
Applications and complexity of greedy algorithms

in optimisation and mechanism design

Thesis submitted in accordance with the requirements of the University of Liverpool

for the degree of Doctor in Philosophy by

Nan Zhi

June 2019

Greedy algorithms in optimisation and mechanism design Nan Zhi

Abstract

This thesis studies one of the most classical algorithmic optimisation paradigms, which

is the greedy paradigm. One of the main motivations for this thesis is to explore further

applications of the greedy paradigm and to provide foundation for the mathematical

analysis of the resulting greedy algorithms. We present a novel mechanism design

model in the area of ontology alignment and study greedy mechanisms for this model.

In particular, we provide bounds on the approximation ratios of truthful mechanisms in

our model. Then we study the price of anarchy and that of stability of Nash implemen-

tations of greedy mechanisms. This study shows that the greedy paradigm provides

a fast, practical and efficient mechanism. We then study the computational complex-

ity and approximability properties of the greedy algorithm for the classic optimisation

problem of computing maximum size independent sets in bounded degree graphs. We

develop a series of novel methods to design advice for the greedy algorithm together

with novel mathematical techniques of analysing the approximation performance of

the resulting greedy algorithms. These techniques allow us to successfully design and

prove the approximation ratios of the best known greedy algorithm for maximum size

independent sets on sub-cubic graph, by designing a scheme to use savings to precisely

pay for the greedy solution as compared to the optimal independent set. This scheme

is highly non-local and it requires a complex inductive argument which we provide.

We apply these methods also to the maximum size independent set problem on general

bounded degree graphs and obtain near tight results. The maximum size independent

set problem and the minimum size vertex cover problem are the two, mutually comple-

mentary, generic combinatorial optimisation problems. We apply our techniques also to

the minimum size vertex cover problem and obtain improvements compared to previous

results. Thus our techniques have a great potential for further applications of analysing

greedy on other classes of graphs and for related optimisation problems. Interestingly,

our theoretical analysis has been informed and advised by an experimental analysis

which is also presented in the thesis. Finally, we also present an experimental analysis

of our greedy algorithms.

i

Nan Zhi Greedy algorithms in optimisation and mechanism design

ii

Acknowledgements

Endeavour to a PhD degree is one of the most wonderful and grateful journeys of my

life. This journey would not be culminant and memorable without various people I

have known and came cross, who greatly helped and supported me.

First, and foremost, I am indebted to my primary supervisor, Professor Piotr

Krysta, one of the most enthusiastic and genius persons I have ever known. Piotr

taught me a lot on almost every important aspect of research, about how to correctly

think and explore the problem in the most rigorous way, and helped me to learn the

way to solve it, and with his useful suggestions on the presentation of the results and

writing of papers. His deep insights have been invaluable to me. Above all, the joy

and enthusiasm he exemplified in the research was contagious and motivational for me,

inspiring me to experience the joy of seeking truth. I would like to thank my second

supervisor Terry Payne, who impressed me with his exceptional clarity on interpreting

the significance of research problems and his great kindness and patience. I would like

to thank Mathieu Mari, one of my collaborators and friends, who is very brilliant and

chic person, and always shares his valuable insight and ideas in the discussion to tackle

problems.

I wish to thank University of Liverpool for providing such a great academic and liv-

ing environment. I wish to thank the people in the faculty: Giorgos Christodoulou, Do-

minik Wojtczak, Martin Gairing, Rahul Savani, Paul Spirakis, John Fearnley, Jinshan

Zhang, Argyrios Deligkas, Eleftherios Anastasiadis, Eleni Akrida, Alkmini Sgouritsa,

Grammateia Kotsialou, Gregory Palmer, Thomas Spooner, Grzegorz Muszynski, among

others, for I learned much from them on academic and other matters.

I wish to thank to all friends of mine in this memorable journey of life, and you are

always my indispensable treasures.

Last but not least, I wish to appreciate my family, my parents and grandparents,

for all their everlasting love and throughout support for me.

This Thesis is another departure of my journey of seeking Truth.

iii

Nan Zhi Greedy algorithms in optimisation and mechanism design

iv

Preface

The sources of other materials are identified here. We describe here which chapters in

this thesis have appeared in which papers as below. The work in Chapter 3 is based

on the joint work with Piotr Krysta, Minming Li and Terry Payne, see paper [43] for

a preliminary publication of this work. Chapters 4, 5, 6 and 7 are based on joint work

with Piotr Krysta and Mathieu Mari, see [44].

v

Nan Zhi Greedy algorithms in optimisation and mechanism design

vi

Contents

Abstract i

Acknowledgements iii

Preface v

Contents ix

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Preliminaries . 5

1.2 Organisation . 6

1.3 Overview of the main contributions . 7

2 Background 10

2.1 Game theory and mechanism design . 10

2.2 Optimisation, approximation and complexity 15

2.3 Ontologies and ontology alignment . 17

3 Mechanism design for ontology alignment 21

3.1 Introduction . 21

3.2 Background . 22

3.3 Our contributions . 25

3.4 Preliminaries . 26

3.5 An Implementation in Dominant Strategy 30

3.5.1 Mechanism design with payment 30

vii

Nan Zhi Greedy algorithms in optimisation and mechanism design

3.5.2 Mechanism design without payment 34

3.6 Nash equilibria implementation . 37

3.6.1 Pure strategy . 37

3.6.2 Relation to smooth games . 42

3.6.3 Mixed strategy . 43

3.7 Conclusion . 44

4 Negative results for greedy maximum independent set 46

4.1 Introduction . 46

4.2 Inapproximability . 47

4.2.1 Planar graphs . 50

4.3 Conclusion . 52

5 Instance study for maximum independent set problem 53

5.1 Introduction: Approximability of MIS 53

5.2 Instances study for Greedy MIS . 55

5.3 Towards computer assisted guide for proof of greedy MIS 61

5.4 Observation for problematic graph structures 66

5.4.1 Isolated odd cycle reduction . 66

5.4.2 Bad (2,5)-reduction . 68

5.4.3 Non-locality of payment . 69

5.4.4 Conclusion . 69

6 Towards Ultimate Greedy for MIS in sub-cubic graphs 70

6.1 Payment scheme . 70

6.1.1 Definitions . 70

6.1.2 Ideas . 72

6.1.3 Value of potential function of payment scheme 75

6.2 Extended reductions . 77

6.2.1 Definition of extended reductions 78

6.2.2 Value of potential function of extended reduction 82

6.3 The final proof . 85

6.3.1 Observations and ideas . 85

6.3.2 The leaf reduction . 87

6.3.3 Proof for existence of 4
3 -approximation greedy algorithm 89

6.3.4 Towards a proof of existence of the ultimate greedy algorithm . . 97

6.4 Technique of Super-Advice . 98

viii

Greedy algorithms in optimisation and mechanism design Nan Zhi

7 Further applications 101

7.1 Greedy algorithm for MIS on bounded degree graph 101

7.1.1 Alternative proof for ∆+2
3 -ratio greedy algorithm on ∆-degree

graphs . 101

7.1.2 Limitations of greedy algorithm on ∆-degree graphs 103

7.2 MIS on degree at most 4 graphs . 105

7.3 Study for vertex cover . 107

7.3.1 Complementary Greedy algorithm for vertex cover problem . . . 108

7.3.2 Naive analysis for 7
5 -approximation ratio 110

7.3.3 Sophisticated analysis for 4
3 -approximation ratio 111

7.3.4 Further analysis for 5
4 -approximation ratio 114

7.4 Conclusion . 116

8 Heuristic and experimental study for MIS 117

8.1 Results and discussion . 119

9 Conclusions and further study 123

9.1 Conclusions . 123

9.2 Further study . 124

9.2.1 Study for ontology mechanism design 124

9.2.2 Study for maximum independent set and minimum vertex cover

problems . 124

A 127

A.1 Graph structure of extended reductions 127

References 129

ix

List of Figures

2.1 Prisoners’ Dilemma . 11

3.1 Centralised example with two solutions: {e1, e3} and {e2}. 22

3.2 Disjoint Edges . 33

3.3 Shared vertices . 33

3.4 Low bound for Price of stability . 38

3.5 Lower bound for Price of anarchy . 38

3.6 The instances where no pure Nash-equilibrium exists 41

4.1 Step 1 of constructing graph G∗ . 50

4.2 Step 2 of constructing graph G∗ . 50

4.3 Gadget He for edge of planar graph . 52

5.1 Collection of reductions with root of degree at most 2. 57

5.2 Example of reductions during an execution of the greedy algorithm. . . 58

5.3 Example for Claim 4 . 59

5.4 Example for Claim 5 . 59

5.5 Construction of Hk . 62

5.6 Example of bad cycle-reductions. 66

5.7 Example for bad (2,5)-reductions. 66

5.8 Example of problematic cycle reduction 67

5.9 Example for odd-problematic cycle . 67

6.1 example of reductions . 72

6.2 Structure with bad (2,6)-reduction . 73

6.3 Structure with good (2,6)-reduction . 73

6.4 Structure with good (2,6)-reduction . 73

6.5 Bad (2,5)-reduction . 75

x

Greedy algorithms in optimisation and mechanism design Nan Zhi

6.6 Bad 5-cycle-reduction . 75

6.7 Example of an extended reduction. 77

6.8 Instance example with an arbitrarily negative potential value. 85

6.9 Example of an even-backbone reduction in the leaf. 88

6.10 Single edge branching reduction in Lemma 10 94

6.11 Bad even-backbone reduction in Lemma 10 94

7.1 An example when ` = 3. K` and K` respectively denotes a clique and

an independent set of size `. 104

7.2 The construction when ∆ = 3`− 2. 105

7.3 (3,7)-reduction . 106

7.4 Avoiding the (3,7)-reduction . 106

7.5 Example for greedy algorithm for minimum vertex cover 107

8.1 The performance of primitive greedy algorithm. 122

8.2 The performance of the updated greedy algorithm. 122

A.1 Collections of extended reductions . 127

xi

List of Tables

8.1 Results of experiments for the primitive greedy algorithm. 121

8.2 Results of experiments for the updated greedy algorithm. 121

xii

Chapter 1

Introduction

In this introduction we mention some optimisation problems and complexity classes,

however we do not define them formally here, because they are not closely studied in

this thesis. For formal definitions of problems which are closely studied in this thesis,

and notions related to approximability, complexity and graphs, we refer the reader to

Section 1.1 and Chapter 2.

The greedy algorithm paradigm is one of the most important in algorithm design,

because of both its simplicity and efficiency. In the domain of algorithm design, greedy

paradigms are mostly used in at least three directions: they provide exact algorithms

for a variety of problems; they are frequently the best approximation or good enough

algorithms for hard optimisation problems. And, due to their simplicity, efficiency

and not yet discovered properties, they are frequently used as heuristics for hard op-

timisation problems. This is often despite the fact that their theoretical analyses are

unknown, or far from being tight, or even known to be poor in the worst case. One of

the main motivations for this thesis is to explore further applications of the

greedy paradigm and to provide foundation for the mathematical analysis

of the resulting greedy algorithms.

In principle, the greedy paradigm is any algorithm that complies with the following

rule: at each step, it takes some element into solution which is regarded as “best”

according to a given criterion, and we never alter the solution already found, in the

future iterations. Note that the criterion of “best” that the algorithm adopts is not

precisely defined as it depends on the concrete problem. The criterion might, for

instance, be defined as a minimal or maximal size of a set, or value of a weight function

on elements, or even by a sophisticated function on a local structure of the solution and

properties of the input data. Therefore, rather than presenting general and abstract

1

2 Nan Zhi

definition of greedy algorithms, we will present some concrete examples.

For the purpose of applying the greedy paradigm to find an exact (optimal) solu-

tion, one of the most prominent problems is the shortest path problem, and Dijkstra’s

algorithm [16] gives the optimal solution. Note that the Dijkstra’s algorithm belongs

to the class of greedy algorithms. Another well known example in discrete optimisation

is perhaps the optimality of the greedy algorithm for matroids, whose discovery dates

back to Edmonds [19]. Matroids provide a full characterisation of a structure where

one kind of greedy algorithm (in each iteration, the greedy algorithm takes an element

e whose weight is maximum, and excludes e from the universal set) can achieve an opti-

mal solution [56]. Various generalisations of Edmonds’s approach have been introduced,

for instance, generalised polymatroids in [23]. Korte and Lovasz [41] observed that in

many cases, even if we relax one condition of matroid, the same greedy algorithm still

performs well. In fact, they introduced a notion of greedoid to give a generalised such

characterisation.

For the purpose of approximation of hard optimisation problems, greedy algorithms

have been applied to numerous problems. For instance, for the minimum set cover

problem, there is a simple greedy algorithm [69], which achieves an approximation ratio

of ln(k), where k is an upper bound on the number of elements in any set. This greedy

algorithm applies the following rule: in each iteration, choose the set that contains the

largest number of uncovered elements, and remove the newly covered elements from

the universe. In [61], Raz and Safra proved a lower bound of (1 − o(1)) · lnn on the

approximation ratio for the minimum set cover problem, under the assumption P 6= NP.

This inapproximability result shows that the greedy algorithm is essentially the best-

possible polynomial time approximation algorithm for the set cover problem. A similar

result applies to the complementary problem of set cover: the maximum independent set

(MIS) problem. A simple greedy algorithm achieves an n-approximation ratio for the

MIS problem, where n is the number of vertices in the input graph. And, this problem

cannot be approximated to any factor of n1−ε, for any ε > 0, in polynomial time, unless

NP ⊆ ZPP [35]. This implies that the greedy algorithm is essentially optimal for the

MIS problem on general graphs. The best known analysis of greedy by Halldórsson

and Radhakrishnan [31] for MIS implies the approximation ratio of (∆ + 2)/3, and

better ratios are known for small values of ∆. Here, we assume that the graph has

maximum degree ∆. A detailed survey of results for the MIS problem will be presented

in Chapter 6. Furthermore, the greedy paradigm applies to many other problems. In

[37], Jain et al. provide two greedy algorithms for the metric uncapacitated facility

location problem, and the approximation ratio is 1.861 and 1.61. A tight result of the

Chapter 1. Introduction 3

2-approximation ratio by a greedy algorithm for the k-center problem is presented in

[69].

For heuristic purposes, for several combinatorial optimisation problems, the greedy

algorithms are also good in the practical sense. This is even despite the fact that their

theoretical analysis in terms of the worst case performance is not as good as expected.

Examples of such practical applications can be found, for instance, in the following

papers: [40], [26], [36] and [63]. These applications show that greedy algorithms usu-

ally find out the optimum solution, and for majority of inputs, they generally output

relatively good solutions compared to the optimum. And it is quite rare that they

output a solution which reaches the worst case approximation ratio or even close to

it. The computational experiments show that the greedy algorithm is a popular choice

for tour construction heuristics. For instance, greedy methods work at acceptable level

for the Euclidean Travelling Salesman Problem (TSP), and present more accurate and

faster solutions for the Asymmetric TSP problem [36]. For packing and covering prob-

lems, in [26], the authors compare four common algorithms: greedy algorithm, linear

programming rounding based algorithm, primal-dual algorithm, and a dual algorithm.

All of these algorithms share basically the same approximation ratio in the theoretical

worst-case analysis. However, the greedy algorithm turned out to be outstandingly

better than the other three approaches when tested on many “typical” instances.

The greedy paradigm also finds useful applications in other areas closely related to

optimisation. For example, a recent active research area called algorithmic mechanism

design. Algorithmic mechanism design lies in an intersection of the research areas of

economic game theory and computer science. It is about the design and analysis of

games, where players have unknown and private utilities, and at an equilibrium of

the designed game, the mechanism designer’s goals are obtained in reasonable time

complexity independently of players’ utilities.

The motivation for studying greedy paradigm in algorithmic mechanism design is

quite strong. Firstly, for many settings in mechanism design, such as combinatorial

auction problem [10, 42, 53], greedy algorithms are natural candidates for truthful

mechanisms construction. That is because they embody the natural monotonicity

properties associated with the concept of truthfulness [50]. Moreover, in the prospect of

Nash equilibrium implementation, the greedy algorithm also usually achieves relatively

good price of anarchy, or price of stability [48]. Secondly, for many combinatorial

auction problems, the greedy algorithms are known to obtain asymptotically tight

approximation ratio bounds, even though the mechanisms are simple. For example, a

greedy algorithm obtains a tight approximation of O(
√
m) for combinatorial auctions

4 Nan Zhi

with single-minded bidders, and it is a truthful mechanism in this setting [53], where

m is the number of goods. Finally, which is perhaps the most important reason, many

auctions used in practice apply greedy methods, despite the fact that they may not

be incentive compatible (truthful) and may not have a good theoretical bound on

their approximation guarantee. Importantly, simple greedy mechanisms seem to be a

good candidate for auctions and related settings due to other considerations beyond

truthfulness, such as being easily understandable to the public and for their perceived

fairness.

Although a greedy algorithm is usually easy to understand and to implement, and in

general, its approximation ratio is good, it is usually difficult to analyse the performance

of such an algorithm precisely. The current approaches are either to focus on the local

behaviour of the algorithm or to focus on the global properties that lead to bounds far

from the tight bound. Natural questions arise of how to analyse the performance of a

greedy algorithm to obtain the upper bound on its approximation ratio, that is close to

a lower bound? What ideas and methods can provide a tight analysis, by which we can

consider both local and global properties in a unified way without any or much loss?

In this thesis, we focus on the classic combinatorial optimisation problems, namely,

the maximum weighted bipartite matching and the maximum independent set prob-

lems. Using the first of those problems, we will define a novel setting of mechanism de-

sign in context of ontology alignment, a problem which finds many important practical

applications. We provide a complete picture of the exact and approximate performance

of various truthful mechanisms for this setting. We study the approximate performance

of truthful mechanisms in dominant strategies, both with and without payments and

both deterministic and randomised mechanisms. Then we study the approximate per-

formance of truthful greedy mechanisms in Nash equilibria implementation. On the

one hand, this settles the theoretical analysis of the complexity and approximability

of our model in almost all known mechanism design settings. On the other hand, an

interesting take-home message from our results is that although dominant strategy

mechanisms might not be enough time efficient for the practical applications in ontol-

ogy alignment, greedy mechanisms provide an excellent, time-efficient, alternative for

such applications in Nash equilibria implementation.

For the second problem, the maximum independent set problem, we focus on the

classic minimum-degree greedy algorithm. The approximation performance of this al-

gorithm has been analysed in numerous previous papers. Its importance also stems

from the fact that because of its simplicity, it has been used as a tool in various proofs

in graph theory multiple times. Thus this algorithm is important on its own right and

Chapter 1. Introduction 5

its efficiency makes it a natural choice in practical implementations where the indepen-

dent set problem is used. Our main contribution here is a new mathematical theory

for the design and analysis of the minimum-degree greedy algorithm with advice (of

which minimum degree vertex should greedy choose in case of ties) for the maximum

independent set problem on bounded degree graphs. The main highlight of our work

here is a very precise mathematical proof of the 4/3-approximation ratio of this algo-

rithm on sub-cubic graphs, i.e., with maximum degree at most 3, which implies the best

currently known analysis of greedy in this setting. Moreover, our tools provide a new

and simple proof of the approximation ratio of greedy on graphs with any bounded de-

gree. Further applications include faster approximation algorithms for another classic

optimisation problem, the minimum vertex cover problem on sub-cubic graphs.

The main novelty that our new analysis techniques are based on is a very precise

potential function that allows us to design a scheme to pay for the greedy solution

as compared to the optimal independent set. This scheme is highly non-local and it

requires a very precise inductive argument for it to be applied. The importance of

these new techniques also stems from the fact that it gives a great potential for further

applications of analysing greedy on other classes of graphs and for related problems.

In conclusion, this study sheds a great light on the essence of greedy algorithms.

1.1 Preliminaries

In this section, we define basic concepts which are used in the thesis.

A graph is a pair G = (V,E) of finite sets such that E ⊆ V × V . The elements of

V are vertices, the elements of E are 2-element subsets of V , are its edges. A graph

with vertex set V is said to be a graph on V . The vertex set of a graph G is referred to

as V (G), and its edge set as E(G). These conventions are independent of any actual

names of these two sets: the vertex set W of a graph H = (W,F) is still refered to as

V (H), not as W (H). In this thesis, we shall not always distinguish strictly between a

graph and its vertex or edge set. For example, we may speak of a vertex v ∈ G, rather

than v ∈ V (G), and so on.

A vertex v is incident with an edge e if v ∈ e; then e is an edge at v. The two

vertices incident with an edge are its end vertices or ends, and an edge joins its ends.

An edge {x, y} is usually written as (x, y), xy or yx. Two vertices x, y of G are adjacent,

or neighbours, if xy is an edge of G. Two edges e 6= f are adjacent if they have an end

in common. If all the vertices are pairwise adjacent, then G is complete. A complete

graph on n vertices is a Kn; a K3 is called a triangle.

6 Nan Zhi

We set G ∪G′ := (V ∪ V ′, E ∪ E′) and G ∩G′ := (V ∩ V ′, E ∩ E′). If G ∩G′ = ∅,
then G and G′ are disjoint. If V ′ ⊆ V and E′ ⊆ E, then G′ is a subgraph of G, written

as G′ ⊆ G.

If G′ ⊆ G and G′ contains all the edges xy ∈ E with x, y ∈ V ′, then G′ is an induced

subgraph of G; we say that V ′ induces G′ in G, and write G′ =: G[V ′]. Thus if U ⊆ V
is any set of vertices, then G[U] denotes the graph on U whose edges are precisely the

edges of G with both ends in U .

If U is any set of vertices of G, we write G \U for G[V \U]. In other words, G \U
is obtained from G by deleting all the vertices in U ∩ V and their incident edges.

Let G = (V,E) be a graph. The set of neighbours of a vertex v in G is denoted

by NG(v), or briefly by N(v). More generally, for U ⊆ V , the neighbours in V \ U of

vertices in U are called neighbours of U , which is denoted by N(U). We also use NG(U)

to denote the neighbours of U according to a given graph G. We also abuse NG(e),

e = (v1, v2) ∈ E to denote the set of endpoint v1, v2 of e. The degree dG(v) = d(v) of a

vertex v is the number |E(v)| of edges at v according to given graph G. This is equal

to the number of neighbours of v. A vertex of degree 0 is isolated. If all the vertices of

G have the same degree k, then G is k-regular. A 3-regular graph is called cubic, and

a graph with maximum degree at most 3 is called sub-cubic.

For a given r ≥ 1, an algorithm A is an r-approximation algorithm for the maxi-

mization (minimization, respectively) problem Π, if for any instance I of Π, a solution

generated by A with value A(I) respects r · A(I) ≥ OPTΠ(I) (A(I) ≤ r · OPTΠ(I),

respectively), where OPTΠ(I) denotes the value of the optimal solution of Π on in-

stance I. The r is called also an approximation guarantee, factor or ratio. We will be

exclusively interested in polynomial time approximation algorithms, thus calling them

just approximation algorithms. If there exists an r-approximation algorithm for an

optimisation problem Π, then we also say that problem Π is approximable to within (a

factor of) r.

1.2 Organisation

This thesis is organised as follows. Chapter 2 provides background information pre-

sented in a high-level way, which is necessary to follow this thesis. In Chapter 3, we

study the problem of ontological alignment in both dominant strategy and Nash equi-

librium implementation and demonstrate that a mechanism based on greedy algorithm

achieves good price of anarchy. In the next three chapters, Chapter 4, 5 and 6, we turn

our attention to the study a classic combinatorial optimisation problem: the maximum

Chapter 1. Introduction 7

size independent set problem. In Chapter 4, we provide a series of negative results

about limitations of the greedy algorithm for this problem. In Chapter 5, we start our

study of the maximum size independent set problem on sub-cubic graphs, including

experimental research and explanations of our approach. Then, the culmination of the

thesis, in Chapter 6, which is self-contained, is devoted to present the formal result

of a simple greedy algorithm which achieves a 4
3 -approximation ratio in O(n2) time.

