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Abstract

Weather conditions can generate increases in coastal sea level called storm surges. These

events can lead to extensive coastal inundation resulting in the destruction of homes, in-

frastructure and life and have done so on many occasions in the past. Storm surge risk for

coastal communities is predicted to increase globally due to climate change and sea level

rise. As such, it is more important than ever that regional agencies are able to accurately

forecast coastal flooding and assess risk for coastal defence and policy-making. This thesis

investigates how real-time and remotely-sensed data can be used to improve operational

forecasting and risk assessment. Specifically, much of this work looks at the modification of

atmospheric forcing and sea surface height within operational models.

The thesis begins by providing an essential background of storm surge forecasting and

data assimilation. This includes details on storm surge generation, numerical modelling,

operational techniques such as parameterisation of wind fields and the theory and applica-

tion of data assimilation. Some of the major challenges for storm surge forecasting are also

set out.

The parametric representations of tropical cyclone wind fields used in operational models

of the tropics are modified using analysis fields derived from remotely sensed data. Three

case studies using two methods around the US are considered: Hurricane Ike, Hurricane

Gustav and Hurricane Sandy. The first method simply replaces past wind forcing with

available analysis fields and the second uses some simple assumptions to extrapolate them

into the future. Improvements in predicted maximum surge height are achieved at most

locations, reaching up to 0.27m in some cases. Extrapolating information from analysis

wind fields into the future yields the best results.

In the midlatitudes, we assimilate tide gauge data into a North Sea model using a

new technique for dealing with coastal boundaries. We focus on a single case study: the

Cyclone Xaver event of December 2013. Forecast root mean square errors are improved at

most locations during the first 24 hours of forecast, in some cases up to 0.05m. However,

any improvements do not persist after this period due to assimilation perturbations moving
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around and leaving the North Sea as a shallow water wave.

In the final results chapter a novel metric for quantifying North Sea storm surges is

investigated: the difference in total volume due to atmospheric forcing. It was possible to

use this to identify and compare North Sea storm surges and use it to estimate storm surge

persistence in the North Sea to be around 30 hours. Additionally, evidence is presented that

suggests that the majority of a storm surge (in terms of sea level) is generated internally

within the North Sea and that the presence of tides slows volume transport in and out of

the basin.
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Chapter 1

Introduction & Motivation

1.1 Storm Surges: Past, Present and Future

Storm surges are variations in coastal sea level caused by meteorological conditions. There

are two atmospheric variables that predominantly influence the generation of a storm surge:

• Horizontal gradients in atmospheric air pressure cause the inverse barometer (IB)

effect, where local areas of low (high) air pressure cause an increase (decrease) in sea

level. This is the dominant generation mechanism away from the coast and increases

(decreases) sea level by approximately 1cm for every 1hPa (1 mbar) change in air

pressure (Pugh, 1996).

• High surface wind speeds transfer momentum to the sea surface and drive water

up against coastal boundaries via wind setup and wave associated momentum

transfers. This momentum transfer is the dominant generation mechanism in shallow

water and contributes to the majority of the storm surge.

There are several other mechanisms which play a part. For example, the Coriolis effect

can divert wind-driven currents into coastal boundaries, meaning that winds do not need

to be blowing onshore to increase sea level. The force acts perpendicularly to the right in

the Northern Hemisphere and to the left in the Southern Hemisphere. Wind waves and

wave setup superimposed on top of the still water level (water level excluding the effects

of waves) can enhance overtopping of defence structures. Figure-1.1 shows an illustration

of the two dominant generating mechanisms.

In areas where tidal ranges are large, the interaction between the tide and storm surge

can be significant and these interactions have been extensively studied over the years (see
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Figure 1.1: Illustration of two of the major generating mechanisms of a storm surge. a)

The inverse barometer effect. b) Transfer of momentum from high winds to the sea surface

driving water against coastal boundaries.

(Batstone et al., 2013; Wolf, 2008; Johns et al., 1985; Rossiter, 1961)). For example, in-

creased water levels due to surge can increase the shallow water wave speed and result in a

phase shift of the tide. As shown by Horsburgh and Wilson (2007), many of the patterns

seen in non-tidal residuals (observed water level minus predicted water level due to tides)

are because of this phase shift.

On many occasions, storm surges have resulted in large numbers of fatalities as well

as significant damage to property and infrastructure. Their effects can be long lasting,

with indirect consequences such as the destruction of sanitation, water services and vital

infrastructure. In poorer regions especially, this can lead to outbreaks of disease whilst also

hindering aid efforts. Examples in the tropics include the Bhola cyclone, 1970, which is

estimated to have caused the deaths of over 300,000 people in Bangladesh (Dube et al.,

1997; Murty et al., 1986) and Hurricane Sandy, which resulted in an estimated $69 billion

worth of damages in the US (Neria and Shultz, 2012). For the midlatitudes, the North Sea

flood of 1953 caused extensive flooding in the UK and Netherlands, killing over 2000 and

causing £50 million worth of damage (McRobie et al., 2005; Gerritsen, 2005).

It is important for national governments to have the knowledge and tools available to

minimise impacts. These include building shelters, developing effective evacuation strate-

2
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gies, improving coastal defences and vegetation and improving early warning systems (Eden-

hofer et al., 2014; Haque et al., 2012). Arguably the most important is the development of

accurate forecasting tools, an area where numerical models have had great success. These

forecasting models must be as accurate as possible whilst also being computationally cheap

and widely available.

Most concerning for forecasters are low pressure weather systems, which can generate

large storm surges. In mid-latitudes, these systems manifest as large depressions (extrat-

ropical cyclones or ETC) that can affect expansive areas for time periods on the order of

days. However, most dangerous of all are the storm surges that accompany tropical cyclones

(TC). Although generally smaller (spatially) than their extratropical counterparts, they are

more intense due to very steep pressure gradients and, consequently, very strong winds.

In a world of changing climate and rising seas, the magnitude and frequency of dangerous

extreme sea levels will change (Church et al., 2013; Bindoff et al., 2007). Changes to extreme

sea levels will potentially result from changes in both the ocean (sea level rise), and the

atmospheric systems to which storm surges are linked. Hallegatte et al. (2013) estimated

the future flood risk to the worlds largest 136 cities to be $52 billion by 2050, up from $6

billion in 2005. Vousdoukas et al. (2018) found that, for the European coastline, annual

damages due to coastal inundation are likely to increase by 2 - 3 orders of magnitude by

the year 2100. This only adds to the importance of understanding storm surge dynamics

and ensuring accurate forecasting is possible.

Menendez and Woodworth (2010) used tide gauge observations to show that sea level

extremes are are increasing globally, primarily due to the rise in mean sea levels. Global

extreme sea levels are also projected to continue increasing into the 21st century, also thanks

predominantly to rising mean sea levels (Seneviratne et al., 2012; Lowe et al., 2010). Past

regional studies have also confirmed these projections (Brown et al., 2010a; Debernard and

Røed, 2008; Wang et al., 2008; Woth et al., 2006).

Increasing the baseline sea level increases the risk (or decreases the return period) of

dangerous sea level thresholds being exceeded, regardless of changes in meteorology. Figure-

1.2 demonstrates this with an illustration of the components of sea level variations. If mean

sea level is increased but the height of the other components is stationary, the level of the

coastal defence will be exceeded more often. It will also only require smaller surge/tide

components for overtopping and flooding to occur.

Projections of future storminess are less certain and more complex (Christensen et al.,

2013). ETC predictions and climate models show a large variability in their output and

it is thought that future storminess changes are likely to be small when compared to the

3
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Mean Sea Level

High Tide

Storm Surge

Overtopping

Wind waves

Figure 1.2: The components of sea level variations. When high tide, storm surge and

wind waves combine, coastal defences (if present) can be damaged and overtopped. As mean

sea level rises, the same tides and surges will exceed higher thresholds. Components not to

scale.

interannual variability. Some studies suggest a poleward shift in some basins (Ulbrich et al.,

2008; Harvey et al., 2012), however in the North Atlantic specifically, this is very uncertain.

There is evidence that there will be a global reduction in ETC numbers but little agreement

on intensity (Ulbrich et al., 2009).

TC projections are similarly uncertain as there are many competing factors that con-

tribute to their creation, especially on a regional basis (Christensen et al., 2013). Knutson

et al. (2010) found that there is likely to be an increase in TC mean intensity globally, how-

ever a decrease or no change in the frequency of all categories of TCs. On the other hand,

studies have found that there is likely to be an increase in the frequency of the more intense

TCs (Knutson et al., 2013; Bender et al., 2010; Emanuel et al., 2008). Finally, Kossin et al.

(2014) found that the location of maximum intensity of hurricanes may have been moving

polewards over time.

Storm surge risk will also change due to changes in land use and other socio-economic

factors. Most of the worlds megacities sit within coastal zones and population in these areas

is set to increase into the 21st Century (Neumann et al., 2015). Increasing asset values in

coastal areas has enhanced vulnerability to storm surges. For example, a study by Stevens

et al. (2014) found that most of the flood risk increase in the UK over the past century was

due to increasing populations in areas at risk. This is likely to result in further mitigation
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CHAPTER 1. INTRODUCTION & MOTIVATION

strategies such as coastal defences which can cause changes in coastal morphology, and

change storm surge risk even further (Thorne et al., 2007).

1.2 Thesis Objective and Approach

The changing risk of damaging storm surges outlined in the previous section means that

it is increasingly important for accurate and timely forecasting. Remotely sensed and real

time data products of the ocean and atmosphere are becoming ever more available, opening

up opportunities to use this data to improve storm surge forecasting. Indeed, this is exactly

the theme dealt with in this thesis, the overall objective of which can be summarised into

the following sentence:

Thesis objective: To add to the understanding of how remotely sensed and real time

data can be used to improve the operational forecasting of storm surges.

One of the most immediate ways to utilise real time data in forecasting is data assim-

ilation (see Chapter-3 for a more thorough introduction). Such techniques can be used to

combine data from numerical models, such as those commonly used in forecasting, with

observations of the same system. This combined dataset can then be used to create an

improved initial condition for a model run with the objective of subsequently obtaining an

improved forecast. Although commonly used in atmospheric forecasting (see Chapter-3),

its use is not yet widespread in operational storm surge forecasting and it is not well studied

in the literature.

Data assimilation and operational storm surge forecasting form the two core themes of

this thesis. In the context of operational models (see Chapter-2), there are two areas where

data assimilation may have the most benefit: the assimilation of sea level observations

and the assimilation of atmospheric observations. Therefore the above objective can be

decomposed into three questions that are tackled individually in this thesis:

1. How effective is the assimilation of remotely sensed real time observations of wind for

operational storm surge forecasting?

2. How effective is the assimilation of real time sea level data for operational storm surge

forecasting?

3. Can new physical and statistical insights lead to a better understanding of the limi-

tations of operational data assimilation in the context of storm surges?
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These three thesis questions are discussed in more detail below. Two study regions have

been used when approaching them: the eastern coastline of the United States and the North

Sea. Both regions are historically vulnerable to damaging storm surge events and both are

regions where numerical models are used for operational forecasting. The study regions

experience quite different characters of storm surge events, with the US coastline being

influenced by tropical cyclones and the North Sea being impacted by large extratropical

cyclones. These areas are shown (approximately) in Figure-1.3.

Figure 1.3: The two study areas examined in this thesis. 1) The coastline of the United

States, including the Gulf of Mexico coastline. A region prone to tropical cyclones and their

accompanying storm surges. 2) The North Sea and its surrounding coastlines. An area

prone to extratropical cyclones and their storm surges.

For the US coastline, the biggest danger is posed by landfalling tropical cyclones, es-

pecially in and around the Gulf of Mexico. As will be discussed further in the following

chapters, models for tropical storm surge forecasting generally use highly idealised repre-
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sentations of winds and atmospheric pressure. The relative simplicity of these atmospheric

models means that there is potential to improve forecasting through their modification via

data assimilation. It is therefore this region that we consider when approaching the first

question.

The assimilation of sea level data is likely more of a challenge and of less benefit for

these tropical systems due to their small spatial size, fast moving nature and short local

timescales. The North Sea on the other hand, sees storm surges caused by larger scale

atmospheric systems (extratropical cyclones) which can last for time periods on the order

of days. Sea level data from tide gauges is also readily available and relatively dense.

Therefore, it is this region that is considered when tackling the second question. Storm

surge models of the region use output from global and local atmospheric models, for which

data assimilation is already a well established area of research. The assimilation of sea level

data into operational models, however, is still a relatively new area of study.

Understanding the physical system itself is also important for data assimilation, e.g.

for understanding what limits how long the benefits of assimilation will last and for under-

standing the optimal locations for system observation. This is the idea behind the third

question, and to approach it a new volumetric statistic has been defined for the North Sea

study region. This statistic has been used to quantify how long a storm surge persists in

the region. Adjustments to this component of sea level due to assimilation will only last

for as long as the storm surge itself, therefore placing a time limit on forecast improvement.

The volumetric statistic also shows potential for improving analyses and comparisons of

historical storm surges.

1.3 Thesis Structure

All of the theories and ideas introduced briefly in the preceding sections are discussed more

thoroughly in Chapters 2 - 3. These chapters cover the essential literature and background

required for understanding the research presented in this thesis. This includes the physics

and statistics of storm surge generation, operational storm surge modelling and forecasting

in both the mid-latitudes and tropics as well as data assimilation and its applications.

In Chapters 4 - 6 results and methodologies for investigating the three questions are

presented. Although there is some overlap, each of these chapters is intended to consider

one of the questions posed in this thesis. They are presented in paper/manuscript format,

meaning each has its own independent introduction, methodology and conclusions section.

Details on author contributions, publication and supplementary material can be found in
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the preamble of each chapter. Although also covered in the Chapters 2 - 3, the preamble of

each results chapter also includes a summary of the knowledge gaps relevant to the chapter.

The first thesis question is considered in Chapter-4. Here, the parametric wind forcing

used in an operational tropical storm surge model is modified using analysis wind fields

created from remotely-sensed data. Three case studies and two different methods to do this

are examined. In Chapter-5 the focus moves to the North Sea, for reasons discussed above,

and extratropical storm surges. Here, a variational data assimilation system is developed to

work with the operational model CS3X which modifies sea level using sparse observations.

Chapter-6 looks at a single volumetric statistic for quantifying North Sea storm surges and

evaluates how it behaves during and after a storm surge event. Its uses are demonstrated

and it is used to determine the duration of a storm surge.

The overall conclusions of this thesis are presented in Chapter-7. Here a synthesis

of all the research in the preceding chapters is provided, bringing the discussion back to

the objective and questions stated here. The opportunity is also taken to provide some

discussion on avenues for future research based on the results and conclusions of this thesis.

Finally, at the back of this thesis there is a set of appendices. Here, more depth on the

theory and implementation of some key algorithms used in the results chapters is provided

as well as additional results and ideas that complement the preceding work. Some impor-

tant modifications made to the numerical models used throughout are also presented and

explained, including verbatim code. In the preamble of each results chapter, the relevant

appendices are indicated.
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Chapter 2

Storm Surge Forecasting

Sea level variability is comprised of four major components: changes to mean sea level,

wind waves, the astronomical tide and the atmospherically influenced component (surge).

For storm surge forecasting we focus on the tide and surge, both of which must be forecast

accurately. This section goes into some detail on the current state of storm surge and tide

forecasting. A good overview of all aspects of storm surge forecasting can be found in

(Horsburgh, 2011).

The tide component is typically predicted at a specific location using a harmonic analysis

(see Section-2.2.5 for more detail). The surge component is determined using a numerical

model, although empirical methods have been used in the past (see for example Silvester

(1970) and Bretschneider (1966)). This can then be extracted from the model at a given

location and added linearly to the predicted tide to obtain a forecast for the total water

level. The tide is not typically forecasted using a model as, due to its periodic nature, it is

generally more accurate to use a harmonic analysis of observations. Storm surges do not

have the same periodic behaviour.

2.1 Quantification of Storm Surges

There are three measures used to quantify storm surges: the total water level (TWL),

the non-tidal residual (NTR) and the skew surge (SS). Each statistic has advantages and

disadvantages, which are discussed in this section. For an illustration, see Figure-2.1a.

TWL is the observed absolute height of the sea surface relative to some datum level

(for example ordnance datum). This is the measure used by many agencies for sea level

forecasting and engineers when planning/building coastal defences. TWL is very much

the ’practical’ measure and is useful for determining when the sea level is approaching
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Figure 2.1: a) Example of predicted tide, total water level and non-tidal residual for the

December 2013 storm surge at Lowestoft, UK. The skew surge is given by the difference in

sea level at the times indicated by the red dashed lines. b) Example of non-tidal residuals

at Newport, Wales, during a calm period in September 2015. The ’heartbeat’ signal here is

likely due to errors in the harmonic tidal predictions and not an actual physical phenomenon.

(or exceeding) a dangerous threshold. However it’s large variability can mask out smaller

surges, especially in areas with a large tidal range. Many different countries also use different

datum levels, which can add to confusion if not converted carefully.

The NTR is the time series of differences between the observed TWL and the predicted

water level due to tides. This is useful for seeing a time series of modifications to predicted

sea surface height due to meteorological conditions. However, it also includes errors in the

tide forecast, which can be significant in areas where there is a large tidal range. (Horsburgh

and Wilson, 2007) showed that phase errors in the tidal predictions can result in periodic

signals in the non-tidal residuals. See Figure-2.1b for an example of such a signal.
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Finally, SS is the difference between the maximum predicted water level and the max-

imum observed water level. There is just a single measurement per tidal cycle. This is an

robust, integral measure and useful statistic as it is independent of the timing of the high

waters, meaning it shows us a much better representation of the atmospheric contribution

to the sea level (Williams et al., 2016; Batstone et al., 2013) . Arguably, this is the most

useful measure of a storm surge, in terms of forecasting. It provides a single, unambiguous

statistic for each tidal cycle that describes simply the additional water level on that cycle.

2.2 Physics and Modelling

Figure-2.2 shows a simple illustration of the typical setup of an operational storm surge

forecasting model. An ocean model is subject to forcing from atmospheric input data

(forecast pressure and wind fields) and boundary forcing (forecast harmonic tide input).

Bathymetry is also important and must be supplied as an input to the model. Each of

these is discussed further in this section.

See Bode and Hardy (1997) for a good review of storm surge modelling and Tables 2.1

and 2.3 for more details on specific operational forecasting models.

2.2.1 Hydrodynamic Equations

In most operational models, a 2-dimensional depth-averaged form of the Navier-Stokes

equations (the shallow water equations) is generally used to model the ocean. By using

a 2D model, operational centres can create forecasts quicker, on less expensive computers.

This allows for timely forecasting but also wider availability. The shallow water equations

(SWE) can be written as:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv =− g ∂η

∂x
− 1

ρ

∂PA
∂x

+
1

ρD
(τsx − τbx), (2.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu =− g∂η

∂y
− 1

ρ

∂PA
∂y

+
1

ρD
(τsy − τby), (2.2)

∂η

∂t
+
∂(Du)

∂x
+
∂(Dv)

∂y
= 0, (2.3)

where u and v are the components of flow in the x and y directions, t is time, g is

gravitational acceleration, η is the level of the free surface, D is the fluid depth (positive),

τsx, τsy, τbx and τby are the surface and bottom stresses in the x and y directions respectively,

PA is the atmospheric pressure, ρ is the fluid density and f is the Coriolis parameter.
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Figure 2.2: Schematic of typical operational storm surge model setup. It can be seen as

being comprised of three layers: atmospheric data used for surface forcing, an ocean model

comprised of sea surface height and currents and bathymetry data, used in the SW equations.

Equation (2.3) is the continuity equation and expresses conservation of volume. Equations

(2.1)-(2.2) are the conservation of momentum equations.

The SW equations are derived by depth-integrating the Navier-Stokes equations. By

doing so, the vertical component of velocity is removed, therefore the equations work best

where these motions are relatively small. In addition, they assume an incompressible fluid

is being modelled and that horizontal length scales are much larger than vertical length

scales, hence their name. These assumptions are satisfied for storm surge modelling: water

is (nearly) incompressible and the horizontal scale of the model domains and wavelengths

of the tides/surges (hundreds of km) are orders of magnitude larger than the ocean depth

(hundreds of metres).

Equations (2.1)-(2.2) show that the wind stress term τsy has a reciprocal relationship

with depth D. This means that the wind is much more important for surge generation in

shallower water. Typically, the currents would first be solved for using some integration

scheme and then the continuity equation is solved to obtain a new sea surface height.
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2.2.2 Grid and Integration Schemes

For operational purposes, the SWE are typically modelled on a regular structured grid using

a finite differencing (FD) scheme (Dube et al., 2009; Horsburgh, 2011). Sea surface heights

and current calculations are staggered in space using an Arakawa-type scheme (Messinger

and Arakawa, 1976), similar to that shown in Figure-2.3. The advantage of using finite

differencing is its relatively cheap computational cost. However, finer dynamical details

may be missed in areas with shallow depths and complex coastlines. Since the surge is a

coastal phenomenon, accurate modelling of the surge in these areas is important.

Increased dynamical detail in coastal areas can be achieved via the use of different grid

schemes. For example, nested higher-resolution local grids can be used in topographically

complex areas, much like the current operational system for the UK. This uses nested

models in the Severn Estuary, where the tidal range is high and coastline complex. A

variable resolution with higher detail at the coastline can be achieved using elliptic and

hyperbolic grids, such as those used operationally in SLOSH (Jelesnianski et al., 1992).

Such grids can still be used with finite differencing schemes, thus retaining their benefits.

For broader modelling applications, finite element (FE) methods can be used to create

dynamic, unstructured grids (Gonnert et al., 2001; Walters, 2005). These are significantly

slower than FD methods and, although they can offer extra insights into dynamical pro-

cesses, studies around the UK have shown their operational sea level forecasting potential

to be similar to that of FD methods (Jones and Davies, 2008, 2005). One of the challenges

associated with unstructured meshes is designing, refining and optimising the grid itself for

different regions of a model domain (Weller et al., 2010). An example of a model that can

utilise FE methods and has seen operational use is ADCIRC (Westerink et al., 1992).

Another option for more complex modelling purposes is to use a 3-dimensional form of

the Navier Stokes equations instead of the depth-averaged SWE. Such methods are useful

where multi-directional flows, stratification and internal waves/tides are prevalent, such as

in eastuaries. However it has been shown that stratification at least has little effect on

the coastal generation of storm surges (Dangendorf et al., 2014; Kodaira et al., 2016). If

used, extra complications must be considered such as sensitivity to choice of vertical eddy

viscosity parameterisation, bottom stress formulation and how many vertical model layers

are used. Similar to the FE case, studies have shown the additional benefit to operational

sea level forecasting to be limited. For example, Weaver and Luettich (2010) showed for a

case study that the differences in maximum water height between a 2D and 3D model to

be on the order of 5%, comfortably within the error due to specification of eddy viscosity
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and bottom friction parameterisation.

2.2.3 Surface and Bottom Stress

Shear stresses are present at both the ocean surface and bottom. At the ocean-atmosphere

boundary, winds apply a stress at the ocean surface, generating currents and the subsequent

creation of wind-setup effects, as discussed in Chapter-1. At the ocean bed the inverse is

true where currents are slowed by frictional forces. These quantities are, respectively, the

surface wind stresses (τs) and bottom stresses (τb) and their appropriate modelling is of

vital importance to the quality of a storm surge forecast.

The estimation of these stresses can be complex, especially at the surface where the shape

of the ocean-atmosphere interface can change rapidly due to differing wind conditions, i.e.

waves. Therefore operationally, both wind and bottom stress are often parametrised using

a quadratic relationship. For example, in the case of wind stress we have (Taylor, 1916):

τs = Cdρau
2
10, (2.4)

where Cd is some frictional coefficient, ρa is the density of air at the surface and u10

is the 10m mean wind speed. A similar relationship can be used for bottom stress by

replacing Cd with a bottom stress coefficient Cb and u10 with current speed. Below we go

into more detail about how wind stress specifically can be parametrised for operational use

however many of the same ideas can be applied to bottom stress. Good reviews of wind

stress research can be found in Bryant and Akbar (2016) and Garratt (1977).

Operationally, Cd is generally assumed to be constant (Horsburgh, 2011; Williams and

Flather, 2000) and lies within the bounds suggested by Taylor (1916): by using data col-

lected from above Salisbury plain, Taylor determined a value of between 0.002 and 0.003.

A similar range of values can be used for Cb, for example see (Jelesnianski et al., 1992).

In reality, Cd over the ocean is not constant, but a function of variables such as aero-

dynamic surface roughness (z0), wave height, wave age and wind speed. For example, Cd

typically increases over the ocean as wind speed increases, as this also increases the surface

roughness by increasing wave height.

Cd can be calculated by using the relation suggested by Charnock (1955):

α =
gz0
u2∗

, (2.5)

along with the definition of the friction velocity, u∗:
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u2∗ =
τs
ρa

= Cdu
2
10, (2.6)

and the following logarithmic wind profile formula:

u =
u∗
k
ln(z/z0), (2.7)

where g is the acceleration due to gravity, u is the mean wind speed at height z and α is

the Charnock parameter (for which he proposed 0.012).

Many empirical linear relationships of the form Au10+B have also been suggested, which

are useful thanks to their simplicity. For example, Smith and Banke (1975) proposed:

Cd = (0.075u10 + 0.61)× 10−3, 6ms−1 < u10 < 21ms−1. (2.8)

Other such linear relationships include those presented by Wu (1982), Anderson (1993)

and Yelland et al. (1998).

Due to few observations, these linear equations can’t be used for high wind speeds

without extrapolation from weaker winds. This limits their use in tropical storm surge

forecasting. Extrapolating results inshow an increase of Cd with increasing wind speed

however, by analysing GPS sonde data, Powell et al. (2003) found the opposite at high

wind speeds. They found a decrease in Cd for 33ms−1 ≤ u10 ≤ 51ms−1.

2.2.4 Boundary Conditions at the Domain Edges

There are two types of horizontal (lateral) boundary conditions that need to be considered:

open boundaries at the domain edges and closed boundaries at the coast. Atmospheric

forcing as well as seabed frictional forces are also technically boundary conditions (see

Section-2.2.3), however this section only considers those at the domain boundaries.

Closed boundaries at the coast. In the absence of coupled coastal inundation/flood

models, current velocities normal to the coastline are set to zero, such as in (Heaps, 1973),

i.e:

u cos θ + v sin θ = 0, (2.9)

where u and v are the current velocities in the x and y directions respectively, and θ is the

angle of the normal vector relative to the x-direction pointing from the ocean to coastline.

In the case of a finite differencing scheme performed on a rectangular grid, coastlines are

parallel to either the x or y direction vectors, therefore:
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u = 0, (2.10)

when there is land in either x direction and

v = 0, (2.11)

when there is land in either y direction. See Figure-2.3 for an illustration.

Open boundary conditions (OBC) at the domain edges serve two purposes:

1. to allow signals from within the model domain to propagate through the boundaries

without unrealistic behaviours such as reflections,

2. to allow external forcing into the domain (e.g. tides).

For the first purpose, a radiation condition is applied see (Tang and Grimshaw, 1995;

Heaps, 1973). The foundation of many such conditions is the Somerfield Radiation Condi-

tion (SRC) (Nycander and Döös, 2003):

δη

δt
− cg

δη

δx
= 0, (2.12)

where cg is the shallow water wave speed:

cg =
√
gH, (2.13)

where H is the absolute water depth. This is a 1-dimensional boundary condition, i.e. x > 0

and the boundary is at x = 0 hence it holds for waves propagating towards the boundary

normally and with phase velocity c = cg.

There are problems with the SRC however: the phase velocity at the boundary is

unknown and usually not equal to cg and the waves are probably not normally incident

against the boundary. In an attempt to combat this, Orlanski-based methods substitute cg

in Equation-2.12 with (Orlanski, 1976):

c(x, t) = − ∂η/∂t
∂η/∂x

. (2.14)

The value for c(x, t) is calculating using one grid space further inside the domain than

the boundary and one step back in time. This is an approximation method as the phase

speed may not be identical here as at the boundary.

To generate tidal forcing at the boundaries, harmonic analysis of a global ocean model

is commonly used. See Section-2.2.5 for more information of harmonic analysis.

16



CHAPTER 2. STORM SURGE FORECASTING

2.2.5 Harmonic Analysis of the Tides

Harmonic analysis (HA) is used in storm surge forecasting both to generate the tidal forcing

at domain boundaries and to create tide predictions at specific locations. With a long

enough time series of sea level data, HA can create accurate forecasts of the tides.

As touched upon in previous sections, HA has two main uses in storm surge forecasting:

1. For creating boundary conditions, a global ocean model is run and an analysis is per-

formed at each boundary grid point in the model.

2. In the generation of actual forecasts, especially in highly tidal areas such as around the

UK. Non-tidal residuals are taken from numerical models and added to the predicted

tides at specific locations.

HA works on the assumption that the tides can be represented as a superposition of

individual sinusoids called harmonic constituents. A common method for separating a time

series into these constituents is to use a least-squares fitting process which solves the system

of equations (Foreman and Neufeld, 1991):

yi = Z0 +
M∑
j=1

Aj cos(ωjti − θj), (2.15)

where yi is the time series of predictions, M is the number of constituents chosen to solve for,

Aj , ωj , θj , are the unknown amplitudes, frequency and phases of constituent j respectively.

Alternatively, Fourier analysis can also be used, such as the methods presented by Franco

and Harari (1988) and Zetler et al. (1985).

For best results, more than 18.26 years of data should be analysed (Foreman and Neufeld,

1991). Harmonic analysis is location specific and requires a long, good quality tide gauge

dataset. If the tide gauge data is biased or contains any drift then there will be biases in

the predictions.

See Pugh and Woodworth (2014) for a complete review of sea level components and

their analysis.

2.3 Forecasting for Extratropical Cyclones

Extratropical cyclones (ETC) are synoptic scale, low pressure atmospheric systems which

develop in midlatitude regions, i.e. within approximately 30◦ - 60◦ latitude (Mak, 2011).
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Figure 2.3: Example of closed boundary conditions at the land-sea boundary on an

Arakawa-C grid (Messinger and Arakawa, 1976). The dark grid cell is land and the white

grid cells are ocean. u and v are the x-direction and y-direction current velocities respec-

tively. η is the sea surface height.

They can develop either locally through cyclogenesis or by extratropical transition of a

tropical cyclone (Evans et al., 2017). ETCs dominate much of the weather regionally and can

bring a variety of weather, from clouds and showers to gale force winds and thunderstorms.

Through the generation of atmospheric fronts, they are also able to bring rapid changes in

temperature. In the context of storm surges, it is the large areas of low pressure and high

wind speeds which accompany many of these systems that are of most interest and concern.

An area that is particularly prone to extratropical storm surges is the West European

Continental Shelf, especially the shallower, more enclosed areas such as the North Sea and

resonant estuaries like the Severn. Much of the Netherlands and Eastern United Kingdom

are particularly vulnerable thanks to large areas of very low, flat land.

In 1953, a major storm surge occured along the coastlines of the Netherlands, Belgium

and Eastern United Kingdom (Gerritsen, 2005). High tides combined with a strong ETC

over the North Sea to increase sea level by up to 5.6m above MSL. It is one of the most

devastating natural disasters ever recorded in the region.

