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Abstract

Using the tools of the Markov Decision Processes, we justify the dynamic programming
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equivalence of the integral and differential forms of the optimality equation. The theory is
illustrated by an example from mathematical epidemiology. The developed methods can be
also useful for the study of piecewise deterministic Markov processes.
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1 Introduction

Impulse control of various dynamical systems attracts attention of many researchers: [1, 2, 5, 7, 8,
9, 10, 11, 12, 16, 17, 18, 19, 20, 22, 23], to mention the most relevant and the most recent works. The
underlying system can be described in terms of ordinary [1, 2, 5, 12, 16, 18, 19] or stochastic [17]
differential equations; that was an abstract Markov process in [20]. In [7, 8, 9, 11, 22, 23], along with
the given deterministic drift, there are spontaneous (or natural) Markov jumps of the state. Such
models are called Piecewise Deterministic Markov Processes (PDMP); the drift is usually described
by a fixed flow. On the other hand, if there is no drift and the trajectories are piecewise constant,
the model is called Continuous-Time Markov Decision Process (CTMDP) [10]. By the gradual
control we mean that only the local characteristics of the underlying process are under control.
In case of PDMP, it means that the deterministic drift and the rate of the spontaneous/natural
jumps, as well as the post-jump distribution are under control. But the impulse control means
the following: at particular discrete time moments, the decision maker decides to intervene by
instantaneously moving the process to some new point in the state space; that new point may
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be also random in the cases of CTMDP and PDMP [10, 11, 23]. Then, restarting at this new
point, the process runs until the next intervention and so on. Sometimes, such control is called
‘singular control’ [17]. The goal is to minimize the total (expected) accumulated cost which may
be discounted [2, 7, 8, 9, 10, 11, 12, 17, 20, 22, 23] or not [1, 2, 5, 12, 16, 19, 23]. The case of
long-run average cost was also studied in e.g. [23].

The most popular method of attack to such problems is Dynamic Programming [2, 7, 8, 9, 10,
11, 17, 20, 22, 23]. In [12, 16, 19], versions of the Pontryagin Maximum Principle are used. In [5],
the impulse control is firstly reformulated as the linear program on measures: impulses correspond
to the singular, Dirac components. After that, the numerical approximate scheme is developed in
the form of Linear Matrix Inequalities.

Impulse control theory is widely applied to different real-life problems: epidemiology [1, 18],
Internet congestion control [2], reliability [9], economics and finance [12, 17, 22], moving objects
[12], medicine [16], genetics and ecology [19] etc.

The distinguishing features of the current work are as follows.

• We consider the positive model with deterministic dynamics and with the total cost. As
is known and explained in the text, the discounted model is a special case, as well as the
absorbing model.

• The imposed conditions partially overlap with those introduced in other articles. Generally
speaking, our conditions are weaker than the assumptions introduced in the cited literature.

• Under mild conditions, we prove the equivalence of the optimality (Bellman) equation in
the integral and differential form. The analytical proof is new. Moreover, as mentioned in
Conclusion, this proof remains valid also for the more general case of PDMP. Note also that
the differential form is slightly different from what appeared in other works.

• We present the solution to the optimal impulse control of an epidemic model, which is of its
own interest.

The paper is organized in the following way. After describing the problem statement, we
demonstrate the MDP approach and provide the integral optimality equation in Section 3. In
Section 4, we prove the equivalence of the integral and differential forms of the optimality equation.
The impulse control of SIR epidemic is developed in Section 5. In Conclusion, we briefly describe
the ways for generalizing our results to PDMP.

The following notations are frequently used throughout this paper. N = {1, 2, . . .} is the
set of natural numbers; δx(·) is the Dirac measure concentrated at x, we call such distributions
degenerate; I{·} is the indicator function. B(E) is the Borel σ-algebra of the Borel space E, P(E)
is the Borel space of probability measures on E. (It is always clear which σ-algebra is fixed in E.)
The Borel σ-algebra B(P(E)) comes from the weak convergence of measures, after we fix a proper

topology in E. R+
△
= (0,+∞), R0

+
△
= [0,+∞), R̄0

+
△
= [0,+∞]; in R+ and R0

+, we consider the
Borel σ-algebra, and Leb is the Lebesgue measure. The abbreviation w.r.t. (resp. a.s.) stands for

“with respect to” (resp. “almost surely”); for b ∈ [−∞,+∞], b+
△
= max{b, 0} and b−

△
= min{b, 0}.

inf ∅ △
= +∞. Measures introduced in the current article can take infinite values. If b = ∞ then

the integrals

∫
(a,b]

f(u)du are taken over the open interval (a,∞).

2 Problem Statement

We will deal with a control model defined through the following elements.

• X is the state space, a Borel subset of a complete separable metric space with metric ρX and
the Borel σ-algebra.

• ϕ(· , ·) : X×R0
+ → X is the flow possessing the semigroup property ϕ(x, t+s) = ϕ(ϕ(x, s), t)

for all x ∈ X and (t, s) ∈ (R0
+)

2; ϕ(x, 0) = x for all x ∈ X. Between the impulses, the state
changes according to the flow.
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• A is the action space, again a Borel subset of a complete separable metric space with metric
ρA and the Borel σ-algebra.

• l(· , ·) : X × A → X is the mapping describing the new state after the corresponding
action/impulse is applied.

• Cg(·) : X → R is the (gradual) cost rate.

• CI(· , ·) : X × A → R is the cost associated with the actions/impulses applied in the
corresponding states.

All the mappings ϕ(·), l(·), Cg(·) and CI(·) are assumed to be measurable. Below, we describe
rigorously control strategies: the decision maker selects the control actions from A and the time
durations between them.

Let X∆ = X∪{∆}, where ∆ is an isolated artificial point describing the case that the controlled
process is over and no future costs will appear. The dynamics (trajectory) of the system can be
represented as one of the following sequences

x0 → (θ1, a1) → x1 → (θ2, a2) → . . . ; θi < +∞ for all i ∈ N,
or (1)

x0 → (θ1, a1) → . . . → xn → (+∞, an+1) → ∆ → (θn+2, an+2) → ∆ → . . . ,

where x0 ∈ X is the initial state of the controlled process and θi < +∞ is the time duration between
the control actions ai−1 and ai for all i = 2, 3, . . . , n. If θ1, the time to the first action, equals +∞,

then no actions at all are applied. Ti
△
=
∑i

j=1 θj are the time moments when actions are applied,

i.e., the jump epochs; i = 1, 2, . . .. For the state xi−1 ∈ X, i ∈ N, the pair (θi, ai) ∈ R̄0
+ ×A is the

control at the step i: after θi time units, the impulsive action ai will be applied leading to the new
state

xi =

{
l(ϕ(xi−1, θi), ai), if θi < +∞;
∆, if θi = +∞.

(2)

The state ∆ will appear forever, after it appeared for the first time, i.e., it is absorbing.
After each impulsive action, if θ1, θ2, . . . , θi−1 < +∞, the decision maker has in hand complete

information about the history, that is, the sequence

x0, (θ1, a1), x1, . . . , (θi−1, ai−1), xi−1.

The next control (θi, ai) is based on this information and we allow the pair (θi, ai) to be random.
The cost on the coming interval of the length θi equals∫

(0,θi]

Cg(ϕ(xi−1, u))du+ I{θi < +∞}CI(ϕ(xi−1, θi), ai), (3)

the last term being absent if θi = +∞. If the cost functions Cg(·) and CI(·) can take positive
and negative values, then one can calculate separately the expressions in (3) for the positive and

negative parts of the costs and accept the convention +∞−∞ △
= +∞. The next state xi is given

by formula (2).
In the space of all the trajectories (1)

Ω =
∞∪

n=1

[X× ((R0
+ ×A)×X)n × ({+∞}×A)× {∆} × ((R̄0

+ ×A)× {∆})∞]∪
[X× ((R0

+ ×A)×X)∞],

we fix the natural σ-algebra F obtained as the trace of the Borel σ-algebra B((X∆ × R̄0
+ ×A)∞).

Finite sequences
hi = (x0, (θ1, a1), x1, (θ2, a2), . . . , xi)

will be called (finite) histories; i = 0, 1, 2, . . ., and the space of all such histories will be denoted as
Hi. Capital letters Xi, Ti,Θi, Ai and Hi denote the corresponding functions of ω ∈ Ω, i.e., random
elements.
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Definition 1. A control strategy π = {πi}∞i=1 is a sequence of stochastic kernels πi on R̄0
+ × A

given Hi−1. A control strategy is called stationary deterministic and denoted as (φθ, φa), if, for all
i = 1, 2, . . ., πi(dθ×da|hi−1) = δφθ(xi−1)(dθ)δφa(xi−1)(da), where φθ : X∆ → R̄0

+ and φa : X∆ → A
are measurable mappings, that is, if the current value of the state xi−1 uniquely determines the
time to wait until the next control and the action.

If the initial state x0 ∈ X and a strategy π are fixed, then there is a unique probability measure
Pπ
x0
(·) on Ω satisfying the following conditions:

Pπ
x0
(X0 ∈ ΓX) = δx0(ΓX) for ΓX ∈ B(X∆);

for all i ∈ N, Γ ∈ B(R̄0
+ ×A), ΓX ∈ B(X∆),

Pπ
x0
((Θi, Ai) ∈ Γ|Hi−1) = πi(Γ|Hi−1);

Pπ
x0
(Xi ∈ ΓX |Hi−1, (Θi, Ai)) =

{
δl(ϕ(Xi−1,Θi),Ai)(ΓX), if Xi−1 ∈ X, Θi < +∞;
δ∆(ΓX) otherwise

For details, see the Ionescu Tulcea Theorem [4, Prop.7.28]. The mathematical expectation w.r.t.
Pπ
x0

is denoted as Eπ
x0
.

The optimal control problem under study looks as follows.

Minimize w.r.t. π

V(x0, π) = Eπ
x0

[ ∞∑
i=1

I{Xi−1 ̸= ∆}

{∫
(0,Θi]

Cg(ϕ(Xi−1, u))du (4)

+I{Θi < +∞} CI(ϕ(Xi−1,Θi), Ai)

}]
.

Although the dynamics in the model is deterministic, the mathematical expectation in (4) is
needed because the control may be randomized. Below, we introduce conditions under which the
function V(x0, π) is well defined.

Definition 2. A control strategy π∗ is called uniformly optimal if, for all x ∈ X∆, V(x, π∗) =

V∗(x)
△
= infπ V(x, π). Here V∗(x) denotes the minimal total cost if the process starts from x ∈ X.

If, for all x ∈ X, infπ V(x, π) < +∞, then the optimal control problem (4) is not degenerate.

This assumption holds if

∫
(0,∞)

Cg(ϕ(x, u))du < +∞ or, e.g., in the following cases.

• Absorbing case: there is a specific measurable “cemetery” subset Y ⊂ X such that for all
y ∈ Y Cg(y) ≡ 0, for all u ∈ R0

+ ϕ(y, u) ∈ Y and, for each x ∈ X \Y,

– either infu∈R0
+
{u : ϕ(x, u) ∈ Y} △

= t∗(x) < +∞, the function t∗(x) is measurable, and∫
(0,t∗(x)]

Cg(ϕ(x, u))du < +∞,

– or there is an action â ∈ A such that l(x, â) ∈ Y.