Finally, in Chapter 7, further applications of the techniques developed in the previ-

ous two chapters are presented. Namely, we extend these techniques to higher degree

graphs, while we also study the connection between independent set and vertex cover.

In Chapter 8 we conduct an experimental study on the heuristic and practical aspects

of the greedy algorithm for the maximum independent set problem on sub-cubic graphs.

The conclusion Chapter 9 presents possible directions of further study.

1.3 Overview of the main contributions

The main contributions of this dissertation are as follows.

• In Chapter 3, we introduce a novel model for mechanism design in context of

ontology alignment. The optimisation problem is an appropriate version of the

bipartite matching problem with a natural setting of agent’s private information

related to ontologies. We first show the impossibility results for this problem for

mechanisms in dominant strategy implementation. Then, we design a simple but

efficient mechanism and analyze it by the greedy paradigm. Namely, we prove

bounds on the price of anarchy and price of stability of the resulting game in the

Nash equilibria implementation.

Highlights: The ontology alignment problem is solved in practise on huge in-

put data, thus running time of the mechanisms is crucial, where even difference

between O(n2) and O(n) matters. The main message of our results in this new

mechanism design model is that the dominant strategy mechanisms cannot be

time efficient. But when we resort to Nash equilibria implementation we show

that the greedy paradigm provides a very fast and practical mechanism.

• In Chapter 4, we study inapproximability of greedy algorithms for the maximum

independent set (MIS) problem. We show that the algorithmic problem of identi-

fication of graphs on which greedy algorithm obtains any constant approximation

ratio is NP -hard. A previous result shows that it is co-NP -complete [8] by a

different proof. The authors also prove that it is NP -complete to decide if there

8 Nan Zhi

exists a sequence of choices of greedy leading to a fixed approximation. We also

present a simple proof to show for general graphs, that to advice greedy to obtain

the optimal solution is NP -hard. Furthermore, we are able to prove that the same

statement is true even for cubic planar graphs, which means that the problem of

advising greedy algorithm to obtain its optimum is NP -hard.

Highlights: This is the first result of the hardness of greedy on such restricted

class of graphs, which significantly strengthens the previously known hardness

results. This result potentially implies that it is difficult to algorithmically advise

the greedy algorithm to obtain a good solution even compared to the maximum

size greedy independent set.

• In the consecutive Chapters 5 and 6, we introduce a novel collection of mathemat-

ical tools and techniques to design and analyse greedy approximation algorithms

with advice for the MIS problem on sub-cubic graphs. These techniques let us

prove the existence in polynomial time of the 4
3 -approximate greedy algorithm,

which is the best approximation ratio currently known for greedy algorithms for

MIS on sub-cubic graphs.1 This also gives the fastest known approximation al-

gorithm with this approximation ratio, running in time O(n2), whereas the best

previously known algorithm (based on local search) with the same ratio has run-

ning time O(n7.3) [12], where n is the number of vertices in the input graph.

Highlights: The main novelty of our new analysis technique is based on a very

precise potential function that allows us to design a scheme to pay for the greedy

solution as compared to the optimal independent set. This scheme is highly

non-local and it requires a complex inductive argument which we provide. The

importance of these new techniques also stems from the fact that it gives a great

potential for further applications of analysing greedy on other classes of graphs

and for related problems. Moreover, we believe that with further development,

these tools will allow us to also analyse algorithms which do not comply with

greedy constrains.

• In Chapter 7, we apply our techniques to obtain improved fast greedy algorithms

for MIS on ∆-bounded degree graphs for any ∆ and for ∆ = 4. For any ∆,

we obtain a different proof than previous research [31] by using the technique

1We have recently managed to finally prove the existence of a 5
4
-approximation greedy algorithm,

which shows the strength of our tools and techniques. This proof however is not present in this thesis,
see [44].

Chapter 1. Introduction 9

from the previous chapters, proving that any greedy algorithm provides a ∆+2
3 -

approximation ratio. This is an alternative and much shorter and simpler proof

for the same result in [31]. For ∆ = 4, we obtain a 1.8-approximation ratio

greedy algorithm, which gives the best known time complexity algorithm with

this approximation ratio. Moreover, by strengthening a construction in [31] we

prove that any greedy algorithm for MIS on ∆-bounded degree graphs has an

approximation ratio at least ∆+1
3 −O(1

∆).

• Also in Chapter 7 we apply our new techniques to obtain improved approximation

algorithms for another classic optimisation problem on sub-cubic graphs, the min-

imum size vertex cover problem. We prove the existence of an 5
4 -approximation

algorithm, which is based on the greedy paradigm, but it is not a canonical greedy

algorithm. The running time of this algorithm is O(n2). We also find a better

algorithm by conducting a pre-processing step to obtain a 6
5 -approximation ratio

and the running time is bounded by complexity of the max-flow computation

on the graph. In contrast, the best currently known approximation ratio for the

minimum vertex cover problem is 1.166 by a local search approach [5] and the run-

ning time of this algorithm is at least O(n50), and O(n17.28) for a 6
5 -approximation

ratio.

Highlights: This new 6
5 -approximation algorithm also reflects the strength of

our techniques, and the potential of extending them to different optimisation

problems.

• We also conduct an experimental study in Chapter 8, to illustrate the efficiency of

the greedy algorithm for MIS on sub-cubic graphs, and to provide some insights

on the average approximation ratio.

Chapter 2

Background

The precise technical definitions of the various notions related to game theory and

mechanism design, complexity theory and (approximation) algorithms, used in this

thesis are presented in the appropriate respective chapters. This chapter contains

informal explanations of these concepts, that are necessary to follow the content of this

dissertation. The exceptions are the notions which refer to ontologies and ontology

alignment, which will be defined more formally in this chapter and we will not redefine

them later on.

2.1 Game theory and mechanism design

On the highest level of game theory, let us first explain the notion of a (non-cooperative,

one-shot) game. Given a finite set of selfish agents (players), each agent has a finite set

of actions to choose among. Such a game is played by the agents who simultaneously

choose an action from their action sets. For such selection of actions of each agent,

every agent gets a specific payoff, which is also sometimes called a utility. The goal

of the agents, supposedly without knowing what actions the other agents choose, is to

choose an action from its action set, that maximises their payoff.

As a simple example let us consider the classic Prisoners’ Dilemma, whose descrip-

tion is taken from the book [55], see Example 1.1 there. Two prisoners are on trial

for a crime and each faces a choice to confess to the crime or to remain silent. If they

both remain silent then the authorities will not be able to prove charges against them

and they will both serve a short prison term, say 2 years, for minor offenses. If only

one of them confesses, then its term will be reduced to 1 year and it will be used as a

witness against the other prisoner, who will get a sentence of 5 years. Finally if they

10

Chapter 2. Background 11

4

4

1

5

2

1

5 2

Confess

Confess

Silent

Silent

P2

P1

Figure 2.1: Prisoners’ Dilemma

both confess they both will get a small break for cooperating with authorities, and will

have to serve prison sentences of 4 years each (rather than 5).

In this game the prisoners are the 2 players, P1 and P2, and each player has the

same set of actions {C, S}, where C denotes Confess and S denotes Silent. This game

can be modeled as in Figure 2.1 where the numbers in this matrix are the costs that

they incur for their choices of actions. Thus their payoffs are the negated costs. For

example if P1 chooses Silent and P2 chooses Confess, then P1’s cost is 5 (and payoff

-5), and P2’s cost is 1 (and payoff -1).

Based on this game we can also define basic solution concepts in game theory:

namely equilibria. A (pure) Nash equilibrium of a game is a selection of actions of

all players such that no single player can change its action unilaterally to increase its

payoff, that is, where the other players stick to their chosen actions.

For instance, observe that the selection P1 = C and P2 = C is a pure Nash equi-

librium of the Prisoners’ Dilemma. That is because if P1 changes to S, and P2 sticks

with C, then P1 decreases its payoff from -4 to -5; the same holds symmetrically for P2

changing its action. This Nash equilibrium is also a very strong kind of equilibrium,

called equilibrium, solution or implementation in dominant strategies. This means that

for a given player, say P1, even if the other player P2 does not stick to its action C, still

the best action for P1 is to indeed stick to C. Indeed, it is best for P1 to keep action C

when P2 chooses C (because then if P1 switches from C to S, then its payoff decreases

from -4 to -5). And, also it is best for P1 to keep action C when P2 chooses S (because

then if P1 switches from C to S, then its payoff decreases from -1 to -2). To conclude,

each player’s dominant strategy in Prisoners’ Dilemma is to play Confess.

There are also mixed Nash equilibria, where players are allowed to choose probability

distribution on the set of their pure strategies. For instance in Prisoners’ Dilemma,

12 Nan Zhi

player P1 may choose C with probability 2/3 and S with probability 1/3. If, for

instance, P2 chooses C with probability 1 (pure strategy), then the expected payoff of

P1 will then be (2/3) · (−4) + (1/3) · (−5). In a mixed Nash equilibrium, no agent can

increase its expected payoff, by unilaterally deviating from its mixed strategy, while the

other players stick to their chosen mixed strategies. A given game may not possess a

pure Nash equilibrium, but if the set of agents is finite and their sets of pure strategies

(actions) are also finite, then such a game will always possess a mixed Nash equilibrium

(this is the famous Nash’s Theorem, see, e.g., [55]).

This thesis contributes to the part of algorithmic game theory, called algorithmic

mechanism design (AMD). AMD is the study of optimisation problems where part of

the input data is private data of selfish agents. We are interested in the design of

truthful mechanisms, where the goal of such mechanism is to incentivise the agents to

truthfully report their private data to the mechanism and to optimise the objective

function of the problem under consideration.

Intuitively, a mechanism is a pair that consists of an algorithm and a payment

scheme or rule. The algorithm outputs a solution to the problem under consideration.

Such solution usually contains a subset of the agents. The payment scheme provides

monetary payments for the agents present in this solution to incentivise them to be

truthful. Sometimes however, in quite rare cases, a mechanism without payment can also

incentivise the agents to be truthful. A mechanism defines a game in the sense defined

above by specifying for each agent valuations that this agent associates with a solution

output by the mechanism. Then, each agent’s action set is a bid, which is a value that

this agent reports to the mechanism about its private data. The mechanism collects

these bids and outputs a specific mechanism’s solution. Then, the agent’s payoff is just

its valuation of that solution minus the mechanism’s payment for this agent.

As an example, let us consider a simple instantiation of the Vickrey-Clarke-Groves

(VCG) mechanism,1 which is the single item second-price auction. We have n ≥ 2

agents who want to buy a single item. Each agent i has valuation vi ≥ 0 for the item.

The second-price auction (mechanism) collects bids b1, . . . , bn, which are non-negative

numbers, from the agents and declares the highest-bid agent a winner (this is a trivial

algorithmic part of the mechanism). The payment scheme is to ask the winner to pay

1Let Π be a maximisation problem with n agents, where each agent has a (private) valuation function
over feasible solutions to problem Π. The Vickrey-Clarke-Groves (VCG) mechanism collects a bid (for
the valuation function) from each agent and with these bids computes the optimal solution to Π that
maximises the sum of agents’ bids over this solution, called a social welfare. There is a way of defining
payments to agents (Clarke payments) such that this mechanism is truthful in dominant strategies.
This means that each agent’s dominant strategy is to report to the mechanism as its bid their true
valuation function. For more details, see book [55].

Chapter 2. Background 13

the value of the highest submitted bid among the remaining agents. For instance, if

n = 3 and v1 = 5, v2 = 7, v3 = 2 and the bids are b1 = 5, b2 = 4, b3 = 2, then agent 1

wins and pays b2 = 4 and its payoff is v1 − b2 = 5 − 4 = 1. The payoff of any losing

agent is by convention 0. In this example, agents 1 and 3 bid truthfully (i.e., b1 = v1,

b3 = v3), but agent 2 lies (i.e., b2 6= v2). Because agent 2 lost the auction, its payoff is

0. But if 2 bids truthfully b2 = v2 = 7, and the others bid like before, then 2 wins the

auction and its payoff is now v2 − b1 = 7 − 5 = 2. A simple case analysis shows that

in the single item second-price auction truth-telling, that is choosing as action (bid)

bi = vi, is the (weakly) dominant strategy of each agent. This implies that the choices

of actions (bids) b1 = v1, . . . , vn = bn is a dominant strategy Nash equilibrium of this

game.

We will consider general notions of truthfulness in the design of mechanisms. The

first is truthfulness in dominant strategies (as explained above), where if an agent

lies about its private data, then this agent’s payoff is always worse (or not better,

for weakly dominant), even if all other agents lie. Mechanisms which are truthful

in dominant strategies, which we also call just truthful, are also called to possess a

dominant strategy implementation. Here, we will also distinguish two further kinds of

truthfulness in dominant strategies for randomised mechanisms, that is, mechanisms

that use internal randomisation in their computation. These two kinds are universal

truthfulness and truthfulness in expectation. A randomised mechanism is universally

truthful if it is a probability distribution over a set of deterministic truthful mechanisms.

Furthermore, a randomised mechanism is truthful in expectation, if any agent maximises

its expected payoff by being truthful, independently of the other agents’ declarations.

The second notion of truthfulness is truthfulness in Nash equilibria. In this case

the mechanism should output a solution and a payment scheme such that the resulting

game (as defined above) implies a Nash equilibrium.

As mentioned above, computational problems studied in computer science and in

this thesis, usually come with a specific objective function that the mechanism is sup-

posed to optimise (maximise or minimise). Focusing on maximisation problems, we

desire to compute a solution that maximises the objective function value.

In context of game theory, the following useful notions of price of anarchy and price

of stability help quantify the quality of Nash equilibria with respect to a given objective

function.

For instance let us introduce an objective function called social cost, as the sum of

the costs (numbers in Figure 2.1) of the two agents in a given solution (where solution

is a choice of pure actions of both agents) of the Prisoners’ Dilemma. Note that agents

14 Nan Zhi

want to minimise their social costs (as opposed to maximising of their payoffs in this

game).

The social cost of the solution P1 = C,P2 = C is 8. Observe, however, that the

solution P1 = S, P2 = S has the minimum social cost in this game of 4. The solution

P1 = C,P2 = C is a Nash equilibrium, whereas the optimal solution P1 = S, P2 =

S (i.e., the one that minimises the social cost) is not. Given a game, with specific

minimisation objective function, the price of anarchy of this game is the worst-case ratio

(over all instances of the game) between the objective value of any Nash equilibrium in

the game and the objective function value of the optimal solution. For the Prisoners’

Dilemma example with the social cost objective the price of anarchy is 2. Note, that

to define the price of anarchy for a game with a maximisation objective (when the

objective is non-negative) the ratio would be between the value of the objective of the

optimum solution and the value of a Nash equilibrium. A related notion of the price

of stability differs from the price of anarchy in that if on a given instance of the game

there are multiple Nash equilibria, we take the one with the objective function value

that is closest to the optimal objective value. Note that we define the price of anarchy

and that of stability in a way that it is always a number of value at least 1 for both

minimisation and maximisation objective.

Intuitively, a large price of anarchy (or stability) says that there is large loss in

the objective function value when one resorts to (decentralised or anarchistic) Nash

equilibria solutions, compared to that of the optimal (centralised) solution.

As another example let us consider the introduced single item second-price auction.

We define the social welfare as the objective function value, that is, the (true) valuation

of the winner of the auction. We have seen that the truthful solution, that is b1 =

v1, . . . , vn = bn, is a Nash equilibrium of this game, and in this solution the item goes

to the highest bid (i.e., highest valuation) agent. This implies that the price of stability

of this game is 1. It can be shown by a simple example that the price of anarchy of

this game is unbounded.

We finally mention that the notions of the price of anarchy and stability can also

naturally be defined for the mixed strategies equilibria. Furthermore, the notions of

strategies, equilibria, price of anarchy and stability, etc, which were defined above,

naturally extend when we allow for randomisation as part of agents’ strategies (mixed

strategies) and/or as a part of the mechanism (which translates into universal truthful-

ness or truthfulness in expectation). Because we use these notions under randomness

only for a limited set of results, the precise definitions are in Section 3.4.

Chapter 2. Background 15

2.2 Optimisation, approximation and complexity

This thesis deals with various graph theoretic optimisation problems in context of their

approximability and computational complexity.

The very basic notion of an undirected graph has been defined in Section 1.1. The

following fundamental graph optimisation problems are studied in this thesis:

• the maximum weight bipartite matching problem (Chapter 3),

• the maximum size independent set problem (Chapter 4-8),

• and the minimum size vertex cover problem (Chapter 7).

We will define these problems very briefly here. An undirected graph G = (V,E) is

called bipartite if its vertex set V can be partitioned into two non-empty sets, U and

W , that is V = U ∪W and U ∩W = ∅, such that E ⊆ U ×W . This simply means

that in a bipartite graph, edges can only run between these two sets U and W , but no

two vertices from U are connected by an edge, and likewise, no two vertices from W

are connected by any edge.

Given a graph G = (V,E) we call a subset E′ ⊆ E of its edges a matching if no two

edges in E′ share the same end vertex. We also call a subset V ′ ⊆ V of its vertices an

independent set if no two vertices in V ′ are connected by an edge from E. Finally, a

subset V ′′ ⊆ V is called a vertex cover of G if for every edge from E at least one of its

end vertices belongs to V ′′.

Given a bipartite graph G = (U,W,E) with V = U ∪W , with non-negative weights

on its edges, the maximum-weight bipartite matching problem is to compute a matching

in G with the maximum possible sum of its weights on the edges.

Another fundamental graph optimisation problem is the maximum size independent

set (MIS) problem, where for a given graphG = (V,E), this problem asks for computing

an independent set in G with maximum possible size.

Finally, the minimum size vertex cover (MVC) problem is, for a given graph G =

(V,E), to compute a vertex cover of G with the smallest possible size.

These three problems find numerous theoretical and practical applications. How-

ever, they greatly differ from the point of view of their computational tractability. For

more details about relevant complexity theory, see, e.g., the Appendix in the book [69].

We will only explain very brief intuitions here.

For instance, the maximum weight bipartite matching problem is a very prominent

member of the complexity class P, of efficiently solvable problems, that is, all problems

16 Nan Zhi

(whose decision versions are) solvable in deterministic polynomial time. On the other

hand the maximum size independent set and the minimum size vertex cover problems

are prominent members of the complexity class NP, of all problems (whose decision

versions are) solvable in non-deterministic polynomial time. An alternative definition of

the class NP is that a decision problem belongs to this class if there is a polynomial time

algorithm that can guess a short certificate that can certify that the problem instance

is a “Yes” instance. Once this certificate is guessed, it can be checked efficiently in

polynomial time if it indeed certifies the “Yes” instance. A related complexity class

is co-NP, whose definition is the same as NP but the algorithm certifies now a “No”

instance of the problem.

In fact both MIS and MVC problems are NP -hard, which means that there are no

deterministic polynomial time algorithms to solve these problems exactly, unless P =

NP. This is the very famous P versus NP open problem in theoretical computer science,

and it is widely believed that in fact P 6= NP. We also say that the decision versions of

those problems, MIS and MVC, are NP -complete. Intuitively, if a problem is NP -hard

or NP -complete, it means that there is an overwhelming mathematical evidence in the

complexity theory that this problem cannot be solved efficiently, that is in polynomial

time, to optimality. Similarly, if a problem is co-NP -hard, it is also widely believed

that it does not possess an efficient exact polynomial time algorithm. For more details

on complexity theory, the reader is referred to the book [58].

This brings us naturally to the notion of an approximation algorithm, which is an

efficient, e.g., polynomial time, algorithm that computes an approximately optimal

solution to a given optimisation problem. A formal definition of an r-approximation

algorithm for a maximisation and minimisation problem has been given in Section 1.1.

Again, it turns out that the defined NP -hard problems, MIS and MVC differ greatly

with respect to what approximation guarantees can be achieved for them in polynomial

time. For instance, there are known polynomial time 2-approximation algorithms for

MVC (or even ones with smaller approximation ratios for bounded-degree graphs).

However, in general graphs, MIS cannot be approximated in polynomial time with

ratio n1−ε for any fixed ε > 0, where n is the number of vertices in the input graph. We

say that MIS is inapproximable within ratio of n1−ε. If, for instance, the given graph

has maximum degree at most constant, then MIS can be approximated in polynomial

time to within a constant approximation ratios. For more details about approximation

algorithms, the reader is referred to the book [69].

Chapter 2. Background 17

2.3 Ontologies and ontology alignment

For agents within an open multi-agent system to successfully communicate in any form

of transaction or collaboration, they must first understand and agree on the terminology

they use [70]; i.e. any terms or symbols used within the communication should have

some agreed meaning, or semantics. The notion of describing the meaning of some

concept has long been an important subject in the field of Artificial Intelligence, and in

particular, the interest in ontology as a tool for defining notions within a domain or word

theory has seen a resurgence since the emergence of the Semantic Web [7]. Traditionally,

such conceptualisations were shared, and assumed an agreed upon representation [65].

However, within open environments ontologies used by different agents for some domain

will typically have been developed independently, and thus the agents will need to reach

an agreement over the semantics of different terms through the creation of an ontology

alignment.

Ontologies support the sharing of knowledge across domains and applications by

providing a common, ideally machine processable vocabulary. Many different views

have emerged on the ‘ontological’ question of what is an ontology [28, 29, 65], with

the most widely cited definition of the meaning of ontologies (in the area of Artificial

Intelligence) being that given by Thomas Gruber in 1993 [28]. This was later refined to

state that “an ontology is a formal, explicit specification of a shared conceptualisation”

[65], where, formal refers to the requirement for machine-readability and explicit means

that the meaning of ontological terms is precisely defined. Thus an ontology provides

a model, or “specification of a conceptualisation” about a domain of interest such as

food, or medicine.

Due to the subjective nature of ontological design, a domain may be modelled in

many ways, resulting in different conceptualisations of the same domain using differ-

ent names and formalisms. As with their subjective nature, ontologies can represent

varying levels of granularity, based on the requirement of the tasks for which they were

engineered. For example, ontologies for the medical domain may be targeted at a high

and general, or holistic level, as opposed to those that define concepts at the cellular

level.

Ontologies are comprised of five main components; concepts, relations, individuals,

functions, and axioms:

• Concepts, also known as classes, represent objects in a given world. Classes can

be subdivided into subclasses which represent an entity that is more specific than

18 Nan Zhi

that of its superclass. For example, in the food domain2, classes include Food,

IceCream and Pizza, where the latter two are both subclasses of the first one.

As the concept Pizza is subsumed by Food (i.e. all instances of Pizza are also

instances of Food, but not vice versa), the definition of the Pizza concept would

also inherit all of the constraints and properties from its parent class Food.

• Relations, also known as properties, are the links between the concepts. Relations

can have specific characteristics that define their semantics; e.g. symmetry (e.g.

given the property hasBorder we could state that Country hasBorder Country),

or cardinality (e.g. the property hasChild may have a minimum cardinality of

1 in the statement Parent hasChild Child). The combination of concepts and

relations can be represented as a directed graph.

• Individuals are the instances or the manifestation of objects of a given world.

Whilst it is not a requirement that an ontology has to have instances (the ontology

may simply be descriptive), the notion of individuals allows for a division between

classes and instances of classes. In the pizza domain, two people may order two

pizzas, a Margherita pizza and a Hawaiian pizza. Whilst both would be instances

of Pizza, only the Margherita pizza would be an instance of a VegetarianPizza.

• Functions are a particular type of relation, defined on a set of concepts such that

they are sub-relations from a given parent quality. These can relate an individual

concept to a single value. For example, Spice would be a functional relation of a

Topping, and would draw values from the finite set {hot, medium, mild}.

• Axioms are logical formulae that can be used to infer and define specific class

restrictions that are always assumed to be true. They are commonly used to verify

the correctness of the knowledge represented, through checking, and inference. To

facilitate reasoning, the axioms are typically represented as declarative definitions

(typically stated using some logical algebra3). An example of an axiom is in the

definition of the concept VegetarianPizza, which is defined as a subclass of

Pizza that does not have toppings of type FishTopping or MeatTopping.