The surge killed a recorded total of 2,551 people, the majority being in the Netherlands

(1,836) and a significant proportion being in England (307). In the Netherlands, many dykes
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were unable to withstand the high water levels and there were breaches in 67 locations,

resulting in large scale inundation. In the UK, 24,000 home were seriously damaged.

The Great Flood of 1953 prompted the affected countries, the UK and Netherlands

especially, to invest significant resources into improving coastal defences and early warning

systems. The benefits of these measures can be seen through a stark comparison with the

storm surge of December 2013. A storm of similar severity and track generated a surge of

comparable magnitude however this time there were far fewer deaths (less than 20 in total).

Table-2.1 shows examples of agencies that perform extratropical storm surge forecasting

operationally as well as some details of their models.

2.4 Operational Procedures at the Flood Forecasting Centre

The Flood Forecasting Centre (FFC) is a UK forecasting agency operated jointly by the

Environment Agency (EA) and UK Met Office (UKMO). Evident by it’s name, it’s purpose

is to generate flood forecasts for the UK, both at the coast (storm surge) and inland (river

flooding, increased water table). A very brief overview of how they generate and deal with

their coastal flood forecasts is presented to the reader here as an example of how the theory

presented in this thesis is used. Figure-2.4 shows a basic flow diagram of the FFC forecasting

procedure.

The process starts at the UKMO, who generate an atmospheric forecast for the UK

every 6 hours using their Local Area Model. Wind and pressure forecast data is used as

forcing in the CS3X model. Two model runs are performed for each forecast, one with the

atmospheric forcing included (tide + surge) and one with tidal forcing only. The tide only

run is then subtracted from the tide + surge run to obtain a forecast of the surge.

A surge forecast is extracted at specific locations around the UK coastline and sent

to the FFC. This forecast is added to location specific tide predictions from the National

Oceanography Centre to obtain predictions of total water levels. If these levels reach a

specific threshold (determined on a location-specific basis), then this will be written into a

Flood Guidance Statement (FGS).

The FFC also received ensemble surge forecasts from the UKMO. These are generated

using perturbed atmospheric states as initial conditions. Although the FFC only uses one

of these members for determining threshold exceedence, they also inspect the ensemble data

to get an idea of variability.

The FGS is sent to local agencies such as the Environment Agency and Natural Re-

sources Wales (NRW) twice daily. These may apply their own extra analysis, for example,
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Figure 2.4: Basic flowchart of the storm surge forecasting procedure at the Flood Fore-

casting Centre.
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Agency Model Domain Notes References

UKMO & FFC CS3X
North Sea, Irish Sea,

Celtic Sea

- 2D barotropic equations.

- 12km × 12km grid.

- Finite differencing.

- Atmospheric forcing: UK MO local forecast.

- Tidal forcing: 26 largest constituents at bound-

aries.

- Developed by National Oceanography Centre

over 20 years.

(Furner et al., 2016)

KNMI DCSMv6
North Sea, Irish Sea,

Celtic Sea

- 2D barotropic equations.

- Resolution: 1.6km× 1.6km.

- Finite differencing.

- Atmospheric forcing: HIRLAM or ECMWF

- Kalman filter data assimilation.

(de Vries, 2016)

DMI HBM
North Sea, Baltic

Sea

- 3D equations, 50 layers.

- 3 nm resolution.

- Finite differencing.

- Atmospheric forcing: HIRLAM or ECMWF

- Tidal forcing: 17 largest constituents at bound-

aries.

(Huess and Nielsen,

2017)

Table 2.1: Examples of agencies that perform operational extratropical storm surge forecasting with details of domain and setup.

Details correct at time of writing.
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NRW runs a wave model and uses data from pre-run overtopping models to help gauge

flood hazard. These agencies are in charge of responding (if necessary) to high water level

forecasts.

2.5 Forecasting for Tropical Cyclones

Tropical cyclones (TCs) are low pressure weather systems that are typically smaller and

more intense than their extratropical counterparts. They consist of a central area where

there is a significant drop in the atmospheric air pressure (generally a much larger drop

than for their extratropical counterparts).

Thanks to the large pressure drop at the centre of these storms and very strong wind

speeds, the storms surges that accompany them can reach heights of 8m or more. For the

classical TC, there is a peak wind speed Vm at the radius of max winds (Rm). After

this point, the wind speeds slowly drop off as you move away from the centre. The storm

surges are some of the most extreme natural events that occur due to TCs and have been

estimated to account for the majority of damages (financial and otherwise).

Areas of low-lying land with little tidal range are particularly vulnerable to TC storm

surges, for example, Bangladesh, the Philippines and parts of India. The Bay of Bengal is

arguably one of the most vulnerable regions on Earth due to its position at the northern

boundary of the Indian Ocean and vast swathes of low lying land (Dube et al., 2009, 1997;

Murty et al., 1986).

It’s thought that over the last two centuries, tropical cyclone storm surges have killed

over 2 million people (Haque et al., 2012). See Table-2.2 for examples of impacts for some

high profile storms in the last century. See Table-2.3 for examples of tropical storm surge

forecasting agencies and details on the models used.

2.5.1 Parametric Wind Fields

Due to difficulties associated with adequately resolving the central areas of tropical cyclones

in global atmospheric models, idealised wind and pressure models are generally used for

forecasting purposes. Such models are typically functions of several forecasted variables, e.g.

the radius of maximum winds Rm, pressure at the storm centre pc and the maximum wind

speed Vm at Rm. The advantage of using these models is their relatively short computation

times and the ability to generate them at any desired resolution.

The idea of parametric tropical cyclone models has been around for decades. Depper-

man (1947) suggested an early parametric model for estimating the winds inside a tropical
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cyclone. It is based on a Rankine vortex, where there is solid body rotation inside the

radius of maximum winds and conservation of relative angular momentum everywhere else.

This means that, inside Rm wind speed (V ) divided by distance is constant (V/r = const)

and outside of Rm the product of wind speed and distance is constant (V r = const). Dep-

perman modified this idea slightly to take into account the loss of cyclonic relative angular

momentum in the boundary layer due to friction. Specifically, wind speed V at a given

radius r is determined using:

V (r) =

Vm( r
Rm

) if r < Rm

Vm(Rm
r )X if r ≥ Rm

where X is a constant to be determined empirically. This model is capable of giving good

approximations to wind profiles however the Rm estimate must be very accurate. Addi-

tionally, it cannot be used to derive relationships between pressure and wind speed – an

important aspect of tropical cyclone modelling discussed further in Chapter-2.5.2.

(Schloemer, 1954) proposed an empirically derived pressure model using a normalised

parameter and observed pressure profiles from real storm events. This pressure profile can

be generated using a rectangular hyperbola:

p = pc + (pn − pc)e−
Rm
r , (2.16)

where p is the pressure at a radius r, pc is the central pressure, pn is the ambient air

pressure (often defined as the pressure at the first isobar with anticyclonic curvature) and

Rm is the radius of max winds.

The Schloemer model is known to underestimate the maximum winds. (Holland, 1980)

extended and improved the model with the introduction of a new parameter B:

p = pc + (pn − pc)e−(
Rm
r

)B . (2.17)

The B-parameter controls the shape of the tropical cyclone – specifically where and

how the maximum winds are concentrated. (Holland, 1980) also used physical reasoning to

place bounds on the value of B: 1 ≤ B ≤ 2.5. If Vmax and ∆p are known, then B can be

calculated using:

B =
V 2
mρe

∆p
, (2.18)

where e is the base of the natural logarithm. Once a horizontal cross section of pressure

is obtained (henceforth called a profile), wind speed profiles can subsequently be obtained
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using assumptions of balanced air flow. For example, an assumption of cyclostrophic balance

can be used to obtain wind speed V :

V 2 = −Rm
ρ

∂p

∂r
. (2.19)

This equation describes the wind speed when the centrifugal force balances the pressure

gradient force, in the absence of friction. It can be used where the Rossby number is large

(effect of the Coriolis force is small) such as in low latitudes and very near the centre of a

tropical cyclone. Most commonly used is the gradient wind balance:

1

ρ

∂p

∂r
=
V 2

r
+ fV. (2.20)

This equation describes the wind speed when the centrifugal force, pressure gradient

force and Coriolis force are all balanced, again in the absence of friction. It is generally

used where the Rossby number is small. For the Holland pressure model, by finding ∂p
∂r

using Equation-2.17 and substituting into Equation-2.20, we obtain an equation for the

Holland (gradient) wind profile (Holland, 1980):

V =

√
RmB(pn − pc)e

Rm
rB

ρrB
+
r2f2

4
− rf

2
(2.21)

A visual comparison of the Holland and Schloemer pressure profiles can be found in

Figure-2.5. These profiles have been used with the gradient wind balance equation, as

described above, to obtain wind speed profiles (shown in Figure-2.5(b)) and the effect of

varying the B-parameter alone can be seen in Figure-2.5(c). As B decreases, the winds near

Rm become stronger and more concentrated.

Willoughby and Rahn (2004) found there to be some issues with the original Holland

model, namely that it systematically overestimates winds on the flanks of the eyewall but

underestimates as you move outwards away from the eyewall. They went on to suggest a new

wind profile model that works by creating a smooth piecewise function: a power function

inside the eyewall and an exponential decay function outside the eyewall (Willoughby et al.,

2006). The transition between the two is forced to be continuous by using a polynomial

ramp function.

A problem with the parametric wind fields above is their 2D symmetric nature - relying

only on the radius from the centre of the storm. Real-life tropical cyclones are rarely

symmetrical (Houston et al., 1999). Xie et al. (2006) proposed a parametric wind model

that uses a variable Rm(θ) which varies with direction (instead of Rm alone).
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Other proposed models that have not been discussed here include those by Wood et al.

(2013), Wood and White (2011), Vickery and Wadhera (2009), Emanuel (2004), Wang

(1978) and DeMaria (1987).

Figure 2.5: Examples of parametric wind/pressure profiles and relationships. a) and

b): Pressure and wind speed profiles generated using Schloemer and Holland equations for

∆p = 80mbar and R = 30km. c): The effect of varying the B-parameter when generating

Holland wind profiles. d): Maximum wind speed estimates using example pressure-wind

relationships. AH: Atkinson and Holliday (1977), KZ: Knaff and Zehr (2006).
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2.5.2 Pressure-Wind Relationships

A necessary parameter for many wind models is hurricane intensity, or maximum wind speed

(Vm). Pressure-Wind relationships can be used to determine Vm from pressure observations,

as these are a considered to be reliable (Knaff and Zehr, 2006). Derived using an assumption

of cyclostropic balance near the storm centre, they typically take the form:

a∆px, (2.22)

where x is an empirical constant. An example of a pressure-wind relationship that has been

used operationally is by Atkinson and Holliday (1977):

Vm = 3.4(1010− pc)0.644. (2.23)

Other operational relationships include those by Koba et al. (1990) and Love and Mur-

phy (1985). An example of a more complex pressure-wind relationships can be found in

Holland (2008) and Knaff and Zehr (2006). See Figure-2.5(d) for a comparison of some

prominent relationships.

Dvorak-based methods can also be used to estimate hurricane intensity from satellite

imagery (Dvorak, 1975, 1984). Analysts determine hurricane intensities via assignment

of T-numbers and current intensities (CI) based on cloud patterns. An early example of

how this is done is shown in Figure-2.6 (from Dvorak (1975)), although advancements and

variations have been made since. The Dvorak method has been used extensively by, for

example, the National Hurricane Centre for Atlantic forecasting.
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Figure 2.6: An early example of how Dvorak’s T-numbers are assigned using satellite

imagery. Figure from (Dvorak, 1975)
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Storm Year Countries Affected Features & Impacts References

Bhola 1970
Bangladesh, Indian

Islands

Up to 10m high storm surge in Ganges delta

300,000–500,000 deaths estimated.

$86.4 million in damages.

(Frank and Husain,

1971; Murty et al.,

1986)

Gorky 1991 Bangladesh

6.1m surge and high tides.

138,000 dead.

$1.5 billion in damages

(JTWC, 1992)

Sidr 2007 Bangladesh

Up to 5m surges recorded.

$450 million in damages.

Approximately 3407 killed.

(Government of

Bangladesh, 2008)

Katrina 2005 USA, Caribbean

53 breaches to flood protection structures.

3-4m surge, 80% of New Orleans submerged.

$125 billion of damages.

Approx. 1800 deaths.

(Knabb et al., 2005)

Ike 2008 USA, Caribbean

Up to 5m surges.

at least 195 deaths.

$38 billion of damages

(Berg, 2014)

Sandy 2012
USA, Caribbean,

Canada

At least 233 killed.

$69 billion in damages.

Up to 4m storm surges.

(Neria and Shultz,

2012)

Table 2.2: Examples of high profile tropical cyclones whose surge caused significant impacts for the regions involved. All costs

in the value of USD during the events year.
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Agency Model Forecast Region Notes References

NHC SLOSH
US East Coast &

Gulf of Mexico

- 2D barotropic equations.

- Elliptical and hyperbolic grids for specific lo-

cations.

- Finite differencing.

- Parametric wind forcing based on work by My-

ers and Malkin (1961), which are based on the

work by Schloemer (1954).

(Jelesnianski and Tay-

lor, 1973; Jelesnianski

et al., 1992)

JMA JMA Japanese coastline

- 2D barotropic equations.

- Explicit finite differencing.

- Resolution: approx. 1.5km×1.9km

- Parametric wind forcing based on empirical

formula by Fujita (1952)

(Higaki et al., 2009)

Meteo-France
Meteo-

France

French Antilles, New

Caledonia, French

Polynesia and La

Reunion

- 2D barotropic equations.

- Finite differencing.

- Rectangular grid of between 150m and 1850m

resolution (domain dependent).

- Holland (1980) pressure and wind fields.

(Daniel et al., 2009)

Table 2.3: Examples of agencies that perform operational tropical storm surge forecasting with details of the model used
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2.6 Challenges for Storm Surge Forecasting

The main aim for operational storm surge forecasting is to improve the accuracy of

forecasting systems whilst simultaneously maintaining low model run times.

Each run must be relatively quick to allow for timely forecasts and ensemble runs to be

performed. This also broadens the availability of the models and means they can be used

by smaller, regional agencies who might not have the resources for high power computing.

In general, this means that concessions must be made in terms of physical complexity

in the models, e.g. the parameterisation of dynamical processes such as stress formulations

and atmospheric forcing. Similar concessions must also be made when choosing modelling

schemes such as grid and integration types. As discussed in this chapter, finite differencing

is often chosen over finite element methods, sometimes at the expense of geometric accu-

racy near the coast. An ongoing challenge for the operational forecasting community is to

evaluate and quantify exactly how much benefit can be attained from using more complex

physics and algorithms in the models. Improvements, if any, must then be weighted against

the cost of implementation and time cost of model run.

It is important that the limiting factors for forecasting accuracy and sensitivities are

understood and quantified. For example, is it more important for the atmospheric forcing

to be improved or parameterisations of physical processes? Understanding this helps re-

searchers to determine which areas of a model to change in order to ensure the balance of

accuracy against computational cost. Model sensitivities can be estimated using methods

such as adjoint models (for example see Wilson et al. (2013); Li et al. (2013)). Additionally,

understanding these sensitivities helps in the quantification of forecast uncertainties.

The accuracy of the atmospheric forcing is important as any errors in the atmospheric

data will generate errors in the surge forecast. Especially important is the accuracy of wind

forcing, as any errors here will be transferred at least quadratically to the wind stress (see

Section-2.2). Improvement comes here through improvement to Numerical Weather Predic-

tion models. The parametric wind fields used for the forecasting of tropical cyclone storm

surges (discussed in Section-2.5.1 are idealized and cannot be expected to fully represent

the wind field. However, there are some notable issues. Many of the wind fields used in fore-

casting models are axisymmetric, much like the Holland Model. As previously discussed,

many tropical cyclones actually have many asymmetries and other features such as multiple

eye-walls. Understanding how atmospheric forcing will change in the future (e.g. climate

change) is vital since, as discussed in Chapter 1, many of the current predictions are highly

uncertain.
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As will be discussed further in Chapter-3, data assimilation methods can be used to make

models more physically reasonable (for a time) without changing the model itself. These

methods work by incorporating observational data into the model state to create a better

initial condition for a forecast run. In atmospheric forecasting they are used frequently

and have seen much success. Obtaining enough data points both in coastal areas and open

ocean for estimating model errors is a challenge, but this data is fast becoming more widely

available. The research community must assess how this data can be used in an operational

context.

Operational models are generally regional and setting up a new model for a new region

can be a challenge. Many factors must be considered such as bathymetry sources, areas at

risk and domain, estimates of tidal boundary conditions and tuning parameters.

Although not strictly forecasting, historical analyses are important for estimating ex-

treme statistics and return periods and thus identifying vulnerable areas and quantifying the

storm surge risk. These analyses aid with policy making and coastal defences. Continued

research needs to be done into increasing storm surge risk in the future. Global storm surge

models can used with climate models to develop global storm surge climatologies, which

can in turn can offer answers to questions about future risk and insight into dynamics. For

example, see Kodaira et al. (2016).
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Chapter 3

Data Assimilation and its use in

Forecasting

3.1 Overview of Data Assimilation

Data assimilation (DA) is used to estimate the state of a system using as much information

as is available. For operational forecasting, this is done with the aim of generating an initial

condition for the model state that is as accurate as possible. It has been performed in

numerical weather prediction with success for decades (See Section-3.5).

Classical data assimilation works on the following rudimentary ideas:

1. Take a best guess at the current state of a system from a model. Call this the

background. This might be a previous model state.

2. Perform a number of observations of the real system.

3. Interpolate the background values from the model locations to the observation loca-

tions.

4. Calculate the difference between observations and interpolated background to obtain

innovations.

5. Use the innovations to describe how the model should be adjusted and spread the

difference in space. The adjusted state is known as the analysis.

The specifics of how exactly the above steps are performed depends on the method used.

In this section, these steps are formalised and some important DA schemes are outlined.
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3.2 BLUE Derivation

Early methods of data assimilation used only the innovations, without considering the

nature of the errors in the background or the observations. These methods work on the

idea that:

y = H(xa), (3.1)

where y is a vector of observations, xa is the analysis and H is the forward model, i.e.

an operator which converts the background basis to the observation basis. Essentially, this

is an assumption that the observations are truth. A well-known example is the Cressman

Scheme (Cressman, 1959).

Now, an important result for modern day assimilation schemes is derived: the Best

Linear Unbiased Estimator (BLUE). This is a formal way of obtaining the ’best’ analysis

that has minimum total error variance.

First assume that the forward model is linear, i.e. it can be represented by a matrix H,

which is called the tangent linear operator. So for a model state xb we have H (xb) =

Hxb. We want to find an analysis xa of the form:

xa = Lxb + Ky, (3.2)

where xb is the background state and L and K are n×n and n×p matrices respectively.

That is, the desired analysis is a linear combination of the background state and observations

(all of the available information).

Before continuing, the following errors are defined:

εb = xb − xt, (3.3)

εo = y− xt, (3.4)

εa = xa − xt, (3.5)

where εb, εo and εa are the errors in the background, observations and analysis respec-

tively and xt and xb are the true and background states. Using this, we can define the

observations in terms of the true state:

y = Hxt + εo (3.6)

Using (3.2) and (3.6), the error in the analysis can be derived:
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εa = L(xb − xt + xt) + K(Hxt + εo)− xt (3.7)

= Lεb + Kεo + (L + KH− I)xt, (3.8)

where I is the n × n identity matrix. By assuming that the background and observation

errors are unbiased (E[εo] = 0 and E[εb] = 0) we have:

E[εa] = (L + KH + I)E(xt) (3.9)

where E[X] is the expectation operator and works in an elementwise fashion. Since we are

looking for an unbiased analysis, we can find L:

L = I−KH. (3.10)

And so, by substituting (3.10) into (3.2) and rearranging, we obtain a standard equation

for the analysis:

xa = xb + K(y−Hxb). (3.11)

This equation tells us that the analysis we seek can be found by adding some adjustment

(henceforth called the increment) to the background state. The adjustment consists of the

innovations y−Hxb multiplied by a matrix of weights known as the gain matrix. What

remains now is to find an optimal K such that that sum of the variance of the analysis errors

is minimized based on prior knowledge of the errors in the background and observations.

To determine a formula for K, we first need to derive an equation that describes the

analysis error covariance matrix A. Using (3.11), the analysis error equation can be written

as:

εa = εb + K(εo −Hεb), (3.12)

and subsequently, by using the assumption that background and observation errors are

uncorrelated and some rearrangement, we can obtain:

A = E[εaε
T
a ] = LBLT + KRKT , (3.13)

where B = E[εbε
T
b ] is the background error covariance matrix and R = E[εoε

T
o ] is the

observation error covariance matrix.
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By taking the trace of A and differentiating with respect to K we have:

K = BHT (R + HBHT )−1 (3.14)

This is an optimal K in the sense that it results in an analysis where the sum of error

variances is minimised. This can now be substituted back into Equation-3.11 to find the

optimal analysis.

3.3 Data Assimilation Schemes

Performing data assimilation using the direct calculation of K (including an explicit matrix

inverse) is called Optimal/Statistical Interpolation (OI) (Gandin, 1966; Lorenc, 1986,

1981; Daley, 1991). Alternatively, variational assimilation methods can be used, which

require the minimisation of a cost function J . 3DVar is an example of such a method,

which requires the minimization of a cost function J(x) with respect to xa:

J(xa) = (xa − xb)
TB−1(xa − xb) + (y−Hxb)

TR−1(y−Hxb), (3.15)

where all variable definitions are the same as the previous section. See Appendix-D for

more detail on how this minimization can be achieved.

Another variational method, 4DVar is currently in use at many weather forecasting

agencies around the globe and has yielded many positive results (see Section-3.5). This

allows for the assimilation of observations that are not coincident in time.

There is another set of important data assimilation techniques which are not covered

in depth here: those based on the Kalman Filter. These are theoretically similar to the

methods discussed above and actually achieve the same optimality. See Kalman (1960) for

the Kalman Filter, Evensen (1994) for the Ensemble Kalman Filter or Houtekamer and

Zhang (2016) for a more general review.

3.4 Estimation of Error Statistics

The background error covariance matrix B is a vital component of OI and variational

assimilation methods. The accuracy of the analysis is heavily dependent upon the accuracy

of the background error covariance. Unfortunately the true state of a system is unknown

(there are errors in both observations and models), therefore these covariances must be

estimated.
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Agency Scheme Date Comments References

ECMWF OI (Shaw et al., 1987)

3DVar Jan 1996
Improvement in forecasting of temperature,

winds and tropical cyclones over OI

(Courtier et al., 1998; Rabier

et al., 1998; Andersson et al.,

1998)

4DVar Nov 1997
’Significantly better than forecasts starting from

3DVar’...’particularly in short range’.

(Rabier et al., 2000; Mah-

fouf and Rabier, 2000; Klinker

et al., 2000)

Met Office OI/Nudging

3DVar Mar 1999
Improvement in composite forecast skill of 2.7%

over original assimilation
(Lorenc et al., 2000)

4DVar Oct 2004
Improvement in composite forecast skills of 2.6%

over 3DVar
(Rawlins et al., 2007)

MSC OI (Gauthier et al., 2007)

3DVar 1997 General improvements over OI (Gauthier et al., 1999)

4DVar Mar 2005 General improvements over 3DVar. (Gauthier et al., 2007)

Table 3.1: Examples of DA schemes used for Numerical Weather Prediction by some select organisations. These are presented

in chronological order of their usage.
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Several methods have been proposed and used operationally for error covariance esti-

mation. In practice, many of these methods are used to estimate a function that describes

how background and observation error correlations vary spatially. For simplicity (and in-

deed practicality), further assumptions of homogeneity, isotropy and ergodicity are often

made. An overview of methods for estimating and constructing B can be found in Bannister

(2008a,b).

Innovations may be used in place of errors in some cases (Hollingsworth and Lonnberg,

1986; Rutherford, 1972). To do so requires the assumption that observation errors are

spatially uncorrelated and that background errors and observation errors are independent

of one another. The spatial covariance of the innovations is dependent upon both the

covariance of the background errors and observation errors:

E[εo(p1)εo(p2)
T ] + E[εb(p1)εb(p2)

T ], (3.16)

where εo(p) is the observation error at location p and εb(p) is the background error at

location p. Since the observation error is assumed to be spatially uncorrelated, the first

term in Equation-5.6 vanishes and we are left with just the background covariance. These

covariances can then be plotted against distance and a model fitted to the data.

Another method for calculating covariance matrices is the NMC method (developed

by the National Meteorological Centre) (Parrish and Derber, 1992). This uses forecast

differences to estimate error covariances, i.e:

B ≈ E[(x48 − x24)(x48 − x24)
T ], (3.17)

where x48 and x24 are forecasts made for some time T with lead times of 48 and 24

hours respectively. An assumption is made that the forecast errors for the different lead

times are uncorrelated.

Ensemble methods are commonly used by current data assimilation systems (see (Ehren-

dorfer, 2007) for a review of these methods). These methods generate large ensembles of

model states by perturbing the initial conditions of the model. The spread of resulting set

of model states can then be used to estimate the background error covariances.

In order to ensure an optimal analysis exists, functions used to parametrize covariances

must generate a B matrix that is positive semi-definite (Gaspari and Cohn, 1999). They

can be constructed via correlation functions, which are more likely to satisfy assumptions

of homogeneity and isotropy (Daley, 1991).
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3.5 Applications of Data Assimilation

The most prominent applications of data assimilation is in Numerical Weather Prediction

(NWP). Indeed, much of the theory and development of data assimilation exists thanks to

this area. Its primary purpose is to mitigate the effects of chaos in the atmospheric system

by creating initial conditions that are as accurate as possible. For atmospheric forecasting,

this will include observations from ground-based weather stations, weather balloons and

remotely sensed satellite data.

3DVar was used extensively in NWP during the 1990s and In the early late 1990s/early

2000s, many organisations moved to 4DVar. These methods are vital for accurate fore-

casts and their use has had quantifiable benefits. In Table-3.1, we provide examples of of

operational assimilation systems and the agencies that use them.

Outside of forecasting, data assimilation is most commonly used for creating analysis or

re-analysis datasets. Such datasets are used extensively throughout the earth sciences and

are a useful tool for combining and interpreting data from different in situ and remotely

sensed sources. Examples include:

• Atmospheric datasets of geopotential height, temperature, winds and humidity (and

more) by ECMWF (Dee et al., 2011), NCEP (Saha et al., 2010) and NASA (Rienecker

et al., 2011).

• Oceanic datasets of temperature, salinity, circulation and sea level (Derber and Rosati,

1989), for example SODA datasets (Carton et al., 2000a,b).

• Datasets of land based variables such as soil moisture content (Reichle, 2008; Reichle

et al., 2001; Rodell et al., 2004).

These are only meant to serve as examples and indeed there are many analysis datasets

available. Such datasets can be used for improving understanding of physical process,

estimating risk and historical statistics of natural events (e.g. storm surges) and making

climatological predictions of the future.
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Chapter 4

Using Remotely Sensed Data to

Modify Wind Forcing in

Operational Storm Surge

Forecasting

4.1 Preamble

As discussed in Chapters 1 and 2, the high wind speeds and low central surface pressures

in tropical cyclones can generate significant storm surges. Forecasting using numerical

models is routinely performed regionally around the world. The atmospheric forcing in

these models are highly idealised and generated parametrically (based on variables such as

radius of maximum winds and central pressure). Due to the significant impacts of tropical

storm surge events, it is vital that the numerical models used are both accurate and are

able to supply output in a timely manner.

The research in this chapter investigates how real time atmospheric analysis products

developed using the assimilation of observations can be used to modify the parametric

forcing within operational storm surge models. This is related to the first question posed

in Chapter-1:

How effective is the assimilation of remotely sensed real time observations of wind for

operational storm surge forecasting?

For this work, no data assimilation is performed by the author due to the quality of
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existing atmospheric datasets. Instead, an investigation is made into how such datasets

might be used operationally and the limitations such approaches might have. The challenge

associated with using external datasets in this case is that the parametric fields are not

dynamic in time, i.e. perturbations at a specific time will not automatically propagate to

future wind/pressure fields. This places limitations on how far into the future their use

might improve forecasts and it is this that is investigated.

Existing global atmospheric reanalyses, for example ERA5, are often of too low a resolu-

tion to adequately represent the relatively small central area of a tropical cyclone. This is the

region where winds are highest and atmospheric pressure gradients are steepest. However,

regional datasets are available with a closer focus on tropical cyclones, for example the H

Wind (Powell et al., 1998) and MTCSWA (Multi-platform Tropical Cyclone Surface Winds

Analysis) datasets (Knaff et al., 2011). The MTCSWA dataset, relying only on several

sources of remotely sensed satellite data, is ideal for real-time, automatic applications.

In this chapter, the MTCSWA dataset is used via two methods to directly modify wind

fields in the SLOSH (Sea, Lake and Overland Surges from Hurricanes) model. This model

has been used extensively for operational forecasting of tropical storm surges along the

coastline of the US. Much of this research is done from a forecasting perspective therefore

improvements are evaluated in this context. To the author’s knowledge, this work is the

first time that observation based datasets have been used directly and in real time in an

operational model for a tropical region. Until now, much of the literature has focussed on

improving the parametric models themselves (perhaps empirically using historical data). See

Chapter-2 for more information on recent advances in parametric tropical cyclone modelling.

The research in this chapter is centred around three tropical cyclone case studies on the

US coastline, including two in the Gulf of Mexico. There are a number of reasons this region

was chosen. First, a tropical region was chosen due to the present lack of assimilated data

in the atmospheric forcing fields. In extratropical regions – where dynamic atmospheric

models are used to generate surface forcing – atmospheric data already contains assimilated

observations. Secondly, the US coastline was chosen due to the relatively high risk posed by

frequent tropical cyclone and storm surge activity, especially in the Gulf of Mexico. Over

the years, this coastline has been subject to many notable storms such as those studied in

this chapter (Hurricane Ike (Berg, 2014), Gustav (Beven and Kimberlain, 2009) and Sandy

(Neria and Shultz, 2012)). Finally, data availability is good; there is better coverage and

consistency of sea level observations for model validation compared to regions such as the

Bay of Bengal and the MTCSWA fields are available for this region.
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Related Appendices

The SLOSH model (Jelesnianski et al., 1992) used in this chapter works with different grid

schemes for the meteorological forcing and ocean model. Most notably, the ocean model is

represented on polar or hyperbolic grids, providing higher resolution in coastal areas but

allowing the use of finite differencing for integration. This means that, when modifying the

model for the work in this chapter, transformations must be made to the data. These are

described in more detail in Appendix-B. An overview of modifications required in order to

read and use the external data into the model is also provided.

Some additional early related work is outlined in Appendix-A. Initial work looked at

development of analysis wind fields from scatterometry data, despite the MTCSWA dataset

eventually being used. One of the challenges involved with this was estimating the centre

of a tropical cyclone from the satellite data. This was necessary as assimilation was to be

carried out relative to the storm centre, rather than a normal coordinate system. To do

this, a method was developed using a 4th order integration scheme and particle tracking.

