
Evolutionary Equilibrium in Contests with
Stochastic Participation: Entry, Effort and

Overdissipation∗

Yiquan Gu1,† Burkhard Hehenkamp2,‡ Wolfgang Leininger3,§

1University of Liverpool
2University of Paderborn

3University of Dortmund (TU)

February 2019

Abstract

This paper examines the evolutionary stability of behaviour in con-
tests where players’ participation can be stochastic. We find, for ex-
ogenously given participation probabilities, players exert more effort
under the concept of a finite-population evolutionarily stable strategy
(FPESS) than under Nash equilibrium (NE). We show that there is ex-
ante overdissipation under FPESS for sufficiently large participation
probabilities, if, and only if, the impact function is convex. With costly
endogenous entry, players enter the contest with a higher probability
and exert more effort under FPESS than under NE. Importantly, under
endogenous entry, overdissipation can occur for all (Tullock) contest
success functions, in particular those with concave impact functions.

JEL Classification: B52; C73; D72; D82.
Keywords: Contests with Stochastic Participation; Overdissipation; Evo-
lutionarily Stable Strategy; Finite Population; Endogenous Entry

∗For helpful comments and discussions, the authors would like to thank Bo Chen, Subha-
sish Chowdhury, Alex Lord, Jingfeng Lu, Alexander Matros, Mark Schaffer, Karl Wärneryd,
Jörgen Weibull and seminar audience at Fudan and Shandong University, as well as con-
ference participants at 2016 Lancaster Game Theory Conference, 2017 Econometric Society
China and European meetings, 2017 Contest conference at UEA, 2017 German Economic
Association conference, 2018 Micro and Macro Foundations of Conflict workshop in Bath,
and 2018 York Game Theory Symposium. Yiquan Gu and Burkhard Hehenkamp gratefully
acknowledge financial support by the ESRC (ES/M008444/1) and the Deutsche Forschungs-
gemeinschaft through CRC 901 “On-The-Fly Computing”, respectively.

†Corresponding author; Email: yiquan.gu@liv.ac.uk; Address: University of Liverpool,
Management School, Chatham Street, Liverpool, L69 7ZH, United Kingdom.

‡Email: burkhard.hehenkamp@upb.de; Address: University of Paderborn, Faculty of
Business Administration and Economics, Chair of Institutional Economics and Economic
Policy, Warburger Str. 100, 33089 Paderborn, Germany.

§Email: wolfgang.leininger@tu-dortmund.de; Address: TU Dortmund University, Faculty
of Economics and Social Science, Chair of Microeconomic Theory, Vogelpothsweg 87, 44227
Dortmund, Germany.

1



1 Introduction

The issue of dissipation in contests was first raised in the context of political
rent-seeking, where lobbying efforts are considered as an unproductive use
of resources to contest something valuable (Tullock, 1967; Krueger, 1974).
In line with this literature, Posner (1975) posed his famous full dissipation
hypothesis according to which competition for a monopoly creates an addi-
tional social cost that eats up the entire monopoly rent at stake.

Perhaps more surprisingly, overdissipation is not uncommon. For example,
overdissipation has featured prominently in political sciences and in experi-
mental economics. Deacon and Rode (2015) discuss the resource curse and
point out that “political theories of the resource curse consistently predict
over-dissipation [. . . ].” Morgan et al. (2012) review earlier lab experiment
evidence of overdissipation (e.g., Millner and Pratt, 1989; Anderson and
Stafford, 2003; Abbink et al., 2010, among many others) and also find fre-
quent occurrences of overdissipation in their own experiment, particularly
in their small prize treatment.1 Sheremeta (2013) and Dechenaux et al. (2015)
systematically survey the experimental literature on contests. They address
the issue of overbidding (individual effort being above the Nash equilibrium
prediction) and discuss a number of behavioural explanations.2

Theoretically, ex-post overdissipation in Tullock contests has been explained
as the incidental outcome of mixed strategy Nash equilibria (Baye et al.,
1999), which occur when the impact function is sufficiently convex.3 In
contrast, ex-ante dissipation can never be more than full in Nash equilibrium.
Under the finite-population evolutionary approach, matters are different.
Here, relative performance determines survival. By adopting the indirect

1Overdissipation is also well documented in experimental studies of closely related all-pay
auctions. See, e.g, Davis and Reilly (1998), Gneezy and Smorodinsky (2006), and Lugovskyy
et al. (2010).

2Sheremeta (2016) designs an eight-part experiment to test various theoretical explana-
tions of overbidding in rent-seeking contests. He finds significant support for the existing
theories, while at the same time suggests impulsivity being the most important factor ex-
plaining overbidding in his study. Mago et al. (2016) present a behavioural model that
incorporates a nonmonetary utility of winning and relative payoff maximisation. It can
explain significant overspending of effort in their controlled laboratory experiment. On
the other hand, Chowdhury et al. (2014) find that a deterministic proportional sharing rule
results in average effort closer to the Nash prediction than the random lottery rule.

3Following Wärneryd (2001), we call the numerator of the contest success function the
impact function.
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evolutionary approach to deterministic Tullock contests, Leininger (2009)
provides an endogenous explanation of spiteful preferences, viz. a rationale
for relative payoff concerns.

In many real world contests, participants do not know how many other
competitors they are facing in the contest. For example, in a job interview, an
applicant may not know the number of short-listed interviewees. A lobbyist
may not know against how many others he or she is lobbying. Animals
competing for food or mating opportunities may not be able to perceive
the actual number of competitors or to tune their effort level accordingly.
Moreover, entry into such a contest can be endogenous. Thus, not knowing
how many other active competitors there are can be an equilibrium feature
of a contest.

Adopting an evolutionary approach to stochastic contests is of principal in-
terest. First, the evolutionary approach represents a way to examine whether
weaker assumptions on the rationality of players still allow Nash equilib-
rium to occur.4 Evolutionary equilibrium, as deployed in this paper, rests on
the concept of an evolutionarily stable strategy, ESS. In its original version,
such as introduced by Smith and Price (1973), evolutionary equilibrium
underpins Nash equilibrium in that any ESS represents a (symmetric) Nash
equilibrium. Implicitly, however, Maynard Smith and Price’s concept of
an ESS assumes an infinite population of players. In finite populations, a
staple in the rent-seeking literature, the refinement property does not hold
generally.5 It certainly does not hold in deterministic rent-seeking contests
(Hehenkamp et al., 2004; Leininger, 2003).

Second, the evolutionary approach incorporates a competitive element on
the selection of behaviour that is present in many real world contests, but
absent in Nash equilibrium generally. This selection of behaviour can op-
erate directly at the level of actions or indirectly through the selection of
contestants that employ certain actions.

Third, the evolutionary approach in finite populations turns out to be equiva-
4The idea of applying evolutionary concepts to economic theory goes at least back to

Alchian (1950), who suggested an economic evolutionary approach. This approach interprets
“the economic system as an adoptive mechanism,” and determines actions and behaviour
based on their relative success or profit.

5See Ania (2008) and Hehenkamp et al. (2010) who characterise the classes of games where
Nash and evolutionary equilibrium coincide when populations are finite.
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lent to the rationalistic approach under relative payoff maximisation (Schaffer,
1988, 1989). Hence, our analysis also sheds light on the important case of
relative payoff concerns (see Section 2.1), which both has empirical relevance
and finds theoretical support through the indirect evolutionary approach.6

Last but not least, with regard to relevant applications such as political
rent-seeking, Leininger (2003) demonstrates that, in finite populations, ESS
behaviour in a contest is identical to rational behaviour in a symmetric Nash
equilibrium of a corresponding transfer contest where losers have to provide
the source of the gain for the winner. Many political rent-seeking contests
are of such a nature. A prominent example is welfare policies where the
contested prize is financed by “taxing” the losers. Due to this intuitive
interpretation of evolutionarily stable behaviour in contests, the present
paper sheds light on the issue of overdissipation in rent-seeking.