2A tutorial for a simple pizza ontology is available for the Ontology Editor, Protege, and can be
found at https://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes

3Often, the use of declarative definitions are not sufficient to constrain completely the meaning of
concepts or capture the ‘procedural’ or decision making aspects of the application business logic. This
knowledge is often represented as additional rules that accompany the ontology, that can facilitate the
advanced reasoning capabilities necessary for such business logic.

https://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes

Chapter 2. Background 19

Because we will not present a formal definition of an ontology later in this thesis,

let us present it here:

Definition 1. An ontology, O, can be expressed as a tuple O = 〈C,≤C , R,≤R, I, Ax〉,
where: C is the set of all concepts; ≤C is a partial order on C, representing a concept

hierarchy; R is a set of properties which is disjoint with C; and ≤R is a partial order

on R, representing a relation hierarchy. I is the set of individuals; i.e. instances of

concepts in C and relations in R, such that I = {x : ∃y ∈ C ∪ R, instanceof(x, y)}.
Instances of concepts may be interconnected with other elements in I by instances of

relations in R. Finally, Ax is the set of axioms used for inferring knowledge or con-

straining expressions in the language.

A variety of knowledge representations have been proposed in the past, however

there has been a recent convergence on the use of a single syntactic representation

for ontological knowledge. By basing a representation on an XML syntax, Web-based

machinery can be exploited for publishing, indexing, acquiring and parsing both ter-

minological knowledge (e.g concepts and properties) and assertional knowledge (e.g.

instances). The Web Ontology Language, OWL4 provides a standard, ubiquitous repre-

sentation for describing ontologies, thus eliminating the need for addressing the problem

of representational heterogeneity. Whilst it may be reasonable to assume a standard for

ontology languages, it is still impractical to promote the use of a single global ontology

within a system of open agents, as agents will often differ in the ontology to which they

commit.

Whilst it may be possible to define a single, shared domain ontology for use within

well defined communities, it would be impossible to enforce the use of a centralised

ontology within a dynamic, open environment, where at runtime, the agents (repre-

senting different stake-holders) come together serendipitously, with no prior knowledge

of each other. As a consequence, agents may use different ontologies to model the

same domain, and although these different ontologies may be similar, they may differ

in granularity or detail, use different representations, or model the concepts, properties

and axioms in different ways.

Ontology alignment. An ontology representing a given domain may be mapped to

another ontology representing the same domain through the use of ontology alignments.

This enables semantic interoperability between the knowledge bases of the respective

agents, and thus is an essential component for agent communication. Known as the

Ontology Alignment Problem, this is crucial in supporting semantic integration. In order

4http://www.w3.org/2004/OWL/ - Web Ontology Language.

20 Nan Zhi

for two systems to accurately and successfully communicate over their vocabularies, the

heterogeneity in ontologies needs to be resolved.

The ontology alignment community has proposed diverse approaches that align

ontologies in order to find these sets of correspondences [21]. A recent review of ontology

matching research [64] highlighted that whilst considerable progress had been made

in recent years, the performance of different ontology alignment mechanisms across

different tasks is still an issue, and can vary greatly. Thus it can be problematic to

determine which approach would produce the best alignment between two ontologies

for a specific task [60].

An alignment is a set of mappings (correspondences) between the corresponding

entities within a pair of ontologies, and can be defined as follows: An alignment, AO,O′
is a set of mappings or correspondences between two ontologies, O and O′ representing

a shared domain. A single correspondence, m, defines a relationship between corre-

sponding entities, e and e′ within the two ontologies, and can be defined as follows:

Definition 2 ([21]). A correspondence, m ∈ AO,O′, is expressed as a tuple: m =

〈e, e′, n, r〉 where: e ∈ O and e′ ∈ O′ are the entities (concepts, relations or individuals)

between which a relation is asserted by the correspondence; n ∈ R+ is a degree of

confidence in that correspondence; and r ∈ {≡,v} is the relation5 holding between e

and e′.

The formal definition of correspondences can be specialised when the entity type

is constrained: mappings between concepts = 〈c, c′, , 〉, mappings between properties

= 〈p, p′, , 〉, and mappings between individuals = 〈i, i′, , 〉, where the entity types

correspond to concepts, relations and individuals respectively. A correspondence over

which no agreement has yet been reached by the agents is called a candidate mapping.

Ontology alignment has traditionally been viewed as a centralised process, whereby

a central oracle is invoked in order to identify mappings between corresponding enti-

ties belonging to two ontologies provided as input. Such approaches try to maximise

the number of correspondences created (coverage) given some objective function, of-

ten disregarding the reason why the alignment was being generated (i.e. to facilitate

some task or queries), or other knowledge possessed by the ontology owner (e.g. an

agent). Thus, generic alignment mechanisms do not offer any guarantee that even if an

alignment can be found, this will actually support the representation of a joint task.

5This set of relations is not meant to constitute an exhaustive set of relationships, as the type of
relationships can depend on the type of correspondences generated, and the underlying logical algebra
assumed by the ontological model.

Chapter 3

Mechanism design for ontology

alignment

3.1 Introduction

To address the problem of agents communicating in a meaningful way within an open,

distributed environment, the agents have to align their respective, individual, and typ-

ically private ontologies. Although many approaches have been proposed to align on-

tologies within a centralised setting, few studies have addressed how candidate corre-

spondences should be selected within this setting [38, 46, 60, 68], and even fewer, if

any, have considered the problem from a decentralised, one-shot game perspective [43].

Various static [46, 68] and dynamic [60, 38] approaches have explored how agents

can propose, and exchange candidate correspondences with the goal of aligning their

respective ontologies. In many cases, agents acquire knowledge of different candidate

correspondences from a variety of sources, or through negotiation with other agents.

These candidate correspondences may have an associated weight, which may reflect the

utility, significance, or simply the confidence that an agent has in the correspondence.

This weight may also be contextual as different weights may be associated to a cor-

respondence based on the specific task an agent is trying to achieve. Furthermore, in

adversarial scenarios, the agents may not wish to disclose their private weights, and

may lie when stating their preferences. An example of such a scenario is the health-care

domain where ontologies are currently being used to describe electronic patient records

(EPR), but where the vendor “ . . . may be reluctant to distribute (parts of) the contents

of [the ontology], as doing so might allow competitors to plagiarize [it] . . . ” [27]

As the composition of different subsets of correspondences can result in different

21

22 Nan Zhi

e1 v = 1

e2 v = 1+!

e3 v = 1

writer

contributor

editor

author

Figure 3.1: Centralised example with two solutions: {e1, e3} and {e2}.

alignments, the challenge in negotiating a mutually acceptable alignment is that of

selecting and proposing correspondences that result in a preferred alignment that sat-

isfies the aims of both agents. Furthermore, some correspondences may map a single

entity in one ontology to different entities in other ontologies (which can compromise

the integrity of the resulting logical model), and therefore the outcome should also be

injective, i.e., a matching.

3.2 Background

To date, the ontology alignment community has proposed many diverse approaches that

align ontologies in order to find sets of correspondences between the ontology pairs.1

However, most approaches rely on the ontologies being fully shared with some alignment

algorithm [21, 64] which attempts to find correspondences between entities. Alignment

approaches usually initiate the process of identifying correspondences (mappings) by

computing a similarity matrix (lexical, structural or a combination of these) between

all the entities in the two ontologies that are being aligned [21, 51]. This produces a

number of different mappings involving the same entities from which an injective (one-

to-one) alignment needs to be extracted (i.e. correspondences for which to each entity

from the source ontology corresponds only one entity in the target ontology).

Typically, most alignment approaches model the alignment as a bipartite graph,

and thus select an injective alignment by finding a matching or independent edge set in

the graph, such that the set of edges (i.e. correspondences) have no common vertices

(i.e no entity in one ontology is mapped to more than one entity in the other ontology,

and vice versa). This assumes that each edge (or correspondence) is weighted such

that the weight represents the quality or desirability of the correspondence. The two

1For a comprehensive overview of the different approaches, we refer the reader to the Proceedings of
the Ontology Matching Workshops that have taken place annually since 2004, as part of the Ontology
Alignment Evaluation Initiative - http://oaei.ontologymatching.org

http://oaei.ontologymatching.org

Chapter 3. Mechanism design for ontology alignment 23

most common methods used to compute a matching are: 1) to find a global optimal

solution (which is equivalent to the Assignment Problem) using algorithms such as the

Hungarian method [45]; or to find a sub-optimal, but stable solution using algorithms

such as Gale and Shapley’s Stable Marriage algorithm [24]. Solutions to the assignment

problem identify correspondences that maximise the sum of the weights (i.e. they

assume some objective function that maximises social welfare), such that the global

similarity of the alignment is considered, as opposed to the similarity of each pair of

entities. This is illustrated in Figure 3.1, where two correspondences are selected by

maximising the weights; in this case the weights associated to the two correspondences

{e1, e3} are 1 + 1 = 2.

The used approach should also be time-efficient, as ontologies can vary greatly in

size, with several in the Bio-Medical domain possessing tens of thousands of entities

[39]. Thus, given that the Hungarian method is computationally expensive (O(n3) for

its most efficient implementation), some sub-optimal approximate algorithm such as

a greedy matching algorithm [51] or a variant from the family of Stable Marriage al-

gorithms [30] are used that select a sub-optimal set of correspondences in those cases

when a stable solution is sufficient. This can result in a different alignment that empha-

sises the weights of individual correspondences; for example a greedy algorithm would

generate an alignment with a single correspondence, e2, as its weight is greater than

either e1 or e3, resulting in a sub-optimal total weight of 1 + ε.

A similar problem arises in decentralised settings, where agents negotiate over a set

of (partially observable) correspondences to agree upon a mutually acceptable align-

ment [2, 4, 13, 20, 38, 46, 60, 68], often based on the aims or goals of the agents that

may own or utilise them. As no single alignment approach can provide a panacea for all

ontology pairs, agents are left with the problem of either: 1) selecting a suitable align-

ment approach from the plethora that exist; or 2) assembling alignments from a subset

of relevant, candidate correspondences; for example using an ensemble approach. This

latter case occurs if agents have access to correspondences from shared repositories [46]

or garnered from previous transactions with other agents. Furthermore, alignments

with different constituent correspondences may be semantically equivalent with respect

to one of the agent’s ontologies and aims (due to the logical theory underlying each

agent’s ontology) but may have a different meaning to another.2 As the agent may

have preferences over the choice of correspondences used (e.g. due to privacy concerns

[27, 52]), agents can have a preference order over the resulting alignments within the

2 A classic example of terminological difference exists with the term “football”, which has a different
meaning depending on whether the reader is from the US or the UK.

24 Nan Zhi

same equivalence class. Hence, for self-interested agents, this task becomes one of

selecting a mutually acceptable subset of preferred ontological correspondences.

The resulting alignment will typically be dependent on the valuation that each agent

associates to each correspondence. Whilst this is uncontroversial in centralised systems,

approaches that are decentralised (i.e. where agents may differ in the value they ascribe

to a correspondence) are subject to strategic manipulation; i.e. agents may lie about the

true valuation of a correspondence to ensure that the final alignment includes their pre-

ferred correspondences. The value that each agent assigns to each correspondence (i.e.

its private valuation) relates to how useful this edge is in resolving a query or achieving

a task, and in turn, the potential benefit the agent can obtain from performing a task.

Note that this is not the same as the confidence the agent has in the edge (based,

for example from some form of linguistic similarity metric over the concept labels).

For example, an agent may know of two correspondences in the publishing domain

{writer, editor} and {writer, author}. Both are viable correspondences, depending

on the task (e.g. for a conference proceedings and monograph respectively), but an

agent may assign different valuations to each correspondence based on some prefer-

ence; for example the agent can increase its benefit by resolving queries or performing

tasks (by providing a service to its peers) pertaining to monographs. Conversely, it

may have a low valuation for other correspondences for which it has little preference

(e.g. {writer, publisher}). However, within a service landscape where several agents

(providing services) may compete to perform a task for a requesting agent, they may

not wish to disclose the true valuation. This can potentially lead to agents strategically

manipulating the combined value of sets of correspondences, in order to maximise their

individual benefits; potentially resulting in semantically compromised correspondences

being selected, which may then prevent the query or task from successfully completing.

Thus, in an ideal setting, the agents should be incentivised to adopt strategies that

result in alignments that benefit both agents; i.e. find solutions that lie within a Nash

Equilibrium [55]. Our model which relates to two agents who seek to find a matching

between their sets of ontologies, assumes an existence of a third party, a mechanism de-

signer, who provides an online matching service such as an Agent Matchmaker [15, 67],

that facilitates the discovery of services (often based on semantically annotated service

descriptions3 [57, 66]). The mechanism designer uses a specific matching mechanism

which might require payments from agents. Those payments can be interpreted as the

mechanism’s charge for the provided matching service.

3Note that a discussion of the methods for discovering semantically annotated services [14, 22] is
out of scope of this thesis.

Chapter 3. Mechanism design for ontology alignment 25

3.3 Our contributions

Thus, given two agents, an instance of the ontology alignment problem can be mod-

elled as an edge-weighted bipartite graph G = (U ∪ V,E), where the vertices of U and

V correspond to named concepts and the edges e ∈ E represent the candidate corre-

spondences. Each agent assigns an independent value to each edge, which represents a

private weight associated to that correspondence. The outcome should be an injective

alignment (a matching) that maximises social welfare (i.e. the sum of the edge weights

in the resulting alignment is maximised).

Remark: Although, optimisation-wise, this problem is just the classic maximum edge-

weighted bipartite matching problem, the differences will emerge when we define the

very specific mechanism design version suited to our application to the ontology align-

ment problem. In particular, the main novelty will be a special kind of agents’ utilities

that will define a special kind of edge weights. This, in turn, will translate in an interest-

ing and new set of results on the approximability of the dominant strategy mechanisms

and price of anarchy and stability of the Nash equilibria implementation of the greedy

mechanism.

We explore this problem from a mechanism design perspective, and analyse imple-

mentations in Dominant Strategies and in Nash Equilibria. For the implementations in

Dominant Strategies, two alternate settings are considered: with payment, and without

payment ; where the problem is characterised as a social welfare maximising matching

setting, with an additive valuation function. We show that for a deterministic mecha-

nism with payment, the only truthful mechanism is maximal-in-range4 and any truthful

mechanism which is not optimal can do no better than an approximation ratio of 2.

Note here that we can obtain a truthful mechanism by just solving the edge-weighted

bipartite matching problem exactly and using the VCG payments to the agents. How-

ever, this still requires time for solving optimally the edge-weighted bipartite matching

problem, and we ask the question whether it is possible to have a faster truthful mecha-

nism? We answer this question in negative, because our results imply that any truthful

mechanism that is not optimal has to be maximal-in-range and at least 2-approximate.

This motivates us to study implementation in Nash equilibria by fast greedy algorithms

(see below).

4A mechanism is maximal-in-range if it computes an optimal, i.e., social welfare maximising, solution
on a fixed subset of feasible solutions. See also Definition 4.

26 Nan Zhi

For settings without payment, we assume a priori that the individual true valuations

of each correspondence are public, and each agent bids a Boolean vector (indicating its

selection/rejection of a correspondence). Our polynomial time algorithm determines if

a deterministic truthful mechanism exists with a bounded approximation ratio; if so,

then the optimal solution is found. However, if such a mechanism does not exist for

the bid, then we show there is no truthful mechanism with bounded approximation

ratio. We also show that there are no randomised mechanisms that are: i) universally

truthful with an approximation ratio better than 2; and ii) truthful in expectation with

an approximation ratio better than 2. Note that ii) implies i), however, we also mention

and explicitly include i), because its proof is different from that of ii).

Given our results on truthful centralised mechanisms, either the problem should

be solved optimally (though costly) or strong lower bounds should be found for the

approximation ratios of truthful mechanisms. Thus, we have explored an implemen-

tation in Nash equilibria to efficiently approximate mechanisms for matching, using

the greedy allocation mechanism. We provide a complete picture of the complexity of

this mechanism by showing that when coupled with a first-price payment scheme, it

implements Nash equilibria which are very close (within a factor of 4) to the optimal

matching. The Price of Anarchy of this mechanism is characterised completely and

shown to be precisely 4 (this bound also holds for Mixed Nash equilibria), and when a

pure Nash Equilibrium exists, we show that the Price of Stability is at least 2. Thus

we can just let the agents play in a decentralised way and reach a Nash equilibrium,

which then will give a solution close to optimum within a factor of 4.

3.4 Preliminaries

We consider a setting in which there are two agents i ∈ {L,R} (the left agent and right

agent), where each agent possesses a private ontology Oi, which consists of named

concepts NC and named relations NR; i.e. Oi = NC
i ∪NR

i . An instance of the alignment

is modelled as an edge-weighted bipartite graph G = (U ∪ V,E), where the vertices

of U and V correspond to named concepts (i.e., entities) in the agents’ individual

ontologies U = NC
L and V = NC

R respectively, and the edges e ∈ E correspond to the

candidate correspondences. A matching M is a subset of E such that e ∩ e′ = ∅
for all e, e′ ∈ M with e 6= e′; i.e. no two edges have a common vertex. Each agent

i ∈ {L,R} has a non-negative valuation function for different matchings M , denoted

vi(M), where vi : M(G) → R+, which is additive; i.e. v(S) + v(T) = v(S ∪ T) such

that S ∩ T = ∅ for all S, T ∈ M(G), and M(G) is the set of all matchings in a graph

Chapter 3. Mechanism design for ontology alignment 27

G. The agents also have the valuation function vi : E → R+ to represent the value

vi(e) the agent i can get from the edge e. The combined value for an edge e is therefore

given as v(e) = vL(e) + vR(e) (as described below). Define that vi(M) =
∑

e∈M vi(e)

for every agent i ∈ {L,R}. The goal is to establish an alignment which is equivalent to

a matching M that maximises
∑

e∈M v(e). The valuation function vi can be regarded

as the agent’s true valuation, or type that it attributes to each matching. Furthermore,

we use v to represent the combined type profile for both agents, such that v = (vL, vR),

where vi is the type profile for agent i, and similarly, b denotes the combined bid profile

for both agents, such that b = (bL, bR), where bi is the bid profile for agent i. We

will also introduce the following useful notation: bei = bi(e) and vei = vi(e) for any

i ∈ {L,R} and e ∈ E.

To determine the outcome given the bids of the two agents, we consider mecha-

nisms with and without payments (see §3.5). We define a direct revelation mechanism

M(A,P), which is composed of an allocation rule A to determine the outcome of the

mechanism, and a payment scheme P which assigns a vector of payments to each de-

clared valuation profile. For the mechanism with payment (§3.5.1), the mechanism

proceeds by eliciting a bid profile bi from each agent i, and then applies the allocation

and payment rules to the combined bid profiles to obtain an outcome and payment for

each agent. As an agent may not want to reveal its type, we assume that b does not

need to be equal to v.

For the mechanism without payment, we consider a restricted model of the dec-

laration, whereby each agent’s valuation on an edge e, vi(e) is public, and thus ∀e ∈
E, bi(e) = vi(e). What is private is a set of desirable edges Ei ⊂ E that the agent wants

in the outcome. Each agent i therefore declares a Boolean value for each edge, denoted

δi(e) ∈ {0, 1}, such that δi(e) = 1 iff e ∈ Ei. The payment scheme for this mechanism

is simply P = 0, and the allocation rule A is described in §3.5.2.

The utility ui(·) for agent i given a bid profile b = (bL, bR) and mechanism M is

based on the allocation rule A and the payment scheme P over the outcome of A(v)

(i.e. a matching or allocated set M), and can be written as ui(A(b)) = vi(A(b))−Pi(b).
For the implementation in Nash Equilibria, we assume a first-price payment rule, such

that an agent is charged its declared bid bi(M) for any allocated set M . Our mechanism

M maximises the social welfare given both agents’ bids (generating either optimal or

approximately optimal solutions), which is defined as SW (A(b), v) =
∑

e∈A(b) v(e).

A (deterministic) mechanismM is called truthful in dominant strategies or incentive

28 Nan Zhi

compatible if, for any agent i ∈ {L,R}, we have

ui(A(vi, b−i)) ≥ ui(A(bi, b−i))

for any bid profile bi of agent i and any bid profiles b−i of the other agent.

Remark: Given any k-dimensional vector w = (w1, . . . , wk), and given any element

w′ and any index i ∈ {1, . . . , k}, we denote by w−i the (k − 1)-dimensional vector that

has all coordinates of vector w except the i-coordinate. Then we denote by (w′, w−i)

the vector (w1, . . . , wi−1, w
′, wi+1, . . . , wk). That is, (w′, w−i) is vector w that has w′ in

the i-th coordinate and other coordinates are the same as in vector w.

Thus, given a bid profile b = (bL, bR), the notation (vi, b−i) above for any agent

i ∈ {L,R} denotes the new bid profile in which the bid bi of agent i in b is replaced by

vi and the bid(s) of the agent(s) other than i, b−i, are the same as in profile b. That is, if

i = L, then we have (vi, b−i) = (vL, bR), and if i = R, then we have (vi, b−i) = (bL, vR).

Also, to be very formal, we should write A((bi, b−i)) instead of A(bi, b−i) above.

If the context is clear, we will omit A in the utilities ui, which means: ui(·, ·) :=

ui(A(·, ·)).

Nash Equilibria. Different types of Nash equilibria may exist, depending on the

strategy adopted by the agents. The bid profile b forms a Pure Nash equilibrium if, for

both agents, there exists no other bid profile b′i achieving a higher utility, i.e.,

∀b′i, ui(bi, b−i) ≥ ui(b′i, b−i)

Thus, no agent can obtain a higher utility by deviating from b.

Remark: Given a bid profile b = (bL, bR), the notation (bi, b−i) and (b′i, b−i) has

been explained in the remark above. And again, to be very formal, we should write

ui((bi, b−i)) instead of ui(bi, b−i) above.

The bid profile b may also form a Bayesian Nash equilibrium. Let i ∈ {L,R}, Vi
denote the finite set of valuations of agent i. As the set of possible valuation profiles of

the agents is V = VL×VR, there is a known probability distribution P over the valuation

V . We assume that P = PL × PR is the Cartesian product of independent probability

distribution Pi. Any valuation profile v = (v1, · · · , vn) occurs with probability P (v) =

Chapter 3. Mechanism design for ontology alignment 29

∏n
i=1 Pi(vi), where Pi(vi) is the probability that agent i has valuation function vi.

The strategy function Bi for agent i assigns a bid-vector bi = Bi(vi) to every valu-

ation function vi ∈ Vi. The function B = (B1, · · · , Bn) is a Bayesian Nash Equilibrium

if, for both agents i, and for every valuation function vi, the bid Bi(vi) maximizes i’s

expected utility, given that its valuation function is vi, and that the bids of other agent

j is Bj(vj), where vj is drawn from Pj . Thus, for all vi and b′i:

Ev−i∼P−i [ui(bi, b
v−i

−i)] ≥ Ev−i∼P−i [ui(b
′
i, b

v−i

−i)],

where b
v−i

−i = (B1(v1), · · · , Bi−1(vi−1), Bi+1(vi+1), · · · , Bn(vn)), and Ev−i∼P−i [X] denotes

the expectation of the random variable X assuming that vector v−i is sampled at

random from the distribution P−i.

We also permit a randomised strategy function which can result in a Mixed Nash

equilibrium. Given the probability distribution ω1, · · · , ωn over the declarations, and

any function f over the space of declaration profiles, we can state Eb∼ω[f(b)] for the

expected value of f over declarations chosen according to the product distribution

ω = ω1×· · ·×ωn. Thus, ω is a Mixed Nash Equilibrium if, for any agent and distribution

ω′i, we have: Eb∼ω[ui(b)] ≥ Eb∼(ω′i,ω−i)[ui(b)].