Publication and Author Contributions

The work in this chapter has been published in Natural Hazards, with three authors: David

Byrne (DB), Kevin Horsburgh (KH) and Brian Zachry (BZ). It was first published in print

in October 2017 and online in July 2017. Its reference can be found in the bibliography of

this thesis under (Byrne et al., 2017) and its DOI is: https://doi.org/10.1007/s11069-017-

2964-6. The paper went through two rounds of peer review with comments requiring minor

revisions.

DB wrote the paper, carried out numerical experiments, developed the ideas and handled

the submission and revision process for publication. KH supervised the projects, secured

funding, provided editorial critique and helped with discussion of ideas. BZ provided valu-

able and important insight into storm surge forecasting at the National Hurricane Centre

and the operational relevance of this work.
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4.2 Paper Abstract

Storm surges are abnormal coastal sea level events caused by meteorological conditions such

as tropical cyclones. They have the potential to cause widespread loss of life and financial

damage and have done so on many occasions in the past. Accurate and timely forecasts are

necessary to help mitigate the risks posed by these events.

Operational forecasting models use discretisations of the governing equations for fluid

flow to model the sea surface, which is then forced by surface stresses derived from a

model wind and pressure fields. The wind fields are typically idealised and generated

parametrically. In this study, wind field datasets derived from remotely sensed data are

used to modify the model parametric wind forcing and investigate potential improvement

to operational forecasting.

We examine two methods for using analysis wind fields derived from remotely sensed

observations of three hurricanes. Our first method simply replaces the parametric wind

fields with its corresponding analysis wind field for a period of time. Our second method

does this also but takes it further by attempting to use some of the information present in

the analysis wind field to estimate future wind fields.

We find that our methods do yield some forecast improvement, most notably for our

second method where we get improvements of up to 0.29m on average. Importantly, the

spatial structure of the surge is changed in some places such that locations that were pre-

viously forecast small surges had their water levels increased. These results were validated

by tide gauge data.
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4.3 Introduction

Storm surges are abnormal sea level events caused by meteorological conditions. The storm

surges that accompany tropical cyclones are particularly destructive, generating water levels

of 8m or more. These have the potential to cause massive loss of life and financial damage

and have done so on many occasions in the past. Rappaport (2014) estimated that 49% of

the fatalities during an Atlantic tropical cyclone event are due to the accompanying storm

surge. Notable storm surge examples include the 1970 Bhola cyclone storm surge, which

generated total water levels of around 9m in the Northern Bay of Bengal and is estimated to

have killed upwards of 300,000 people (Murty et al., 1986). Also, Hurricane Katrina (2005),

a high profile storm that caused extensive flooding in the city of New Orleans, killing 1833

and causing an estimated $108 billion worth of damage (Knabb et al., 2005).

There are many mechanisms involved in the generation of a storm surge (see Harris

(1963) and Horsburgh (2011)):

• The inverse barometer effect increases sea level in areas of relatively low surface at-

mospheric pressure. This is a small part of the surge and is most significant in the

open ocean.

• High wind stress at the sea surface drives water up against (or away from) coastal

boundaries, resulting in a higher (or lower) coastal sea level.

• In the open ocean waves contribute little towards transport of water. However, as

they near the coast and break, momentum is transferred to the water column and

water is driven shorewards.

• Wave run-up effects can contribute towards shoreward water transport and cause

additional overtopping of coastal defence structures.

• The Coriolis effect can affect the surge by diverting wind driven currents towards or

away from the coast.

In order to reduce damage, operational forecasting centres must be able to forecast trop-

ical storm surges accurately and in a timely manner (to allow for any necessary precautions

and in some cases evacuation). Forecasting models are developed regionally and many are

in operation around the world. For example, the National Hurricane Center uses the Sea,

Lake and Overland Surges from Hurricanes (SLOSH) model (Jelesnianski et al., 1992) for
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the US and the Japan Meteorological Agency’s model, which is used primarily for the North

West Pacific (Higaki et al., 2009).

It is becoming increasingly important for operational centres to have the ability to ac-

curately forecast storm surges as sea level rise will increase the number of times any surge

threshold is reached (IPCC, 2013). Some studies suggest that the frequency, location and

intensity of tropical cyclones may change with climate change, although there is no consen-

sus. For example, Kossin et al. (2014) suggest that these storms may migrate polewards,

changing the locations of areas at risk. Some areas, such as Bangladesh are particularly at

risk from climate change and sea level rise as the area is comprised of large expanses of low

lying, densely populated land (Murty et al., 1986).

Recent decades have seen significant improvement in storm surge forecasting. Much

work has been done on developing grid schemes on which to perform finite differencing or

finite element techniques. Initially, models used regular, cartesian grids however these do

not resolve the coastline well. Since the surge is mainly a coastal phenomenon, coupling or

nesting finer resolution grids for areas of complex coastal geometry/bathymetry has been

studied. Murty et al. (1986) discuss the use of finite differencing methods.

From the 1970s, finite element methods have also been used to model surges which

allow for the use of highly irregular, triangular grids that capture coastal geometry more

accurately than regular grids. More information on these grids can be found in (Horsburgh,

2011) and (Gonnert et al., 2001). These are now the preferred way of dealing with complex

coastal boundaries (Horsburgh, 2011). The ADCIRC storm surge model uses such finite

element methods (Westerink et al., 1992). These methods are useful and contain a great

deal of detail but are also computationally expensive which renders them less suitable for

operational use.

More recently, finite volume methods have been developed (Dick, 1994). This numerical

technique turns the usual partial differential conservation equations into discrete algebraic

equations over finite volumes. The method has the benefit of being computationally efficient

(like finite difference methods), having geometrical flexibility (like finite element methods)

and making it easier to comply with conservation laws (e.g. mass, volume, momentum).

FVCOM is an example of a model based on finite volume methods that can be used for

coastal modelling. The model was developed by Chen et al. (2003) and uses an unstructured,

three-dimensional grid.

Storm surge models use sea level pressure and 10m wind fields as forcing boundary

conditions (Horsburgh, 2011). Operational forecasting models use idealised wind fields gen-

erated parametrically which offer short computation times and dynamical balance. Global
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atmospheric models are currently unsuitable for real time forecasting due to the high reso-

lution required to accurately resolve tropical cyclones and long computation times (several

hours on the most powerful supercomputers). Input parameters often only consist of a

value for central pressure drop (the difference between the surface pressure at the centre

of a tropical cyclone and the ambient air pressure) and the radius of max winds. These

values can be estimated from techniques using satellite data, such as the Dvorak Method

(Dvorak, 1975) and from global weather models (Horsburgh, 2011). Additionally, data from

hurricane reconnaissance flights can be used to estimate atmospheric pressure.

One of the earlier parametric wind field models was suggested by Myers and Malkin

(1961) and was based on work by Schloemer (1954) (see Section 4.4 for more information

on the Myers model). Holland (1980) advanced these models through the introduction of the

Holland B parameter, allowing more control over different shapes of velocity profile. This

model doesn’t realistically model the entire profile however (Willoughby and Rahn, 2004)

so it was later revised (Holland et al., 2010). Another notable model has been suggested by

Willoughby et al. (2006). This model differs from those mentioned previously as it uses a

higher number of parameters and also allows for the use of multiple functions in a piecewise

fashion.

Remotely sensed data is steadily becoming more readily available and accurate. This

data is potentially useful for improving storm surge forecasting (e.g. by using data assimila-

tion techniques). Here, we investigate the effects of using analysis wind fields derived from

remotely sensed data to force operational forecast models in place of idealised parametric

wind fields. See sect-4.4 for more information on these parametric wind fields.

In this paper we attempt to answer the following two questions:

1. When is using analysis wind fields derived from remotely sensed data useful and how

can it be used?

2. Can using actual analysis wind fields make forecasts of maximum surge height more

accurate when compared to using parametric wind fields?

To the author’s knowledge, using observation derived wind fields to modify the sea

surface forcing has not previously been investigated for operational storm surge models.
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4.4 Method

4.4.1 Model

To demonstrate the effectiveness of using analysis wind fields, we use the SLOSH storm

surge model. This is the operational storm surge model used by the NHC to forecast storm

surges for the US Gulf and East coasts. For this reason we use the SLOSH storm surge

model. Many other models have been used for complex storm surge simulation, for example

ADCIRC (Westerink et al., 1992) and POLCOMS (Holt and James, 2001), however the

point of this work is to examine how improvement can be made to real-time operational

storm surge forecasting.

A brief overview of SLOSH is given here. For detailed information on the inner workings

of the model see Jelesnianski et al. (1992). SLOSH uses a variation of the linear 2D depth-

integrated hydrodynamic equations along with the continuity equation (see Equations 4.1

- 4.3) below:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv =− g ∂η

∂x
− 1

ρ

∂PA
∂x

+
1

ρD
(τsx − τbx), (4.1)
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∂η

∂t
+
∂(Du)

∂x
+
∂(Dv)

∂y
= 0, (4.3)

where u and v are the components of flow in the x and y directions, t is time, g is

gravitational acceleration, η is the level of the free surface, D is the fluid depth (positive),

τsx, τsy, τbx and τby are the surface and bottom stresses in the x and y directions respectively,

PA is the atmospheric pressure, ρ is the fluid density and f is the Coriolis parameter.

Equation (4.3) is the continuity equation and expresses conservation of volume. Equations

(4.1) and (4.2) are the conservation of momentum equations.

An Arakawa-B (Messinger and Arakawa, 1976) finite differencing scheme is used and the

ocean surface is modelled on a polar, hyperbolic or elliptic grid, depending on the chosen

model domain. This grid allows for the use of finite differencing whilst also increasing

resolution in key areas such as near the coast. The grid properties are pre-defined and

specific for each basin.

The parametric wind fields are based on those by Myers and Malkin (1961). They are

generated using the following three equations:
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V (r) = VR
2Rr

R2 + r2
, (4.6)

where pA is the atmospheric air pressure, R is the radius of maximum winds, VR is the

maximum wind speed, V (r) is the wind speed at radius r, θ is the inflow angle at a given

location and ρa is the density of air at the surface. kn and ks are empirically determined

constants.

Both p and R are more likely to be known than VR so these are used to first approximate

VR using lookup tables. These values can then be used with Eq. (4.6) to calculate the

wind speed profile V (r) and therefore to solve Eq. (4.4) and Eq. (4.5) for p and θ. The

discrepancy between the calculated and analysis p values can then be reduced by changing

the values of VR until the difference is below a specific threshold.

4.4.2 Data

The analysis wind fields used in this paper is the Multi-Platform Tropical Cyclone Sur-

face Wind Analysis (MTCSWA) product developed by the NHC (Knaff et al., 2011). The

MTCSWA wind fields are 2D wind datasets (u and v components) which are generated

by blending together 5 different observation datasets, including ASCAT/QuikSCAT scat-

terometry, 2D flight-level winds estimated from infrared imagery and 2D winds created from

Advanced Microwave. These wind datasets are comprised of 10m, 1-minute averaged winds

at a resolution of 0.1 degrees (latitude and longitude). They are available for storms since

2006 at six-hourly intervals.

Figure-4.1 shows how the MTCSWA analysis wind fields differ from the parametric wind

fields used by SLOSH. The analysis wind fields are generally stronger than the parametric

wind fields, especially near the centre of the tropical cyclone (around the eye wall). Winds

are moving around the centre of the storm in a roughly anti-clockwise direction.

For use in SLOSH, the analysis datasets had to be converted to 10-min winds. To do

this, proportional adjustments were applied to the data based on the recommendations in

(Harper et al., 2008). The factor used to adjust the data depended on whether a specific

datapoint is located over the ocean (0.93), the land (0.84) or within 20km of the coast

(0.885).
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Figure 4.1: Analysis minus modelled wind speed for a) Hurricane Ike 12 hours before land-

fall, b) Hurricane Ike 6 hours before landfall, c) Hurricane Sandy 12 hours before landfall,

d) Hurricane Sandy 6 hours before landfall, e) Hurricane Gustav 12 hours before landfall,

f) Hurricane Gustav 6 hours before landfall. Wind direction is approximately anti-clockwise

around the centre of the tropical cyclone.
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We ran hindcasts of three notable tropical cyclone storm events: Hurricane Ike (2008),

Hurricane Gustav (2008) and Hurricane Sandy (2012). For each storm best track data from

IBTrACS (Knapp et al., 2010) was used for storm track data and input parameters for the

generation of parametric wind fields. Best track data is used to minimise the error in the

storm track. Each hindcast is run from 24 hours before landfall to 12 hours after landfall.

Figure 4.3 shows the track and category for each storm during the simulation period. We

have used the following two methods to modify the forcing in the storm surge model.

4.4.3 Method A

For this method, the wind forcing on the model sea surface is changed by directly replacing

parametric wind fields with analysis wind fields for a set period of time. Model runs are

performed using different time periods to evaluate exactly when using this method might

be useful. The time periods run from 24 hours before landfall up until 18, 12 and 6 hours

before landfall (see Table 4.1). After the time period has ended, the model will once again

use parametric wind fields. To maintain stability, a linear interpolation scheme is used to

smoothly transition between subsequent analysis wind fields and back to the parametric

wind fields. Each element of a wind field is interpolated to its corresponding element (same

distance and bearing from storm centre) in the next time step.

The idea of the method is to simulate what is possible in a real-time operational setting,

i.e. using available knowledge of near-present and past wind fields to force the model and

parametric wind fields (derived from hurricane forecasting methods) where future analysis

wind fields are obviously unavailable. This changes the model sea surface state at a specific

point in time through changing the wind forcing. In a real-time setting, this point in

time would be approximately equivalent to the present. The hope is that any sea surface

modifications will influence the future model sea surface state and generate a surge forecast

with increased accuracy.

For a summary of model runs, see Table 4.1. An illustration of Method A is shown in

Figure-4.2.

4.4.4 Method B

In an operational setting, Method A only changes the forcing at the sea surface for a period

of time in past. Consequently, some changes to the modelled storm surge may be lost,

especially when analysis wind fields are used far from landfall. To remedy this, we would

like to be able to use the information available in past analysis wind fields to modify future

49



CHAPTER 4. USING REMOTELY SENSED DATA TO MODIFY WIND FORCING
IN OPERATIONAL STORM SURGE FORECASTING

Name of Model Run Explanation

Control Model run with no analysis wind fields used at any point –

only parametric wind fields.

A24 Method A. Using analysis wind fields to force the model at

only 24 hours before landfall.

A18 Method A. Using analysis wind fields to force the model

from 24 - 18 hours before landfall.

A12 Method A. Using analysis wind fields to force the model

from 24 - 12 hours before landfall.

A6 Method A. Using analysis wind fields to force the model

from 24 - 6 hours before landfall.

B18 Method B. Using analysis wind fields to force the model from

24 - 18 hours before landfall and extrapolating innovations

until landfall (for 18 hours).

B12 Method B. Using analysis wind fields to force the model from

24 - 12 hours before landfall and extrapolating innovations

until landfall (for 12 hours).

B6 Method B. Using analysis wind fields to force the model from

24 - 6 hours before landfall and extrapolating innovations

until landfall (for 6 hours).

Table 4.1: Model run designations and what they refer to.

wind fields. For this method, we take the most recent analysis wind field available (in a real-

time setting) and use the differences between this dataset and its corresponding parametric

wind field to proportionally change future wind fields.

We begin by generating a parametric wind field at the same point in time (t) as the

present analysis wind field. For every point in the wind field, the following innovations are

calculated:

ev(x, y, t) = av(x, y, t)− sv(x, y, t), (4.7)

eu(x, y, t) = au(x, y, t)− su(x, y, t), (4.8)

where au(x, y, t) and av(x, y, t) are u (eastwards) and v (northwards) components of the
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analysis wind field at time t and location (x, y) and su(x, y, t) and sv(x, y, t) are the u

and v components of the parametric wind field at time t and location (x, y). These (x, y)

coordinates are relative to the centre of the storm, i.e. their origin is at the storm centre.

(x, y) refers to the position that is x-units to the east and y-units to the north of the storm

centre. This means that the innovations also move with the storm. The future wind field

at time t+ n is then generated using:

mv(x, y, t+ n) = sv(x, y, t+ n) +
ev(x, y, t)

sv(x, y, t)
sv(x, y, t+ n) (4.9)

mu(x, y, t+ n) = su(x, y, t+ n) +
eu(x, y, t)

su(x, y, t)
su(x, y, t+ n), (4.10)

where mv(x, y, t+n) and mu(x, y, t+n) are the resulting wind components used at time

t + n. After time t, the wind fields are modified up until landfall. See Figure-4.2 for an

illustration. We generate an entirely new modified parametric wind field at time t + n by

calculating mv(x, y, t+ n) and mu(x, y, t+ n) at every point in the wind dataset.

This method assumes that the innovations ev(x, y, t) and eu(x, y, t) as a proportion of

the parametric wind components do not change up until landfall. Although this underlying

assumption is rather simple, we hope that by using it we will be able to make large-scale

spatial corrections to the parametric wind fields.

The specific model runs performed for each of the three storms are shown in Table 4.1.

We also perform a control run using just parametric wind fields for comparison purposes.

To test the simple assumption used for method B, we can use analysis wind fields to

calculate approximate error fields for parametric and modified wind fields. We calculate

these error fields at 0, 6 and 12 hours before landfall. The Mean Absolute Errors (MAE)

of these error fields are shown in Tables 4.2-4.3. Tables 4.2-4.3 shows MAE values over the

wind u and v-component fields.

Generally, the parametric wind fields are the worst performing. The best performing

B-method wind fields are those that are generated using innovations from the most recent

analysis wind fields. This suggests that our assumption that the proportional innovations

(e.g. ev
sv

from Equations 9-10) are constant over time has some validity in the short term

(6-12 hours). The longer the modifications are applied for, the larger the MAE tend to get,

although they are still smaller than the parametric MAEs in many cases.

These results suggest that, even if the proportional innovations are not constant over

time, they change slowly enough such that our underlying assumption for method B can be

used for some period of time into the future.
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Figure 4.2: Illustrations of Methods A (left) and B (right) for 12 hours before landfall (see

A12 and B12 in Table 4.1). Time T is equivalent to the present in a real-time forecasting

setting.

4.5 Results

4.5.1 Statistics

The following definition of surge is used:

R(t) = P (t)−O(t), (4.11)

where R(t) is the non-tidal residual at time t, P (t) is the predicted water level (due to

tides) at time t and O(t) is the observed or modelled water level at time t. For comparison

purposes, we take the maximum surge heights to be the maximum values of R(t) during

an entire storm event. Throughout this work we refer to this as MSH. We use this statistic

because of it’s importance to forecasting. For validation, we use tide gauge data (from the

NOAA database).

For each storm event, six tide gauge sites have been chosen for model validation (e.g.

see Figure-4.4). The observations from these sources can be used for investigating any

improvement in forecast accuracy. The tide gauges are chosen based on data availability

and also to give a good spatial idea of the surge heights in the basin.
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Figure 4.3: IBTrACS best track estimates of location and intensity category at times

around landfall for the three case studies in this paper: Ike, Gustav and Sandy. ET denotes

where the storm was no longer tropical. Grey areas show land, and white areas show ocean.

4.5.2 Hurricane Ike (2008)

Ike made landfall as a category 2 hurricane at Galveston, Texas on September 13, 2008.

See Figure 4.3 for the track and intensity categories of Ike over the simulation period. The

storm caused widespread damage far along the Louisiana and Mississippi coastlines. The

total cost of the hurricane is estimated to be $29.5 billion. 195 people are estimated to have

died, with 112 of these being in the US (Berg, 2014).

Figure-4.4 shows the MSH values for the control, A6, A12, B6, B12 and B18 model

runs over the domain used for hurricane Ike. A18 is visually similar to the control run so

it is not shown in this figure.The tide gauges used for this storm event are Freeport (FP),

Galveston Pleasure Pier (GP), Eagle Point (EP), Sabine Pass North (SP), Port Arthur

(PA) and Calcasieu Pass (CP). Their approximate locations are shown in Figure-4.4. For

convenience, we will refer to these tide gauges by their abbreviations. Figure-4.5 shows
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Storm Parametric B6 B12 B18

Ike L - 12 12.8 6.7

L - 6 12.7 5.7 7.8

L - 0 13.3 8.3 10.6 10.4

Gustav L - 12 11.7 8.7

L - 6 12.6 12.9 17.1

L - 0 16.2 9.2 13.9 14.7

Sandy L - 12 27.3 13.8

L - 6 29.2 15.8 22.5

L - 0 40.9 22.4 26.5 26.7

Table 4.2: Mean Absolute Errors for wind u-component fields (parametric and those gen-

erated by method B). L is the time of landfall, i.e. L-12 means the wind fields 12 hours

before landfall. All values in knots.

Storm Parametric B6 B12 B18

Ike L - 12 20.5 2.1

L - 6 18.8 2.41 3.4

L - 0 19.5 3.7 5.2 6.4

Gustav L - 12 11.8 3.9

L - 6 9.7 5.3 4.4

L - 0 5.5 12.7 16.8 14.7

Sandy L - 12 11.5 6.0

L - 6 6.2 6.1 11.8

L - 0 9.8 9.0 7.4 13.2

Table 4.3: Mean Absolute Errors for wind v-component fields (parametric and those gen-

erated by method B). L is the time of landfall, i.e. L-12 means the wind fields 12 hours

before landfall. All values in knots.

modelled minus observed MSH values at each tide gauge. We use these two figures for the

discussion below. The A24 model was found to be almost identical to the control run, so

it’s results are not discussed here.
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Figure 4.4: MSH for Hurricane Ike hindcasts. Black stars show the locations of the tide

gauges used.

From Figure-4.4, it can be seen that the spatial structure of the surge is similar for all

model runs, but there are some important differences. All modified models see a spreading

of the surge westwards along the section of coastline between GP and FP. This is most

significant for the B method model runs and A6 and can be seen at the tide gauges as an

increase in MSH at FP for these model runs. This increase also means that the B model

runs and A6 are around 40cm closer to the observations at FP than the control, suggesting

that this westward increase in the surge might be more representative of the true sea surface

state.

All B methods and A6 also see a significant increase in the sea level around EP. This

is largest for the B methods, where there is a large improvement in accuracy of the model

output (B6 improves over the control by 0.88m, B12 by 1.06m and B18 by 0.95m). All

model runs also see small improvement (or no change) at GP and SP.
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Figure 4.5: Modelled - Observed MSH at each tide gauge for Hurricane Ike. Negative val-

ues indicate where the model underestimates the observed MSH and positive values indicate

overestimation. Values in grey at the top of each tide gauge show the observed MSH at that

location.

Comparisons at the PA tide gauge suggest that A6 and the B method model runs

perform poorly. Here, the B methods and A6 all increase the MSH in the Sabine Lake

area. This increase is detrimental to the accuracy of models at this tide gauge, dragging the

modelled MSH up to 0.51m (for B18) further from the observations than the control. This

could be due to the complex coastal geometry in this area and the fact that the tide gauge

is situated on an inland body of water. The water levels at this location are somewhat

dependent on the flow through the channel of water on which SP sits meaning that any

errors in modelling this flow might affect the modelled MSH at PA. It’s also worth noting

that the control run performed very well at PA, meaning that any changes in MSH would

probably result in a worse model output.

In general, the effect of using the analysis wind fields (both method A and B) is to

increase the MSH at all tide gauge gauge locations except at CP. A decrease here makes the

accuracy of the model output worse, especially for A6 and B18 where the modelled MSH

at CP is 0.21m and 0.31m (respectively) further from the observed MSH.

Of the A methods, A6 has the most effect on the model output, whereas A18 has very
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little effect. Table 4.4 shows the average difference from observations for each model run.

On average, A6 improves the model forecast by 0.08m, but A12 and A18 have much less

of an effect. The B methods perform the best, especially B12, which improves the model

output by 0.25m. Finally, Table 4.5 shows that the standard deviation of these differences

is generally similar to the control or much lower.

4.5.3 Hurricane Sandy (2012)

Sandy made US landfall near Brigantine, New Jersey on October 29, 2012. Although

not technically a hurricane at the point of landfall, it is the second costliest storm in US

history, behind Katrina. See Figure 4.3 for the track and intensity categories of Sandy over

the simulation period. At its peak size, it was the largest Atlantic hurricane on record. The

storm is estimated to have caused $75 billion worth of damage and to have killed 233 people

across eight countries (Neria and Shultz, 2012).

Figure-4.6 shows the MSH for the control, A6, A12, B6, B12 and B18 model runs

of Hurricane Sandy along with the locations of the six chosen tide gauges: Ocean City

Inlet (OC), Atlantic City (AC), The Battery (TB), Montauk (MT), Kings Point (KP) and

Bridgeport (BP). Figure-4.7 shows modelled minus observed MSH values at each tide gauge.

Once again, the A24 model was found to be almost identical to the control run, so it’s results

are not discussed here here. Note that results for AC and OC were taken from a different

model domain than shown in Figure-4.6 due to better representation at these locations. B6

is visually similar to B12, so only B12 is shown.

A6, A18 and the B model runs all result in various levels of increase in the estuary areas

around KP, BP and TB as well as a spreading of the surge southward along the coastline

between AC and OC. The increase around KP, BP and TB is most extreme for B18, with

as much as 1.16m being added to the MSH value for BP (causing it to be further from the

observations).

The southward spreading towards AC and OC leads to improvements for the B model

runs and A6, especially at AC. Figure 4.1 shows a large area in the upper left quadrant of

the storm at 12 hours before landfall where the analysis field is more than 15ms−1 stronger

than the parametric field. These stronger winds will transfer more momentum to the sea

surface towards the coastline between AC and OC, giving the increase in MSH that we see

at these locations. This feature of the storm looks to be fairly persistent as it is still present

six hours later.

Interestingly, A12 differs from all the other runs as it reduces the MSH around KP, BP
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and TB when compared to the control run. This could be explained by a band of winds over

the area that are around 5ms−1 weaker in the analysis field than in the parametric field at

12 hours before landfall. In the control model run, the stronger parametric winds in this

area start an earlier build up of surge at 12 hours before landfall. In the A6 model run, this

doesn’t happen, but the stronger central winds around the storm centre could compensate

for this as the storm approaches landfall.

Similarly to Ike, the general trend is for all of the methods to induce an increase or little

difference in MSH at each tide gauge. The main exception to this rule is A12 at KP and

BP.

Table 4.4 shows the average difference from observations for each model run for Hurri-

cane Sandy. On average, A6 improves the model forecast by 0.12m when compared to the

control. A18 again has a smaller effect on the output, however it is more significant than

for Ike. The B methods once again perform the best, with all three improving the model

output by 0.21-0.24cm, which is a good result. Table 4.5 shows that, generally speaking,

the standard deviation of these differences is lower than for the control except for at A12,

where it is significantly higher. A12 also performs poorly in an average sense, leading to

the model output being 0.06m further from the observations than the control on average.

4.5.4 Hurricane Gustav (2008)

Gustav was the second most destructive storm of the 2008 season, behind Ike. It made US

landfall as a category 2 hurricane at Cocodrie, Louisiana on September 1, 2008. See Figure

4.3 for the track and intensity categories of Gustav over the simulation period. The storm

killed an estimated 112 people in total and caused $4.3 billion of damages in the US (Beven

and Kimberlain, 2009).

Figure-4.8 shows the MSH for the control, A6, A12, B6, B12 and B18 model runs of

Hurricane Gustav along with the locations of the six chosen tide gauges: LAWMA Amerada

Pass (AP), Grand Isle (GI), Pilots Station (PS), Shell Beach (SB), Bay Waveland Yacht

Club (BW) and Dauphin Island (DI). Figure-4.9 shows modelled minus observed MSH

values at each tide gauge. Again, the A24 model was found to be almost identical to the

control run, so it’s results are not discussed here here. A18 is also visually very similar to

the control run, so it is not shown in Figure-4.8.

A12 looks similar to the control run, and follows the control closely at the tide gauges,

except for SB where there is a small increase in MSH (and consequently improvement). A6

and the B methods give an increase in MSH between SB and BW as well as an eastwards
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Figure 4.6: MSH for Hurricane Sandy hindcasts. Black stars show the locations of the

tide gauges used.

spreading along the coastline between BW and DI. Similarly to Hurricane Sandy, this

increase is very noticeable for B18. The tide gauges show that the control run significantly

underestimates MSH at BW, SB and DI, so this is increase improves the model output

when compared to the control for A6 and the B model runs. Improvement at BW is an

important result as the control run forecast a very small surge for the area.

B6 and B12 both reduce the MSH in the area immediately around the GI tide gauge

(although B12 causes and increase further inland). The GI tide gauge shows that the control

overestimated the MSH at this location so this reduction means that B6 and B12 are both

closer to the observations. On the other hand, B18 increases the MSH at this location by

over 0.6m. Figure 4.1 shows an area surrounding the storm centre where the analysis winds

are slightly weaker than the parametric winds (both for 6 and 12 hours before landfall).

The storm passes just south of GI before landfall, and so it will be this weaker area of the

modified wind field that passes over the tide gauge. These weaker winds could be leading

to the reduction (and improvement) in the modelled MSH we at GI for B6 and B12.

Around AP, the B methods cause a modest increase in MSH of 0.27-0.51m, which leads
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Figure 4.7: Modelled - Observed MSH at each tide gauge for Hurricane Sandy. Negative

values indicate where the model underestimates the observed MSH and positive values indi-

cate overestimation. Values in grey at the top of each tide gauge show the observed MSH at

that location.

to worse results at this location.

Similar to Hurricane Ike, of all the A methods A6 has the largest effect on MSH whereas

A12 and A18 have a much smaller effect (with the effect of A18 being almost negligible at

most tide gauges). B18 once again causes drastic increases in MSH over a large area.

Table 4.4 shows the average difference from observations for each model run for Huricane

Gustav. Almost all model runs see an average improvement when compared to the control

(although this improvement is small for A12, A18 and B18). B6 and B12 perform very well,

improving the model output at the tide gauge locations by 0.36m and 0.38m, which is a

good result. B6 and B12 also reduce the standard deviation of these differences significantly

(Table 4.5).

4.6 Conclusions

In this paper we attempted to answer the question: To what extent and when is using

analysis wind fields in an operational storm surge model useful?
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Figure 4.8: MSH for Hurricane Gustav hindcasts. Black stars show the locations of the

tide gauges used.

We proposed two methods for using analysis wind fields. Our first method, method A,

simply replaces the parametric wind forcing with analysis wind data from 24 hours before

landfall to a set point in time. Essentially, this method can be thought of as changing

the sea surface state at a point in time by changing the wind forcing up until that point.

Method B does the same but then attempts to extrapolate this wind forcing into the future

by using the most recently available analysis data. To test these methods, we ran hindcasts

for three storms: Hurricane Ike, Hurricane Sandy and Hurricane Gustav. We tested the

methods over different time periods to see exactly when they might be useful.

We were able to test the wind fields modified by method B through comparison to

analysis wind fields. We found that there was a general improvement to the average errors

of the wind fields, especially in short time periods. However, the longer the extrapolation

was applied for, the larger the errors became.
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Figure 4.9: Modelled - Observed MSH at each tide gauge for Hurricane Gustav. Negative

values indicate where the model underestimates the observed MSH and positive values indi-

cate overestimation. Values in grey at the top of each tide gauge show the observed MSH at

that location.