1.1 An overview of the main results

We consider two scenarios. First, we study stochastic contests with exoge-
nous participation, where players participate in a Tullock contest with an
exogenously given probability. Subsequently, we endogenise participation by
incorporating the probability of participation in the evolutionary approach.

As to the case of exogenous participation, we first characterise the finite-
population evolutionarily stable strategy (FPESS) and then show that indi-
vidual effort in the FPESS is exactly n/n−1 times its Nash equilibrium (NE)
counterpart in a contest with n potential contestants.7 Intuitively, the ex-
ante total expected effort increases in the number of players, and in the
participation probability. While Lim and Matros (2009) demonstrate that,
under NE, overdissipation is possible ex-post, we show that under the eco-
nomic evolutionary approach, the FPESS entails ex-ante as well as ex-post

6Seminal contributions on relative payoff concerns are e.g., Messick and Thorngate (1967),
Bolton and Ockenfels (2000), and Fehr and Schmidt (1999) among many others. Herrmann
and Orzen (2008) report evidence that can attribute subjects’ investment decisions to spiteful
preferences rather than fairness or reciprocity. The indirect evolutionary approach (Güth
and Yaari, 1992) has been adopted to rent-seeking contests by Leininger (2009). Relatedly,
Konrad and Morath (2016) employ the evolutionary approach in finite populations to study
determinants of war.

7For the Nash equilibrium outcome, we draw on results by Lim and Matros (2009), who
characterise and extensively study the Nash equilibrium of stochastic contests with exogenous
participation.
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overdissipation when the probability of participation is sufficiently large and
the impact function is convex. Thus, the economic evolutionary approach
can explain ex-ante overdissipation. In particular, overdissipation in lab
experiments might be seen as a continuation of subjects’ behaviour that is
evolutionary stable in their real life competitive environments.8

When participation is endogenous, a player must incur a fixed cost in order
to participate in the contest. We find that the FPESS participation probability
is at least as high as the NE participation probability. In particular, for a
given entry cost, the FPESS participation probability strictly exceeds the NE
participation probability whenever the endogenous entry is truly stochastic
in NE. This is in accordance with Morgan et al. (2012) who find statistically
significant excessive entry compared to the Nash prediction in their exper-
imental study. Otherwise, endogenous entry is deterministic under both
concepts. Moreover, ex-ante both total effort and total entry cost are higher
under FPESS than under NE. In this sense, players behave more aggressively
under FPESS than under NE along both dimensions, entry and effort.

With endogenous participation, dissipation is measured by the total expen-
diture, which includes effort cost and entry cost of all players. As shown
by Fu et al. (2015), under NE, players are indifferent between entering the
contest or not, when entry is truly stochastic. Therefore, the NE ex-ante total
expenditure is at most the size of the prize. Under FPESS, however, there can
be ex-ante overdissipation for all (Tullock) contest success functions due to
the increased levels of entry and effort. This represents a striking result as to
the best of our knowledge ex-ante overdissipation has only been shown for
convex impact functions (see, e.g., Hehenkamp et al., 2004). In the present
paper, ex-ante overdissipation can occur for convex as well as concave impact
functions. Thus, overdissipation could be the norm rather than an anomaly
once we take entry cost into account.

Given the relevance of relative payoff concerns in the lab (Herrmann and
Orzen, 2008; Mago et al., 2016) and in life (Easterlin, 1974), this generalised
overdissipation result under FPESS has important implications. In particular,
it is worth noting the role entry plays in total dissipation. Even in mildly

8This complements other explanations of overdissipation in lab experiments such as
impulsivity, nonmonetary utility of winning, relative payoff maximisation, etc. See also
Footnote 2 and the references therein.
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competitive environments (i.e., concave impact functions), with relative
payoff concerns our theoretical observation implies contestants may enter
excessively and hence spend excessively in entry costs. This in turn gives
rise to overdissipation. This bears growing relevance in the economy of
today where in increasingly many markets the winner takes all, à la Tullock
contests. For example, entry is certainly not insignificant in markets for
sports stars, performing artists, and to a lesser extent, for CEOs, leading
academics, etc. (Frank and Cook, 1996; Fischbacher and Thöni, 2008).

1.2 Related literature

Our paper is most closely related to Lim and Matros (2009), Fu et al. (2015),
and Hehenkamp et al. (2004).9 Lim and Matros (2009) (henceforth LM)
characterise the Nash equilibrium of stochastic contests with exogenous
participation probabilities. They show, among other results, that individual
effort is single-peaked in the participation probability while total effort is
monotonically increasing in the participation probability and the number of
players. Our contribution in the exogenous entry part is to establish a precise
relationship between the NE effort level and the corresponding FPESS level
in stochastic contests. Moreover, we show that overdissipation is possible
ex-ante, and identify the range of parameters supporting overdissipation.

Fu et al. (2015) (henceforth FJL) study contests with endogenous entry under
the Nash equilibrium solution concept. The authors establish the existence of
a symmetric Bayesian Nash equilibrium and show that a Tullock contest can
be optimal for a contest designer. They further identify the conditions under
which the optimum can be achieved by solely setting the right discriminatory
power of the contest success function.10 In contrast, we establish the existence
of an evolutionarily stable pair of entry probability and effort level. Moreover,
we compare and contrast the FPESS outcome with the NE outcome, and
demonstrate a general overdissipation result.

The ESS concept in a finite population was applied to deterministic Tul-
lock contests by Hehenkamp et al. (2004) (henceforth HLP). They show

9It is beyond the scope of the current paper to review the voluminous contest literature.
For an excellent in-depth treatment see, e.g., Konrad (2009).

10In a related paper with endogenous entry, Fu and Lu (2010) study the optimal choice of
prize size and entry fee/subsidy for an effort-maximizing contest designer.

6



overdissipation can be expected under FPESS in deterministic contests with
convex impact functions. One of our contributions is to generalise their
overdissipation result to stochastic contests. More importantly, we consider
endogenous entry and show that overdissipation can also hold for concave
impact functions.

Stochastic participation in contests has also been featured in earlier literature
such as Myerson and Wärneryd (2006), Münster (2006), and Fu et al. (2011).
Myerson and Wärneryd (2006) study contests in which a player is uncertain
about the actual size of the contest. They do not assume a particular distribu-
tion of the contest size and it can potentially be infinitely large. In Münster
(2006), the size of a contest follows a binomial distribution similar to the
current paper. However, Münster (2006) compares risk-neutral players with
CARA players under Nash equilibrium. Fu et al. (2011) study the optimal
disclosure policy of an effort-maximizing contest organizer in a contest with
stochastic participation. The present paper departs from the above literature
by exploring a different equilibrium concept.

In the rest of the paper, we proceed as follows. Section 2 introduces the
model and presents the analysis for the case of exogenous entry probabilities.
Section 3 is devoted to the case of endogenous entry. Finally, Section 4
concludes. Involved proofs are relegated to the Appendix.

2 Stochastic contests with exogenous entry

We consider a stochastic contest of n ≥ 2 potential players as in LM. Each
potential player is drawn to play, i.e., becomes active, with an independent
probability p ∈ (0, 1]. All active players compete for a single prize of value
V > 0 by selecting an effort level Xi ∈ [0,+∞).

Conditional on being active, player i’s probability of winning the prize is
given by

Pi(Xi;M) =


1

|M |+1 if Xi = Xj = 0,∀j ∈M ,
Xr
i

Xr
i +

∑
j∈M Xr

j
otherwise,

where 0 < r ≤ n/n−1 measures the convexity of the impact function and is
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also known as the discriminatory power of the contest success function, M
is the set of active players except player i, and |M | denotes the cardinality
of M . The material payoff of an inactive player is 0. As it is known in the
literature, this range of r ensures that an equilibrium exists in pure strategies.

