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Resolution-based provers for multimodal normal logics require pruning of the search space for a proof

in order to ameliorate the inherent intractability of the satis�ability problem for such logics. We present a

clausal modal-layered hyper-resolution calculus for the basic multimodal logic, which divides the clause set

according to the modal level at which clauses occur in order to reduce the number of possible inferences. We

show that the calculus is complete for the logics being considered. We also show that the calculus can be
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1 INTRODUCTION
Modal logics have long been used in Computer Science for describing and reasoning about complex

systems, including programming languages [52], knowledge representation and reasoning [26, 53],

veri�cation of distributed systems [23, 24] and hardware [25]. �e most basic normal multimodal

language, known as Kn , extends the classical language with new operators, tua and ♦a , with

a ∈ An = {1, . . . ,n}, a �xed �nite set of indexes, where tua φ (resp. ♦a φ) reads as “φ is necessary

(resp. possible) from the point of view of agent a”, for a formula φ and index a ∈ An . �is logic

has received a great deal of a�ention, as it is able to express non-trivial problems in Arti�cial

Intelligence and other areas. For instance, it is well-known that the description logic ALC [6], which

has been applied to terminological representation, is a syntactic variant of Kn [56]. Problems in

�anti�ed Boolean Logic, which is a very active area in the SAT community, can also be translated

into Kn [26, 32] (and vice versa [49]).

�e reasoning tasks for Kn are, however, far from trivial. �e evaluation of modal formulae

depends on a set of interpretations, also known as possible worlds, and a set of accessibility relations
Ra over the set of worlds, for each a ∈ An = {1, . . . ,n}. Worlds and the accessibility relations de�ne

a structure known as a Kripke model (or Kripke structure). Given a Kripke model and a world w , a

formula of the form tua φ is satis�ed at w , if φ is satis�ed at all worlds accessible from w through

the relation Ra ; and a formula of the form ♦a φ is satis�ed at w , if φ is satis�ed at some world

accessible from w via the relation Ra . Given a formula φ, the local satis�ability problem consists of
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showing that there is a world in a model that satis�es φ. A formula φ is globally satis�able if there

is a model such that all worlds in this model satisfy φ. Given a set of formulae Γ and a formula φ,

the local satis�ability of φ under the global constraints Γ consists of showing that there is a model

that globally satis�es the formulae in Γ and that there is a world in this model that satis�es φ.

�e local satis�ability problem for the multimodal propositional case is PSPACE-complete [26].

�e global satis�ability and the local satis�ability under global constraint problems for Kn are

EXPTIME-complete [63]. Given the inherent intractability of the reasoning problems and also the

wide range of applications to which those logics can be applied, the development of automatic,

e�cient tools for theorem proving is highly desirable.

Several proof methods and tools for reasoning in Kn exist, either in the form of methods applied

directly to the modal language or obtained by translation into more expressive languages (First-

Order Logic, for instance). In this case, some information about the structure of the formula, which

is evident in the original logic, may be lost in the translated version of the problem. Translation-

based methods may bene�t not only from the existence of available theorem provers, therefore not

requiring a lot of e�ort for implementation, but also from the fact that strategies available for the

object language can be almost immediately applied to the translated problem [28]. However, the

translation into a more expressive logic combined with a standard proof method for that logic may

incur some computational overhead that a direct method does not have and the combination may

not necessarily be a decision procedure for the set of translated modal formulae [28]. On the other

hand, the design of direct proof methods for modal logics requires the development of strategies to

deal with the underlying normal forms and inference rules.

Here we present a novel resolution-based proof method for the modal logic Kn . �e approach

is clausal: formulae are �rstly translated into a speci�c normal form before the set of inference

rules can be applied. �e design of the calculus was primarily motivated by e�ciency and practical

aspects of its implementation: the transformation into the normal form can be implemented in

linear time on the size of the input formula; clauses sets already into normal form do not need

reprocessing; the structure of the clauses help to build e�cient structures of indexes for retrieving

candidates for the resolution rules and its re�nements. �e structure of the normal form restricts

resolution inferences whilst remaining complete. �e resulting implementation of the calculus, K
S
P

[41, 43, 44], incorporates several resolution strategies and re�nements and outperforms other modal

provers for formulae that have a high degree of nesting of modal formulae. �is paper extends

the results in [40] providing full details of the calculus and proofs of soundness, completeness and

termination. Further, we investigate the completeness of two di�erent re�nements, negative and

ordered resolution, and also provide new experimental results concerning the performance of the

prover using the di�erent re�nements.

�e present method builds on previous work in several aspects. Firstly, as in our previous work

[39], the calculus requires a translation into a more expressive modal language, but instead of using

the universal modality, here labels are used to express semantic properties of a formula. �at is,

in [39], new propositional symbols are introduced to represent subformulae and the de�nition of

these symbols as the formulae they replace holds at every reachable world. Here, labels pre�xing

a formula are used to make precise that the new propositional symbols and the de�nition of

these symbols hold only where they are needed: at the worlds whose distance from the root of

the model corresponds to the modal nesting in which they occur. We take advantage of the fact

that Kn not only enjoys the �nite and tree model properties [14], but that the satis�ability of

subformulae of a formula only depends on the modal layer, that is the distance from the root

in the model, where they occur [2]. Moreover, the modal layer where a subformula is satis�ed

corresponds to the modal level of that subformula, that is the number of modal operators in
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which scope the subformula occurs. Labels in the extended language given here correspond to

the modal level of a formula. Secondly, the calculus makes use of labelled resolution in order to

avoid unnecessary applications of the inference rules. For instance, in the unrestricted resolution

method for Kn [39], the translation of ♦a ♦a p ∧ tua ¬p into the normal form results in the set

{start ⇒ t0, t0 ⇒ ♦a t1, t1 ⇒ ♦a p, t0 ⇒ tua ¬p}. From t1 ⇒ ♦a p and t0 ⇒ tua ¬p, the clause

true ⇒ ¬t0 ∨ ¬t1 is derived. �is inference step is not necessary, as ♦a p and tua ¬p occur at

di�erent modal levels and are not, in fact, contradicting each other. �e translation into the new

normal form results in the set {0 : t0, 0 : t0 ⇒ ♦a t1, 1 : t1 ⇒ ♦a p, 0 : t0 ⇒ tua ¬p}. Resolution

cannot be applied to the clauses 1 : t1 ⇒ ♦a p and 0 : t0 ⇒ tua ¬p as their labels are not the same.

�e translation into the labelled normal form leads to the direct implementation of the layered

modal heuristic given in [2]. However, in [2] the modal levels are hard-coded in the names of

the translated propositional symbols, making the application of both local and global reasoning

more di�cult. Besides, using our approach, we can easily partition the clause set, restricting the

application of the inference rules to (possibly) smaller sets, which may improve the performance of

reasoners [60].

Labelling is widely used in proof methods for modal and other non-classical logics [11, 13, 17,

18, 67, 68]. Although it is not particularly common within resolution-based proof methods, this

technique has also been used in some of those proof systems. For instance, in [5], a labelled

non-clausal resolution-based proof method for Kn and ALC is given. Formulae are labelled by

either constants a, which correspond to names of worlds in a model, or by pairs (a,b) representing

the relation between two worlds named by a and b, respectively. Our calculus is similar, but labels

correspond to modal levels instead of worlds. Having worlds as labels might require repeated

applications of global reasoning for worlds at the same modal level. Labelled resolution is also used

in e.g. [8, 9, 22], where (sets of) labels express the semantic constraints in multi-valued logics. For

the calculus presented here, we have chosen to keep the labels simple so uni�cation only requires a

simple check.

�e paper is organised as follows. Section 2 presents the language of Kn . �e normal form

and the modal-layered calculus are presented in Section 3 and Section 4. Correctness is proved in

Section 5. In Section 6, we introduce two re�nements for the presented calculus. In Section 6.1,

we show that the application of the calculus can be restricted to negative resolution. Ordering

re�nements, discussed in Section 6.2, are not complete in general. We show, however, that there is

a particular ordering for which the calculus given here is complete. Section 7 brie�y describes the

implementation of the calculus, and shows the results of the experimental evaluation of the prover

K
S
P using the di�erent re�nements and strategies. Section 8 considers related work and Section 9

provides conclusions and further work.

�is paper extends [40], the implementation of the prover based on this calculus is presented in

[41, 43, 44] and the so�ware is available at [42].

2 LANGUAGE
�e set WFFKn

of well-formed formulae of the logic Kn is constructed from a denumerable set of

propositional symbols, P = {p,q,p ′,q′,p1,q1, . . . , t , t
′, t0, t1, . . .}, the constants true and false, the

negation symbol ¬, the conjunction symbol ∧, the disjunction symbol ∨, the implication symbol⇒,

and the unary connectives tua and ♦a for each index a in a �nite, �xed set An = {1, . . . ,n}, n ∈ N.

De�nition 2.1. �e set of well-formed formulae, WFFKn
, is the least set such that p ∈ P is in

WFFKn
; the constants true and false are in WFFKn

; if φ and ψ are in WFFKn
, then so are ¬φ,

(φ ∧ψ ), (φ ∨ψ ), (φ ⇒ ψ ), tua φ, and ♦a φ for each a ∈ An .
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Instead of restricting ourselves to a minimal, expressively complete set of connectives, we have

chosen to consider all usual operators as primitive, as they are all used in the normal form presented

in Section 3. When n = 1, we o�en omit the index, that is, tuφ stands for tu1 φ. A literal is either

a propositional symbol or its negation; the set of literals is denoted by L. We denote by ¬l the

complement of the literal l ∈ L, that is, ¬l denotes ¬p if l is the propositional symbol p, and ¬l
denotes p if l is the literal ¬p. A modal literal is either tua l or ♦a l , where l ∈ L and a ∈ An . �e

modal depth of a formula is recursively de�ned as follows:

De�nition 2.2. Let φ,ψ ∈ WFFKn
be well-formed formulae. We de�ne mdepth : WFFKn

−→ N

as mdepth(p) = mdepth(true) = mdepth(false) = 0, for constants and propositional symbols

p ∈ P ; mdepth(¬φ) = mdepth(φ); mdepth(φ ∧ ψ ) = mdepth(φ ∨ ψ ) = mdepth(φ ⇒ ψ ) =
max(mdepth(φ),mdepth(ψ )); and mdepth(tua φ) = mdepth(♦a φ) = 1 +mdepth(φ).

�e modal level of a subformula is given relative to its position in the syntactic tree.

De�nition 2.3. Let φ,φ ′ be well-formed formulae. Let Σ be the alphabet {1, 2} and Σ∗ the set of

all �nite sequences over Σ. Denote by ε the empty sequence over Σ. Let τ : WFFKn
× Σ∗ × N −→

P(WFFKn
× Σ∗ × N) be the function inductively de�ned as follows (where λ ∈ Σ∗,ml ∈ N):

• τ (true, λ,ml) = {(true, λ,ml)};
• τ (false, λ,ml) = {(false, λ,ml)};
• τ (p, λ,ml) = {(p, λ,ml)}, for p ∈ P ;

• τ (¬φ, λ,ml) = {(¬φ, λ,ml)} ∪ τ (φ, λ.1,ml);
• τ (φ ∧ φ ′, λ,ml) = {(φ ∧ φ ′, λ,ml)} ∪ τ (φ, λ.1,ml) ∪ τ (φ ′, λ.2,ml);
• τ (φ ∨ φ ′, λ,ml) = {(φ ∨ φ ′, λ,ml)} ∪ τ (φ, λ.1,ml) ∪ τ (φ ′, λ.2,ml);
• τ (φ ⇒ φ ′, λ,ml) = {(φ ⇒ φ ′, λ,ml)} ∪ τ (φ, λ.1,ml) ∪ τ (φ ′, λ.2,ml);
• τ (tua φ, λ,ml) = {(tua φ, λ,ml)} ∪ τ (φ, λ.1,ml + 1);

• τ (♦a φ, λ,ml) = {(♦a φ, λ,ml)} ∪ τ (φ, λ.1,ml + 1).

�e function τ applied to (φ, ε, 0) returns the annotated syntactic tree for φ, where each node is

uniquely identi�ed by a subformula, its path order (or its position) in the tree, and its modal level.

For instance, p occurs twice in the formula tua tua (p ∧ tua p), at the position 111 and modal level 2,

and also at the position 1121 and modal level 3.

De�nition 2.4. Let φ be a formula and let τ (φ, ε, 0) be its annotated syntactic tree. If (φ ′, λ,ml) ∈
τ (φ, ε, 0), then mlevel(φ, λ) =ml .

If mlevel(φ, λ) =ml we say that the subformula φ ′ at the position λ of φ occurs at the modal level

ml . In the example above, we have that p occurs at the modal levels 2 and 3. We note that the modal

depth of a formula φ can be related to the maximal modal levelml for any subformula φ ′ of φ, i.e.

mdepth(φ) = max{ml | (φ ′, λ,ml) ∈ τ (φ, ϵ, 0)}.
We present the semantics of Kn , as usual, in terms of Kripke structures.

De�nition 2.5. A Kripke model M for n agents over P is given by a tuple (W ,w0,R1, . . . ,Rn ,π ),
whereW is a set of possible worlds with a distinguished world w0 , each Ra , a ∈ An = {1, . . . ,n}, is

a binary relation onW , and π : W → (P → {true, false}) is a function which associates to each

world w ∈W a truth-assignment to propositional symbols.

We write 〈M,w〉 |= φ (resp. 〈M,w〉 6|= φ) to say that φ is satis�ed (resp. not satis�ed) at the

world w in the Kripke model M .

De�nition 2.6. Let φ,ψ be well-formed formulae. Satisfaction of a formula at a given world w of

a model M is inductively de�ned by:
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• 〈M,w〉 |= true;

• 〈M,w〉 6|= false;

• 〈M,w〉 |= p if, and only if, π (w)(p) = true, where p ∈ P ;

• 〈M,w〉 |= ¬φ if, and only if, 〈M,w〉 6|= φ;

• 〈M,w〉 |= (φ ∧ψ ) if, and only if, 〈M,w〉 |= φ and 〈M,w〉 |= ψ ;

• 〈M,w〉 |= (φ ∨ψ ) if, and only if, 〈M,w〉 |= φ or 〈M,w〉 |= ψ ;

• 〈M,w〉 |= (φ ⇒ ψ ) if, and only if, 〈M,w〉 |= ¬φ or 〈M,w〉 |= ψ ;

• 〈M,w〉 |= tua φ if, and only if, for all w ′, wRaw
′

implies 〈M,w ′〉 |= φ;

• 〈M,w〉 |= ♦a φ if, and only if, there is w ′, wRaw
′

and 〈M,w ′〉 |= φ.

Let M = (W ,w0,R1, . . . ,Rn ,π ) be a model. For local satis�ability, formulae are interpreted with

respect to the root of M , that is, w0. A formula φ is locally satis�ed in M , denoted by M |=L φ, if

〈M,w0〉 |= φ. �e formula φ is locally satis�able if there is a model M such that 〈M,w0〉 |= φ. A

formula φ is globally satis�ed inM , if for all w ∈W , 〈M,w〉 |= φ. A formula φ is said to be globally
satis�able if there is a model M such that M globally satis�es φ, denoted by M |=G φ. Satis�ability

of sets of formulae is de�ned as usual. For a set of formulae Γ, a formula φ is satis�able under the
global constraints Γ if there is a model M such that M |=G Γ and M |=L φ.

A model M = (W ,w0,R1, . . . ,Rn ,π ) is tree-like if

⋃n
a=1

Ra is a tree, i.e. a directed acyclic graph

(with root w0). When considering local satis�ability, the following holds (see, for instance, [26]):

Theorem 2.7. Let φ ∈ WFFKn
be a formula andM = (W ,w0,R1, . . . ,Rn ,π ) be a model. M |=L φ

if, and only if, there is a tree-like modelM ′ such thatM ′ |=L φ. Moreover,M ′ is �nite and its depth is
bounded by mdepth(φ).

�e proof of �eorem 2.7 shows that given a formula φ and a model M , such that M |=L φ, then a

tree-like model M ′ for φ can be built by unravelling up to the modal depth of φ the original model

M . Given a tree-like model M = (W ,w0,R1, . . . ,Rn ,π ), we denote by depth(w) the length of a path

from w0 to w through the union of the relations in M . A modal layer is the equivalence class of

worlds at the same distance from the root of a tree-like model. �e next result also holds.

Theorem 2.8. Let φ be a modal formula, andM be a tree (or tree-like) model with rootw such that
〈M,w〉 |= φ. Letψ be a subformula of φ which occurs in the modal level l and which has modal depth
k . To determine the truth value ofψ we only need to consider nodes at tree depth i , where l ≤ i ≤ k + l .

�eorem 2.8 is adapted from [2, Proposition 3.2]. �e proof is by induction on the structure of

a formula and shows that a subformula φ ′ of φ, with (φ ′, λ,ml) ∈ τ (φ, ε, 0), is satis�ed at a node

with distance ml of the root of the tree-like model, i.e. that there is a correspondence between the

syntactic notion of the modal level of a subformula and the semantic notion of the modal layer at

which the subformula is satis�ed. As determining the satis�ability of a formula depends only on its

subformulae, only the subtrees of height mdepth(φ ′) starting at levelml need to be checked. �e

bound on the height of the subtrees follows from �eorem 2.7.

�e global satis�ability problem for a (�rst-order de�nable) modal logic can be given in terms

of the local satis�ability problem of a logic obtained by adding the universal modality, tu∗ , to the

original language [19, Proposition 2.1]. Let K∗n be the logic obtained by adding tu∗ to Kn . Let

M = (W ,w0,R1, . . . ,Rn ,π ) be a tree-like model for Kn . A model M∗ for K∗n is the pair (M,R∗),
where R∗ =W ×W . A formula tu∗ φ is locally satis�ed at the world w in the model M∗, wri�en

〈M∗,w〉 |=L tu∗ φ, if, and only if, for allw ′ ∈W , we have that 〈M∗,w ′〉 |= φ. Given these de�nitions,

for φ in WFFKn
, it follows that M |=G φ if, and only if, M∗ |=L tu∗ φ. So, instead of deciding M |=G φ,

we can decide M∗ |=L tu∗ φ.
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We note that although the full language of K∗n enjoys the �nite model property (it is satis�ed in

a model which is exponential in the size of the original formula [63]), it does not retain the �nite
tree model property. More precisely, if a formula is satis�ed in M∗, then the unravelling of this

model might yield an in�nite tree-like model. For instance, tu∗ (p ⇒ ¬tu∗ p) ∧ tu∗ (¬p ⇒ ¬tu∗ ¬p)
cannot be satis�ed in any �nite tree-like structure [35].