Of the A methods, A6 performed the best, improving upon the control by 0.15m on

average. A12 performed generally quite well too but was let down by particularly bad

performance at the Kings Point and Bridgeport tide gauges for Hurricane Sandy. A18

generally followed the control quite closely and A24 was almost identical to the control.

In part, this is unsurprising as you would expect to see larger responses in the model sea

surface to changes in the wind forcing in shallower water. As a storm approaches landfall,

the ocean over which it travels becomes shallower meaning that the surface wind stress

terms in Eq. (1) - (3) become larger and more significant. Additionally, the model sea

surface has a ’memory’, i.e. a time period over which changes to the sea surface height will

diminish. This study suggests that this time period is somewhere around 12 hours, with

changes before this point becoming small or negligible over time.

B6 and B12 performed the best of all model runs, improving output on average by

0.25m and 0.29m and also more than halving the standard deviation of the errors. B18 also

improved the model output on average, but behaved quite erratically, often significantly

overestimating the storm surge. This broadly lines up with our analysis of the quality of
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Mean Control A6 A12 A18 B6 B12 B18

Ike 0.67m 0.59m 0.64m 0.67m 0.49m 0.42m 0.55m

Sandy 0.51m 0.39m 0.57m 0.45m 0.28m 0.27m 0.30m

Gustav 0.81m 0.57m 0.74m 0.78m 0.45m 0.43m 0.78m

Overall 0.66m 0.51m 0.65m 0.63m 0.41m 0.37m 0.54m

Table 4.4: Average absolute difference from observations for each model run during each

individual storm event and all storm events combined. These values are based on six tide

gauges locations.

Std. Deviation Control A6 A12 A18 B6 B12 B18

Ike 0.42m 0.26m 0.42m 0.47m 0.24m 0.23m 0.26m

Sandy 0.22m 0.16m 0.36m 0.19m 0.19m 0.16m 0.25m

Gustav 0.53m 0.33m 0.49m 0.51m 0.08m 0.22m 0.59m

Overall 0.42m 0.26m 0.41m 0.41m 0.19m 0.21m 0.43m

Table 4.5: Standard deviation of absolute difference from observations for each model run

during each individual storm event and all storm events combined. These values are based

on six tide gauges locations.

the modified wind fields and since B18 implemented the longest extrapolation of innovations,

the method would also have introduced the largest errors to the model (of the B methods).

For B6 and B12, modifications made to wind fields around landfall (the most influential for

surge generation) are based on innovations from more recent analysis wind fields.

Importantly, our surge models often increased the modelled storm surge at locations

where the control only gave a small storm surge. These changes to the spatial structure

of the storm surge were successfully verified by tide gauge observations. For example,

the Bay Waveland Yacht Club tide gauge saw increases of over 1m in its modelled surge

height, where previously the modelled storm surge was relatively small (1.4m). Similarly,

the control model run gave a surge height of 0.94m at Freeport (Hurricane Ike). This was

increased by nearly 0.5m by the B6 and B12 model runs, giving a smaller error. This is an

important result because an incorrectly small storm surge prediction at a location might

mean that necessary precautions are not taken to protect people and property.

Our results suggest that the use of either method in a real-time setting could give
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forecasters useful information regarding the spatial structure of the storm surge, although

perhaps only 12 hours before landfall and later. Investigating exactly how the proportional

innovations used for method B propagate through time would be useful for improving upon

this method, especially for forecasts performed earlier than 12 hours before landfall.

There are some limitations to note. Our results were based on sets of six tide gauges.

This is not a large dataset and evaluation of these methods over more tide gauges and model

domains would be useful. The model output is also constrained by the quality of the best

track data used and the analysis wind fields. It is important to note that in a real-time

operational setting best track data would not be available. There are large errors associated

with the forecasting of hurricane track and intensity. For example, during the 2000 - 2008

period, the track forecast error for the Atlantic basin (difference between forecast position

and best-track position) was around 60nmi for a 24 hour forecast and 30 nmi for a 12 hour

forecast (Rappaport et al., 2009). Additionally, the error in the 24-hour intensity forecast

over the same period is around 8-11 knots. In this study, we wanted to investigate the effect

of modifying only the wind fields in the model and so, in using best track data, assumed

the track error to be zero. However, our methods might yield better results when future

hurricane properties are more uncertain. There is scope to investigate how these methods

perform for forecasted storm parameters rather than best-track parameters in future work.

Finally, although adjustments were made to the wind forcing, no adjustment was made

to the underlying pressure field, which also has a small effect on the storm surge. In

coastal areas, the wind forcing is more significant however it might be useful to investigate

inversion methods to generate pressure fields based on the analysis wind fields. For example

Brown and Levy (1986) developed a method for estimating atmospheric pressure fields from

satellite derived winds.
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Chapter 5

Variational data assimilation of sea

level into a regional storm surge

model: benefits and limitations

5.1 Preamble

In the previous chapter, an investigation was made into how observation based wind datasets

could be used directly, in real time, to improve tropical storm surge forecasting. The results

were promising, with improvements in the average skill of the model for all three case

studies. In this chapter, the focus moves to the modification of the model sea surface height

field using data assimilation. This is with the second thesis question (see Chapter-1) in

mind:

How effective is the assimilation of real time sea level data for operational storm surge

forecasting?

Data from tide gauges is assimilated into CS3X, an operational model that has seen

extensive use for the coastline of the United Kingdom. The focus here is on the North Sea

and its storm surges, which are brought by extra-tropical cyclones from the North Atlantic.

Tide gauge data is used thanks to its long term consistency in the region, and their spatially

fixed nature. Other data alternatives include altimetry data from satellites, however this is

relatively spatially inconsistent and relies too much on a satellite passing at the right time.

In this chapter, a case study for the North Sea is examined: the Cyclone Xaver event

in December 2013 (Wadey et al., 2015). The North Sea is another region that has suffered
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from significant storm surge events in the past. Besides storm surge risk, an extratropical

region is chosen for assimilation of sea surface height due to the larger spatial scales and

longer time scales of the storms responsible for surges. Tropical cyclones move, by contrast,

relatively quickly and are spatially smaller. The North Sea is also a region where some

work has already been done towards the assimilation of sea surface height into storm surge

models.

Many storm surge forecasting systems are in operation for extratropical areas, some of

which are discussed in Chapter-2. Research on data assimilation of sea level in operational

scenarios has been limited in the region, especially in publications. KNMI currently operates

a data assimilation system for their regional model, using a method based on the Kalman

filter (Zijl et al., 2015). Their system has seen some improvements to forecast accuracy,

but their work stops short at quantifying the limitations on operational assimilation in

the region. Madsen et al. (2015) assimilated 2-dimensional datasets by blending together

tide gauge and altimetry data into a model of the North Sea. Data was assimilated on a

12 hourly basis, using optimal interpolation. This work also saw improvements in model

accuracy, however a 12-hour assimilation frequency may not be useful in an operational

setting. There was previously an operational system present in the Adriatic Sea with

the purpose of forecasting for Venice (Lionello et al., 2006). However, this system only

assimilated data from one location and is no longer in use.

The assimilation system presented in this chapter uses a variational method and intro-

duces some new ideas for dealing with ocean-specific problems such as coastal boundaries

and large variations in physical length scales. How the required error statistics are esti-

mated is described in detail and the system is tested through a set of hindcasts. A mock

forecast is then performed to test its real-time capabilities. To the author’s knowledge, this

is the first time that the variational data assimilation of tide gauge data has been evaluated

for operational use in the North Sea and the first time it has been implemented into CS3X.

An important and novel result also comes out of this chapter: an estimation of how far into

the future assimilation of tide gauge data can improve forecasts at various locations around

the North Sea. This result could have important implications for assimilation in the region.

Related Appendices

The development of the assimilation system presented in this chapter required the writing

of a significant body of Fortran code. The code is designed to be (mostly) standalone and

independent of CS3X. Some of the subroutines however are specific to the model, such as
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dealing with the model’s compression system. Details on this can be found in Appendix-E,

along with verbatim code and a description of all subroutines used.

Two key algorithms are used for this work: Dijkstra’s shortest-path algorithm and the

Conjugate Gradient Method for minimisation. These are described in more detail than in

this chapter, along with their implementation, in Appendices C and D respectively.
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5.2 Paper Abstract

Storm surges are coastal sea-level variations caused by meteorological conditions. It is vital

that they are forecasted accurately to reduce the potential for financial loss and loss of

life. An area historically prone to destructive surges is the North Sea, thanks largely to its

shallow nature, semi-enclosed geometry and large surrounding areas of low-lying land.

In this study, we investigate how effectively the variational assimilation of sparse sea level

observations from tide gauges can be used for operational forecasting. A new shortest-path

method based on an algorithm by Dijkstra (1959) is introduced and evaluated for dealing

with coastal boundaries and a dynamic covariance model, incorporating information from

the model state itself, is also considered. For our experiments, a specific case study is used:

the December 2013 Cyclone Xaver event in the North Sea.

Covariance models are validated by removing selections of tide gauges from the assimila-

tion. These experiments show widespread improvements in RMSE and correlation, reaching

up to 16cm and 0.7 (respectively) at some locations, implying our assimilation setup is rea-

sonable. Mock forecasts show RMSE improvements of up to 5cm are found for the first 24

hours of forecasting, which is useful operationally. Beyond 24 hours, improvements quickly

diminish however. During all experiments, the dynamic covariance model performs bet-

ter than the non-dynamic covariance models however there is little difference between the

Djkstra and Euclidean based setups.

This work places an upper bound on how effective variational assimilation of sea level

data can be for storm surge forecasting in semi-enclosed, tidal, shallow seas.
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5.4 Introduction

Coastal floods are a major hazard globally with severe economic and environmental con-

sequences. In a world of changing climate and rising seas, the risk to coastal communities

from storm surges is increasing (Bindoff et al., 2007; Menendez and Woodworth, 2010;

Haigh et al., 2010; Church et al., 2013). Rising mean sea levels decrease the surge height

required to exceed specific water level thresholds, leading to increased overtopping of coastal

defences or flooding. As a result, vulnerable communities could face difficult challenges in

coming years and new communities could come to be at risk. Forecasting models for waves

and storm surges, delivery mechanisms and monitoring technologies all need to constantly

innovate in order to provide the state of the art warning systems demanded by emergency

responders to protect lives and livelihoods. For the UK alone, it is estimated that £150

billion of assets and 4 million people are currently at risk from coastal flooding (Flowerdew

et al., 2009).

A storm surge is the regional increase in sea level due to passage of a storm and last

from hours to days and span hundreds of square kilometres. In European shelf seas, storm

surges can produce sea levels several (3-4) metres higher than due to tide alone (Wadey

et al., 2015). The primary mechanisms that contribute to the generation of a storm surge

(Pugh and Woodworth, 2014; Horsburgh, 2011) are:

1. The inverse barometer effect increases sea level due to local areas of low air pressure

generating converging currents. This is the larger contribution away from the coast.

2. Momentum transfer from strong winds to the sea surface by wind setup drives

water against coastal boundaries. This is the dominant mechanism in shallower coastal

areas.

Other factors contributing to extreme sea levels are wave runup and superimposed wind

waves, which in combination lead to the overtopping of coastal defences. Additional dy-

namical considerations which affect sea levels are interactions between the surge, the tides

and wave action (Horsburgh and Wilson, 2007; Wolf, 2008).

In the midlatitudes, storm surges are caused by extratropical cyclones. These are low

pressure atmospheric systems that are typically accompanied by strong winds and generally

bad weather. Northwest Europe is a region particularly vulnerable to destructive storm

surges due to areas of low lying land (e.g. The Netherlands and East Anglia) and shallow

seas (Gonnert et al., 2001).
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A prominent example of such a surge occurred on the night of 31st of January, 1953

(Gerritsen, 2005). A large depression generated a storm surge in the North Sea that swept

southwards along the UK coastline. The surge, which coincided with spring tides, resulted

in hundreds of deaths (1836 in the Netherlands, 307 in the UK), as well as an estimated

£50 million of damage in the UK. Partially as a response, many new coastal defences have

been constructed and storm surge forecasting has made substantial improvements over the

last three decades.

The benefits of improvements to forecasting and defences can be seen by contrasting

the 1953 storm with the more recent ’Xaver’ North Sea storm surge of 5-6 December 2013

(Sibley et al., 2015; Wadey et al., 2015). Although the storm responsible was similar to that

of the 1953 event (similar depression and coincident surge and spring tides), the impacts

were far less. The storm and surge resulted in significant damage to coastal structures and

defences, flooded 2800 properties in the UK and damaged infrastructure (Wadey et al.,

2015). Despite the reduced impacts however, it is still one of the most damaging surge

events in north-western Europe since the 1953 event.

Operational forecasting of storm surges is routinely performed using numerical hydro-

dynamical models. For instance, in the UK the Met Office provides storm surge and wave

forecasts four times per day using an ensemble of the same depth-averaged hydrodynamical

model that is used in this study (Flowerdew et al., 2009). Many operational tide-surge fore-

casting models use the depth-averaged Navier-Stokes equations for modelling sea surface

height. The equations are often modelled using finite differencing on a choice of Arakawa

grid (Messinger and Arakawa, 1976), although this can vary. Model domains are normally

regional, allowing for a higher resolution, and are forced at the air-sea interface by the best

resolution numerical weather prediction models.

Data assimilation (DA) is used for estimating the true state of a system using multiple

data sources. Typically, this involves combining model variables (background variables)

with observations of the system, whilst taking into account the error statistics of both.

Generally, it is used in two ways:

1. Creating improved initial conditions for a forecast model run. The chaotic

nature of many complex systems such as the atmosphere means that small errors

in the initial model state can lead to large errors in the forecast. Improving initial

conditions using DA can improve the subsequent forecast.

2. Developing hindcast/re-analysis datasets. Attempting to combine multiple data

sources to generate an accurate as possible image of the system in the past can be
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useful for physical understanding and validation. For example, improved historical

sea level datasets can be used to obtain useful statistics for engineering purposes at

locations where data is unavailable. For example, see studies by Bresson et al. (2018)

and Brown et al. (2010b).

DA has successfully been used for improving the initial conditions used in Numerical

Weather Prediction for decades (Daley, 1991; Lorenc, 1986). Weather forecasting agencies

such as the Met Office, Meteo-France and the Canadian Meteorological Service all use it

to initialise their forecast models (see for example Rawlins et al. (2007); Gauthier et al.

(1999); Daniel et al. (2009)). DA is integral for modern weather forecasting. DA has also

been used for ocean prediction. For example, Hoyer and She (2007) assimilated sea surface

temperature observations from multiple sources, including satellites. It has also been shown

to have operational benefit for ocean wave forecasting, see for example Voorrips (1999) and

Almeida et al. (2015).

A limited amount of work has been done on data assimilation for storm surge forecasting.

In the North Sea, Madsen et al. (2015) looked at the assimilation of reconstructed altimetry

data and successfully improved their model. However, their method involves the assimilation

of large amounts of data, which is costly and time consuming and only assimilated data

every 12 hours. Zijl et al. (2015) used a kalman filter to assimilate sea level data into

the North Sea sea level forecasting, seeing improvements for the first few hours of forecast.

Variational assimilation of tide gauge data into operational forecasting models for the North

Sea has so far not been evaluated. Lionello et al. (2006) used variational assimilation for

a forecasting model of the Adriatic Sea, however only considered the assimilation of data

from a single location and the system is no longer in use.

In this paper, we build on the studies above by evaluating how effectively variational

data assimilation can be used for the assimilation of tide gauge data in operational storm

surge forecasting and hindcasting and attempt to quantify it’s limitations. Tide gauge ob-

servations are easily accessible by anyone and so any improvements due to their assimilation

is of great practical use. We bring together ideas from atmospheric data assimilation as well

as new ideas for dealing with the problems not present in the atmosphere such as coastal

boundaries. We perform a number of numerical experiments, making use of a specific case

study: the Xaver storm surge event.
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5.5 Methods

5.5.1 Model

Since we are evaluating potential improvements to operational storm surge forecasting, we

use the Continental Shelf 3 Extended Model (CS3X) as a numerical tool. At the time of

writing, this is the operational model used for storm surge forecasting around the U.K by

the Met Office, although it is soon to be replaced by NEMO (Furner et al., 2016; Madec,

2008). Nevertheless, the techniques used here would readily port to a new platform. The

model utilises a 1/9◦ latitude by 1/6◦ longitude grid – a resolution of approximately 12km.

It’s domain covers the area between 40◦07′N to 62◦53′N and 19◦50′W to 12◦50′E. The sea

surface is modelled using finite differencing of 2D depth-averaged Navier-Stokes equations:

∂u
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+ v
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− fv =− g ∂η
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+
∂(Du)

∂x
+
∂(Dv)

∂y
= 0, (5.3)

where u and v are the components of flow in the x and y directions, t is time, g is gravita-

tional acceleration, η is the level of the free surface, D is the fluid depth (positive), τsx, τsy,

τbx and τby are the surface and bottom stresses in the x and y directions respectively, PA is

the atmospheric pressure, ρ is the fluid density and f is the Coriolis parameter. Equations

5.1-5.2 are the conservation of momentum equations and Equation-5.3 is the continuity

equation and expresses conservation of volume.

Tidal forcing is applied at the domain boundaries using the 26 largest constituents

derived from a harmonic analysis of the NEA ocean model. Wind stress is parameterised

from wind speed using the Charnock formulation (Charnock, 1955), where the surface drag

coefficient, CD, is calculated from a bottom roughness defined as z0 = αu2∗
g , where u∗ is

friction velocity, g is gravity, and α is the Charnock parameter. A value of 0.0275 was

found by Williams and Flather (2000) to optimise storm surge modelling in CS3X.

To force the model sea surface, we use wind and sea level pressure hindcast data from the

UK Met Office Unified Model. These datasets contain assimilated atmospheric data. When

running mock forecasts later in the study, these are only forecasts in the oceanic sense

as we do not use forecasted atmospheric forcing. This is because we wish to investigate

improvements to the ocean model only.
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5.5.2 Data Assimilation and Observations

For our assimilation experiments we use a 2-dimensional variational assimilation scheme

(VAR) (Lorenc, 1986). 3-dimensional and 4-dimensional variational assimilation (3DVar

and 4DVar) have been used extensively and with success in Numerical Weather Prediction

(NWP) (Courtier et al., 1998; Rabier et al., 1998; Andersson et al., 1998; Gauthier et al.,

1999; Lorenc et al., 2000). 4DVar is the current standard (Rawlins et al., 2007; Gauthier

et al., 2007; Rabier et al., 2000; Mahfouf and Rabier, 2000; Klinker et al., 2000) and is

especially useful when observations are spread irregularly in time. For our purposes however,

we do not consider the time dimension as our tide gauge observations are colocated in time.

Variational assimilation requires the minimization of a cost function:

J(xa) = δxTB−1δx+ (y −Hxb)
TR−1(y −Hxb), (5.4)

where J(xa) is the scalar cost function, xa is the analysis and the variable over which J

is minimized, xb is the background state vector, y is the vector of observations, H is the

tangent linear operator which transforms vectors of variables from the model grid space to

the observation space, B is the matrix of error covariances between background variables

at background locations and R is the matrix of error covariances between observations.

δx = xa − xb is known as the increment and y −Hxb the innovation. This is called the

incremental form of the variational problem.

To minimize J , we use the conjugate gradient method (Hestenes and Stiefel, 1952).

Before performing the minimisation, we perform a control variable transform (CVT)

(Lorenc et al., 2000). This amounts to making the substitution

v =
√

Bδx (5.5)

into Equation-5.4. After some rearrangement, the inverse of B is no longer required. It also

acts as an effective preconditioner for the system, significantly speeding up convergence.

Initial tests saw the time per iteration triple when using the CVT compared to no CVT

(directly minimizing Equation-5.4), however the number of iterations required went from

∼ 1800 to ∼ 45.

As the true state of the system is not known, the errors are also unknown. As a result,

the background error covariance matrix B and the observation error covariance matrix R

can only be estimated. Good reviews of methods used for generating B can be found

in (Bannister, 2008a) and (Bannister, 2008b). Such methods include the NMC method

(Parrish and Derber, 1992), which analyses the differences between forecasts with different
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lead times (e.g. 48 hours and 24 hours). Ensemble methods are popular and used by many

agencies for weather prediction. These analyse the spread of the outputs from an ensemble

of forecasts to estimate covariance (Ehrendorfer, 2007).

The methods above require large amounts of computation and data. To avoid these

issues, we use innovation statistics to estimate error correlations and covariance, similar to

(Hollingsworth and Lonnberg, 1986). If observation and background errors are uncorrelated

then covariances between innovation pairs will equal covariances between corresponding

error pairs for separation distances (D) larger than zero. This can be seen by looking at

the covariance between two innovations located at ri and rj :

covariance(i, j) = 〈εo(ri)εo(rj)〉+ 〈εb(ri)εb(rj)〉, (5.6)

where εo(r) is the observation error at location r and εb(r) is the background error at

location r. Angular brackets denote the expectation. Simply, this states that the innovation

covariance is equal to the sum of the observation and background error covariances. By

assuming that the observation error is spatially uncorrelated, the first term in Equation-5.6

vanishes, leaving us with just the background error covariance.

To perform the above analysis, we do not use tide gauge data for the innovation analysis

as the data is spatially sparse and limited only to the coast. Instead we use reconstructed

altimetry data developed by Hoyer and Andersen (2003) and Madsen et al. (2015) for five

periods in 2004-2006. This data was constructed by ”blending” together tide gauge and

altimetry data to create dense sea level datasets along altimetry tracks in the North Sea. It

gives good spatial coverage both near the coast and in the interior of the sea. However, we

do make the assumption that the error covariance is stationary in time since our experiments

later in the study are performed for 2013. Preliminary experiments confirmed this to be

reasonable.

Total Water Level (TWL) data from 15 research-quality tide gauges around the North

Sea is assimilated into the model (see Figure-5.1). They are chosen according to data

availability and quality during the December 2013 storm surge event. We do not assimilate

non-tidal residuals as these contain phase alterations to the tide, which can manifest as

large unrealistic periodic signals (Horsburgh and Wilson, 2007). Assimilating TWL has its

own problem however: ensuring that the observations are on the same datum as the model.

The default value of the model free surface is zero and approximately equivalent to mean

sea level. Tidal forcing at the boundaries is also relative to mean sea level as it is based

on a harmonic analysis (Pugh and Woodworth, 2014) with the offset term (Z0) removed.
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# Abbr. Location # Abbr. Location # Abbr. Location

1 LER Lerwick 6 WHI Whitby 11 WTE W. Terschelling

2 WIC Wick 7 IMM Immingham 12 CUX Cuxhaven

3 ABE Aberdeen 8 LOW Lowestoft 13 HOR Hornum

4 LEI Leith 9 HVH Hoek Van Holland 14 ESB Esbjerg

5 NSH N. Shields 10 DHE Den Helder 15 HAN Hanstholm

Figure 5.1: The North Sea. Tide gauge locations used for assimilation in this study are

indicated by orange squares, approximate location of amphidromic points (points of zero

tidal range) by black crosses and the approximate progression of the tidal wave crest by the

black dashed line. The entire CS3X model domain is shown on the top right.

Therefore to adjust the observations to be at the same datum as the model (approximately),

we subtract a 1-year mean from the data.

Information on the currents is not assimilated into the model. Instead, sea level pertur-

bations are introduced into the model using a short ramp function for stability. Currents

could potentially be calculated and assimilated using geostrophic assumptions (or similar)

however, as this would be derived from the sea level analysis anyway, this was deemed to

be unnecessary.
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5.5.3 Numerical Experiments

We have performed a number of numerical experiments to test both the validity of our

assimilation setup (described in detail in Section-5.6) and how effectively it can be used

for forecasting. The names and descriptions of the different experiments can be found in

Table-5.1.

For our validation runs (VA, VB and VC), we perform a number of 120-hour hindcasts

for the time period 01/12/2013 - 05/12/2013, with hourly assimilation at a subset of the tide

gauges shown in Figure-5.1. Table-5.1 describes how the set of tide gauges (Figure-5.1) is

split into those used for assimilation and those used for validation. RMSE and correlations

can then be assessed at the locations where data is not used in the assimilation. This allows

us to make evaluations of how well our setup works with the model physics as well as how

many locations are required for a good result.

A note on correlation calculation: as the tide is significant in the data, correlations are

high and thus differences are small and difficult to distinguish. Therefore, before calculat-

ing correlations we subtract model tides from all datasets. The results of our validation

experiments are discussed in Section-5.7.1.

After validation, we run a set of mock forecasts (MF) for the December 2013 Cyclone

Xaver event (Wadey et al., 2015). Each mock forecast is constructed to resemble a real

operational scenario and consists of two parts: 120 hours of hourly assimilation at all tide

gauges up until some time T (hindcast period) followed by a period of no assimilation

(forecast period). A separate mock forecast is performed for each location, timed such that

T is 12 hours before the maximum high water at that location. RMSE within a moving

window is then evaluated during the forecast period. The results of our mock forecast

experiments are discussed in Section-5.7.2.

The final entry in Table-5.1 is the PT model run, which is used to determine how long

perturbations persist in the domain. This is discussed in more detail in Section-5.7.2.

5.6 Assimilation Setup

5.6.1 Covariance Modelling

An arbitrary covariance matrix C can be decomposed into:

C = ΣPΣ, (5.7)

where Σ is the diagonal matrix whose diagonal elements are the error standard deviations
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Experiment Name Description

V ALOC Validation A. One by one, each tide gauge (indicated by

LOC) is removed from the assimilation. RMSE and Corre-

lations evaluated at LOC. Allows for maximum number of

assimilated data as well as physical assessment.

V BLOC Validation B. Every other tide gauge assimilated starting at

LOC, going anticlockwise around North Sea.

V CLOC Validation C. Every third tide gauge assimilated starting at

LOC, going anticlockwise around North Sea.

MF Mock Forecasts. A period of assimilation at all locations

(hindcast period) followed by a period of no assimilation

(mock forecast).

PT Perturbation Test. 1m innovations assimilated one time at

every gauge using a correlation function such that innova-

tions are spread generously into the domain.

Table 5.1: Names and descriptions of the numerical experiments performed in this study.

LOC changes depending upon the specific model run.

and P is a correlation matrix. We can use this decomposition to generate C in a number

of steps:

1. Determine distances between all background point-pairs.

2. Use innovations to estimate a correlation function using distance as a parameter.

3. Use innovations to estimate error variance for each background point and thus calcu-

late C using Equation-5.7.

4. Incorporate information from the dynamics of the model itself.

For reference, see Table-5.2 for the names of the different covariance models used in this

study. We go through the details of each of the aspects above in this section.

Determining Distance, D

To model the error correlation between any given pair of background locations, we use

distance as an independent parameter. Often, for small domains, distance is calculated
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Model Name Distance Calculation Dynamic Covariance

Euc Euclidean No

EucDyn Euclidean Yes

Dijk Dijkstra No

DijkDyn Dijkstra Yes

Table 5.2: Reference table for the different covariance models used in this study.

using a Euclidean-type method, i.e. for a point-pair i and j located at ri and rj , their

separation distance D is given by:

D(i, j) =
√

(ri − rj)2. (5.8)

Some extra calculation will be made to take into account longitude/latitude, but the

method essentially equates to finding the straight line distance on some plane tangent to

the earth. For larger domains, spherical methods may be used, which find the straight

line distance on a sphere or ellipsoid. Although useful in atmospheric and open ocean data

assimilation, these methods become physically unrealistic when the domain contains coastal

boundaries. Ocean signals propagate around coastal boundaries not through them, however

the straight line distance does not take this into account (see Figure-5.2 for an illustration).

In this study, we use Dijkstra’s algorithm (Dijkstra, 1959) in an attempt to generate more

realistic separation distances in a topographically complex domain. Dijkstra’s algorithm is

a method for finding the shortest path through a mathematical network (graph). We first

convert the model grid into a network, where the nodes are grid cells and the edges are

connections to neighbouring ocean points (in the X,Y and diagonal directions). Land

points are simply not represented in the network, meaning that paths cannot pass through

them. Each edge is assigned a weight which equals the straight line distance between its

two nodes.

For a model grid of size N , the computational complexity of the Euclidean method is

O( N
N−1). Dijkstra’s algorithm is more complex, with the calculation of an adjacency matrix

first required and a complexity of O(N2) for the algorithm itself. However, the calculation

only needs to be performed once per model grid, and the data can be stored appropriately

for future use.

Using Dijkstra’s algorithm increases the distance between point-pairs separated by land

and, in turn, modifies the error correlation between the two locations. See Figure-5.2 for a

comparison of the Euclidean and Dijkstra Methods. Table-5.2 gives the names of the model
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runs examined in this study that use each distance calculation method.

Figure 5.2: Demonstration of two different methods for calculating the distance between

two points according to the Euclidean and Dijkstra methods. The white squares represent

hypothetical ocean grid points and the grey squares represent land. Units refer to some unit

of distance between the two points.

Background Error Correlations, P

Any function chosen to model correlations over distance must create a positive definite

correlation matrix, be equal to 1 at zero distance and tend to zero at infinity (Gaspari and

Cohn, 1999). This is also necessary for convergence of the conjugate gradient method used

for the 3DVar minimization. We use a single parameter exponential function which satisfies

these criteria:

P (i, j) = e−αD(i,j), (5.9)

where P (i, j) is the modelled correlation between background points i and j, D(i, j) is their

separation distance and α is some constant to be determined.

Figure-5.3 shows the innovation correlations binned by separation distance as well as the

optimal fit for both the Euclidean and Dijkstra methods. Both fits are good and similar,

with the fit for the Dijkstra method being slightly better, especially at larger distances.

The correlation length scale when using Dijkstra’s algorithm is also slightly longer.

Also shown in Figure-5.3 are the ideal shapes of a Kelvin wave according to the barotropic

Rossby radius of deformation at 55 ◦N for depths of 100m and 200m. This is given by the

equation:
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Rrossby =

√
gh

f
, (5.10)

where g is the acceleration due to gravity, h is the ocean depth and f is the Coriolis pa-

rameter. We calculated the average depth of the North Sea to be 98m. Interestingly, both

fits are of similar order to the the Rossby radius. Tides and storm surges in the North Sea

propagate as Kelvin waves, so this suggests that the errors behave in a similar fashion to

sea surface itself. It also validates our choice of correlation function.

Background Error Variance

When developing a correlation model, we have the advantage of knowing that correlations

at zero distance will be equal to 1. This meant that the assumption stated in Section-5.5.2

(only separation distances larger than zero should be used) could be ignored. For covariance,

however, it is not so simple – It is the zero distance covariances that we need (these are the

variances).

For each background point where there was an innovation available, we binned covariance

by distance. This is similar to our approach to correlation estimation, however now it is

done independently for each individual point. An exponential function of the following form

was then fitted for covariances at distances larger than 25km:

ae−bD, (5.11)

where D is again distance and a and b are constants to be determined. We can use a from

each fit as a variance estimate as this is the intercept with the y-axis. See Figure-5.3 for an

example. To these variance estimates, we choose to fit a function of the form:

a

H
+ c, (5.12)

where H is the ocean depth and a and c are constants to be determined. There are three

reasons behind our choice of function. The first is simply visual inspection. The second is

that in shallower water and nearer the coasts, model errors are likely to increase quickly due

to the relative influence of nonlinear effects. The third is due to the reciprocal relationship

that the equations of momentum (Equations 5.1-5.2) have with H.