Before studying the FPESS outcome, we reproduce the result below, which
is due to Lim and Matros (2009).11

Theorem 1 (Lim and Matros, 2009). There exists a unique symmetric pure-
strategy Nash equilibrium (NE) where each active player’s equilibrium ex-
penditure is

XNash(r, V, n, p) = rV

[
n−1∑
i=1

Cn−1
i pi(1− p)n−1−i i

(i+ 1)2

]
(1)

with Cn−1
i = (n−1)!

i!(n−i−1)! denoting the binomial coefficient.

2.1 Evolutionarily stable strategy with stochastic participation

We now proceed to characterise the finite-population evolutionarily stable
strategy, FPESS. For this purpose, we first adapt Schaffer’s (1988) evolution-
arily stable equilibrium condition to games with stochastic participation.
We note that, for notational ease, in what follows we often use the simpler
abbreviation ESS. It should be understood that the solution concept we use
in this paper is finite-population evolutionarily stable strategy, FPESS.

Let us consider a finite population of n ≥ 2 players each being drawn to
play with an independent probability p ∈ (0, 1]. Instead of playing a fixed
size contest, an active player in our context may face k = 0, . . . , n− 1 active
opponents. Thus the expected payoff of an active mutant playing s̄ ∈ S when
the rest of the population playing sESS , denoted by π̄, is the sum of the
payoffs when s̄ plays against k = 0, . . . , n− 1 ESS strategists weighted by the
probability of each case. On the other hand, for an active ESS strategist, the
mutant will be present with probability p and with probability (1− p) this
is not the case. In the former case, the ESS strategist faces the mutant and

11Although Lim and Matros (2009) assume 0 < r ≤ 1, the theorem indeed holds for
0 < r ≤ n/n−1.
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possibly also k = 0, . . . , n− 2 other ESS strategists, while in the latter case
the ESS strategist encounters only k = 0, . . . , n− 2 other ESS strategists. The
expected payoff of an ESS strategist, denoted by πESS , is thus the weighted
average of the payoffs in those individual cases. For sESS to be evolutionarily
stable, following the same idea in Smith and Price (1973) and Schaffer (1988),
p · πESS ≥ p · π̄ needs to hold for any s̄ ∈ S.12

We now apply this adapted definition to Tullock contests with stochastic
participation. Let X denote the candidate ESS strategy and X̄ the mutant
strategy. We consider invasions by a single mutant, say w. l. o. g. player 1.
When active, the expected payoff of player 1 is

Π1(X̄,X, . . . ,X) = V

 ∑
M∈PN1

p|M |(1− p)|N1\M | · X̄r

X̄r + |M |Xr

−X̄, (2)

where N1 is the set of player 1’s possible opponents and PN1 is the set of all
subsets of N1.

On the other hand, the expected payoff of an active ESS strategist, say player
2, is

Π2(X̄,X, . . . ,X) = p V

 ∑
M∈PN2

p|M |(1− p)|N2\M | · Xr

X̄r +Xr + |M |Xr


︸ ︷︷ ︸

The mutant being active

+(1− p)V

 ∑
M∈PN2

p|M |(1− p)|N2\M | · Xr

Xr + |M |Xr


︸ ︷︷ ︸

The mutant being inactive

−X, (3)

where N2 is the set of player 2’s possible opponents except the mutant player
1, and PN2 is the set of all subsets of N2.

As noted by Schaffer (1988), a strategyX is an ESS if, and only if, the relative
payoff between a mutant and an ESS strategist, as a function of X̄ , reaches

12First, we note that this definition differs from Schaffer’s (1988) in that the size of contest
is not only variable but also stochastic. Second, in this evolutionary framework the players
are merely representatives of behaviours. Their knowledge is inconsequential.
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its maximum value of zero when X̄ = X . Let

φ(X̄,X) := Π1(X̄,X, . . . ,X)−Π2(X̄,X, . . . ,X). (4)

As p > 0, the ESS strategy X should solve

max
X̄∈[0,+∞)

φ(X̄,X). (5)

Schaffer (1988) also observed that in a model with symmetric ESS-strategists
Π2(X̄,X, . . . ,X) in (4) can be equivalently replaced by

1

n− 1
·
n∑
j=2

Πj(X̄,X, . . . ,X).

The expression in (4) then represents the difference between the mutant’s
payoff and the average payoff of all non-mutants. ESS-behaviour maximises
this difference for each player at the maximal value of zero. Obviously,
exactly the same happens in Nash equilibrium of a game, in which players
have (relative) payoff functions according to (4). In this precise sense all our
results on ESS-behaviour can also be read as results on Nash behaviour of
relative payoff maximisers.

2.2 ESS characterisation

To determine the solution to (5), consider the corresponding first order
condition:

∂φ

∂X̄
= V

 ∑
M∈PN1

p|M |(1− p)|N1\M | · rX̄r−1|M |Xr

(X̄r + |M |Xr)2

− 1+

pV

 ∑
M∈PN2

p|M |(1− p)|N2\M | · rX̄r−1Xr

(X̄r +Xr + |M |Xr)2

 = 0. (6)

By symmetry, in equilibrium it should hold that

X = rV

 ∑
M∈PN1

p|M |(1− p)|N1\M | · |M |
(1 + |M |)2
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+ prV

 ∑
M∈PN2

p|M |(1− p)|N2\M | · 1

(2 + |M |)2

 . (7)

After simplifying (7), we obtain the following theorem which characterises
and establishes the existence of an ESS strategy. In the proof, we demonstrate
the simplification and show that the first order condition indeed solves the
maximization problem (5).

Theorem 2. There exists a unique ESS in a Tullock contest with r ≤ n/n−1

where each potential player becomes active with probability p ∈ (0, 1]. It is
given by

XESS(r, V, n, p) =
n · rV
n− 1

[
n−1∑
i=1

Cn−1
i pi(1− p)n−1−i i

(i+ 1)2

]
. (8)

Moreover,
XESS(r, V, n, p) =

n

n− 1
·XNash(r, V, n, p). (9)

Proof: See Appendix A.1.

A first noteworthy observation is that Theorem 2 contains the existence result
of HLP for p = 1: the right-hand side of (8) collapses into rV/n, that is, the
deterministic case studied by HLP turns to represent the continuous limit of
the present model for p→ 1.

Furthermore, Theorem 2 establishes a precise relationship between the ESS
effort level and the Nash equilibrium (NE) outcome. Namely, the ESS effort
level is n/n−1 times of the NE effort level. This generalises the main result
in HLP who demonstrated XESS(r, V, n, p) = n/n−1 ·XNash(r, V, n, p) for the
case of p = 1. We show that this precise relationship holds more generally,
i.e., for all p ∈ (0, 1]. Thus, the relative aggressiveness of ESS behaviour is
not affected by participation uncertainty. Note also when the population
size grows, the difference between ESS and NE effort shrinks. Indeed, in
accordance with Crawford (1990), ESS converges to the NE level as n goes to
infinity.

We also note that, as expected, active players exert more effort when the
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Figure 1: ESS and NE individual effort when V = r = 1 and n = 5.

prize size V is larger and when the discriminative power r of the contest
technology is higher. Due to the precise relationship (9), it follows from LM
that XESS(r, V, n, p) is also single-peaked in p. That is, individual effort in
general, i.e., when n > 2, reaches its maximum at an interior participation
rate p ∈ (0, 1).

Figure 1 draws an example of the equilibrium individual effort as a function
of the participation probability under ESS and under NE, respectively. Note
that both NE and ESS individual effort levels are single peaked and the ESS
effort lies everywhere above the NE counterpart.