3 LAYERED NORMAL FORM
A formula to be tested for local or global satis�ability is �rst translated into a normal form called

Separated Normal Form with Modal Levels, SNFml , whose language extends that of Kn with labels

for modal levels. Informally, we writeml : φ to denote that a formula φ occurs at the modal level

ml ∈ N ∪ {∗}. By ∗ : φ we mean that φ occurs at all modal levels. Formally, let WFFml
Kn

be the set of

formulae ml : φ such that ml ∈ N ∪ {∗} and φ ∈ WFFKn
. Let M∗ = (W ,w0,R1, . . . ,Rn ,R∗,π ) be a

model and φ,φ ′ ∈ WFFKn
. Satisfaction of labelled formulae is de�ned as follows:

• M∗ |=ml : φ if, and only if, for all worlds w ∈W such that depth(w) =ml , we have that

〈M∗,w〉 |= φ;

• M∗ |= ∗ : φ if, and only if, M∗ |= tu∗ φ;

• M∗ |= (ml : φ) ∧ (ml ′ : φ ′) if, and only if, M∗ |=ml : φ and M∗ |=ml ′ : φ ′.

�e labels in a formula in WFFml
Kn

work as a kind of weak universal operator, allowing us to talk

about formulae that are satis�ed at all worlds in a given modal layer. We note that (ml : φ)∧(ml : φ ′)
is semantically equivalent to (ml : φ ∧ φ ′), a property which we will use later in our proofs.

A formula in SNFml is a conjunction of clauses labelled by the modal level in which they occur.

Clauses in SNFml are in one of the following forms:

• Literal clause ml :

∨r
b=1

lb

• Positive a-clause ml : l ′⇒ tua l
• Negative a-clause ml : l ′⇒ ♦a l

where ml ∈ N ∪ {∗} and l , l ′, lb ∈ L, 1 ≤ b ≤ r , r ∈ N. Positive and negative a-clauses are together

known as modal a-clauses; the index a may be omi�ed if it is clear from the context. We require

that clauses are kept in simpli�ed form, that is, the simpli�cation rules given in Table 2, with the

obvious adaptations for labelled clauses, are applied. In particular, if ml ∈ N ∪ {∗}, D is a (possibly

empty) disjunction of literals, and l ∈ L, then: ml : D ∨ l ∨ l simpli�es to ml : D ∨ l ; ml : D ∨ false
simpli�es toml : D; andml : D ∨ l ∨ ¬l andml : D ∨ true simplify toml : true. We regard literal

clauses as set of literals, that is, two clauses are the same if they contain the same set of literals

modulo ordering. A clause in SNFml is a tautology if it simpli�es toml : true. �e clauseml : D,

whereml ∈ {0, ∗} and D is the empty disjunction (i.e. when r = 0 in the de�nition of literal clauses),

is called an empty clause and denoted byml : false. Finally, as formulae in SNFml are required to

be in simpli�ed form, note that for a conjunction of clauses C , the formula ml : true ∧C simpli�es

toml : C .

Let φ be a formula in the language of Kn . In the following, we assume φ is in Negation Normal

Form (NNF), that is, a formula where the operators are restricted to ∧, ∨, tua , ♦a and ¬; also, only

propositional symbols are allowed in the scope of negations. �e NNF of a formula can be obtained

by exhaustively applying the rewriting rules given in Table 1. �e simpli�cation rules given in

Table 2 are applied at any step of the transformation into NNF as well as during the transformation

into the normal form.
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φ ⇒ φ ′ −→ ¬φ ∨ φ ′

¬(φ ∧ φ ′) −→ ¬φ ∨ ¬φ ′

¬(φ ∨ φ ′) −→ ¬φ ∧ ¬φ ′

¬¬φ −→ φ
¬tua φ −→ ♦a ¬φ
¬♦a φ −→ tua ¬φ

Table 1. Rewriting rules: NNF

φ ∧ φ −→ φ
φ ∨ φ −→ φ

φ ∧ true −→ φ
φ ∨ false −→ φ

φ ∧ ¬φ −→ false
φ ∨ ¬φ −→ true

φ ∧ false −→ false
φ ∨ true −→ true

tua true −→ true
♦a false −→ false
¬true −→ false
¬false −→ true

Table 2. Rewriting Rules for Simplification

�e transformation of the NNF of a formula φ into SNFml is achieved by recursively applying

rewriting and renaming [51]. Let φ be a formula and t a propositional symbol not occurring in φ.

For local satis�ability, the translation of φ is given by (0 : t) ∧ ρ(0 : t ⇒ φ). We refer to clauses

of the form 0 : D, for a disjunction of literals D, as initial clauses. For global satis�ability, the

translation of φ is given by (∗ : t) ∧ ρ(∗ : t ⇒ φ) where t is a new propositional symbol. For

the satis�ability of φ under the global constraints Γ = {γ1, . . . ,γm}, the translation is given by

(∗ : t) ∧ ρ(∗ : t ⇒
∧m

i=1
γi ) ∧ ρ(0 : t ⇒ φ), where t is a new propositional symbol. �e translation

function ρ : WFFml
Kn
−→WFFml

Kn
is de�ned as follows (withφ,φ ′ ∈ WFFKn

, t ′ is a new propositional

symbol, and ∗ + 1 = ∗):

ρ(ml : t ⇒ φ ∧ φ ′) = ρ(ml : t ⇒ φ) ∧ ρ(ml : t ⇒ φ ′)
ρ(ml : t ⇒ tua φ) = (ml : t ⇒ tua φ), if φ is a literal

= (ml : t ⇒ tua t ′) ∧ ρ(ml + 1 : t ′⇒ φ), otherwise

ρ(ml : t ⇒ ♦a φ) = (ml : t ⇒ ♦a φ), if φ is a literal

= (ml : t ⇒ ♦a t ′) ∧ ρ(ml + 1 : t ′⇒ φ), otherwise

ρ(ml : t ⇒ φ ∨ φ ′) = (ml : ¬t ∨ φ ∨ φ ′),
if φ and φ ′ are disjunctions of literals or constants

where φ is possibly empty.

= ρ(ml : t ⇒ φ ∨ t ′) ∧ ρ(ml : t ′⇒ φ ′),
if φ ′ is not a disjunction of literals or constants

�e de�nition of ρ introduces a new propositional symbol for each formula being renamed. �is

simpli�es our presentation, but in order to reduce the number of variables and clauses introduced

by the transformation function, propositional symbols can be reused, instead of introducing new

ones, when the transformation is applied to formulae which have already been renamed. As the

conjunction operator is commutative, associative, and idempotent, in the following we o�en refer

to a formula in SNFml as a set of clauses. �e next lemmas state that the transformation into SNFml
is satis�ability preserving. �e results are analogous to those for clause form transformation of

�rst-order formulae using renaming (see, for instance, [7, 45] and references therein).

Lemma 3.1. Let φ ∈ WFFKn
be a formula, and M = (W ,w0,R1, . . . ,Rn ,π ) andM ′ = (W ,w0,R1,

. . . , Rn ,π
′) be models. If, for all propositional symbols p occurring in φ and worldsw ∈W , π (w)(p) =

π ′(w)(p), then 〈M,w〉 |= φ if, and only if, 〈M ′,w〉 |= φ.
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Proof. �e proof is by induction on the structure of φ. �e base case, where φ is a propositional

symbol p ∈ P , is immediate, as π (w)(p) = π ′(w)(p). For the induction hypothesis, assume that

for any proper subformula φ ′ of φ, we have that 〈M,w〉 |= φ ′ if, and only if, 〈M ′,w〉 |= φ ′, for all

w ∈W . �e proof proceeds by case analysis (where φ ′,φ ′′ ∈ WFFKn
; a ∈ An ):

• Assume φ is of the form ¬φ ′. By the de�nition of satis�ability, 〈M,w〉 |= φ if, and only

if, 〈M,w〉 6|= φ ′. By induction hypothesis, we have that 〈M,w〉 6|= φ ′ if, and only if,

〈M ′,w〉 6|= φ ′. By the de�nition of satis�ability, 〈M ′,w〉 6|= φ ′ if, and only if, 〈M ′,w〉 |= ¬φ ′,
that is, 〈M ′,w〉 |= φ.

• Assume φ is of the form φ ′ ∧ φ ′′. By the de�nition of satis�ability, 〈M,w〉 |= φ if, and only

if, 〈M,w〉 |= φ ′ and 〈M,w〉 |= φ ′′. By induction hypothesis, we have that 〈M,w〉 |= φ ′

if, and only if, (1) 〈M ′,w〉 |= φ ′. Similarly, we obtain that 〈M,w〉 |= φ ′′ if, and only

if, (2) 〈M ′,w〉 |= φ ′′. From (1) and (2), by the semantics of conjunction, we have that

〈M ′,w〉 |= φ ′ ∧ φ ′′.
• Assume φ is of the form tua φ ′. By the de�nition of satis�ability, 〈M,w〉 |= φ if, and only

if, for all worlds w ′ such that (w,w ′) ∈ Ra we have that 〈M,w ′〉 |= φ ′. By induction

hypothesis, we have that 〈M ′,w ′〉 |= φ ′, for all worlds w ′ such that (w,w ′) ∈ Ra . By the

semantics of tua , we obtain that 〈M ′,w〉 |= tua φ ′.
�e proof for the case where φ is of the form ♦a φ ′ is similar to the last case above. �e proofs for

constants, disjunctions, and implications follow easily from the above and well-known semantic

equivalences, i.e. true = p ∨ ¬p and false = p ∧ ¬p, for some p ∈ P ; (φ ′ ∨ φ ′′) = ¬(¬φ ′ ∧ ¬φ ′′),
and (φ ′⇒ φ ′′) = (¬φ ′ ∨ φ ′′). From the de�nition of satis�ability of a formula and from the cases

above, it follows that 〈M,w〉 |= φ if, and only if, 〈M ′,w〉 |= φ. �

Corollary 3.2. Let φ ∈ WFFKn
be a formula, and M = (W ,w0,R1, . . . ,Rn ,π ) and M ′ =

(W ,w0,R1, . . . ,Rn ,π
′) be models. If, for all propositional symbols p occurring in φ and worldsw in

W , π (w)(p) = π ′(w)(p), thenM |=L φ if, and only if,M ′ |=L φ.

Proof. By Lemma 3.1, by taking w = w0. �

Corollary 3.3. Let φ ∈ WFFKn
be a formula, and M = (W ,w0,R1, . . . ,Rn ,π ) and M ′ =

(W ,w0,R1, . . . ,Rn ,π
′) be models. If, for all propositional symbols p occurring in φ and worldsw in

W , π (w)(p) = π ′(w)(p), thenM |=G φ if, and only if,M ′ |=G φ.

Proof. By Lemma 3.1 applied to all worlds w inW . �

Corollary 3.4. Let Γ ⊆ WFFKn
be a set of formulae, and M = (W ,w0,R1, . . . ,Rn ,π ) and

M ′ = (W ,w0,R1, . . . ,Rn ,π
′) be models. If, for all propositional symbols p occurring in φ and worlds

w inW , π (w)(p) = π ′(w)(p), thenM |=G Γ if, and only if,M ′ |=G Γ.

Proof. By Corollary 3.3 applied to all formulae in Γ. �

Corollary 3.5. Let φ ∈ WFFKn
be a formula, Γ ⊆ WFFKn

be a set of formulae, and M =

(W ,w0,R1, . . . ,Rn ,π ) andM ′ = (W ,w0,R1, . . . ,Rn ,π
′) be models. If, for all propositional symbols p

occurring in φ and worldsw inW , π (w)(p) = π ′(w)(p), φ is satis�ed under the global constraints Γ in
M if, and only if, φ is satis�ed under the global constraints Γ inM ′.

Proof. By Corollary 3.2 applied to φ and Corollary 3.4 applied to Γ. �

Lemma 3.6. Let φ ∈ WFFKn
be a formula and t ∈ P be a propositional symbol not occurring in φ.

�en, φ is locally satis�able if, and only if, (0 : t) ∧ (0 : t ⇒ φ) is satis�able.

ACM Transactions on Computational Logic, Vol. VV, No. NN, Article AAA. Publication date: YYYY.



Modal Resolution: Proofs, Layers and Refinements AAA:9

Proof. If φ is locally satis�able then there is a model M = (W ,w0,R1, . . . ,Rn ,π ) for Kn such

that 〈M,w0〉 |= φ. Let M∗ be the model obtained from M by only adding the universal relation R∗ to

M , that is, M∗ = (W ,w0,R1, . . . ,Rn ,R∗,π ). As the evaluation of φ does not depend on the relation

R∗, it is easy to show that 〈M∗,w0〉 |= φ. We now build a model M ′∗ = (W ,w0,R1, . . . ,Rn ,R∗,π
′)

where π ′(w)(p) = π (w)(p), for all worlds w ∈W and propositional symbols p , t , π (w0)(t) = true,
and π (w)(t) = false for all worlds w , w0. By construction, (1) 〈M ′∗,w0〉 |= t . By Corollary 3.2,

we also have that (2) 〈M ′∗,w0〉 |= φ. By the semantics of implication and conjunction, it follows

that 〈M ′∗,w0〉 |= t ∧ (t ⇒ φ). From �eorem 2.8, a formula is satis�ed at the modal layer it occurs.

Hence, as depth(w0) = 0, M∗ |= 0 : (t ∧ (t ⇒ φ)). By the semantics of conjunction, we obtain that

M∗ |= (0 : t) ∧ (0 : t ⇒ φ). �

Lemma 3.7. Let φ ∈ WFFKn
be a formula and t be a propositional symbol not occurring in φ. �en

φ is globally satis�able if, and only if, (∗ : t) ∧ (∗ : t ⇒ φ) is satis�able.

Proof. If φ is globally satis�able then there is a model M = (W ,w0,R1, . . . ,Rn ,π ) for Kn
such that for all w ∈ W we have that 〈M,w〉 |= φ. Let M∗ be the model obtained from M
by only adding the universal relation R∗ to M , that is, M∗ = (W ,w0,R1, . . . ,Rn ,R∗,π ). By [19,

Proposition 2.1], 〈M∗,w0〉 |= tu∗ φ. We now build a model M ′∗ = (W ,w0,R1, . . . ,Rn ,R∗,π
′) where,

for all worlds w ∈ W , π ′(w)(p) = π (w)(p), for all p , t , and π (w)(t) = true. By construction,

(1) 〈M ′∗,w0〉 |= tu∗ t . By Corollary 3.3, we also have that (2) 〈M ′∗,w0〉 |= tu∗ φ. By additivity,

from (1) and (2), we obtain that 〈M ′∗,w0〉 |= tu∗ (t ∧ φ). By the semantics of conjunction and

implication, we have that 〈M ′∗,w0〉 |= tu∗ (t ∧ (t ⇒ φ)). By the semantics of labelled formulae,

it follows that 〈M ′∗,w0〉 |= ∗ : (t ∧ (t ⇒ φ)). By the semantics of conjunction, we have that

〈M ′∗,w0〉 |= (∗ : t) ∧ (∗ : t ⇒ φ). �

Corollary 3.8. Let φ ∈ WFFKn
be a formula, Γ = {γ1, . . . ,γm} ⊆ WFFkn

a set of formulae, and t
be a propositional symbol not occurring in φ nor in Γ. �en φ is satis�able under the global constraints
Γ if, and only if, (∗ : t) ∧ (∗ : t ⇒

∧m
i=1

γi ) ∧ (0 : t ⇒ φ) is satis�able.

Proof. From the de�nition of satis�ability of sets, if Γ is globally satis�able, by Lemma 3.7,

we have that (∗ : t) ∧ (∗ : t ⇒
∧m

i=1
γi ) is also globally satis�able. If φ is locally satis�able,

then, by Lemma 3.6, we have that (0 : t) ∧ (0 : t ⇒ φ) is also satis�able. By the semantics of

conjunction, we obtain that (0 : t) ∧ (∗ : t) ∧ (∗ : t ⇒
∧m

i=1
γi ) ∧ (0 : t ⇒ φ), which simpli�es to

(∗ : t) ∧ (∗ : t ⇒
∧m

i=1
γi ) ∧ (0 : t ⇒ φ), which is satis�able. �

�e next �ve lemmas show that every step of the transformation into the normal form is correct,

that is, the application of the transformation function to a formula produces an equisatis�able

formula.

Lemma 3.9 (ρ∧). Let φ,φ ′ ∈ WFFKn
be formulae and t ∈ P be a propositional symbol. �en

(ml : t ⇒ φ ∧ φ ′) is satis�able if, and only if, (ml : t ⇒ φ) ∧ (ml : t ⇒ φ ′) is satis�able.

Proof. (⇒) If (ml : t ⇒ φ∧φ ′) is satis�able, then there is a modelM∗ = (W ,w0,R1, . . . ,Rn ,R∗,π )
such that M∗ |= (ml : t ⇒ φ ∧ φ ′). Let w ∈ W be any world such that depth(w) = ml . By the

de�nition of satis�ability of labelled formulae, 〈M∗,w〉 |= (t ⇒ φ ∧ φ ′). �ere are two cases.

• If 〈M∗,w〉 6|= t , then by the semantics of the implication we have that both 〈M∗,w〉 |= t ⇒ φ
and 〈M∗,w〉 |= t ⇒ φ ′. By the semantics of the conjunction, we obtain that 〈M∗,w〉 |=
(t ⇒ φ) ∧ (t ⇒ φ ′).
• If (1) 〈M∗,w〉 |= t , then, by the semantics of the implication, we have that 〈M∗,w〉 |= (φ∧φ ′).

By the semantics of the conjunction, we obtain that (2) 〈M∗,w〉 |= φ and (3) 〈M∗,w〉 |= φ ′.
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By the semantics of the implication, from (1) and (2), we have that 〈M∗,w〉 |= t ⇒ φ;

similarly, from (1) and (3), we obtain that 〈M∗,w〉 |= t ⇒ φ ′. By the semantics of the

conjunction, from (4) and (5), 〈M∗,w〉 |= (t ⇒ φ) ∧ (t ⇒ φ ′).