Figure-5.3 shows the variance estimates binned by ocean depth as well as the optimum

function fit. At depths larger than 50m, the error variance stays fairly uniform somewhere

between 0.01 and 0.02. As the depth approaches zero, the variance increases rapidly, which
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Figure 5.3: Model error statistics estimation. a) and b) show exponential fits to in-

novation correlations binned by distance according to the Euclidean and Dijkstra methods

respectively. Grey dashed lines show the shape of a Kelvin wave according to the Rossby

radius of deformation at 55 ◦N for 100m and 200m ocean depths. c) an example of how

variances were estimated for each individual background point. Innovation covariance is

binned for distances over 25km. An exponential fit is used to extrapolate to the y-axis (or-

ange dashed line) to obtain a variance estimate. d): Optimal fit to variance estimates

binned by depth. In all cases, shading indicates one standard deviation either side of the

mean.
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is reminiscent of functions of the form seen in Equation-5.12. This could be explained by

the increased influence of nonlinear effects and high sea level variability in areas closer to

the coast.

Dynamic Correlations

Our results so far suggest that the background errors behave similarly to the model dy-

namics. Therefore, we also introduce some dependence on the model dynamics into the

covariance model in a similar fashion as Riishøjgaard (1998). Much in the same way as

we generated correlations based on distance, we apply a second set of correlations which

are dependent on the difference in sea level, i.e. for two background points i and j, the

correlation Φ is:

Φ(i, j) = ||xb(i)− xb(j)||, (5.13)

where xb is the background variable as before and ||X|| is the norm operator. If we choose

a correlation function that is positive definite, then an element-wise multiplication of our

existing covariance matrix by the dynamic correlation matrix will result in a new positive

definite covariance model (Riishøjgaard, 1998).

The effect of this multiplication will be a ’warping’ of the covariance field to be closer to

the shape of current model state. This will shorten correlation length scales in, for examples,

shallower areas with smaller Rossby Radii such as the southern North Sea. It also has the

added benefit of creating an analysis with better dynamical balance as increments will

be tailored to the natural balance of the model. It is important to note that this is not

performed at every model time step but only at the time steps where assimilation occurs.

Due to the the difficulty of separating distance and sea level difference, we do not derive

the dynamic component empirically. Instead we perform a set of tuning experiments to find

an optimal exponential fit of the form in Equation-5.9. In reality, this tuning approach has

no physical basis and would need to be performed independently for different regions and

models, just as for tuning bottom friction.

5.6.2 Tide Gauge Error Variance

The error variances of the observations to be assimilated are also important, however our

method for estimating them is not as complex as for the background errors. By assuming

that tide gauge errors are spatially uncorrelated, the problem is simplified as only the error
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variances at each gauge are required. This means that the observation error matrix R is

both diagonal and sparse.

For each tide gauge, we take one years worth of data (2013) and apply a high pass filter

with a cutoff of one hour. This removes the longer period signals in the data, i.e. tidal

signals. What remains will be storm surges, seiches and observation error. Storm surges are

not frequent enough in a year long dataset to significantly affect any analyses. By taking

the variance of this filtered data, we obtain an estimate of the error variance itself. At all

gauges, the standard deviation is found to be on the order of 0.01m.

5.7 Results & Discussion

5.7.1 Validation of Covariance Models

Tables 5.3 and 5.4 show the averaged Root Mean Squared Error (RMSE) and correlations

(compared to observations) for each of the validation runs in Table-5.1. These tables also in-

dicate where improvement/deterioration of RMSE and correlation is significant. For RMSE,

we have set this at 1cm difference from the control (the observation error standard devia-

tion estimated in Section-5.6.2). To compare correlations, we use a Fisher z-transformation

(Fisher, 1915) with a 95% confidence interval.

For all validation runs, the dynamic covariance models perform consistently better across

all locations compared to the non-dynamic covariance models. On the other hand, there

is little difference between the Euclidean and Dijkstra methods. This is likely due to the

domain in question because the North Sea is approximately a single rectangular basin (there

are few significant headlands).

For the VA model runs, most locations see improvements in RMSE and correlation for

all four covariance models. Notably, the VA run performs especially badly for Hoek Van

Holland (HVH) in the absence of dynamic covariance. This may be due to its proximity

to an amphidromic point (point of zero tidal range) and location relative to Lowestoft (see

Figure-5.1). Error information from Lowestoft will be passed over the amphidromic point in

an unrealistic fashion. Figure-5.4 shows the binned innovation correlations for the Southern

area of the North Sea along with the Euclidean correlation model estimated in Section-5.6.1.

It shows a much shorter correlation length scale for the Southern North Sea when compared

to the entire North Sea. The dynamic covariance model compensates for this by shortening

the error correlation length scale in the area as the Rossby radius here is small.

On average across removed locations, the VB validation runs show significant improve-
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RMSE (cm) Control Euc Dijk EucDyn DijkDyn

V ALer 7 0 0 0 0

V AWic 21 5 5 5 5

V AAbe 11 0 0 1 0

V ALei 31 15 13 13 13

V ANsh 22 16 16 14 14

V AWhi 15 9 9 9 9

V AImm 22 1 1 3 2

V ALow 16 0 0 2 2

V AHvh 22 -8 -9 0 -1

V ADhe 33 12 12 9 10

V AWte 29 15 15 15 15

V ACux 38 13 15 12 12

V AHor 32 6 6 5 5

V AEsb 24 -1 0 1 1

V AHan 21 4 4 4 5

V BLer 25 6 6 6 7

V BWic 21 3 3 3 3

V CLer 22 4 5 7 7

V CWic 23 -1 -1 0 0

V CAbe 24 0 0 1 1

Table 5.3: Control mean RMSE (column 2) and improvements (columns 3 - 6), compared

to the control at non-assimilated locations for each validation run, using each covariance

model (see Tables 5.2 and 5.1). For the VA runs, this is RMSE at a single location. Positive

shows improvement. Bold text indicates good improvement (over 1cm), italics represents

large deterioration.
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Corr Control Euc Dijk EucDyn DijkDyn

V ALer 0.65 0.22 0.19 0.20 0.19

V AWic 0.45 0.27 0.29 0.28 0.27

V AAbe 0.68 0.20 0.20 0.19 0.18

V ALei 0.20 0.70 0.65 0.62 0.62

V ANsh 0.43 0.55 0.55 0.52 0.52

V AWhi 0.65 0.31 0.31 0.30 0.31

V AImm 0.60 0.09 0.09 0.11 0.11

V ALow 0.69 0.01 0.02 0.06 0.06

V AHvh 0.67 -0.59 -0.33 -0.06 -0.08

V ADhe 0.49 0.35 0.34 0.32 0.33

V AWte 0.58 0.33 0.33 0.33 0.33

V ACux 0.60 0.26 0.28 0.26 0.26

V AHor 0.61 0.18 0.17 0.13 0.13

V AEsb 0.75 -0.08 -0.06 -0.06 -0.06

V AHan 0.91 -0.12 -0.10 -0.07 -0.05

V BLer 0.55 0.22 0.24 0.25 0.26

V BWic 0.64 0.14 0.14 0.16 0.16

V CLer 0.64 0.16 0.17 0.21 0.21

V CWic 0.61 0.05 0.08 0.04 0.04

V CAbe 0.55 0.03 0.03 0.06 0.06

Table 5.4: Control mean correlation (column 2) and improvements (columns 3 - 6), com-

pared to the control, at non-assimilated locations for each validation run, using each co-

variance model (see Tables 5.2 and 5.1). For the VA runs, this is correlation at a single

location. Positive shows improvement. Bold text indicates significant improvement over the

control, italics represents significant deterioration.
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ment over the control despite assimilating data from only 8 locations. However, there is

no significant improvement for 2 out of 3 of the VC validation runs. This implies that

if data is unavailable at certain gauges, the assimilation will still be reasonable until the

distance between locations becomes too large. It is likely that this is related to number and

proximity of tide gauges required to correctly resolve a tidal wavelength, which is in turn

related to the Rossby radius (Equation-5.10). For example, the Rossby radius in the North

Sea ranges between 200−300km and the average distances between tide gauges for the VA,

VB and VC validation runs are approximately 132km, 232km and 328km respectively. I.E.

for the VC runs, the distance between observations exceeds the Rossby radius.

These results, as a whole, suggest that our covariance models are reasonable estimations

of the true error structure. The assimilation does more than just remove bias, it also

improves the correlation between the model and observations.

Figure 5.4: Binned correlations for the Southernmost area of the North Sea (shown on

the right). Dashed grey line shows the Euclidean correlation model seen in Figure-5.3.

5.7.2 Mock Forecasts: December 2013 Case Study

For all four covariance models, we see similar behaviour during the forecast period of the

model run. Table-5.5 shows the number of locations that saw an improved or worse RMSE

during the first 24 hours after the last assimilation. Although all improvements are small,

the dynamic covariance models perform better with over a half of tide gauge locations seeing

improvement. There is once again very little difference between the Euclidean and Dijkstra
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methods.

RMSE Euc Dijk EucDyn DijkDyn

Num. Improved 6 6 8 8

Num. Worse 2 2 2 2

Mean Imp. (m) 0.02 0.02 0.02 0.02

Max Imp. (m) 0.05 0.05 0.05 0.05

Table 5.5: The number of tide gauge locations where mock forecasts gave better or worse

RMSE values during the first 24 hours after assimilation finished. The mean and maximum

improvements are also shown.

After the first 24 hours of forecast, the differences in RMSE diminish rapidly, becoming

almost negligible by the second day. Figure-5.5 shows RMSE differences (from the control)

calculated in a moving 24-hour window. The shrinking RMSE differences can be seen

clearly, with the vast majority of differences being within 0.01m by the 12th hour.

Correlations are more difficult to analyse. For a 24 hour window there are not enough

data points to draw significant conclusions and for larger time windows, the differences are

too small to be significant. During the first 24 hours, there are only 2 significant differences

(which are improvements) for each model run. After this, we see the same pattern of rapidly

decreasing differences as for RMSE.

These diminishing differences are due to the assimilated model rapidly tending back to

the control run. This is most likely because of the strong influence of boundary conditions on

model dynamics. The tides enter the model at the domain boundaries, and when reaching

the North Sea propagate in an approximately anti-clockwise direction (see Figure-5.1).

Changes to the model sea surface (due to assimilation) also conform to this flow.

The point above can be demonstrated with a simple numerical experiment. We as-

similate a 1m innovation at all tide gauge locations into our model (the PT model run

in Table-5.1). We use a non-dynamic correlation model in place of our covariance model,

meaning the model increments will be large and spread widely across the domain. This is

an extreme example but we use it solely to prove a point.

Figure-5.6 shows how many hours after assimilation it took for the final occurrence of a

0.5m and 0.25m difference from the control at each gauge. At Lerwick we see the changes

diminish after a single tidal cycle. This time increases as one travels anticlockwise around

the North Sea; the same direction as the tidal flow. Except for at a few locations (notably

Leith), the increase is on the same order as the approximate time it takes for a shallow
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Figure 5.5: Amount of improvement (relative to control) for a moving RMSE with a

window size of 24 hours. The x-axis shows the number of hours since assimilation ended

and the beginning of the RMSE window. Each line shows data for a different tide gauge.

Positive indicates improvement and negative indicates worse RMSE values. Dashed lines

indicate 0.01m bounds. This is for the EucDyn model run.

water wave to propagate in the same direction.

These results place a weak upper bound on the effectiveness of data assimilation in the

area. DA will have more of a prolonged effect in the Southeast of the sea than along the UK

coastline. However, as seen in Figure-5.5, these changes do not last long anywhere, likely

due to the small domain size and proximity to unchanged boundary conditions. Unlike

the atmosphere, it appears as though this type of ocean model does not display chaotic

behaviour, again due to the strong dependence of the model upon boundary conditions.

5.8 Conclusions

In this study, we investigated how the assimilation of tide gauge data can be used to improve

storm surge forecasting and coastal flooding risk assessment in the North Sea. To do this, we

developed four different data assimilation setups and tested them by performing hindcasts

and mock forecasts of the December 2013 storm surge event.

We developed the covariance models necessary for variational assimilation in three steps.

First, we considered two different methods for calculating distances between model point-

pairs: a Euclidean method and a method based on Dijkstra’s algorithm. Then we calculated

innovations using reconstructed altimetry data, found their correlations and an optimal ex-
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Figure 5.6: Number of hours taken for the differences due to an assimilation of a 1m

innovation at each tide gauge simultaneously to reduce to and never return to 50% and 25%

of the original value. Tide gauges are spaced at distances from the previous tide gauge in an

anticlockwise direction (see Figure-5.1). Also shown is the distance travelled by a shallow

water wave for a depth of 98m (the mean depth of the model North Sea).

ponential fit as our correlation model. We then performed a similar method to estimate

model error variances based on ocean depth. Finally, a dynamic component to the correla-

tion was added, based on the difference in sea level between model point-pairs.

The background errors were found to behave similarly to the model itself, with a corre-

lation length on the same order as an average Rossby radius in the North Sea. Variances

were small and uniform (around 0.02m) for depths deeper than 50m but increased rapidly

for shallower depths. This makes sense as more complex non-linear effects come into play

in shallower, coastal seas. Ocean variability itself is higher in these areas, again suggesting

that the errors behave in a similar way to the model dynamics. This backs up the need for

a dynamic component in the covariance model.

To test our covariance models, we performed a set of 120-hour validation experiments,

each with varying numbers of tide gauges removed from the assimilation (see Table-5.1 for

model names). We then looked how well our assimilation setup performed by comparing

to observations from locations that had not been assimilated into the model. We found

that all covariance models performed well, with improvements in RMSE and correlation

at most locations (compared to the control). There was little difference between the Eu-

clidean and Dijkstra methods, probably due to the shape of the North Sea, which is close to
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being mathematical convex (the vast majority of locations can be connected with straight

lines). However, we believe this method to be worthy of further examination in more topo-

graphically complex domains. Conversely, the dynamic covariance models did show more

consistent improvements across all locations when compared to the non-dynamic covariance

models.

The non-dynamic covariance models performed particularly badly at Hoek Van Holland

(HVH) for the VA model runs, possibly because of shorter correlation lengths (and Rossby

radii) in the Southern North Sea. This suggests that homogenous correlation models will

not suffice in areas like the North Sea and other similar semi-enclosed tidal seas. Here,

depth is relatively small and thus small changes result in large changes in Rossby radius

and shallow water wave speed. In the open ocean or atmosphere, this is a smaller problem.

The need for the incorporation of model dynamics into the covariance model may be reduced

somewhat by the assimilation of data from more locations in areas such as the southern

North Sea, as in (Zijl et al., 2015).

We see that operational significant improvements can still be obtained when assimilating

data from only every other tide gauge (VB validation runs). However, once the distance

between tide gauges extends beyond this, very little improvement can be obtained at other

locations. The consequence of this for a real-time scenario is that if data is unavailable for

a handful of locations (e.g. bad quality data, damaged equipment) then assimilation is still

viable, at least whilst the distance between locations is less than approximately a Rossby

radius of deformation.

To test the forecast capability of the covariance models, a set of mock forecasts were

performed for the December 2013 North Sea storm surge event. For each location, 120-hours

of hourly assimilation was performed up until 12 hours before the peak surge. Although

there was initially some small improvement, a moving 24-hour RMSE showed that any

RMSE differences quickly diminished. This was due to the assimilated models rapidly

tending back to the control. We suggest that this is because of the ocean models reliance

on boundary conditions, especially tidal forcing. Perturbations made to the model state are

quickly removed by the unchanged tidal flow.

These results place an upper bound on the effectiveness of storm surge forecasting in

the North Sea. Even with a perfect covariance model, significant adjustments to the model

only persist for 12-24 hours of forecast. Despite this, there are many avenues available

for investigation to potentially improve the covariance model. The assumption of ergodic

error correlations could be relaxed and more investigation made into how they vary with,

for example, the seasons or with climate modes. More complex dynamic covariance models

91



CHAPTER 5. VARIATIONAL DATA ASSIMILATION OF SEA LEVEL INTO A
REGIONAL STORM SURGE MODEL: BENEFITS AND LIMITATIONS

could also be developed, such as a reliance on current speed and direction as well as sea level

height. Bespoke dynamical covariance models that optimise operational forecasting can also

be conceived. For instance, if particular ports, cities or regions are particularly exposed to

risks then the fact that all assimilated information travels at shallow water wave speeds

allows for a dynamical adjustment of the covariance matrices focused on the subdomains

with most influence on the solution at a later time. These could be identified by adjoint

methods (Wilson et al., 2013).

The above bounds may limit the use of the assimilation for longer term forecasts. How-

ever, during the first 24 hours of forecast (and thus during the surge event), the majority of

locations saw some improvement in their RMSE values when using the dynamic covariance

model. In some cases, this improvement was as high as 4-5cm which is not insignificant for

forecasting. Improvements of this size will improve confidence in the overall short term fore-

cast, providing forecasters with the ability to give authoritative advice with fewer caveats

regarding model performance. Additionally, this timeframe, although short, is enough to

warn the public of an event 1 or 2 high waters in advance and should help and enable the

targeted deployment of emergency responders, increasing effectiveness.

The results from our validation experiments suggest that reasonable along-coast sea level

datasets can be generated from just the model and tide gauges alone. These datasets can

be useful for understanding what happened during past events and assessing coastal risk

at locations where observations are unavailable. The relative simplicity and accessibility of

tide gauge data means that this data can be generated and used by all stakeholders and

policy makers.

Finally, a comparison can be made to other operational applications of data assimilation.

For atmospheric forecasting (for example) there are more observations, the domains are

larger and better connected (no coastal boundaries) and the models deal with far more

variable interactions (Rawlins et al., 2007; Rabier et al., 2000; Mahfouf and Rabier, 2000;

Klinker et al., 2000; Gauthier et al., 2007). As a result, there is less dependence upon the

boundary conditions and perturbations to the model state persist for longer. The effects of

chaos appear to be far more prevalent in the atmosphere than in semi enclosed seas such

as the North Sea.
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Chapter 6

New insights into storm surge

dynamics and volume fluxes in

semi-enclosed basins: model case

study of the North Sea

6.1 Preamble

The work of the previous chapter revealed that improvements to storm surge forecasts due

to data assimilation in the North Sea are subject to constraints. Mainly, the work showed

that assimilation increments only remain in the region as long as a shallow water wave,

meaning improvements are time limited. However, if it is the surge component that is

being modified by assimilation, improvements might also be limited by how long the storm

surge itself persists in the region.

The spatial nature of its generation is also important for determining how hard the

constraints from the previous chapter are. If sea surface height (SSH) is generated outside

of the region (i.e. North Atlantic) then its assimilation might by improved by external

observations and a larger model domain. However, if SSH is mostly generated internally

within the North Sea then these improvements may not be attainable.

This chapter examines the points above in the context of the question:

Are there any new insights that can be offered into the physical behaviour of storm surges

and how can they help us understand the efficacy of data assimilation?
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This is the third of the thesis questions posed in Chapter-1. The focus here moves away

slightly from the direct application of analysis datasets for forecasting and onto improving

the understanding of storm surge behaviours, with relevance to data assimilation.

These ideas are approached using a new, single volumetric statistic for describing storm

surge events in the North Sea. This statistic, called the residual volume, describes the

additional volume in the region due to atmospheric effects. It allows for storm surge events

to be quantified and compared using a single number rather than at specific locations or by

using maps of non-tidal residuals (or similar).

The residual volume is also discussed in the context of historical analyses such as the

estimation of return periods in the region. Currently, work of this type is on a location-

specific basis and is beholden to the quality and availability of single datasets. If data is

missing at a given location, an analysis might not be possible. However, a single, integral

statistic, if shown to be representative of the whole region, could overcome this problem.

This is the first time that such a statistic has been considered as a way to quantify storm

surges in the North Sea. Indeed, to the author’s knowledge, it is the first time it has been

considered anywhere. As discussed above, statistical studies in the past have been done on

a location by location basis, not a domain-wide basis.

The North Sea is once again considered, along with the same case study as the previous

chapter (the December 2013 storm surge event). This is because the North Sea is well

suited for a volumetric, domain-wide statistic thanks to its semi-enclosed coastal geometry.

Additionally, it makes sense to consider this region as this thesis has already quantified the

constraints on data assimilation here.

Related Appendices

The work in this chapter is all based on data obtained from a model. However, some early

work has been done by the author into how similar studies could be done using observations.

Appendix-F shows some of this work, specifically on how the new residual volume metric

might be estimated using just tide gauge data. The work presented in Appendix-G is also

relevant to the themes of this chapter.
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6.1.1 Paper Abstract

Storm surges are variations in sea level due to atmospheric conditions. The combination

of atmospheric pressure gradients and high surface wind stresses increases coastal sea level,

potentially causing damage to property, infrastructure and life. The North Sea is historically

vulnerable to such events therefore is vital that understanding of the storm surge generation

in the region is good so that risk assessments and forecasts are accurate and decisions on

coastal defence are appropriate.

We introduce and evaluate a new single volumetric statistic for North Sea storm surges:

the residual volume, (Vr). This describes the additional volume present due to atmospheric

forcing. By examining correlations we determine that Vr represents non-tidal residuals in

most of the sea well, with the exception of some southern estuary areas. For a 2006-2016

study period we find that Vr increases during a storm surge event, in some cases up to 7-8

times more than the period’s natural variability. Therefore, Vr could be used for identifying,

quantifying and comparing storm surge events.

We use Vr to investigate some fundamentals of storm surge generation in the North

Sea. First, we find that Vr takes around 15 hours to half in magnitude after a maximum.

Extrapolating, we estimate that storm surges persist in the basin for around 30 hours after

an event. This is important for understanding independence of consecutive events. We also

provide some evidence supporting the idea that storm surges are mostly generated internally,

within the region rather than externally, propagating as a wave from the North Atlantic.

Finally, we quantify tide-surge interaction in terms of Vr and find that the presence of tides

slows the inflow and outflow of volume from the sea.
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6.2 Introduction

Atmospheric conditions can cause variations in coastal sea level called storm surges (Pugh

and Woodworth, 2014). When large enough, these variations can lead to coastal inundation

with the potential to cause widespread damage and risk to life. As the planet warms and

sea levels rise, the storm surge risk to coastal communities is increasing and previously

unaffected communities may find themselves vulnerable (Bindoff et al., 2007; Menendez

and Woodworth, 2010; Haigh et al., 2010; Church et al., 2013). The future flood risk to the

worlds 136 largest cities is estimated to be US$52 billion by 2050, up from US$6 billion in

2005 (Hallegatte et al., 2013). For the European coastline, annual damages due to coastal

inundation are predicted to increase by 2-3 order of magnitude by 2100 (Vousdoukas et al.,

2018). As a result, it is increasingly vital that we understand the processes that govern

storm surge generation and their behaviour so that forecasting can be accurate, coastal

defences can be appropriate and vulnerable communities protected.

An area historically prone to destructive surges is the North Sea, mainly because of

its shallow bathymetry, semi-enclosed shape and surrounding areas of low lying land. An

important example in the region occurred on the night of the 31st of January, 1953. A

powerful depression generated a large storm surge along the coastlines of the UK and

Netherlands causing extensive flooding of coastal areas (Gerritsen, 2005; McRobie et al.,

2005). Coinciding with spring tides, the storm surge killed over 2000 people and caused

£50 million of damage in the UK. Many coastal defence projects have been completed since

(e.g. the Thames barrier (Dawson et al., 2005)) and forecasting has made great strides.

These strategies have had noticeable impacts on the region. In December 2013, Cyclone

Xaver made passage through the area – a very similar storm to that of 1953 (Sibley et al.,

2015; Wadey et al., 2015). Although the impacts were still high (indeed it is one of the

most damaging surge events for northwestern Europe), the resulting damages and loss of

life was significantly reduced (McRobie et al., 2005).

Dangerous storm surges are associated with cyclonic weather systems, i.e. depressions

in the mid-latitudes and tropical cyclones in the tropics. For European shelf seas, they can

increase sea level by up to 3-4 metres compared to the tide alone, can last from hours to

days and span over hundreds of kilometres (Wadey et al., 2015). In the tropics, water levels

can be increased even further, reaching up to 9m. Two mechanisms are predominantly

responsible for the generation of storm surges (Pugh and Woodworth, 2014):

1. Local areas of low surface air pressure generate converging oceanic currents, lead-

ing to an increase of approximately 1cm for every 1mbar change. This is known as the
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inverse barometer effect and is the larger process in non-coastal areas and the open

ocean.

2. High wind speeds create stress at the sea surface, generating currents which drive

water up against coastal boundaries. This is dominant in shallow, coastal areas.

Many other factors are also at play. For example, the Coriolis force diverts currents (to

the right in the northern hemisphere), potentially into coastal boundaries. Superimposed

wind waves, wave breaking and wave runup also pose a danger, directly damaging and

leading to additional overtopping of defensive structures. Additional considerations are the

interactions between the storm surge, tide and wind waves which have studied impacts on

sea level (Zhang et al., 2010; Wolf, 2008; Horsburgh and Wilson, 2007; Johns et al., 1985;

Rossiter, 1961).

In this study, we investigate the spatial nature of storm surge generation in semi-enclosed

seas; using the North Sea as a case study. We introduce the residual volume, a new variable

which describes the changes to the total volume of water due to atmospheric forcing. It is

far from certain that volume will change during a storm surge event in the North Sea. The

generation of increased non-tidal residuals is mostly due to a combination of the internal

shifting of water and the propagation of water from the North Atlantic. Previous ideas have

supposed that the latter is dominant and that externally generated increases in sea level

propagate into the North Sea as shallow water waves, for example see (Pugh, 1996). We can

use the residual volume to investigate this further thanks to it being a conserved quantity

as well as answer some fundamental questions that enhance our knowledge of storm surge

dynamics and, in turn, drive improvements to operational systems:

1. How does volume in the North Sea change during a storm surge? Does

residual volume increase and if so, where does this volume transport come from?

2. How long do storm surges persist in the North Sea? Understanding how long

storm surges remain in the North Sea is important for understanding how dependent

storm surges are on previous events.

3. Is the residual volume representative of non-tidal residuals in the North

Sea? Due to the lack of historical tide gauge data, it can be difficult to perform

climatological analyses in a homogenous way. A single statistic would help with

identifying, quantifying and comparing past events.
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6.3 Methods & Data

6.3.1 Model

In this study we use CS3X (Continental Shelf 3 Extended model) as a numerical tool. The

model uses a finite differencing scheme on an Arakawa grid (Messinger and Arakawa, 1976)

to model the ocean using depth-averaged Navier-Stokes equations:
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where u and v are the components of flow in the x and y directions, t is time, g is gravita-

tional acceleration, η is the level of the free surface, D is the fluid depth (positive), τsx, τsy,

τbx and τby are the surface and bottom stresses in the x and y directions respectively, PA is

the atmospheric pressure, ρ is the fluid density and f is the Coriolis parameter. Equations

6.1-6.2 are the conservation of momentum equations and Equation-6.3 is the continuity

equation and expresses conservation of volume. The model domain extends from around

40◦N to 63◦S and 20◦W to 12◦E and has a resolution of approximately 12km× 12km.

Atmospheric forcing (wind stress and air pressure gradient) is applied at the sea surface,

taken from the UK Met Office’s Unified Model. The Charnock formulation is used for

parameterising wind stress from wind speed (Charnock, 1955), which uses z0 = αu2∗
g to

calculate the surface drag coefficient, CD, where u∗ is friction velocity, g is gravity, and α is

the Charnock parameter. Williams and Flather (2000) found a value of 0.0275 to be optimal

for storm surge modelling in CS3X. At the domain boundaries, tidal forcing is applied using

the 26 largest constituents from the NEA constituent dataset. The ocean model does not

feedback to an atmospheric model and there is no representation of wind waves.

In this paper, we look specifically at hourly data taken from the model for the period

2006− 2016 and also focus on the Cyclone Xaver event of December 2013. Three different

types of model run are performed for the period: a full run including both tidal and

atmospheric forcing, a tide only run including only tidal forcing and a surge only run, using

only atmospheric forcing. Model non-tidal residuals can then be calculating by subtracting

the tide only run from the full run.
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6.3.2 Volumetric Variables

Throughout this paper, we examine a number of volumetric statistics, predominantly the

residual volume, Vr:

Vr = A
N∑
i=1

(ηfulli − ηtidei ), (6.4)

where N is the number of model cells in the North Sea, A is the surface area of each

grid cell and ηfulli and ηtidei are the heights of the model free surface at each point for a full

model run and a tide-only model run. Vr can be thought of as the additional volume in the

North Sea due to atmospheric forcing and is equivalent to the sum of all non-tidal residuals

multiplied by the surface area of each grid cell. Total volume is not used so as to avoid the

natural variations in volume due to the tidal cycle. This metric also has the advantage of

not requiring the model bathymetry to calculate.

Early tests with Vr for the full 2006-2016 period show a mean of 7km3 and a standard

deviation of 53km3. The mean is far smaller than the standard deviation and sufficiently

close to zero. We use the standard deviation in this paper for determining where Vr reaches

significant levels.

For looking at tide-surge interaction later in the paper, we also use the surge volume Vs:

Vs = A
N∑
i=1

ηsurgei , (6.5)

where ηsurgei is the height of the model free surface at each point i for a model run with

only atmospheric forcing and no tidal boundary forcing. This can be thought of as the extra

volume in the North Sea due to atmospheric effects in the absence of tides.

6.3.3 The North Sea

The North Sea is shown in Figure-6.1 along with the bathymetry used in the model.

The North Sea is a shallow sea bounded (mostly) on its western, eastern and southern

edges, with a northern boundary open to the North Atlantic. It is connected to the English

Channel via the Dover Strait in the south, the Kattegat via the Skaggerak in the east and

the North Atlantic in the North. Tidal signals mostly enter from the North and propagate

as coastally-trapped Kelvin waves in a broadly anticlockwise direction. The sea is generally

shallow (see Figure-6.1(b)), especially in the southern portion, where depths range from

20− 50m. It is at its deepest in the Norway Trench, in the North East of the basin.
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Figure 6.1: Area and bathymetry used in this study for calculating the residual and surge

volumes (Vr and Vs) for the North Sea. Numbered labels indicate locations referred to in

this study: 1) Dover Strait, connecting through to the English Channel, 2) Kattegat, 3)

Skaggerak, 4) North Atlantic and 5) Norway Trench.

6.4 Results & Discussion

6.4.1 Volume during a storm surge event

We begin by looking at residual volume during the Cyclone Xaver event. Figure-6.2(a)

shows Vr for the 9-day period centred around the event. A clear increase in Vr can be seen,

culminating in a maximum of 410km3 at around midday on 05/12. This is equivalent to

average volume transport into the sea on the order of 3.6 Sv during the 24 hours leading

up the Vr maximum. This is significantly larger than the natural standard deviation of Vr

(53km3) and so is likely significant.

Next we identify all Vr maxima during the 2006-2016 study period. We define a max-

imum in our data as a point that is greater than all points 12 hours before and after it.