2.3 Total effort

The equilibrium level of total effort is a variable of significant interest. In
the rent dissipation debate, it is important to weigh equilibrium total effort
against the prize value. If the former exceeds the latter, there is overdis-
sipation of economic rent. Therefore, it is instructive to study the ex-ante
expected total effort in ESS, denoted by T ESS.

As the number of players follows the binomial distribution B(n, p), the
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expected value is np. Consequently, we obtain

T ESS(r, V, n, p) := np ·XESS(r, V, n, p)

=rV
n

n− 1

[
n∑
i=1

Cni p
i(1− p)n−i

(
1− 1

i

)]
.

It follows from Theorem 2 that the total ESS effort also corresponds to n/n−1

of its NE counterpart denoted by TNash(r, V, n, p).

Although the relationship between individual effort and the participation
probability p is non-monotonic for n > 2 (see Figure 1), the ex-ante expected
total effort increases in both n and p.

Theorem 3. Let 0 < r ≤ n/n−1 and V > 0 be given. Then,

i) for any n ≥ 2, the expected total effort, T ESS(r, V, n, p), increases in p;

ii) for any p ∈ (0, 1), the expected total effort, T ESS(r, V, n, p), increases in
n.

Proof: See Appendix A.2.

Part i) of Theorem 3 shows that total expected effort increases in players’
participation probability. This observation simply follows the precise rela-
tionship between ESS and NE outcomes. Intuitively, the positive effect of p
on the expected number of players, np, dominates its potentially negative
effect on individual effort.

That total effort increases in n is less obvious. While LM show that TNash

increases inn, the term n/n−1 decreases. Nevertheless, as part ii) of Theorem 3
states, ex-ante total effort in ESS indeed increases in the number of potential
contestants. In other words, the increase in NE total effort dominates the
decrease in players’ aggressiveness, which is measured by n/n−1.

Interestingly, while in HLP total effort is independent of the number of con-
testants, n, it is not so in truly stochastic contests, i.e. if p < 1. To understand
this observation, note that the number of contestants and the participation
probability both positively affect the competitiveness of a contest. As shown
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in HLP, total effort under ESS in deterministic contests is rV for all n ≥ 2.
That is, for p = 1, the number of contestants does not strictly increase total
effort.13 In stochastic contests (p < 1), however, the competitiveness of a con-
test does strictly increase with n, and consequently total effort also increases
in n.

2.4 Overdissipation

From the players’ perspective, an important question is whether they gain
ex ante from playing the contest, that is, whether the expected revenue
from winning the prize is more or less than the expected cost of effort. In a
Nash equilibrium, ex ante no player will incur effort costs that exceed the
expected revenue from winning the contest. The reason is that by exerting
zero effort the player can always break even. This is however not true when
ESS is considered. As shown for deterministic contests by HLP, ex-ante
overdissipation can be an equilibrium outcome under ESS. The next result
generalises their result to stochastic contests.

Theorem 4. T ESS > V for p sufficiently large, if, and only if, r ∈ (1, n/n−1).

Proof: See Appendix A.3.

Theorem 4 shows that ex-ante overdissipation is present if, and only if, the
impact function is convex and the probability of participation, p, is sufficiently
high. Like in the deterministic case studied by HLP, overdissipation can be
explained by spiteful behaviour in the presence of increasing returns to ex-
penditures (r > 1). However, because total effort drops when the probability
of participation decreases (Theorem 3), participation has to be sufficiently
likely to entail overdissipation. Moreover, due to the monotonicity of total
effort in both participation probability (p) and the discriminatory power of
the contest technology (r), there is a substitution relationship between p and
r such that the higher r ∈ (1, n/n−1], the larger the overdissipation interval
of participation probabilities.

13This doses not apply to total NE effort in deterministic contests, which is rV (n−1)/n and
therefore, increases in n.
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Figure 2: ESS total effort under discriminatory power when V = 1 and n = 5.

Consider an example where V = 1 and n = 5. Figure 2 displays the ESS total
effort for different values of the contest success function’s discriminatory
power, namely r = 0.8, r = 1, r = 1.1, and r = 1.25. To facilitate comparison,
it also shows the full dissipation line. As can be seen in the figure, ex-
ante overdissipation occurs when the impact function is convex, i.e., r > 1,
and when the participation probability is sufficiently large. For r ≤ 1, ex-
ante total effort never exceeds the prize value for all p. For r > 1, the
overdissipation interval increases with r.

3 Stochastic contests with endogenous entry

In this section we endogenise the probability of participation. Let there
be n ≥ 2 potential contestants. Following FJL, a strategy of player i is an
ordered pair (pi, Xi), where pi ∈ [0, 1] denotes player i’s entry probability
and Xi ∈ [0,+∞) the effort level.14 The material payoffs are the same as
before except that upon entering the contest a player must pay a fixed cost
of entry 0 < c < V .

14For brevity, we do not consider mixed effort levels. According to FJL, the existence of
pure strategy Nash equilibrium effort is ensured given the parameter values in the present
paper.
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3.1 Nash equilibrium

For convenience, we begin with restating results on the symmetric Nash
equilibrium outcome which is due to FJL.

Theorem 5 (Fu, Jiao, and Lu, 2015). There exists a unique symmetric equi-
librium with pure-strategy bidding of the entry-bidding game.

i) If c ≤ n−(n−1)r
n2 V then the entry probability is pNash = 1.

ii) Otherwise, it is implicitly determined by

1−
(
1− pNash)n
npNash V −XNash

(
r, V, n, pNash

)
= c, (10)

where individual effort level XNash(r, V, n, p) is given by (1).

Proof: See Appendix A.4.

Intuitively, when the entry cost is below the expected payoff from entering
the contest, it pays to enter, and hence the entry probability is one. However,
when the entry cost becomes high enough such that all players entering
cannot be sustained, equilibrium competitiveness of the contest has to de-
crease. This is achieved by a reduced entry probability to keep it worthwhile
for players to play the contest. Moreover, the equilibrium entry probability
cannot be too low as this will lead to expected payoff from entering being
higher than the entry cost. Thus, in Nash equilibrium with truly stochas-
tic entry all players should be indifferent between entering and abstaining,
and the required symmetric entry probability is implicitly determined by
the indifference condition (10). This intuition similarly applies to the ESS
case, except that players would be concerned of relative payoff rather than
absolute payoff.

3.2 ESS outcome

To characterise the ESS outcome, consider now a mutant, say player 1, which
enters with probability q and spends X̄ . Conditional on entering, the mu-
tant’s expected payoff from the contest is given by (2) as before. The expected
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payoff of an ESS strategist conditional on entering, say player 2, now depends
on the mutant’s entry probability q:

Π2(X̄,X, . . . ,X; q)

=q V

 ∑
M∈PN2

p|M |(1− p)|N2\M | · Xr

X̄r +Xr + |M |Xr


︸ ︷︷ ︸

The mutant being active

+ (1− q)V

 ∑
M∈PN2

p|M |(1− p)|N2\M | · Xr

Xr + |M |Xr


︸ ︷︷ ︸

The mutant being inactive

−X.

Let the ex-ante relative payoff of the mutant be denoted by Φ. After taking
into account entry probabilities and entry cost, we have

Φ(q, X̄; p,X; c) = q
[
Π1(X̄,X, . . . ,X)− c

]
− p

[
Π2(X̄,X, . . . ,X; q)− c

]
.