• Discounted case: the state space X has the form X = Y×R0
+, where Y is a Borel subset of

a complete separable metric space, the component s0 of the initial state x0 = (y0, s0) is zero,
the flow ϕ(·) satisfies ϕ((y, s), t) = (ϕY(y, t), s+ t), where ϕY(·) is a flow in Y, and

Cg((y, s)) = e−αsCg
Y(y);

CI((y, s), a) = e−αsCI
Y(y, a);

l((y, s), a) = (lY(y, a), s).

Here the functions and mapping Cg
Y(·), CI

Y(·) and lY(·) are for the component y ∈ Y

only, and, for all y ∈ Y,

∫
(0,+∞)

e−αuCg
Y(ϕY(y, u))du < +∞. α > 0 is the discount factor,

component s of the state x = (y, s) plays the role of time, and in principle one can consider the
non-homogeneous model with the functions and mappings Cg

Y(·), CI
Y(·) and lY(·) depending

also on the component s.
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• Generalized discounting: the model is as in the previous item, but

Cg((y, s)) = h(s)Cg
Y(y); CI((y, s), a) = h(s)CI

Y(y, a),

and the measurable function h(·) is such that ∀y ∈ Y

∫
(0,+∞)

h(s)Cg
Y(ϕY(y, u))du < +∞.

3 MDP Approach

In this section, we establish the optimality results for problem (4) by referring to the known ones
for its induced total undiscounted discrete time Markov Decision Process (MDP).

At the very beginning, having in hand the value h0 = x0 ∈ X, the decision maker selects the
time duration θ1 and the action a1, using the randomized rule π1(dθ × da|x0). After that, the
dynamics is deterministic along the flow ϕ. As a result, the value of x1, after the first action is
applied, equals l(ϕ(x0, θ1), a1) and the cost on the interval (0, θ1] is

C̃(x0, (θ1, a1)) =

∫
(0,θ1]

Cg(ϕ(x0, u))du+ CI(ϕ(x0, θ1), a1),

assuming θ1 < +∞. One can ignore the real time scale and pass to the discrete time model:
after the pair (θ1, a1), the action in the induced model, is chosen at the first step, the state of
MDP changes from x0 to x1 = l(ϕ(x0, θ1), a1), and the corresponding cost equals C̃(x0, (θ1, a1)).
Having in hand h1 = (x0, (θ1, a1), x1), the decision maker selects θ2 and a2 using π2, and x2 =
l(ϕ(x1, θ2), a2) is the new state in the induced MDP, accompanied with the cost C̃(x1, (θ2, a2))
coming on the interval (θ1, θ1 + θ2]. And so on. The formal description is given below.

The MDP under study is given by the state and action spaces X∆ and R̄0
+ × A, transition

kernel

Q(dy|x, (θ, a)) △
=

{
δl(ϕ(x,θ),a)(dy), if x ̸= ∆, θ ̸= +∞;
δ∆(dy) otherwise,

and cost

C̃(x, (θ, a))
△
= I{x ̸= ∆}

{∫
(0,θ]

Cg(ϕ(x, u))du+ I{θ < +∞}CI(ϕ(x, θ), a)

}
.

Clearly, actions of the form (+∞, a) can be treated as stopping the control process with the terminal

cost

∫
(0,+∞)

Cg(ϕ(x, u))du. In this framework, we denote as “stop” the strategy which immediately

chooses θ1 = +∞: V(x0, ”stop”) =
∫
(0,+∞)

Cg(ϕ(x, u))du. The artificial state ∆ means that MDP

is stopped without any future cost.
Throughout this section, the following condition is satisfied.

Condition 1. The functions Cg(·) and CI(·) are R0
+-valued, that is, we consider the so called

positive model with the total expected cost.

In this case, the value function V∗(x0)
△
= infπ V(x0, π) is the minimal R̄0

+-valued lower semian-
alytic solution to the following optimality (Bellman) equation:

V (∆) = 0,

V (x) = inf
(θ,a)∈R̄0

+×A

{
C̃(x, (θ, a)) +

∫
X∆

V (y)Q(dy|x, (θ, a))
}

(5)

= inf
(θ,a)∈R̄0

+×A

{∫
(0,θ]

Cg(ϕ(x, u))du+ I{θ < +∞}
(
CI(ϕ(x, θ), a) + V (l(ϕ(x, θ), a))

)}
∀ x ∈ X.

(See [4, Cor.9.4.1,Prop.9.8, and Prop.9.10].) The integral with respect to Q is the (conditional)
mathematical expectation. But in fact, the dynamics in the induced MDP is deterministic: Q(·|·)
is a Dirac measure.
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Recall that our original model is the special case of PDMP when the spontaneous (natural)
jumps intensity λ equals zero. In case of discounted cost, corresponding versions of equation (5)
appeared in the works [7, 8, 9, 11, 22] on PDMP.

Note that the case of a simultaneous sequence of impulses, when Θi = Θi+1 = . . . = 0, is
not excluded. In such cases, the total cost (4) is calculated over a finite time horizon, up to the
accumulation of impulses.

Section 4 is devoted to the study of equation (5), without requiring that Condition 1 is satisfied.
In the framework of stopping MDP, the decision to stop (here that means θ = +∞, and all the

actions of the form (+∞, a) can be merged to one point) is usually considered as an isolated point
of the action space R̄0

+ ×A. But in this case the remainder (real) action space R0
+ ×A would be

not compact. To avoid this inconvenience, we accept the following conditions.

Condition 2. (a) The space A is compact, and +∞ is the one-point compactification of the
positive real line R0

+, so that the action space R̄0
+ ×A in the MDP is compact.

(b) The mapping (x, a) ∈ X×A → l(x, a) is continuous.

(c) The mapping (x, θ) ∈ X× R0
+ → ϕ(x, θ) is continuous.

(d) The function (x, a) ∈ X×A → CI(x, a) is lower semicontinuous.

(e) The function x ∈ X → Cg(x) is lower semicontinuous.

Still under these conditions, the model is not semicontinuous because, if x ̸= ∆, θn ∈ R0
+ and

θn → +∞ then the transition probabilities Q(dy|x, (θn, a)) do not converge to δ∆(dy). Neverthe-
less, the usual dynamic programming approach is fruitful.

Theorem 1. Suppose Conditions 1 and 2 are satisfied. Then the following assertions hold.

(1) The minimal R̄0
+-valued solution V (·) to equation (5) is lower semicontinuous, unique, and

can be constructed by successive approximations starting from V0(x) ≡ 0, x ∈ X∆:

Vn+1(∆) = Vn(∆);

Vn+1(x) = inf
(θ,a)∈R̄0

+×A

{∫
(0,θ]

Cg(ϕ(x, u))du+ I{θ < +∞}
(
CI(ϕ(x, θ), a)

+Vn(l(ϕ(x, θ), a)))

}
∀ x ∈ X.

The sequence {Vn}∞n=0 increases point-wise and V (x) = limn→∞ Vn(x) = V∗(x) for all x ∈ X.

(2) There exist measurable mappings φ∗
θ : X → R̄0

+ and φ∗
a : X → A such that, for all x ∈ X,

V∗(x) =

∫
(0,φ∗

θ(x)]

Cg(ϕ(x, u))du (6)

+I{φ∗
θ(x) < +∞}

(
CI(ϕ(x, φ∗

θ(x)), φ
∗
a(x)) + V∗(l(ϕ(x, φ∗

θ(x)), φ
∗
a(x)))

)
.

(3) A stationary deterministic strategy (φ∗
θ, φ

∗
a) is uniformly optimal if and only if it satisfies

equality (6). In particular, from Item (2), we see that there exists a stationary deterministic
uniformly optimal strategy.

Proof. It is sufficient to consider only x ∈ X, as ∆ is the isolated point of X∆. Suppose W (·)
is a lower semicontinuous R̄0

+-valued function on X and show that function on X× R̄0
+ ×A∫

(0,θ]

Cg(ϕ(x, u))du+ I{θ < +∞}
(
CI(ϕ(x, θ), a) +W (l(ϕ(x, θ), a))

)
(7)

is lower semicontinuous and R̄0
+-valued.
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Firstly, let us show that the non-negative function

∫
(0,θ]

Cg(ϕ(x, u))du is lower semicontinuous

on X× R̄0
+. By a well known result of Baire, see e.g., [4, Lemma 7.14], there exists an increasing

sequence of bounded R0
+-valued continuous functions, say {cm(·)}∞m=1, on X such that cm(x) ↑

Cg(x) for each x ∈ X. For every m = 1, 2, . . . , function (x, θ) ∈ X× R̄0
+ →

∫
(0,θ]

cm(ϕ(x, u))e−
u
m du

is bounded continuous. By the monotone convergence theorem and using the result of Baire again,
we see that function

(x, θ) ∈ X× R̄0
+ →

∫
(0,θ]

Cg(ϕ(x, u))du =

∫
(0,θ]

lim
m→∞

cm(ϕ(x, u))e−
u
m du

= lim
m→∞

∫
(0,θ]

cm(ϕ(x, u))e−
u
m du

is lower semicontinuous.
Secondly, let us show that the non-negative function

F (x, θ, a)
△
= I{θ < +∞}

(
CI(ϕ(x, θ), a) +W (l(ϕ(x, θ), a))

)
is also lower semicontinuous on X × R̄0

+ ×A. Suppose (xn, θn, an) → (x, θ ̸= +∞, a) as n → ∞.

Since the flow ϕ(·) and the mapping l(·) are continuous, we deduce that the sequences yn
△
=

ϕ(xn, θn) and ln
△
= l(ϕ(xn, θn), an) converge to y

△
= ϕ(x, θ) and l

△
= l(ϕ(x, θ), a) correspondingly.

Therefore

lim
n→∞

F (xn, θn, an) ≥ lim
n→∞

CI(yn, an) + lim
n→∞

W (ln, an) ≥ CI(y, a) +W (l, a) = F (x, θ, a)

because the both functions CI(·) andW (·) are lower semicontinuous. (See [4, Lemma 7.13]). In case
(xn, θn, an) → (x,+∞, a) as n → ∞, it is obvious that limn→∞ F (xn, θn, an) ≥ 0 = F (x,+∞, a).

Therefore, function (7) is lower semicontinuous and obviously R̄0
+-valued.

(1) Clearly, V1(y) ≥ V0(y) for all y ∈ X because Cg(·), CI(·) ≥ 0. Hence{∫
(0,θ]

Cg(ϕ(x, u))du+ I{θ < +∞}
(
CI(ϕ(x, θ), a) + V1(l(ϕ(x, θ), a))

)}

≥

{∫
(0,θ]

Cg(ϕ(x, u))du+ I{θ < +∞}
(
CI(ϕ(x, θ), a) + V0(l(ϕ(x, θ), a))

)}

for all x ∈ X, (θ, a) ∈ R̄0
+ × A; therefore V2(x) ≥ V1(x) for all x ∈ X. And so on. Thus,

the sequence {Vn}∞n=1 increases point-wise and hence converges to some R̄0
+-valued function V (·).

The non-negative function V0(·) is lower semicontinuous and, if Vn(·) is a non-negative lower
semicontinuous function then so is function Vn+1(·) by Proposition 7.32 [4]. Therefore, function
V (·) is lower semicontinuous by the mentioned above Baire result.