Figure-6.2(b) shows a histogram of all Vr maxima over 100km3 during 2006 − 2016. We

choose 100km3 as the lower cutoff since it is approximately twice the standard deviation

of Vr and therefore is a good threshold to determine significance. We can see that the Cy-

clone Xaver event is far from alone, indeed there are nine events that exceeded 300km3. In

Table-6.1, we have identified and given some details on the storms that accompanied these
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volume increases.

Such large increases in Vr suggest that most of the storm surge is not being externally

generated and propagating as a free wave which would, by definition, transport only small

amounts of volume. Further evidence to reinforce this idea is presented in Section-6.4.3.

a) b)

Figure 6.2: a) Residual volume during December 2013 Cyclone Xaver storm surge event.

Gridlines for x-axis denote midnight for each day. b) Histogram of independent residual

volume peaks over 100km3 during 2006-2016. Table-6.1 gives some more detail on the peaks

over 300km3.

In order to investigate how long volume persists after an event, we now develop a mean

Vr profile. To do this, we have identified every independent Vr peak during 2006-2016,

aligned them in time and calculated an average profile for the bins 100km3 − 200km3,

200km3 − 300km3 and > 300km3. For each identified event, Vr is divided by its value

at the maximum, so that we can describe the volume in terms of the proportion of the

peak volume. This gave results with smaller relative standard deviations than finding mean

profiles of the total Vr. The results are shown in Figure-6.3.

For all Vr bins we see a similar mean profile, with Vr reducing by half in 15-16 hours

after the maximum. Similarly, Vr takes around 12-14 hours to double from half to the peak.

We only look at 0.5 and higher as the variance of the mean increases rapidly below this

value. In general, standard deviation is highest for the 100km3 − 200km3 bin and reduces

with each successive bin.

Figure-6.3(d) compares the mean profiles for each Vr bin as well as a mean profile across
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Date Peak Res. Volume (km3) Event Notes

12/01/2007 343 No official name. Depression in North Atlantic,

passing close to Iceland.

18/03/2007 318 No official name. Depression low passing be-

tween Iceland and Scotland.

09/11/2007 310 Cyclone Tilo.

01/03/2008 339 No official name. Low passing over the North

Sea and UK itself.

06/12/2013 410 Cyclone Xaver.

11/01/2015 364 No official name. Depression passing just north

of the North Sea.

13/11/2015 308 Storm Abigail.

24/12/2016 304 Storms Barbara/Conor.

26/12/2016 388 Storms Barbara/Conor.

Table 6.1: All surge events with maximum Vr exceeding 300km3. The storms responsible

have been identified and some details given, although most fall before the UK Met Office’s

official naming scheme (late 2015). Where storm names are unavailable, archived GFS

(Global Forecast System) pressure charts have been used to confirm the presence of a cyclonic

system.

all bins. All mean profiles being similar (above 0.5) implies that the time taken for Vr to

half (relative to its maximum) is largely independent of the maximum value itself. This can

reinforced by looking at the correlation coefficient between peak Vr and time taken to reach

half of the peak, which is -0.19. An alternative way of looking at this result is to state that

the outward flux of volume from the North Sea is proportional to the Vr maximum.

Figure-6.3(e) shows a comparison of our mean Vr profile across all bins with the Decem-

ber 2013 Cyclone Xaver event. The case study conforms well to the mean profile, especially

after the peak. Individual profiles will be highly influenced by storm properties such as

storm track and speed, which will in turn affect how wind speed and direction changes over

time. To demonstrate this, Figure-6.3(e) also shows a time series of Vr where atmospheric

forcing was ramped down completely in the model after the time of Vr maximum. In this

case, volume reduces around twice as fast as the forced model suggesting that, on average,

atmospheric forcing halves the rate at which volume leaves the North Sea.

Quantifying the duration of storm surge persistence is important for understanding
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Figure 6.3: Mean proportional Vr profiles for different Vr bins as a function of time

(hours) from the peak of the event: a) 100 − 200km3, b) 200 − 300km3, c) > 300km3.

d) shows all mean profiles together. Shading indicates a standard deviation either side of

mean. e) shows a comparison of our mean profile against Vr during Cyclone Xaver and a

model run where atmospheric forcing was linearly ramped down (over 1 hour) at the peak.

Profile averaging is centred around the time of maximum Vr.

surge generation during multiple storms passing in quick succession. For storms passing

soon after a previous event, surge generation may reach specific levels faster if volume

persists. Extrapolating the results in this section, we might suppose that a storm passing

within 30 hours of a previous storm may see this effect. Depending upon how long the

North Sea takes to reach equilibrium with atmospheric forcing, it is also possible that the

magnitude of the next Vr peak might be increased. This is discussed further in the next

section.
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6.4.2 Idealised wind forcing experiments and steady state

In this section we investigate how long Vr takes to reach its theoretical maximum and

whether it attains an equilibrium. We do this by imposing idealised wind forcing on the

model. Eight model experiments have been run where a spatially uniform wind stress is

applied for 100 hours in eight different compass directions. This also allows us to determine

the type of conditions that are most effective at generating Vr, the nature of which is

dependent upon storm characteristics (e.g. track, speed, size and intensity). 1Nm−2 of

wind stress is used, which is equivalent to a wind speed of 18.7ms−1 using the model’s

parameterisation of wind stress (see Section-6.3). It must be emphasized that these are

highly idealised experiments done only to estimate theoretical constraints. The results and

wind directions used are shown in figure-6.4.

Figure 6.4: Vr for eight different sets of model experiments. For each experiment, uniform

wind stress (τs = 1Nm−2) was applied in eight compass directions at the sea surface for

100 hours.

There appears to be three modes of behaviour with a clear distinction between east and

west. Westerly winds increase volume in the long term, easterly winds decrease volume and

northerly or southerly winds result in no significant change. The largest volume increases

are seen for winds blowing in east and southeast directions. This would be the case for
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a cyclone passing to the North, as is the case for most cyclones, including the Cyclone

Xaver and 1953 events. The biggest decreases are seen when winds blow in and easterly

or northeasterly fashion. However, these directions require a cyclone passing to the south,

which is less likely due the dissipation of storms over land.

In most cases there are initial maxima or minima in Vr at around 20-30 hours, after which

Vr approaches something resembling a steady state. There are two exceptions: northeasterly

and southwesterly winds. In both cases there is an early and small maxima or minima

(respectively) at around 5 hours, after which Vr rapidly changes sign before reaching near

steady state.

6.4.3 Spatial evolution of storm surges: role of internal and external

fluxes

In the previous sections we saw that volume in the North Sea increases during a storm surge

event, but where is this volume being generated? In this section, we create the 2-dimensional

evolution of surge generation in the North Sea, based on thresholds of proportional Vr.

Figure-6.7 shows mean non-tidal residuals (NTR) at a number of different proportional

Vr thresholds: 25%, 50%, 75% and 100% of the maximum. These are identified for both the

rising and falling periods of the profile, starting at the peak and working outwards. This

has been done for all events exceeding 200km3.

During the rising period of Vr, non-tidal residuals are primarily generated along the

south and eastern boundaries of the sea. Most of the sea level increase along the UK

coastline only occurs close to the Vr maximum, whereas the coastlines of Denmark, Germany

and the Netherlands are affected for much longer. It appears as though surge generation

begins along the Danish coast and spreads westwards; opposite to the direction of the the

crest of the tidal flow. NTRs during the falling period of Vr look broadly similar to those

of the rising period. A notable difference however is a large area of negative NTR along

the UK coastline once 25% of the maximum Vr is reached. This is interesting and perhaps

suggests that the North Sea overshoots in its response to oceanic pressure gradients.

There is little increase in non-tidal residuals in the north of the sea, suggesting that there

is little additional volume being generated externally and flowing into the sea. We can rein-

force this idea by looking at Vr in the latitudinal bands shown in Figure-6.5. Figure-6.6(a)

shows proportional Vr in latitudinal bands during the Cyclone Xaver event of December

2013. It can be seen that the lower and middle bands generally contribute around 2-3 times

more to Vr than the upper band. Again, this suggests that the most of the storm surge is
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Figure 6.5: Definition of latitudinal bands for Vr calculation in this section.

being generated internally and is due to the redistribution of volume within the basin. If it

were propagating in as a wave from the North Atlantic, we would expect to see comparable

signals in each band, with separated by some lag time. However, a wave-like component

can be seen in this data. Indeed, a small bump is visible in all three bands, first in the

upper band at around -18 hours, then in the middle band at around -15 hours and finally

in the lower band at around -9 hours. This component is small, however, when compared

to overall magnitude of Vr.

Figure-6.6(b) shows average profiles in each band for all Vr events exceeding 200km3.

We see similar behaviour here as for the Cyclone Xaver event: the lower and middle bands

contribute around 2 times more than the upper band in general. This time, no wave-like

features are seen, probably due to the averaging process. Again, we can conclude that most

of the surge is being generated within the North Sea, and any propagating components are

relatively small. Increases in volume are due to adjustments at the edges of the sea due to

pressure gradients created by the surge setup.

Also interesting is the visible effect that the Norwegian Trench (see Figure-6.1) has in

the northeast of sea, consistently hindering the generation of NTRs for the entire event. It

is important to note that the timeline based upon volume. This means that, any component

of the surge that propagates as a wave within the North Sea may not be present due to

averaging. Having said this, a propagating component is likely to be small due to the lack
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Figure 6.6: Residual volume (Vr) in the latitudinal bands shown in Figure-6.5 a) during

Cyclone Xaver event in December 2013 and b) averaged over all Vr events exceeding 200km3.
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Figure 6.7: Mean non-tidal residual at all locations in the North Sea during all storm surge events with Vr peaks exceeding

200km3 in the 2006-2016 study period. Averages are calculating using non-tidal residuals for each event at the time where a

proportional Vr of 0.25, 0.5, 0.75 and 1.00 is first reached before and after peak Vr.
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of external generation of NTRs.

6.4.4 Tide-surge interaction and volume

As discussed in studies by Zhang et al. (2010); Johns et al. (1985); Horsburgh and Wilson

(2007); Wolf (2008), there are complex dynamical interactions between tides and storm

surges. This interaction can be quantified somewhat by looking at the differences between

non-tidal residuals (full model run minus tide-only run) and model runs with only atmo-

spheric forcing. In this section, we quantify this interaction in terms of residual volume and

examine how it affects volume transport into the North Sea. This approach can provide

some insight beyond simply identifying which terms in Equations (6.1)-(6.3) are dominant.

Vr and Vs (see section-6.3) are combined to create a third variable which quantifies the tide

surge interaction in terms of volume:

Vtsi = Vr − Vs (6.6)

This can be thought of as the additional volume in the North Sea due to tide-surge

interaction alone. For the 2006-2016 study period, the mean of Vtsi is −10km3 and the

standard deviation is 17km3. This suggests that on the whole the presence of tides reduces

residual volume in the North Sea. Additionally, the magnitude of Vtsi is generally relatively

small and well within the natural variability of Vr.

Figure-6.8 shows an example of Vtsi compared to Vr and Vs during some of December

2013, including the passing of Cyclone Xaver. During the rising portion of Vr, Vtsi is

negative and during the falling portion it is positive (reaching up to 50km3). This implies

that volume persists for longer after the Vr maximum and takes longer to reach this value.

This can be seen more clearly by comparing Vr and Vs. The Vr peak is delayed by 1 hour

when compared to Vs and takes 2 additional hours to half in magnitude. This behaviour

can also be seen later in the month, with peaks in Vtsi coming sometime after peaks in Vr.

In general similar behaviour can also be seen. A cross correlation for the entire 2006-

2016 study period reveals an optimum correlation coefficient of 0.61 (compared to 0.06 for

the original time series) at 14 hours lag. An increase in Vtsi during the falling period of Vr

and vice versa suggests that the presence of tides hinders both the inflow and outflow of

volume into and out of the basin. This may be because of increased friction in the North

Sea due to tidal currents and the non-linear nature of the parameterisation used by the

model for bottom friction.
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Figure 6.8: Tide-surge interaction and its effect on volume in the North Sea during the

Cyclone Xaver event. A comparison is shown between the residual volume Vr, the surge

volume Vs and the volumetric tide-surge interaction term Vtsi.
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Figure 6.9: Correlation analysis of residual volume(Vr) and non-tidal residuals (NTR) in the North Sea. a) Correlation between

Vr for the North Sea and NTR at all model locations. b) Lag time (hours) given by a cross correlation at all locations to achieve

maximum correlation coefficients. c) Adjusted correlation coefficients from cross correlation analysis.
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6.4.5 Representativeness

The fact the Vr increases significantly during a surge event means that is has potential to

be used for identifying, quantifying and comparing historical surge events. Having Vr as

a single statistic would be useful for analyses such as the determination of return periods,

extreme value statistics and climatological trends. Currently, much of the work in this

area is done on a location-specific basis, rather than a whole-region basis (von Storch and

Reichardt, 1996; Zhang et al., 2000; Dangendorf et al., 2014). Here, we investigate how

well Vr represents the North Sea as a whole by examining how it correlates with NTRs

throughout the domain.

Figure-6.9(a) shows correlations between Vr and NTRs at each model grid cell during

the 2006-2016 study period. For most of the sea, correlations are very good, exceeding 0.8.

They are especially good in the central, southeast and eastern areas, where they reach as

high as 0.95. Correlations are smaller in estuary type areas along the UK coastline, e.g. the

Firth Estuary, The Wash and Thames Estuary, where they get as small as 0.45. However,

correlations of 0.7 and higher are still reached along the rest of the UK coast. It is possible

that the lower correlations are due to timing differences between Vr and NTRs, which would

not detract from how representative Vr is for historical analyses. To determine whether this

is the case, we also consider cross-correlations.

Figure-6.9(b) shows the lag at which optimal correlations were achieved at each model

location. We see an east-west split, with positive values on the east side of the sea and neg-

ative values on the west. Additionally, lags become more negative as you travel northwards

along the UK coastline. Figure-6.9(c) shows correlations once NTR time series have been

adjusted according to the lag values. Many areas see notable improvements, the northern

UK coastline especially. The estuary areas that performed badly previously are improved,

the Firth Estuary especially, however correlations around The Wash and Thames Estuary

remain low.

Why Vr appears unable to represent NTRs in The Wash and Thames Estuary areas

might be explained by our results from Section-6.4.3. Figure-6.7 shows that, as volume is

increasing towards its maximum during an event, these estuary areas stay broadly the same

or even become negative in the case of The Wash.
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6.5 Conclusions

In this study, we used volumetric variables to investigate a number of questions regarding

North Sea storm surges. These questions were:

1. How does volume in the North Sea change during a storm surge?

2. How long do storm surges persist in the North Sea?

3. Is the residual volume representative of non-tidal residuals in the North Sea?

Much of the work was done using the residual volume (Vr), which describes the additional

volume in the region due to atmospheric forcing. We examined how Vr changes during a

storm surge event, where storm surges are generated, the impact that the tides have on Vr

and whether it has the potential to be used as a single statistic for climatological research.

We found that volume increases in the North Sea during a storm surge event. The

magnitude of the increase varies from event to event, probably depending upon individual

storm characteristics. After Vr reaches its maximum, additional volume will linger for some

time after the event. Specifically, we found that it takes an average of 15 hours for Vr to

reduce by a half, and this is independent of the height of the peak itself. This volume

transport is strongly influenced by the nature of the atmospheric forcing, without which Vr

reduces twice as fast.

We performed eight numerical experiments where, for each, uniform wind stress (1Nm−2)

was applied at the model sea surface in eight compass directions. For these idealised situa-

tions, it takes 20-30 hours for maximum Vr to be reached, depending upon wind direction,

after which a steady state is reached. Westerly winds generally increased volume and vice

versa for easterly winds. The biggest increases in Vr were seen for westerly and northwesterly

winds.

The previous points imply that the maximum height of surges generated by consecutive

storms may not be independent of one another. Extrapolating, we may deduce that a storm

passing within 30 hours of a previous storm may generate higher residual volume and thus

non-tidal residuals than otherwise. Additional study on this is required to further quantify

the relationship between consecutive storm surges.

Tide-surge interaction was found to have an effect on Vr. By looking at model runs with

and without tidal forcing, we found that the tide-surge interaction component of volume

is generally at a peak while Vr itself is falling. Correlation analysis suggests this peak

interaction comes around 14 hours after Vr maximum. Overall, our findings suggest that
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tide-surge interaction slows the inflow and outflow of volume into and out of the North Sea

as well as delaying the time of its peak. This might be due to the tides increasing total

friction in the sea.

Vr appears to represent most of the North Sea well in terms of non-tidal residuals. This

suggests that it could be used as a single representative statistic for North Sea storm surge

studies, except in the southwestern estuary areas. Such a single statistic has the potential to

be used for applications like historical and climatological analyses and extreme statistics for

the whole basin and not individual locations. However, areas that were not well represented

must be considered, and perhaps a better metric can be developed in future studies. We

demonstrated the usefulness of a single statistic by estimating the average evolution of a

storm surge. This showed that, in an average sense, storm surge generation begins along

the Danish coast and gradually spreads westward.

An important avenue for future work is the development of a method for estimating

Vr, or a similar quantity, from observations alone. This would be independent of any

model and would allow for long term, consistent and homogenous analyses of observations,

even when data is missing or lost at some locations. Vr estimation might be done by, for

example, spatial interpolation of tide gauge observations or by averaging over all locations.

Additionally, if a model were to be used, data assimilation methods could be used to improve

estimates.

This work provides evidence that most of a storm surge (in terms of sea level increase)

is generated internally within the North Sea. The significant increase in volume during a

storm surge event is unlikely to be due to a free wave propagating in from the Atlantic,

which would in theory transport very little volume. Our study of Vr in latitudinal bands

showed that during a storm surge event, the lower two thirds of the North Sea contributed

around 2-3 times more towards Vr than the top third. However, if a storm surge were purely

a free wave, we might expect to see equivalent contributions from each band, with a lag

between each. Finally, our study into the 2-dimensional evolution of non-tidal residuals

showed very little external generation and no clear propagating component, however this

is likely to have been lost in the averaging process. Additional volume likely enters the

sea at the boundary as a response to oceanic pressure gradients caused by the internal

redistribution of volume.

Understanding this has importance for forecasting via data assimilation. If most of the

surge is generated internally then assimilation of sea level observations in the North Atlantic

may have little benefit for surge forecasts in the North Sea. Future work on this particular

point could include a more rigorous development of this idea and an integral statistic to
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determine the contribution of each latitudinal band during the entire event.

Many of the results presented here are early investigations into the volume of the North

Sea during a storm surge and how it can be used. It is important to note that this work is

model-based and that the limitations of any model used must be considered, including the

present one. More complex gridding schemes, higher resolutions, different parameterisations

of surface and bottom stresses and coupling may yield further insights.
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Chapter 7

Conclusions, limitations and

implications for future work

The focus of this thesis has been on the operational forecasting of storm surges and how

it can be improved via the use real time and remotely sensed data. In Chapter-1.2, an

overarching thesis objective was introduced:

To add to the understanding of how remotely sensed and real time data can be used to

improve the operational forecasting of storm surges.

This objective was then split into the following three thesis questions, each of which was

approached in Chapters 4-6:

1. How effective is the assimilation of remotely sensed real time observations of wind for

operational storm surge forecasting?

2. How effective is the assimilation of real time sea level data for operational storm surge

forecasting?

3. Can new physical and statistical insights lead to a better understanding of the limi-

tations of operational data assimilation in the context of storm surges?

These questions were tackled using tools such as numerical modelling and data assimi-

lation. An important and consistent point throughout has been the possible improvements

that this work could bring to operational systems.

The first two questions were tackled in Chapters 4-5 by modifying atmospheric forc-

ing and sea level inside two operational models: SLOSH and CS3X. At the time of writing,
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SLOSH is used by the National Hurricane Centre (NHC) for tropical storm surge forecasting

for the US and CS3X for extratropical storm surge forecasting for the UK. It is important

that operational models were used, despite their relative simplicity, to truly evaluate po-

tential to improve operational forecasting.

In SLOSH, sea surface wind forcing was modified by replacing parametric wind fields

with near real-time analysis wind fields generated using multiple data sources. In CS3X,

sea level was modified via assimilation of near real-time data from tide gauges. In both

cases, realistic operational scenarios were considered, i.e. a time T was designated after

which no observations could be used. In other words, although case studies were performed

in the past the period of time after T was assumed to be the future and before T , the

past. Although results were varied, improvements were seen in the forecast ability of both

models. In the case of SLOSH, forecasts of maximum surge height were improved by up

to 0.29m on average (in some cases) and for CS3X, sea level forecasts saw improvement in

RMSE of up to 0.05m during the first 24 hours of forecast.

Improvements were not seen at every study location for either model however and many

were small – indeed some locations saw worsened forecast quality. Specifically in the case

of CS3X, improvements were unlikely to persist longer than around 24 hours of forecast,

especially for the UK, due to new information added to the model state leaving the domain as

a shallow water wave. Despite this, these results have significance for operational forecasting

as any improvement could make the difference between specific thresholds being exceeded

and, if necessary, warnings being issued. In terms of operational implementation, it depends

upon specific forecasting agencies and whether the cost of implementation is worth the

improvements demonstrated.

In both chapters, models of errors were created both spatially and temporally. In both

cases, there are many avenues for potentially improving these models. The methods used for

SLOSH were based on a very simply assumption of ergodicity. Further study into how wind

field errors persists into the future has the potential to give larger forecast improvements.

Although the error models estimated for CS3X can also be improved (e.g. less homogene-

ity, using adjoint models), it may not be as useful because, as discussed in Chapter-5,

assimilation perturbations do not persist for long.

In Chapter-6 the third question was tackled. Here, a new metric was introduced: the

residual volume (Vr). This describes the additional volume present in the North Sea due

to atmospheric forcing (wind and pressure). The large increase seen in Vr during a surge

event means that the statistic has the potential to be used for identification, quantification,

comparison and climatological studies of storm surges in the North Sea. We were able to
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use Vr to identify past surge events (volume increases in the North Sea during a storm

surge) and found it to be a good representation of the North Sea with a few exceptions:

the Thames Estuary and The Wash. These areas apparently behave differently to the rest

of the region during the generation of a surge and perhaps would need their own individual

statistics if Vr were to be used for analyses.

By identifying events and averaging Vr, it was found to take around 15 hours for the

quantity to half in magnitude from its maximum. Assuming that this can be extrapolated,

surges generated by storms making passage over the region within 30 hours of each other

may not be independent and, depending upon how long the sea takes to reach equilibrium,

coastal flooding may be exacerbated. This is just an estimation and such linear interpolation

might not be reasonable. Further study into the independence of consecutive storm surges

could include correlation analyses and idealised modelling experiments.

The results in this thesis provide some evidence that most of the water levels associated

with North Sea storm surges are generated internally. This has importance for understand-

ing the effects of data assimilation and brings us back to the results in Chapter-5. As

shown here, perturbations due to observations assimilated internally within the North Sea

travel as shallow water waves and thus do not persist for long. One might suggest that the

assimilation of observations externally (e.g. Atlantic Ocean) might change this conclusion.

However, if most of the additional water level is indeed generated internally, this assimila-

tion will only adjust the tides propagating in from the Atlantic. This applies to the case

where only sea level is assimilated, however assimilation of current observations from the

Atlantic and North Sea boundaries may still yield further improvements.

Of course, the model’s ability to correctly represent the tides is important. As discussed

in this thesis, tide-surge interaction can play an important part in sea level dynamics. In

Chapter-6, this effect was quantified in terms of volume in the North Sea. Volume transport

in and out of the North Sea was found to be slowed in the presence of tides, possibly due

to increased total friction in the area. There is more work to be done in the area of tide-

surge interactions, such as quantifying its components. For example, in Appendix-G some

early work in quantifying the modulation of the tide due to increased water depth has been

performed.

The work in Chapter-6 on volume in the North Sea is an initial investigation into the

validity of the metric and what it can tell us. It would be useful to develop a method for es-

timating volume (or residual volume) using observations alone, and perhaps only tide gauge

data. Some early work on doing just this is presented in Appendix-F. Additionally, further

work into the development of an integral metric for describing the contribution of different
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regions of the North Sea to volume generation would be useful for better understanding the

spatial nature of surge generation.

All the results in this thesis are subject to the quality of the models used. This is

a limitation that applies to any modelling study but is important to note nonetheless.

Both models used, SLOSH and CS3X, are operational models therefore concessions have

been made with respect to physics parameterisations and gridding schemes (and more)

in order to ensure the models run quickly. Both models use 2-dimensional grids, finite

differencing (although SLOSH uses elliptic/hyperbolic grids) and parameterisation for some

of the physics (surface and bottom stresses). For Chapters 4 and 5, this is not an issue as

it was the author’s intent to examine improvements to operational models specifically. As

discussed in Chapter-2, many of the more complex methods (e.g. finite element modelling,

3-dimensional grid) are infeasible in an operational setting and may not yield better forecasts

anyway. In Chapter-6 however, the use of a more complex model might yield further insights

into volume transport in the North Sea. It is possible that CS3X does not model these areas

well due to complex flows around complex coastal geometry and estuarine areas.

In all three results chapters, there is a strong focus on case studies (more so in Chapters

4 and 5). Case studies are useful, especially where data and events are lacking. However,

much of the work would benefit from further studies with a more statistical and long-term

basis.

Although only specific regions we considered throughout this thesis (US coastline and

North Sea) the results presented in this thesis could be applicable to other regions of the

world. The work with SLOSH could be applied to any regions where tropical cyclones are

prevalent, for example the Bay of Bengal (Dube et al., 2009), the Northwest Pacific and

Australia. Of course, there must be plenty of observations available in order to generate

the necessary analysis datasets.

The assimilation of tide gauge data into operational models could feasibly be applied

anywhere, although some conclusions may not hold. The North Sea is relatively small and

concave, meaning that although the observations are sparse and limited to coastal areas,

nowhere is far from assimilation locations. However, it would be worth investigation in

similar semi-enclosed seas and straits such as the Singapore Strait, Taiwan Strait, Baltic

Sea and Irish Sea.

The work with residual volume might be applicable in areas of a similar size proportional

to the typical spatial extent of a storm surge. Larger regions, e.g. Gulf of Mexico, are

significantly larger than the surges extent and thus the volume signal would potentially be

small. Additionally, large areas will also contain other atmospheric and oceanic processes,
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making it difficult to attribute volume changes to specific events. The chosen region must

also be open to a large body of water from which volume will be transported therefore

entirely enclosed seas (e.g. Baltic Sea) and lakes (e.g. the Great Lakes, U.S.) would not be

suitable.

It is important to make a distinction between two separate areas of research in this thesis:

storm surges in the tropics and midlatitudes. Although many of the processes are identical,

they have some key differences in terms of impacts, e.g. spatial extent, duration, frequency

and intensity. Many conclusions are also likely specific to each region. For example, the

work with modifying the wind forcing in SLOSH would not be applicable to the North Sea

due to the storm characteristics but also because the forcing used operationally already

contains assimilated data. Similarly, the volumetric work would likely be less useful for

tropical cyclone storm surges due to the variability of their locations.

Many of the methods developed in this thesis have potential to be built upon and

improved. For example, consider the method used in Chapter-4 for using analysis wind

fields to force the model. Many simplistic assumptions were made about the behaviour of

wind field errors and the method could benefit from a more in-depth and rigorous error

analysis. Instead of assuming the proportional errors were unchanging, correlations could

be found between forecasts of tropical cyclone properties such as direction, intensity and

central pressure. Observations could then be extrapolated to future time steps based on

these correlations.

The variational method used in Chapter-5 could potentially benefit from multiple small

adjustments. The work in this thesis looked at the assimilation of hourly observations,

however higher frequencies of 15 minutes and even 1 minute do exist at some locations and

could be assimilated. Similarly, data from more locations could be assimilated, especially

in the south of the North Sea. Another avenue for extending this work is to investigate the

assimilation of harmonic amplitudes and phases using a coast-following distance calculation

technique as in this thesis.

In the case of the volumetric work in Chapter-6, one of the largest avenues for future

work is the transition from using only model data to calculate volume to using using obser-

vations. It might be possible to combine observations from many locations to estimate the

residual volume. Indeed, this has been investigated and some preliminary work is shown in

Appendix-F.
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Appendix A

Estimation of storm centre from

scatterometry data

In Chapter-4, we investigate the use of analysis wind fields in operational tropical storm

surge forecasting. The wind fields used were generated using a combination of various

observation sources and modelled tropical cyclones. Prior to using these fields, we developed

some tools that could be used for generating our own analysis fields using a combination of

parametric wind fields and scatteromery data.

Initial investigations were made into how scatterometry data could be assimilated into or

combined with parametric wind fields. This data was taken from the eSurge database and is

comprised of wind speed and direction data or u (eastwards) and v (northwards) components

of the wind velocity. For both estimation of error statistics and the assimilation itself, our

proposed method required a good estimate of the storm centre. The preparation method

can be summarised as follows:

1. At time of scatterometry snapshot, generate parametric wind field at required model

locations and obtain information on storm centre and radius of maximum winds (R).

2. Align datasets by storm centre and convert latitude/longitude grid to new coordinates

in RX and RY whose axes point in the direction of the storms travel and have units

of R. This is to account for differences in storm size and structure.

3. Scatterometry can then be interpolated to the model grid locations or used in an

assimilation scheme.

Although best-track data can be used to identify storm centres, it is not available in real

time. To obtain a real-time estimation of storm centre from scatterometry, we utilised the
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Runge-Kutta method, which is a 4th order numerical integration scheme. Our centre-finding

algorithm is as follows:

1. Randomly place a particle into a single snapshot of scatterometry data.

2. Estimate the trajectory of the particle through the wind field using the Runge-Kutta

scheme. If particle leaves the maximum and minimum bounds of the observations

then go back to step 1. Halt the Runge-Kutta scheme when each successive particle

movement is smaller than 100m.

3. If the Runge-Kutta scheme has been successfully halted for 100 particles, go to step

5. Otherwise go back to step 1.

4. Calculate the mean of the final 100 particle positions to obtain an estimate of the

storm centre.

It is important to note that the method only works well when the data includes the

entire storm centre. More formally: a number of closed isobars are required for centre

estimation.

Figure-A.1(a)-(b) shows an illustration of the method for two example idealized wind

fields: A Fujita parametric wind field, generated with an inflow angle of 30◦ and an identical

field with random white noise added to the u and v components of wind velocity. The

addition of white noise in the second wind field allows us to test how robust the scheme is

in the presence of noise in the observations. Table-A.1 shows a comparison of the actual

centre to estimated centres for each field. For these fields, the estimation comes within 0.03

of the actual latitude and longitude for both fields, which is on the order of 2-3km. These

results are good and suggest that the algorithm has potential.

Latitude Longitude

Actual 20.00 88.00

Fujita 19.98 87.98

Fujita w/ Noise 20.03 87.98

Table A.1: Storm centre estimations for example idealized Fujita wind fields generated

using the Runge-Kutta centre estimation method. See Figure-A.1 for illustration.

Next we test the method on real scatterometry fields and compare the estimates to

best track data. Figure-A.1(c)-(d) shows illustrations of the methods used on wind fields
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for Hurricane Ike and Hurricane Gustav. For these examples, the algorithm gave centre

estimates that were 86km and 63km away from the best track centre locations respectively.

These distances are larger than the typical size of R, meaning that the algorithm as it

stands may not be reliable.