(11)
For a pair (p,X) to constitute an evolutionarily stable strategy, no mutant
can invade, i.e., obtain a higher material payoff than ESS strategists. Thus,
ESS requires Φ(q, X̄; p,X; c) ≤ 0 for all (q, X̄) ∈ [0, 1]× [0,+∞). We hence
consider the maximisation problem,

max
(q,X̄)∈[0,1]×[0,+∞)

Φ(q, X̄; p,X; c). (12)

After applying symmetry, the first order condition with respect to X̄ reduces
to (7), provided that p > 0. On the other hand, the first order derivative with
regard to the participation probability q is

∂Φ

∂q
=V

 ∑
M∈PN1

p|M |(1− p)|N1\M | · X̄
r

X̄r + |M |Xr

− X̄ − c
−pV

 ∑
M∈PN2

p|M |(1− p)|N2\M | · Xr

X̄r +Xr + |M |Xr


+pV

 ∑
M∈PN2

p|M |(1− p)|N2\M | · Xr

Xr + |M |Xr

 . (13)
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Similarly, symmetry implies

∂Φ

∂q
=

V

n− 1

1− (1− p)n−1

p
−X − c = 0. (14)

The two necessary first order conditions (7) and (14) identify the candidate
ESS equilibrium with endogenous entry. The next theorem shows they are
also sufficient.

Theorem 6. There exists an evolutionarily stable strategy (pESS, XESS) such
that the entry probability pESS

i) is 1 if c ≤ n−(n−1)r
n(n−1) V ,

ii) otherwise, it is implicitly determined by

1− (1− pESS)n−1

(n− 1)pESS V −XESS(r, V, n, pESS) = c, (15)

where ESS individual effort XESS(r, V, n, pESS) is given by (8).

Proof: See Appendix A.5.

Similar to part i) of Theorem 5, players enter with probability 1 in the ESS
when the entry cost is sufficiently small. In this degenerated case, individual
effort XESS(r, V, n, pESS = 1) takes the value of rV/n. When the entry cost
becomes larger than the critical value identified in the theorem, the partici-
pation probability p drops below 1. Although individual effort is already
higher in ESS than in NE, what matters in ESS is relative fitness and hence
the marginal advantage of entering can be higher. Note that under ESS the
critical value of the entry cost is higher than under NE. In other words, for a
given entry cost, full participation is more likely under ESS than under NE.

Consider part ii). In the proof, we establish that Φ(q, X̄; pESS, XESS; c) ≤ 0 for
all possible pairs of (q, X̄). The intuition follows from the exogenous case.
Suppose, as a first step, that a mutant’s entry probability is exogenously
fixed at q. Then no other effort level than XESS(r, V, n, pESS) can give the
mutant a higher relative payoff. In other words, for any possible exogenously
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given mutant entry probability,XESS(r, V, n, pESS) leads to the highest relative
payoff. On the other hand, given that all other players and the mutant play
XESS(r, V, n, pESS), the mutant’s relative payoff stays at zero for all entry
probabilities. We then formally show that this means the mutant cannot
obtain a higher relative payoff than ESS strategists with any combination of
q ∈ [0, 1] and X̄ ≥ 0.

By comparing part i) in Theorem 5 and 6, we note that the set of entry costs
that will result in full participation (p = 1) under NE is a proper subset of
such entry costs under ESS. In this sense, deterministic contests are more
likely to occur under ESS than under NE. In addition, the next result shows
that truly stochastic entry has a strictly higher probability under ESS than
under NE.

Theorem 7. For a given 0 < c < V , pESS ≥ pNash. This inequality holds
strictly when n−(n−1)r

n2 V < c < V , i.e., when pNash < 1.

Proof: See Appendix A.6.

The higher entry probability can also be explained by NE behaviour with
regard to relative payoff maximisation, which would for example result
from spiteful preferences. Although, at the NE probability level, entering
results in a net loss in absolute payoff, it reduces opponents’ payoff even
more. Therefore, equilibrium entry is more aggressive under ESS. Further-
more, the total effort expenditure is higher in ESS than in NE, when entry is
endogenous.

Theorem 8. For a given 0 < c < V , T ESS(r, V, n, pESS) > TNash(r, V, n, pNash).

Proof: Theorem 3 and pESS ≥ pNash imply that

T ESS(r, V, n, pESS) ≥ T ESS(r, V, n, pNash) =
n

n− 1
TNash(r, V, n, pNash).

Q.E.D.

The intuition behind Theorem 8 follows from two observations. First, players
enter more often under ESS than under NE. Second, for a given entry proba-
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(a) Equilibrium entry probability (b) Total effort

Figure 3: A comparison of ESS and NE outcomes with n = 3, r = 1 and
V = 1

bility, players exert higher total effort in an ESS than in a NE. Thus, although
a priori it is not clear whether endogenous entry leads to higher or lower
total expected effort in an ESS than in NE, Theorem 7 and the monotonicity
of ESS total effort in the probability of participation imply that total effort is
higher in an ESS than in NE.

To illustrate the difference between ESS and NE outcomes, Figure 3 presents
the case with three players. We set r = 1, V = 1, and vary the entry cost
c ∈ [0, 1]. For c ∈ [0, n−(n−1)r

n2 V ] = [0, 1/9], the entry probability is 1 under
both NE and ESS. For c ∈ (n−(n−1)r

n2 V, n−(n−1)r
n(n−1) V ] = (1/9, 1/6] the ESS entry

probability remains at 1 while the NE entry probability falls below 1. As
the entry cost keeps increasing, both entry probabilities decrease. As can
be seen in the left panel of Figure 3, the ESS entry probability lies (at least
weakly) above the NE entry probability for all levels of the entry cost. The
right panel of Figure 3 depicts total effort in ESS and in NE. In accordance
with Theorem 8, total effort is always higher in an ESS than in NE.

3.3 Total resource spending

With endogenous entry, it should be acknowledged that the total expendi-
tures incurred by the players consist of total effort cost and total entry cost.
Theorems 7 and 8 together imply that players unequivocally spend more
in ESS than in NE: not only do they exert higher effort upon entering, they
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incur higher entry cost on average. We also note that each player’s absolute
payoff in a Nash equilibrium with a non-degenerated entry probability has
to be zero because of the indifference condition on the entry decision. As a
result, players obtain a negative absolute payoff under ESS when entry is
truly stochastic.

This finding has immediate implications for the issue of dissipation. Com-
paring the total resource expenditure with the prize size, it is clear that under
Nash equilibrium the expected total resource expenditure can never exceed
the total prize value. With stochastic entry, the expected Nash equilibrium
total resource expenditure has an even lower upper bound. This is because
with a probability of (1− p)n no player enters and hence none of the players
will obtain the prize. As a result, ex-ante total resource spending in NE can
be no higher than (1 − (1 − p)n)V . Under ESS, however, this is different.
In the exogenous entry case, we have established that ex-ante total effort
exceeds the size of the prize if, and only if, the impact function is convex and
the entry probability is sufficiently close to 1.

Let us now redefine overdissipation being the total resource expenditure
exceeding the prize size V . We then characterise the overdissipation result
under endogenous entry. Note that the expected total resource expenditure
in a given contest, RESS(r, V, n, c), is given by

RESS(r, V, n, c) = npESS · (XESS(r, V, n, pESS) + c),

since on average, npESS players enter the contest, each of which incur a
resource expenditure of XESS(r, V, n, pESS) + c.

By Theorem 6, we know that pESS = 1 when c ≤ n−(n−1)r
n(n−1) V . Consequently, in

this caseRESS = n · (rV/n+ c) = rV +nc, which exceeds V if c > 1−r
n V . Note

that for convex impact functions, no additional condition on c is needed since
rV + nc cannot be less than V . It follows that ex-ante overdissipation occurs
when c ∈

(
max

{
1−r
n V, 0

}
, n−(n−1)r

n(n−1) V
)

, a non-empty interval for all r ∈
(0, n/n−1). We have thus demonstrated that, for arbitrary impact functions
of the Tullock type, there exists a non-empty range of entry cost such that
ex-ante overdissipation occurs. In particular, ex-ante overdissipation can
emerge for concave impact functions.
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Consider now the case c > n−(n−1)r
n(n−1) V . By (15), we have

RESS(r, V, n, c) = npESS · 1− (1− pESS)n−1

(n− 1)pESS V =
n
(

1−
(
1− pESS)n−1

)
n− 1

V.