For every n = 0, 1, 2, . . ., function (7), with W (·) being replaced with Vn(·), is lower semicon-
tinuous. Therefore, the set

Un(x, λ)
△
= {(θ, a) ∈ R̄0

+ ×A :

∫
(0,θ]

Cg(ϕ(x, u))du+ I{θ < +∞}(CI(ϕ(x, θ), a)

+Vn(l(ϕ(x, θ), a))) ≤ λ}

is closed and hence compact for all x ∈ X, λ ∈ R. (See Condition 2(a).) By Proposition 9.17 [4],
V (x) = V∗(x) for all x ∈ X.

(2) The value function V∗(·) satisfies equation (5) and is lower semicontinuous. By Proposition
7.33 [4], there exists a measurable mapping φ∗ : X → R̄0

+ ×A which provides the infimum in (5)
for all x ∈ X. Assertion (2) follows.

(3) This assertion follows directly from Proposition 9.12 [4].
2
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Corollary 1. Suppose Conditions 1 and 2 are satisfied and (φ∗
θ, φ

∗
a) is a uniformly optimal sta-

tionary deterministic strategy. Then the following assertions hold true, where V (·) is as in Item
(1) of Theorem 1.

(1) For every x ∈ X with φ∗
θ(x) < +∞, for y

△
= ϕ(x, φ∗

θ(x)), equality

V (y) = inf
a∈A

{CI(y, a) + V (l(y, a))} = CI(y, φ∗
a(x)) + V (l(y, φ∗

a(x)))

is valid.

(2) For every x ∈ X with φ∗
θ(x) > 0, for each t ∈ [0, φ∗

θ(x)), for y
△
= ϕ(x, t), equality

V (y) =

∫
(0,φ∗

θ(x)−t]

Cg(ϕ(y, u))du+ I{φ∗
θ(x) < +∞}[CI(ϕ(y, φ∗

θ(x)− t), φ∗
a(x))

+V (l(ϕ(y, φ∗
θ(x)− t), φ∗

a(x)))] (8)

is valid and hence

V (x) =

∫
(0,t]

Cg(ϕ(x, u))du+ V (ϕ(x, t)). (9)

Proof. (1) For the right equality, recall that the function V satisfies equation (5) by Theo-
rem 1(1), and the mapping φ∗

θ, along with φ∗
a, provides the infimum in (5) by Theorem 1(2). In

other words,

inf
a∈A

{∫
(0,φ∗

θ(x)]

Cg(ϕ(x, u))du+ I{φ∗
θ(x) < +∞}

(
CI(y, a) + V (l(y, a))

)}

=

∫
(0,φ∗

θ(x)]

Cg(ϕ(x, u))du+ I{φ∗
θ(x) < +∞}

(
CI(y, φ∗

a(x)) + V (l(y, φ∗
a(x)))

)
,

and the right equality follows.
The case when V (y) is bigger than the expression on the right is excluded. (Consider θ = 0 for

y in (5).) If V (y) is smaller, then the pair

(φ̃θ(x)
△
= φ∗

θ(x) + φ∗
θ(y), φ∗

a(y))

gives rise to the expression∫
(0,φ∗

θ(x)]

Cg(ϕ(x, u))du+

∫
(φ∗

θ(x),φ̃θ(x)]

Cg(ϕ(x, u))du

+I{φ̃θ(x) < +∞}[CI(ϕ(x, φ̃θ(x)), φ
∗
a(y)) + V (l(ϕ(x, φ̃θ(x)), φ

∗
a(y)))]

=

∫
(0,φ∗

θ(x)]

Cg(ϕ(x, u))du+ V (y)

<

∫
(0,φ∗

θ(x)]

Cg(ϕ(x, u))du+ I{φ∗
θ(x) < +∞}[CI(ϕ(x, φ∗

θ(x)), φ
∗
a(y)) + V (l(ϕ(x, φ∗

θ(x)), φ
∗
a(y)))],

that is, (φ̃θ(x), φ
∗
a(y) = φ∗

a(ϕ(x, φ
∗
θ(x)))) provides the smaller value for

G(x, θ, a)
△
=

∫
(0,θ]

Cg(ϕ(x, u))du+ I{θ < +∞}[CI(ϕ(x, θ), a) + V (l(ϕ(x, θ), a))] (10)

than the pair (φ∗
θ, φ

∗
a), which contradicts the definition of (φ∗

θ, φ
∗
a) by Theorem 1(3).

(2) V (y) cannot be bigger than the expression on the right in (8). (Consider θ = φ∗
θ(x)− t for

y in (5).) If V (y) is smaller then, like previously, the pair

(φ̃θ(x) = t+ φ∗
θ(y), φ∗

a(y))
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provides the smaller value for (10) than the pair (φ∗
θ, φ

∗
a), which contradicts the definition of

(φ∗
θ, φ

∗
a) by Theorem 1(3).

Equality (9) follows from (8) because

V (x) =

∫
(0,t]

Cg(ϕ(x, u))du+

∫
(0,φ∗

θ(x)−t]

Cg(ϕ(y, u))du

+I{φ∗
θ(x) < +∞}[CI(ϕ(y, φ∗

θ(x)− t), φ∗
a(x)) + V (l(ϕ(y, φ∗

θ(x)− t), φ∗
a(x)))].

2

Remark 1. If Conditions 1 and 2 are satisfied then, for each x ∈ X, in case the pair (θ̂ <
+∞, φ∗

a(x)) provides the infimum in equation (5), equality

CI(ϕ(x, θ̂), φ∗
a(x)) + V (l(ϕ(x, θ̂), φ∗

a(x))) = V (ϕ(x, θ̂)) (11)

is valid. The proof coincides with the proof of Item (1) of Corollary 1.

Under Conditions 1 and 2, for the minimal non-negative solution V (·) to equation (5), we
introduce the function G : X× R̄0

+ ×A → R̄0
+ by (10) and the sets Θ(x) by

Θ(x)
△
=

{
θ ∈ R̄0

+ : inf
a∈A

G(x, θ, a) ≤ V (x)

}
=

{
θ ∈ R̄0

+ : inf
a∈A

G(x, θ, a) = V (x)

}
, (12)

where the right equality is by Theorem 1. For a fixed x ∈ X, the set Θ(x) contains all time
moments θ such that the pair (θ, â) provides the infimum in (5). Here, for θ ∈ Θ(x) ∩ R0

+, â ∈ A
provides the infimum in (12); such â exist because the function G is lower semicontinuous in a, if
Conditions 1 and 2 are satisfied.

The following corollary states that for each x ∈ X the set of values θ providing the infimum in
(5) is closed in R̄0

+, and hence, contains its minimal value denoted as θ∗(x).

Corollary 2. Suppose Conditions 1 and 2 are satisfied and the function V∗(·) is finite-valued.
Then for all x ∈ X the set Θ(x) is non-empty and closed in R̄0

+, and therefore contains the value

θ∗(x)
△
= inf Θ(x), the mapping θ∗(·) being measurable.

Proof. The function V (·) is lower semicontinuous by Theorem 1. Then the function G(·)
definted by (10) is lower semicontinuous, as seen in the proof of Theorem 1. By Proposition 7.32
of [4], for each x ∈ X, infa∈A G(x, θ, a) defines a lower semicontinuous function on R̄0

+, and thus
Θ(x) is closed and thus compact in R̄0

+. The nonemptyness of Θ(x) is by Theorem 1.
By Proposition D.5 of [14], infa∈A G(x, θ, a) defines a measurable function on X × R̄0

+. Then
the graph of the multifunction Θ(·), given by {(x, θ) ∈ X × R̄0

+ : infa∈A G(x, θ, a) = V (x)}, is
measurable and hence the multifunction Θ(·) is Borel-measurable by Proposition D.4 of [14]. By
Proposition D.5 of [14], θ∗(x) = infθ∈Θ(x) θ defines a measurable function on X. 2

Under Conditions 1 and 2, there is a measurable mapping φ̂∗
a : X× R0

+ → A providing

inf
a∈A

{
CI(ϕ(x, θ), a) + V (l(ϕ(x, θ), a))

}
. (13)

(See Proposition 7.33 of [4].) The mapping θ∗(x) = inf Θ(x) from Corollary 2 is measurable, so

that the pair (φ∗
θ, φ

∗
a) with φ∗

θ(x)
△
= θ∗(x) and φ∗

a(x)
△
= φ̂∗

a(x, θ
∗(x)) satisfies Item (2) of Theorem

1.
Below, it will be assumed that the function V∗(·) is finite-valued.
Note that the function V∗(·) is obviously finite-valued in positive models if, for each x ∈ X,

there exists a control strategy π such that V(x, π) < +∞. The latter assumption follows from the
following condition.

Condition 3. For all x ∈ X the composite function Cg(ϕ(x, t)) is Lebesgue integrable on R0
+.

This means that the integral ∫
(0,+∞)

Cg(ϕ(x, t)) dt

exists and is finite.
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In what follows, we accept the following convention. We say that a function g : X → R satisfies
a certain property (is continuous, absolutely continuous, measurable, Lebesgue integrable, etc.)
along the flow ϕ, if for all x ∈ X the composite function t 7→ g(ϕ(x, t)) from R0

+ to R satisfies
this property. In view of this convention, Condition 3 asserts that the function Cg(·) is Lebesgue
integrable along the flow.

Further, we will need the following two conditions strengthening Conditions 3 and 1 respectively.

Condition 4. There is K ∈ R+ such that for all x ∈ X

∫
(0,+∞)

|Cg(ϕ(x, u))|du ≤ K.

Condition 5. The function Cg is R0
+-valued and CI ≥ δ > 0.

Condition 5 guarantees that, for reasonable strategies π, Θi is finite only a finite number of
times (Pπ

x0
-a.s.): otherwise V(x0, π) = +∞.

Under Conditions 4 and 5, starting from any initial state x0 ∈ X, for the optimal strategy the
MDP must be stopped after a finite number of control actions, i.e., at a finite time step

Tstop = min{i : Θi+1 = +∞}

and, for any reasonable strategy π,

Eπ
x0
[Tstop] ≤

K

δ
:

otherwise, the total cost

V(x0, π) = Eπ
x0

[ ∞∑
i=0

C̃(Xi, (Θi, Ai))

]
> K

is bigger than that coming from stopping the MDP immediately:

V(x0, “stop”) =

∫
(0,+∞)

Cg(ϕ(x, u))du ≤ K.

If we restrict ourselves to such control strategies, then we are in the framework of absorbing MDP
[15, §9.6], and the following proposition can be proved similarly to Theorem 9.6.10(c) [15].

Proposition 1. Suppose Conditions 2, 4 and 5 are satisfied. Then the Bellman equation (5) has
a unique bounded non-negative lower semicontinuous solution.

The proofs of all propositions are postponed to the Appendix.

Remark 2. (1) According to the proof of Proposition 1 (see Appendix), the Bellman equation
(5) has a unique bounded lower semicontinuous solution also in the case when Conditions 1
and 2, are satisfied, the function V∗(·) is bounded and, for all strategies π, for all x0 ∈ X,
limi→∞ Eπ

x0
[V (Xi)] = 0, where V (·) is a bounded lower semicontinuous function satisfying equation

(5). In this case V = V∗.
(2) If Condition 4 is satisfied, along with Conditions 1 and 2, then it is sufficient to require

limi→∞ Eπ
x0
[V (Xi)] = 0 only for the strategies π satisfying V(x0, π) ≤ K.