By combining the Bayesian and Mixed strategies, we define a Mixed Strategy Bayesian

Nash Equilibrium:

Ev−i∼P−i,b∼ω[ui(bi, b
v−i

−i)] ≥ Ev−i∼P−i,b∼(ω′i,ω−i)[ui(bi, b
v−i

−i)]

As our aim is to maximise the social welfare, we denote SWopt(v) for maxM∈M(G) SW (M,v),

and state that the allocation algorithm A is a c-approximation algorithm if we have

SW (A(v), v) ≥ 1
cSWopt(v).

The Price of Anarchy of mechanism M(A,P) in mixed (and pure, respectively)

strategies can thus be defined as:

PoAmixed = sup
v,ω

SWopt(v)

Eb∼ω[SW (A(ω), v)]

PoApure = sup
v,b

SWopt(v)

SW (A(b), v)

where the supremum is over all valuations v, and all mixed Nash equilibria ω (likewise,

all pure Nash equilibria b) for v. Here A(ω) denotes a random matching with respect

to ω.

30 Nan Zhi

Given a probability distribution P over valuations (types) of the agents, and an

allocation rule A, we denote: SW (A(b), P) = Ev∼P [vL(A(b)) + vR(A(b))]. Then, the

Bayesian mixed (pure, respectively) price of anarchy of mechanism M(A,P) is:

PoABayesian = sup
P,ω

SWopt(P)

SW (A(ω), P)

where the supremum is over all type distributions P and all mixed Nash equilibria ω

(respectively, all pure Nash equilibria ω, assuming that ω assigns probability 0 or 1 to

pure strategies) for v.

The price of stability for pure strategy games defined by mechanism M(A,P) is

the ratio between the best objective function value of one of its equilibria and that of

optimum:

PoSpure = inf
v,b

SWopt(v)

SW (A(b), v)

Where the infimum is over all type valuation v, and all pure Nash equilibria b.

3.5 An Implementation in Dominant Strategy

Two truthful mechanism design cases have been investigated: with payment (§3.5.1)

and without payment (§3.5.2).

3.5.1 Mechanism design with payment

In this setting, both agents have to pay money to establish a matching. The first

observation is that if we are willing to solve the problem optimally (which is possible

in polynomial time by simply finding an optimal weighted bipartite matching), then

we can use the classic VCG mechanism with Clarke payment (e.g., [55]). The question

is: can we have a faster, non-optimal, approximate and truthful mechanism for our

problem? We show below that the answer is essentially no. We will need the following

well known theorem from the classic mechanism design theory:

Definition 3. [55] An allocation rule of mechanism A satisfies weak monotonicity if for

all i and all v−i, A(vi, v−i) = a 6= b = A(v′i, v−i) implies that vi(a)−vi(b) ≥ v′i(a)−v′i(b).

Theorem 1. [55] If a mechanism M(A,P) is incentive compatible, then A satisfies

weak monotonicity.

Chapter 3. Mechanism design for ontology alignment 31

Theorem 2. For the alignment problem with payment, any mechanism which does

not return an optimal solution, is either non-truthful, or if truthful, the non-optimal

solution has an approximation ratio of at least 2.

Before the proof of Theorem 2, the clarification for it is: if we apply the VCG

mechanism, then the mechanism will be truthful and the solution is optimum, thus,

the motivation behind this theorem is to seek any mechanism which is not VCG, to

examine whether such mechanism can be truthful and what is the quality of its solution.

This theorem shows that if any mechanism is not VCG, then it is either not truthful,

or it is truthful but cannot achieve a solution whose approximation factor is smaller

than 2.

Proof. Let M(A,P) be a mechanism, and recall that A(v) denotes the outcome gen-

erated by M, when the input is v (which may not be the true valuation).

We construct an instance of our problem of any size to prove the lemma. For any

two positive integers `, k, let the bipartite graph G = (U ∪V,E) have ` nodes on the left

side of bipartite graph (|U | = `) and k nodes on the right side (|V | = k). Then we have

two special edges e1, e2 ∈ E that are disjoint, e1∩ e2 = ∅, and their true valuations are

as in Figure 3.2, vL(e1) = vL(e2) = 0 and ve1R = ve2R = ω. The valuations of all other

edges in G for both agents are zero. In the following discussion, we will only consider

the right agent, and thus we omit the agent index when referring to valuations.

Consider any mechanism M(A,P) that does not adopt an optimal solution: the

outcome contains both edges e1 and e2. Thus, the non-optimal solution will contain at

most one of these edges, and note if both e1 and e2 are not adopted into the solution,

the approximation ratio is unbounded. We therefore assume that the mechanism specif-

ically accepts one of these two edges; w.l.o.g., assume that M will accept e1 ∈ A(v),

when the right agent declares its true valuation v.

If the right agent deviates from its valuation v to some other valuation v′, the

mechanism has two options:

Case-1. The mechanism changes the current outcome A(v) ⊇ {e1} to A(v′) ⊇
{e1, e2}, adopting both edges. Making the alternative valuation v′(e1) = v′(e2) = 0,

implies that v′(A(v′)) ≤ v′(A(v)). From the assumption, we also know that v(A(v)) <

v(A(v′)). Adding the left and right hand sides of these two inequalities, we obtain:

v′(A(v′)) + v(A(v)) < v′(A(v)) + v(A(v′))

v(A(v))− v(A(v′)) < v′(A(v))− v′(A(v′))

32 Nan Zhi

As this violates the weak monotonicity condition in Theorem 1, it follows that M
is not a truthful mechanism.

Case-2. The mechanism does not change the outcome, i.e., A(v′) = A(v). Then

when the agent deviates its valuation to v′. The approximation ratio is at least
v(e1)+v(e2)

v(e1) . Since we consider the worst case, the ratio is therefore at least 2.

Observe that if the outcome changes from e1 ∈ A(v) to e2 ∈ A(v′) and e1 6∈ A(v′),

then this case is symmetric to Case 2, and thus will also lead to a ratio of at least 2.

Furthermore, if the right agent has only one non-zero value edge, and the valuation

on the remaining edges is 0, then the approximation ratio is also unbounded, and all

such cases also lead to the lower bound on the approximation ratio.

Definition 4. [17] A mechanism is called maximal in range (MIR) if there exists a fixed

subset R of all allocations (the range of the mechanism), such that for every possible

input v, the mechanism outputs the allocation that maximizes the social welfare in R

with respect to v.

Theorem 3. For the alignment problem with payment, any deterministic mechanism

that does not return an optimal solution, is either non-truthful, or is a maximal-in-range

mechanism.

The idea behind Theorem 3 is the following. Given the agents’ bids, any mechanism,

if it does not return the optimal matching as the solution, the agents will declare a bid

which is lower than their true valuation. The agents are incentivised to do that, because

the mechanism will choose a sub-optimal solution.

Proof. Consider an instance, let the bipartite graph G = (U ∪V,E) have ` nodes on the

left side of bipartite graph (|U | = `), and only single node on the right side (|V | = 1).

For each vertex of the left agent, there is an edge that connects it to the right agent’s

vertex; thus, any matching for this instance includes only a single edge. Let us name

these ` edges as e1, . . . , e`. Fix any deterministic mechanism A that does not return an

optimal solution; and we assume that e1 is the optimal solution; then the mechanism A
will select one edge in {e2, · · · e`}. When agents deviate from their valuation, according

to the solution returned by the mechanism, we have three cases:

Case-1. Mechanism A does not accept an alternative solution, in particular {e2},
whatever the declaration is. Thus, if A is truthful then it is equivalent to a maximal-

in-range mechanism, whose range is R = {e2}.
Case-2. Mechanism A returns an alternative solution, {e1} (i.e. the optimal so-

lution in global) for some declaration v′: A(v′) = {e1}. However, by Theorem 1, the

Chapter 3. Mechanism design for ontology alignment 33

Figure 3.2: Disjoint Edges Figure 3.3: Shared vertices

mechanism is not truthful. To show this, suppose w.l.o.g. that the mechanism returns

e2 for a declaration v: A(v) = {e2}, and that one agent deviates from its valuation v to

v′ with v′(e1) < v′(e2). Note we have v(e1) > v(e2) by the assumption. Adding the left

and right hand sides of these two inequalities, we have v(e2)−v(e1) < v′(e2)−v′(e1). By

assumption, we also have A(v) = {e2} and A(v′) = {e1}. This contradicts the mono-

tonicity condition from Theorem 1, which requires that: v(e2)−v(e1) ≥ v′(e2)−v′(e1).

Case-3. Mechanism A returns an alternative solution, which is one of the edges

from {e3, · · · , el}. In such a case, by Theorem 1, the same argument for Case 2 also

applies for this, the mechanism is again not truthful, since it violates the monotonicity

condition.

Note that putting together Lemma 2 and Theorem 3, we conclude the following

theorem:

Theorem 4. For the alignment problem and mechanism design with payment, the only

truthful mechanisms are ones that are maximal-in-range and have approximation ratio

at least 2.

To complement these lower bound results we in fact show below that there is a very

simple truthful mechanism which indeed has an approximation ratio of 2, also it does

not return optimal solution and it is a maximal in range mechanism.

We introduce some notations here. LetO be the optimal solution, andOL andOR be

the optimal solution for the left agent and right agent, i.e., OL = arg maxM∈M(G) vL(M),

OR = arg maxM∈M(G) vR(M).

Algorithm 1 Larger agent algorithm.

Require: Bipartite graph G = (V,E). bL, bR of the left and right agent.
Ensure: A matching M

1: set the left agent bids on all edges to be 0
2: find the optimal solution of the right agent OR.
3: set the right agent bids on all edges to be 0
4: find the optimal solution of the left agent OL.
5: max(OL, OR) is the solution.

34 Nan Zhi

Theorem 5. The approximation ratio of Algorithm 1 is at most 2.

Proof. Since it finds the larger matching in {OL, OR}, then it is higher than 1
2O. To

prove it, we assume w.l.o.g. that vOL
L ≥ vOR

R . Since vOL
L ≥ vOL , vOL

R ≥ vOR then vOL +vOR ≤
vOL
L + vOR

R ≤ 2 max{vOL
L , vOR

R } = 2vOL
L .

3.5.2 Mechanism design without payment

In the mechanism design without payment, if agents can misreport their valuations, no

non-trivial truthful mechanism exists [18]. A natural setting commonly used in previous

research assumes that an agent can only declare or hide which edge it wants to match.

We thus adopt this restricted model of the declaration. We assume that agents cannot

lie about their valuations, but they may lie about which edge can be used to establish

a matching. An instance of the alignment problem on a private bipartite graph is: the

valuations of agents on edge e, vi(e) are public information or verifiable, and agent i’s

private information is a set of edges Ei ⊆ E given by δi(e) ∈ {0, 1}. An edge e may

be accepted in the matching, only if for both agents, δL(e) = δR(e) = 1. The agent i

will receive value vi(e) from e if it is matched; otherwise for edge e it receives 0. The

goal is to maximise the social welfare via a mechanism without money, such that both

agents are incentivised to declare their Ei truthfully.

Theorem 6. Given an instance of the alignment problem, Algorithm 2 will decide

whether there is a deterministic truthful mechanism without payment for this instance.

If the answer is yes, then the mechanism also finds an optimal solution. If the answer

is no, then there is no deterministic truthful mechanism with a bounded approximation

ratio on that instance.

Algorithm 2

Require: Bipartite graph G = (V,E), the public known valuation of both agents.
Ensure: A matching M or ‘NO’

1: Find the optimal solution OL, given the vL and G.
2: Find the optimal solution OR, given the vR and G.
3: if OL = OR, return M = OL = OR. Otherwise, NO.

Proof. If OL 6= OR, then one agent will hide all edges which are not in its optimal

matching, but only declare those edges that are in its optimal matching. Consider

the example illustrated in Figure 3.3; in this example, the left agent’s valuation is:

vL(e1) = vL(e3) = 7, vL(e2) = 0, and the right agent’s valuation is: vR(e1) = vR(e3) =

Chapter 3. Mechanism design for ontology alignment 35

5, vR(e2) = 12. The optimal solutions are: OL = {e1, e3} and OR = {e2}. If the

mechanism does not accept any edges, the ratio is unbounded. Thus if it has a bounded

approximation ratio then the mechanism must accept some edges.

Now, suppose that {e2} was accepted with δL(e2) = 1. Note that the left agent can

hide the edge (by declaring δL(e2) = 0), so that the outcome would be {e1, e3} (or one

of these two edges), which increases the utility of the left agent compared to that when

δL(e2) = 1. On the other hand, if the mechanism accepts edges {e1, e3}, then the right

agent would declare δR(e1) = δR(e3) = 0, and the outcome would be {e2}. This again

increases the utility of the right agent. In both cases, one agent increases its utility by

lying.

Recall that truthful (deterministic) mechanism has been defined in Section 3.4. We

define now notions of truthfulness for randomised mechanisms.

Definition 5. A randomised mechanism M(A,P) is truthful in expectation if a bid-

der always maximises its expected profit by declaring truthfully. The expectation is

taken over the internal random coins of the mechanism. Formally, M is truthful in

expectation if for each agent i, every vi, v
′
i, and v−i, we have that E[ui(A(vi, v−i))] ≥

E[ui(A(v′i, v−i))].

Definition 6. A randomised mechanism M(A,P) is a universally truthful if it is a

probability distribution over deterministic truthful mechanisms.

Theorem 7. There are no randomized mechanisms that are universally truthful and

have an expected approximation ratio better than 2 for the setting without payment.

Proof. Let I and I ′ be two instances of the graph in Figure 3.3. The agents’ valuations

are vL(e1) = 5, vL(e2) = 10 + ε, vL(e3) = 5 and vR(e1) = 5 + ε, vR(e2) = 10, vR(e3) =

5 + ε. In instance I, edge e2 is not available, whereas in instance I ′, edges e1 and e3

are not available. Each instance occurs with probability 1
2 , and the expected maximum

social welfare is 1
2 · (5 + 5 + 5 + 5 + 2ε) + 1

2 · (10 + 10 + ε) = 20 + ε. Let mechanism

A, applied to instance I, accept e1 and e3. Since the mechanism is truthful, it must

accept the same solution when the instance is I ′. The expected social welfare of A is
1
2 · (5 + 5 + 5 + 5 + 2ε) + 1

2 · 0 = 10 + 2ε. And the approximation ratio is essentially

2 when we let ε tend to 0. If mechanism A does not accept e1 and e3 on instance I ′,

its expected social welfare is at most 10 + ε. By Yao’s principle [71], we obtain the

theorem.

36 Nan Zhi

Theorem 8. There are no randomised mechanisms that are truthful in expectation and

have an approximation ratio better than 2 for the setting without payment.

Proof. Let I and I ′ be two instances. Again we use the graph structure in Figure 3.3.

Agent valuations are vL(e1) = vL(e3) = z, vL(e2) = k, vR(e1) = vR(e3) = λ, vR(e2) = 0.

In instance I, all agents truthfully report their types, and in instance I ′, edges e1 and

e3 are not available.

Let A be any randomised mechanism. Assume that the approximation ratio of A
is at most ρ. Suppose that A will output {e1, e3} with probability p, and output {e2}
with probability 1 − p in instance I, as well outputs {e1, e3} with probability q, and

{e2} with probability 1 − q in instance I ′. We assume that the optimal solution for

instance I is {e1, e3}, which then means 2(λ+ z) > k. We obtain that:

2(λ+ z)

2p(λ+ z) + (1− p)k
≤ ρ (3.1)

k

k(1− q)
≤ ρ (3.2)

Moreover, since A is truthful in expectation, the expected utility of the left agent from

A’s allocation for instance I should be at least that of instance I ′. Otherwise, this

agent would deviate from it. Therefore, we can obtain from inequality (3.2):

2zp+ k(1− p) ≥ (1− q)k ≥ k

ρ
(3.3)

From inequality (3.1), we deduce:

p(2(λ+ z)− k) ≥ (2(λ+ z)− kρ)

ρ
(3.4)

and from inequality (3.3), we deduce:

p(2z − k) ≥ k − ρk
ρ

(3.5)

Then, we combine the two inequalities, (3.4) and (3.5), and we obtain:

ρ ≥ 4kz + 4kλ− 4z2 − 4λz − k2

2kλ

which after dividing by the denominator gives:

Chapter 3. Mechanism design for ontology alignment 37

ρ ≥ 2z

λ
+ 2− 2z2

kλ
− 2z

k
− k

2λ

By assigning z = 1 and taking limits lim k →∞ and limλ→∞, finally, we obtain:

ρ ≥ 2.

Therefore, randomised mechanisms do not improve the approximation ratios for the

alignment problem.

3.6 Nash equilibria implementation

3.6.1 Pure strategy

In the first price greedy matching setting, the agents provide their declarations to the

mechanism, which computes an outcome. The agents measure their utility by subtract-

ing the payment from their true valuation of this outcome. The mechanism we use is

given in Algorithm 3, and the payment scheme is that each agent has to pay its own

bid, i.e., pi = bi(A(b)).

Theorem 9. The running time of Algorithm 3 is O(m logm), where m is the number

of edges in the input bipartite graph.

Proof. This time complexity comes from the fact that the greedy algorithm takes

O(m logm) time to sort the edges by their weights.

Theorem 10. The price of anarchy of the first price greedy matching game is precisely

4.

We prove this theorem by proving Theorems 11 and 13. Recall the notation: bei =

bi(e) and vei = vi(e) for any i ∈ {L,R} and e ∈ E. For a matching M = {e1, e2, · · · , ej},
denote bML =

∑
e∈M beL, and vML =

∑
e∈M veL. A matching M is found using the well

known greedy Algorithm (Alg. 3).

In the next two theorems we prove lower bounds on the price of anarchy and price of

stability for a first-price greedy matching game. These proofs present simple instances

of this game to give a possible intuition of pure Nash equilibria.

Theorem 11. The price of anarchy of the first price greedy matching game is at least

4.

38 Nan Zhi

e1

e2

e3 e4

e6

e5

e7
Figure 3.4: Low bound for Price of stabil-
ity

e1

e2

e4
e5

e3

0

1

1+3!
0

1 0

0

0

1+!

1+!

Figure 3.5: Lower bound for Price of an-
archy

Proof. The graph structure is illustrated in Figure 3.4. The valuations assignment for

both agents are: ve2L = ve6L = ve2R = ve6R = 1, ve4L = 1 + ε, and other unmentioned

valuation for remaining is 0. And assume a strategy profile: be4L = 1 + ε, be3L = be1R =

be7L = be5R = 1, with bids on the remaining edges being 0, and denote strategy profile as

b.

The greedy algorithm’s outcome under b is {e4}. The left agent could not increase

its utility, as only one other outcome {e2, e6} has positive utility. If it bids b̃e2L > be1R
and b̃e6L > be5R , the outcome changes to {e2, e6}, however, the new outcome leads to a

negative utility for the left agent. The left agent also will not decrease its bid on e4,

otherwise, the outcome would be changed to another matching that is not {e2, e6}. The

right agent’s behaviour is the same as it is symmetric. This leads to a Nash equilibrium,

which implies the ratio of 4.

Algorithm 3 Greedy algorithm

Require: Bipartite graph G = (V ∪ U,E), bL, bR of the left and right agent.
Ensure: A matching M

Let M = ∅
if E 6= ∅ then

Find the edge e ∈ E that maximizes beL + beR
Let M := M ∪ {e}
Remove from E edge e and edges incident to edge e

end if
M is the outcome

Theorem 12. The price of stability of the first price greedy matching game is at least

2.

Proof. Consider an instance illustrated in Figure 3.5. The valuations assignment for

both agents are: ve1L = ve5L = 1, ve2R = ve4R = 1 + ε, ve3L = 1 + 3ε. The valuations on the

remaining edges are 0 for both agents.

Chapter 3. Mechanism design for ontology alignment 39

Case-1. Suppose the outcome of the mechanism is {e1, e5}. The current bid cannot

be a Nash equilibrium, because the right agent would improve its utility by changing

the current outcome to {e2, e4}, when b̃e2R > be1L , b̃e4R > be5L , where b̃e2R denotes the new

bid of agent R on e2.

Case-2. Suppose the current outcome is {e2, e4}. It also does not admit any

Nash equilibrium. If max{be2R , b
e4
R } < ve3L , then the left agent would improve its utility

by changing to e3, when b̃e3R > max{be2R , b
e4
R }. If max{be2R , b

e4
R } > ve3L , let be2R be a

smaller one, the left agent will bid b̃e1L > be2R changing the outcome to {e1, e4}. This is

symmetric.

Case-3. Suppose the current outcome is {e1, e4} (or {e2, e5}). The right agent

would bid b̃e2R > be1L to improve its utility, and change the outcome to {e2, e4}.
To complete the proof, we provide a Nash equilibrium: be1L = be5L = 1, be2R = be4R =

1 + ε, be3L = 1 + 2ε. We can see in such a bid profile, the outcome would be e3, and it

is easy to check that no agent can increase its utility.

Now, we prove the main theorem. We use b̃ to denote an alternative bid to b.

Theorem 13. The price of anarchy of a first price greedy matching game is at most

4.

Before the proof of this theorem, we introduce two lemmas.

Lemma 1. Suppose that the current bid profile (bL, bR) produces outcome M by greedy

mechanism, then the necessary condition for (bL, bR) to be a Nash equilibrium is bML ≤
vML and bMR ≤ vMR .

Proof. Assume that for outcomeM , some agent’s bid satisfies bMi > vMi , then ui(bL, bR) =

vMi − bMi < 0, which means its utility is negative. Therefore, agent i will change its bid

to a new one which increases its utility to be at least 0.

Lemma 2. Suppose that the current bid profile (bL, bR) produces outcome M by greedy

mechanism and bML ≤ vML , bMR ≤ vMR . Then there exists a bid for one agent, say the

left agent, b̃L, satisfying b̃M
′

L < 2(vMR + vML) + ε, and b̃L can change the outcome to M ′.

Proof. Let {e1, · · · , ek} be the set of M indexed by decreasing order with respect to

beL + beR. Denote e′ as an edge in M ′. We assign each b̃e
′
L value by the following

procedure: ∀j ∈ {1, . . . , k} (in this order), if ej ’s left hand side vertex adjacent edge

e′ is in M ′, then let b̃e
′
L + be

′
R take the value slightly higher than b

ej
R + b

ej
L , and do the

same for the right hand side vertex adjacent edge, i.e., for right side vertex adjacent

40 Nan Zhi

edge e′ ∈M ′ of ej , let b̃e
′
L + be

′
R take the value slightly higher than b

ej
R + b

ej
L . In any step

of this procedure, if we need to reassign to this edge the bid be
′
L of edge e′, we keep it

as the larger one (actually, we keep the declaration unchanged, since the procedure is

conducted by decreasing order of beL+ beR). Such bids distribution is valid, since we can

do it so that b̃M
′

L > 2(bMR + bML), which always changes the outcome to M ′. We can also

easily argue that b̃M
′

L < 2(vMR + vML) + ε.

Proof. (of Theorem 13) Let M be any matching whose total valuation is strictly smaller

than a quarter of the optimum, i.e., vML + vMR < 1
4Opt. Note that at least one of the

following statements holds: ∃M ′vM ′L ≥ 1
2Opt, and ∃M ′vM ′R ≥ 1

2Opt. If M ′ is the optimal

solution, this results in a contradiction. As they are symmetric, we assume the first

statement is true.

Assume b = (bL, bR) is a fixed bid profile. If the outcome under b is M , then we

either have: bML ≤ vML and bMR ≤ vMR ; or the agents will have negative utilities.