Hence, ex-ante overdissipation occurs whenever pESS > 1− n
−1
n−1 . In a game

with a given set of parameters, the entry cost needs to be small enough to
make entry probability stay above 1− n

−1
n−1 . The exact critical value of this

entry cost depends on model parameters. However, as pESS ranges from
0 to 1, when the entry cost is below a certain value, pESS > 1 − n

−1
n−1 will

be met. We note again that ex-ante overdissipation is present regardless of
the discriminatory power of the contest success function. This represents a
substantial generalisation of the existing overdissipation result, which relies
on the convexity of the impact function. Theorem 9 summarizes our finding.

Theorem 9. Let entry cost be part of the resource expenditure. Under ESS,
ex-ante overdissipation occurs for all (Tullock) contest success functions
for a range of entry cost. In particular, ex-ante overdissipation is present
for c ∈

(
max

{
1−r
n V, 0

}
, ĉ
)

where ĉ is implicitly defined by pESS(r, V, n, ĉ) =

1− n
−1
n−1 .

Ex-ante overdissipation under ESS was first shown by HLP for deterministic
contests and is extended to stochastic contests with exogenous entry in
Theorem 4 of the present paper. However, both results require convex impact
functions as a necessary condition. Theorem 9 extends the overdissipation
result to all (Tullock) contest success functions, in particular those with
concave impact functions.

To gain the intuition behind this generalisation, consider a concave impact
function. By Theorem 5, we see pNash = 1 when c ≤ n−(n−1)r

n2 V . In particular,
consider an entry cost weakly above n−(n−1)r

n2 V . By properties of a mixed
strategy Nash equilibrium, players are indifferent between entering and not
entering, although in equilibrium pNash tends to be 1. In such a case, the
chance of the prize not being won by any player is 0. In other words, for an
individual player, the expected benefit of participating in such a contest is
exactly V/n. Consequently, the NE individual resource expenditure - effort
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Figure 4: Total resource spending (effort and entry cost) under ESS and
under NE with n = 3, V = 1 and r = 3/4.

and entry cost - should also be exactly V/n. This means there is exactly full
dissipation under NE. As players act more aggressively under ESS, there is
overdissipation, even when the impact function is concave. By continuity,
overdissipation is also present when the entry cost is not too far from this
special level of n−(n−1)r

n2 V .

Figure 4 plots the total resource expenditure under NE and ESS, respectively,
for parameter values n = 3, V = 1, and r = 3/4. Notice that, as the entry cost
increases, the entry probability decreases and eventually approaches zero.
As a result, when the entry cost gets too high, the chance of the prize not
being won by any player, (1 − p)n, gets very large and the total resources
spent to contest for the prize will be quite low. This holds true under both
equilibrium concepts. In the limit, as c approaches 1, total resource spending
converges to 0.

Observe also that ex-ante overdissipation does not occur under Nash equi-
librium for any c ∈ [0, 1]. On the other hand, there is ex-ante overdis-
sipation under ESS for an intermediate level of entry cost, namely, for
c ∈ (0.0833, 0.6067).15 In particular, in this example, the impact function is

15This interval can be characterised using Theorem 9.
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concave as r = 3/4.

4 Concluding remarks

In this paper, we have studied evolutionarily stable behaviour in contests
where participation can be stochastic. We established a precise relation
between FPESS and NE effort under exogenous stochastic entry as well as
under endogenous costly entry. We find players exert higher effort and enter
more often under FPESS than under NE. In this sense, the evolutionary force
of “survival of the fittest” selects more competitive behaviour in situations
of conflicts. However, this also results in lower absolute payoff for players
under FPESS than under the “rational” NE setting.

Moreover, we have substantially generalised the existing overdissipation
result in the contest literature, which assumes exogenous deterministic entry
and convexity of the contest impact function. First, we have established that
this overdissipation result generalises to the case of exogenous stochastic
entry, still assuming convexity of the impact function. Subsequently, we
have shown that under endogenous entry and with entry cost being taken
into account, the more important aspect of the contest is the entry cost
rather than the discriminatory power of the contest success function. In
particular, the relative competitive pressure in a FPESS - if understood as
a Nash equilibrium with relative payoff-maximizers - cannot be contained
any more by sufficiently low discriminatory power of the impact function
(as is the case with fixed entry probabilities). Overdissipation can occur
for any concave impact functions. This points to potentially high welfare
losses stemming from contests for status and positional goods, if they are
open to anyone. An interesting and challenging extension of these findings
under endogenous entry would be to consider heterogeneous players with
different marginal effort costs. Applications of ESS to finite heterogeneous
populations of players have occurred in oligopoly theory; for two different
approaches see Tanaka (1999) and Leininger and Moghadam (2018).
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A Appendix

A.1 Proof of Theorem 2

The plan of the proof is as follows. We first simplify (7) and establish its
relationship with respect to (1). Second, we verify that the solution to the
first order condition indeed maximises the relative payoff (5).

A.1.1 Simplification

We derive the symmetric effort level implied by the first order condition (7):

X = rV

[
n−1∑
i=1

Cn−1
i pi(1− p)n−1−i

(i+ 1)2
· i+

n−2∑
i=0

Cn−2
i pi+1(1− p)n−2−i

(i+ 2)2

]

= rV

[
n−1∑
i=1

Cn−1
i pi(1− p)n−1−i

(i+ 1)2
· i+

n−1∑
i=1

Cn−2
i−1 p

i(1− p)n−1−i

(i+ 1)2

]

= rV

n−1∑
i=1

pi(1− p)n−1−i i · C
n−1
i + Cn−2

i−1

(i+ 1)2
(16)

=
n

n− 1
rV

n−1∑
i=1

pi(1− p)n−1−iCn−1
i

i

(i+ 1)2
(17)

=
n

n− 1
·XNash,

where, from (16) to (17), we have used the identity Cn−2
i−1 = iCn−1

i /n−1. The
NE individual effort, XNash, is given by Theorem 1.

A.1.2 Second order derivative of relative payoff w.r.t. effort

Before proceeding to the maximisation problem (5), we first derive the second
order derivative in this section and establish Lemma 1 in Section A.1.3.

From the first order derivative (6), we have ∂2φ
∂X̄2 (X̄,X) =

rV XrX̄r−2
n−1∑
k=1

Cn−1
k pk(1− p)n−1−kk

(r − 1)(X̄r + kXr)− 2rX̄r

(X̄r + kXr)3
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+ prV XrX̄r−2
n−2∑
k=0

Cn−2
k pk(1− p)n−2−k (r − 1)(X̄r + (k + 1)Xr)− 2rX̄r

(X̄r + (k + 1)Xr)3

=rV XrX̄r−2
n−2∑
k=0

Cn−2
k pk+1(1− p)n−2−k(n− 1)

(r − 1)(k + 1)Xr − (r + 1)X̄r

(X̄r + (k + 1)Xr)3

+ rV XrX̄r−2
n−2∑
k=0

Cn−2
k pk+1(1− p)n−2−k (r − 1)(k + 1)Xr − (r + 1)X̄r

(X̄r + (k + 1)Xr)3

=rnV XrX̄r−2
n−2∑
k=0

Cn−2
k pk+1(1− p)n−2−k (r − 1)(k + 1)Xr − (r + 1)X̄r

(X̄r + (k + 1)Xr)3
,(18)

where in the first step we have used an index transformation and the identity
(k + 1)Cn−1

k+1 = (n− 1)Cn−2
k , and where the second step follows from taking

the sum of the two previous expressions.