From the above, in both cases we have that 〈M∗,w〉 |= (t ⇒ φ) ∧ (t ⇒ φ ′). As w is arbitrarily

chosen, we have that for all w , with depth(w) = ml , 〈M∗,w〉 |= (t ⇒ φ) ∧ (t ⇒ φ ′). By the

semantics of labelled formulae, we then have that M∗ |= ml : ((t ⇒ φ) ∧ (t ⇒ φ ′)). By the

semantics of conjunction, it follows that M∗ |= (ml : t ⇒ φ) ∧ (ml : t ⇒ φ ′).
(⇐) If (ml : t ⇒ φ)∧(ml : t ⇒ φ ′) is satis�able, then there is a modelM∗ = (W ,w0,R1,. . .,Rn ,R∗,π )

such that M∗ |= (ml : t ⇒ φ) ∧ (ml : t ⇒ φ ′). By the semantics of conjunction, we have that

M∗ |= ml : ((t ⇒ φ) ∧ (t ⇒ φ ′)). Let w ∈ W be any world such that depth(w) = ml . By the

de�nition of satis�ability of labelled formulae, then 〈M∗,w〉 |= ((t ⇒ φ) ∧ (t ⇒ φ ′)). By the

semantics of conjunction and implication, we have that 〈M∗,w〉 |= t ⇒ φ ∧φ ′. By the semantics of

labelled formulae, we then have that M∗ |=ml : t ⇒ φ ∧ φ ′. �

Lemma 3.10 (ρtu). Let φ ∈ WFFKn
be a formula and t ∈ P be a propositional symbol. �en

(ml : t ⇒ tua φ) is satis�able if, and only if, (ml : t ⇒ tua t ′) ∧ (ml + 1 : t ′ ⇒ φ), where t ′ is a
propositional symbol not occurring in φ, is satis�able.

Proof. (⇒) If (ml : t ⇒ tua φ) is satis�able, then there is a model M∗ = (W ,w0,R1, . . . ,Rn ,R∗,π )
such that M∗ |= ml : t ⇒ tua φ. Let w ∈ W be any world such that depth(w) = ml . By the

de�nition of satis�ability of labelled formulae, then 〈M∗,w〉 |= t ⇒ tua φ. Construct M ′∗ =
(W ,w0,R1, . . . ,Rn ,R∗,π

′) such that π ′(w)(p) = π (w)(p) for allp , t ′; and let π ′(w)(t ′) = true if, and

only if, 〈M∗,w〉 |= φ. As M∗ |= (ml : t ⇒ tua φ), by Lemma 3.1, we have that 〈M ′∗,w〉 |= (t ⇒ tua φ).
�ere are two cases:

• If 〈M∗,w〉 6|= t , then 〈M ′∗,w〉 6|= t (by Lemma 3.1). From the semantics of implication, it

follows that 〈M ′∗,w〉 |= t ⇒ tua t ′.
• If 〈M∗,w〉 |= t , then, by the semantics of implication and the semantics of the modal

operator, for allw ′ such that (w,w ′) ∈ Ra , we have that 〈M ′∗,w ′〉 |= φ. By construction, as t ′

holds at exactly the same worlds at which φ holds, for allw ′ such that (w,w ′) ∈ Ra , we have

that 〈M ′∗,w ′〉 |= t ′, that is, 〈M ′∗,w〉 |= tua t ′. From the semantics of implication, we also

have that 〈M ′∗,w〉 |= t ⇒ tua t ′. As depth(w) =ml , we obtain (1) M ′∗ |=L (ml : t ⇒ tua t ′).
Also, by construction and by the semantics of implication, we have that 〈M ′∗,w ′〉 |= t ′⇒ φ,

for all such w ′. As depth(w ′) =ml + 1, by the semantics of labelled formulae, we have that

(2) M ′∗ |= (ml + 1 : t ′⇒ φ).

From (1) and (2), by the semantics of conjunction, M ′∗ |= (ml : t ⇒ tua t ′) ∧ (ml + 1 : t ′⇒ φ).
(⇐) If (ml : t ⇒ tua t ′) ∧ (ml + 1 : t ′ ⇒ φ) is satis�able, then there is a model M∗ =
(W ,w0,R1, . . . ,Rn ,R∗,π ) such that M∗ |= (ml : t ⇒ tua t ′) ∧ (ml + 1 : t ′ ⇒ φ). By the se-

mantics of conjunction, we have that M∗ |= (ml : t ⇒ tua t ′) and M∗ |= (ml + 1 : t ′ ⇒ φ). Let

w ∈ W be any world such that depth(w) = ml . By the de�nition of satis�ability of labelled for-

mulae, then 〈M∗,w〉 |= t ⇒ tua t ′. If 〈M∗,w〉 6|= t , then it easily follows that 〈M∗,w〉 |= t ⇒ tua φ.

Assume 〈M∗,w〉 |= t . �en, by the semantics of implication, we have that 〈M∗,w〉 |= tua t ′. By

the semantics of the modal operator, for all w ′ such that (w,w ′) ∈ Ra , then (1) 〈M∗,w ′〉 |= t ′.
As M∗ |= (ml + 1 : t ′ ⇒ φ), because depth(w ′) = ml + 1, by the de�nition of satis�ability

of labelled formulae, we also have that (2) 〈M∗,w ′〉 |= t ′ ⇒ φ. From (1) and (2), by chaining,

we obtain that 〈M∗,w ′〉 |= φ. Hence, 〈M∗,w〉 |= tua φ. By the semantics of the implication,

〈M∗,w〉 |= t ⇒ tua φ, for all w such that depth(w) =ml . By the semantics of labelled formulae, we

have that M∗ |= (ml : t ⇒ tua φ). �
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�e proofs of the next lemmas are similar to that of Lemmas 3.9 and 3.10 and are omi�ed here.

Lemma 3.11 (ρ♦ ). Let φ ∈ WFFKn
be a formula and t ∈ P be a propositional symbol. �en

(ml : t ⇒ ♦a φ) is satis�able if, and only if, (ml : t ⇒ ♦a t ′) ∧ (ml + 1 : t ′ ⇒ φ), where t ′ is a
propositional symbol not occurring in φ, is satis�able.

Lemma 3.12 (ρ∨D ). Let φ,φ ′ ∈ WFFKn
be formulae, where φ and φ ′ are disjunctions of literals or

constants and t ∈ P be a propositional symbol. �en (ml : t ⇒ φ ∨ φ ′) is satis�able if, and only if,
(ml : ¬t ∨ φ ∨ φ ′) is satis�able.

Lemma 3.13 (ρ∨). Let φ,φ ′ ∈ WFFKn
be formulae, where φ ′ is not a disjunction of literals or

constants, and t ∈ P be a propositional symbol. �en (ml : t ⇒ φ ∨ φ ′) is satis�able if, and only if,
(ml : t ⇒ φ∨ t ′)∧ρ(ml : t ′⇒ φ ′), where t ′ is a propositional symbol not occurring in φ, is satis�able.

�e next theorems show that the transformation into the normal form is correct for each of the

reasoning tasks being considered here.

Theorem 3.14. Let φ ∈ WFFKn
be a formula and t ∈ P a propositional symbol not occurring in φ.

�en φ is locally satis�able if, and only if, (0 : t) ∧ ρ(0 : t ⇒ φ) is satis�able.

Proof. By Lemma 3.6 and by Lemmas 3.9 to 3.13, which show that every step in the transforma-

tion is satis�ability preserving. �

Theorem 3.15. Let φ ∈ WFFKn
be a formula and t ∈ P a propositional symbol not occurring in φ.

�en φ is globally satis�able if, and only if, (∗ : t) ∧ ρ(∗ : t ⇒ φ) is satis�able.

Proof. By Lemma 3.7 and by Lemmas 3.9 to 3.13, which show that every step in the transforma-

tion is satis�ability preserving. �

Theorem 3.16. Let φ ∈ WFFKn
be a formula, Γ ⊆ WFFKn

be a set of formulae, and t ∈ P

a propositional symbol not occurring in φ nor in Γ. �en φ is locally satis�able under the global
constraints Γ if, and only if, (∗ : t) ∧ ρ(∗ : t ⇒

∧
γ ∈Γ γ ) ∧ ρ(0 : t ⇒ φ) is satis�able.

Proof. By Corollary 3.8 and by Lemmas 3.9 to 3.13, which show that every step in the trans-

formation is satis�ability preserving. �

In order to show that the translation procedure is terminating, note that recursive calls of ρ to

formulae of the form ml : t ⇒ φ apply to formulae whose number of operators is strictly smaller

than those in φ. �us, the application of ρ eventually stops.

4 INFERENCE RULES
�e layered resolution-based calculus for Kn , named RESml, comprises a set of inference rules

for dealing with propositional and modal reasoning. In the following, we denote by σ the result

of unifying the labels in the premises for each rule. Formally, uni�cation is given by a function

σ : P(N ∪ {∗}) −→ N ∪ {∗}, where σ ({ml , ∗}) =ml ; and σ ({ml}) =ml ; otherwise, σ is unde�ned.

�e inference rules given in Table 3 can only be applied if the uni�cation of their labels is de�ned

(where ∗ − 1 = ∗). Note that for GEN1 and GEN3, if the modal clauses in the premises occur at the

modal levelml , then the literal clause in the premises occurs at the next modal level,ml + 1. Also

note that in both GEN1 and GEN3, the set of positive a-clauses in the premises can be empty, that

is,m = 0. �e conclusion of any of the inference rules is called a resolvent.
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[LRES]

ml : D ∨ l

ml ′ : D ′ ∨ ¬l
σ ({ml ,ml ′}) : D ∨ D ′

[MRES]

ml : l1 ⇒ tua l

ml ′ : l2 ⇒ ♦a ¬l
σ ({ml ,ml ′}) : ¬l1 ∨ ¬l2

[GEN2]

ml1 : l ′
1
⇒ tua l1

ml2 : l ′
2
⇒ tua ¬l1

ml3 : l ′
3
⇒ ♦a l2

σ ({ml1,ml2,ml3}) : ¬l ′
1
∨ ¬l ′

2
∨ ¬l ′

3

[GEN1]

ml1 : l ′
1
⇒ tua ¬l1

...
mlm : l ′m ⇒ tua ¬lm

mlm+1 : l ′ ⇒ ♦a ¬l
mlm+2 : l1 ∨ . . . ∨ lm ∨ l

ml : ¬l ′
1
∨ . . . ∨ ¬l ′m ∨ ¬l

′

whereml = σ ({ml1, . . . ,mlm+1,mlm+2 − 1})

[GEN3]

ml1 : l ′
1
⇒ tua ¬l1

...
mlm : l ′m ⇒ tua ¬lm

mlm+1 : l ′ ⇒ ♦a l
mlm+2 : l1 ∨ . . . ∨ lm

ml : ¬l ′
1
∨ . . . ∨ ¬l ′m ∨ ¬l

′

whereml = σ ({ml1, . . . ,mlm+1,mlm+2 − 1})

Table 3. Inference rules

De�nition 4.1. Let Φ be a set of clauses in SNFml . A derivation by RESml from Φ is a sequence

of sets Φ0,Φ1, . . . where Φ0 = Φ and, for each i > 0, Φi+1 = Φi ∪ {D}, where D is the resolvent

obtained from Φi by an application of either LRES, MRES, GEN1, GEN2, or GEN3 to premises in

Φi . We also require that D is in simpli�ed form, D < Φi , and that D is not a tautology.

Note that all inference rules of RESml generate literal clauses. �us, in the previous de�nition we

require that the resolvent does not simplify toml : true, for any modal levelml . A refutation is a

�nite derivation where the last derived clause represents a contradiction.

De�nition 4.2. Let Φ be a set of clauses in SNFml . A local refutation by RESml from Φ is a derivation

Φ0, . . . ,Φk from Φ, k ∈ N, where 0 : false ∈ Φk . A global refutation by RESml from Φ is a derivation

Φ0, . . . ,Φk from Φ, k ∈ N, where ∗ : false ∈ Φk . A local refutation under global constraints by RESml
from Φ is a derivation Φ0, . . . ,Φk from Φ, k ∈ N, where 0 : false ∈ Φk or ∗ : false ∈ Φk .

�e de�nition of a derivation already establishes two criteria for redundancy elimination, namely

that the added resolvent is not repeated nor a tautology. Subsumption is another redundancy

criterion which is used together with deletion for eliminating clauses that are already implied

by another clause in the clause set. Although subsumption is not needed for termination, the

procedure is generally used in the implementation of resolution-based provers, as it can be e�ciently

implemented and it o�en helps to reduce the number of clauses in the clause set.

De�nition 4.3. Let C and D be disjunctions of literals. A clause (ml1 : C) subsumes a clause

(ml2 : D), denoted by (ml1 : C) ≤s (ml2 : D), if, and only if, σ ({ml1,ml2}) = ml2 and D is of the

form C ∨ D ′, where D ′ is a (possibly empty) disjunction of literals.

De�nition 4.4. Let Φ be a set of clauses in SNFml . We say that Φ is saturated if any further

application of the inference rules LRES, MRES, GEN1, GEN2, or GEN3 generates a clause already

in Φ or subsumed by a clause in Φ.

De�nition 4.5. Let Φ be a set of clauses in SNFml . A derivation Φ0,Φ1, . . . from Φ terminates if

either there is k ∈ N such that Φk is saturated or Φ0,Φ1, . . . ,Φk is a refutation from Φ.

Before presenting correctness results, we show an example of a local refutation from global

assumptions.
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Example 4.6. We assume a theory about the descendant relation, where this relation is transitive.

�e modality ♦c is used for representing the relation of having a child. �e modality ♦d is used

for representing the relation of having descendants. We assume that having grandchildren (i.e.

children of children) hold so that having a descendant of a descendant also must hold. Globally,

having a child implies having descendants. �is is expressed by the following formula:

♦c true⇒ ♦d true

whose NNF is tuc false ∨ ♦d true. �e application of the transformation function to this formula

introduces the new labelled clause ∗ : t0 together with the clauses resulting from ρ(∗ : t0 ⇒

tuc false ∨ ♦d true). �at is, we obtain the following set of clauses:

1. ∗ : t0
2. ∗ : ¬t0 ∨ t1 ∨ t2
3. ∗ : t1 ⇒ tuc tf
4. ∗ : t2 ⇒ ♦d tt
5. ∗ : ¬tf

where the propositional symbols tf and tt are introduced as the de�nitions of false and true,

respectively. Note that the formula ∗ : tf ⇒ false simpli�es to ∗ : ¬tf , as given in Clause 5. Also,

the formula ∗ : tt ⇒ true simpli�es to ∗ : true, which is a tautology. As formulae in SNFml are in

simpli�ed form, the tautology is not included in the clause set. In the following, we will reuse the

propositional symbols tt and tf whenever the de�nitions of true and false are needed. �e initial

situation says that the grandchildren relation is not empty, that is, the local constraint is given by

ρ(0 : t0 ⇒ ♦c ♦c true). In the normal form, we have the following two clauses:

6. 0 : t0 ⇒ ♦c t3
7. 1 : t3 ⇒ ♦c tt

We want to prove that the descendant relation has at least two generations, that is, we want to

prove that the local constraint ♦d ♦d true holds. In order to obtain a contradiction, we apply the

transformation function to the negation of this formula. From ρ(0 : t0 ⇒ tud tud false), the following

two clauses are obtained:

8. 0 : t0 ⇒ tud t4
9. 1 : t4 ⇒ tud tf

Transitivity of a relation Ra is characterised by the Axiom 4, that is, tua φ ⇒ tua tua φ, for a formula φ
and a modal operatortua [14]. In order to properly characterise the fact that the descendant relation

is transitive, we follow the approach in [39], adapted to the normal form given here: For each

positive modal clause of the form ml : l ′⇒ tua l where Ra is a transitive relation, we add the global

clauses ml : ¬l ′ ∨ neca,l , ∗ : neca,l ⇒ tua l , ∗ : ¬neca,l ⇒ ♦a ¬neca,l , and ∗ : neca,l ⇒ tua neca,l .
�at is, we introduce the propositional symbol neca,l as the de�nition of tua l . Hence, the clause

∗ : neca,l ⇒ tud neca,l says that ∗ : tua l ⇒ tua tua l holds. For this particular example, we add the

following clauses to the clause set:

10. 1 : ¬t4 ∨ necd,tf [Axiom 4, 9]

11. ∗ : necd,tf ⇒ tud tf [Axiom 4, 9]

12. ∗ : ¬necd,tf ⇒ ♦d ¬necd,tf [Axiom 4, 9]

13. ∗ : necd,tf ⇒ tud necd,tf [Axiom 4, 9]
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We do not show the clauses which result from applying the same encoding to Clause 8, as they are

not needed in the refutation, which proceeds as follows. �e justi�cation, shown on the right of

each derived clause, says what rule was applied, the clauses in the premises, and the literals being

resolved.

14. 0 : ¬t1 ∨ ¬t0 [GEN3, 6, 3, 5, t3, tf ]
15. ∗ : ¬necd,tf ∨ ¬t2 [GEN3, 4, 11, 5, tt , tf ]

16. 0 : necd,tf ∨ ¬t0 [GEN1, 12, 8, 10,necd,tf , t4]

17. 0 : ¬t2 ∨ ¬t0 [LRES, 15, 16,necd,tf ]

18. 0 : t1 ∨ ¬t0 [LRES, 2, 17, t2]
19. 0 : ¬t0 [LRES, 18, 14, t1]
20. 0 : false [LRES, 19, 1, t0]

5 CORRECTNESS RESULTS
In this section, we provide proofs for termination, soundness, and completeness of the layered

resolution-based calculus for Kn , RESml.

Theorem 5.1 (Termination). Let Φ be a set of clauses in SNFml . �en, any derivation by RESml
from Φ terminates.