Figure A.1: Illustration of the Runge-Kutta storm centre estimation method. Arrows show

winds, coloured lines show a subsample of the trajectories of particles randomly placed into

the wind field. a) Standard example Fujita wind field. b) Standard Fujita wind field with

gaussian white noise added to the u and v components of the wind velocity. c) Snapshot of

Hurricane Ike, d) Snapshot Hurricane Gustav.
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The SLOSH Model: Overview,

Setup and Modification

Model Overview

For the numerical experiments in Chapter-4, the SLOSH model (Sea, Lake and Overland

Surges from Hurricanes) has been used. The model has been used extensively by the NHC

for operational storm surge forecasting for the US coastline. This appendix goes into more

detail on the model, specifically the grid, and the specific configuration used. For more

details see (Jelesnianski et al., 1992; Jelesnianski and Taylor, 1973).

The model uses elliptic or hyperbolic grids to model the sea surface. Doing this allows

for higher resolutions at the coast (or close to any choice of location) whilst maintaining the

ability to use finite differencing. Such a grid is defined by an origin point, radial increments

and angular increments relative to some axis. Before calculating ocean dynamics, the elliptic

or hyperbolic grid (z-plane) is transformed into a rectangular grid (ζ-plane) as shown in

Figure-B.2. The corners of each grid cell in the z-plane, defined in polar coordinates,

are mapped to the corners of rectangular grid cells in the ζ-plane, defined in cartesian

coordinates. The exact details of this transformation can be found in (Jelesnianski et al.,

1992).

The model comes packaged with many pre-defined domains (called basins), with dif-

ferent choices of these parameters. Figure-B.1(a) shows an example of a SLOSH basin at

Galveston, Texas – the domain used for the Hurricane Ike experiments in Chapter-4. The

origin of this domain can be seen on the top left and the resolution can be seen to increase

as the coastline and Galveston Bay is approached. Figure-B.1(b) shows all of the available
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pre-defined grids.

Model Setup

As dynamics are performed on the ζ-plane, input data and forcing is also represented on

this grid. Wind and pressure forcing is read into the model on a rectangular grid identical

to that used in the model. Bathymetry, based on GEBCO (Weatherall et al., 2015), is also

on this grid. All runs are performed with no tidal forcing, either at the boundary or through

tidal potential.

The model runs are performed on four of the pre-defined domains: one for each of the

Hurricane Ike and Gustav case studies and two for the Hurricane Sandy case study. Two

domains were required for Sandy due to its relatively large spatial extent. Domains were

chosen so as to maximise the model resolution at each of the tide gauges used in the study.

The domains chosen were (see Figure-B.1(b)):

• Domain 24 (Galveston Bay) for Hurricane Ike.

• Domain 21 (Lake Pontchartrain/New Orleans) for Hurricane Gustav.

• Domains 3 (New York/Long Island Sound) and 4 (Delaware Bay) for Hurricane Sandy.

Modification

Some modifications to the SLOSH source code were required in order for the analysis wind

fields to be used in the model. Input files were simple text files containing the u and v

components of the analysis wind velocity. The data was always in a 150× 150 spatial grid,

with the storm centre located at (75, 75). As the resolution of the analysis fields in known,

this means that no latitude/longitude data was required as input.

The section of the SLOSH code that calculated the parametric wind fields was removed

and replaced with the new analysis wind field data. Interpolation to the model grid was

required and this was done in (u, v) space using linear interpolation. The main challenge was

ensuring that the analysis data was in the same co-ordinate space as the model’s parametric

fields. The analysis data used has its y-axis aligned with north-south axis and its x-axis

aligned with west-east. The model axes however are dependent upon the basin modelled.

SLOSH’s hydrodynamic equations are modelled on a polar or hyperbolic grid. This grid

can be orientated in any direction, dependent upon the selected basin. The parametric
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Figure B.1: a) Example of an elliptical SLOSH grid at Galveston Bay, Texas. The

resolution can clearly be seen to increase nearer the coast. b) All SLOSH basins that can be

chosen for a model run. Both figures from (Jelesnianski et al., 1992).

wind fields are on a rotated rectangular grid, with its y-axis parallel to the principal axis of

the polar/hyperbolic grid.

Call the coordinates of the analysis wind fields (x, y) and the coordinates of the SLOSH

parametric wind fields (x′, y′). Define θ′ to be the bearing of the y′-axis. Then coordinates

in (x, y) space can be easily transformed to (x′, y′) space using a rotation matrix:

[
x′

y′

]
=

[
cos(360− θ) sin(360− θ)
− sin(360− θ) cos(360− θ)

][
x

y

]
(B.1)

However, as all the wind variables are relative to the storm centre (distance and angle),

it is u and v that must be transformed to the new co-ordinate system. This requires a

rotation of the wind velocity in the opposite direction to the rotation of coordinates:

[
u′

v′

]
=

[
cos θ sin θ

− sin θ cos θ

][
u

v

]
(B.2)

See Figure-B.3 for an illustration.
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Figure B.2: Illustration of the coordinate transform from an elliptical SLOSH grid (z-

plane) to a rectangular grid (ζ -plane). The corners of each grid cell in the original elliptical

grid (a,b,c,d) are mapped to the corners of a rectangular grid cell. Figure from (Jelesnianski

et al., 1992).

Figure B.3: Illustration of rotation necessary for using analysis wind fields in SLOSH

model.
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Dijkstra’s algorithm: description

and implementation

In Chapter-5, we present Dijkstra’s shortest path algorithm as an alternative for calcu-

lating distances between model grid point pairs. Here, we set out the algorithm and our

implementation of it with the model grid.

Algorithm

In mathematics, a network or graph is a a data structure consisting of a set of nodes V (or

vertices) and edges E. Edges are represented as pairs of nodes, which can be envisaged as

the connections between each node. Edges may be comprised of either ordered or unordered

node pairs. In the case of unordered pairs, the graph is called undirected, i.e. the direction

of travel along a connection between two nodes is not important. Otherwise, the graph is

called directed. To each edge, an additional weight may be assigned, which can be thought

of as the cost of travelling along that edge (e.g. distance). The set of weights will be referred

to as W . A path P in a network is a sequence of distinct nodes and connecting edges. A

cost may be assigned to a given path, which is often the sum of all weights connected to

the edges in P .

A basic example of an undirected network with weights and a path example is shown in

Figure-C.1 and Table-C.1.

A network can be represented using an adjacency matrix A. For an undirected network,

this is a square, symmetric matrix of size N ×N , where N is the number of nodes. There

are a number of ways to fill this array, but in our case we assigned to each element (i, j)
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4

3

1

5

2 1

2

2 3

1

Figure C.1: Example of a network. Blue circles are nodes, black lines are edges and

numbers in white squares are weights associated with each edge. Edges and weights are

shown in Table-C.1. Red highlighted line indicates an example of a path through the network.

The path can be written as a sequence of nodes and edges: 1, {1,3}, 3, {3,4}, 4, {4,5}, 5.

Edges (E) Weights (W)

{1,3} 2

{2,3} 1

{3,4} 2

{3,5} 3

{4,5} 1

Table C.1: Edges and weights for the network shown in Figure-C.1.

the weight wi,j of edge ei,j connecting nodes vi and vj . For nodes with no connecting edge,

we assigned ∞ and the assumption is made that an edge never connects a node to itself.

An example network containing 5 nodes and 5 edges is shown in Figure-C.1, along with

an example path through the network. For this network, the adjacency matrix, A, would

look like:

A =



∞ ∞ 2 ∞ ∞
∞ ∞ 1 ∞ ∞
2 1 ∞ 2 3

∞ ∞ 2 ∞ 1

∞ ∞ 3 1 ∞


(C.1)

We can now lay out Dijkstra’s algorithm. The method used here is iterative and finds
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the shortest path (or least total summed weights) between a single source node and a

destination node.

1. Define two sets: unvisited and visited nodes. Initalise by placing all nodes in the

unvisited set. Define a source node.

2. For all nodes assign an initial distance value. Begin with ∞ for all other nodes and 0

for the source node. Initialise a the current node as the source node.

3. Look at all unvisited nodes neighbouring the current node. For each, calculate the

distance through the current node, compare to that node’s current assigned distance

value and assign the smaller one to the node’s distance value.

4. When all neighbouring unvisited nodes are considered, place current node in visited

set.

5. If destination node is in visited set then stop the algorithm. Otherwise, set the

unvisited node with the smallest assigned distance value to be the current node and

go back to step 3.

There are a few variants on the algorithm, for example finding the shortest paths between

a source node and every other node.

Implementation

For path searching through the model domain, the model grid needs to be first converted

into a network. To do this, the centre of model grid cells are assigned nodes and edges

connect neighbouring nodes in eight direction: horizontally, vertically and diagonally. Grid

cells that represent land points are simply not connected into the network. The geographical

distances between each neighbouring grid cell are assigned as weights to the relevant edges.

Figure-C.2 shows an example of this conversion.

Once the conversion is complete, an adjacency matrix can be constructed and Dijkstra’s

algorithm performed. The correlation functions estimated in Chapter-5 can then easily

be applied at each location. An example of this is shown in Figure-C.3, which shows

correlations calculated using Euclidean and Dijkstra-based distances between Hanstholm

and all other locations. Differences between the two methods are most noticeable in the

Kattegate (east of Denmark). Here, correlations are much lower for the Dijkstra-based

method, whereas correlations for the Euclidean method go ”straight through” Denmark. A
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second notable feature is that the Dijkstra based method results in a more angular shape –

an artefact of our grid-network conversion method above.

1 2 3

4 5 6

7 8 9

3

65

8 9

Model grid Network

Figure C.2: Example of a conversion from model grid to network. Left: Original model

grid. Grey squares represent land and white squares represent ocean. Right: Corresponding

network. Land points are not included.

Figure C.3: Correlation between Hanstholm and all other model locations using distances

calculated with Euclidean and Dijkstra-based methods.
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Conjugate gradient method for

minimization

As discussed in Chapter-5, variational assimilation requires the minimization of the cost

function J :

J(xa) = (xa − xb)TB−1(xa − xb) + (y −Hxb)
TR−1(y −Hxb), (D.1)

where xa and xb are vectors of length N , y is a vector of length M , B−1 is a N ×N square

symmetric matrix, R−1 is a M ×M square diagonal matrix of size and H is a M × N

matrix. Here we cover the basics of the conjugate method and give further detail on its

implementation into our own data assimilation system.

Algorithm

Popular classes of algorithms available for finding the solution of such optimisation prob-

lems include the Steepest-Descent method, Quasi-Newton methods and Conjugate Gradient

(CG) methods (Hestenes and Stiefel, 1952). For our minimization, we used the CG method

(see Algorithm-D).

The CG method is used for solving systems of linear equations, i.e:

Ax = b, (D.2)

where A is a positive definite, symmetric matrix of size N×N and x and b are vectors of

length N . It is imperative for this condition on A to be satisfied in order for the algorithm

to work. The algorithm is as follows:
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r0 = b−Ax0

p0 = r0

k = 0

while rk > stop condition do

αk =
rTk rk

pT
k Apk

xk+1 = xk + αkpk

rk+1 = rk − αkApk

βk =
rTk+1rk+1

rTk rk

pk+1 = rk+1 + βkpk

k = k + 1

end while

Here, r is called the residual and is used to determine when to stop the algorithm. The

smaller the halting value the more accurate the solution but the algorithm takes longer

to converge. p and α are analogous to the search direction and step length respectively

from standard numerical optimisation theory. For example, when performing the steepest

descent method, one would search for the local minima in the direction of the of the steepest

negative gradient. For the CG method however, all search directions used must be conjugate

with respect to A. I.E. every pair of search direction pi and pj must satisfy:

piApj = 0. (D.3)

Doing this ensures that the algorithm will converge in at most N iterations. In reality

this isn’t always true however due to small floating points errors.

In order to use the CG method, we must find an equivalence between our minimization

problem and solving a system of linear equations. To do this, we use the fact that, at

its minimum, the gradient of our cost function ∇J(xa) is zero. Using some linear algebra

definitions and rearranging we have:

∇J(xa) = (B−1 + HTR−1H)xa −HTR−1(y −Hxb) = 0. (D.4)

This is a system of linear equations of the form in Equation-D.2 where:

x = xa, (D.5)

A = B−1 + HTR−1H (D.6)

b = HTR−1(y −Hxb). (D.7)
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This definition of A can be shown to be both symmetric and positive definite, so long

as B is also symmetric and positive definite.

The standard CG method can be slow for large problems. Preconditioning is often

applied to speed up convergence of the algorithm. This is a transformation of the problem

with the aim reducing the condition number of A. I.E. a preconditioner is a matrix M of

size N ×N such that:

cond(M−1A) < cond(A). (D.8)

An example is the Jacobi preconditioner. This simple method uses a preconditioning

matrix M whose elements are zero everywhere, except along the diagonal which matches

the diagonal of A. M−1 is almost as easy to calculate, only requiring the calulation of the

reciprocal of each diagonal element (the rest of the matrix remains zero).

A preconditioning method which works well with variational assimilation is the control

variable transform, or CVT (Lorenc et al., 2000). This involves making the substitution

v =
√

Bδx into Equation-D.1, where
√

B is the matrix square root. Rearranging, we get a

new cost function Ĵ , which we wish to minimize with respect to v:

Ĵ(v) =
1

2
vT v +

1

2
(H
√

Bv − d)TR−1(H
√

Bv − d). (D.9)

For the gradient we now have:

∇Ĵ(v) = (I +
√

BHTR−1H
√

B)v −
√

BHTR−1d. (D.10)

This can now be set equal to zero and the CG method used to solve for v. The definition

of v is then inverted to obtain δx.

Implementation

For our minimization we used the CVT and also tested a Jacobi preconditioner. We per-

formed intial tests using real data assimilation problems with CS3X to determine which

method would be the best. The average number of iterations required by the method

with no preconditioner, a Jacobi preconditioner and the CVT was 2085, 1653 and 47 re-

spectively. CVT converges significantly quicker than both the vanilla CG method and

Jacobi-preconditioned CG method.
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Modifications to CS3X Model

For our studies involving the assimilation of tide gauge data into a North Sea storm surge

model, an additional set of Fortran code was written and coupled with the CS3X model.

The entirety of the assimilation code is kept in two fortran90 files: assim.f90, which han-

dles the data from the model and its transformations and var3d.f90, which contains the

variational assimilation and minimization code. An additional module file assimdata.f90

contains adjustable parameters and information about the model (e.g. grid size). An out-

line of the subroutines used can be found in Table-E.1 and are presented approximately in

the order they are used. The code can be found later in this appendix.

Subroutine Outline Category

a handleAssim Main controller for assimilation and inter-

face/entry point for ocean model.

Control

a assimilate Handles transform subroutines and passes

them to the assimilation. Calls matrix gen-

eration subroutines.

Control

a initVar Initialises assimilation parameters and reads

in necessary files.

Initialization

decompress For converting model state x from the com-

pact compressed form used in CS3X to a fully

2D grid form for assimilation.

Variable Transform

compress Returns 2D grid form of model state back to

compressed form for use in CS3X

Variable Transform
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extractCS3Grid Removes smaller CS3 Grid from CS3X grid,

ready for assimilation.

Variable Transform

insertCS3Grid Re-inserts the smaller CS3 grid into the

CS3X grid, ready for compression and pass-

ing back to the ocean model.

Variable Transform

sqrtm Finds the square root U of a matrix B, de-

fined as B = UUT . Passes array to Matlab

to utilise its very fast square rooting algo-

rithm.

Utility

a Var Handles the assimilation algorithm and

makes calls to the minimization procedures.

Assimilation

a genR Generates the inverse of the observation er-

ror covariance matrix R−1. This is calculated

using inputs of error variance at each obser-

vation location and is strictly diagonal.

Initialization

a genH Generates a simple tangent linear operator

matrix H.

Initialization

a cg Performs the conjugate gradient minimiza-

tion algorithm.

Assimilation

a jpcg Performs the conjugate gradient minimiza-

tion algorithm after first applying a Jacobi

Preconditioner.

Assimilation

applyMask Applies a mask to a 2D arrays, removing

specified elements and transforming it into

a vector ready for assimilation.

Variable Transform

removeMask Removes mask, reconstructing a 2D grid from

a vector.

Variable Transform

stack Stacks elements of a 2D arrays into a vector. Utility

unstack Unstacks a vector into a 2D of specific dimen-

sion.

Utility

Table E.1: Subroutines used for data assimilation into CS3X and their function.
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Verbatim Code

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine a handleAssim ( dt , loopcount , x model , NTRNS )

i n t e g e r i , loopcount

r e a l dt , cur renthr

r ea l , dimension ( n c s3pt s ) : : x model

in t ege r , dimension ( n rows ) : : NTRNS

! Assuming the i n i t i a l va lue f o r loopcount i s 1

! cur renthr = ( dt ∗( loopcount −1) ) /3600

cur renthr = ( dt ∗( loopcount ) ) /3600 . + 1

! i f s t a r t o f model run , f i r s t load in nece s sa ry f i l e s .

i f ( loopcount . eq . 1) then

wr i t e (6 ,∗ ) ’ I n i t i a l i s i n g a s s i m i l a t i o n . . . ’

c a l l a in it3DVar (NTRNS)

wr i t e (6 ,∗ ) ’ As s im i l a t i on i n i t i a l i s e d ’

e n d i f

! i f cur rent hour i s with in a s s i m i l a t i o n bounds & on the

hour

i f ( cur renthr . ge . s t h r . and . cur renthr . l e . ( s t h r+n hrs ) . and

. ( currenthr−f l o o r ( cur renthr ) ) . eq . 0 ) then

wr i t e (6 ,∗ ) ’ As s im i l a t i ng . . ’ , cu r renthr

c a l l a a s s i m i l a t e ( currenthr , x model )

e n d i f

end subrout ine a handleAssim

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine a a s s i m i l a t e ( currenthr , x )

r ea l , i n t e n t ( in ) : : cur renthr
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rea l , dimension ( n obs , n obs ) : : R

rea l , dimension ( n c s3pt s ) : : x

r ea l , dimension ( n gpts ) : : x decomp

rea l , dimension ( n gp t s e ) : : x decomp e

rea l , dimension ( n bpts ) : : x ass im

in t ege r , dimension ( n obs , n bpts ) : : H

i n t e g e r i , i t c ount

r ea l , dimension ( n obs ) : : y

! Generate R Matrix

c a l l a genR ( R, n obs , a obsvar )

! Generate H Matrix

c a l l a genH ( H, n obs , n bpts , a obs index )

! Read in the r e l e v a n t l i n e from obs f i l e ( r e q u i r e s

sk ipp ing a number o f r e co rd s )

open (217 , f i l e =”a obs . txt ” , form=’ formatted ’ , s t a t u s =’old

’ )

! sk ip r e co rd s

do i = 1 , 3 + ( obs s t −1) + ( assimnumber−1)∗ f r e q

read (217 ,∗ )

end do

! read l i n e

read (217 ,∗ ) y

! wr i t e (6 ,∗ ) y

c l o s e (217)

! Decompress model s t a t e vec to r

c a l l decompress ( x decomp , x )

! Extract the CS3 Grid from the l a r g e r CS3X gr id

c a l l extractCS3Grid ( x decomp , x decomp e )

! Apply landmask to remove land and get a reduced s t a t e

vec to r

c a l l applyMask ( x decomp e , x assim , n gpts e , n bpts ,

landmask )
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! Perform the 3DVar

c a l l a 3DVar ( x assim , y , a Bs , H, R, a s s i m s c a l e f a c t o r ,

n obs , n bpts , i t c ount )

! Write to as s imlog . txt

c a l l writeLog ( currenthr , i t count , x ass im )

! Remove landmask to r e c o n s t r u c t the 2D CS3 Grid

c a l l removeMask ( x decomp e , x assim , n gpts e , n bpts ,

landmask )

! Re inse r t CS3Grid in to l a r g e r CS3X gr id

c a l l insertCS3Grid ( x decomp , x decomp e )

! Compress CS3X gr id back in to compressed s t a t e vec to r

c a l l compress ( x decomp , x )

! Update a s s i m i l a t i o n number

assimnumber = assimnumber + 1

end subrout ine a a s s i m i l a t e

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine a i n i t V a r (NTRNS)

i n t e g e r i , j

r ea l , dimension ( : ) , a l l o c a t a b l e : : Bvec

r ea l , dimension (4 ) : : params

in t ege r , dimension ( n rows ) : : NTRNS

! Read in a s s i m i l a t i o n c o n t r o l f i l e to params

open (217 , f i l e =”a a s s i m c n t l . txt ” , form=’ formatted ’ ,

s t a t u s =’old ’ )

read (217 ,∗ ) ( params ( i ) , i =1 ,4)

c l o s e (217)

! Separate params in to d i f f e r e n t module parameters
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s t h r = params (1 )

n hrs = params (2)

f r e q = params (3)

o b s s t = params (4 )

! Def ine s i z e s o f a r rays

a l l o c a t e ( a Bs ( n bpts , n bpts ) )

a l l o c a t e ( Bvec ( n bpts ∗∗2) )

! Read in a Bss to vec to r and reshape in to array

open (217 , f i l e =”a Bs . bin ” , form=’unformatted ’ , a c c e s s =’

stream ’ , s t a t u s =’old ’ )

read (217) ( Bvec ( i ) , i =1, n bpts ∗∗2 )

c l o s e (217)

a Bs = reshape ( Bvec , ( / n bpts , n bpts /) )

d e a l l o c a t e ( Bvec )

! Read in obs f i l e and separa te in to r e l e v a n t v a r i a b l e s .

open (217 , f i l e =”a obs . txt ” , form=’ formatted ’ , s t a t u s =’old

’ )

read (217 ,∗ ) n obs

a l l o c a t e ( a obsvar ( n obs ) )

a l l o c a t e ( a obs index ( n obs ) )

read (217 ,∗ ) a obsvar

read (217 ,∗ ) a obs index

c l o s e (217)

n gpts = n rows∗ n c o l s

n gp t s e = n rows e ∗ n c o l s e

a l l o c a t e ( z ends ( n rows ) )

a l l o c a t e ( landmask ( n gp t s e ) )

do i = 1 , n rows

z ends ( i ) = NTRNS( i )

end do
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! Read Compression i n f o out o f setup f i l e ( check c o r r e c t

f i l e i s l i nked )

open (217 , f i l e =’ frmtdat . bin ’ , s t a t u s =’old ’ , form = ’

unformatted ’ , a c c e s s =’stream ’ )

read (217) ( landmask ( i ) , i = 1 , n gp t s e )

c l o s e (217)

! I n i t i a t e a s s i m i l a t i o n number

assimnumber = 1

end subrout ine a init3DVar

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine compress ( x f u l l , x comp )

rea l , dimension ( n gpts ) : : x f u l l

r ea l , dimension ( n rows , n c o l s ) : : x temp

rea l , dimension ( n c s3pt s ) : : x comp

i n t e g e r i , pos1 , pos2

pos2 = z ends (1 )

pos1 = 1

c a l l unstack ( x temp , x f u l l , n rows , n c o l s )

do i = 1 , n rows−1

x comp ( pos1 : pos2 ) = x temp ( i , 1 : z ends ( i ) )

pos1 = pos2 + 1

pos2 = pos2 + z ends ( i +1)

end do

end subrout ine compress

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine decompress ( x f u l l , x comp )
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rea l , dimension ( n rows∗ n c o l s ) : : x f u l l

r ea l , dimension ( n rows , n c o l s ) : : x temp

rea l , dimension ( n c s3pt s ) : : x comp

i n t e g e r i , pos1 , pos2

x temp = 0

pos2 = z ends (1 )

pos1 = 1

do i = 1 , n rows−1

x temp ( i , 1 : z ends ( i ) ) = x comp ( pos1 : pos2 )

pos1 = pos2 + 1

pos2 = pos2 + z ends ( i +1)

end do

c a l l s tack ( x temp , x f u l l , n rows , n c o l s )

end subrout ine

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine extractCS3Grid ( x cs3x , x ex t ra c t ed )

r ea l , dimension ( n gpts ) : : x cs3x

rea l , dimension ( n rows , n c o l s ) : : x g r i d

r ea l , dimension ( n rows e , n c o l s e ) : : x g r i d e

r ea l , dimension ( n gp t s e ) : : x ex t ra c t ed

c a l l unstack ( x gr id , x cs3x , n rows , n c o l s )

x g r i d e = x g r i d ( 1 : 1 3 5 , 4 9 : 1 9 8 )

c a l l s tack ( x g r i d e , x ext rac ted , n rows e , n c o l s e )
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end subrout ine

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine insertCS3Grid ( x cs3x , x ex t ra c t ed )

r ea l , dimension ( n gpts ) : : x cs3x

rea l , dimension ( n rows , n c o l s ) : : x g r i d

r ea l , dimension ( n rows e , n c o l s e ) : : x g r i d e

r ea l , dimension ( n gp t s e ) : : x ex t ra c t ed

c a l l unstack ( x g r i d e , x ext rac ted , n rows e , n c o l s e )

c a l l unstack ( x gr id , x cs3x , n rows , n c o l s )

x g r i d ( 2 : 1 3 4 , 5 0 : 1 9 7 ) = x g r i d e ( 2 : 1 3 4 , 2 : 1 4 9 )

c a l l s tack ( x gr id , x cs3x , n rows , n c o l s )

end subrout ine

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine sqrtm ( A, N, U )

i n t e g e r : : N, i

r ea l , dimension (N,N) : : A, U

rea l , dimension (N∗∗2) : : Bvec

Bvec = reshape (A, ( /N∗∗2/) )

open (217 , f i l e =”B mat . bin ” , form=’unformatted ’ , a c c e s s =’

stream ’ )

wr i t e (217) ( Bvec ( i ) , i =1,N∗∗2 )

c l o s e (217)

c a l l system ( ’ matlab −nojvm −nod i sp lay −nosp lash −r ”run

sc r sqr tm .m” ’ )

144



APPENDIX E. MODIFICATIONS TO CS3X MODEL

open (217 , f i l e =”B mat . bin ” , form=’unformatted ’ , a c c e s s =’

stream ’ , s t a t u s =’old ’ )

read (217) ( Bvec ( i ) , i =1,N∗∗2 )

c l o s e (217)

U = reshape ( Bvec , ( /N, N/) )

end subrout ine sqrtm

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine a Var (xb , obs , a Bs ,H, Rinv , alpha , n obs , n bpts , i t c ount )

i n t e g e r n obs , n bpts , i , j , i t c ount

r e a l alpha

rea l , dimension ( n obs ) , i n t e n t ( in ) : : obs

r ea l , dimension ( n obs ) : : innovat ion

rea l , dimension ( n bpts ) : : xb , increment , b , v

r ea l , dimension ( n bpts , n bpts ) , i n t e n t ( in ) : : a Bs

rea l , dimension ( n bpts , n bpts ) : : A

rea l , dimension ( n obs , n obs ) , i n t e n t ( in ) : : Rinv

in t ege r , dimension ( n obs , n bpts ) , i n t e n t ( in ) : : H

rea l , dimension ( n bpts , n obs ) : : BsHtR , BsHt

! Prepare f o r conjugate g rad i ent method by c a l c u l a t i n g A

and b us ing a rearranged

! g rad i ent o f the 3DVar co s t func t i on ( grad J ( x ) )

innovat ion = obs − (matmul (H, xb ) )

BsHt = matmul ( a Bs , t ranspose (H) )

BsHtR = matmul (BsHt , Rinv )

A = matmul (BsHtR , t ranspose (BsHt ) )

b = matmul (BsHtR , innovat ion )

do i = 1 , n bpts

A( i , i ) = A( i , i ) + 1
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end do

v ( : ) = 0

i t count = 0

! conjugate g rad i en t method to get the increment (

minimizing J ( x ) )

c a l l a cg (A, b , v , n bpts , i t c ount )

increment = matmul ( a Bs , v )

! apply increment to obta in a n a l y s i s

xb = xb + a s s i m s c a l e f a c t o r ∗ increment

end subrout ine a Var

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine a genR (R, n obs , obsvar )

r ea l , dimension ( n obs , n obs ) : : R

rea l , dimension ( n obs ) : : obsvar

i n t e g e r i , n obs

R( : , : ) = 0

do i =1, n obs

R( i , i ) = 1/ obsvar ( i )

end do

end subrout ine a genR

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine a genH (H, n obs , n bpts , obs index )
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i n t e g e r n obs , n bpts , i , h i

i n t ege r , dimension ( n obs ) : : obs index

in t ege r , dimension ( n obs , n bpts ) : : H

H( : , : ) = 0

do i = 1 , n obs

H( i , obs index ( i ) ) = 1

end do

end subrout ine a genH

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine a cg ( A, b , x , L , i t c ount )

i n t e g e r i tcount , L , i t s t op , i , j

r ea l , dimension (L) : : d , r , Ad, b , x

r ea l , dimension (L , L) , i n t e n t ( in ) : : A

r e a l s t o p c r i t e r i o n , alpha , r so ld , rsnew , t1 , t2

s t o p c r i t e r i o n = 10E−10

i t count = 0

i t s t o p = 15000

x ( : ) = 0

r = b − matmul (A, x ) ! r e l a t i v e

r e s i d u a l

d = r !

s tep d i r e c t i o n

r s o l d = dot product ( r , r ) ! r

squared o ld

rsnew = r s o l d ! i n i t i a l

rsnew
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! Main loop . whi l e the norm( r ) i s l a r g e r than the stopping

c r i t e r i o n and the

! number o f i t e r a t i o n s i s sma l l e r than the s i z e o f x .

do whi l e ( s q r t ( rsnew ) . ge . s t o p c r i t e r i o n )

! c a l l cpu time ( t1 )

! Check i t e r a t i o n count hasnt exceeded i t s t o p

i f ( i t c ount . eq . i t s t o p ) then

wr i t e (6 ,∗ ) ’CG DID NOT CONVERGE IN ’ ,

i t s t op , ’ITERATIONS . . EXITING’

stop

end i f

! wr i t e (6 ,∗ ) s q r t ( rsnew )

Ad = matmul (A, d)

alpha = r s o l d /( dot product (d ,Ad) ) ! s t ep

l ength

x = x + alpha ∗d ! update

s o l u t i o n

r = r − alpha ∗Ad !

update r e s i d u a l

rsnew = dot product ( r , r ) ! update

squared r e s i d u a l

d = r + ( rsnew/ r s o l d ) ∗d ! update

s tep d i r e c t i o n

r s o l d = rsnew ! update

new squared r e s i d u a l

i t c ount = i t count + 1 ! i n c r e a s e

i t e r a t i o n number

! c a l l cpu time ( t2 )

! wr i t e (6 ,∗ ) i t count , s q r t ( rsnew ) , t2−t1

148



APPENDIX E. MODIFICATIONS TO CS3X MODEL

end do

end subrout ine a cg

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine a jpcg ( A, b , x , L , i t c ount )

i n t e g e r i tcount , L , i t s t op , i , j

r ea l , dimension (L) : : d , r , Ad, b , x , r new , Mr, Mr new

rea l , dimension (L , L) : : A, M

r e a l s t o p c r i t e r i o n , alpha , rs , beta , t1 , t2

s t o p c r i t e r i o n = 10E−6

i t count = 0

i t s t o p = 15000

x ( : ) = 0

M( : , : ) = 0

do i = 1 ,L

M( i , i ) = 1/A( i , i ) ! I nve r s e

jacob ian p r e c o n d i t i o n e r

end do

r = b − matmul (A, x ) ! r e l a t i v e

r e s i d u a l

Mr = matmul (M, r )

d = Mr ! s tep d i r e c t i o n

r s = dot product ( r , r )

! Main loop . whi l e the norm( r ) i s l a r g e r than the stopping

c r i t e r i o n and the

! number o f i t e r a t i o n s i s sma l l e r than the s i z e o f x .
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open ( un i t =218 , f i l e =’ r . txt ’ , form=’ formatted ’ )

do whi l e ( s q r t ( r s ) . ge . s t o p c r i t e r i o n )

wr i t e (6 ,∗ ) rs , i t c ount

! c a l l cpu time ( t1 )

! Check i t e r a t i o n count hasnt exceeded i t s t o p

i f ( i t c ount . eq . i t s t o p ) then

wr i t e (6 ,∗ ) ’JPCG DID NOT CONVERGE IN ’ ,

i t s t op , ’ITERATIONS . . EXITING’

stop

end i f

! wr i t e (6 ,∗ ) s q r t ( r s )

Ad = matmul (A, d)

alpha = dot product ( r ,Mr) /( dot product (d ,Ad) )

! s tep l ength

x = x + alpha ∗d
! update s o l u t i o n

r new = r − alpha ∗Ad

! update r e s i d u a l

r s = dot product ( r new , r new )

! update squared r e s i d u a l

Mr new = matmul (M, r new )

beta = dot product ( r new , Mr new) / dot product ( r ,Mr

)

d = Mr new + beta ∗d
! update s tep d i r e c t i o n
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Mr = Mr new

r = r new

i t count = i t count + 1

! i n c r e a s e i t e r a t i o n number

! c a l l cpu time ( t2 )

! wr i t e (6 ,∗ ) i t count , s q r t ( r s ) , t2−t1

end do

end subrout ine a jpcg

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine applyMask ( x f u l l , x reduced , n f u l l , n red , mask )

r ea l , dimension ( n f u l l ) : : x f u l l

i n t ege r , dimension ( n f u l l ) : : mask

rea l , dimension ( n red ) : : x reduced

i n t e g e r kount , i , n f u l l , n red

kount = 1

do i = 1 , n f u l l

i f (mask ( i ) . eq . 0) then

x reduced ( kount ) = x f u l l ( i )

kount = kount + 1

e n d i f

end do

end subrout ine

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine removeMask ( x f u l l , x reduced , n f u l l , n red , mask )
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rea l , dimension ( n f u l l ) : : x f u l l

i n t ege r , dimension ( n f u l l ) : : mask

rea l , dimension ( n red ) : : x reduced

i n t e g e r kount , i , n f u l l , n red

kount = 1

x f u l l = 0

do i = 1 , n f u l l

i f (mask ( i ) . eq . 0 ) then

x f u l l ( i ) = x reduced ( kount )

kount = kount + 1

e n d i f

end do

end subrout ine

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine s tack ( x unstacked , x stacked , nr , nc )

r ea l , dimension ( nr , nc ) : : x unstacked

rea l , dimension ( nr∗nc ) , i n t e n t ( out ) : : x s tacked

i n t e g e r i , pos1 , pos2 , nr , nc

pos1 = 1

do i = 1 , nc

pos2 = pos1 + nr − 1

x stacked ( pos1 : pos2 ) = x unstacked ( : , i )

pos1 = pos2 + 1

enddo

end subrout ine

!∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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subrout ine unstack ( x unstacked , x stacked , nr , nc )

r ea l , dimension ( nr , nc ) : : x unstacked

rea l , dimension ( nr∗nc ) : : x s tacked

i n t e g e r i , pos1 , pos2 , nr , nc

pos1 = 1

do i = 1 , nc

pos2 = pos1 + nr − 1

x unstacked ( : , i ) = x stacked ( pos1 : pos2 )

pos1 = pos2 + 1

enddo

end subrout ine
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Appendix F

Estimation of residual volume from

observations

The volumetric experiments in Chapter-6 are all based on numerical model data. It would

be useful however to estimate residual volume (Vr) from tide gauge observations alone so

that the quantity is independent of any model and can easily be calculated with mini-

mum computational overheads. Data assimilation methods could also be used to combine

observations and model, but they are not considered here.