4 Differential Form of the Optimality Equation

In this section, we establish the equivalence of the integral and differential formulations of the
optimality equation using minimal assumptions about the system. We do not assume any structure
of the setsX andA and of the maps CI : X×A → R and l : X×A → X; we only require Condition
3 to be satisfied. Firstly, we justify the differential form of the optimality equation for the general
model studied in Section 3. After that, we briefly discuss the discounted model.
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4.1 Total Cost Model

Definition 3. A point x is said to be a singular point of the flow ϕ, if it is not an intermediate
point of a trajectory, that is, the equation x = ϕ(x̃, s) has no solutions for all x̃ ∈ X and s > 0.
Note that if the flow possesses the group property, i.e., ϕ(x, t+ s) = ϕ(ϕ(x, s), t) for all x ∈ X and
(t, s) ∈ R2, then there are no singular points.

Let V : X → R be a certain function. We denote

FV
+ (x)

△
= lim

t→0+

[V (ϕ(x, t))− V (x)

t
+

1

t

∫
(0,t]

Cg(ϕ(x, u)) du
]
,

provided that the limit in the right hand side exists.
Further, if x is a nonsingular point of the flow, we define the number set

FV
−(x)

△
=

{
limt→0+

[V (x)− V (ϕ(x̃, s− t))

t

+
1

t

∫
(−t,0]

Cg(ϕ(x̃, s+ u)) du
]
: (x̃, s) ∈ X× R+, ϕ(x̃, s) = x

}
⊂ R ∪ {±∞}.

With some abuse of notation, if FV
−(x) is a singleton (e.g. if the flow possesses the group property),

then we identify it with its element. If, otherwise, x is a singular point, then we set FV
−(x) = ∅.

Remark 3. If X′ ⊂ X ⊂ Rd is a smooth open manifold, the flow is given by the differential
equation ẋ = f(x), satisfying the standard conditions on the existence of a unique local solution in
X′ (for positive and negative t), for each initial condition from X′, Cg(·) is continuous along the
flow in X′, and V (·) is continuously differentiable along the flow in X′, then F−(x) is a singleton
for all x ∈ X′ and

FV
+ (x) = FV

−(x) = Cg(x) +∇V (x) · f(x).

Consider the optimality equation (5) on X, that is, the following integral equation:

V (x) = inf
θ∈R̄0

+

{∫
(0,θ]

Cg(ϕ(x, u)) du+I{θ < +∞} inf
a∈A

{CI(ϕ(x, θ), a)+V (l(ϕ(x, θ), a))}
}
, x ∈ X.

(14)
Everywhere further, we assume that the function V (·) is finite-valued. For example, under Condi-
tions 1, 2 and 3 the value function V∗ = V , studied in Section 3, is finite and satisfies the equation
(14) by Theorem 1.

Condition 6. For each x the former infimum in the right hand side of (14) is attained on a
nonempty set Θ(x) ⊂ R̄0

+, and Θ(x) contains its infimum.

We emphasise that Condition 6 is satisfied under Conditions 1 and 2 if X and A are Borel
spaces: see Corollary 2.

We also consider the so called Bellman equation in the differential form:

for all x ∈ X,

either (a) FV
+ (x) = 0

and inf
a∈A

[
CI(x, a) + V (l(x, a))− V (x)

]
> 0,

or (b) FV
−(x) ⊂ R̄0

+

and inf
a∈A

[
CI(x, a) + V (l(x, a))− V (x)

]
= 0.

(15)

Remark 4. In the case (a) it is assumed that the right limit exists and equals 0. If it does not
exist then the case (b) should take place.
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Recall that our model is the special case of PDMP when the spontaneous (natural) jumps
intensity λ equals zero. In case of discounted cost, corresponding versions of equation (15) appeared
in the works [7, 9, 11, 22, 23] on PDMP, see also the paper [2] on the purely deterministic system.
In [23], the undiscounted case was also investigated. More about connection of the current work
with existing results at the end of Subsection 4.2. Here, we only emphasize that the differential
form in the shape of inclusion FV

−(x) ⊂ R̄0
+ did not appear in the cited literature. Remember,

FV
−(x) is a singleton in case the flow possesses the group property.
Define the set

L △
= {x ∈ X : inf

a∈A

[
CI(x, a) + V (l(x, a))− V (x)

]
= 0}. (16)

If V is a solution to equation (5), the set L can be understood as the set of the states, where
actions/impulses must be applied. Suppose Conditions 1 and 2 are satisfied and function V is the

minimal R̄0
+-valued solution to equation (5). For each x ∈ X, if θ̂ ∈ Θ(x) ∩ R0

+ (see (12)), then θ̂

provides the infimum to infa∈A G(x, θ, a) and hence the pair (θ̂, φ∗
a(x)), where C

I(ϕ(x, θ̂), φ∗
a(x))+

V (l(ϕ(x, θ̂), φ∗
a(x))) = V (ϕ(x, θ̂)), provides the infimum in (5). According to Remark 1, ϕ(x, θ̂) ∈ L,

that is, Θ(x) ∩ R0
+ ⊂ {t ∈ R0

+ : ϕ(x, t) ∈ L}. Usually, this inclusion is strict, and Θ(x) ∩ R0
+ is a

singleton coinciding with the infimum of {t ∈ R0
+ : ϕ(x, t) ∈ L}.

We consider the following conditions on the function V (x) satisfying equation (15).

Condition 7. For all x the set {t ∈ R0
+ : ϕ(x, t) ∈ L} is either empty, or contains its infimum.

Condition 8. The function V (·) is right lower semicontinuous and left upper semicontinuous
along the flow. That is, first, for all x we have

limt→0+V (ϕ(x, t)) ≥ V (x).

Second, for all x and all (x̃, s) ∈ X× R+ such that ϕ(x̃, s) = x we have

limt→0+V (ϕ(x̃, s− t)) ≤ V (x).

(If x is singular, the inequality is satisfied by default.)

Condition 9. If, for some x ∈ X and s > 0 and for all 0 ≤ t < s the states ϕ(x, t) are not in
L, then limt→s− V (ϕ(x, t)) = V (ϕ(x, s)). In other words, if the relative interior points of the flow
trajectory between x and ϕ(x, s) are not contained in L then V (·) is left continuous along the flow
at ϕ(x, s).

In the following theorem, we establish the equivalence of the integral and differential forms of
the optimality equation. To the best of our knowledge, such an analytical proof never appeared in
the existing literature. Note that we do not assume that the flow possesses the group property.

Theorem 2. Suppose Condition 3 is satisfied. Let the function V : X → R be measurable along the

flow, and additionally, the integral

∫
(0,+∞)

V (ϕ(x, t)) dt be finite for all x ∈ X. Then the following

statements are equivalent.

(1) V (·) satisfies equation (14) and Condition 6;

(2) V (·) satisfies equation (15) and Conditions 7-9.

Proof. Below, we use the notation

IV (x)
△
= inf

a∈A
{CI(x, a) + V (l(x, a))}.

1. Suppose that assertion (1) is valid and prove assertion (2).
Let x ∈ X be fixed. For any t > 0 we can write down

V (x) ≤ inf
θ∈[t,+∞]

{∫
(0,θ]

Cg(ϕ(x, u)) du+ I{θ < +∞}IV (ϕ(x, θ))
}
. (17)
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Changing the variables u− t = v, θ− t = s, using the semigroup property ϕ(x, v+ t) = ϕ(ϕ(x, t), v)
and denoting for brevity x′ = ϕ(x, t), we get

V (x) ≤
∫
(0,t]

Cg(ϕ(x, u)) du+ inf
s∈R̄0

+

{∫
(0,s]

Cg(ϕ(x′, v)) dv

+I{s < +∞}IV (ϕ(x′, s))
}
,

(18)

and thus,

V (x) ≤
∫
(0,t]

Cg(ϕ(x, u)) du+ V (ϕ(x, t)). (19)

One can easily see that the integral in the right hand side goes to 0 as t → 0+, and, taking the
lower limit of the both parts in this inequality, one obtains

V (x) ≤ limt→0+V (ϕ(x, t)).

That is, V (·) is right lower semicontinuous along the flow.
If x is not singular, let x = ϕ(x̃, s) with s > 0. For all t ∈ [0, s] we have

V (ϕ(x̃, s− t)) ≤ inf
θ∈[t,+∞]

{∫
(0,θ]

Cg(ϕ(x̃, s− t+ u)) du+ I{θ < +∞}IV (ϕ(x̃, s− t+ θ))
}
.

Changing the variables u− t = v and θ − t = τ , we get

V (ϕ(x̃, s− t)) ≤
∫
(−t,0]

Cg(ϕ(x̃, s+ v)) dv

+ inf
τ∈R̄0

+

{∫
(0,τ ]

Cg(ϕ(x̃, s+ v)) dv + I{τ < +∞}IV (ϕ(x̃, s+ τ))
}
.

Taking into account that ϕ(x̃, s) = x and using (14) we obtain

V (ϕ(x̃, s− t)) ≤
∫
(−t,0]

Cg(ϕ(x̃, s+ v)) dv + V (x). (20)

Now taking the upper limit of the both parts in this relation and using that the integral in the
right hand side goes to 0 as t → 0+, one gets

limt→0+V (ϕ(x̃, s− t)) ≤ V (x).

That is, V is left upper semicontinuous along the flow, which means that Condition 8 is satisfied.
Recall that Θ(x) is the (nonempty) set of values θ minimizing (14). Let θ∗(x) = inf Θ(x). By

Condition 6 we have θ∗(x) ∈ Θ(x). Consider two cases: θ∗(x) > 0 and θ∗(x) = 0, and prove
equation (15).

(α) θ∗(x) > 0.
Take a finite t ∈ [0, θ∗(x)]. Then (14) remains valid if the infimum is taken over θ ∈ [t, +∞];

as a consequence, we have the equality instead of “≤ ” in relations (17) and (18). Moreover, the
infimum in (18) is attained at s ∈ Θ(x)− t. Hence

V (x) =

∫
(0,t]

Cg(ϕ(x, u)) du+ V (ϕ(x, t)) (21)

and Θ(ϕ(x, t)) = Θ(x)− t, and therefore,

θ∗(ϕ(x, t)) = θ∗(x)− t. (22)

It follows from (21) that

V (ϕ(x, t))− V (x)

t
+

1

t

∫
(0,t]

Cg(ϕ(x, u)) du = 0,
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and therefore,
FV

+ (x) = 0.

Now using that the infimum in (14) is not attained at θ = 0, we have V (x) < IV (x), and
therefore,

inf
a∈A

[
CI(x, a) + V (l(x, a))− V (x)

]
> 0.

Thus, relations (15a) are valid, and therefore x ̸∈ L.
(β) θ∗(x) = 0.
If x is a singular point of the flow then the first relation in (15b) is transformed into the valid

formula ∅ ⊂ R̄0
+.