Proof. Here we regard a clause as a set of literals or modal literals. Let PΦ be the set of

propositional symbols occurring in Φ. We de�ne PΦ = {¬p | p ∈ PΦ}, LΦ = PΦ ∪ PΦ, and

LAnΦ = {tua l , ♦a l | l ∈ LΦ and a ∈ An}. As PΦ and An are both �nite, we have that P(LΦ ∪ L
An
Φ )

is �nite. Let CΦ be the largest set of clauses that can be constructed from PΦ and An . From

De�nition 4.1, for all derivations Φ0,Φ1, . . . from Φ, we have that Φi ⊂ CΦ and also that Φi ⊂ Φi+1,

for all i > 0. �us, every derivation must terminate. �

Next, we show that the inference rules are sound.

Lemma 5.2 (σ ). Let (ml : C) and (ml ′ : C ′) be clauses in SNFml and M be a model such that
M |= (ml : C) ∧ (ml ′ : C ′). If σ ({ml ,ml ′}) =ml ′′ is de�ned, thenM |= (ml ′′ : C) ∧ (ml ′′ : C ′).

Proof. By de�nition, the uni�cation function is de�ned in only two cases:

• �e function is applied to {ml ,ml ′} = {ml ′′}, that is, the labels are identical, then the

lemma holds trivially.

• �e function is applied to {ml ,ml ′}, where ml , ∗ and ml ′ = ∗. By de�nition, ml ′′ = ml
and, clearly, we have that (1) M |= (ml ′′ : C). As M |= (ml ′ : C ′) and ml ′ = ∗, then we have

that for all worlds w , 〈M,w〉 |= C ′. In particular, for all worlds w ′ with depth(w ′) =ml ′′,
we have that 〈M,w ′〉 |= C ′. Hence, by the de�nition of satis�ability of labelled clauses,

(2) M |= ml ′′ : C ′. From (1) and (2), by the semantics of conjunction, we have that

M |= (ml ′′ : C) ∧ (ml ′′ : C ′).

It follows that if σ ({ml ,ml ′}) =ml ′′ is de�ned, then M |= (ml ′′ : C) ∧ (ml ′′ : C ′). �

Lemma 5.3 (LRES). Let Φ be a set of clauses in SNFml with {ml : D ∨ l ,ml ′ : D ′ ∨ ¬l} ⊆ Φ,
where D and D ′ are disjunctions of literals. If Φ is satis�able and σ ({ml ,ml ′}) is de�ned, then
Φ ∪ {σ ({ml ,ml ′}) : D ∨ D ′} is satis�able.

Proof. Let M∗ = (W ,w0,R1, . . . ,Rn ,R∗,π ) be a model such that M∗ |= Φ. As ml : D ∨ l ,ml ′ :

D ′ ∨¬l ∈ Φ, then M∗ |=ml : D ∨ l and M∗ |=ml ′ : D ′ ∨¬l . Let σ ({ml ,ml ′}) =ml ′′. By Lemma 5.2,

we have that M∗ |= ml ′′ : D ∨ l and M∗ |= ml ′′ : D ′ ∨ ¬l . As M∗ |= ml ′′ : D ′ ∨ ¬l , for all w ∈W
with depth(w) = ml ′′, then 〈M∗,w〉 |= D ′ ∨ ¬l . Similarly, from M∗ |= ml ′′ : D ∨ l , for all w ∈W
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with depth(w) =ml ′′, we obtain that 〈M∗,w〉 |= D ∨ l . It follows that 〈M∗,w〉 |= (D ∨ l)∧ (D ′∨¬l),
for all w ∈W with depth(w) =ml ′′. By soundness of resolution, we have that 〈M∗,w〉 |= D ∨ D ′.
As depth(w) =ml ′′ = σ ({ml ,ml ′}), we conclude that M∗ |= σ ({ml ,ml ′}) : D ∨ D ′. �

Lemma 5.4 (MRES). Let Φ be a set of clauses in SNFml with {ml : l1 ⇒ tua l ,ml ′ : l2 ⇒ ♦a ¬l} ⊆ Φ.
If Φ is satis�able and σ ({ml ,ml ′}) is de�ned, then Φ ∪ {σ ({ml ,ml ′}) : ¬l1 ∨ ¬l2} is satis�able.

Proof. �e proof is similar to that of Lemma 5.3, as implications can be rewri�en as disjunctions

and ♦a ¬l is semantically equivalent to ¬tua l . �

Lemma 5.5 (GEN1). Let Φ be a set of clauses in SNFml with {ml1 : l ′
1
⇒ tua ¬l1, . . . ,mlm :

l ′m ⇒ tua ¬lm ,mlm+1 : l ′ ⇒ ♦a ¬l ,mlm+2 : l1 ∨ . . . ∨ lm ∨ l} ⊆ Φ. If Φ is satis�able and
σ ({ml1, . . . ,mlm ,mlm+1,mlm+2 − 1}) is de�ned, then Φ ∪ {σ ({ml1, . . . ,mlm ,mlm+1,mlm+2 − 1}) :

¬l ′
1
∨ . . . ∨ ¬l ′m ∨ ¬l

′} is satis�able.

Proof. Let M∗ = (W ,w0,R1, . . . ,Rn ,R∗,π ) be a model such that M∗ |= Φ. Let σ ({ml1, . . .,mlm ,

mlm+1, mlm+2 − 1}) = ml , for a particular modal level ml . By Lemma 5.2, if Φ is satis�able, then

M∗ |= (ml : (l ′
1
⇒ tua ¬l1) ∧ . . .∧ (l ′m ⇒ tua ¬lm) ∧ (l ′⇒ ♦a ¬l)) ∧ (ml + 1 : (l1 ∨ . . .∨ lm ∨ l)) and so

for all worldsw ∈W , with depth(w) =ml , we have that (1) 〈M∗,w〉 |= (l ′
1
⇒ tua ¬l1) ∧ . . .∧ (l ′m ⇒

tua ¬lm) ∧ (l ′⇒ ♦a ¬l). If 〈M∗,w〉 6|= l ′, it follows easily that 〈M∗,w〉 |= ¬l ′
1
∨ . . . ∨ ¬l ′m ∨ ¬l

′
and,

therefore, M∗ |= σ ({ml1, . . . ,mlm ,mlm+1,mlm+2−1}) : ¬l ′
1
∨ . . .∨¬l ′m ∨¬l

′
. �e same occurs if any

of the literals l ′i , 1 ≤ i ≤ m, is not satis�ed at w . We show, by contradiction, that this must be the

case. Suppose 〈M∗,w〉 |= l ′
1
∧ . . . ∧ l ′m ∧ l

′
. From this and from (1), by the semantics of implication,

the semantics of the modal operator ♦a , and the semantics of the modal operator tua , we have that

there is a world w ′, with depth(w ′) = depth(w) + 1, where ¬l1 ∧ . . . ∧ ¬lm ∧ ¬l holds. Now, as

mlm+2−1 is uni�able with {ml1, . . . ,mlm ,mlm+1}, for all worldsw ′′ with depth(w ′′) = depth(w)+1,

we obtain that 〈M∗,w ′′〉 |= l1 ∨ . . . ∨ lm ∨ l . In particular, because depth(w ′) = depth(w ′′), we

obtain that 〈M∗,w ′〉 |= (¬l1 ∧ . . . ∧ ¬lm ∧ ¬l) ∧ (l1 ∨ . . . ∨ lm ∨ l). By several applications of the

classical propositional resolution rule, we have that 〈M∗,w ′〉 |= false. �is contradicts the fact

thatml : (l ′⇒ ♦a ¬l) is satis�able. �us, 〈M∗,w〉 |= ¬l ′
1
∨ . . . ∨ ¬l ′m ∨ ¬l

′
. As depth(w) =ml , we

conclude that M∗ |= σ ({ml1, . . . ,mlm ,mlm+1,mlm+2 − 1}) : ¬l ′
1
∨ . . . ∨ ¬l ′m ∨ ¬l

′
. �

Lemma 5.6 (GEN2). LetΦ be a set of clauses in SNFml with {ml1 : l ′
1
⇒ tua l1,ml2 : l ′

2
⇒ tua ¬l1,ml3 :

l ′
3
⇒ ♦a l2} ⊆ Φ. If Φ is satis�able and σ ({ml1,ml2,ml3}) is de�ned, then Φ ∪ {σ ({ml1,ml2,ml3}) :

¬l ′
1
∨ ¬l ′

2
∨ ¬l ′

3
} is satis�able.

Proof. From Lemma 5.5 by taking Φ such that {ml1 : l ′
1
⇒ tua l1,ml2 : l ′

2
⇒ tua ¬l1,ml3 : l ′

3
⇒

♦a l2, ∗ : l1 ∨ ¬l1 ∨ ¬l2} ⊆ Φ, as l1 ∨ ¬l1 ∨ ¬l2 is a tautology. �

Lemma 5.7 (GEN3). Let Φ be a set of clauses in SNFml with {ml1 : l ′
1
⇒ tua ¬l1, . . . ,mlm : l ′m ⇒

tua ¬lm ,mlm+1 : l ′⇒ ♦a l ,mlm+2 : l1 ∨ . . .∨ lm} ⊆ Φ. If Φ is satis�able and σ ({ml1, . . . ,mlm ,mlm+1,
mlm+2 − 1}) is de�ned, then Φ ∪ {σ ({ml1, . . . ,mlm ,mlm+1,mlm+2 − 1}) : ¬l ′

1
∨ . . . ∨ ¬l ′m ∨ ¬l

′} is
satis�able.

Proof. �e formula mlm+2 : l1 ∨ . . . ∨ lm is semantically equivalent to (mlm+2 : l1 ∨ . . . ∨
lm ∨ l) ∧ (mlm+2 : l1 ∨ . . . ∨ lm ∨ ¬l). �e proof follows from Lemma 5.5 by taking Φ such that

{ml1 : l ′
1
⇒ tua ¬l1, . . . ,mlm : l ′m ⇒ tua ¬lm ,mlm+1 : l ′⇒ ♦a l ,mlm+2 : l1 ∨ . . . ∨ lm ∨ ¬l} ⊆ Φ. �

�e next theorem shows that RESml is sound.

Theorem 5.8 (Soundness). Let Φ be a set of clauses in SNFml and Φ0, . . . ,Φk , k ∈ N, be a
derivation by RESml from Φ. If Φ is satis�able, then every Φi , 0 ≤ i ≤ k , is satis�able.
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Proof. From Lemmas 5.3 to 5.7, by induction on the number of sets in a derivation. �

Completeness is proved by showing that if a set Φ of clauses in SNFml is unsatis�able, then

there is a refutation produced by the method presented here. �e proof is by induction on the

number of nodes of a graph, known as behaviour graph, built from Φ. Intuitively, nodes in the

graph correspond to worlds and the set of edges correspond to the agents’ accessibility relations

in a model. �e graph construction is similar to the construction of a canonical model, followed

by �ltrations based on the set of clauses, o�en used to prove completeness for proof methods in

modal logics [14]. �e main di�erence from the usual construction is that we take advantage of the

fact that clauses are in a simple normal form. �us, nodes contain sets of literals, instead of the

usual set of formulae. As we are dealing with both global and local satis�ability, we �rst construct

a graph GG that satis�es the clauses labelled by ∗ and then complete the construction by unfolding

GG into a graph G which satis�es all clauses in Φ. We prove that an unsatis�able set of clauses has

an empty behaviour graph. We then show that deletions of either edges or nodes from the graph

correspond to applications of the inference rules of RESml. It follows that if the behaviour graph is

empty, then there is a refutation by RESml for Φ using the inference rules given in Section 4.

Formally, let PΦ and {0, . . . ,m} ∪ {∗} be the set of propositional symbols and the set of labels

occurring in Φ, respectively. We de�ne LΦ as the set of literals given by {p,¬p | for all p ∈ PΦ}. A

set of literals η is maximally consistent if for all l ∈ LΦ either l or ¬l is in η (but not both).

�e behaviour graph G for n agents is a tuple G = 〈N0, . . . ,Nm+1,E1, . . . ,En〉, built from the set

of SNFml clauses Φ, where Ni is a set of nodes for each modal level 0 ≤ i ≤ m + 1 occurring in Φ
and each Ea is a set of edges labelled by a ∈ An . Every element of Ni is a maximally consistent

set of literals occurring in Φ. Note that we could have de�ned a node in Ni as containing literals

occurring in any clauses labelled by ∗, literals occurring in literal clauses labelled by i , literals

occurring on the le�-hand side of modal clauses labelled i , and literals occurring in the scope of

modal operators of modal clauses labelled by i − 1. Using all literals in Φ simpli�es the construction.

Let η be a node in G. Let φ,ψ , andψ ′ be Boolean combinations of literals and modal literals. We

say that η satis�es φ in G (wri�en G,η |= φ, or η |= φ if G is clear from the context), if, and only if:

• φ is a propositional literal and φ ∈ η;

• φ is of the form ¬ψ and η does not satisfyψ (wri�en η 6 |= ψ );

• φ is of the formψ ∧ψ ′ and η |= ψ and η |= ψ ′;
• φ is of the form tua l , where l ∈ LΦ and a ∈ An , and for every η′, if (η,η′) ∈ Ea then η′

satis�es l ;
• φ is of the form ♦a l , where l ∈ LΦ and a ∈ An , and there exists η′ such that (η,η′) ∈ Ea and

η′ satis�es l .

�e construction of the behaviour graph starts by partitioning a set of clauses Φ into two

components corresponding to the set of global clauses and the set of local clauses. Let ΦG be

{∗ : φ | ∗ : φ ∈ Φ} and ΦL = Φ \ ΦG . First we construct a graph GG = 〈N ,E
′
1
, . . . ,E ′n〉, where N is

the set of all maximally consistent sets of literals occurring in Φ. Delete from N any nodes that

do not satisfy D such that the literal clause ∗ : D is in ΦG . �is ensures that all literal clauses in

ΦG are satis�ed at all nodes. If the set of nodes is empty, then the graph is empty and the literal

clauses in ΦG are unsatis�able. Otherwise, the construction proceeds as follows.

We now construct the sets of edges related to each agent and ensure that any global modal clause

in Φ is also satis�ed. We �rst set E ′a as N × N , for all a ∈ An , and then remove elements of E ′a
that do not satisfy the a-clauses. For all clauses ∗ : l ′ ⇒ tua l occurring in ΦG , delete from E ′a the

edges (η,η′) where η |= l ′ but η′ 6 |= l . �is ensures that all clauses of the form ∗ : l ′ ⇒ tua l are

now satis�ed in GG . For all clauses ∗ : l ′⇒ ♦a l , repeatedly delete from GG any nodes η such that
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η |= l ′ and there is no η′ such that (η,η′) ∈ E ′a and η′ |= l . �is ensures that all clauses of the form

ml : l ′⇒ ♦a l are now satis�ed in GG . If the set of clauses ΦL is empty, the construction �nishes

and the behaviour graph G is given by GG . Else, if ΦL and the GG are both not empty, in order to

satisfy the local constraints, given by clauses in ΦL , we construct the graph G for Φ as follows.

Let GG = 〈N ,E
′
1
, ...,E ′n〉 be the non-empty graph for ΦG constructed as above. Recall that

{0, . . . ,m} is the set of modal levels occurring as labels in Φ. �e graph G= 〈N0, ...,Nm+1,E1, ...,En〉
for Φ is constructed by the unfolding of GG as follows. Note that we need to construct the nodes at

the levelm+ 1 in order to satisfy the literals in the scope of modal operators at the levelm. First, we

construct the set of nodes Nml for each modal levelml , 0 ≤ ml ≤ m + 1. De�ne N0 = N , Nml = ∅,

for 0 < ml ≤ m + 1, and Ea = ∅, for 0 ≤ a ≤ n. For each η,η′ ∈ N , for all ml ∈ {0, . . . ,m + 1}, if

η ∈ Nml and (η,η′) ∈ E ′a for any a ∈ An , then add a copy of η′, named η′ml+1
, to Nml+1 and make

Ea = Ea ∪ {(η,η
′
ml+1
)}. For the highest modal level,ml =m + 1, we also need to make sure that the

global constraints are still satis�ed: if η ∈ Nm+1 then we also add copies of all nodes reachable from

η, by any relation E ′a , and add the corresponding relations to each Ea . �at is, for all η ∈ Nm+1, for

all a ∈ An , if (η,η′) ∈ E ′a , then let η′ml+1
be a copy of η′ and make Nml+1 = Nml+1 ∪ {η

′
ml+1
} and

Ea = Ea ∪ {(η,η
′
ml+1
)}.

Once the construction has �nished, we delete nodes and edges in the following order to ensure

that clauses in Φ are satis�ed. First, delete from Nml any nodes that do not satisfy D for all literal

clauses of the form ml : D in ΦL . �en, for all clauses ml : l ′ ⇒ tua l in ΦL , delete from Ea the

edges (ηml ,η
′
ml+1
) where ηml |= l ′ but η′ 6 |= l , which ensures that the positive a-clauses at the

modal levelml are satis�ed at η. Next, consider any nodes that do not satisfy the negative a-clauses

in ΦL or in ΦG . For all clauses ml : l ′ ⇒ ♦a l in ΦL (resp. for all clauses ∗ : l ′′′ ⇒ ♦a l ′′ in ΦG ),

repeatedly delete from Nml any nodes ηml that satisfy l ′ (resp. l ′′′), but there is no node η′ml+1
such

that (ηml ,η
′
ml+1
) ∈ Ea and η′ml+1

|= l (resp. η′ml+1
|= l ′′). �is ensures that the negative a-clauses

are satis�ed at every node ηml in Nml .

Let G = 〈N0, . . . ,Nm+1,E1, . . . ,En〉 be the behaviour graph for Φ. A node η ∈ N0 is called an

initial node. We de�ne the reduced behaviour graph G′ for Φ as the reachable component subgraphs

of G which contain an initial node. It follows that if N0 is empty, then the reduced behaviour graph

is empty. We show that a set of SNFml clauses is satis�able if, and only if, the reduced behaviour

graph for this set of clauses is non-empty. In the only if part of the proof, we rely on the fact that if

a set of clauses is satis�able, then it is satis�able in a �nite structure obtained by �ltration. �e

following de�nitions are needed.