We want to show that the left agent would be incentivised to bid for the outcome

M ′. Let b̃M
′

L be the bid that can change the outcome M to M ′. By Lemma 2 (see

above), there exists a bid b̃L that will change the outcome to M ′. Thus, we want to

show: vM
′

L − b̃M
′

L > vML − bML . By Lemma 1, since b̃M
′

L < 2(vMR + bML) + ε, then we have:

vM
′

L − b̃M
′

L ≥ vM ′L − 2(vMR + bML)− ε

Since vM
′

L ≥ 1
2Opt and vML + vMR < 1

4Opt, then

vM
′

L − 2(vMR + bML)− ε ≥ vM ′L − (vMR + vML)− vMR − bML

vM
′

L − (vMR + vML)− vMR − bML > vML − bML

We can remove ε, since it can be arbitrarily small. The last inequality shows that the

left agent can change its bid from bL to b̃L and get M ′ with a higher utility. This

completes the argument as it shows that b cannot be a Nash equilibrium.

Theorem 14. There exists an instance which has no pure Nash-equilibrium.

Proof. We will prove this claim by showing that in whatever outcome M of mechanism

M, this outcome is not stable for agents’ bids, which means, there exists a new bid b̂,

and under this new bid, the new outcome M ′ would be different with original outcome

M .

Chapter 3. Mechanism design for ontology alignment 41

Figure 3.6: The instances where no pure Nash-equilibrium exists

Case-1. Suppose the outcome is M = {e1, e4}. We observe that be4R ≤ 40, otherwise

it leads to negative utility for right agent. And be1R = 0, otherwise the right agent can

always decrease bid to 0 to get larger utility. Additionally, it also implies that be1L > be2R
or be3L > be2R , because of the greedy order. The maximum utility the left agent can

achieve is at most 25, because the only edge which has positive valuation for the left

agent in the outcome M is e1, and ve1L = 25. Thus, be1L ≤ 25, otherwise, the left agent

would achieve negative utility. This also implies that be2R ≤ b
e1
L ≤ 25, otherwise, due to

the greedy algorithm, e2 is in M .

We want to show the left agent can declare different bid to change the outcome

M to a new one for achieving a higher utility. Let be1L = be2L = be4L = be5L = 0 and

be3L > 40. The new outcome now is M ′ = {e1, e3, e5}, because we know that be3L > be2R
and be3L > be4R . And because

vM
′

L − bM
′

L = 75− 40− ε > 25 ≥ vML ,

the utility of left agent is increased.

The arguments can apply to symmetric case where the outcome is {e2, e5}.
Case-2. Suppose the outcome is M = {e1, e3, e5}. In this case, we observe that the

right agent’s utility is at most 0, because any edges which have positive valuation for

the right agents are not in the outcome M . We also know bML ≤ 75, otherwise the left

agent would achieve a negative utility. Since the right agent’s total valuation is 80, if

the outcome were {e2, e4}, it is easy to observe that the right agent can always find a

distribution of declaration to change the outcome M to M ′ = {e2, e4}. And under the

new outcome, the utility of the right agent is increased.

Case-3. Suppose the outcome is M = {e2, e4}. In this case, we observe that the

left agent’s utility is at most 0, because any edges which have positive valuation for the

left agents are not in the outcome M . We know bMR ≤ 80, otherwise the right agent

42 Nan Zhi

would achieve a negative utility. Note that e2 and e4 are symmetric with the bid.

Firstly, if we assume that be2R > 55 and be4R < 25, then the left agent could declare

25 ≥ be5L > be4R , which will change the outcome and increase the utility of the left agent.

Secondly, if we assume that be2R ≤ 55 and be4R ≤ 55, then the left agent could declare

be3L > 55 ≥ be2R We should notice that if be2R > 55, be4R < 25, then the left agent could bid

25 > be5L > be4R , which change the outcome and increase the utility. If be2R > 55 ≥ be2R ,

and be1L = be5L = 0, then the outcome will change to M ′ = {e1, e3, e5}, and it increase

the utility of the left agent.

This proves the claim that this instance admits no pure Nash-equilibrium.

Theorem 14 implies that the existence of Nash equilibrium in all possible instances

seems to be rare, because the graph structure and agents’ types we used to prove the

non-existence of pure Nash equilibrium are rather common. Therefore, a natural ques-

tion is which graph structure and agents’ types can form a instance, which guarantee

the existence of pure Nash equilibrium? Are those instances truly rare?

3.6.2 Relation to smooth games

Roughgarden [62] has introduced a seminal tool of smoothness as a technique to proving

the results on the price of anarchy for various games. One may wonder if we could use

his techniques in our context. However, we show here that our game is not smooth,

and therefore we cannot apply the smoothness paradigm in our context.

Definition 7 ([62]). A maximization game is (λ, µ)-smooth if

k∑
i=1

ui(s
∗
i , s−i) ≥ λ · V (s∗)− µ · V (s)

for all strategy profiles s,s∗. Here V (·) is an objective function that satisfies V (s) ≥∑k
i=1 ui(s) for every strategy profiles s.

Claim 1. The first price greedy matching game is not smooth.

Proof. Consider an instance where the graph structure is illustrated in Figure 3.3. The

valuation of agents are: ve1L = ve3L = 0 and ve2L = 20, ve1R = 100 and ve2R = ve3R = 0. We

select two strategy profiles s∗, s, where in s∗, the left agent bids is: be2L = 100− ε, be1L =

be3L = 0, the right agent bids is: be1R = 100, be2R = be3R = 0. And in s, the left agent bids

is: be2L = 20, be1L = be3L = 0, the right agent bids is: be1R = 20− ε, be2R = be3R = 0.

Chapter 3. Mechanism design for ontology alignment 43

uL(b∗L, bR)+uR(b∗R, bL) = vL(e2)−b∗L(e2)+vR(e1∪e3)−b∗R(e1∪e3) = −80+0 = −80.

λ · V (s∗) = λ · 100, and µ · V (s∗) = µ · 20. Therefore, by this strategy, we can construct

any instances to make the inequality to be false.

3.6.3 Mixed strategy

Let us first recall the definition of mixed Nash equilibrium from Section 3.4. It is usual

in the literature to study the price of anarchy even if there might be instances without

pure Nash equilibria [49]. Thus, Theorem 10 can be read as: if there exists pure Nash

equilibria, then their social welfare is at least 25% of the optimum. We can also show

that mixed Nash equilibria always exist, by transforming the problem into a new one

in which each agent only has a finite number of strategies, where a strategy is for bids

on edges. We define a small ε > 0 as the minimum increment that any two bids can

differ by. This leads to a finite number of strategies of any agent i as i will not bid

more than
∑

e∈E vi(e). In particular, bei ∈ {0, ε, 2ε, · · · ,
∑

e∈E vi(e)}.

Theorem 15. The mixed Nash equilibrium exists for all instances of the discretised

first price greedy matching game.

This theorem is deduced directly from Nash’s theorem [55]. This theorem proves

that if agents can use mixed strategies, then every game with a finite number of players

in which each player can choose from finitely many pure strategies has at least one

mixed Nash equilibrium.

Theorem 16. The price of anarchy of the discretised first price greedy matching game

for mixed strategy is 4.

The key observation for proving this theorem is: for any strategy profile b, if under

this profile, the outcome is M , then bML ≤ vML and bMR ≤ vML , otherwise, b cannot be part

of mixed Nash equilibrium strategy. Therefore, assume that vL. Another observation

is: If new bid b′ cannot change entirely M to M ′, then the mixed new matching M∗’s

total valuation is still larger than M .

Proof. Let M be any matching whose total valuation is strictly smaller than a quarter of

the optimum, i.e., vML + vMR < 1
4Opt. Note that at least one of the following statements

holds: ∃M ′vM ′L ≥ 1
2Opt, and ∃M ′vM ′R ≥ 1

2Opt. If M ′ is the optimal solution, this results

in a contradiction. As they are symmetric, we assume the first statement is true.

Now, let b = (bL, bR) be a fixed bid profile from a mixed strategy profile ω. If the

outcome under b is M , then we have the following statements: bML ≤ vML and bMR ≤ vML .

44 Nan Zhi

Assume that given a b, where bMR > vML and bωR, which means P (b) > 0. Under the

assumption that M is the outcome, uR(b) = vMR − bMR < 0, then P (b)(uR(b)) < 0,

thus, there always exists a mixed strategy ω′R, where P (0) = 0, satisfy Eb∼ω′R [u
M(b)
R] >

Eb∼ωR
[u
M(b)
R]. Therefore, given a outcome M , for all strategy b ∈ ω, where P (b) > 0,

bML ≤ vML and bMR ≤ vML . Note that this claim ensures the applicability of the lemma.

We want to show that the left agent would be incentivised to bid for the outcome

M ′ with respect to corresponding strategy b̃. Let b̃M
′

L ⊆ b̃ be the pure strategy (bid)

that can change the outcome M to M ′, precisely, b̃ ∈ ωL and P (b̃) = 1. By Lemma 2,

there exists a bid b̃L that will change the outcome to M ′. Thus, we want to show:

Eb̃∼ω′L
uMR (b̃) > Eb∼ωL

uMR (b)

which is:

Eb̃∼(ω′L,ωR)[v
M(b̃)
L − b̃M(b̃)

L] > Eb∼(ωL,ωR)[v
M(b)
L − bM(b)

L]

By Lemma 2, since b̃
M(b̃)
L < 2Eb∼(ωL,ωR)[v

M(b)
R + v

M(b)
L] + ε, then

Eb̃∼(ω′L,ωR)[v
M(b̃)
L − b̃M(b̃)

L] ≥ Eb̃∼(ω′L,ωR)[v
M(b̃)
L]− 2Eb∼(ωL,ωR)[v

M(b)
R + v

M(b)
L] + ε

Since Eb∼(ωL,ωR)[v
M(b̃)
L] ≥ 1

2OPT and Eb∼(ωL,ωR)[v
M(b)
L + v

M(b)
R] < 1

4OPT , then

Eb̃∼(ω′L,ωR)[v
M(b̃)
L]− 2Eb∼(ωL,ωR)[v

M(b)
R + v

M(b)
L] + ε

≥ Eb̃∼(ω′L,ωR)[v
M(b̃)
L]−Eb∼(ωL,ωR)[v

M(b)
R + v

M(b)
L − vM(b)

R]− bM(b)
L

> Eb∼(ωL,ωR)[v
M(b)
L]− bM(b)

L

We can remove ε, since it can be arbitrarily small. The last inequality shows that the

left agent can change its bid from ωL to ω′L and get M(b̃) with a higher utility. This

completes the argument as it shows that b cannot be a Nash equilibrium.

3.7 Conclusion

In this chapter, we have presented the ontology alignment problem, and we studied

this problem algorithmically as a mechanism design problem, modeled as a social wel-

fare maximising bipartite matching setting, where the valuation function is additive.

Firstly, we proved the impossibility results for this problem, that dominant strategy

Chapter 3. Mechanism design for ontology alignment 45

mechanisms cannot be time efficient. Secondly, we have provided a complete picture of

the complexity of this mechanism design problem by showing that when coupled with a

first-price payment scheme and a greedy method, it implements Nash equilibria which

are very close to the optimal matching. This has been achieved by completely charac-

terising the Price of Anarchy of this mechanism that has been shown to be precisely 4;

this bound also holds for Mixed Nash equilibria.

Chapter 4

Negative results for greedy

maximum independent set

4.1 Introduction

In this chapter, we will present negative results related to finding the maximum in-

dependent set problem by the greedy algorithm. These results prove two statements.

Firstly, the identification of graphs on which the greedy algorithm can obtain optimal

solution in general graphs and planar cubic graphs is computationally hard. Secondly,

and most importantly, we prove that it is computationally hard to find an appropri-

ate advice (of which minimum degree vertex to choose in case if there are more than

one) for the greedy algorithm that can lead to good approximation. This suggests that

the task of finding such advice and proving that they lead to good approximation can

itself be a difficult task. Indeed, our analysis in the following Chapter 6 is inherently

complex.

An independent set in a graph G is a set of vertices in which every pair of vertices

are not adjacent. An independent set is maximal if it is not a proper subset of other

independent sets, and is maximum if it has maximum cardinality, i.e., size, among

all independent sets. We denote by α(G) the cardinality of a maximum independent

set, and let I be any particular independent set. Then, the maximum independent set

problem or simply MIS is defined as the following decision problem: Given a graph G

and an integer k, whether there is an independent set I in G with cardinality |I| ≥ k?

The algorithm that is described in Algorithm 4 is called a Greedy algorithm. We call

an outcome S of the greedy algorithm a greedy set and its elements are called chosen

or selected vertices. It is easy to check that a greedy set is a maximal independent set.

46

Chapter 4. Negative results for greedy maximum independent set 47

Noting that the minimum degree in the remaining graph might not be unique, then

the greedy algorithm varies according to different greedy rule for finding the minimum

degree vertex. For example, a greedy algorithm with an oracle advice will generate the

optimal greedy set (maximum greedy set), and a greedy algorithm with no particular

advice will in each iteration arbitrarily choose one of the minimum degree vertices. We

present a precise definition here.

Definition 8. The greedy order or advice of greedy of a greedy algorithm is a fixed

deterministic rule or algorithm which advises the greedy algorithm which minimum

degree vertex to be chosen, if the choice of minimum degree vertices is not unique.

We note here that such randomised rules were also studied in context of finding

large independent sets in random graphs. However, in this thesis we only study such

deterministic rules.

For example, oracle advice is an algorithm that in each iteration, advises the greedy

algorithm to choose the vertex which maximise the size of the greedy set. Specifically,

oracle advice might compute the optimum maximum independent set of given graph G,

and then advise greedy algorithm how to choose its minimum degree vertices according

to this solution. Note however that it requires exponential time to compute.

Algorithm 4 General greedy algorithm

Input: a graph G = (V,E)

U ← V

S ← ∅
while U 6= ∅ do

Find a vertex v ∈ U with minimum degree in G[U], according to given greedy

order.

U ← U \NG(v)

S ← S ∪ {v}
end while

return S

4.2 Inapproximability

In this section, we will address several questions about limitations of the greedy algo-

rithm for the maximum independent set problem. The following definitions are useful.

48 Nan Zhi

Definition 9. The MaxGreedy problem is given a graph G and an integer k, and to

decide if there is a greedy set S in G with cardinality |S| ≥ k.

Definition 10. The MinGreedy problem is given a graph G and an integer k, and to

decide if it is true that for all possible greedy sets S in G their cardinality is such that

|S| ≥ k.

It is easy to see that definition of MinGreedy is equivalent with the following state-

ment:

Definition 11. The MinGreedy problem is given a graph G and an integer k, and to

decide if there is a greedy set S in G with cardinality |S| ≤ k.

We denote α+(G) and α−(G) as the size of a maximum and minimum greedy set

in G respectively.

We want to measure given a graph G, whether there exists one greedy set S in G

with cardinality r · |S| ≥ α(G), where α(G) is the size of the maximum independent

set of G. Additionally, we also want to measure a stronger version of such kind of

measurement, i.e., given a graph G, whether for all possible greedy sets S in G their

cardinality is r · |S| ≥ α(G).

Definition 12. The GreedyOPT ∃r problem is given a graph G, to decide whether it

holds that r · α+(G) ≥ α(G).

Definition 13. The GreedyOPT ∀r problem is given a graph G, to decide whether it

holds that r · α−(G) ≥ α(G).

Theorem 17. The GreedyOPT ∀r problem is NP-hard, for any r ∈ Q and 0 < r ≤ 1.

Proof. To prove hardness for NP, we present a reduction from maximum independent

set problem to the GreedyOPT ∀r problem. According to the statement, r is a rational,

so we can use two integers s, t to represent it: r = s
t and 0 < r ≤ 1. Let G = (V,E)

be the given graph where we want to know whether the size of maximum independent

set of G is larger than or equal to a given integer k.

We construct the graph G′k as follows:

Let Gc be a clique with t · |V | vertices. And G∗ is a graph which contains s · k − 1

vertices without any edges between these vertices. And G be a set of graphs, which

contains t times duplicated graph G. Let G′ be the graph such that:

V (G′) = V (G) ∪ V (Gc) ∪ V (G∗),

E(G′) = {(u, v)|u ∈ V (Gc), v ∈ V (G)} ∪ {(u, v)|u ∈ V (G), v ∈ V (G∗)} ∪ E(G) ∪
E(Gc)

Chapter 4. Negative results for greedy maximum independent set 49

Figures 4.1 and 4.2 illustrate the construction of graph G′. An observation about

the degree of different vertices in these graphs is helpful to understand the following

part of the proof. For each vertex v in the graph G∗, the degree d(v) of v is d(v) = t·|V |.
For each vertex v in each graph G, d(v) ≥ t · |V | + s − 1, because besides the edge it

already has, each of its vertices connects to t · |V | vertices in the clique Gc. And for

each vertex v in Gc, d(v) ≥ 2t · |V |.

Now, we run greedy algorithm on the graph G′, we observe that whatever greedy

algorithm it is, it will always select all v ∈ G∗ and one of the vertices in Gc as the solu-

tion, because at the beginning, vertices’ degree in G∗ are smallest. After the execution

of this vertex, all vertices in G are removed, thus the remaining s−2 vertices in G∗ will

be selected as solution, and for clique Gc, one of its vertices will be selected as solution.

Observe that finally the size of the greedy solution is s.

Let us define an oracle O(G, r) for GreedyOPT ∀r that given a graph and a rational

number r, will provide the answer of whether r · α+(G) ≥ α(G) or not. Then, we run

the oracle on graph G′ and given rational number r = 1. If the answer from the oracle

is Yes, then we know that the independent number of the set of graphs G will not be

larger than s. Thus, the independent number of each graph G ∈ G will be no larger

than s
t = r, and if 1 ≤ r < 2, then the independent number of G will be 1. If the answer

is No, then we repeatedly execute the following procedure until the answer turns to

Yes.

In each iteration, we add s number of vertices v into G∗, and add edges into G′

with {(u,v)|u ∈ G, ∀G ∈ G}, assuming now G∗ has z = k · s− 1 vertices, k ∈ N+. We

run the oracle again, and if the answer is Yes, then we know the independent number

of graph G will not be larger than z
s . This procedure only requires at most |V (G)|

iterations, and after that we can know the exact independent number of G.

This completes the argument for proving NP -hardness of the GreedyOPT ∀r prob-

lem.

For a comparison to previous work, in paper [8], the authors show the following

theorem:

Theorem 18. [8] GreedyOPT ∀r problem is co-NP-complete, for any r ∈ Q and 0 <

r ≤ 1.

50 Nan Zhi

Figure 4.1: Step 1 of constructing
graph G∗

Figure 4.2: Step 2 of constructing
graph G∗

4.2.1 Planar graphs

Since the main goal of the thesis is to study the greedy algorithm on sub-cubic graph,

we want to know whether the advice for greedy algorithm on sub-cubic graph is also

computationally hard. The answer is positive by the following theorem.

Theorem 19. MaxGreedy problem is NP-hard even for planar cubic graphs.

Proof. To prove NP -hardness, we present a reduction from the maximum independent

set problem to the MaxGreedy problem.

Let G = (V,E) be a cubic planar graph with |E| = m. We construct a graph

G′ = (V ′, E′) by replacing each edge (u, v) ∈ E by a graph structure described in

Figure 4.3; we call this gadget as He. When we refer to this gadget, we will use the

same notations. The gadget He contains vertices {a, b, c, d, g} and three substructures

A,D, C, and the edges between them as defined in the figure. The edge point vertices u

and v in the original graph are connected to vertices a and b respectively as illustrated

in the figure. It is easy to see that the construction of G′ can be done in polynomial

time from graph G. Denote by I(G) a maximum independent set on a graph G.

To prove the theorem, we use an equivalent optimisation version of the maximum

independent set problem.

Let S be a greedy set for the constructed graph G′, and S = (S ∩V)∪ (S ∩V ′). We

say a set of vertices S ∈ V ′ of the constructed graph G′ is independent with respect to

the original graph G, if its corresponding set of vertices in V of G is independent. For

convenience, let f : V → V ∗ be a 1 − 1 mapping, where v∗ is the set of vertices of G′

which are not in any gadget.

Chapter 4. Negative results for greedy maximum independent set 51

Some observations about He are needed. For any greedy algorithm, denote its

solution on graph G by SOL(G). Consider a He, and suppose that:

1. u and v of He is in SOL(G), then |(SOL(G) ∩ V (He))| = 8. Assume that u is

chosen by the greedy algorithm first, then the algorithm will successively choose

vertices b, c in He and the remaining vertices in A,D and C. That is because these

vertices will be the minimum degree vertices in each step of the execution. Thus,

we see that we have |(SOL(G) ∩ V (He))| = 8. Note that after these executions,

v can be chosen by the greedy algorithm because now its degree is minimum.

2. only one of u or v of He is in SOL(G), then |(SOL(G) ∩ V (He))| = 9. Assume

that u is chosen by the greedy algorithm, then the algorithm will successively

choose vertices b, g in He and the remaining vertices in A,D and C (the reason

for this is as above). Then by a calculation, we have |(SOL(G) ∩ V (He))| = 9.

Note that after the execution of vertex g, v is removed by the greedy algorithm,

thus v will never be chosen.

3. none of u or v of He is in SOL(G), then |(SOL(G) ∩ V (He))| = 9. Assume that

u is removed by greedy algorithm previously, then the algorithm will successively

choose vertices a, g in He and remaining vertices in A,D and C. By a calculation,

we have |(SOL(G) ∩ V (He))| = 9. Note again that after the execution of vertex

g, v is removed by the greedy algorithm, thus v will never be chosen.

Then, we prove the following claim.

Claim 2. There is a greedy set S for the constructed graph G′, which satisfies:

1. S ∩ V ′ is independent with respect to G.

2. |S| = z + 9m, where z = |S ∩ V ′|.

3. S is a maximum greedy set on G′

Proof. Firstly, we show that a particular set of vertices is the maximum greedy set

on G′. Let I(G) be the maximum independent set of graph G, and let V (I(G)) be

the set of vertices {f(u) ∈ V ′|u ∈ I(G)}. There exists a greedy set S∗, such that

V (S∗) \
⋃
e∈E V (He) = V (I(G)) by the greedy algorithm. Then, we want to show that

for any other greedy set S′ on G′, |S∗| ≥ |S′|.
Note |S∗| = z + 9m, where z = |I(G)|. Observe that for any He, at most one of u

or v is in S∗. Thus, for every He, we have |V (He) ∪ S∗| = 9 by the above observation.

52 Nan Zhi

Figure 4.3: Gadget He for edge of planar graph

For any different set of vertices I ′ on G that is an independent set, any set of vertices

S′, with V (S′) \
⋃
e∈E′ V (He) = V (I ′), it is obvious that |S∗| ≥ |S′|.

It completes the proof of the claim.

Now, we will complete the proof of the theorem. By the assumption of MaxGreedy,

it provides a greedy set which is of maximum size, and let S∗ be the greedy set such

that it satisfies the conditions in Claim 2. Then f−1(V (S∗)\
⋃
e∈EHe) is the maximum

independent set of G. This completes the reduction from the maximum independent

set problem to the MaxGreedy problem.

4.3 Conclusion

In this chapter, we have studied the negative aspects of finding MIS by the greedy

algorithm. The results show that even in planar cubic graphs, the problem of computing

the optimal greedy set is an NP -hard problem. This suggests that the task of finding

the nice advice to guide greedy and proving that they lead to good approximation can

itself be a difficult task. Indeed, our design of good advice and its analysis in the next

chapters turns out to be quite complex.

Chapter 5

Instance study for maximum

independent set problem

5.1 Introduction: Approximability of MIS

The problem of finding an independent set of maximum size in a graph, the Maximum

Independent Set problem (MIS), is one of the fundamental NP -complete combinatorial

optimisation problems. Because of its hardness of exact computation, we are interested

in approximation algorithms for the maximum independent set problem. However,

the MIS problem is also notoriously known for its approximation hardness. The best

known algorithm for the general MIS problem performs slightly better than trivial,

whose approximation ratio is O(n/ log2 n) [9]. Hastad [35] provided a strong lower

bound of n1−ε for any ε > 0 for general MIS problem, under a reasonable assumption

that NP ⊆ ZPP. Furthermore, even for MIS with bounded degree ∆ (MIS-∆) problem,

it is still NP -complete, and it belongs to the class MAX SNP -complete, a subclass of

NP optimisation problems consisting solely of constant factor approximate problems,

shown by Papadimitriou and Yannakakis [59]. Later, for MAX SNP -hard problems it

has been proved that no polynomial time approximation scheme (PTAS) is possible

unless NP = P [3]. Actually, even MIS-3 is known to be MAX SNP -complete [1].