A.1.3 Relative payoff of zero-effort mutant

Lemma 1. Let p ∈ (0, 1], r ≤ n/n−1, andX be given by (8). Then φ(0, X) ≤ 0,
with strict inequality for n > 2 and p < 1.

Proof: Let p ∈ (0, 1] and r ≤ n/n−1 be arbitrarily given. Then φ(0, X) ≤ 0

if, and only if, Π2(0, X, . . . ,X) ≥ Π1(0, X, . . . ,X) = V (1− p)n−1. Using the
identity Cνκ/κ+1 = Cν+1

κ+1/ν+1 for κ ≤ ν, Π2(0, X, . . . ,X) ≥ V (1− p)n−1 can be
rewritten as follows:

V

n−2∑
k=0

Cn−2
k pk(1− p)n−k−2 1

k + 1
≥ X + V (1− p)n−1

n−2∑
k=0

Cn−1
k+1 p

k+1(1− p)n−k−2 ≥

r

n−1∑
k=1

Cnk+1p
k+1(1− p)n−k−1 k

k + 1
+ (n− 1)p(1− p)n−1

n−1∑
k=1

Cn−1
k pk(1− p)n−k−1

︸ ︷︷ ︸
=1−(1−p)n−1

≥ r
n∑
k=2

Cnk p
k(1− p)n−k k − 1

k
+ (n− 1)p(1− p)n−1.
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The last inequality holds for all r ≤ n/n−1 if it holds for r = n/n−1, i.e., if

(n− 1)(1− (1− p)n−1) + n

n∑
k=2

Cnk p
k(1− p)n−k 1

k

≥ n
[
1− (1− p)n − np(1− p)n−1

]
+ (n− 1)2p(1− p)n−1.

This condition reduces to
n∑
k=2

Cnk p
k(1− p)n−kn

k
+ np(1− p)n−1 + (1− p)n ≥ 1. (19)

Since n/k ≥ 1 for k = 2, . . . , n, the left hand side of (19) is bounded below by∑n
k=0C

n
k p

k(1− p)n−k = 1. Thus, (19) represents a true statement. Moreover,
the inequality is strict if p < 1 and n > 2.

A.1.4 Maximisation problem

We now show that, for 0 < r ≤ n/n−1, XESS as in (17) indeed solves the
maximisation problem (5). To this end, consider the second order derivative
(18).

Clearly, for r ≤ 1, (18) is negative and hence (5) is globally concave. Consider
the remaining case 1 < r ≤ n/n−1. To show thatXESS solves the maximisation
problem (5) in this case, we proceed in three steps.

First, note that the second order derivative is positive when X̄ is sufficiently

small. To see this, suppose X̄ <
(

(r−1)(n−1)
r+1

) 1
r
XESS. It follows that (r −

1)(k + 1)(XESS)r > (r + 1)X̄r for all k = 0, . . . , n − 2, and hence (18) is
positive.

Second, the second order derivative is negative when X̄ >
(
r−1
r+1

) 1
r
XESS.

This is because, in this case, (r − 1)(k + 1)(XESS)r < (r + 1)X̄r for all k =

0, . . . , n− 2.

Third, the second order derivative is negative when evaluated at the candi-
date ESS strategy and it switches sign only once for X̄ ∈ (0,∞). To verify
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this, evaluate (18) when X̄ = XESS. Then (18) simplifies to

V rn
(
XESS

)−2
n−1∑
i=1

pi(1− p)n−1−iC
n−2
i−1 [(r − 1)(i+ 1)− 2r]

(i+ 1)3
. (20)

Note that (r − 1)(i+ 1) < 2r for i = 1 . . . n− 1 if r ≤ n/n−2. The latter holds
true because of r ≤ n/n−1. Thus, we have established that (20) is negative.

Now observe that because r ≤ 2, (18) clearly decreases monotonically in X̄
as long as (18) remains positive. On the other hand, by inspection, we see
that once X̄ becomes large enough to turn (18) negative, it stays negative for
all larger X̄ . As a result, (5) is first convex and then concave for X̄ ∈ (0,∞).
Hence, the only two candidates for a global maximum of (5) are 0 and XESS.

Finally, by Lemma 1, a mutant cannot strictly increase its relative fitness by
playing 0. This completes the proof. Q.E.D.

A.2 Proof of Theorem 3

Since T ESS(r, V, n, p) = n
n−1T

Nash(r, V, n, p), part i) follows directly from The-
orem 6 in LM.

To establish part ii), we note that

1

rV

[
T ESS(r, V, n+ 1, p)− T ESS(r, V, n, p)

]
=

1

rV

[
n
[
TNash(r, V, n+ 1, p)− TNash(r, V, n, p)

]
n− 1

− TNash(r, V, n+ 1, p)

n(n− 1)

]

=
n
∑n+1

i=2 C
n
i−1p

i(1− p)n−i+1 1
i(i−1)

n− 1
−
∑n+1

i=2 C
n+1
i pi(1− p)n+1−i i−1

i

n(n− 1)

=
1

n(n− 1)

n+1∑
i=2

Cn+1
i pi(1− p)n−i+1

(
1

i− 1

n2

n+ 1
− i− 1

i

)

=
1

n(n− 1)

n+1∑
i=2

Cn+1
i pi(1− p)n−i+1 ((n+ 1)i− 1)(n+ 1− i)

i(i− 1)
> 0,

where the result for
(
TNash(r, V, n+ 1, p)− TNash(r, V, n, p)

)
on page 596 in

LM was used. Q.E.D.

28



A.3 Proof of Theorem 4

First, consider the special case p = 1. Then, ex-ante total effort becomes
T ESS(r, V, n, 1) = nrV

n−1

(
1− 1

n

)
= rV . That is, ex-ante total effort is larger

than the prize value V in deterministic contests if, and only if, r ∈ (1, n/n−1).
Finally, by continuity and monotonicity of T ESS in p and r, there is overdissi-
pation for p sufficiently close to 1, if, and only if, r ∈ (1, n/n−1). Q.E.D.

A.4 Proof of Theorem 5

First, we note that α, M and ∆ in FJL are equal to 1, n and c, respectively.
Hence, r̄ in FJL becomes n−1/n−2, and their r0 is larger than n/n−1. It follows
then 0 < r ≤ n/n−1 < min{r0, r̄}. By Theorem 4 in FJL, there exists a unique
symmetric equilibrium with pure-strategy bidding characterised by their
Lemma 2. Second, it is verified that the break-even condition in their Lemma
2 reduces to (10) in the current paper. Q.E.D.

A.5 Proof of Theorem 6

To prepare the proof, Lemma 2 below collects some auxiliary results. Subse-
quently, we prove the main statement of Theorem 6.

A.5.1 Auxiliary results

Lemma 2. a) Let Φ(q, X̄; p,X; c) and φ(X̄,X) be given by (11) and (4), re-
spectively. Further, let p, q ∈ (0, 1] andX ≥ 0 be arbitrary. Then maximiz-
ing Φ(q, X̄; p,X; c) w.r.t. X̄ is equivalent to maximizing φ(X̄,X) w.r.t. X̄ .

b) Fix r ≤ n/n−1, and let (p,X) represent a solution to (15) and (8), respec-
tively. Then, we have Φ(q, 0; p,X; c) ≤ 0, where the inequality holds
strictly if n > 2 and p < 1.

c) Fix an arbitrary q ∈ (0, 1]. Then we have

Φ(q, X̄; pESS, XESS; c) ≤ Φ(q,XESS; pESS, XESS; c), for all X̄ ≥ 0.
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Proof: To show a), consider the corresponding first order derivatives,

∂Φ

∂X̄
= q

∂Π1(X̄,X, . . . ,X)

∂X̄
− p∂Π2(X̄,X, . . . ,X; q)

∂X̄
, where

∂Π1(X̄,X, . . . ,X)

∂X̄
= V

∑
M∈PN1

p|M | (1− p)|N1\M | |M | rX̄r−1Xr(
X̄r + |M |Xr

)2 − 1,

∂Π2(X̄,X, . . . ,X; q)

∂X̄
= qV

∑
M∈PN2

p|M | (1− p)|N2\M | rX̄r−1Xr(
X̄r + (|M |+ 1)Xr

)2
=
q

p

∂Π2(X̄,X, . . . ,X)

∂X̄
.