De�nition 5.9. Let Φ be a set of clauses. �e set of labelled subformulae of Φ, denoted by subf(Φ),
is the union of the set of subformulae for each clauseC occurring in Φ, where the set of subformulae

of a clause C is given as follows:

• if C is of the formml : p, then subf(C) = {ml : p}, for p ∈ P ;

• if C is of the formml : ¬p, then subf(C) = {ml : ¬p,ml : p}, for p ∈ P ;

• if C is of the form ml : l1 ∨ . . . ∨ lk , then subf(C) = {ml : l1 ∨ . . . ∨ lk }
⋃k

i=1
subf(ml : li ),

for literals li , 1 ≤ i ≤ k , k ∈ N;

• if C is of the form ml : l ⇒ tua l ′, then subf(C) = {ml : l ⇒ tua l ′} ∪ subf(ml : ¬l) ∪
subf(ml + 1 : l ′), for literals l , l ′;
• if C is of the form ml : l ⇒ ♦a l ′, then subf(C) = {ml : l ⇒ ♦a l ′} ∪ subf(ml : ¬l) ∪

subf(ml + 1 : l ′), for literals l , l ′.

De�nition 5.10. Let Φ be a set of clauses and subf(Φ) be the set of all labelled subformulae of Φ.

Let M = (W ,w0,R1, . . . ,Rn ,R∗,π ) be a model. �en MΦ = (W Φ,wΦ
0
,RΦ

1
, . . . ,RΦ

n ,π
Φ) is the �ltration

of M with respect to Φ, where for every w ∈ W , wΦ = {ml : φ | ml : φ ∈ subf(Φ), depth(w) =
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ml orml = ∗, and 〈M,w〉 |= ml : φ}, W Φ = {wΦ | w ∈ W }, RΦ
a = {(w

Φ,w ′Φ) | (w,w ′) ∈ Ra}, for

all w,w ′ ∈ W and a ∈ An ∪ {∗}; and πΦ(wΦ)(p) = π (w)(p), for all propositional symbols p such

thatml : p ∈ subf(Φ) and worlds w ∈W .

It is easy to show that the following two properties hold for this construction of MΦ
: (i) for all

propositional symbols p, πΦ(wΦ)(p) = true if, and only if, ml : p ∈ wΦ
; and (ii) for all worlds wΦ

in

W Φ
, for allml : ♦a l ∈ subf(Φ), where l is a literal, ifml : ♦a l ∈ wΦ

, then there is a worldw ′Φ ∈W Φ

with (wΦ,w ′Φ) ∈ RΦ
a such that ml + 1 : l ∈ w ′Φ. It is also easy to show that no propositional

inconsistencies can arise from the construction of MΦ
, that is, the following properties hold: (iii)

ml : p ∈ wΦ
if, and only if, ml : ¬p < wΦ

; (iv) (ml : l1 ∨ . . . ∨ lk ) ∈ w
Φ

, for literals lj , 1 ≤ j ≤ k ,

k ∈ N, k > 0, if, and only if, there is ml : lj in wΦ
, with 1 ≤ j ≤ k ; (iv) (ml : l ′ ⇒ tua l) ∈ wΦ

(resp.

(ml : l ′ ⇒ ♦a l) ∈ wΦ
) if, and only if, ml : l ′ < wΦ

or ml : tua l ∈ wΦ
(resp. ml : ♦a l ∈ wΦ

). A truth

lemma shows that for a formula ml : φ ∈ subf(Φ) we have that 〈M,w〉 |= ml : φ if, and only if,

〈MΦ,wΦ〉 |= φ. �e proof is by induction on the structure of ml : φ and it follows the standard

proofs on �ltrations (see [34], for �ltrations for modal logics under global constraints).

Lemma 5.11. Let Φ be a set of clauses. Φ is satis�able if, and only if, the reduced behaviour graph
G constructed from Φ is non-empty.

Proof. (⇒) Assume Φ is satis�able and let M = (W ,w0,R1, . . . ,Rn ,R∗,π ) be the �ltration of

a model that satis�es Φ. Let G = 〈N0, . . . ,Nm+1,E1, . . . ,En〉 be the reduced graph for Φ. We

show that for every world w in W , there is a node η in G such that, for every subformula φ in

subf(Φ), if 〈M,w〉 |= φ, then η |= φ. Let N denote the union of N0, . . ., Nm+1 in G. We de�ne a

function f : W −→ P(N ) such that f (w) = {η | η ∈ Ndepth(w ) and for all propositional symbols p
occurring in Φ, p ∈ η if, and only if, π (w)(p) = true}. In other words, the function f associates

to every world in M occurring at a depth ml a set of nodes in the graph at the corresponding

modal level which agree on the satis�ability of the propositional symbols p occurring in Φ . By

the maximal consistency property of nodes, it follows that if η ∈ f (w) and π (w)(p) = false, then

¬p ∈ η. Assume that η ∈ f (w), that is, η is a node in Nml such that η agrees on the satis�ability of

the propositional symbols occurring in w .

• For any literal clause ml : l1 ∨ . . . ∨ lk , if 〈M,w〉 |= ml : l1 ∨ . . . ∨ lk , then there exists a

literal lj , 1 ≤ j ≤ k , such that 〈M,w〉 |=ml : lj . If η ∈ f (w), then, by de�nition of f , lj ∈ η.

�us η |= l1 ∨ . . . ∨ lk .

• For any positive a-clause ml : l ′ ⇒ tua l , if 〈M,w〉 |=ml : l ′ ⇒ tua l , then (i) 〈M,w〉 |=ml :

¬l ′ or (ii) 〈M,w〉 |=ml : l ′ ∧ tua l . Let η ∈ f (w). For (i), by the de�nition of f , we have that

(iii) η |= ¬l ′; thus, η |= l ′⇒ tua l . For (ii), if 〈M,w〉 |=ml : l ′ ∧ tua l , then, by the de�nition

of f , we have that η |= l ′. By construction of G, there is no node η′ ∈ Nml+1 such that

(η,η′) ∈ Ea and η′ |= ¬l . It follows that (iv) η |= tua l . From (iii) and (iv), we have that

η |= l ′⇒ tua l .
• For any negative a-clause ml : l ′ ⇒ ♦a l , the proof is similar: if 〈M,w〉 |= ml : l ′ ⇒ ♦a l ,

then (i) 〈M,w〉 |= ml : ¬l ′ or (ii) 〈M,w〉 |= ml : l ′ ∧ ♦a l . Let η ∈ f (w). For (i), by the

de�nition of f , we have that (iii) η |= ¬l ′; thus, η |= l ′ ⇒ ♦a l . For (ii), if 〈M,w〉 |= ml :

l ′ ∧ ♦a l , then, by the de�nition of f , we have that η |= l ′. By construction of G, there is a

node η′ ∈ Nml+1 such that (η,η′) ∈ Ea and η′ |= ¬l . It follows that (iv) η |= ♦a l . From (iii)

and (iv), we have that η |= l ′⇒ ♦a l .
From the above, for any world in a �ltrated model M there is a node in the behaviour graph G

that satis�es the same set of clauses. As the set of nodes of G are, by construction, propositionally

consistent, f (w) in the non-reduced graph is not empty. �e deletion process will not remove a
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node of the behaviour graph that is included in some f (w). �erefore, the reduced behaviour graph

is non-empty.

(⇐) Assume that the reduced graph G = 〈N0, . . . ,Nm+1,E1, . . . ,En〉 constructed from Φ is

non-empty. To show that Φ is satis�able we construct a model M from G. Let ord : Ni → N be

a total order on the nodes in Ni . Let wml,ord (η) be the world named by (ml ,ord(η)) for η ∈ Nml

and let Wml =
⋃

η∈Nml
{wml,ord (η)}. �e set of worlds W is given by

⋃m+1

i=0
Wi . Let w0 be any of

the worlds inW0. �e pair (wml,ord (η),wml ′,ord (η′)) is in Ra if and only if (η,η′) ∈ Ea . Also, take

R∗ =W ×W . Finally, set π (wml,ord(η))(p) = true if and only if p ∈ η, for all p ∈ P . �is completes

the construction of the model M = (W ,w0,R1, . . . ,Rn ,R∗,π ). �at M is indeed a model for Φ
follows from the construction of the graph G: if ml : C is a clause in Φ and wml,ord (η) is a world

in M , then 〈M,wml,ord (η)〉 |= C , for otherwise η would have been removed during the reduction

phase in the construction of the graph. By an easy induction, it follows that M is a model for Φ. �

�e completeness proof uses the fact that binary propositional resolution is consequence complete

[33]. Given a set of clauses Φ, a clause C is a prime consequence of Φ if, and only if, C is implied by

Φ and there exists no other clause D implied by Φ such that C is implied by D [62]. Given a set of

clauses Φ, a calculus is consequence complete if any prime consequence C of Φ is derivable.

We now show that the calculus for global and local reasoning in Kn is complete.

Theorem 5.12. Let Φ be an unsatis�able set of clauses in SNFml . �en there is a refutation by
RESml for Φ.

Proof. Given a set of clauses Φ, construct the reduced behaviour graph as described above. First

assume that the set of literal clauses is unsatis�able. �us all initial nodes will be removed from the

reduced graph and the graph becomes empty. From the completeness of classical resolution there

is a series of resolution steps which can be applied to these clauses which lead to the derivation of

false. �e same applies within any modal level. We can mimic these steps by applying the rule

LRES to literal clauses and deriveml : false, for some modal levelml .
If the non-reduced graph is not empty and we have that both (1) ml : l ′ ⇒ tua l and (2) ml ′ :

l ′′⇒ ♦a ¬l are in Φ, then, by construction of the graph, if {ml ,ml ′} are uni�able, then any node

in Nσ ({ml,ml ′ }) containing both l ′ and l ′′ is removed from the graph. �e resolution rule MRES
applied to (1) and (2) results in σ ({ml ,ml ′}) : ¬l ′ ∨ ¬l ′′, simulating the deletion of nodes at the

same modal level that satisfy both l ′ and l ′′.
Next, if the non-reduced graph is not empty, consider any nodes that do not satisfy the negative

a-clauses in Φ. Recall that for each node ηml ∈ Nml and for each agent a ∈ An , ifml : l ⇒ ♦a ¬l ′ is

in Φ, ηml |= l and there is no a-edge between η and a node that satis�es ¬l ′, then ηml is deleted.

We show next what inference rules or what inference steps correspond to the deletion of ηml .

Let C
ηml
a in Φ be the set of positive a-clauses corresponding to agent a, that is, the clauses of

the form ml : lj ⇒ tua l ′j , where lj and l ′j are literals, whose le�-hand side are satis�ed by ηml .

Let R
ηml
a be the set of literals in the scope of tua on the right-hand side from the clauses in C

ηml
a ,

that is, if ml : lj ⇒ tua l ′j ∈ C
ηml
a , then l ′j ∈ R

ηml
a . From the construction of the graph, for a clause

ml : l ⇒ ♦a l ′, if ηml |= l but there is no a-edge to a node containing l ′, it means that l ′, R
ηml
a , and

the literal clauses at the level ml + 1 must be contradictory. As l ′ alone is not contradictory and

because the case where the literal clauses are contradictory by themselves has been covered above

(by applications of LRES), there are �ve cases:

(1) Assume that R
ηml
a itself is contradictory. �is means there must be clauses of the form

ml : l1 ⇒ tua l ′′,ml : l2 ⇒ tua ¬l ′′ ∈ C
η
a , where ηml |= l1 and ηml |= l2. �us we can

apply GEN2 to these clauses and the negative modal clause ml : l ⇒ ♦a l ′ deriving
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ml : ¬l1 ∨ ¬l2 ∨ ¬l . Hence the addition of this resolvent means that ηml will be deleted as

required.

(2) Assume that l ′ and R
ηml
a is contradictory. �en, C

ηml
a in Φ contains a clause asml : l1 ⇒

tua ¬l ′ where, from the de�nition of C
ηml
a , ηml |= l1. �us, by an application of MRES to

this clause andml : l ⇒ ♦a l ′, we deriveml : ¬l1 ∨ ¬l and ηml is removed as required.

(3) Assume that l ′ and the literal clauses at the modal level ml + 1 are contradictory. By

consequence completeness of binary resolution [33], applications of LRES to the set of

literal clauses generates ml + 1 : ¬l ′, which can be used together with ml : l ⇒ ♦a l ′ to

apply GEN1 and generateml : ¬l . �is resolvent deletes ηml as required. Note that this is a

special case where the set of positive a-clauses in the premise of GEN1 is empty.

(4) Assume that R
ηml
a and the literal clauses at the modal level ml + 1 all contribute to the

contradiction (but not l ′), by the results in [33], applications of LRES will generate the

relevant clause to which we can apply GEN3 and delete ηml as required. Note that this is

also the case in the special case where the set of positive clauses in the premise of GEN3 is

empty. In this case, the literal clause in the premises is of the formml : C where C is the

empty disjunction, which by consequence completeness will also be produced during a

derivation.

(5) Assume that l ′, R
ηml
a and the literal clauses all contribute to the contradiction. �us,

similarly to the above, applying LRES generates the relevant literal clause to which GEN1
can be applied. �is deletes ηml as required.

Summarising, LRES corresponds to deletions from the graph of nodes related to contradictions

in the set of literal clauses at a particular modal level. �e rule MRES also simulates classical

resolution and corresponds to removing from the graph those nodes related to contradiction within

the set of modal literals occurring at the same modal level. �e inference rule GEN1 corresponds

to deleting parts of the graph related to contradictions between the literal in the scope of ♦a , the

set of literal clauses, and the literals in the scope of tua . �e resolution rule GEN2 corresponds to

deleting parts of the graph related to contradictions between the literals in the scope of tua . Finally,

GEN3 corresponds to deleting parts of the graph related to contradictions between the literals in

the scope of tua and the set of literal clauses. �ese are all possible combinations of contradicting

sets within a clause set.

If the resulting graph is empty, the set of clauses Φ is not satis�able and there is a resolution

proof corresponding to the deletion procedure, as described above. If the graph is not empty,

by Lemma 5.11, a model for Φ can be built. �

�eorem 5.12 shows that if a set of clauses is unsatis�able, then there is a refutation by RESml.

�e next lemma shows that the deletion of a subsumed clause preserves the inconsistency of a

clause set. Note that we only consider the case of subsumption of literal clauses (see De�nition 4.3).

Lemma 5.13. Let Φ be an unsatis�able set of SNFml clauses, andml1 : C andml2 : D in Φ be literal
clauses, such thatml1 : C subsumesml2 : D. �en, Φ \ {ml2 : D} is unsatis�able.

Proof. We prove the contrapositive, i.e. if Φ \ {ml2 : D} is satis�able, then Φ is satis�able.

If Φ \ {ml2 : D} is satis�able, then there is a model M∗ = (W ,w0,R1, . . . ,Rn ,R∗,π ) such that

M∗ |= Φ \ {ml2 : D}. By the de�nition of satis�ability of sets, (1) all clauses in Φ \ {ml2 : D} are

satis�ed in M∗. In particular, M∗ |=ml1 : C . By the de�nition of satis�ability of labelled clauses, we

have that (2) 〈M∗,w〉 |= C , for all w ∈W such that depth(w) =ml1. Asml1 : C subsumesml2 : D,

by De�nition 4.3, σ ({ml1,ml2}) =ml2 and D is of the form C ∨ D ′, for a disjunction of literals D ′.
From this and from (2), by the semantics of disjunction, we obtain that 〈M∗,w〉 |= C ∨ D ′, for all
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w ∈W such that depth(w) =ml2. Hence, (3) M∗ |=ml2 : C ∨ D ′. It follows, from the de�nition of

satis�ability of sets, from (1) and (3), that M∗ |= Φ. �

In the following, we show that our calculus remains complete if in the construction of a refutation

we remove subsumed clauses, more precisely, for a derivation Φ0,Φ1, . . ., we can require that a

resolvent D, obtained by the application of one of the inference rules to clauses in Φi−1, is in

simpli�ed form, D is not a tautology, and D is not subsumed by any clause in Φi−1. We �rst consider

the inference rules LRES, GEN1, and GEN3 before stating the main result.

Lemma 5.14. Let ml1 : C1, ml2 : C2, ml ′
1

: C ′
1
, ml ′

2
: C ′

2
be literal clauses such that ml ′

1
: C ′

1
≤s

ml1 : C1 andml ′
2

: C ′
2
≤s ml2 : C2. Letml : C withml = σ ({ml1,ml2}) be a resolvent ofml1 : C1 and

ml2 : C2 by LRES. �enml ′
1

: C ′
1
≤s ml : C orml ′

2
: C ′

2
≤s ml : C or there is a resolventml ′ : C ′ of

ml ′
1

: C ′
1
andml ′

2
: C ′

2
by LRES such thatml ′ : C ′ ≤s ml : C .

Proof. Let ml1 : C1, ml2 : C2 and ml : C be of the form ml1 : D1 ∨ p , ml2 : D2 ∨ ¬p, and

σ ({ml1,ml2}) : D1 ∨ D2, respectively. As ml ′
1

: C ′
1

subsumes ml1 : C1 it either has the form

ml ′
1

: D ′
1
∨p orml ′

1
: D ′

1
, where in both cases σ ({ml1,ml ′

1
}) =ml1 and D ′

1
only contains literals in D1.

Analogously, asml ′
2

: C ′
2

subsumesml2 : C2 it either has the formml ′
2

: D ′
2
∨ p orml ′

2
: D ′

2
, where in

both cases σ ({ml2,ml ′
2
}) =ml2 and D ′

2
only contains literals in D2. �ere are three possibilities to

consider:

• If ml ′
1

: C ′
1

has the form ml ′
1

: D ′
1

then it subsumes the resolvent ml : D1 ∨ D2 as

(i) σ ({ml ′
1
,ml1}) = ml1 and σ ({ml1,ml2}) = ml imply σ ({ml ′

1
,ml}) = ml and (ii) all lit-

erals in D ′
1

occur in D1.

• If ml ′
2

: C ′
2

has the form ml ′
2

: D ′
2

then it subsumes the resolvent ml : D1 ∨ D2 as

(i) σ ({ml ′
2
,ml2}) = ml2 and σ ({ml2,ml2}) = ml imply σ ({ml ′

2
,ml}) = ml and (ii) all lit-

erals in D ′
2

occur in D2.

• If ml ′
1

: C ′
1

has the form ml ′
1

: D ′
1
∨ p and ml ′

2
: C ′

2
has the form ml ′

2
: D ′

2
∨ ¬p, then we

�rst of all observe that σ ({ml ′
1
,ml1}) = ml1, σ ({ml ′

2
,ml2}) = ml2, and σ ({ml1,ml2}) = ml .