The first known nontrivial approximation ratio for MIS on graphs with maximum

degree ∆ is ∆ acquired by Lovasz’s algorithmic proof [47] of Brooks’s coloring theorem.

Hochbaum [34] using the coloring technique accompanied with a method of Nemhauser

and Trotter [54] obtained an algorithm with ratio ∆/2. This approach can also be

applied to the case of weighted graphs. Halldorsson and Radhakrishnan [31] showed

that the greedy algorithm actually delivers a better ratio, (∆+2)/3. Berman and Furer

53

54 Nan Zhi

[6] designed a new algorithm whose performance ratios are arbitrarily close to (∆+3)/5

for even ∆ and (∆ + 3.25)/5 for odd ∆.

Halldorsson and Radhakrishnan [32] afterwards, via subgraph removal techniques,

obtained asymptotically better ratios, ∆/6 + o(1) for relative small ∆, and O(∆
log log ∆).

After that, Berman and Fujito [5] obtained a better ratio arbitrarily close to ∆+3
5 .

Finally, the latest results from Chleb́ık and Chleb́ıková [12], their approximation ratio

is arbitrarily close to ∆+3
5 −

4(5
√

13−18)
5

(∆−2)!!
(∆+1)!! , which is slightly better than the previous

results. Note, that the symbol k!! denotes a product of all integers in {1, 2, . . . , k} that

have the same parity (odd or even) as k.

Since in this thesis we are particularly interested in the case of subcubic graphs, we

shall give more attention to it. Firstly, the negative results show that it is NP -hard to

approximate MIS for low degree graphs to within 95
94 for ∆ = 3, 48

47 for ∆ = 4 and 46
45

for ∆ = 5 see [11]. We will see that these lower bound results are far from the best

currently known upper bounds analyses. There are numerous research papers on the

upper bounds. Hochbaum [34] presented an algorithm with 1.5 ratio, whose running

time is proportional to the time complexity of the bipartite matching problem, O(n1.5).

Berman and Fujito [5] obtained a 6
5 ratio, however, their running time is huge, and

even a tighter analysis from [32] shows that the complexity appears to be no less than

n50. Chleb́ık and Chleb́ıkova [12] showed that their approximation ratio is arbitrarily

close to 3−
√

13
2 , which is slightly better than 6

5 . Moreover, the time complexity of their

algorithm is also better. Specially, if the ratio is fixed to 5
4 , then the running time is

n16, and if the ratio is fixed to obtain 4
3 , then the running time is still n7.3. The authors

of [6], [5] and [12] used basically the same technique: local search. Halldorsson and

Radhakrishnan [32] provided another local search approach based on [6] and obtained a

ratio of 7
5 in linear time, and a 4

3 + ε ratio in time O(ne1/ε). Halldórsson and Yoshihara

[33] wrongly claimed a 9
7 approximation ratio of a greedy algorithm, and we will show

why it is wrong in this chapter.

Since there is a complementary relation between the maximum independent set

and minimum vertex cover, it is useful to see what is the previous research about

the minimum vertex cover problem. For the minimum vertex cover problem in general,

Garey and Johnson [25] presented a simple approximation algorithm based on maximal

matching and gave an approximation ratio of 2 for general graphs. For the minimum

vertex cover problem on sub-cubic graphs, Hochbaum [34] provided a 4
3 -approximation

ratio, by using the method of Nemhauser and Trotter [54]. Berman [6] gave a 7
6 ratio

by the same approach. And the authors of [12] showed that a ratio which is slightly

better than 7
6 can be obtained. The time complexity of these algorithms is the same as

Chapter 5. Instance study for maximum independent set problem 55

the previously cited ones and it is huge.

The ultimate goal of this study is to understand the full power of the greedy

paradigm for the maximum independent set problem on sub-cubic and more general

bounded degree graphs. This means, we aim to obtain the best possible approxima-

tion ratio of the greedy algorithms with best possible time complexity. By the above

literature review, we see that the advantage of the greedy paradigm is not only its

simplicity and efficiency, but also the potential for theoretical analysis. This chapter is

not necessary for the understanding of Chapter 6.

5.2 Instances study for Greedy MIS

In this section, we study the characterisation of graph structures which prevent any

greedy algorithm from achieving a relatively good solution on them. The motivation of

such kind of study is clear, we want to prevent some graph structure which is the barrier

to a good solution to appear in the remaining graph created after some execution of

the greedy algorithm. This is potentially feasible, because given a graph G, the vertex

which has minimum degree might not be unique. Actually, in most of the cases, the

minimum degree vertices are hardly unique, and thus the “good” greedy algorithm

should choose the “right” one. The different choice of the minimum degree vertex

affects the quality of the solution significantly. Therefore, to characterise potentially

problematic graph structures is a crucial study for the greedy algorithms for MIS. We

begin from the primitive greedy algorithm of Algorithm 5. Note that this algorithm

differs from the previous Algorithm 4 in that it does not use any fixed order of choosing

minimum degree vertices.

Algorithm 5 Primitive greedy algorithm

Input: a graph G = (V,E)

U ← V
S ← ∅
while U 6= ∅ do

Arbitrarily select a vertex v ∈ U with minimum degree in G[U]
U ← U \ (NG(v) ∪ v)
S ← S ∪ {v}

end while
return S

We begin our study from cubic graphs, and in the following Chapters 5 and 6, when

we mention graph G, then G is a sub-cubic graph. During the study, several important

56 Nan Zhi

observations are found. We first present some notation. The important concept in the

following is that of a reduction, inspired by Halldorsson and Radhakrishnan [31]. We

will present their precise definition in the next chapter and provide further elaboration.

However, for the purpose of the current explanation of the observations and ideas, in

here, we provide a less complete but consistent version of the definition of a reduction.

Observe that for a graph with its maximum independent set I, it is natural to define

a reduction with respect to I. Initially, a reduction can be understood as vertices and

edges removed by one iteration of the greedy algorithm. That is, a reduction consists

of a vertex which is added into the current solution and its neighbouring vertices along

with their incident edges. An (i,j)-reduction refers to the case of such reduction, where

i + 1 vertices and j edges are deleted from the current graph when the reduction is

executed.

We will have the following reductions: (0,0), (1,1), (1,2) (1,3), (2,3), (2,4)-1, (2,4)-

2, (2,5)-1, (2,5)-2, (2,6)-reduction, which are the same as those in Halldorsson and

Radhakrishnan [31], and are illustrated in Figure 5.1. Note, that the number x ∈ {1, 2}
in the notation (2,4)-x is used to just differentiate between two different reductions

of type (2,4), and the same applies to (2,5)-x. For instance, if a (2,6)-reduction is

executed, see the last reduction in Figure 5.1, then its root vertex is chosen as part of

the independent set (the current solution of the greedy), and the two vertices in the

middle are also deleted from the current graph. Also, 6 edges in total are deleted.

Note that these reductions are all possible reductions in sub-cubic graph G, where

the minimum degree of G is at most 2. For any reduction, there is a unique vertex

v∗ that we call a root vertex, and such that the greedy algorithm will take it into the

solution. The set of vertices VR of reduction R includes v∗ and its neighbour vertices

N(v∗). We use a term contact vertices to refer to the vertices which are neighbours to

N(v∗). Moreover, the edges of the reduction include edges which are removed by its

execution. We call contact edges the edges which are incident to the contact vertices.

If the context is clear, we abbreviate (2,4)-2 and (2,5)-2 to just (2,4) and (2,5),

respectively.

The execution of the greedy algorithm naturally defines a sequence of reductions S

as an ordered set of reductions, S = {R1, . . . , Rk}, and for every pair of i, j, if i < j,

then we say the reduction Ri is executed before Rj .

An example illustrated in Figure 5.2, shows how greedy algorithm executes reduc-

tions. In the first step, the greedy algorithm execute reduction 1, as a (2,6)-reduction.

In the second step, it executes a (2,3)-reduction. Subsequently, it executes the re-

maining reductions. Note that reduction 4 is a (1,3)-reduction, reduction 7 is a (1,2)-

Chapter 5. Instance study for maximum independent set problem 57

reduction, and reduction 8 is a (1,1)-reduction.

root vertices

contact vertices

(0, 0) (1, 1) (1, 2) (1, 3) (2, 3) (2,4)-1 (2,5)-1 (2,4)-2 (2,5)-2 (2,6)

Figure 5.1: Collection of reductions with root of degree at most 2.

A natural question is what we can say about the reductions such as (3, x), whose root

vertex has degree 3? The answer is that for any connected graph, only the first reduction

is possible to be such reduction in the entire sequence of reductions. Therefore, with

the increasing of number of vertices, the loss of solution will be asymptotically small.

Actually, in the next chapter, we will provide an approach to even eliminate this small

loss.

Given a graph G, let OPT(G) be the maximum independent set of G, we also use

OPT(S) to denote the maximum independent set in sequence of reductions S. And

let SOL(G) be a greedy set output by the greedy algorithm we considered on graph

G, and use SOL(S) to denote the set of the solution in sequence of reductions S, note

|SOL(S)| = |S|.
The following definition is crucial for the following analysis.

Definition 14. A 1-good reduction is a reduction R executed by greedy algorithm on

graph G with maximum independent set, where |OPT (G)∩VR| = 1. A 0-good reduction

is a reduction R, where |OPT (G) ∩ VR| = 0. Finally, a bad reduction is reduction R,

where |OPT (G) ∩ VR| = 2. Denote the number of 1-good reductions as g1, and the

number of 0-good reduction as g0, and the number of bad reduction as b.

Let us note here that we only consider here reductions R such that |OPT (G) ∩
VR| ≤ 2, that is, assuming that the root of R has degree at most 2. We do that

because if the input graph has minimum degree 3, only the first executed reduction

can have |OPT (G) ∩ VR| = 3, and all the following executed reductions will have

|OPT (G)∩VR| ≤ 2. We will treat the very first such reduction with |OPT (G)∩VR| = 3

separately in a different way later.

We will also refine the concept of good and bad reduction later, but the current

version of these concepts is sufficient to follow the text here.

When a reduction R is executed, depending of which type R is, 0-good, 1-good or

bad, we can locally compute the approximation ratio: let k be the current execution

58 Nan Zhi

1

2

3 4 5

6
7

8

Figure 5.2: Example of reductions during an execution of the greedy algorithm.

step, then, the partial approximation ratio is defined as
∑k

i=1OPT (Ri)∑k
i=1 SOL(Ri)

. Note that if the

executed reduction is bad, then 2 will be added to the numerator of this expression

and one will be added to the denominator. Therefore, this will potentially increase

approximation ratio. However, if the executed reduction is a 1-good reduction, then

to both numerator and denominator 1 is added, which implies that the approximation

ratio decreases to 1. The 0-good reduction decreases the approximation ratio even

further. By this observation, we can introduce notions of saving and payment. A

saving comes from a good reduction, and if there exists a bad reduction, we can say

that we can use savings to pay for a bad reduction. These notions will be refined and

made more precise in the next chapter.

Claim 3. For any sequence of reductions S executed by any greedy algorithm on G, if

S does not contains any (2,5), (2,4) or (2,6)-reductions, then |OPT (S)|
|SOL(S)| = 1.

Proof. As we observed, only (2,5), (2,4) or (2,6)-reduction can be a bad reduction,

which means two of the vertices in the reduction belong to the independent set. Thus,

if there is no such reduction, |OPT (S)|
|SOL(S)| = 1.

This observation is simple but useful, because it implies that given a degree at most

3 graph G and any greedy algorithm, if the greedy algorithm executes a sequence of

reductions S′ = {R1, . . . , R`, R`+1} ⊆ S, where ∀R ∈ {R1, . . . , R`}, R is not (2,5),

(2,4) or (2,6) reduction, and R`+1 is one of them, then, the approximation ratio of

the greedy algorithm on graph G is not larger than the approximation ratio of this

algorithm on subgraph G′ ⊆ G, where G′ = (V ′, E′), V ′ = V \ V ({R1, . . . , R`}),
E′ = E \ E({R1, . . . , R`}). This implies that we can always assume that the first

Chapter 5. Instance study for maximum independent set problem 59

1

2 3

Figure 5.3: Example for Claim 4

2

1 3

4

Figure 5.4: Example for Claim 5

reduction in the sequence of reductions executed by the greedy algorithm is one of

(2,5), (2,4) or (2,6)-reduction without any loss in the approximation ratio.

The following observation shows that there exist a universal graph structure, for

any greedy algorithm, on which it cannot achieve optimum solution.

Claim 4. Consider several connected components C1, . . . , Ck, and a reduction structure

R as (2,6), such that the contact edges of R are connected to C1, . . . , Ck. If the degree

of any vertex in C1, . . . , Ck is 3, then there exists an instance that any greedy algorithm

cannot achieve optimum solution on this graph.

Proof. Let the independent set vertices of OPT in R be two vertices adjacent to the

root vertex. Because the degrees of all other vertices are 3, R must be executed before

any other reductions. Therefore, |OPT ||SOL| =
2+

∑k
i=1 |α(G)∩Ci|
|SOL(G)| ≥ 2+

∑k
i=1 |α(G)∩Ci|

1+
∑k

i=1 |α(G)∩Ci|
> 1.

Figure 5.3 illustrates such case, where in the first step, the greedy algorithm chooses

vertex 1 into the solution and 2, 3 subsequently. Note the size of the maximum inde-

pendent set in this graph is 4, but the size of solution is 3.

An important observation from Claim 4 is the following:

Claim 5. Given a graph G described in Claim 4, where not all vertices in the connected

components C1, . . . , Ck have degree 3, there exists a greedy order to prevent the execution

of reduction R.

Proof. Let v be the vertex in C1, . . . , Ck whose degree is not 3, then the existence of

such vertex forms a different reduction R′. If d(v) = 1, then it will be executed before

the execution of R, because whatever greedy order we design, reduction whose root

vertex’s degree is 1 always has higher priority than reductions whose root degree is 2.

If d(v) = 2, then greedy algorithm can choose R′ rather than R to execute, because

60 Nan Zhi

the greedy algorithm can freely choose one of two reductions because their degrees are

equal. If greedy algorithm executed R′, then after the execution of R′, either it removed

some vertices of R (then R will never be executed), or it removed some edges of the

new connected component C ′ which contains R. In this new connected component C ′,

because not all vertices have degree 3, it implies an existence of vertex with degree at

most 2, which forms a reduction R′′. Thus, the same argument can be applied to each

iteration of the greedy algorithm. Therefore, we have proved that by the right greedy

algorithm, R will never be executed.

Figure 5.4 illustrates such case, where in the first step, the greedy algorithm takes

vertex 1, and 2,3,4 subsequently. Note in this execution order, the size of the solution

is 4. The key is that in the first step, the greedy chooses vertex 1 rather than 2, thus

no (2,6) reduction is executed.

The importance of Claim 5 is that it implies that if the greedy algorithm is carefully

designed, the problematic reductions such as (2,6) will never be actually executed in

some worst cases. However, since reduction R′ might be another bad reduction, such

approach is not necessarily useful for solving the problem unless we can find a method

to show that the execution of R′ rather than R is actually good.

This observation actually implies the order of greedy algorithm. Since for the re-

duction R which is not (2,4), (2,5), (2,6), we have: |OPT (G) ∩ V (R)| ≤ 1, then the

greedy algorithm we expect should prioritise R rather than reductions (2,4), (2,5),

(2,6). Therefore, the updated greedy algorithm is:

Algorithm 6 Updated greedy algorithm

Input: Graph G = (V,E)

U ← V
S ← ∅
while U 6= ∅ do

choose a reduction R according to the following order in GE [U]:
1: (0,0), (1,1), (1,2), (1,3), (2,3), (2,4)-1, (2,5)-1 -reduction
2: (2,6)-reduction
3: (2,5)-2 -reduction
4: (2,4)-2 -reduction
U ← U \ (NG(v∗) ∪ v∗), where v∗ is the root vertex of R.
S ← S ∪ {v∗}

end while
return S

Chapter 5. Instance study for maximum independent set problem 61

If there is no further designation, then in this chapter, the default greedy algorithm

is updated greedy algorithm of Algorithm 6.

Since Claim 4 implies that there exists a worst case instance to prevent any greedy

algorithm from archiving a good solution, the concrete examples are useful for further

study. Before we go to the next subsection to study such examples, we present a

characterisation of graphs on which any greedy algorithm obtains optimum solution,

for arbitrary degree.

Lemma 3. Given any graph G with arbitrary degree, any greedy algorithm can achieve

an optimal solution on G, if for each iteration of the execution, ∀v ∈ arg minu∈V deg(u)

G[N(v) ∪ {v}] forms a clique.

Proof. For each iteration, let v be the vertex which is chosen, and R is the reduction

defined by v. Since G[N(V)∪{v}] forms a clique, the size of the solution of the greedy

algorithm on R is 1, and the size of the optimum is at most 1. This implies that
|OPT (R)|
|SOL(R)| ≤ 1. Therefore, r = |OPT (G)|

|SOL(G)| =
∑

R∈S |OPT (R)|∑
R∈S |SOL(R)| ≤ 1.

This claim is not restricted to degree at most 3 graphs. We can use Lemma 3 to

prove that in the following classes of graphs: complete graphs, trees, co-graphs, and

split graphs, the greedy algorithm is optimal.

5.3 Towards computer assisted guide for proof of greedy

MIS

As we have shown in Claim 4, in the general case, the greedy algorithm cannot obtain

the optimum. Thus, a natural question is what is the best ratio that greedy algorithm

can obtain? We note here that Halldorsson [31] has proved that 5
4 is the best possible

approximation ratio achievable by any greedy algorithm for MIS on sub-cubic graphs.

Our main goal in the next chapter will be to indeed design such best possible greedy

algorithm and prove that it indeed obtains the 5
4 -approximation.

In our study of greedy algorithms for maximum independent set problem on sub-

cubic graphs, he following conjecture is crucial for achieving the 5
4 approximation ratio

for the greedy algorithm.

Conjecture 1. Consider a graph G such that there exists a greedy algorithm with

specific greedy order, which will execute a bad (2,6)-reduction firstly. Then the following

inequality holds: 5g0 + g1 ≥ 4. And if the first executed reduction is a bad (2,5)-

reduction, then 5g0 + g1 ≥ 3.

62 Nan Zhi

Figure 5.5: Construction of Hk

Observe that if Conjecture 1 is true, then if the first executed reduction is a (2,6)-

reduction, then the approximation ratio r = |OPT |
|SOL| = 2+g1

1+g1+g0
,

2 + g1

1 + g1 + g0
=

10 + 5g1

5 + 5g1 + 5g0
≤ 10 + 5g1

5 + 5g1 + 4− g1
≤ 10 + 5g1

9 + 4g1
≤ 5

4
. (5.1)

Therefore, the approximation ratio of the greedy algorithm on G is at most 5
4 . Then,

we will show that Conjecture 1 is necessary for achieving a 5
4 -approximation ratio for

the greedy algorithm.

Claim 6. If Conjecture 1 is not true, then there exists a counter-example, that no greedy

algorithm can obtain 5
4 approximation ratio for MIS problem on sub-cubic graphs.

Proof. Consider the graph G illustrated in Figure 5.5. Graph G is constructed in the

following way: at the top of the graph is a (2,6)-reduction, and we say that it is in layer

1, and its four contact edges are connected to another four (2,6)-reductions. We say

that these four new (2,6)-reductions are in layer 2. For each (2,6)-reduction, we do the

same. Thus, for layer i, there will be 4i (2,6)-reductions. In the end, say, k-th layer,

for each (2,6)-reduction R, its four contact edges are connected to some structure C,

where after the execution of R, the greedy algorithm can only execute at most 3 1-good

reductions.

Suppose that there are k layers of (2,6)-reductions. Thus, the number of (2,6)-

reductions in the last layer is 4k−1, and the total number of (2,6)-reductions is 4k−1
3 .

Assume that Conjecture 1 is not true. Observe that if g0 ≤ 1, then it is always true,

then we can assume that g0 = 0, and g1 ≤ 3 for each (2,6)-reduction. Denote by r2,6

the number of (2,6)-reductions in the graph. For any (2,6)-reduction R in the last layer

S, let gR1 be the number of 1-good reductions which are executed after R. Therefore,

we have that: for any k ≥ 2,

Chapter 5. Instance study for maximum independent set problem 63

r =
|OPT |
|SOL|

=
2 · r(2,6) +

∑
R∈S g

R
1

r(2,6) +
∑

R∈S g
R
1

≥
2 · r(2,6) + 3|S|
r(2,6) + 3|S|

(5.2)

=
2 · 4k−1

3 + 3 · 4k−1

4k−1
3 + 3 · 4k−1

=
8(4k−1)− 2 + 9 · 4k−1

4(4k−1)− 1 + 9 · 4k−1
>

5

4
. (5.3)

It proves that for any greedy algorithm, the statement of Conjecture 1 must be

true, if the approximation ratio of such an algorithm is as good as 5
4 .

A natural question arises to ask is which greedy algorithm satisfies Conjecture 1?

Does the updated greedy algorithm satisfy it?

Conjecture 2. Consider a graph G such that the updated greedy algorithm of Algorithm

6 will execute a bad (2,6)-reduction firstly. Then, the following inequality holds: 5g0 +

g1 ≥ 4. And if the first executed reduction is a bad (2,5)-reduction, then 5g0 + g1 ≥ 3.

We have implemented a computer program to examine whether Conjecture 1 is

true. If it is not true, then the program will identify what the potential problematic

structure looks like. The identification of potential problematic structures played a

important role in finding a proof for greedy on MIS problem. As we have shown, if

such structure has the property that every vertex has degree exactly 3, then we could

find a higher lower bound and show that 5
4 -approximation ratio is impossible to obtain.

Or, if not all degrees of the vertices are 3, then we want to know the structure in order

to design a specific greedy advice to resolve such problematic cases. Or if the program

cannot find any such structure, then it would be promising to theoretically prove that

the Conjecture 1 is true.

Some notation is useful to elaborate the detail of the program. Let us say an edge

e of a sequence of reductions S is type L, if (NG(e) ∩ V (S)) ∈ I ∧ (V (S) \NG(e)) 6= ∅.
It means that one endpoint of such edge is not included in

⋃
R∈S V (R), and another

endpoint which is included in
⋃
R∈S V (R) are in the independent set.

The idea of how the program works is the following: because of the observation

that the savings from the 1-good-reduction or 0-good-reduction have to compensate

bad (2,6) or bad (2,5) reductions, the program will construct a small graph G which

consists of limited number of reductions. Essentially, a sequence of reductions S =

{R1, . . . , R`}, such that R1 is bad (2,6)-reduction or (2,5)-reduction, and the type of

reduction R ∈ S \R1 is not these two kind reductions. However, good (2,6)-reduction

or good (2,5)-reduction is allowed to be present in S. The proposition we want to

64 Nan Zhi

examine is that following a bad (2,6)-reduction, before the execution of the next bad

reduction, the total number of 1-good-reductions g1 and the number of edges of type

L, is equal or greater than 4, and is equal or greater than 3, if they are followed by

a bad (2,5)-reduction. If there is no feasible combination of {R1, R2, R3, R4}, then

the feasible combination must contain at least 5 reductions. Thus the sequence of

reductions S = {R1, . . . , R`} we want to examine with ` ≤ 3 is enough for our purpose.

The program enumerates all possible combinations of S = {R2, . . . , R`}, for ` = 1, 2, 3.

Let us consider the possible combinations S. Now, for each reduction in S, the

independent vertex has been assigned, and this determines the type of edges which

are connected to vertices. The program executes an operation of Cartesian product to

connect vertices between different reductions.