Suppose x is a nonsingular point, that is, x = ϕ(x̃, s) with s > 0. Rewrite inequality (20) as
follows

V (ϕ(x̃, s− t))− V (x)

t
≤ 1

t

∫
(−t,0]

Cg(ϕ(x̃, s+ v)) dv;

hence

limt→0+

[V (x)− V (ϕ(x̃, s− t))

t
+

1

t

∫
(−t,0]

Cg(ϕ(x̃, s+ v)) dv
]
≥ 0.

It follows that
FV

−(x) ⊂ R̄0
+.

Further, since 0 ∈ Θ(x) and therefore the infimum in (14) is attained at θ = 0, we have
V (x) = IV (x) = infa∈A{CI(x, a) + V (l(x, a)). It follows that

inf
a∈A

[
CI(x, a) + V (l(x, a))− V (x)

]
= 0.

Thus, relations (15b) are valid, and therefore x ∈ L.

Let us check Condition 9. Suppose s > 0 and ϕ(x, t) ̸∈ L for all 0 ≤ t < s. This means
that θ∗(ϕ(x, t)) > 0, and using (22) we conclude that θ∗(x) > t for all t ∈ [0, s); hence θ∗(x) ≥ s.
Substituting s for t in formula (21) we obtain V (x) =

∫
(0,s]

Cg(ϕ(x, u)) du+V (ϕ(x, s)). Subtracting

(21) from this formula, one obtains

0 =

∫
(t,s]

Cg(ϕ(x, u)) du+ V (ϕ(x, s))− V (ϕ(x, t)),

and therefore,

V (ϕ(x, t)) =

∫
(t,s]

Cg(ϕ(x, u)) du+ V (ϕ(x, s)).

It follows that limt→s− V (ϕ(x, t)) = V (ϕ(x, s)), and so, Condition 9 is satisfied.
It remains to check Condition 7. From (α) and (β) we conclude that if θ∗(x) > 0 then x ̸∈ L,

and if θ∗(x) = 0 then x ∈ L. By formula (22), if 0 ≤ t < θ∗(x) then θ∗(ϕ(x, t)) = θ∗(x) − t > 0
and therefore ϕ(x, t) ̸∈ L, and if t = θ∗(x) then θ∗(ϕ(x, t)) = 0 and so, ϕ(x, t) ∈ L. It follows that
if θ∗(x) = +∞ then the set

{t ⊂ R0
+ : ϕ(x, t) ∈ L}

is empty, and if θ∗(x) < +∞ then θ∗(x) is contained in this set and is its infimum. Thus, Condition
7 is satisfied.

2. Suppose that assertion (2) is valid and prove assertion (1). In the proof below we use the
following statements, which will be proved in Appendix.

Proposition 2. Let t ∈ R̄0
+. If h is defined on [0, t] ∩ R0

+ and for all s ∈ (0, t)

either h′
−(s)

△
= lim

t→0+

h(s)− h(s− t)

t
≥ 0 or h′

+(s)
△
= lim

t→0+

h(s+ t)− h(s)

t
≥ 0,

and additionally, h is right lower semicontinuous on [0, t) and left upper semicontinuous on (0, t]∩
R0

+, then h is monotone nondecreasing.
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Proposition 3. Let t ∈ R̄0
+. If h is defined on [0, t] ∩ R0

+ and is left continuous on (0, t] ∩ R0
+,

and h′
+(s) = 0 for s ∈ [0, t) then h is constant.

Fix arbitrary x ∈ X and t ∈ R̄0
+ and define the function h by

h(s) = V (ϕ(x, s))−
∫
(s,t]

Cg(ϕ(x, v)) dv − I{t < +∞}IV (ϕ(x, t)),

with s ∈ [0, t] ∩ R0
+.

First, we show that h is (monotone) nondecreasing. For s ∈ [0, t), consider h(s+τ)−h(s)
τ under

τ ∈ (0, t− s). This ratio equals

V (ϕ(x, s+ τ))− V (ϕ(x, s))

τ
+

1

τ

∫
(s,s+τ ]

Cg(ϕ(x, v)) dv.

Denoting x′ = ϕ(x, s) and using the semigroup property of the flow and that the integral in the
right hand side goes to zero as τ → 0+, we get

h′
+(s) = lim

τ→0+

{V (ϕ(x′, τ))− V (x′)

τ
+

1

τ

∫
(0,τ ]

Cg(ϕ(x′, u)) du
}
= FV

+ (ϕ(x, s)), (23)

if h′
+(s) and FV

+ (ϕ(x, s)) exist. We emphasize that FV
+ (ϕ(x, s)) and h′

+(s) exist (or do not exist)
simultaneously.

In a similar way one calculates the lower left derivative of h and concludes that

h′
−(s) ∈ FV

−(ϕ(x, s)) (24)

for all s ∈ (0, t] ∩ R and also for s = 0, provided x is not a singular point.
According to equation (15), for x ̸∈ L the derivative FV

+ (x) exists and equals zero, and for

x ∈ L we have FV
−(x) ⊂ R̄0

+. By (23) and (24) we conclude that if ϕ(x, s) ̸∈ L then h′
+(s) exists

and equals zero, and, if ϕ(x, s) ∈ L then h′
−(s) ≥ 0. Taking into account Condition 8, we conclude

that the function h is also right lower semicontinuous in [0, t) and left upper semicontinuous in
(0, t] ∩ R0

+. Therefore h(·) satisfies all conditions of Proposition 2 and hence is nondecreasing.
If t < +∞, we have

h(t) = V (ϕ(x, t))− IV (ϕ(x, t)), (25)

and by virtue of (15), h(t) ≤ 0. Thus,

h(0) = V (x)−
∫
(0,t]

Cg(ϕ(x, v)) dv − IV (ϕ(x, t)) ≤ h(t) ≤ 0. (26)

If, otherwise, t = +∞, we have for all s ∈ R0
+

h(0) ≤ h(s) = V (ϕ(x, s))−
∫
(s,+∞)

Cg(ϕ(x, v)) dv.

According to Condition 3, the integral in the right hand side of this relation is finite and goes to
0 as s → +∞. If h(u) ≥ ε > 0 for some u, ε then, for all s ≥ u, h(s) ≥ h(u) ≥ ε and

V (ϕ(x, s)) ≥ ε+

∫
(s,+∞)

Cg(ϕ(x, v))dv,

i.e., V (ϕ(x, r)) ≥ ε
2 for all big enough r which contradicts the condition that the integral∫

(0,+∞)
V (ϕ(x, t))dt is finite. We conclude that h(s) ≤ 0 for all s ∈ R0

+ and in particular,

h(0) = V (x)−
∫
(0,+∞)

Cg(ϕ(x, u)) du ≤ 0. (27)
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Formulae (26) and (27) imply that

V (x) ≤ inf
t∈R̄0

+

{∫
(0,t]∩R

Cg(ϕ(x, u)) du+ I{t < +∞}IV (ϕ(x, t))

}
. (28)

Now for each x ∈ X take the value

t∗(x) := inf{t ∈ R0
+ : ϕ(x, t) ∈ L} ∈ R̄0

+

and set t = t∗(x) in the definition of the function h. We intend to show that in this case h(s) ≡ 0
for all s ∈ [0, t] ∩ R0

+.
For 0 ≤ s < t∗(x) we have ϕ(x, s) ̸∈ L and therefore h′

+(s) = 0. According to Condition
9, the function s 7→ V (ϕ(x, s)), and therefore also the function h, are left continuous for finite
0 < s ≤ t∗(x). Hence by Proposition 3 h is constant on [0, t∗(x)] ∩ R0

+.
Let t∗(x) be finite. Condition 7 states that ϕ(x, t∗(x)) ∈ L, and therefore,

h(t∗(x)) = V (ϕ(x, t∗(x)))− IV (ϕ(x, t∗(x))) = 0.

It follows that h(s) = 0 for all 0 ≤ s ≤ t∗(x), and in particular,

h(0) = V (x)−
∫
(0,t∗(x)]

Cg(ϕ(x, u)) du− IV (ϕ(x, t∗(x))) = 0.

If, otherwise, t∗(x) = +∞, the constant function h(s) is the sum of a function that has a finite
Lebesgue integral on R0

+ and a function going to 0 as s → +∞; therefore it is the null function,
and again,

h(0) = V (x)−
∫
(0,+∞)

Cg(ϕ(x, u)) du = 0.

This proves that

V (x) =

∫
(0,t∗(x)]

Cg(ϕ(x, u)) du+ I{t∗(x) < +∞}IV (ϕ(x, t∗(x)))

≥ inf
t∈R̄0

+

{∫
(0,t]

Cg(ϕ(x, u)) du+ I{t < +∞}IV (ϕ(x, t))

}
. (29)

As a consequence of (28) and (29) we obtain that equation (14) is true and t∗(x) ∈ Θ(x).
It remains to show that Condition 6 is satisfied. Set an arbitrary 0 ≤ t < t∗(x) in the definition

of h. Since ϕ(x, t) ̸∈ L, by (25) and (15a) we have

h(t) = V (ϕ(x, t))− IV (ϕ(x, t)) < 0,

and taking into account that h(·) is nondecreasing, we conclude that

h(0) = V (x)−
∫
(0,t]

Cg(ϕ(x, u)) du− IV (ϕ(x, t)) ≤ h(t) < 0.

As a result we have

V (x) <

∫
(0,t]

Cg(ϕ(x, u)) du+ IV (ϕ(x, t));

that is, t ̸∈ Θ(x) for 0 ≤ t < t∗(x). This implies that t∗(x) = inf Θ(x), and so, Condition 6 is
satisfied. 2

Remark 5. Obviously, for all x ∈ X, t ∈ R+, V∗(ϕ(x, t)) ≤
∫
(t,+∞)

Cg(ϕ(x, u))du. Therefore, if,

under Condition 1, the following stronger version of Condition 3:

∀x ∈ X

∫
(0,+∞)

(∫
(t,+∞)

Cg(ϕ(x, u))du

)
dt < +∞

is satisfied, then the integral
∫
(0,+∞)

V∗(ϕ(x, t))dt is finite, provided the function V∗ : X → R is

Lebesgue-measurable along the flow. By Theorem 1, under Conditions 1 and 2 the latter requirement
is satisfied and V∗ = V is the minimal non-negative solution to equation (5).
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4.2 Discounted Model

Note that for the validity of Theorem 2, only Condition 3 is needed. In the case of the discounted
model described in Section 3, it takes the following form.

The function Cg
Y : Y → R is measurable along the flow and the integral∫

(0,+∞)

e−αtCg
Y(ϕY(y, t)) dt

is finite.
The key notations of FV

+ (x) and FV
−(x) transform to

FV
+ (y)

△
= lim

t→0+

[e−αtV (ϕY(y, t))− V (y)

t
+

1

t

∫
(0,t]

e−αuCg
Y(ϕY(y, u)) du

]
;

FV
−(y)

△
=

{
limt→0+

[
V (y)− eαtV (ϕY(ỹ, s− t))

t
+

1

t

∫
(−t,0]

e−αuCg
Y(ϕY(ỹ, s+ u)) du

]
:

(ỹ, s) ⊂ Y × R+, ϕY(ỹ, s) = y

}
.

