄6 18.87% -200.74 -195.17 5.57 

Case 3 

𝕄1  0.00% -212.81 -211.07 1.74 

𝕄2 20.95% -203.22 -199.26 3.96 

𝕄3 39.73% -202.58 -196.72 5.86 

𝕄4 14.47% -203.59 -197.57 6.02 

𝕄5 17.15% -203.42 -195.92 7.50 

 𝕄6  7.71% -204.22 -200.11 4.11 
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Table 5 

Sectional and material properties of the two-storey bolt-connected frame in laboratory. 

Parameter names Values 

Overall height of cross section 100 mm 

Flange width of cross section 100 mm 

Web thickness of cross section 5×10
-3 

m 

Flange thickness of cross section 7.5×10
-3 

m 

Young’s modulus 2.10×10
11

 N/m
2
 

Mass density 7.85×10
3 

kg/m
3
 

Cross-sectional area 1.93×10
-3 

m
2
 

Moment of inertia 3.47×10
-6 

m
4
 

 

 

Table 6 

FE and experimental natural frequencies (Hz) for the laboratory two-storey frame. 

  Mode 1 Mode 2 Mode 3 Mode 4 

FE model  15.31 66.75 106.88 112.34 

Experiment 

Healthy 15.53 66.27 105.10 111.79 

Damaged 13.98 65.28 104.73 111.29 

Change (%) -9.98 -1.49  -0.35  -0.45 

 

 

Table 7 

Definition of different model classes for the laboratory two-storey frame. 

Model classes No. parameters Parameter names Element grouping 

𝕄1 1 𝜃1 {S1 − S6} 

𝕄2 2 𝜃1, 𝜃2 {S1, S2}, {S3 − S6} 

𝕄3 3 𝜃1, 𝜃2, 𝜃3 {S1, S2}, {S3, S4}, {S5, S6} 

𝕄4 4 𝜃1, 𝜃2, 𝜃3, 𝜃4 {S1}, {S2}, {S3, S4}, {S5, S6} 

𝕄5 5 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5 {S1, S2}, {S3}, {S4}, {S5}, {S6} 

𝕄6 6 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6 {S1}, {S2}, {S3}, {S4}, {S5}, {S6} 
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Table 8 

Results of model class selection for the laboratory two-storey frame. 

Model 

classes 
𝒑(𝔻𝑵|𝛝̂𝒋

𝒄,𝕄𝒋) Log-evidence Data-match Information gain 

𝕄𝟏 12.70% -128.17 -127.44 0.73 

𝕄𝟐 21.42% -127.64 -126.34 1.30 

𝕄𝟑 17.34% -127.86 -125.60 2.25 

𝕄𝟒 15.47% -127.97 -125.16 2.81 

𝕄𝟓 17.57% -127.84 -123.88 3.96 

𝕄𝟔 15.52% -127.97 -123.57 4.39 

 

 

Table 9 

Identified model parameters of various model classes for the laboratory two-storey frame. 

Model 

classes 

  
𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝜽𝟓 𝜽𝟔 

𝕄1 Stage-I MEAN -0.3128      

  STD 0.0792      

 Stage-II MEAN -0.0680      

  STD 0.0763      

𝕄2 Stage-I MEAN -0.1356    -0.3522     

  STD 0.1522     0.0922     

 Stage-II MEAN 0.1983    -0.2186     

  STD 0.1417     0.0811     

𝕄3 Stage-I MEAN -0.1446       -0.4129 -0.2703    

  STD 0.1528         0.1382 0.1041    

 Stage-II MEAN 0.1919       -0.3573 -0.1447    

  STD 0.1365         0.0865 0.0844    

𝕄4 Stage-I MEAN -0.1038          -0.1441 -0.4155 -0.2690   

  STD 0.1899             0.1868 0.1373 0.1068   

 Stage-II MEAN 0.3500          -0.0835 -0.3585 -0.1392   

  STD 0.1666             0.1149 0.0850 0.0846   

𝕄5 Stage-I MEAN -0.1509              -0.3831 -0.3237 0.0137 -0.5345  

  STD 0.1481                 0.1789 0.1689 0.1153 0.1510  

 Stage-II MEAN 0.2054              -0.3444 -0.2711 0.0895 -0.4247  

  STD 0.1372                 0.1068 0.0998 0.0788 0.1057  

𝕄6 Stage-I MEAN -0.1223                 -0.1238 -0.3717 -0.3269 0.0115 -0.5390 

  STD 0.1874                     0.1821 0.1735 0.1691 0.1195 0.1535 

 Stage-II MEAN 0.3273                 -0.0625 -0.3385 -0.2695 0.0901 -0.4175 

  STD 0.1682                     0.1131 0.1056 0.1074 0.0797 0.1062 

 