A full example of one possible combination is given to explain how it works: given

three reductions R2, R3 and R4, assume that R2 and R3 are (2,4)-1 -reductions and

R4 is a (2,3)-reduction. Then for R1 as a (2,6)-reduction, it has four edges which can

be connected to other reductions. Similarly, for R2 and R3, each of them has one edge

which can be connected to R2, and each of them can be connected to another vertex

which belongs to different reduction, in this case, R2. Therefore, after connecting

vertices, the program can compute how many edges with type L remains, and then the

program can show whether the proposition we want to examine is true or false.

Algorithm 7 Conjecture testing algorithm

1: Define all possible reductions S = (R1, R2, R3, R4), where R1 is (2,5) or (2,6)
reduction.

2: for all combinations of four reductions (R1, R2, R3, R4) do
3: Enumerate all possible combinations between the contact edges and the vertices

which can receive such edges. The forbidden situation would be that after con-
nection, both endpoints are in the independent set.

4: Check whether the combination is feasible by examining the independent set
property. The feasible combination demands the first reduction executed is (2,6)
or (2,5).

5: if it is feasible then
6: Return False.
7: end if
8: end for
9: Return True.

Surprisingly, the final result after running the program was positive and negative.

The negative part was that Conjecture 2 is false. The program examined thousands

of combinations and actually generated several instances which violate the claim of

Chapter 5. Instance study for maximum independent set problem 65

the conjecture. We observed however that all those instances share a single unified

property, which will profoundly be reflected in the proof of the greedy algorithm in

the next chapter. This observation is: after the execution of R1 as a bad reduction,

{R2, . . . , R`} forms an isolated odd cycle. The positive part was that Conjecture 1 is

not proved false, because in the above situation, there exists alternative choice of degree

2 vertex, and if we choose this alternative vertex, then Conjecture 1 holds. Now, we

turn back to consider this problematic structure for the updated greedy algorithm.

Definition 15. Say a sequence of reductions S = {R1, . . . , Rk} forms an isolated

odd cycle, if R1 is a (2,4)-2 reduction, and Rk is a (1,1)-reduction and reductions

in {R2, . . . , Rk−1} are (1,2) reductions. For simplicity, we call S an isolated odd cycle

reduction R. An isolated odd cycle reduction with k vertices R is bad or problematic,

if |OPT (G) ∪ V (R)| = k−1
2 .

Based on this observation, we found another general observation that, informally

states, that if any isolated odd cycles are created at last, then in the worst case, they

are not enough alone to compensate for the bad reductions. Peculiarly, each of the

isolated odd cycle would need one more saving, in order to pay for the bad reductions.

The existence of such examples also implies a mistake in the previous research in

[31]. The authors of the paper [31] presented a greedy algorithm for MIS on sub-cubic

graphs for which they claimed a 9/7-approximation ratio. We have found an example

of instances on which this algorithm does not provide this approximation ratio.

Claim 7. The example given in Claim 6 shows that the 9
7 -approximation greedy algo-

rithm for MIS in subcubic graphs presented in [31] is incorrect.

Proof. As we calculated in Claim 6, in the worst case, the algorithm from [31] will have

the same sequence of reductions, and will achieve a 17
13 approximation ratio, which is

worse than 9
7 .

However, if we exclude the existence of any such problematic odd cycle reduction,

then the conjecture will finally be proved true.

Corollary 1. Consider a graph G such that Greedy will execute (2,6) reduction firstly.

Then the following inequality holds: 5g0 + g1 ≥ 4. And if the first executed reduction is

(2,5), then 5g0+g1 ≥ 3, if there is no problematic odd-cycle reduction which is executed.

We do not prove Corollary 1 here, because in the next chapter, we will prove a more

general Lemma 4, which will imply this corollary.

66 Nan Zhi

Figure 5.6: Example of bad cycle-
reductions.

Figure 5.7: Example for bad (2,5)-
reductions.

5.4 Observation for problematic graph structures

In this section, we present the basic observation for two problematic graph structures

identified in the previous section: bad odd cycle and bad (2,5)-reduction.

5.4.1 Isolated odd cycle reduction

Mentioned in the previous section, the experimental study provides a counter-example

to disprove Conjecture 1: there exist instances such that after the execution of bad

(2,6) or (2,5)-reduction, the following reductions executed by the greedy algorithm

are not enough to compensate the loss from the first bad (2,6) or (2,5)-reduction, to

achieve desired approximation ratio. From the point of view of algorithm design, for

preventing such situation to occur, this implies that we have to either:

(1) find enough savings from the previously executed reductions which have extra

saving to pay for such odd problematic cycle, and that they can uniquely pay for

it, or

(2) modify the order of the greedy algorithm, to make the occurrence of the odd

problematic cycle impossible due to the execution order of the greedy algorithm.

The savings in (1) must be found in the previously executed reductions. This

is because our experimental study shows that the example found implies that if the

problematic case happens, then it might has no further reductions (that could pay for

it in the future).

Let us consider two examples to show that both methods described in (1) and (2)

are necessary for solving the problem.

Chapter 5. Instance study for maximum independent set problem 67

Figure 5.8: Example of problematic cycle
reduction

Figure 5.9: Example for odd-problematic
cycle

Consider the first example in Figure 5.6, combined with Figure 5.8. We assume

there that in each component C (represented as grey rectangles in the figure), there is

a problematic structure that we found in our experiment, i.e. the four edges which run

from independent into non-independent vertices are connected to four non-independent

vertices in Figure 5.8. Assume the greedy algorithm chooses vertex 1 and creates four

connected components, and then the algorithm chooses vertices 2, 3, 4, 5 and creates

four isolated cycles. Finally, the greedy inevitably executes the following cycle reduc-

tions and there is no extra saving from the previous reductions. By this sequence of

reductions, the approximation ratio in this case is strictly greater than 5
4 . However, we

also observe that when the greedy algorithm decides which vertex, 2 or a, should be

chosen, and if the greedy algorithm chooses a, then this is feasible, because b is one of

the minimum degree vertices at that moment. Then the sequence of reductions under

the new execution order contains no bad reduction. Thus, the total approximation

ratio of this example is at most 5
4 . This implies that approach (2) is necessary.

Observe that in the second example illustrated in Figure 5.9, whichever the choice

of a or b by the greedy algorithm is, it will create a problematic odd cycle left alone.

Therefore, the method in (1) alone might not work anymore, because the odd problem-

atic cycle will be inevitably created. However, we can also observe that the reduction

executed first is actually a good reduction, and it can be used to compensate the loss

in this problematic odd cycle. Again, it implies that the total approximation ratio of

this example is at most 5
4 . This implies on the other hand that the approach (2) is

necessary.

Therefore, the above two examples illustrate that it seems quite difficult to tell

how the algorithm should proceed, because sometimes the greedy algorithm has to

face two different choices. However, it might still be possible to design a sophisticated

68 Nan Zhi

greedy algorithm to choose the right minimum degree vertex, which achieves a good

enough approximation ratio. In fact, in the next chapter, we prove the existence of

such a sophisticated greedy algorithm, and such algorithm is capable of finding the

right minimum degree vertex in polynomial times.

Surprisingly, the special rule for advising greedy algorithm to find the right choice

is simple. However, we have found this rule after testing many ideas.

5.4.2 Bad (2,5)-reduction

A (2,5)-reduction there is a further problem. Observe that even the following sequence

of reductions does not contain any problematic odd cycles, the inequality 5g0 + g1 ≥ 3

is not sufficient to achieve the 5
4 approximation ratio. See the example illustrated in

Figure 5.7. We can assume that each vertex in every components C represented by

the grey boxes has degree exactly 3. This means that no alternative choice is possible.

Note that if the greedy algorithm firstly chooses vertex 1 as a (2,6)-reduction, and

subsequently chooses vertices 2, 3, 4, 5 as (2,5)-reductions, then it satisfies the formula,

but it is still not enough.

This example shows that we need some ways to avoid the choice of 2, 3, 4, 5 as

(2,5)-reductions, but rather choose 6, 7, 8, 9. Actually, there exists two possible ways

to address this situation, either:

(1) the greedy chooses one of the vertices 6, 7, 8, 9 as (2,6)-reduction first, rather than

choosing vertex 1 as the first reduction.

(2) after the execution of the (2,6)-reduction whose root vertex is a, the greedy chooses

6, 7, 8, 9 as a (2,5)-reduction, rather than choosing one of 2, 3, 4, 5 as a (2,5)-

reduction firstly.

Only one of these two solutions suffices for our purpose. But whichever way we

decide, it seems that it is not easy to design a proper greedy order such that the greedy

algorithm will choose the right reduction. That is because if we adopt the first approach,

the greedy algorithm has to decide which (2,6)-reduction is the right one, under the

circumstance that there might be many different (2,6)-reductions in the current graph.

And if we adopt the second approach, the greedy algorithm has to decide which of the

two alternative (2,5)-reductions to choose as the right one. This seems also difficult,

because the algorithm might be required to decide this also for the reductions in the

future.

Chapter 5. Instance study for maximum independent set problem 69

However, as we will show in the next chapter, both ways can potentially lead to

greedy algorithms whose approximation ratio is 5
4 .

5.4.3 Non-locality of payment

As we observed in the previous two subsections, in some cases, after the execution

of a (2,6)-reduction, there might be only isolated problematic cycle alone. Or after

the execution of a (2,5)-reduction, only three 1-good reductions may be left. In this

case it would not be enough to get a 5
4 -approximation ratio. We also observed that in

some cases, we cannot prevent it to happen by only modifying the greedy algorithm for

avoiding such graph structures to occurs. This implies that in some situations we have

to show that in the previous reductions, there exist extra saving which can pay. We

observe that it is possible that the “location” of such reduction with an extra saving

may be very far from the location of the problematic reduction that needs a payment.

Such example is difficult to find without the analytic tools that we develop in the next

chapter. Thus, we will present this in next Chapter 6. However, this strongly suggests

that if we are able to obtain a 5
4 -approximation ratio, then there must exist some

non-locality of payment in the analysis of the greedy algorithm.

5.4.4 Conclusion

In this chapter, we introduced basic notions and presented a number of basic observa-

tions about how to design a good greedy advice. We identified two kinds of problematic

cases, and gave a basic idea of how to resolve them. In the next chapter, we will see that

these observations will actually imply the graph structures which are “problematic”,

and will help us to essentially characterise graphs which are short of savings.

Chapter 6

Towards Ultimate Greedy for

MIS in sub-cubic graphs

We present the result of our study on the greedy algorithm for the maximum indepen-

dent set problem on sub-cubic graphs in this chapter. We achieve a greedy algorithm

with an approximation ratio of 4
3 on sub-cubic graphs in O(n2) time.

This chapter is devoted to present the entire proof. We begin in Section 6.1 to

present formal arguments for the payment scheme, that is, for how to “pay” for bad

reductions by using the reductions with savings (1- and 0-good reductions). Next,

we introduce an useful graph computation during the execution of the greedy algo-

rithm, namely by using an extended graph and extended reductions. Finally, we give

an argument for dealing with problematic structures and obtain the main result in

Section 6.3. After that, we discuss a possibility to obtain an analysis for the ultimate

greedy algorithm in Section 6.3.4, to achieve an approximation ratio of 5
4 in linear time

complexity.

6.1 Payment scheme

6.1.1 Definitions

At the beginning, we start from the updated greedy algorithm (Algorithm 5), and finally

present the ultimate greedy algorithm. Given a graph with degree at most 3, observe

that when the greedy algorithm is working, in each iteration i, one of the vertices in

the remaining graph is taken into the solution set S, and its adjacent vertices and edges

are removed from the remaining graph. Finally, after the k-th iteration, the graph will

70

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 71

be empty and the solution of greedy will be S = {v1, · · · , vk}.
Let Gi be the remaining graph after the execution of step i of the greedy algorithm

(in step i execution the vertex vi and its neighboring vertices are removed). Note for the

k-th iteration of the greedy algorithm, Gk−1 is the graph in which vk is still present, and

Gk is the graph in which vertex vk is removed. Therefore, we talk about a sequence of

graphs created by an execution of the greedy algorithm: G ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gk = ∅.
For convenience, given an independent set I in G, we call a vertex v black vertex if

v ∈ I and a white vertex otherwise. Also, given a subset V ′ of vertices in the graph G,

V ′ is called black (white, respectively) if all vertices in V ′ are black (white, respectively).

As we said in the previous chapter, in each iteration, the greedy algorithm executes

a reduction, which was explained intuitively in the previous chapter. Now, we begin to

present the precise definition of a reduction. We define a reduction Ri executed by the

greedy algorithm in iteration i as a 2-tuple (we will omit subscript i of Ri if the context

is clear), R = {VR, ER}, where VR = V (Gk−1) \ V (Gk). There exists a vertex v∗ ∈ VR,

which we call a root vertex. The root vertex v∗ is the vertex which is taken into the

solution of the algorithm when reduction Ri is executed. The set of edges of reduction

R, is ER = ERpast ∪ ERself ∪ ERcontact, where ERself = E({v∗} ∪N(Gk−1\Gk)(v
∗)), ERcontact =

(E(Gk−1) \ E(Gk)) \ Eself, and ERpast = E(NG(VR)) \ E(Gk−1). Whenever R is clear

from the context, we omit R from ERpast, E
R
self, E

R
contact and write just Epast, Eself, Econtact.

We also call contact vertices the vertices which are incident to Econtact, but are not in

VR. These notions will be illustrated in Figure 6.1.

Furthermore, we define two types of edges: loan and debt edges. The loan edge e

of a reduction R is the edge such that e ∈ Econtact and N(e) \ VR is white; and a debt

edge is the edge such that e ∈ Epast and N(e) ∩ VR is white. Let us use Eloan(R) to

denote the total number of loan edges of reduction R, and Edebt(R) to denote the total

number of debt edges. Note for any loan edge from a reduction, it is identical to one

debt edge from some other reduction. Therefore, the total number of loan edges of all

reductions is equal to the total number of debts edges of all reductions.

In Figure 6.1, we illustrate two reductions giving two examples. Let a box vertex in

the figures represent the vertex which is black. VR are vertices which are in the dotted

rectangle. The contact vertices are vertices which are in layer Lc. Econtact are edges

between the vertices of layer Lm and Lc, and Epast are edges between the vertices of VR

and vertices of layer Lp. And Eself are edges which are completely contained in the dot-

ted rectangle. The loan edges in the left reduction are {(2, 4), (3, 5)}, because vertices

4,5 in layer Le are white. The same argument applies to the right reduction, showing

that {(2, 4), (2, 5), (3, 6), (3, 7)} are loan edges. The debt edge in the left reduction is

72 Nan Zhi

root vertices

Lc

Lp

Lm

VR

Econtact

Epast

1

6

2

4

3

5

1

8

2

4

3

765

Figure 6.1: example of reductions

(6, 1), because the vertex in VR is white, and debt edge in the right reduction is (8, 1).

The crucial concept throughout the following thesis is a potential function of a

reduction. The potential function helps us to clearly capture the complex relation

between the locality of saving and losing of single reduction. It also helps to capture

the global properties if such a reduction is executed, what will be the affects it creates

in the future execution of the greedy algorithm. It also reflects the way of how the

already executed reductions in the past influence the future.

We define a potential function Φ(R) of a reduction R as

Φ(R) = 5|SOL(R)| − 4|OPT (R)|+ |Eloan(R)| − |Edebt(R)|, (6.1)

where SOL(R) = {v ∈ VR|v is root vertex}, thus |SOL(R)| = 1 always and OPT (R) =

{v ∈ VR|v is black}. Eloan(R) and Edebt(R) is the set of loan edges and debt edges of

R.

For instance, for the left hand side reduction in Figure 6.1, namely a good (2,5)-1

reduction, R, its potential function value is Φ(R) = 5−4+2−1 = 2, while for the right

hand side reduction, namely a bad (2,6)-reduction, R′, its potential function value is

Φ(R′) = 5− 8 + 4− 1 = 0.

6.1.2 Ideas

Let us first explain the intuition behind the arguments of a payment scheme that uses

the potential function defined above. Let us assume I is a fixed maximum independent

set of graph G. When the greedy algorithm executes a reduction, it will take one of the

vertices into the solution and remove adjacent vertices to it. At this moment, the size

of the solution is increased by 1, and depending on how many vertices in VR ∩ I there

are, the size of optimum in this reduction or particular “sub-graph” is increased by 1,

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 73

Figure 6.2: Structure with
bad (2,6)-reduction

Figure 6.3: Structure with
good (2,6)-reduction

Figure 6.4: Structure with
good (2,6)-reduction

by 2 or by 3. It is easy to see that given a reduction R, if the increase in the size of its

solution and optimum are the same, then this reduction is fine from the point of view

of the local approximation. Such a reduction is also better than other reductions whose

size of the solution is strictly smaller than that of the optimum, because potentially

it will lead to an approximation ratio of 2 or worse. Unfortunately, for any greedy

algorithm, the size of the solution is only depending on the number of executions of

reductions, particularly, on the number of root vertices of the reductions. This means

that, each reduction can only contribute 1 to the size of the solution, but it is possible

to contribute 2 (or 3) to the size of the optimum. For instance, consider a bad (2,6)-

reduction (illustrated in the Figure 6.2). Because two of its vertices belong to I, thus,

locally, the approximation ratio is 2 for this reduction. Even though it is possible,

it would be extremely difficult to argue that the greedy algorithm will never execute

such bad (2,6)-reduction. Therefore, we need some method to address such kind of

reductions.

The crucial observation is that whenever such kind of bad (2,6)-reduction occurs,

the following type of reductions in some sense are determined, due to the fact that both

vertices 2, 3 are in the independent set I. An example will illustrate it.

Observe that in Figure 6.2, vertices {2, 3, 9} belong to the provided maximum inde-

pendent set I. The greedy algorithm will execute the bad (2,6)-reduction R1 (formed

by vertices {1, 2, 3}), and subsequently two (2,3)-reductions (the first is formed by ver-

tices {4, 5, 6}, and the second is formed by {6, 7, 8}). Now, we can see that the first

(2,3)-reduction R2 formed by {4, 5, 6} contains no vertex in I, and this implies that the

size of the solution of R1 is increased by 1, while the size of the optimum does not in-

crease. Moreover, because we assume that the vertices {2, 3} belong to I, then whatever

is the assignment of independent set vertices among the vertices {4, 5, 6, 7, 8, 9}, there

is only one vertex which is feasible to belong to I. This implies that only one of the

two reductions R2 and R3 contains one independent set vertex. In contrast, illustrated

74 Nan Zhi

in Figure 6.3, because R1 is a (2,6)-reduction which has single black vertex, then it is

possible that two vertices in {4, 5, 6, 7, 8, 9} belong to I. In the example, we assume

that they are vertices 6 and 7. Thus, though both R2 and R3 contain an independent

set vertex and consequently both increase the size of the solution and optimum by 1,

R1 also increases both sizes by 1. Therefore, it achieves in this example the optimal so-

lution. Furthermore, we can observe that in Figure 6.4, though the independent vertex

in R1 is 1 rather than 2, the same property is preserved.

What we can learn from these observations is that: the type of reduction determines

the type of the following reductions, and the reason for that is that the type of vertices

determines the type of the adjacent vertices. More precisely, given a reduction, through

the type of its contact edges, it determines the type of the following reduction, and this

is why we introduce loan and debt edges. For instance, if the end vertex of a contact

edge is white then such an edge is called a loan edge. Let us explain this in a more

detail now with an example.

We observe that each loan edge “predicts” the existence of a particular kind of re-

duction in the future, while each debt edge “recalls” the existence of another particular

kind of reduction in the past. For example, in Figure 6.3, because R1 has two loan

edges (2, 4), (2, 5), it implies that in the worst case, in the future, there are two good

reductions which will be executed by the greedy algorithm. Even though these two

reductions are not executed immediately after the execution of R1, there will need to

be executed “somewhere”. Moreover, reduction R2 also has one loan edge (6, 9), so it

also implies that there will be one good reduction in the future, and, actually, R3 is

this reduction.

In fact, the story of “prediction” and “recall” is even more complicated, and we will

explain it later. Let us recall the potential function Φ(R) defined above.

Observe that for any sequence of reductions S executed by the greedy on graph G,

Φ(S) =
∑
R∈S

Φ(R) =
∑
R∈S

(5|SOL(R)| − 4|OPT (R)|+ |Eloan(R)| − |Edebt(R)|) (6.2)

=
∑
R∈S

(5|SOL(R)| − 4|OPT (R)|), (6.3)

where the last equality is true because |Eloan(S)| = |Edebt(S)|.
Therefore, if we can prove for any S executed on a graph G such that Φ(S) ≥

0, (5|SOL(S)| − 4|OPT (S)|) = Φ(S) ≥ 0, then OPT (S)
SOL(S) ≤

5
4 . This proves the 5

4 -

approximation ratio.

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 75

Figure 6.5: Bad (2,5)-reduction Figure 6.6: Bad 5-cycle-reduction

Let us try to compute the potential function on the previous example illustrated

in Figure 6.2: the execution of greedy algorithm leads to the sequence of reductions

S = {R1, R2, R3}. Φ(R1) = 5 − 8 + 4 − 0 = 1, Φ(R2) = 5 − 0 + 0 − 3 = 2 and

Φ(R3) = 5 − 4 + 0 − 2 = −1, then Φ(S) = 2. And we know in this case, the greedy

algorithm achieves an optimal solution.

Therefore, the crucial part is to show that Φ(S) ≥ 0. Fortunately, for almost every

reduction R ∈ S, Φ(R) ≥ 0, and this fact will be formally proved in the next section.

Thus, the sum of the potential values in the sequence of reductions is also larger than

0. Unfortunately, not every reduction R has non-negative value. The following two

reductions violate this property. It is easy to check that both reductions R1 and R2

in Figure 6.5 and 6.6 have Φ(R1) = Φ(R2) = −1. To deal with such reductions is the

main difficulty, and we will address it in Section 6.3.

6.1.3 Value of potential function of payment scheme

In this subsection, we will compute the potential value for all kinds of reductions. We

only consider the reductions whose root vertex’s degree is at most 2. Firstly, we classify

reductions depending on their graph structures. Initially, we have: (0,0), (1,1),(1,2),

(1,3),(2,3),(2,4)-1,(2,4)-2,(2,5)-1,(2,5)-2,(2,6). However, because the algorithm used

here is the updated greedy algorithm of Algorithm 6, then (2,4)-2 reduction is executed

only if there exists a collection of isolated cycles. Then we replace the (2,4)-2 reduction

by an isolated cycle reduction – see Definition 15.

A bad (2,5)-reduction R is defined as a (2,5)-reduction with each vertex v adjacent

to the root vertex of R to be black, and such that ∃e ∈ Epast – e is a debt edge. A

bad (2,3)-reduction R is defined as a (2,3)-reduction such that ∃v ∈ VR, v is black and

∀v′ ∈ NR(v) v′ is white, and ∀e ∈ ERpast – if (NR(e) ∪ VR) is white, then (NR(e) \ VR)

is black. Similarly, a bad isolated cycle reduction with length of k is an isolated cycle

reduction with length k such that k is odd and there are exactly k−1
2 black vertices,

76 Nan Zhi

and ∀e ∈ ERpast, if (NR(e) ∪ VR) is white, then (NR(e) \ VR) is black. And, finally, a

bad (1,1)-reduction R is defined as a (1,1)-reduction such that ∃v ∈ VR, v is black and

∀e ∈ ERpast, if (NR(e) ∪ VR) is white, then (NR(e) \ VR) is black.

Claim 8. For any reduction R, if R is a bad (2,5)-reduction, bad isolated cycle reduc-

tion, bad (2,3)-reduction of bad (1,1)-reduction, then Φ(R) = −1.

Proof. Observe that a (2,5)-reduction R has three loan edges and one debt edge, and

two black vertices in V (R). Then the potential is Φ(R) = 5 − 8 + 3 − 1 = −1. A bad

(2,3)-reduction R has two debt edges, and one black vertex in VR. Then the potential

is Φ(R) = 5 − 4 − 2 = −1. Finally, a bad (1,1)-reduction R has two debt edges, and

one black vertex in VR. Ans so the potential is Φ(R) = 5 − 4 − 2 = −1. This proves

the claim.