If Y′ is a smooth open manifold, the flow is given by the differential equation ẏ = f(y),
satisfying the standard conditions on the existence of a unique local solution in Y′ (for positive
and negative t) for each initial condition from Y′, and Cg

Y(y) is continuous along the flow in Y′

and V is continuously differentiable along the flow in Y′ then FV
−(y) is a singleton for all y ∈ Y′

and
FV

+ (y) = FV
−(y) = −αV (y) + Cg

Y(y) +∇V (y) · f(y).

The integral Bellman equation (14) takes the form

V (y) = inf
θ∈R̄0

+

{∫
(0,θ]

e−αuCg
Y(ϕY(y, u)) du+ I{θ < +∞} e−αθIV (ϕY(y, θ))

}
,

where IV is as before, IV (y) = inf
a∈A

{CI
Y(y, a) + V (lY(y, a))}.

To be more precise, one had to denote the above Bellman function as VY(·). In the framework of
the extended state space X = Y × R0

+, the Bellman function is V ((y, s)) = e−αsVY(y).
The Bellman equation in the differential form (15) remains as it was with the obvious changes

x → y, CI(x, a) → CI
Y(y, a) etc.

Finally, Theorem 2 remains valid, provided that the integral
∫
(0,+∞)

e−αtV (ϕY(y, t)) dt is finite.

The latter holds true if Cg
Y(y) ≤ K < ∞: Condition 3 is satisfied because Cg((y, s)) = e−αsCg

Y(y)
and, according to Theorem 1, the minimal positive solution to equation (5) (i.e., to equation (14))
has the form V ((y, s)) = e−αsVY(y), where 0 ≤ VY(y) ≤ K

α .
As was mentioned after Remark 4, our model is the special case of PDMP when λ = 0. In this

connection, it is worth comparing equation FV
+ (y) = 0, which comes to the stage only if the right

limit exists, and the corresponding differential forms obtained in [7, 9, 11, 22, 23]. After adding
and subtracting e−αtV (y) in the formula for FV

+ (y), we obtain

FV
+ (y) = −αV (y) + lim

t→0+

[e−αtV (ϕY(y, t))− e−αtV (y) +
∫
(0,t]

e−αuCg
Y(ϕY(y, u)) du

t

]
.

After denoting

XV (y)
△
= lim

t→0+

[e−αtV (ϕY(y, t))− e−αtV (y) +
∫
(0,t]

e−αuCg
Y(ϕY(y, u)) du

t

]
− Cg

Y(y),

equality FV
+ (y) = 0 takes the form

XV (y)− αV (y) + Cg
Y(y) = 0,
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which appears in [7, 9, 11, 22, 23] for the case X ⊆ Rd. Moreover, in the smooth case, if the
flow comes from the differential equation ẏ = f(y), as was mentioned in Remark 3, XV (y) =
∇V (y) · f(y). (See [9, 22, 23].)

Connection between the integral and differential forms of the optimality equation was under-
lined in [7, 11, 23]. But it seems that the formal rigorous equivalence of such representations, as
established in Theorem 2, is proved here for the first time for a general Borel space X and both for
discounted and undiscounted cases. As explained in Conclusion, one can easily generalize Theorem
2 for PDMP.

5 Impulse Control of SIR Epidemic

In this section, we illustrate all the theoretical issues on a meaningful example having its own
interest.

In the following proposition, we enlist all the conditions, which appeared in the previous sec-
tions, needed for the study of the model stated below.

Proposition 4. Suppose Conditions 1, 2 and 4 are satisfied. Assume that a lower semicontinuous
bounded function V : X → R0

+ is such that

• equation (15) is valid;

• Conditions 7, 8 and 9 are satisfied;

• inequality
∫
(0,∞)

V (ϕ(x, t))dt < ∞ holds true for all x ∈ X;

• limi→∞ Eπ
x0
[V (Xi)] = 0 for all strategies π and for all x0 ∈ X.

Then

• V = V∗ and

• the strategy (φ∗
θ, φ

∗
a), such that φ∗

θ(x) = inf{θ : ϕ(x, θ) ∈ L}, where the set L is defined in
(16), and φ∗

a satisfies equality CI(x, φ∗
a(x)) + V (l(x, φ∗

a(x))) − V (x) = 0 for all x ∈ X, is
uniformly optimal, provided that the both maps φ∗

θ and φ∗
a are measurable.

To formulate our Susceptible–Infected–Recovered (SIR) model of epidemics, we use functions
t 7→ x1(t), t 7→ x2(t) and t 7→ x3(t), where x1 : R0

+ → R0
+ denotes the dynamics of the susceptible

population, x2 : R0
+ → R0

+ the dynamics of the infective population and x3 : R0
+ → R0

+ the
dynamics of the removed population (recovered or dead). Following [3, 6, 13, 21], the progress of
infection is described by the following initial value problem:

ẋ1(t) = −β
x1(t)x2(t)

x1(t) + x2(t)
,

ẋ2(t) = β
x1(t)x2(t)

x1(t) + x2(t)
− γx2(t),

ẋ3(t) = γx2(t),

x1(0) = x1
0, x2(0) = x2

0, x3(0) = 0,

(30)

for some given constant parameters β, γ ∈ R+ and initial data x1
0, x

2
0 ∈ R0

+. If x1
0 = x2

0 = 0 then
x1(t) ≡ x2(t) ≡ 0. Problem (30) has a unique solution, obtained in the closed form in [3, 13].
Explicit (non-impulse) optimal control policies for (30) are available in the literature: optimal
isolation/treatment of infective individuals has been studied in [6] while the case of immuniza-
tion/vaccination is investigated in [21]. Here we formulate and explicitly solve an optimal control
problem with isolation/treatment impulses.
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5.1 Optimal Control Problem

Suppose there are no impulses.
We begin by noting that in (30) one has ẋ1(t) + ẋ2(t) + ẋ3(t) = 0 for any t, so that the total

population is constant along time: x1(t) + x2(t) + x3(t) is a fixed constant x1
0 + x2

0 ∈ R+. For
this reason, x3(t) = x1

0 + x2
0 − x1(t) − x2(t) and it is sufficient to restrict ourselves to differential

equations 
ẋ1(t) = −β

x1(t)x2(t)

x1(t) + x2(t)
,

ẋ2(t) = β
x1(t)x2(t)

x1(t) + x2(t)
− γx2(t),

x1(0) = x1
0, x2(0) = x2

0,

(31)

which define the flow ϕ.
Since there is no immigration (and no births) and isolation leads to the decrease of x2, the

whole state space is the triangle

X = {x1 ≥ 0, x2 ≥ 0, x1 + x2 < N}

with the topology induced from R2; it is convenient to take N > x1
0 + x2

0, so that there are no
singular points in X. The gradual cost rate is the infection rate

Cg(x1, x2) = β
x1x2

x1 + x2
, Cg(0, 0) = 0, (32)

which, after integration along the flow, results in the total number of new infectives. Here and
below, usually the brackets of the argument of a function of x = (x1, x2) are omitted.

At any moment, the decision maker can isolate all infectives, so that A = {1} is a singleton.
The cost of an impulse equals

CI(x1, x2, a) = cx2, (33)

where c > 0 is a given constant. The new state after the impulse equals

l(x1, x2, a) = (x1, 0). (34)

If x2
0 = 0 then there are no individuals who can cause infection and, therefore, the susceptible

population will remain constant forever: x1(t) ≡ x1
0. Thus

Y = {(x1, x2) ∈ X : x2 = 0}

is the “cemetery” subset.

Remark 6. Quite formally, in the states (x1, x2) ∈ Y, one can still apply impulses leading to no
cost and no change of the state. But actually, the controlled process is finished as soon as the state
belongs to Y.

Note also that ∫
(0,+∞)

Cg(ϕ((x1
0, x

2
0), u))du ≤ x1

0 < N <+∞, (35)

meaning that the Bellman function V∗ is bounded on the bounded domain X.
One can easily check that Conditions 1,2,3 and 4 are satisfied.
To solve the optimal control problem, we investigate the differential form of the Bellman equa-

tion (15) which is equivalent to (5) by Theorem 2. As was mentioned in Remark 3, under certain
conditions which are satisfied in our example,

FV
+ (x1, x2) = FV

−(x
1, x2) = β

x1x2

x1 + x2
+

∂V

∂x1

(
−β

x1x2

x1 + x2

)
+

∂V

∂x2

(
β

x1x2

x1 + x2
− γx2

)
. (36)

19



In the future, we will need the following explicit expressions defining the flow ϕ(x1, x2) at
x1, x2 > 0 coming from the differential equation (31) (see [13, 21]):

if β ̸= γ, then

x1(t) = x1
0

(
1 +

x2
0

x1
0

) β
β−γ

(
1 +

x2
0

x1
0
e(β−γ)t

) β
β−γ

;

x2(t) = x2
0

(
1 +

x2
0

x1
0

) β
β−γ

e(β−γ)t(
1 +

x2
0

x1
0
e(β−γ)t

) β
β−γ

;

if β = γ, then

x1(t) = x1
0e

− βx2
0t

x1
0+x2

0 ; x2(t) = x2
0e

− βx2
0t

x1
0+x2

0 .



(37)

From these expressions, it is clear that

x2(t)

x1(t)
=

x2
0

x1
0

e(β−γ)t (38)

and, for all t ≥ 0, x1(t), x2(t) > 0, if x1
0, x

2
0 > 0.

Below, we summarise general properties of the epidemic model under study.

• The Bellman function V∗(·) is bounded and Condition 4 is satisfied because of inequality
(35).

• Conditions 1 and 2 are satisfied.

• If V (·) is a bounded lower semicontinuous function satisfying equation (5), then V (0, x2) =
V (x1, 0) = 0 for all x1, x2 ∈ R0

+. As a result, for all strategies π, for all (x1
0, x

2
0) ∈ X,

Eπ
(x1

0,x
2
0)
[V (X1)] = 0 because either X2

1 = 0 (if Θ1 < ∞) and all the further values of

the second component equal zero, or the next state is X1 = ∆ (if Θ1 = ∞). Hence,
limi→∞ Eπ

x0
[V (Xi)] = 0 for all strategies π and for all x0 ∈ X.

• According to Remark 2(1), the Bellman equation (5) has a unique bounded lower semicon-
tinuous solution V = V∗.

• If function V : X → R is such that V (x1, 0) = V (0, x2) = 0 then, for x1 = 0 or x2 = 0,
equalities

FV
+ (x1, x2) = FV

−(x
1, x2) = 0

and
inf
a∈A

[CI(x1, x2, a) + V (l(x1, x2, a))− V (x1, x2)] = cx2

are valid. Thus, equations (15) hold: case (a) is x2 > 0 and x1 = 0 and case (b) if x2 = 0.
All the conditions 7, 8 and 9 are trivially satisfied if x1 = 0 or x2 = 0.

The points of the form (x1, 0) belong to L. Formally speaking, if x2 = 0 one has to apply the
simultaneous infinite sequence of impulses, each of them having no effect: see Remark 6. At the
states (0, x2 > 0), no impulses are needed: the number of infectives x2 decreases to zero resulting
in no cost.

We have seen that the flow ϕ(x, t) is continuous. We will see in all the three cases investigated
in the further subsections that the function V to be defined below is continuous on X∩ (R+)

2 and
the corresponding set L is closed. It follows that conditions 7, 8 and 9 are satisfied.