�erefore, σ ({ml ′
1
,ml ′

2
}) is de�ned and there is a resolventml ′ : D ′

1
∨D ′

2
of the two clauses

by LRES, whereml ′ = σ ({ml ′
1
,ml ′

2
}). Furthermore, σ ({ml ′,ml}) =ml and all literals in D ′

1

occur in D1 and all literals in D ′
2

occur in D2. �us, this resolvent subsumesml : D1 ∨ D2.

It follows that ml ′
1

: C ′
1
≤s ml : C or ml ′

2
: C ′

2
≤s ml : C or there is a resolvent ml ′ : C ′ of ml ′

1
: C ′

1

andml ′
2

: C ′
2

by LRES such thatml ′ : C ′ ≤s ml : C . �

Lemma 5.15. Letml1 : l ′
1
⇒ tua ¬l1, . . . , mlm : l ′m ⇒ tua ¬lm , andmlm+1 : l ′m+1

⇒ ♦a ¬lm+1 be
modal a-clauses, and letml : ¬l ′

1
∨ · · · ∨ ¬l ′m+1

with σ ({ml1, . . . ,mlm+1,mlm+2 − 1}) = ml be the
literal clause obtained as resolvent by GEN1 of a literal clausemlm+2 : l1 ∨ · · · ∨ lm+1 with these modal
a-clauses. Letml ′m+2

: C ′
1
be a literal clause that subsumesmlm+2 : l1 ∨ · · · ∨ lm+1. �en we can derive

a clauseml ′ : C ′ that subsumesml : ¬l ′
1
∨ · · · ∨ ¬l ′m+1

.

Proof. As ml ′m+2
: C ′

1
subsumes mlm+2 : l1 ∨ · · · ∨ lm+1, σ ({ml ′m+2

,mlm+2}) = mlm+2 and

all literals in mlm+2 : C ′
1

are among {l1, . . . , lm+1}. We need to distinguish two cases, namely,

whether lm+1 occurs in ml ′m+2
: C ′

1
or not. First, assume that lm+1 occurs in ml ′m+2

: C ′
1

and

without loss of generality assume that ml ′m+2
: C ′

1
has the form ml ′m+2

: lk ∨ · · · ∨ lm+1 for

1 ≤ k ≤ m + 1. Since σ ({ml ′m+2
,mlm+2}) = mlm+2 and σ ({ml1, . . . ,mlm+1,mlm+2 − 1}) is de�ned,

σ ({mlk , . . . ,mlm+1,ml ′m+2
− 1}) is also de�ned. �en there is a resolventml ′ : ¬l ′k ∨ · · · ∨ ¬l

′
m+1

by

GEN1 withml ′ = σ ({mlk , . . . ,mlm+1,ml ′m+2
− 1}) ofml ′m+2

: lk ∨ · · · ∨ lm+1 withmlk : l ′k ⇒ tua lk ,

. . . ,mlm : l ′m ⇒ tua lm andmlm+1 : l ′m+1
⇒ ♦a lm+1. We have σ ({ml ′,ml}) =ml and every literal in

ml ′ : ¬l ′k ∨ · · · ∨ ¬l
′
m+1

occurs in ml : ¬l ′
1
∨ · · · ∨ ¬l ′m+1

. �us, ml ′ : ¬l ′k ∨ · · · ∨ ¬l
′
m+1

subsumes

ml : ¬l ′
1
∨ · · · ∨ ¬l ′m+1

.
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Second, assume that lm+1 does not occur inml ′m+2
: C ′

1
and without loss of generality assume that

ml ′m+2
: C ′

1
has the formml ′m+2

: l1 ∨ · · · ∨ lk for 0 ≤ k ≤ m. Since σ ({ml ′m+2
,mlm+2}) =mlm+2 and

σ ({ml1, . . . ,mlk ,mlm+2 − 1}) is de�ned, σ ({ml1, . . . ,mlk ,ml ′m+2
− 1}) is also de�ned. �en there is

a resolventml ′ : ¬l ′
1
∨ · · · ∨¬l ′k ∨¬l

′
m+1

by GEN3 withml ′ = σ ({ml1, . . . ,mk ,mlm+1,ml ′m+2
− 1}) of

ml ′m+2
: l1∨· · ·∨lk withml1 : l ′

1
⇒ tua l1, . . . ,mlk : l ′k ⇒ tua lk andmlm+1 : l ′m+1

⇒ ♦a lm+1. We have

σ ({ml ′,ml}) =ml and every literal inml ′ : ¬l ′
1
∨ · · · ∨ ¬l ′k ∨¬l

′
m+1

occurs inml : ¬l ′
1
∨ · · · ∨ ¬l ′m+1

.

�us,ml ′ : ¬l ′
1
∨ · · · ∨ ¬l ′k ∨ ¬l

′
m+1

subsumesml : ¬l ′
1
∨ · · · ∨ ¬l ′m+1

. �

Lemma 5.16. Letml1 : l ′
1
⇒ tua l1, . . . ,mlm : l ′m ⇒ tua lm , andmlm+1 : l ′m+1

⇒ ♦a lm+1 be modal
a-clauses, and letmlm+2 : ¬l ′

1
∨ · · · ∨ ¬l ′m+1

with σ ({ml1, . . . ,mlm+1,mlm+2 − 1}) =ml be the literal
clause obtained as resolvent by GEN3 of a literal clausemlm+2 : l1∨· · ·∨lm with these modal a-clauses.
Letml ′m+2

: C ′
1
be a literal clause that subsumesmlm+2 : l1 ∨ · · · ∨ lm . �en we can derive a clause

ml ′ : C ′ that subsumesml : ¬l ′
1
∨ · · · ∨ ¬l ′m+1

.

Proof. �e proof proceeds in analogy to the second case in the proof of Lemma 5.15. As

ml ′m+2
: C ′

1
subsumesmlm+2 : l1 ∨ · · · ∨ lm we have σ ({ml ′m+2

,mlm+2}) =mlm+2 and all literals inC ′
1

are in {l1, . . . , lm}. Without loss of generality assume thatml ′m+2
: C ′

1
has the formml ′m+2

: l1∨· · ·∨lk
for 0 ≤ k ≤ m. Since σ ({ml ′m+2

,mlm+2}) = mlm+2 and σ ({ml1, . . . ,mlk ,mlm+2 − 1}) is de�ned,

σ ({ml1, . . . ,mlk ,ml ′m+2
−1}) is also de�ned. �en there is a resolventml ′ : ¬l ′

1
∨· · ·∨¬l ′k ∨¬l

′
m+1

by

GEN3 with ml ′ = σ ({ml1, . . . ,mk ,mlm+1,ml ′m+2
− 1}) of ml ′m+2

: l1 ∨ · · · ∨ lk with ml1 : l ′
1
⇒ tua l1,

. . . , mlk : l ′k ⇒ tua lk and mlm+1 : l ′m+1
⇒ ♦a lm+1. We have σ ({ml ′,ml}) = ml and every literal in

ml ′ : ¬l ′
1
∨ · · · ∨ ¬l ′k ∨ ¬l

′
m+1

occurs in ml : ¬l ′
1
∨ · · · ∨ ¬l ′m+1

. �us, ml ′ : ¬l ′
1
∨ · · · ∨ ¬l ′k ∨ ¬l

′
m+1

subsumesml : ¬l ′
1
∨ · · · ∨ ¬l ′m+1

. �

Theorem 5.17. Let Φ be an unsatis�able set of SNFml clauses. �en there is a refutation of Φ by
RESml of the form Φ = Φ0, . . . ,Φn where for every i , 0 ≤ i ≤ n − 1, Φi+1 = Φi ∪ {mli : Ci },mli : Ci is
not subsumed by a clause in Φi , and no premiseml ′i : C ′i used in the derivation ofmli : Ci is subsumed
by a clause distinct toml ′i : C ′i in Φi .

Proof. Let Φ′ be obtained from Φ by removing all subsumed clauses, that is, all clauses of the

formml : D such that there isml ′ : C ∈ Φ andml ′ : C ≤s ml : D. By Lemma 5.13, Φ′ is unsatis�able.

By �eorem 5.12, there is a refutation of Φ′ = Φ′
0
, . . . ,Φ′k of Φ′ by RESml.

By induction overΦ′
0
, . . . ,Φ′k we construct a refutationΦ0,Φ1, . . . ,Φn ,n ≤ k , and a monotonically

increasing partial function λ : N → N such that for all i , 0 ≤ i ≤ k , (1) λ(i) ≤ i ≤ n, (2) if i > 0

and Φλ(i) = Φλ(i)−1 ∪ {ml : C} thenml : C is not subsumed by a clause in Φλ(i)−1, (3) for all clauses

ml ′
1

: C ′
1
∈ Φ′i there exists a clauseml1 : C1 ∈ Φλ(i) such thatml1 : C1 subsumesml ′

1
: C ′

1
.

For the base case, we de�ne Φ0 = Φ′
0

and λ(0) = 0. Obviously, Property (1), λ(0) ≤ 0 ≤ n, holds.

Property (3) holds as Φλ(0) and Φ0 are identical. Property (2) holds as i = 0.

Now assume that we have proceeded to Φ′i in Φ′
0
, . . . ,Φ′k and have constructed a derivation

Φ0, . . . ,Φi , 0 ≤ i < k , and de�ned λ(j), for all j, 0 ≤ j ≤ i , with the desired properties.

In the induction step we consider Φ′i+1
. In the refutation Φ′

0
,Φ′

1
, . . . ,Φ′k , Φ′i+1

= Φ′i ∪ {ml ′ : D ′}
where ml ′ : D ′ is a literal clause derived by an application of one of the inference rules of RESml to

premises in Φ′i . By Property (3), for each such premiseml ′′ : D ′′, Φλ(i) contains a clause subsuming

ml ′′ : D ′′.
It is also possible that Φλ(i) already contains a clause ml : D that subsumes ml ′ : D ′. We then

de�ne λ(i + 1) = λ(i). Regarding Properties (1), as by induction hypothesis λ(i) ≤ i we have

λ(i + 1) ≤ i + 1. Properties (2) and (3) hold for i + 1 as, by induction hypothesis, they hold for i .
Assume thatml ′ : D ′ is not subsumed by a clause in Φλ(i). We distinguish the following cases

depending on which inference rule was used to deriveml : D:
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• If ml ′ : D ′ was derived by an application of one of the inference rules LRES, GEN1 and

GEN3, then by Lemmas 5.14, 5.15 and 5.16, respectively, either Φλ(i) contains a clause

ml : D that subsumesml ′ : D ′, or we can derive a clauseml : D from Φλ(i) that subsumes

ml ′ : D ′. We only need to consider the second case. Here we de�ne λ(i + 1) = λ(i) + 1 and

Φλ(i+1) = Φλ(i) ∪ {ml : D}. Properties (1) to (3) hold by construction.

• If ml ′ : D ′ was derived by an application of one of the inference rules MRES and GEN2
from premises in Φ′i , then these premises were already present in Φ′

0
as our calculus does

not derive new modal clauses. By construction, these premises are then also in Φλ(0) = Φ0

and in Φλ(i). �us, ml ′ : D ′ can be derived from Φλ(i). We de�ne λ(i + 1) = λ(i) + 1 and

Φ′λ(i+1)
= Φ′λ(i) ∪ {ml : D}. Properties (1) and (3) hold by construction. Regarding Property

(2) we have assumed that ml ′ : D ′ is not subsumed by a clause in Φλ(i), therefore Property

(2) holds for i + 1.

�is completes the induction step of our proof. Once the construction has proceeded to Φ′k , we

have obtained a derivation Φ0,Φ1, . . . ,Φn , with n = λ(k), in which the clauseml : C does not occur.

By Property (3), since Φk contains an empty clause ml ′′ : false with ml ′′ ∈ {0, ∗}, Φ′n contains a

clause subsumingml ′′ : false. �us, Φ′
0
,Φ′

1
, . . . ,Φ′n is a refutation. �

6 REFINEMENTS
In this section we propose two re�nements for the calculus given in Section 4, namely negative

and ordered resolution. Both re�nements restrict the clauses that can be selected for applying

the inference rules. Negative resolution [54] is a special case of semantic resolution [61], which

restricts clause selection by using an interpretation as a guide. For the classical case, given an

interpretation π , the (binary) semantic resolution rule is given by:

[S-RES] D ∨ l
D ′ ∨ ¬l
D ∨ D ′

where resolution can be applied only if one of the clauses in the premises is a nucleus, that is, a clause

which evaluates to true under π . By taking π (p) = false, for all propositional symbols p, semantic

resolution corresponds to negative resolution. Semantic resolution is complete irrespective of the

interpretation chosen to guide the search for a proof [61]. Moreover, semantic resolution is also

consequence complete [62]. �e following theorem, which follows directly from the consequence

completeness of semantic resolution, holds:

Theorem 6.1 ([62, Theorem 8]). If a clause C is a prime consequence of a �nite set Φ of clauses
and contains no negative (positive) literals, then there is a positive (negative) resolution derivation ofC
from Φ.

�eorem 6.1 ensures that all clauses containing only negated propositional symbols and which

are consequences of a set of clauses are generated by applications of negative resolution to the

clause set. We also note that the choice of literals to resolve during the application of the semantic

resolution rule can also be restricted to those which are maximal with respect to a given ordering

over the literals. However, for ordered semantic resolution, consequence completeness does not

hold for all orderings [38].

In the next sections, we show how restrictions can be applied to the modal case whilst retaining

completeness. As motivated by examples and discussed below, few adaptions to the normal form

are required. As the calculus operates on a set of clauses, we do not consider improvements that

could be applied to the transformation of a formula into the normal form, but the transformations
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that should be modularly applied to any given clause set in such a way that the calculus together

with either of the proposed re�nements is complete.

6.1 Negative Resolution
Negative resolution was introduced in [54] as a re�nement for the hyper-resolution method, which

restricts the clauses that are candidates to being resolved. �e following de�nitions are needed.

De�nition 6.2. A literal is said to be negative if it is the negation of a propositional symbol. A

clause is said to be negative if it contains only negative literals.

In the classical case, the negative binary resolution inference rule is exactly as S-RES, where

the resolution rule can only be applied if one of the clauses being resolved is negative. For the

re�nement of the resolution calculus given here, we de�ne a literal clauseml : D to be negative if,

and only if, D is a negative clause. Restricting the modal calculus to negative resolution means that

at least one of the literal clauses in the premises of inference rules is a negative literal clause, that

is, the restriction takes place in the application of the inference rules LRES, GEN1, and GEN3. As it

is, the calculus is not complete for negative resolution, as shown in Example 6.3.

Example 6.3. Consider the following set of clauses:

1. 0 : t0
2. 0 : t0 ⇒ tua t1
3. 0 : t0 ⇒ ♦a ¬p
4. 1 : ¬t1 ∨ p ∨ ¬q
5. 1 : ¬t1 ∨ p ∨ q

Resolving Clauses (4) and (5), by an application of LRES, results in:

6. 1 : ¬t1 ∨ p [LRES, 4, 5,q]

which can be resolved with Clauses (2) and (3), by an application of GEN1, generating:

7. 0 : ¬t0 [GEN1, 6, 2, 3, t1,p]

Applying LRES to Clauses (1) and (7) produces the empty clause. However, if the application of

LRES is restricted to negative resolution, Clause (6) would not have been generated and no proof

would have been found.

�e calculus can, however, be restricted to negative resolution with a small change in the normal

form by allowing only positive literals in the scope of modal operators. Given a set of clauses in

SNFml , we apply the following transformation to all modal clauses (where ml ∈ N ∪ {∗}, t ∈ L,

p ∈ P , and t ′ is a new propositional symbol):

ρ(ml : t ⇒ tua ¬p) = (ml : t ⇒ tua t ′) ∧ ρ(ml + 1 : t ′⇒ ¬p)
ρ(ml : t ⇒ ♦a ¬p) = (ml : t ⇒ ♦a t ′) ∧ ρ(ml + 1 : t ′⇒ ¬p)

It can be shown that the resulting set of clauses is satis�able if, and only if, the original set of

clauses is satis�able. We call the resulting normal form SNF+ml . As the resulting set of clauses is

still in SNFml , it follows immediately that the original calculus RESml is terminating, sound, and

complete for SNF+ml . We denote by RESneg
ml the resolution calculus resulting by restricting RESml

to negative resolution. Obviously, clause selection does not have any impact on soundness and

termination. It rests to prove that restricting the application of the resolution rules to the case

where at least one of the clauses is negative is complete.
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Theorem 6.4. Let Φ be a set of clauses in SNF+ml . If Φ is unsatis�able, then there is a refutation by
RESneg

ml from Φ.

Proof. We examine all cases of �eorem 5.12 which show that the applications of the inference

rules correspond to deletions of nodes in the behaviour graph. For sets of literal clauses, negative

resolution is a complete refutation strategy [54]. Hence, if the set of literal clauses at the modal

level ml is contradictory, then ml : false is generated by applications of the negative version of

LRES. Under the new normal form, the inference rules MRES and GEN2 can never be applied. �us,

Cases 1 and 2 of �eorem 5.12 hold trivially. For the case where the literals in the scope of modal

operators contradict with the set of literal clauses (Cases 3, 4, and 5 in the proof of �eorem 5.12),

the proof follows from the fact that negative resolution is also consequence complete [62]: as all

negative clauses which are consequences of the set of literal clauses are generated, the rules GEN1
and GEN3 can be applied as follows. For Case 3, if ml : l ⇒ ♦a l ′ occurs in the clause set, and l ′

and the literal clauses at the next modal level are contradictory, because negative resolution is

consequence complete andml + 1 : ¬l ′ is a negative clause, then the application of the negative

version of LRES to the set of literal clauses generatesml +1 : ¬l ′, to which GEN1 can be applied. For

Case 4, if ml : l ⇒ ♦a l ′, ml : l1 ⇒ tua l ′1, . . ., ml : lm ⇒ tua l ′m occur in the clause set and the literals

l ′
1
,. . .,l ′m and the literal clauses at the modal levelm+1 are contradictory, then ¬l ′

1
∨ . . .∨¬l ′m , which

is a negative clause, is a consequence of the set of literal clauses. By consequence completeness

of negative resolution, applications of the negative version of LRES to the set of literal clauses

generates ml + 1 : ¬l ′
1
∨ . . . ∨ ¬l ′m , to which GEN3 can be applied. For Case 5, if ml : l ⇒ ♦a l ′,

ml : l1 ⇒ tua l ′1, . . ., ml : lm ⇒ tua l ′m occur in the clause set and the literals l ′
1
,. . .,l ′m , l

′
and the

literal clauses at the modal level m + 1 are contradictory, then ¬l ′
1
∨ . . . ∨ ¬l ′m ∨ ¬l

′
, which is

a negative clause, is a consequence of the set of literal clauses. By consequence completeness

of negative resolution, applications of the negative version of LRES to the set of literal clauses

generatesml + 1 : ¬l ′
1
∨ . . . ∨¬l ′m ∨¬l

′
, to which GEN1 can be applied. As in all cases the negative

version of LRES produces the needed clauses corresponding to deletions on the behaviour graph, if

the set of clauses Φ is not satis�able, then there is a negative resolution proof corresponding to the

deletion procedure described in Section 5. �

Example 6.5. We show a negative refutation for the set of clauses given in Example 6.3. Clauses

(3’) and (6’) are introduced in order to obtain a set of clauses in SNF+ml .