Note that the last equality follows from differentiating (3) with respect to X̄ ,
given the entry probability is exogenous at p.

We can hence rewrite

∂Φ

∂X̄
= q

∂Π1(X̄,X, . . . ,X)

∂X̄
− q∂Π2(X̄,X, . . . ,X)

∂X̄

= q

[
∂Π1(X̄,X, . . . ,X)

∂X̄
− ∂Π2(X̄,X, . . . ,X)

∂X̄

]
,

where the term in brackets coincides with the first order derivative of (5).
Accordingly, all results of the exogenous entry case that relate to the sign of
the first and higher order derivatives of (5) w.r.t. effort level X̄ extend to the
endogenous entry case, where (12) is to be maximized.

b) Fix r ≤ n/n−1, and let (p,X) be a solution to (15) and (8). We first show
Π1(0, X, . . . ,X) ≤ c and Π2(0, X, . . . ,X) = c. Then, Φ(q, 0; p,X; c) ≤ 0

follows directly from these two results.

First note that Π1(0, X, . . . ,X) ≤ c is equivalent to V (1− p)n−1 ≤ c. By (15),
we need to show

V (1− p)n−1 ≤ V

n− 1

1− (1− p)n−1

p
−X.
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Multiplying both sides by (n−1)p/V and using (8), this condition becomes

(n−1)p(1−p)n−1 ≤ 1− (1−p)n−1−prn
n−1∑
k=1

Cn−1
k pk(1−p)n−1−k k

(k + 1)2
.

Since nCn−1
k /k+1 = Cnk+1, the above can be rewritten as

r
n−1∑
k=1

Cnk+1p
k+1(1− p)n−1−k k

k + 1
= r

n∑
k=2

Cnk p
k(1− p)n−k k − 1

k

≤ 1− (1− p)n − np(1− p)n−1.

This inequality holds for arbitrary r ≤ n/n−1 if it holds for r = n/n−1, i.e. if

n
n∑
k=2

Cnk p
k(1− p)n−k k − 1

k
≤ (n− 1)

[
1− (1− p)n − np(1− p)n−1

]︸ ︷︷ ︸∑n
k=2 C

n
k p

k(1−p)n−k

or equivalently if

n∑
k=2

Cnk p
k(1− p)n−k ≤

n∑
k=2

Cnk p
k(1− p)n−kn

k
.

Because n/k ≥ 1, for k = 2, . . . , n, the above inequality is satisfied. Moreover,
it holds strictly if n > 2 and p < 1.

Second, to show Π2(0, X, . . . ,X) = c, note that (3) implies Π2(0, X, . . . ,X)

= V
n−2∑
k=0

Cn−2
k pk(1− p)n−k−2 1

k + 1
−X =

V

n− 1

1− (1− p)n−1

p
−X = c,

where the last equality holds because of (15).

c) Let q ∈ (0, 1] be arbitrary. By a), we can write the first order condition
with respect to X̄ as

q

[
∂Π1

∂X̄
(X̄,X, . . . ,X)− ∂Π2

∂X̄
(X̄,X, . . . ,X)

]
= 0. (21)

As q > 0, it follows that (21) is equivalent to the first order condition of (5)
with the entry probability being exogenously set at pESS. Since the first and
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higher order derivatives of (12) w.r.t. X̄ with a fixed q represent multiples
of the corresponding derivatives of (5), the remainder of the proof can be
established along the lines of the proof for Theorem 2. The only difference to
be taken into account is when we evaluate the relative fitness of a zero effort
mutant. To compare the relative payoff of X̄ = 0 with that of X̄ = XESS,
note that b) implies Φ(q, 0; pESS, XESS; c) ≤ 0. Q.E.D.

A.5.2 Proof of the main statement

Part i): Let c ≤ n−(n−1)r
n(n−1) V and note that XESS(r, V, n, p) = rV/n, for p = 1.

We need to show that (pESS, XESS) = (1, rV/n) constitutes an ESS.

First, consider a mutant using strategy (q, X̄) = (0, 0). The mutant obtains
zero absolute payoff by staying out while ESS strategists - due to the absence
of the the mutant - obtain V

n−1 −
rV
n ≥ c. Thus, in terms of relative payoff, the

mutant cannot strictly improve from the ESS strategy pair, p = 1, X = rV/n,
which yields a zero relative payoff.

Now consider an arbitrary pair (q, X̄). We first decompose Φ(q, X̄; p,X; c)

as follows:

Φ(q, X̄; p,X; c) = qΦ(1, X̄; p,X; c) + (1− q)Φ(0, X̄; p,X; c).

This can be verified by using (11) and the observation that

Π2(X̄,X, . . . ,X; q) = qΠ2(X̄,X, . . . ,X; 1) + (1− q)Π2(X̄,X, . . . ,X; 0).

Note also that Φ(0, X̄; p,X; c) = Φ(0, 0; p,X; c) as effort exerting is condi-
tional on entry. Then we have

Φ(q, X̄; 1, rV/n; c) =qΦ(1, X̄; 1, rV/n; c) + (1− q)Φ(0, 0; 1, rV/n; c)

≤qΦ(1, rV/n; 1, rV/n; c) + (1− q)Φ(0, 0; 1, rV/n; c)

≤q · 0 + (1− q) · 0 = 0,

where the first inequality follows because rV/n is an ESS in the exogenous
case and the second inequality follows from the above discussion that a
mutant cannot increase relative payoff by playing (0, 0).
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Part ii): Let (q, X̄) be an arbitrary mutant strategy and let the candidate ESS
strategy (pESS, XESS) satisfy the first order conditions (8) and (15). We show
that the mutant’s relative payoff Φ(q, X̄; pESS, XESS; c) assumes its maximum
at 0 for (q, X̄) = (pESS, XESS).

First, note by Lemma 2.c), Φ(q, X̄; pESS, XESS; c) ≤ Φ(q,XESS; pESS, XESS; c).
Further, following equations (13), (14), and (15), Φ(q,XESS; pESS, XESS; c) is
constant in q. Hence, Φ(q, X̄; pESS, XESS; c) ≤ Φ(pESS, XESS; pESS, XESS; c).
Q.E.D.

A.6 Proof of Theorem 7

Let c > n−(n−1)r
n2 V . From Theorem 5, pNash < 1 and

1− (1− pNash)n

pNash = n
c+XNash(r, V, n, pNash)

V
.

Evaluating (14) at p = pNash and using the above result lead to

V

n− 1

[
n
c+XNash

V
− (1− pNash)n−1

]
− n

n− 1
XNash − c

=
c− V (1− pNash)n−1

n− 1
> 0,

where the inequality holds because c is equal to the expected equilibrium
surplus by biddingXNash and V (1−pNash)n−1 is the payoff of the deviation to
bidding 0 in the NE. The inequality indeed holds strictly because of equation
(22) on page 594 in LM. It hence follows that pESS > pNash.

If c ≤ n−(n−1)r
n2 V , by Theorem 5 and 6, pNash = pESS = 1. Q.E.D.
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