Explicit solution to the formulated problem is based on the optimality equation (15), where
two equations play the key role:

cx2 + V (x1, 0)− V (x1, x2) = 0 if (x1, x2) ∈ L
and

β
x1x2

x1 + x2
+

∂V

∂x1

[
−β

x1x2

x1 + x2

]
+

∂V

∂x2

[
β

x1x2

x1 + x2
− γx2

]
= 0, if (x1, x2) /∈ L.
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The set L is different in different cases and, for (x1, x2) ∈ L, V (x1, x2) = cx2 and V (x1, 0) = 0: see
the expressions for the function V in Subsections 5.2 and 5.3.2. If (x1, x2) /∈ L then the solution
to the provided above partial differential equation is again different in different cases, depending
on the appropriate boundary condition, e.g., V (x1, x2) = cx2 when x1 = cx2 (Subsection 5.2) or
when γcx2 = (β + βc− γc)x1 (Subsection 5.3.2). In Subsection 5.3.1, L = ∅ and V (x1, 0) = 0.

5.2 Solution in the Case β ≥ γ

In this subsection, we show that the continuous function

V (x1, x2) =

{
cx2, if x2 ≤ x1

c , x1 ≥ 0, x2 ≥ 0;

x1, if x2 > x1

c , x1 ≥ 0, x2 > 0

satisfies all the requirements of Proposition 4.
Firstly, let us show that the integral

∫
(0,+∞)

V (ϕ(x1
0, x

2
0, t))dt is finite for all x1

0, x
2
0 > 0.

If x2
0 >

x1
0

c , then

x2(t) >
x1(t)

c
for all t > 0

because of (38). Therefore, for such initial values (x1
0, x

2
0),∫

(0,+∞)

V (ϕ(x1
0, x

2
0, t))dt =

∫
(0,+∞)

x1(t)dt.

According to (38),

x1(t) = x2(t)
x1
0

x2
0

e−(β−γ)t.

Since function x2(t) is uniformly bounded, in case β > γ, the integral
∫
(0,+∞)

V (ϕ(x1
0, x

2
0, t))dt is

finite. If β = γ, its finiteness follows directly from (37).

In case x2
0 ≤ x1

0

c and β > γ, again using (38), we see that x2(t∗) = x1(t∗)
c at t∗ =

ln(x1
0)−ln(x2

0c)
β−γ <

∞ and ∫
(0,+∞)

V (ϕ(x1
0, x

2
0, t))dt =

∫
(0,t∗]

cx2(t)dt+

∫
(t∗,+∞)

x1(t)dt < ∞.

If x2
0 ≤ x1

0

c and β = γ, then x2(t) ≤ x1(t)
c for all t ≥ 0 and

∫
(0,+∞)

V (ϕ(x1
0, x

2
0, t))dt < ∞ by (37).

The closed set L defined in (16) has the form

L =
{
(x1, x2) ∈ X ∩ (R0

+)
2 : x2 ≤ x1

c

}
.

Now show that equation (15) is valid.
If (x1, x2) ∈ L then

FV
−(x

1, x2) = β
x1x2

x1 + x2
+

∂V

∂x2

[
β

x1x2

x1 + x2
− γx2

]
=

x2

x1 + x2

[
β(1 + c)x1 − γc(x1 + x2)

]
.

On the boundary x2 = x1

c , the expression ∂V
∂x2 means the left derivative, and the right derivative

∂V
∂x1 = 0. Since x2 ≤ x1

c , we conclude that

FV
−(x

1, x2) ≥ x1x2

x1 + x2
[β(1 + c)− γ(c+ 1)] =

x1x2

x1 + x2
(β − γ)(c+ 1) ≥ 0,

so that equality (15), case (b), is satisfied.
The cases x1 = 0 or x2 = 0 were considered in Subsection 5.1.
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If (x1, x2) /∈ L and (x1, x2) ∈ (R+)
2 then

inf
a∈A

[CI(x1, x2, a) + V (l(x1, x2, a))− V (x1, x2)] > 0

and

FV
+ (x1, x2) = β

x1x2

x1 + x2
+

∂V

∂x1

[
−β

x1x2

x1 + x2

]
= 0,

so that equality (15), case (a), is satisfied.
According to Proposition 4, the stationary strategy

φ∗
θ(x

1, x2) =

{
∞, if (x1, x2) /∈ L ⇐⇒ x2 > x1

c ;

0, if (x1, x2) ∈ L ⇐⇒ x2 ≤ x1

c ;
φ∗
a(x

1, x2) = 1

is uniformly optimal.
For (x1, x2) ∈ (R+)

2, it is reasonable to rewrite expression (x1, x2) ∈ L as

{(x1, x2) ∈ (R+)
2 : x1 ≥ cx2},

to understand better the meaning of the optimal strategy. The goal of the control is to save
susceptibles from being infected, but the cost of isolation is cx2. Thus, isolation is reasonable only
when there are many susceptibles to be saved: x1 ≥ cx2 because otherwise the cost of isolation,
cx2, is bigger than the profit for saving susceptibles (i.e., x1).
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Figure 1: Susceptible–Infected dynamics under optimal control with c = 5, β = 4 and γ = 3.

The optimal strategy is shown in Figures 1 and 2. If the initial state (x1
0, x

2
0) is below the

line x2 = x1

c (shown in bold) then the impulse should be applied (dashed line). If, otherwise, the

initial state is above the line x2 = x1

c then no impulse is needed and the system evolves according

to equations (37) (solid curves). If β = γ, then the critical line x2 = x1

c is the trajectory of
the dynamical system (37). It is equally optimal to move along this line or to apply the impulse
immediately or at any further time.
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Figure 2: Susceptible–Infected dynamics under optimal control with c = 5, β = 4 and γ = 4.

5.3 Solution in the Case β < γ

5.3.1 Case c ≥ β
γ−β

In this subsection, we show that the function

V (x1, x2) = x1 − x1

(
1 +

x2

x1

)− β
γ−β

, (x1, x2) ∈ (R+)
2

satisfies all the requirements of Proposition 4. According to Subsection 5.1, V (x1, x2) = 0 if x1 = 0
or x2 = 0. Firstly, let us show that the integral

∫
(0,+∞)

V (ϕ(x1
0, x

2
0, t))dt is finite for all x1

0, x
2
0 > 0.

According to (38) and keeping in mind that x1(t) ≤ x1
0, it is sufficient to prove that the integral

I =

∫
(0,+∞)

[
1−

(
1 +

x2
0

x1
0

e−(γ−β)t

)− β
γ−β

]
dt

is finite. This is a simple consequence of the fact that the integrand is O(e−(γ−β)t) as t → ∞.
In the case under consideration, L = Y = {(x1, x2) : x2 = 0} is closed. The value x2 = 0 is

not reachable in finite time from initial conditions (x1, x2 > 0).
It remains to check equation (15) for the presented function V (·). Namely, we will show that

the version (a) is valid. The cases x1 = 0 or x2 = 0 were considered in Subsection 5.1. For
(x1, x2) ∈ (R+)

2, according to (36), equality FV
+ (x1, x2) = 0 can be checked straightforwardly.

Finally, for (x1, x2) ∈ (R+)
2,

inf
a∈A

[CI(x1, x2, a) + V (l(x1, x2, a))− V (x1, x2)] = cx2 − x1 + x1

(
1 +

x2

x1

)− β
γ−β

≥ x1

[(
1 +

x2

x1

)− β
γ−β

−
(
1− β

γ − β

x2

x1

)]
> 0.

According to Proposition 4, the stationary strategy

φ∗
θ(x

1, x2) =

{
∞, if (x1, x2) /∈ L ⇐⇒ x2 > 0;
0, if (x1, x2) ∈ L ⇐⇒ x2 = 0;

φ∗
a(x

1, x2) = 1
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is uniformly optimal.
When x2 > 0, isolation is not reasonable as its cost c ≥ γ

γ−β is too high. When x2 = 0, the
epidemic is actually terminated, although the formal solution prescribes isolation of zero infectives
for zero cost, without any real effect.

The optimal strategy in this case for the values c = 5, β = 3 and γ = 4 is shown in Figure 3.
No impulses are needed here, and the system evolves according to equations (37).
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Figure 3: Susceptible–Infected dynamics with c = 5, β = 3 and γ = 4.

5.3.2 Case c < β
γ−β

In this subsection, we show that the continuous function

V (x1, x2) =


cx2, if x2 ≤ β+βc−γc

γc x1;

x1

1− (γc
(
1+ x2

x1

)
β+βc

)− β
γ−β

(1 + c) γ−β
γ

 , if x2 > β+βc−γc
γc x1

satisfies all the requirements of Proposition 4.
Firstly, let us show that the integral

∫
(0,+∞)

V (ϕ(x1
0, x

2
0, t))dt is finite for all x

1
0, x

2
0 > 0. Indeed,

if
x2
0

x1
0
≤ β+βc−γc

γc , then, by (38),∫
(0,+∞)

V (ϕ(x1
0, x

2
0, t))dt = c

∫
(0,+∞)

x1(t)

(
x2
0

x1
0

e−(γ−β)t

)
dt < ∞

because the function x1(t) ≤ x1
0 is bounded. If

x2
0

x1
0
> β+βc−γc

γc , then x2(t∗)
x1(t∗) = β+βc−γc

γc at the finite

time moment

t∗ = θ∗(x1, x2) =
1

γ − β
ln

γcx2
0

x1
0(β + βc− γc)

> 0,

the integral
∫
(0,t∗]

V (ϕ(x1
0, x

2
0, t))dt is finite, and on the interval (t∗,+∞) the previous reasoning

applies.
Let us check that the set L defined in (16) has the form

L = {(x1, x2) ∈ X ∩ (R0
+)

2 : x2 ≤ β + βc− γc

γc
· x1},
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and therefore is closed.
The case when x1 = 0 or x2 = 0 was considered in Subsection 5.1.
If 0 < x2 ≤ β+βc−γc

γc · x1, then

CI(x1, x2, a) + V (l(x1, x2, a))− V (x1, x2) = cx2 + V (x1, 0)− cx2 = 0,

so that (x1, x2) ∈ L. Remember, a = 1 ∈ A is the unique action.
If x2 > β+βc−γc

γc · x1 > 0, then

CI(x1, x2, a) + V (l(x1, x2, a))− V (x1, x2) = x1Υ

(
x2

x1

)
,

where function

Υ(w) = cw − 1 +

(
γc (1 + w)

β + βc

)− β
γ−β

(1 + c)
γ − β

β

is strictly convex. When w = β+βc−γc
γc ,

Υ

(
β + βc− γc

γc

)
=

dΥ

dw

(
β + βc− γc

γc

)
= 0.

Thus, Υ(w) > 0 for w > β+βc−γc
γc , and therefore,

CI(x1, x2, a) + V (l(x1, x2, a))− V (x1, x2) > 0

if x2 > β+βc−γc
γc · x1 ≥ 0, and (x1, x2) /∈ L: the case x1 = 0 is not excluded, as well.

Now show that equation (15) is valid.
If (x1, x2) /∈ L and (x1, x2) ∈ (R+)

2 then we already know that

CI(x1, x2, a) + V (l(x1, x2, a))− V (x1, x2) > 0.