1. 0 : t0
2. 0 : t0 ⇒ tua t1

3
′. 0 : t0 ⇒ ♦a t2
4. 1 : ¬t1 ∨ p ∨ ¬q
5. 1 : ¬t1 ∨ p ∨ q
6
′

1 : ¬t2 ∨ ¬p

�e refutation proceeds as follows, where the negative clauses are underlined in the justi�cation

for each of the obtained resolvents:

7
′

1 : ¬t1 ∨ ¬t2 ∨ ¬q [LRES, 6′, 4,p]
8
′

1 : ¬t1 ∨ ¬t2 ∨ q [LRES, 6′, 5,p]
9
′

1 : ¬t1 ∨ ¬t2 [LRES, 7′, 8′,q]
10
′

0 : ¬t0 [GEN1, 2, 3′, 9′, t1, t2]
11
′

0 : false [LRES, 10
′, 1, t0]
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6.2 Ordered Resolution
Ordered resolution is a re�nement of resolution where inferences are restricted to maximal literals

in a clause, with respect to a well-founded ordering on literals. Formally, let Φ be a set of clauses and

PΦ be the set of propositional symbols occurring in Φ. Let � be a well-founded and total ordering

on PΦ. �is ordering can be extended to literals LΦ occurring in Φ by se�ing ¬p � p and p � ¬q
whenever p � q, for all p,q ∈ PΦ. A literal l is said to be maximal with respect to a clause C ∨ l if,

and only if, there is no l ′ occurring in C such that l ′ � l . In the case of classical binary resolution,

the ordering re�nement restricts the application to clauses C ∨ l and D ∨ ¬l where l is maximal

with respect to C and ¬l is maximal with respect to D. Ordered resolution is refutation complete

[27] and it has been successfully applied as the core strategy for many automated theorem proving

tools for both classical and modal logics [4, 29, 58, 64, 66]. It has also been shown that classical

hyper-resolution is complete under ordering re�nements for any ordering on the set of literals [10].

Restricting resolution by orderings has been proved complete for hybrid logics in [3].

We show that the restriction given by ordered resolution cannot be easily applied to the calculus

given in Section 4. From the results in [10], any ordering over literals can be used to �nd contradic-

tions at the propositional fragment of the language by restricting the application of LRES. However,

the application of the hyper-resolution rules (GEN1 and GEN3) requires that the relevant literal

clauses for applying those inference rules are generated. As ordered resolution lacks consequence

completeness [38], such clauses cannot be derived for all orderings, as we show in the next two

examples.

Example 6.6. Consider the following set of clauses:

1. 0 : t0
2. 0 : t0 ⇒ tut1
3. 1 : ¬t1 ∨ p
4. 1 : ¬t1 ∨ q
5. 0 : t0 ⇒ ♦t2
6. 1 : ¬t2 ∨ ¬p ∨ ¬q

which is unsatis�able: applying LRES to Clauses (3), (4), and (6), we obtain 1 : ¬t1 ∨ ¬t2; this clause

can then be resolved, by an application of GEN1, with Clauses (2) and (5), generating 0 : ¬t0, which

contradicts with Clause (1) at the modal level 0.

�e ordering given by t0 � t1 � t2 � p � q does not allow any inference rule to be applied if

LRES is restricted to ordered resolution. Reversing the ordering allows a refutation to be found for

this particular example. In the next example, we show a refutation for ♦1 (p∧♦2 q)∧tu1 (¬p∨tu2 ¬q).

Example 6.7. Consider the following set of clauses, where literals are ordered within each clause,

that is, the rightmost literal is the maximal literal with respect to each clause (p � q � t0 � t1 �
t2 � t3).

1. 0 : t0
2. 0 : t0 ⇒ ♦1 t1
3. 0 : t0 ⇒ tu1 t2
4. 1 : ¬t1 ∨ p
5. 1 : t3 ∨ ¬t2 ∨ ¬p
6. 1 : t1 ⇒ ♦2 q
7. 1 : t3 ⇒ tu2 ¬q
8. 1 : ¬t3 ∨ ¬t1 [MRES, 6, 7,q]
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9. 1 : ¬t2 ∨ ¬t1 ∨ ¬p [LRES, 8, 5, t3]
10. 1 : ¬t2 ∨ ¬t1 [LRES, 9, 4,p]
11. 0 : ¬t0 [GEN1, 10, 2, 3, t1, t2]
12. 0 : false [LRES, 11, 1, t0]

�e set of clauses given in Example 6.7 is unsatis�able, as shown in the refutation above. However,

for the given ordering, the literal t3 in Clause (8) cannot be resolved with its complement in Clause

(5), as ¬t3 is not the maximal literal in this clause. �us, by using the ordered version of LRES, a

refutation for this set and this particular ordering does not exist.

�e examples show that �nding an ordering for which the ordered version of the calculus is

complete is not trivial. �e key idea for achieving completeness is to introduce new literals in the

scope of the modal operators and set their ordering to be “low enough” so that the relevant literal

clauses needed for the modal hyper-resolution rules are generated. Given a set of clauses Φ in

SNFml and a well-founded and total ordering � on PΦ, we apply the following transformation to

all modal clauses (whereml ∈ N ∪ {∗}, t , l ∈ L and t ′ is a new propositional symbol):

ρ(ml : t ⇒ tua l) = (ml : t ⇒ tua t ′) ∧ ρ(ml + 1 : t ′⇒ l)
ρ(ml : t ⇒ ♦a l) = (ml : t ⇒ ♦a t ′) ∧ ρ(ml + 1 : t ′⇒ l)

and extend the given ordering by se�ing p � t ′, for all p occurring in Φ. We call the resulting

normal form SNF++ml . Note that we only need to apply the rewriting rule to the clauses in Φ, but not

to the generated clauses in SNF++ml . �us, the rewriting procedure is terminating. Again, it is easy

to show that Φ is satis�able if, and only if, the resulting set of clauses in SNF++ml is satis�able. For

a set of clauses Φ = {φ1, . . . ,φm}, we denote by ρ(Φ) the set resulting of the application of ρ to

each formula in Φ, that is, ρ(Φ) = ρ(φ1) ∪ . . . ∪ ρ(φm). We denote by RESord
ml the resolution calculus

resulting by restricting RESml to ordered resolution.

In order to show completeness, we have to show that given a set of SNF++ml clauses, all the cases

of �eorem 5.12 hold. We �rst note that, for a modal levelml , the fact that there is a refutation for

an unsatis�able set of literal clauses, for any ordering, follows from [10]. For the same reason, for a

contradictory set of clauses at the modal levelml , the clauseml : false will be derived and the rule

GEN3 in the special case wherem = 0 can be applied if there is any negative modal clause at the

levelml − 1. Also, as there are only positive literals in the scope of modal operators, the rules GEN2
and MRES cannot be applied. �us, Cases 1 and 2 of �eorem 5.12 hold trivially. It rests to show

that the inference rules GEN1 and GEN3 will be applied whenever a contradiction between literals

in the scope of modal operators in modal clauses and the set of literal clauses occur. We recall that

GEN1 should be applied whenever the set of literals occurring in the scope of modal literals and the

literal clauses are contradictory, which corresponds to Cases 3 and 5 of �eorem 5.12; GEN3 should

be applied whenever the set of literals occurring in the scope of modal operators in a-positive

clauses and the set of literal clauses is contradictory, which corresponds to Case 4 of �eorem 5.12.

�e next lemma shows that the relevant literal clause for the application of GEN1 is generated.

Lemma 6.8. Let Φ be a set of clauses in SNFml with χ = {ml : l ′
1
⇒ tua ¬l1, . . . ,ml : l ′m ⇒

tua ¬lm ,ml : l ′ ⇒ ♦a ¬l} ⊆ Φ. Let ρ(χ ) = χ ′ml ∪ χ
′
ml+1

with χ ′ml = {ml : l ′
1
⇒ tua l ′′

1
, . . . ,ml : l ′m ⇒

tua l ′′m ,ml : l ′⇒ ♦a l ′′} and χ ′ml+1
= {ml + 1 : ¬l ′′

1
∨¬l1, . . . ,ml + 1 : ¬l ′′m ∨¬lm ,ml + 1 : ¬l ′′ ∨¬l}.

Let Φml+1 = {C | ml + 1 : C ∈ Φ and C is a disjunction of literals} be the set of literal clauses at the
modal levelml + 1 and Φ′ml+1

= {ml + 1 : C | C is a disjunction of literals} ⊆ Φ be the set of labelled
modal clauses at this same modal level. If Ξ = {¬l1, . . . ,¬lm ,¬l} ∪ Φml+1 is unsatis�able and every
strict subset of Ξ is satis�able, then there is a derivation ofml + 1 : ¬l ′′

1
∨ . . . ∨ ¬l ′′m ∨ ¬l

′′ from
Ξ′ = χ ′ml+1

∪ Φ′ml+1
by applications of ordered LRES.
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Proof. If Ξ is unsatis�able then, by the results in [10], there is a refutation for Ξ, for any ordering

over the literals occurring in Ξ. Let Ψ0, . . . ,Ψk , with Ψ0 = Ξ and false ∈ Ψk be such a refutation.

We inductively construct a derivation Ψ′
0
, . . . ,Ψ′k such that for every i , 1 ≤ i ≤ k , the following

Property (1) holds: for every clause C ∈ Ψi there exists a clauseml + 1 : C ∨ D ∈ Ψ′i , such that all

literals in D are in {¬l ′′
1
, . . . ,¬l ′′m ,¬l

′′} and every literal in D is smaller than any literal in C .

�e construction starts with Ψ′
0
= Ξ′ = χ ′ml+1

∪Φ′ml+1
. By de�nition of Ψ′

0
, every clause in Ψ′

0
is of

the formml+1 : C∨D, where D is either the empty disjunction or is a literal in {¬l ′′
1
, . . . ,¬l ′′m ,¬l

′′},

every literal in D is smaller than any literal in C , and C is either a literal in {¬l1, . . . ,¬lm ,¬l} or is

a literal clause in Φml+1. Note, in particular, that each literal in {¬l1, . . . ,¬lm ,¬l} corresponds to

one of the clauses in χ ′ml+1
= {ml + 1 : ¬l ′′

1
∨ ¬l1, . . . ,ml + 1 : ¬l ′′m ∨ ¬lm ,ml + 1 : ¬l ′′ ∨ ¬l}. �us,

C ∈ Ξ = Ψ0 and Property (1) holds for Ψ0 and Ψ′
0
.

Assume that Ψ′
0
, . . . ,Ψ′i has been constructed and that Property (1) holds for Ψi and Ψ′i .

Let Ψi+1 = Ψi ∪ {C ∨C
′}, where C ∨C ′ is the resolvent of the application of ordered LRES to

{C ∨ ld ,C
′ ∨ ¬ld } ∈ Ψi , for some literal ld . Clearly, ld and ¬ld are maximal with respect to C and

C ′, respectively; otherwise, the clause C ∨C ′ would have not been derived by ordered resolution

and added to Ψi+1. As Property (1) holds for Ψi and Ψ′i , there exist clauses ml + 1 : C ∨ D ∨ ld
and ml + 1 : C ′ ∨ D ′ ∨ ¬ld in Ψ′i all the literals in D and D ′ are in {¬l ′′

1
, . . . ,¬l ′′m ,¬l

′′} and are

smaller than every literal inC andC ′. �us, ordered LRES can be applied toml + 1 : C ∨D ∨ ld and

ml + 1 : C ′ ∨ D ′ ∨ ¬ld in Ψ′i and we obtain Ψ′i+1
= Ψ′i ∪ {ml + 1 : C ∨C ′ ∨ D ∨ D ′}. Property (1)

holds for Ψi+1 and Ψ′i+1
.

Since false ∈ Ψk there must then be a clause ml + 1 : D ∈ Ψ′k such that all literals in D are in

{¬l ′′
1
, . . . ,¬l ′′m ,¬l}. Because every strict subset ofΞ is satis�able, all the literals in {¬l1, . . . ,¬lm ,¬l}

will be premises in an inference step in Ψ0, . . . ,Ψk . �erefore, all clauses in χ ′ml+1
= {ml + 1 :

¬l ′′
1
∨¬l1, . . . ,ml + 1 : ¬l ′′m ∨¬lm ,ml + 1 : ¬l ′′ ∨¬l} also contribute to the derivation ofml + 1 : D.

Note that there are no positive occurrences of l ′′i , 1 ≤ i ≤ m, and l ′′ in Ξ′, so once one of these

literal occurs negatively in a clause, it cannot be resolved away. �us, ml + 1 : D is exactly the

clauseml + 1 : ¬l ′′
1
∨ . . . ∨ ¬l ′′m ∨ ¬l

′′
. �

Lemma 6.8 shows that by applying further transformation to the set of clauses and ensuring

that the new literals are minimal with respect to the given ordering, the relevant literal clause is

generated by the restricted version of the propositional resolution inference rule. �us, GEN1 can

be applied as given in the proof of Cases 3 and 5 of �eorem 5.12. �e proof that GEN3 can also be

applied (Case 4 of �eorem 5.12) is very similar and omi�ed here. �is shows the completeness of

RESord
ml on sets of clauses in SNF++ml .

Theorem 6.9. Let Φ be a set of clauses in SNF++ml . If Φ is unsatis�able, then there is a refutation by
RESord

ml from Φ.

In Examples 6.10 and 6.11 below, we show how the clauses introduced in Examples 6.6 and 6.7

can be transformed into SNF++ml and then refuted using ordered resolution.

Example 6.10. Let Φ be the set of clauses given in Example 6.6 where the maximal literal in each

literal clause is underlined, that is,

1. 0 : t0
2. 0 : t0 ⇒ tut1
3. 1 : ¬t1 ∨ p

4. 1 : ¬t1 ∨ q

5. 0 : t0 ⇒ ♦t2
6. 1 : ¬t2 ∨ ¬p ∨ ¬q
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and t0 � t1 � t2 � p � q be the ordering of literals. From Φ, we obtain the following set of SNF++ml
clauses, where Clause 2 (resp. Clause 5) from above has been replaced by Clauses 2’ and 7 (resp.

Clauses 5’ and 8), the ordering over the literals is extended such that q � t3 � t4, and the maximal

literals in each literal clause are underlined:

1. 0 : t0
2
′. 0 : t0 ⇒ tut3
3. 1 : ¬t1 ∨ p

4. 1 : ¬t1 ∨ q

5
′. 0 : t0 ⇒ ♦t4
6. 1 : ¬t2 ∨ ¬p ∨ ¬q

7. 1 : ¬t3 ∨ t1 [SNF++ml , 2]

8. 1 : ¬t4 ∨ t2 [SNF++ml , 5]

�e refutation restricted by ordering follows:

9. 1 : ¬t3 ∨ p [LRES, 7, 3, t1]

10. 1 : ¬t4 ∨ ¬p ∨ ¬q [LRES, 8, 6, t2]

11. 1 : ¬t4 ∨ ¬t3 ∨ ¬q [LRES, 10, 9,p]

12. 1 : ¬t3 ∨ q [LRES, 7, 4, t1]

13. 1 : ¬t3 ∨ ¬t4 [LRES, 12, 11,q]

14. 0 : ¬t0 [GEN1, 13, 2′, 5′, t4, t3]

15. 1 : false [LRES, 14, 1, t0]

Example 6.11. We start with the following set of SNFml clauses given in Example 6.7 where

literals are ordered within each clause, that is, the rightmost literal, which is underlined, is the

maximal literal with respect to each clause (p � q � t0 � t1 � t2 � t3).

1. 0 : t0
2. 0 : t0 ⇒ ♦1 t1
3. 0 : t0 ⇒ tu1 t2
4. 1 : ¬t1 ∨ p

5. 1 : t3 ∨ ¬t2 ∨ ¬p

6. 1 : t1 ⇒ ♦2 q
7. 1 : t3 ⇒ tu2 ¬q

�e set of SNF++ml clauses is given below, where Clause (2) (resp. Clause (3), Clause (6) and Clause (7))

from above has been replaced by Clauses (2’) and (8) (Clauses (3’) and (9); Clauses (6’) and (10); and

Clauses (7’) and (11)) and the ordering over the literals is extended such that t3 � t4 � t5 � t6 � t7.