As Vr is equivalent to the sum of all non-tidal residuals (NTRs) in the North Sea, I

investigate how observed NTR can be used but also the skew surge (see Chapter-2). It is

important to note that all experiments in this appendix are done using the model only, and

no observations are used. I am merely assessing the validity of the method.

I begin by calculating skew surges (SS) at all model grid points. Ideally, I would like

time series of SS with the same temporal resolution as NTR. However the skew surge is,

by definition, a single measure for each tidal cycle. Therefore, I assume SS occur at the

time of high water and linearly interpolate in time to create a full time series. I then sum

SS over the entire North Sea to estimate Vr, the results of which are shown in Figure-F.1.

This estimate is reasonable, although not perfect: it follows the general shape of Vr well

but tends to underestimate maxima and overestimate minima by a small amount.

Next I consider the spatial aspect of the problem. Tide gauges are sparse in the North

Sea and so some significant spatial interpolation of NTR or SS will be required for calcu-

lation of Vr. For this I use Barnes interpolation which has historically seen use in weather

forecasting. The scheme uses gaussian functions based on distance to interpolate. I use

a length scale of 1 Rossby radius in the interpolation. Figure-F.1(b) shows the results of
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estimating Vr by interpolating model NTR and SS data from the 15 tide gauge locations

used in Chapter-5. Both NTR and SS estimations capture the general shapes and trends of

Vr, however the NTR estimation is significantly more variable. These results show promise,

however, and further refinement of the method might yield better results. The next step in

this work would be to apply this method to actual observations from tide gauges around

the North Sea.

Figure F.1: a) Sum of all model non-tidal residuals (Vr) compared with sum of all model

skew surges (interpolated in time) in the North Sea. All model grid points in the North

Sea have been used. b) Estimation of residual volume Vr from pseudo-observations taken

from 17 model locations corresponding to tide gauges around the North Sea. Non-tidal

residuals and skew surge from the 17 locations are interpolated spatially and temporally using

Barnes interpolation. Interpolated fields are them summed to estimate residual volume.

The line representing residual volume is calculated using all model points (no the pseudo-

observations) and is for comparison purposes.
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Appendix G

Quantifying the bathymetric effect

in the North Sea

As discussed throughout this thesis, tide-surge interaction can affect sea level, both in

terms of magnitude and timing. One component of the interaction is what we will term

the bathymetric effect. This is the modulation of the tidal wave due to depth differences

caused by a storm surge. Tidal waves travel as shallow water waves so their speed, c, can

be determined using the shallow water wave equation:

c =
√
gh, (G.1)

where g is the acceleration due to gravity and h is the water depth. A storm surge that

increases sea level also increases h and subsequently increases the speed of tidal propagation.

Depth changes also modify the impact of stresses at the sea surface and sea bed. In theory,

this could change the timing and magnitude of high water at a given location – but by how

much? We have done some preliminary work with a novel method to quantify this effect.

Some early results are presented here.

To begin with we look at a single idealized calculation. For a domain that is uniformly

50m deep in the absence of atmospheric forcing, but a storm surge increases this depth by

3m uniformly, we have two wave speeds cm where m is the depth in metres:

c50 =
√

9.81× 50 = 22.15ms−1, (G.2)

c53 =
√

9.81× 50 = 22.80ms−1. (G.3)

So in the two cases, there is a 0.65ms−1 difference in wave speed. Over a 1000km
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Figure G.1: Time difference in minutes of the crest of a Kelvin wave having travelled

1000km due to a uniform increase of depth by 0.5m, 1m, 1.5m, 2m, 2.5m and 3m, for a set

of undisturbed ocean depths.

domain, this results in a 650m difference in the location of the tidal crest and a 21 minute

difference in timing. This changes linearly with propagation distance, but not with ocean

depth. A more general example is shown in Figure-G.1.

Now we move away from the idealized examples and perform some numerical experi-

ments to better quantify the bathymetric in the North Sea. For the model, we have used

CS3X, as described in Chapters 5-6 First we define and obtain the following three datasets

from the model:

• Tide-only, t. Model run comprised only of tidal boundary forcing.

• Surge-only, s. Model run comprised only of atmospheric forcing (wind and pressure).

• Tide and surge, z. Model run comprised of tidal boundary forcing and atmospheric

forcing.

We then run an additional model run with tidal boundary forcing but no atmospheric

forcing, similar to t. However, this time the model bathymetry is modified at every time

step by adding corresponding values at each grid location from the surge-only run. This
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artificially modifies the depth, keeping the bathymetric effect in play but removing other

components of tide-surge and tide-weather interaction. We call this model run b.

We can express this algebraically as follows:

z = t+ s+ Its, (G.4)

b = t+ Ibe, (G.5)

where Its is a residual term consisting of the total tide-surge interaction and Ibe is the

modification to the tide due to the bathymetric effect. We can now estimate the magnitude

of the bathymetric effect by subtracting t from Equation-G.5:

Ibe = b− t. (G.6)

We have run each of the model run types in this section for the cyclone Xaver event in

December 2013. Figure-G.2 shows times series from t and b at three different locations in

the North Sea (with non-tidal residuals for context). These plots allow us visually evaluate

Ibe as the difference between b and t.

At Aberdeen, there is no significant difference between b and t whatsoever. Lowestoft

shows some small differences, with a 15 minute difference in the timing of the maximum

water level and a very small 1cm difference in its magnitude. Cuxhaven, however, shows a

much more significant differences in both timing and magnitudes over multiple tidal cycles.

Here, differences in the magnitude and timing of maximum water levels reaches 21cm and

approximately 1 hour respectively.

Differences between b and t appear to increase as one goes anticlockwise around the

North Sea coastline. This is most likely due to the increased distance travelled by the tidal

wave in this direction. Wave speed changes will not change into large water level differences

immediately. Non-tidal residuals are also larger and last for longer during this event at

Cuxhaven compared to Lowestoft and Aberdeen.

This work is an initial study but shows some promise of interesting results. A more

rigorous treatment of the quantification of timing and magnitude is required over more case

studies and time periods. Spatial maps of differences would also be useful. Additionally,

once Ibe is quantified, it can be subtracted from ts to begin estimated the size of other

interaction components, such as tide-weather interaction and other non-linear effects.
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Figure G.2: Demonstrations of the bathymetric effect. Total water level time series from a

tide-only run (t), a tide-only run with modified bathymetry (b) and model non-tidal residuals

for context. Three locations are considered in an anticlockwise direction around the North

Sea: Aberdeen, Lowestoft and Cuxhaven.
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S., von Stechow, C., Zwickel, T., and Minx, J. C. (2014). Summary for policymakers.

Technical report, IPCC.

Ehrendorfer (2007). A review of issues in ensemble-based kalman filtering. Meteorol. Z.,

16:795–818.

Emanuel, K., Sundararajan, R., and Williams, J. (2008). Hurricanes and global warming:

Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89:346–367.

Emanuel, K. A. (2004). Tropical Cyclone Energetics and Structure. Cambridge University

Press.

Evans, C., Wood, K. M., Aberson, S. D., Archambault, H. M., Milrad, S. M., Bosart, L. F.,

Corbosiero, K. L., Davis, C. A., Pinto, J. R. D., Doyle, J., Fogarty, C., Jr., T. J. G.,

Grams, C. M., Griffin, K. S., Gyakum, J., Hart, R. E., Kitabatake, N., Lentink, H. S.,

McTaggart-Cowan, R., Perrie, W., Quinting, J. F., Reynolds, C. A., Riemer, M., Ritchie,

E. A., Sun, Y., and Zhang, F. (2017). The extratropical transition of tropical cyclones.

part I: Cyclone evolution and direct impacts. Monthly Weather Review, 145:4317–4344.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model

using monte carlo methods to forecast error statistics. Journal of Geophysical Research,

99:10143–10162.

164



BIBLIOGRAPHY

Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in

samples of an indefinitely large population. Biometrika, 10(4):507–521.

Flowerdew, J., Horsburgh, K., Wilson, C., and Mylne, K. (2009). Flooding in England:

A national assessment of flood risk. environment agency report. Journal of the Royal

Meteorological Societry, 136(651).

Foreman, M. G. G. and Neufeld, E. T. (1991). Harmonic tidal analyses of long time series.

International Hydrographic review, 68:85–108.

Franco, A. S. and Harari, J. (1988). Tidal analysis of long series. International Hydrographic

Review, 65(1):141–158.

Frank, N. L. and Husain, S. A. (1971). The deadliest tropical cyclone in history? American

Meteorological Society, 52(6):438–445.

Fujita, T. (1952). Pressure distribution within a typhoon. Geophys. Mag., 23:437–451.

Furner, R., Williams, J., Horsburgh, K., and Saulter, A. (2016). Nemo-surge: Setting up

an accurate tidal model. Technical Report 610, UK Met Office.

Gandin, L. S. (1966). Objective analysis of meteorological fields. translation from russian.

jerusalem (israel program for scientific translations),. Q.J.R. Meteorol. Soc.

Garratt, J. R. (1977). Review of drag coefficients over oceans and continents. Monthly

Weather Review, 105(7):915–929.

Gaspari, G. and Cohn, S. E. (1999). Construction of correlation functions in two and three

dimensions. Q.J.R. Meteorol. Soc., 125(554):723–757.

Gauthier, P., Charette, C., Fillion, L., Koclas, P., and Laroche, S. (1999). Implementation

of a 3D variational data assimilation system at the canadian meteorological centre. part

i: The global analysis. Atmos-Ocean, 37:103–156.

Gauthier, P., Tanguay, M., Laroche, S., and Pellerin, S. (2007). Extension of 3Dvar to 4Dvar:

Implementation of 4dvar at the meteorological service of canada. American Meteorological

Society, 135:2339–2354.

Gerritsen, H. (2005). What happened in 1953? the big flood in the netherlands in retrospect.

Phil. Trans. R. Soc, 363:1271–1291.

165



BIBLIOGRAPHY

Gonnert, G., Dube, S. K., Murty, T., and Siefert, W. (2001). Global Storm Surges: Theory,

Observations and Applications. Holstein, Die Kueste.

Government of Bangladesh (2008). Cyclone Sidr in bangladesh: damage, loss and needs as-

sessment for disaster recovery and reconstruction. Government of Bangladesh, Economic

Relations Division.

Haigh, I., Nicholls, R., and Wells, N. (2010). Assessing changes in extreme sea levels:

Application to the english channel. Cont. Shelf. Res., 30:1042–1055.

Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J. (2013). Future flood losses

in major coastal cities. Nature Climate Change, 3:802–806.

Haque, U., Hashizume, M., Kolivras, K. N., Overgaard, H. J., Das, B., and Yamamoto, T.

(2012). Reduced death rates from cyclones in bangladesh: what more needs to be done?

Bulletin of the World Health Organization, 90:150–156.

Harper, B., Kepert, J., and Ginger, J. (2008). Guidelines for converting between various

wind averaging periods in tropical cyclone conditions. Technical Report 54 pp, World

Meteorological Organisation.

Harris, D. L. (1963). Characteristics of the hurricane storm surge. Technical Report 48,

U.S. Weather Bureau.

Harvey, B. J., Shaffrey, L. C., Woollings, T. J., Zappa, G., and Hodges, K. I. (2012).

How large are projected 21st century storm track changes? Geophysical research letters,

39:L18707.

Heaps, N. S. (1973). Three-dimensional numerical model of the Irish sea. Geophys. J. R.

astr. Soc., 35:99–120.

Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear

systems. Journal of Research of the National Bureau of Standards, 49(6):409–436.

Higaki, M., Hayashibara, H., and Nozaki, F. (2009). Outline of the storm surge prediction

model at the japan meteorological agency. Technical report, Japan Meteorological Agency.

Holland, G. (2008). A revised hurricane pressure-wind model. Monthly Weather Review,

136:3432–3445.

166



BIBLIOGRAPHY

Holland, G. J. (1980). An analytical model of the wind and pressure profiles in hurricanes.

Monthly Weather Review, 108:1212 – 1218.

Holland, G. J., Belanger, J. I., and Fritz, A. (2010). A revised model for radial profiles of

hurricane winds. Journal of the American Meteorological Society, 138:4393 – 4401.

Hollingsworth, A. and Lonnberg, P. (1986). The statistical structure of short-range forecast

errors as determined from radiosonde data. part I: The wind field. Tellus, 38A:111–136.

Holt, J. T. and James, I. D. (2001). An s-coordinate density evolving model of the north

west european continental shelf. part 1: Model description and density structure. Journal

of Geophysical Research, 106(C7):14015–14034.

Horsburgh, K. (2011). Wmo publication 1076: Guide to storm surge forecasting. Genève,
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Nycander, J. and Döös, K. (2003). Open boundary conditions for barotropic waves. Journal

of Geophysical Research, 108(3168).

Orlanski, I. (1976). A simple boundary condition for unbounded hyperbolic flows. Journal

of computational physics, 21:251–269.

170



BIBLIOGRAPHY

Parrish, D. F. and Derber, J. C. (1992). The National Meteorological Center’s spectral

statistical-interpolation analysis system. Monthly Weather Review, 120:1747–1763.

Powell, M. D., Houston, S. H., Amat, L. R., and Morisseau-Leroy, N. (1998). The hrd

real-time hurricane wind analysis system. J. Wind. Eng. Ind. Aerodyn, 77:53–64.

Powell, M. D., Vickery, P. J., and Reinhold, T. A. (2003). Reduced drag coefficient for high

wind speeds in tropical cyclones. Nature, 422:279–283.

Pugh, D. (1996). Tides, Surges and Mean Sea-level. John Wiley and Sons.

Pugh, D. and Woodworth, P. (2014). Sea Level Science: Understanding tides, surges,

tsunamis and mean sea-level changes. Cambridge University Press.

Rabier, F., Jarvinen, H., Kinkler, E., Mahfouf, J., and Simmons, A. (2000). The ECMWF

operational implementation of four-dimensional variational assimilation. part i: experi-

mental results with simplified physics. Q.J.R. Meteorol. Soc., 126:1143–1170.

Rabier, F., McNally, A., Andersson, E., Courtier, P., Unden, P., Eyre, J., Hollingsworth, A.,

and Bouttier, F. (1998). The ECMWF implementation of three-dimensional variational

assimilation (3D-Var). II: Structure functions. Q.J.R. Meteorol. Soc., 124(550):1809–

1829.

Rappaport, E. N. (2014). Fatalities in the united states from Atlantic tropical cyclones:

New data and interpretation. Bull. Amer. Meteor. Soc., 95(3):341–346.

Rappaport, E. N., Franklin, J. L., Avila, L. A., Baig, S. R., Beven, J. L., Blake, E. S., Burr,

C. A., Jiing, J., Juckins, C. A., Knabb, R. D., Landsea, C. W., Mainelli, M., Mayfield,

M., McAdie, C. J., Pasch, R. J., Sisko, C., Stewart, S. R., and Tribble, A. N. (2009).

Advances and challenges at the National Hurricane Center. Weather and Forecasting,

24(2):395 – 419.

Rawlins, F., Ballard, S. P., Bovis, K. J., Clayton, A. M., Li, D., Inverarity, G. W., and

Lorenc, A. C. (2007). The Met Office global four-dimensional variational data assimilation

scheme. Q.J.R. Meteorol. Soc., 133:347–362.

Reichle, R. H. (2008). Data assimilation methods in the Earth sciences. Advances in Water

Resources, 31(11):1411–1418.

171



BIBLIOGRAPHY

Reichle, R. H., McLaughlin, D. B., and Entekhabi, D. (2001). Variational data assimilation

of microwave radiobrightness observations for land surface hydrology applications. IEEE

Transactions on geoscience and remote sensing, 29(8):1708–1718.

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich,

M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty,

A., Da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T.,

Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G.,

Sienkiewicz, M., and Woollen, J. (2011). MERRA: NASA’s Modern-Era Retrospective

Analysis for Research and Applications. JOURNAL OF CLIMATE, 24(14):3624–3648.

Riishøjgaard, L. P. (1998). A direct way of specifying flow-dependent background error

correlations for meteorological analysis systems. Tellus, 50A:42–57.

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault,

K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann,

D., and Toll, D. (2004). The global land data assimilation system. Bull. Amer. Meteor.

Soc., 85(3):381–394.

Rossiter, J. R. (1961). Interaction between tide and surge in the thames. Geophys. J. R.

astr. Soc., 6(1):29–53.

Rutherford, I. (1972). Data assimilation by statistical interpolation of forecast error fields.

Journal of Atmospheric Science.

Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen,

J., and Behringer, D. (2010). The NCEP climate forecast system reanalysis. Bull. Amer.

Meteor. Soc., 91(8):1015–1057.

Schloemer, R. W. (1954). Analysis and synthesis of hurricane wind patterns over Lake

Okechobee, Florida. Technical Report 31, Dept. of Commerce, Washington D.C.

Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y.,

Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and

Zhang, X. (2012). Changes in climate extremes and their impacts on the natural physical

environment. Managing the Risks of Extreme Events and Disasters to Advance Climate

Change Adaptation (SREX), pages 109–230.

172



BIBLIOGRAPHY

Shaw, D. B., Lonnberg, P., Hollingsworth, A., and Unden, P. (1987). Data assimilation:

The 1984/85 revision of the ECMWF mass and wind analysis. Q.J.R. Meteorol. Soc.,

114:533–566.

Sibley, A., Cox, D., and Titley, H. (2015). Coastal flooding in England and Wales from

Atlantic and North Sea storms during the 2013/2014 winter. Weather, 70(2):62 – 71.

Silvester, R. (1970). Computation of storm surge. Proceesing of the 12th Conference on

Coastal Engineering.

Smith, S. D. and Banke, E. G. (1975). Variation of the sea surface drag coefficient with

wind speed. Q.J.R. Meteorol. Soc., 101(429):665–673.

Stevens, A. J., Clarke, D., and Nicholls, R. J. (2014). Trends in reported flooding in the

uk: 1884-2013. Hydrological Sciences, 61(1):50–63.

Tang, Y. and Grimshaw, R. (1995). Radiation boundary conditions in barotropic coastal

ocean numerical models. Journal of computational physics, 123:96–110.

Taylor, G. I. (1916). Skin friction of the wind on Earth’s surface. Proceedings of the Royal

Society London, 92:196–199.

Thorne, C. R., Evans, E. P., and Penning-Roswell, E. C. (2007). Future flooding and coastal

erosion risks. Thomas Telford.

Ulbrich, U., Leckebusch, G. C., and Pinto, J. G. (2009). Extra-tropical cyclones in the

present and future climate: A review. Theoretical and Applied Climatology, 96:117–131.

Ulbrich, U., Pinto, J. G., Kupfer, H., Leckebusch, G. C., Spangehl, T., and Reyers, M.

(2008). Changing northern hemisphere storm tracks in an ensemble of IPCC climate

change simulations. Journal of Climate, 21:1669–1679.

Vickery, P. J. and Wadhera, D. (2009). A hurricane boundary layer and wind field model for

use in engineering applications. Journal of the American Meteorological Society, 48:381–

405.

von Storch, H. and Reichardt, H. (1996). A scenario of storm surge statistics for the German

bight at the expected time of double atmospheric carbon dioxide concentration. Journal

of Climate, 31(23):2653–2662.

173



BIBLIOGRAPHY

Voorrips, C. (1999). Spectral wave data assimilation for the prediction of waves in the North

Sea. Coastal Engineering, 37:455–469.

Vousdoukas, M. I., Mentaschi, L., VoUKouvalas, E., Verlaan, M., Jevrejeva, S., Jackson,

L. P., and Feyen, L. (2018). Global probabilistic projections of extreme sea levels show

intensification of coastal flood hazard. Nature Communications, 9:2360.

Wadey, M. P., Brown, J. M., Haigh, I. D., Dolphin, T., and Wisse, P. (2015). Assessment

and comparison of extreme sea levels and waves during the 2013/14 storm season in two

UK coastal regions. Natural Hazards and Earth System Sciences, 15(10):2209–2225.

Walters, R. (2005). Coastal ocean models: two useful finite element methods. Cont. Shelf.

Res., 25:775–793.

Wang, G. C. (1978). Sea level pressure profile and gusts within a typhoon circulation.

Monthly Weather Review, 106:954–960.

Wang, S., McGrath, R., Hanafin, J., Lynch, P., Semmler, T., and Nolan, P. (2008). The

impact of climate change on storm surges over Irish waters. Ocean Modelling, 25:83–94.

Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere,

M., Chayes, D., Ferrini, V., and Wigley, R. (2015). A new digital bathymetry model of

the world’s oceans. Earth and Space Science, 2(8):331–345.

Weaver, R. and Luettich, R. (2010). 2D vs. 3D storm surge sensitivity in ADCIRC: Case

study of hurricane Isabel. In Estuarine and Coastal Modeling - Proceedings of the 11th

International Conference on Estuarine and Coastal Modeling, volume 388, pages 762–779.

Weller, H., Ringler, T., Piggott, M., and Wood, N. (2010). Challenges facing adaptive mesh

modeling of the atmosphere and ocean. Bull. Amer. Meteor. Soc., 91(1):105–108.

Westerink, J., Luettich, R., C.A.Blain, and Scheffner, N. W. (1992). ADCIRC: An advanced

three-dimensional circulation model for shelves, coasts and estuaries. Report 2: Users

manual for ADCIRC-2DDI and ADCIRC-3DL. Technical report, Department of the

Army, USACE, Washington D.C.

Williams, J., Horsburgh, K. J., and Proctor, J. A. W. R. N. F. (2016). Tide and skew surge

independence: new insights for flood risk. Geophysical research letters, 43:6410–6417.

174



BIBLIOGRAPHY

Williams, J. A. and Flather, R. A. (2000). Interfacing the operational storm surge model

to a new mesoscale atmospheric model. Technical Report 127, Proudman Oceanographic

Laboratory [now National Oceanography Centre].

Willoughby, H. E., Darlin, R. W. R., and Rahn, M. E. (2006). Parametric representation

of the primary hurricane vortex. part II: A new family of sectionally continuous profiles.

Monthly Weather Review, 134:1102–1120.

Willoughby, H. E. and Rahn, M. E. (2004). Parametric representation of the primary hur-

ricane vortex. part I: Observations and evaluation of the Holland (1980) model. Monthly

Weather Review, 132:3033–3048.

Wilson, C., Horsburgh, K., Williams, J., Flowerdew, J., and Zanna, L. (2013). Tide-

surge adjoint modelling: a new technique to understand forecast uncertainty. Journal of

Geophysical Research, 118:5092–5108.

Wolf, J. (2008). Coastal flooding: Impacts of coupled wave-surge-tide models. Natural

Hazards, 49:241–260.

Wood, V. T. and White, L. W. (2011). A new parametric model of vortex tangential-

wind profiles: Development, testing, and verification. Journal of Atmospheric Science,

68:990–1006.

Wood, V. T., White, L. W., Willoughby, H. E., and Jorgensen, D. P. (2013). A new

parametric tropical cyclone tangential wind profile model. Monthly Weather Review,

141:1884 – 1909.

Woth, K., Weisse, R., and von Storch, H. (2006). Climate change and North Sea storm

surge extremes: An ensemble study of storm surge extremes expected in a changed climate

projected by four different regional climate models. Ocean Dynamics, 56:3–15.

Wu, J. (1982). Wind-stress coefficients over sea surface from breeze to hurricane. Journal

of Geophysical Research, 87.

Xie, L., Bao, S., Pietrafasa, L., Foley, K., and Fuentes, M. (2006). A real-time hurricane

surface wind forecasting model: Formulation and verification. Monthly Weather Review,

134:1355–1370.

Yelland, M. J., Moat, B. I., Taylor, P. K., Pascal, R. W., Hutchings, J., and Cornell, V. C.

(1998). Wind stress measurements from the open ocean corrected for airflow distortion

by the ship. Journal of Physical Oceanography, 28:1511–1526.

175



BIBLIOGRAPHY

Zetler, B. D., Long, E. E., and Ku, L. F. (1985). Tide predictions using satellite constituents.

International Hydrographic Review, 62(2):135–142.

Zhang, K., Douglas, B. C., and Leatherman, S. P. (2000). Twentieth-century storm activity

along the U.S. east coast. Journal of Climate, 13(23):1748–1761.

Zhang, W.-Z., Shi, F., Hong, H.-S., Shang, S.-P., and Kirby, J. T. (2010). Tide-surge

interaction intensified by the Taiwan Strait. Journal of Geophysical Research - Oceans,

115(C6):C06012.

Zijl, F., Sumihar, J., and Verlaan, M. (2015). Application of data assimilation for improved

operational water level. Ocean Dynamics, 65(12):1699–1716.

176


	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Introduction & Motivation
	Storm Surges: Past, Present and Future
	Thesis Objective and Approach
	Thesis Structure

	Storm Surge Forecasting
	Quantification of Storm Surges
	Physics and Modelling
	Hydrodynamic Equations
	Grid and Integration Schemes
	Surface and Bottom Stress
	Boundary Conditions at the Domain Edges
	Harmonic Analysis of the Tides

	Forecasting for Extratropical Cyclones
	Operational Procedures at the Flood Forecasting Centre
	Forecasting for Tropical Cyclones
	Parametric Wind Fields
	Pressure-Wind Relationships

	Challenges for Storm Surge Forecasting

	Data Assimilation and its use in Forecasting
	Overview of Data Assimilation
	BLUE Derivation
	Data Assimilation Schemes
	Estimation of Error Statistics
	Applications of Data Assimilation

	Using Remotely Sensed Data to Modify Wind Forcing in Operational Storm Surge Forecasting
	Preamble
	Paper Abstract
	Introduction
	Method
	Model
	Data
	Method A
	Method B

	Results
	Statistics
	Hurricane Ike (2008)
	Hurricane Sandy (2012)
	Hurricane Gustav (2008)

	Conclusions

	Variational data assimilation of sea level into a regional storm surge model: benefits and limitations
	Preamble
	Paper Abstract
	Paper Acknowledgements
	Introduction
	Methods
	Model
	Data Assimilation and Observations
	Numerical Experiments

	Assimilation Setup
	Covariance Modelling
	Tide Gauge Error Variance

	Results & Discussion
	Validation of Covariance Models
	Mock Forecasts: December 2013 Case Study

	Conclusions

	Insights into storm surge dynamics and volume fluxes in semi-enclosed basins
	Preamble
	Paper Abstract
	Paper Acknowledgements

	Introduction
	Methods & Data
	Model
	Volumetric Variables
	The North Sea

	Results & Discussion
	Volume during a storm surge event
	Idealised wind forcing experiments and steady state
	Spatial evolution of storm surges: role of internal and external fluxes
	Tide-surge interaction and volume
	Representativeness

	Conclusions

	Conclusions, limitations and implications for future work
	Estimation of storm centre from scatterometry data
	The SLOSH Model: Overview, Setup and Modification
	Dijkstra's algorithm: description and implementation
	Conjugate gradient method for minimization
	Modifications to CS3X Model
	Estimation of residual volume from observations
	Quantifying the bathymetric effect in the North Sea
	Bibliography