Equality

FV
+ (x1, x2) = β

x1x2

x1 + x2
+

∂V

∂x1

[
−β

x1x2

x1 + x2

]
+

∂V

∂x2

[
β

x1x2

x1 + x2
− γx2

]
= 0 (39)

in the area x2 > β+βc−γc
γc · x1 > 0 can be checked by the direct substitution. Equation (15), case

(a), is valid.
The cases x1 = 0 or x2 = 0 were considered in Subsection 5.1.
If x1 > γc

β+βc−γc x
2 > 0, then

FV
−(x

1, x2) = β
x1x2

x1 + x2
+

∂V

∂x2

[
β

x1x2

x1 + x2
− γx2

]
=

x2

x1 + x2

[
β(1 + c)x1 − γc(x1 + x2)

]
≥ x2

x1 + x2

[
(β + βc− γc)

x2γc

β + βc− γc
− γcx2

]
= 0.

On the boundary x2 = β+βc−γc
γc · x1, we need to consider the left derivative ∂V

∂x1 and the right

derivative ∂V
∂x2 . As a result, FV

−(x
1, x2) = 0 similarly to (39). Equation (15), case (b), is valid.

According to Proposition 4, the stationary strategy

φ∗
θ(x

1, x2) =

{
∞, if (x1, x2) /∈ L ⇐⇒ x2 > β+βc−γc

γc · x1;

0, if (x1, x2) ∈ L ⇐⇒ x2 ≤ β+βc−γc
γc · x1;

φ∗
a(x

1, x2) = 1

is uniformly optimal. The straight line x2 = β+βc−γc
γc · x1 is a switching line.

Like in the case β ≥ γ, isolation of infectives is reasonable only when there are sufficiently many
susceptibles to be saved: x1 ≥ γc

β+βc−γc x
2.

In this case we take c = 3/2, β = 3 and γ = 4; see Figure 4. If the initial state (x1
0, x

2
0) lies

below the line x2 = β+βc−γc
γc ·x1 (shown in bold) then the impulse should be applied (dashed line).

If the initial state lies above this line then initially no action is needed and the system evolves
according to equations (37) (solid curves) up to the moment when x2(t) = β+βc−γc

γc · x1(t) when
the impulse should be applied.
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Figure 4: Susceptible–Infected dynamics under optimal control with c = 3/2, β = 3 and γ = 4.

5.4 Discussion

The threshold nature of the optimal isolation strategy for other epidemic models with similar cost
functions was established in [1, 18]: intervene only if the current number of infectives is below a
certain value. Moreover, it was shown that the intervention must be global, i.e., it is better to
isolate all infectives at once.

It is interesting to compare the impulse control problem from Subsection 5.1 with its gradual
control analogue investigated in [6]. Instead of impulses, dynamic control u(t) ∈ [0, U ] appears in
the second equation of (31):

ẋ2(t) = β
x1(t)x2(t)

x1(t) + x2(t)
− γx2(t)− u(t)x2(t).

Objective functional in [6]

V(x1
0, x

2
0, u) =

∫
(0,∞)

(
β

x1(t)x2(t)

x1(t) + x2(t)
+ cu(t)x2(t)

)
dt → inf

u

has the same meaning as in the current paper: combination of the total number of the new infectives
and the total cost of isolation with the weight coefficient c > 0. Intuitively, the impulse isolation
at time moment t means that u(t) → ∞. Thus, look at the optimal strategy obtained in [6] when
U → ∞.

• If β ≥ γ then one has to apply the maximal rate of isolation U as soon as x2 ≤ ζ(U)x1,
where

ζ(U) =

(
γ + U + cU

cU

) γ+U−β
γ+U

− 1.

When U → ∞,

lim
U→∞

ζ(U) =
1 + c

c
− 1 =

1

c
,

and we finish with exactly the optimal impulse strategy presented in Subsection 5.2.

• If β < γ and c ≥ β
γ−β then, both in [6] and in Subsubsection 5.3.1, it is optimal not to

immunize at all.
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• If β < γ and c < β
γ−β then one has to apply the maximal rate of isolation U as soon as

x2 ≤ ξ(U)x1, where

ξ(U) =

(
β(γ + U + cU)

cγ(γ + U − β)

) γ+U−β
γ+U

− 1,

and the straight line x2 = ξ(U)x1 is a switching line. When U → ∞,

lim
U→∞

ξ(U) =
β(1 + c)

cγ
− 1 =

β + βc− γc

γc
,

and we finish with exactly the optimal impulse strategy presented in Subsection 5.3.2.

There are many other sensible optimal control problems in mathematical epidemiology. For
example, one can consider immunization of susceptibles. Such problem for the model (31) was
solved in [21], but again in the framework of gradual dynamic control, where the term −u(t)x1(t)
appears in the first equation of (31). No doubt, the impulse version of immunization can also be
tackled using the methods developed in the current paper.

6 Conclusion

Application of the MDP methods to the purely deterministic optimal impulse control problem
results in the integral optimality equation. After that, a formal analytical proof shows that the
integral and differential forms are equivalent. All the theory is illustrated by a meaningful example
on the SIR epidemic.

Note that Theorem 2 remains also valid in the case when the underlying process is a Piecewise
Deterministic Markov Process. To be specific, consider the discounted version of the positive model
with the state space Y = Rd, the uncontrolled flow, and the uncontrolled fixed jumps intensity λ.
Under the mild relevant conditions, the integral equation (14) was obtained in [7, 8, 9, 11, 22]; it
has the form

VY(y) = inf
θ∈R̄0

+

{∫
(0,θ]

e−αu

[
Cg

Y(ϕY(y, u)) + λ

[∫
Y

VY(z)Q(dz|ϕY(y, u))− VY(ϕY(y, u))

]]
du

+ I{θ < +∞}e−αθ inf
a∈A

{CI
Y(ϕY(y, θ), a) + VY(lY(ϕY(y, θ), θ))}

}
, (40)

where Q is the stochastic kernel describing the distribution after the spontaneous (natural) jumps
with intensity λ > 0. Here, we follow the notations introduced for the discounted model in Section
3, which also appeared in Subsection 4.2.

Suppose a measurable along the flow function VY : Y → R is the minimal positive solution
to equation (40) and satisfies the corresponding discounted version of Condition 6. One can show
that, if Cg

Y(y) ≤ K < ∞, then the integral
∫
(0,+∞)

e−αtVY(ϕY(y, t))dt is finite for all y ∈ Y.

Denote

D(y)
△
= λ

[∫
Y

VY(z)Q(dz|y)− VY(y)

]
.

Then, by Theorem 2, VY(y) satisfies the discounted version of the differential equation (15) with
Cg

Y(y) being replaced by Cg
Y(y)+D(y). Similarly, one can show that the differential equation (15)

and Conditions 7-9 imply the integral equation (40) and Condition 6.
To summarize, the current paper can be a starting point for the rigorous investigation of

different types of the optimality equation for impulsively controlled PDMP.
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7 Appendix

Proof of Proposition 1.
According to Theorem 1 and inequalities 0 ≤ V∗(x) ≤ K, it is sufficient to show only the

uniqueness, namely, we will show that if V (·) is a bounded non-negative lower semicontinuous
solution to (5), then V (·) = V∗(·).

Consider the formula

V(x0, π) = V (x0) + lim
N→∞

N∑
i=1

Eπ
x0

[
C̃(Xi−1, (Θi, Ai))

+

∫
X

V (y)Q(dy|Xi−1, (Θi, Ai))− V (Xi−1)

]
− lim

N→∞
Eπ

x0
[V (XN )] (41)

valid for each strategy π from the set Π
△
= {V(x0, π) ≤ K}. For such strategies,

Eπ
x0
[Tstop] =

∞∑
i=1

Pπ
x0
(Tstop ≥ i) ≤ K

δ
,

so that limN→∞ Pπ
x0
(Tstop ≥ N) = 0 and

0 ≥ lim
N→∞

Eπ
x0
[V (XN )] ≤ sup

x∈X
V (x) lim

N→∞
Pπ
x0
(Tstop ≥ N) = 0.

Now the stationary deterministic strategy (φ∗
θ, φ

∗
a), providing the infimum in (5), is uniformly

optimal, hence (φ∗
θ, φ

∗
a) ∈ Π and

V∗(x0) = inf
π

V(x0, π) = inf
π∈Π

V(x0, π) = V(x0, (φ
∗
θ, φ

∗
a)) = V (x0)− lim

N→∞
Eπ

x0
[V (XN )] = V (x0).

That is, V∗(·) is the only bounded non-negative lower semicontinuous solution to (5). 2

Proof of Proposition 2.

It suffices to prove that for all c > 0 the function g(s)
△
= h(s)+cs is nondecreasing on [0, t]∩R0

+.
Note that for any s ∈ (0, t) there exists ε = εs such that

(i) either g(s) < g(σ) for all σ ∈ (s, s+ ε),

(ii) or g(σ) < g(s) for all σ ∈ (s− ε, s).

Suppose that g(s1) > g(s2) for some 0 ≤ s1 < s2 ≤ t. Our aim is to come to a contradiction.
Take y ∈ (g(s2), g(s1)) and take s∗ = inf A, where A = {s ∈ [s1, s2] : g(s) < y}. Note that A

contains s2, and therefore is nonempty.
If s∗ = s1, then on each interval [s1, s1 + δ] there are points from A, so that

lims→s+1
g(s) ≤ y < g(s1),

in contradiction with the right lower semicontinuity of g at s1.
If s∗ = s2, we have

g(s2) < y ≤ lims→s−2
g(s) ≤ lims→s−2

g(s),

in contradiction with the left upper semicontinuity of g at s2.
It follows that s1 < s∗ < s2.

For all s ∈ [s1, s∗) we have g(s) ≥ y, therefore

y ≤ lims→s−∗
g(s) ≤ lims→s−∗

g(s) ≤ g(s∗) (42)

because g is left upper semicontinuous at s∗. On the other hand, there exists a sequence {sk} ⊂ A
converging to s∗. If at least one term of this sequence coincides with s∗ then g(s∗) < y. If,
otherwise, no terms of the sequence coincide with s∗ then all sk > s∗ and, for all k, g(sk) < y.
Since g is right lower semicontinuous at s∗,

g(s∗) ≤ lims→s+∗
g(s) ≤ limk→∞ g(sk) ≤ y. (43)
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It follows from (42) and (43) that g(s∗) = y, and both conditions (i), (ii) are violated for s∗: for
all s ∈ [s1, s∗], g(s) ≥ g(s∗) and in each right neighbourhood of s there are points s ∈ A such that
g(s∗) > g(s). 2

Proof of Proposition 3.
One easily sees that h is continuous on [0, t]. Both h and−h satisfy the conditions of Proposition

2, therefore both h and −h are nondecreasing. It follows that h is constant. 2

Proof of Proposition 4. Condition 3 follows from Condition 4. According to Theorem 2, the
bounded lower semicontinuous non-negative function V satisfies the Bellman equation (5). The
function V∗ is bounded because of Conditions 1 and 4. According to Remark 2(1), the Bellman
equation cannot have another bounded lower semicontinuous solution. Therefore, V = V∗ is the
minimal R0

+-valued solution to equation (5) and the strategy (φ∗
θ, φ

∗
a) is uniformly optimal by

Theorem 1. 2
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