1. 0 : t0
2
′. 0 : t0 ⇒ ♦1 t4

3
′. 0 : t0 ⇒ tu1 t5
4. 1 : ¬t1 ∨ p

5. 1 : t3 ∨ ¬t2 ∨ ¬p

6
′. 1 : t1 ⇒ ♦2 t6

7
′. 1 : t3 ⇒ tu2 t7
8. 1 : ¬t4 ∨ t1
9. 1 : ¬t5 ∨ t2
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10. 2 : ¬t6 ∨ q

11. 2 : ¬t7 ∨ ¬q

and the refutation proceeds as follows:

12. 2 : ¬t7 ∨ ¬t6 [LRES, 10, 11,q]

13. 1 : ¬t3 ∨ ¬t1 [GEN1, 12, 6′, 7′, t6, t7]

14. 1 : t3 ∨ ¬t2 ∨ ¬t1 [LRES, 4, 5,p]
15. 1 : ¬t4 ∨ t3 ∨ ¬t2 [LRES, 14, 8, t1]

16. 1 : ¬t5 ∨ ¬t4 ∨ t3 [LRES, 15, 9, t2]

17. 1 : ¬t4 ∨ ¬t3 [LRES, 13, 8, t1]

18. 1 : ¬t5 ∨ ¬t4 [LRES, 16, 17, t3]

19. 0 : ¬t0 [GEN1, 18, 2′, 3′, t4, t5]

20. 0 : false [LRES, 19, 1, t0]

7 EXPERIMENTAL EVALUATION
K

S
P [41, 43, 44] is an implementation, wri�en in C, of the calculus presented in Section 4. �e

sources as well as instructions for installing and running the prover can be found in [42]. �e

prover was designed to support experimentation with di�erent combinations of re�nements of its

basic calculus. Re�nements and options for (pre)processing the input are coded as independently as

possible in order to allow for the easy addition and testing of new features. �e main loop is based

on the given-clause algorithm implemented in O�er [37], a variation of the set of support strategy

[69], a re�nement which restricts the set of choices of clauses participating in a derivation step.

We have evaluated the di�erent re�nements implemented in K
S
P over two collections of modal

formulae:

(1) �e complete set of TANCS-2000 modalised random QBF (MQBF) formulae [36] comple-

mented by the additional MQBF formulae provided by Kaminski and Tebbi [30]. �is

collection consists of 1016 formulae in total, of which 617 are known to be satis�able and

399 are known to be unsatis�able. �e minimum modal depth of formulae in this collection

is 19, the maximum 225, average 69.2 with a standard deviation of 47.5.

(2) Selected instances from the 18 classes of parameterised LWB basic modal logic benchmark

formulae [12]. �e parameter values refer to di�erent characteristics of the formulae being

generated (e.g. for the k branch n family, the parameter n ∈ N generates formulae of 2n + 3

variables and modal depth n+1; for the k d4 p family, the parameter refers to the maximum

nesting of modal operators; please, refer to [12] for details about the use of parameter

values in the construction of formulae for all the families). For each class we have chosen

56 parameter values and corresponding formulae so that only the best current provers,

if any at all, can solve every formula in a class within a time limit of 1000 CPU seconds.

In total, the collection consists of 1008 formulae of which half are satis�able and half are

unsatis�able by construction. �e minimum modal depth of formulae in this collection is 1,

the maximum 30,004, average 1,065.7 with a standard deviation of 2,670.1.

�ese benchmark formulae have previously been used in [41, 43, 44]. We have excluded a third

collection of benchmark formulae that was used in [41, 43, 44], the randomly generated 3CNFK
formulae, as they are of low modal depth and therefore the layered normal form and layered

resolution calculus o�er li�le bene�t for them.
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Fig. 1. Influence of Refinements on Performance of Resolution

Benchmarking was performed on PCs with an Intel i7-2600 CPU @3.40GHz and 16GB main

memory. For each formula and option of the prover we have determined the median run time over

�ve runs with a time limit of 60 CPU seconds for each run.

Figure 1 compares the impact of di�erent re�nements of resolution on the performance of K
S
P on

the MQBF and LWB collections. It is important to remember that the re�nements require di�erent

normal forms. For unre�ned resolution, that is, the calculus given by the rules in Table 3, we use

SNFml clauses. For negative resolution and ordered resolution we use SNF+ml and SNF++ml clauses,

respectively.

Irrespective of the re�nement, the shortest clause is selected to perform inferences; both forward

and backward subsumption are used, i.e. newly generated or old clauses which are subsumed are

deleted; prenex, that is, moving the modal operators outward the formula as far as possible, is set;

and no simpli�cation steps are applied.

For the MQBF collection, negative resolution performs be�er than both ordered and unre�ned

resolution. Somehow surprisingly, unre�ned resolution performs almost as well as ordered resolu-

tion for this collection of clauses: whilst ordered resolution produces an output for 906 formulae,

the unre�ned resolution produces an output for 901 formulae within the same timeout. A possible

reason for the good performance of the unre�ned resolution is that for the problems in the MQBF

benchmark there are few propositional symbols within each modal level, thus the restrictions on

the propositional part of the calculus do not have a huge impact on the overall performance of the

prover. Also, the normal forms required for applying negative and ordered resolution introduce

Unre�ned Resolution Negative Resolution Ordered Resolution

#Solved Parameter #Solved Parameter #Solved Parameter

k branch n 2 2 4 4 12 12

k poly n 10 20 11 40 18 180

k poly p 11 40 11 40 19 200

k t4p n 31 2200 31 2200 19 1000

k t4p p 50 9000 50 9000 39 3000

Table 4. Performance of Refinements on Selected LWB Benchmark Classes
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Fig. 2. Influence of Normal Form on Performance of Unrefined Resolution

new propositional symbols, which contribute to the extra time spent on the propositional portion

of the problems.

For the LWB collection, there is no discernible di�erence between unre�ned, negative and

ordered resolution as far as the total number of solved instances is concerned. However, on the

level of individual classes within the collection there are signi�cant di�erences. Table 4 shows the

results for 5 of the 18 classes of the collection, k poly p and k t4p p contain only provable formulae,

k branch n, k poly n and k t4p n only non-provable formulae. For each re�nement, the �rst

column in Table 4 shows the number of instances solved and the second column shows the highest

value of the parameter solved within the given timeout. On k t4p n and k t4p p, unre�ned and

negative resolution perform considerably be�er than ordered resolution while for the remaining

three classes the opposite is true. �e poor performance of ordered resolution on k t4p n and

k t4p p is linked to the extra clauses in SNF++ml compared to SNF+ml .

Figure 2 shows the in�uence of di�erent normal forms on unre�ned resolution for the MQBF

and LWB collections. �ere is very li�le to no di�erence between the performance on SNFml and

on SNF+ml while performance on SNF++ml is signi�cantly worse. �e good performance of unre�ned

resolution together with SNF+ml on the MQBF collection is not surprising: because of the structure

of the problems in this collection, there are not many negated propositional symbols to be renamed

in the scope of the modal operators. Considering the 1016 formulae in the MQBF collection, the

average number of propositional symbols is 22. A�er translation into SNFml , the average number

of propositional symbols per problem is 4605. With SNF+ml , this number increases slightly to 4661

propositional symbols. �e increase in the average number of clauses is similarly small, from 6410

clauses per problem to 6426 clauses. So, there is no signi�cant di�erence between the two normal

forms on MQBF formulae and therefore no signi�cant di�erence in the performance of unre�ned

resolution. However, with SNF++ml , the number of propositional symbols almost doubles, there are

9016 propositional symbols on average per problem, the number of clauses almost doubles to 10781

clauses per problem, which explains the bad performance of ordered resolution.

A similar pa�ern can also be observed for the LWB benchmark formulae. On the 398 formulae

that K
S
P can solve within the time limit, the average number of propositional symbols per problem

in SNFml , SNF+ml and SNF++ml is 7496, 8189, and 13377, respectively; only a 9% increase from SNFml
to SNF+ml but a 78% increase from SNFml to SNF++ml . �e average number of clauses per problem in

SNFml , SNF+ml and SNF++ml is 10633, 11309, and 16498; a 6% increase from SNFml to SNF+ml and a
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Fig. 3. Influence of Subsumption on Performance of Negative Resolution

55% increase from SNFml to SNF++ml . �is results in a small di�erence in performance of unre�ned

resolution on SNFml clause sets versus SNF+ml clause sets but signi�cant di�erence between these

two normal forms and SNF++ml .

K
S
P implements both forward subsumption and backward subsumption. With forward subsump-

tion enabled no newly derived literal clause that is subsumed by an existing literal clause will be

added to the clause set. With backward subsumption enabled, any newly derived literal clause will

be used to remove existing literal clauses subsumed by it. In both cases, subsumption is applied

in lazy mode: a clause is tested for subsumption only when it is chosen as a candidate for the

resolution and only against clauses in the usable, that is, the set of processed clauses. As pointed

out in [59], lazy subsumption avoids expensive checks for clauses that might never be selected

during the search of a proof.

Figure 3 shows the impact of forward and backward subsumption on negative resolution. It

shows that forward subsumption improves performance signi�cantly. On the MQBF collection,

enabling backward subsumption in addition to forward subsumption only has a marginal positive

e�ect: Only a further 20 formulae (2.2%) can be solved within the time limit. On the LWB collection,

backward subsumption has a more bene�cial e�ect. Here, an additional 86 formulae (30.0%) can be

solved within the time limit.

8 RELATEDWORK & DISCUSSION
In [2], a translation-based method for K

1
is given. Formulae are translated into the Guarded

Fragment of First-Order logic [1] taking into consideration the modal level where propositional

symbols and modal operators occur. �e main di�erence from the usual translation is that relational

symbols and propositional symbols are indexed by their modal level at the target language. For

instance, ♦(p ⇒ tu¬p) is �rstly translated into ♦1
(p1 ⇒ tu2¬p2) and, via standard translation,

the formula ∃y((R1xy ∧ P1) ⇒ ∀z(R2yz ⇒ ¬P2)) is obtained. �us, the application of resolution to

p and ¬p at the original formula can be avoided in the target language as their translation is not

uni�able. �e presented translation is suitable for local reasoning. However, for global reasoning,

some mechanism for identifying di�erent symbols that are used to translate the same propositional

symbol in the original formula would be needed.

�e proof method for K
1

given in [5] is also based on translation, but into Hybrid logics (see

[15], for a survey on Hybrid logics). Formulae are labelled by either constants a, which correspond
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to names of worlds in a model, or by pairs (a,b) representing the relation between two worlds

named by a and b, respectively. �e formula ♦(p ⇒ ♦¬p) can then be translated into the set

of clauses {R(a,b),b : ¬p ∨ R(b, c), c : ¬p}, where a,b, c are constants and R is a new relational

symbol. Although this translation does not take into consideration the modal levels where the

formulae occur, it avoids applying the resolution rules to occurrences of p at di�erent modal levels

as their labels cannot be uni�ed. �e presented calculus is also only suitable for local reasoning.

Re�nements based on selection functions and ordering for the labelled resolution calculus for

Hybrid logics are given in [3].

�e method most closely related to ours is a combination of the optimised functional translation

of Kn to basic path logic [28, 57], which improves and extends previous approaches for translating

modal problems into �rst-order ones [16, 46–48]. Basic path logic is a fragment of sorted �rst-order

logic with a sort SW for the set of worldsW , a sort Sa for each index a ∈ An , binary functions [ ]a ,

a ∈ An , of sort SW × Sa → SW , special unary predicates def a , a ∈ An , of sort SW representing

subsets ofW , and unary predicate symbols Pp of sort SW for each propositional variable p ∈ P . �e

formula ♦1 (p ∧tu1 ¬p) is translated to def
1
(x : SW ) ∧ (Pp ([x : SW ,y : S1]) ∧ ∀z : S1(def 1

([x : SW ,y :

S1]) ⇒ ¬Pp ([[x : SW ,y : S1], z : S1]))) from which the set of clauses {def
1
(a : SW ), Pp ([a : SW ,b :

S1]),¬def 1
([a : SW ,b : S1]) ∨ ¬Pp ([[a : SW ,b : S1], z : S1])} can be obtained. No inferences by

resolution are possible from this set of clauses as, for instance, Pp ([x : SW ,y : S1]) and Pp ([[x : SW ,y :

S1], z : S1]) do not unify. If one only considers the local satis�ability problem, then it is possible to

further improve this translation. In the polyadic optimised functional translation the combination

of unary predicate symbols and nested function applications of depth is replaced by n-ary predicate

symbols and sorts are encoded into the predicate symbols. �e formula ♦1 (p ∧ tu1 ¬p) is then

translated to def
1,W (x)∧(Pp,W ,1(x ,y)∧∀z(def 1,W ,1(x ,y) ⇒ ¬Pp,W ,1,1(x ,y, z)))with corresponding

set of clauses {def
1,W (a), Pp,W ,1(a,b),¬def 1,W ,1(a,b) ∨ ¬Pp,W ,1,1(a,b, z)}. Again, no resolution

inferences are possible from this set of clauses.

�e work presented here extends the calculus given in [39], which could only deal with local

reasoning. Moreover, two of the inference rules given in [39], namely IRES1 and IRES2, are

not required for completeness. Both calculi have been implemented as part of the proof search

procedures of K
S
P [41, 43]. For local reasoning, the experimental results given in [41] show that

the labelling of clauses is e�ective in avoiding unnecessary applications of inference rules, thus

improving performance. From a theoretical point of view, the improvement in e�ciency can be

explained by the following facts. �e resolution procedure for classical logic runs in deterministic

exponential time in the size of the number of literals occurring in the clause set [55]. �e modal

inference rules for the calculus given here do not change the overall complexity, as they can be

seen as variations of the classical inference resolution rule. �us, if m is the number of literals

occurring in the clause set, the implementation of the saturation procedure is bound to run in time

T (m) = O(2m). However, if we consider that the modal problem has modal depthml > 1 and that

the propositional symbols are uniformly distributed over the modal levels, then the expectation of

the number of propositions by modal level is given by m/ml . �us, the recurrence equation for

the running time of the saturation procedure is given by T (m) =ml ×T (2m/ml ), whose solution is

in O(
ml√

2
m). It is then clear that the saturation procedure based on levels is asymptotically be�er

than the previous saturation procedure.

In [41] we have also compared the performance of K
S
P with state-of-the art provers, namely

BDDTab [20], FaCT++ 1.6.3 [65], InKreSAT 1.0 [30], Spartacus 1.0 [21], and a combination of

the optimised functional translation [28] with Vampire 3.0 [31]. Besides the MQBF [30, 36] and

the LWB collections presented above, one more collection of modal formulae was used in the

comparison: the randomly generated 3CNF
K

formulae [50] over 3 to 10 propositional symbols with
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modal depth 1 or 2. When considering the three di�erent benchmarks, K
S
P performs best on the

modalised random QBF formulae. In contrast, K
S
P performs worse on the randomly generated

3CNF
K

formulae as the labelling o�ers very li�le advantage for modal formula with a maximal

modal depth of 2. Finally, for the LWB benchmark classes, performance very much depends on the

characteristics of the individual class, without a clear picture emerging. Overall, the experimental

results given in [41] suggest that K
S
P performs best if propositional variables are evenly spread

across a wide range of modal levels. It is worth noting that for the LWB benchmark, ordered

resolution outperforms the other implemented re�nements. �e implementation of the di�erent

strategies allows for the user to choose the re�nement which is more suitable for the structure of

the problem in hand.

9 CONCLUSION
We have presented a novel resolution calculus for Kn that restricts resolution inferences to formulae

at the same modal level. �e experimental evaluation shows that negative resolution performs be�er

than both ordered resolution and resolution with no restrictions, for the benchmark considered

here. �e paper provides full proofs that the calculus and its re�nements are sound, complete and

terminating. Moreover, we show that the calculus remains complete if subsumption is applied. �e

evaluation shows that applying forward subsumption has a positive impact on the performance

of the prover. �e evaluation also shows that the gains from the use of ordered resolution are

counteracted by the requirement to use a clausal normal form that o�en contains considerably

more clauses than the normal forms we can use with unre�ned or negative resolution. In future

work we will investigate how this relative increase in size can be minimised.

In the calculus presented here, we have restricted the labelling to modal levels, which makes the

uni�cation procedure required for the application of the inference rules very simple. We conjecture

that having more structured labels might help achieving more e�cient proof search procedures in

some cases. For instance, for formulae with a large number of occurrences of the ♦a operator by

modal level, a ∈ An , that is, formulae with high modal branching, it might help to use the labels to

refer to worlds as well. �is kind of labelling would mimic labelled tableaux procedures, as that

of [18], and possibly minimise the number of inference rules to be applied during the saturation

of satis�able sets of propositional clauses. On the other hand, if both local and global reasoning

are applied to such formulae, the labelling of worlds might lead to repeated application of rules to

the same set of clauses, as it occurs with propagation of formulae in the scope of tua operators in

tableaux-based procedures. Another possibility is to label formulae with their modal path, as in

the optimised functional translation [28, 57], which makes the uni�cation procedure slightly more

complicated, but could help to achieve more e�ciency in the case of formulae with high modal

depth, but low modal branching. �ose and the investigation in the application to other strategies

are subject of future work.
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[31] Laura Kovács and Andrei Voronkov. 2013. First-Order �eorem Proving and Vampire. In Proceedings of the 25th
International Conference on Computer Aided Veri�cation (CAV 2013) (Lecture Notes in Computer Science), Vol. 8044.

Springer, 1–35.

[32] Richard E. Ladner. 1977. �e Computational Complexity of Provability in Systems of Modal Propositional Logic. SIAM
Journal on Computing 6, 3 (1977), 467–480.

[33] Richard C. T. Lee. 1967. A completeness theorem and computer program for �nding theorems derivable from given axioms.
Ph.D. Dissertation. Berkeley.

[34] Maarten Marx. 2006. Complexity of Modal Logic. In Handbook of Modal Logic, Patrick Blackburn, Johan van Benthem,

and Frank Wolter (Eds.). Elsevier, New York, 139–179.

[35] Maarten Marx and Yde Venema. 2007. Local Variations on a Loose �eme: Modal Logic and Decidability. In Finite
Model �eory and Its Applications. Springer, 371–429.

[36] Fabio Massacci and Francesco M. Donini. 2000. Design and Results of TANCS-2000 Non-classical (Modal) Systems

Comparison. In Proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX 2000) (Lecture Notes in Computer Science), Vol. 1847. Springer, 52–56.

[37] William W. McCune. 2007. OTTER 3.0 reference manual and guide. (May 07 2007).

[38] Eliana Minicozzi and Raymond Reiter. 1972. A note on Linear Resolution Strategies in Consequence-Finding. Arti�cial
Intelligence 3, 1–3 (1972), 175–180.
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[43] Cláudia Nalon, Ullrich Hustadt, and Clare Dixon. 2017. K
S
P: A Resolution-based Prover for Multimodal K, Abridged

Report. In Proceedings of the 26th International Joint Conference on Arti�cial Intelligence (IJCAI 2017). ijcai.org, 4919–

4923.
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