Observe that for all the remaining reductions R, we have |Econtact| > 0, which means

that there must exist at least one contact edge.

Lemma 4. For any reduction R, if R is not of of the above four types of reductions,

then Φ(R) ≥ 0.

Proof. To prove this claim in a simple way, we only consider reductions’ structure on

VR and Eself. Thus they can be further classified into four groups: isolated vertex

reduction, single edge reduction, triangle reduction and branching reduction. Denote

by v∗ the root vertex of the reduction we consider.

1. For an isolated vertex reduction R, VR = {v∗} and Eself = ∅. Note |Epast| ≤ 3. If

v∗ is black, then |{e ∈ Epast|e is debt edge}| = 0, then Φ(R) = 5− 4 + 0− 0 = 1.

If v is white, then |{e ∈ Epast|e is debt edge}| ≤ 3, and then Φ(R) ≥ 5−0+3 = 2.

2. For a single edge reduction R, VR = {v∗, v2} and Eself = {(v∗, v2)}. Note |Epast|+
|Econtact| ≤ 4 and |Epast| ≤ 3. If v∗ is black, then |Edebt| ≤ 1, because two of them

cannot be debt edges. Thus, Φ(R) ≥ 5 − 4 + 0 − 1 = 0. If N(v) is black, then

|Edebt| ≤ 2 and |Eloan| ≥ 1, and thus, Φ(R) ≥ 5 − 4 + 1 − 2 = 0. If v and N(v)

are white, it is obvious that Φ(R) ≥ 0.

3. For a triangle reductionR, VR = {v∗, v2, v3} and Eself = {(v∗, v2), (v∗, v3), (v2, v3)}.
Note |Epast| + |Econtact| ≤ 3 and Epast ≤ 2. If there is one of the vertices v such

that v is black, then |Edebt| ≤ 2. If |Edebt| = 2, then |Eloan = 1|, and in such a

case, Φ(R) = 5− 4− 2 + 1 = 0. If |Edebt| ≤ 1, then also Φ(R) ≥ 5− 4− 0 + 1 = 0.

If none of the vertices v is black, then Φ(R) ≥ 5− 0− 0 + 3 = 2.

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 77

1
2k

Figure 6.7: Example of an extended reduction.

4. For a branching reduction R, VR = {v∗, v2, v3} and Eself = {(v∗, v2), (v∗, v3)}.
Note |Epast| + |Econtact| ≤ 5 and |Epast| ≤ 2. If v∗ is black, then |Edebt| ≤ 1,

and then we have Φ(R) ≥ 5 − 4 + 0 − 1 = 0. If v∗ is white, and at least one

of two adjacent vertices is black, then we have |Eloan| ≥ 1, and |Edebt| ≤ 2, thus

Φ(R) ≥ 5− 4 + 1− 2 = 0.

Therefore, by Claim 4, we proved Corollary 1 from the previous chapter. This

completely reflects the observations that we have made in our experimental study.

Remark. The fact that the potential value of a bad 5-odd cycle reduction is −1 also

reflects the fact that in our experimental study in the previous chapter, it is possible to

construct an instance where the approximation ratio is strictly greater than 5
4 .

6.2 Extended reductions

In this section, we consider an useful graph transformation during the execution of

the Greedy: basically, in each iteration, we locally modify the graph into an extended

graph, and the Greedy can execute extended reductions of the extended graph.

The motivation for that is derived from the following observation. We consider a

part of the remaining graph, which is illustrated in Figure 6.7. We assume that greedy

will subsequently execute reductions R1, R2, . . . , Rk, (in the example, the dotted box are

repetitions of a (1,1)-reduction). Note that R1 is a bad (2,5)-reduction, and as we show

in the previous section, Φ(R1) = −1. Observe that for this particular sub-sequence

of reductions S = {R1, R2, . . . , Rk}, Φ(S) = 0, because even though Φ(R1) = −1,

Φ(Ri) = 0,∀i, 1 < i < k and Φ(Rk) = 1. Besides that, if we look at these reductions in

78 Nan Zhi

a unified way, we can see that:

Econtact(S) =

k⋃
i=1

Econtact(Ri) \
k⋃
i=1

Epast(Ri) =

k⋃
i=1

Eloan(Ri) \
k⋃
i=1

Edebt(Ri) = Eloan(S)

(6.4)

This implies that the number of contact edges in S is equal to the number of loan edges

in S. Moreover, we have: |Eloan(S)| = 4.

Let us look at the potential function of S more closely.

|Edebt(S)| = |Eloan(S)|+
k∑
i=1

(5|SOL(Ri)| − 4|OPT (Ri)|)

= 4 + (

k∑
i=2

5|SOL(Ri)| −
k∑
i=2

4|OPT (Ri)|) + 5|SOL(R1)| − 4|OPT (R1)|

= (
k∑
i=2

5|SOL(Ri)| −
k∑
i=2

4|OPT (Ri)|) + 1

|Edebt(S)| − (
k∑
i=2

5|SOL(Ri)| −
k∑
i=2

4|OPT (Ri)|) = 1

We can see that there might be k debt edges in S, however, according to the

interpretation of debt edges, only one of them is “real” (or “unpaid”), which means

that the other k − 1 debt edges is paid by reductions from S itself.

Therefore, by |E′debt(S)| = 1 and |Eloan(S)| = 4, we are able to say that for the

sequence of reductions S, its performance according to the potential function is equiv-

alent to that of a bad (2,6)-reduction. That is because there are four contact edges

and all of them are loan edges, and only one of debt edges really affects the potential

function. This implies that in some sense, we might contract S into a single reduction.

6.2.1 Definition of extended reductions

Define vertices of the extended graph GE as extended-vertices or nodes, and its edges

as extended-edges. For the original input graph G these are just referred to as vertices

and edges, respectively.

Let G = (V,E) be the (current) original graph, then the extended graph GE =

(VE , EE , L) is defined informally as follows:

VE = {v ∈ V : dG(v) ∈ {0, 1, 3}}

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 79

EE = {(u, v) : u, v ∈ VE such that there exists a u− v − path in G with

consecutive degree-2 vertices in G}.
We now have the following formal definition of the extended graph.

Definition 16. An extended graph GE = (VE , EE , L) is an undirected multi-graph with

labeled edges defined for a given input graph G = (V,E) as follows. Let the following

two functions {f, g} be bijective, such that:

f : V ′ → VE, where V ′ = {v ∈ V |dG(v) ∈ {0, 1, 3}},
g : P → EE, where P is the set of path of degree-2 vertices in G, and p is the element

of P , that is,

p = {(v0, . . . , vk) ∈ V k+1|v0 ∈ V ′ ∧ vk ∈ V ′, ∀i = 0, 1, . . . , k − 2 : (vi, vi+1) ∈
E, dG(vi+1) = 2, (vk−1, vk) ∈ E},
L : EE → {0, 1}, where L(e) = 1, if the length of path g−1(e) in G is odd and L(e) = 0,

if the length of path g−1(e) in G is even.

By using functions {f, g, L} defined above, given any graph G, we can convert it

into its corresponding extended graph GE . Therefore, after each iteration i of the

execution, we convert graph Gi into its extended graph.

Claim 9. In each iteration of the greedy execution, we can update the extended graph

from the previous extended graph in O(1) time.

Proof. Because in each iteration of the greedy algorithm, only one original reduction is

removed, then only a constant number of edges and vertices are removed, and therefore,

we can update the extended graph in constant time.

Then, based on the extended graph, we define extended reductions. The illustration

is present in the Appendix in Figure A.1. We formulate now a new greedy algorithm,

see Algorithm 8, on the extended graph, by defining a specific order of executing ex-

tended reductions. The detailed explanation of how this algorithm executes extended

reductions is described just below Definition 18.

Definition 17. An execution of the updated greedy algorithm of Algorithm 8 on the

extended graph takes single edge non-branching, single edge branching, loop, even-

backbone and odd-backbone reduction, where these reductions are defined below.

1. Single edge non-branching reduction RE: RE = {VR, ER}, where VR = {u},
d(u) = 1 in the extended graph Gk−1

E , ER = {(u,N(u))}, and L((u,N(u))) = 0.

80 Nan Zhi

2. Single edge branching reduction R: VR = {u1, u2}, where dGk−1
E

(u1) = 1 and

d(u2) = 3 in Gk−1
E , ER = {(u1, u2)} and L((u1, u2)) = 1.

3. Loop reduction R: VR = {u}, where dGk−1
E

(u) = 3, and ER = {(u, u), N(u)}.

4. Even-backbone reduction R: VR = {u1, u2}, where dGk−1
E

(u1) = dGk−1
E

(u2) = 3,

ER = {(u1, u2)}, and L((u1, u2)) = 0.

5. Odd-backbone reduction R: VR = {u}, where dGk−1
E

(u) = 3, ER = {(u1, u2)}, and

L((u1, u2)) = 0.

Remark. We will use the terms “basic” and “extended” to distinguish the reductions

in the original graph and in the extended graph, respectively.

Now, we need to explore the connection between a reduction and an extended

reduction. For convenience, assume that an extended reduction is executed at k-th

iteration. We have VR = V (Gk−1
E) \ V (GkE), ER = E(Gk−1

E) \ E(GkE).

Definition 18. We say that the execution of an extended reduction R in GE is equiv-

alent to the execution of a sequence of (basic) reductions S, if

f−1[V (G1
E) \ V (G2

E)] ∪ [V (g−1(E(G1
E))) \ V (g−1(E(G1

E)))] = V (G1) \ V (G2),

Where G1 and G2 is the graph before and after the execution of the sequence of re-

ductions S, respectively, and G1
E and G2

E is the extended graph before and after the

execution of R, respectively.

How extended reductions are executed: Given a graph G and its extended graph

GE , for an extended edge e ∈ EE , we say that the extended edge e is removed by an

extended reduction R, if after the execution of R, the path g−1(e) in G is removed by

a sequence of reductions SR.

The following are extended reductions R and their sequences of (basic) reductions

SR.

1. Single edge non-branching reduction, RE = {R1, . . . , Rk}, ∀R ∈ RE , R is a (1,2)-

reduction. Moreover, ERi
contact ∩ E

Rj

past 6= ∅ for every i = j − 1.

2. Single edge branching reduction consists of a series of reductions {R1, . . . , Rk}
in which R1 to Rk−1 are (1,2)-reductions and Rk is a (1,3)-reduction. Moreover

ERi
contact ∩ E

Rj

past 6= ∅ for every i = j − 1.

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 81

3. Loop reduction consists of a series of reductions R1, . . . , Rk, in which R1 is a (2,5)

reduction, R2 to Rk−1 are (1,2)-reductions, and Rk is a (1,1)-reduction, where

ERi
contact ∩ E

Rj

past 6= ∅ for every i = j − 1, and ER1
contact ∩ E

Rk
past 6= ∅.

4. Even-backbone reduction either is a (2,6)-reduction, or it consists of a series

of reductions R1, . . . , Rk, where R1 is a (2,5)-reduction, R1 to Rk−1 are (1,2)-

reductions, and Rk is a (1,3)-reduction. Moreover, ERi
contact ∩ E

Rj

past 6= ∅ for every

i = j − 1.

5. Odd-backbone reduction consists of a series of reductions R1, . . . , Rk, where R1

is a (2,5)-reduction, R1 to Rk are (1,2)-reductions. Moreover, ERi
contact∩E

Rj

past 6= ∅
for every i = j − 1.

We see that every extended reduction, say R, consists of a sequence of basic

reductions, say {R1, . . . Rk}. The notions of Epast, Eself and Econtact defined previ-

ously for basic reductions naturally extend to extended reductions. Namely, we define

ERpast =
⋃k
i=1E

Ri
past, and analogously for ERself and ERcontact.

Then, we need to compute the extended graph’s potential value. Because of the

following analysis, the value of the potential needs to be very accurate, we will classify

the reductions into two categories: good and bad.

Also, we will use following notation.

Definition 19. Single edge non-branching, single edges branching, loop and even-

backbone reductions are called high-priority reductions.

Furthermore, we categorise reductions into two groups, mixed or non-mixed reduc-

tions. Firstly, we present them in a basic reduction form (that is, those in Figure 5.1),

then we present them in an extended reduction form. The interpretation of a non-

mixed and mixed reduction is that all contact edges of the former have the same type

of endpoints (black or white), and such claim is false if the reduction is mixed.

Definition 20. A reduction R is non-mixed, if ∀v ∈ N(ERcontact) \ V (R), v is black or

∀v ∈ N(ERcontact)\V (R), v is white. And a reduction R is mixed, if it is not non-mixed.

Definition 21. The set of contact edges of an extended reduction RE = {R1, . . . , Rk} is

defined as ERE
contact = (ER1

contact∪E
Rk
contact)\

⋃k
i=1E

Ri
past. An extended reduction RE is non-

mixed, if ∀v ∈ (N(ERE
contact)\

⋃k
i=1 V (Ri)), v is black or ∀v ∈ (N(ERE

contact)\
⋃k
i=1 V (Ri)),

v is white. And a reduction R is mixed, if it is not non-mixed.

82 Nan Zhi

6.2.2 Value of potential function of extended reduction

In this subsection, we compute the precise value of the potential function of the ex-

tended reductions. The crucial property for an extended reduction which is mixed is

that its potential value is strictly larger than 0. It implies that they are the reductions

which have extra saving to pay for other reductions which lack payment, i.e. their

potential value is negative.

Claim 10. For an even-backbone reduction R, if R is a mixed reduction, then Φ(R) ≥ 2.

Proof. Because an even-backbone reduction R has an even number of edges, let us say

k, in its backbone p = {(v1, v2), . . . , (vk, vk+1)}, there are k + 1 vertices in backbone

p. And because R is a mixed reduction, then only one vertex of the two endpoints of

p is in I by definition. Assume the v1 is black, and vk+1 is white, then v2 is white.

Now, we consider the sub-backbone p′ = {(v3, v4), . . . , (vk−1, vk)} of p, and denote by

j the number of vertices v such that v is black in p′ and by ` the number of vertices v

such that v is white in p′. Note that the length of sub-backbone p′ is odd, and by the

property of an independent set in odd length path, we have: j ≤ `. By adding v1, v2

and vk+1, we have: j + ` = k − 2. We compute the potential value: SOL(R) = k
2 ,

OPT (R) = j+1, |ERloan| = 2 and |ERdebt| = `+1. Then, Φ(R) ≥ 5·k
2 −4(j+1)+2−(`+1) =

5(j+`+2)
2 − 4j − 4 + 2− `− 1 = 3

2`−
3
2j + 5− 4 + 2− 1 ≥ 2.

Claim 11. For an odd-backbone reduction R, if R is a mixed reduction, then Φ(R) ≥ 1.

Proof. Because an odd-backbone reduction R has an even number of edges (it should

not be confusing with the fact that an odd-backbone reduction’s backbone is an odd

length path), let us say k, in its backbone p = {(v1, v2), . . . , (vk, vk+1)}, there are k+ 1

vertices in backbone p. And because R is a mixed reduction, then only one vertex

of the two endpoints of p is in I by definition. Let us assume that dR(v1) = 2 and

dR(vk+1) = 3, then we have two cases.

Case 1, let us assume v1 is black, and vk+1 is white, then v2 is white. Now, we

consider the sub-backbone p′ = {(v3, v4), . . . , (vk−1, vk)} of p, and denote by j the

number of vertices v such that v is black in p′ and by ` the number of vertices v such

that v is white in p′. Note that the length of sub-backbone p′ is odd, and by the

property of the independent set in an odd length path, we have: j ≤ `. By adding

v1, v2 and vk+1, we have: j+ ` = k−2. We compute the potential value: SOL(R) = k
2 ,

OPT (R) = j+1, |ERloan| = 1 and |ERdebt| = `+1. Then, Φ(R) ≥ 5·k
2 −4(j+1)+1−`−1 =

5(j+`+2)
2 − 4j − 4 + 1− `− 1 = 3

2`−
3
2j + 5− 4 + 1− 1 ≥ 1.

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 83

Case 2, let us assume v1 is white, and vk+1 is black, then vk is white. We consider

the sub-backbone p′ = {(v2, v3), . . . , (vk−2, vk−1)} of p. Note that the length of p′ is odd,

and by the property of independent set in odd length path, we have: j ≤ `. By adding

v1, v2 and vk+1, we have: j+ ` = k−2. We compute the potential value: SOL(R) = k
2 ,

OPT (R) = j+1, |ERloan| = 2 and |ERdebt| = `+2. Then, Φ(R) ≥ 5·k
2 −4(j+1)+2−(`+2) =

5(j+`+2)
2 − 4j − 4 + 2− `− 2 = 3

2`−
3
2j + 5− 4 + 2− 2 ≥ 1.

Claim 12. For an even-backbone reduction R, if R is a non-mixed reduction, and v1

and vk+1 are black, then Φ(R) ≥ 0.

Proof. Let us p be the backbone of R, p = {(v1, v2), . . . , (vk, vk+1)}. Let us consider the

sub-backbone of p, p′ = {(v3, v4), . . . , (vk−2, vk−1)}. Denote by j the number of vertices

v such that v is black in p′ and by ` the number of vertices v such that v is white in p′.

Note that the length of p′ is even, and by the property of the independent set in an even

length path, we have: j ≤ `+1. By adding v1, v2, vk−2 and vk−1, we have: j+` = k−3.

We compute the potential value: SOL(R) = k
2 , OPT (R) = j + 2, |ERloan| = 4 and

|ERdebt| = `+2. Then, Φ(R) ≥ 5·k
2 −4(j+2)+4−(`+2) = 5(j+`+3)

2 −4j−8+4−`−2 =
3
2`−

3
2j + 3

2 ≥
3
2`−

3
2(`+ 1) + 3

2 = 0.

Claim 13. For an even-backbone reduction R, if R is a non-mixed reduction, and v1

and vk+1 are white, then Φ(R) ≥ 1.

Proof. Let us p be the backbone of R, p = {(v1, v2), . . . , (vk, vk+1)}. Let us consider the

sub-backbone of p, p′ = {(v2, v3), . . . , (vk−1, vk)}. Denote by j the number of vertices

v such that v is black in p′ and by ` the number of vertices v such that v is white in

p′. Note that the length of p′ is even, and by the property of an independent set in an

odd length path, we have: j ≤ `+ 1. By adding v1 and vk, we have: j + ` = k− 1. We

compute the potential value: SOL(R) = k
2 , OPT (R) = j, |ERloan| = 0 and |ERdebt| = `.

Then, Φ(R) ≥ 5·k
2 −4j−(`+2) = 5(j+`+1)

2 −4j−` = 3
2`−

3
2j+

5
2 ≥

3
2`−

3
2(`+1)+ 5

2 = 1.

Claim 14. For an odd-backbone reduction R, if R is a non-mixed reduction, and v1

and vk+1 are black, then Φ(R) ≥ −1.

Proof. Let us p be the backbone of R, p = {(v1, v2), . . . , (vk, vk+1)}. Let us consider

the sub-backbone of p, p′ = {(v3, v4), . . . , (vk−2, vk−1)}. Denote by j the number of

vertices v such that v is black in p′ and by ` the number of vertices v such that v is

white in p′. Note that the length of p′ is even, and by the property of an independent

set in an even length path, we have: j ≤ ` + 1. By adding v1, v2, vk−2 and vk−1, we

have: j + ` = k − 3. We compute the potential value: SOL(R) = k
2 , OPT (R) = j + 2,

84 Nan Zhi

|ERloan| = 3 by the fact that dR(v1) + dR(vk+1) − 2 = 3 and |ERdebt| = ` + 2. Then,

Φ(R) ≥ 5·k
2 − 4(j + 2) + 4 − (` + 2) = 5(j+`+3)

2 − 4j − 8 + 3 − ` − 2 = 3
2` −

3
2j + 3

2 ≥
3
2`−

3
2(`+ 1)− 1

2 = −1.

Claim 15. For an odd-backbone reduction R, if R is a non-mixed reduction, and v1

and vk+1 are black, then Φ(R) ≥ 0.

Proof. Let us p be the backbone of R, p = {(v1, v2), . . . , (vk, vk+1)}. Let us consider

the sub-backbone of p, p′ = {(v2, v3), . . . , (vk−1, vk)}. Denote by j the number of

vertices v such that v is black in p′ and by ` the number of vertices v such that v is

white in p′. Note that the length of p′ is even, and by the property of an independent

set in an odd length path, we have: j ≤ ` + 1. By adding v1 and vk, we have:

j+ ` = k−1. We compute the potential value: SOL(R) = k
2 , OPT (R) = j, |ERloan| = 0

and |ERdebt| = ` + 1 by the fact that one of v1 and vk+1 might has a debt edge. Then,

Φ(R) ≥ 5·k
2 −4j−(`+2) = 5(j+`+1)

2 −4j−`−1 = 3
2`−

3
2j+ 3

2 ≥
3
2`−

3
2(`+1)+ 3

2 = 0.

Now, we can update our greedy algorithm into the extended reduction form of

Algorithm 8.

Algorithm 8 Updated Greedy algorithm in extended reduction version

Input: a graph G = (V,E)

GE = extended graph of G
U ← VE
S ← ∅
while U 6= ∅ do

choose a reduction R according to the following order in GE [U]:
1: single edge non-branching reduction
2: single edge branching reduction.
3: loop reduction
4: even-backbone reduction
5: odd-backbone reduction
U ← U \ VE(R)
S ← S∪ root vertices in S
Update the extended graph

end while
return S

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 85

1

56 7

2 3

98

4

Figure 6.8: Instance example with an arbitrarily negative potential value.

6.3 The final proof

In this section, we will present the final proof. From the previous section, we know that

for any reduction R ∈ S, only bad odd-backbone reductions and isolated cycle reduc-

tions’ potential value is negative. Additionally, we have observed that the difficulties

of addressing these two kind of reductions.

6.3.1 Observations and ideas

For some inspiration, let’s review the example from the previous section and extend it

in Figure 6.8.

The sequence of reductions in this example is: S′ = {R1, R2, R3, R4, R5}, where

R1 is a bad even-backbone reduction with vertex 1 as its root vertex. R2 and R3

are two single edge branching reductions with 2 and 3 as their root vertices. R4 is

a bad odd-backbone reduction with 4 as its root vertex and R5 is an isolated cycle

reduction. The dash edges in the example are edges which are already removed by

the previous execution of the greedy. The two grey boxes containing vertex 6 and 7

are gadgets which are other isolated cycle reductions or odd-backbone reductions. It

is easy to check that Φ(S′) = −2, because at the end, a bad odd-backbone reduction

and an isolated 5-odd cycle reduction are created. This structure can be extended to

86 Nan Zhi

an arbitrarily large structure by including more isolated cycle and bad even-backbone

reductions. Thus the potential value can also be arbitrarily large.

We observe that at the moment before R1 is executed, potentially, there are at

least three different vertices 1,8,9 whose degree is 2 and no vertices’ degree is 1, and

because the reductions formed by 8 and 9 are an even-backbone reduction and a loop-

reduction, they are the candidates for the root vertex of the next execution. If the

greedy algorithm chooses either vertex 8 or 9 as a first reduction, then for the following

sequence of reductions executed, S′′, it is easy to check that Φ(S′′) ≥ 0. That is because

no bad reduction is created, thus no bad reductions are in S′′. Nevertheless, if the first

reduction executed by the greedy algorithm is R1 by taking vertex 1, then the degree

of vertices 2 and 3 would become 1. Then R2 and R3 formed by vertices 2 and 3 are

inevitably executed, and then, the isolated cycle reduction is created. This implies that

the greedy algorithm has to determine which reduction it needs to execute in an early

iteration of the execution in order to obtain the desired approximation ratio.

Furthermore, although the greedy algorithm is unable to do anything if an isolated

bad cycle reduction has been created, the algorithm is able to do something for an odd-

backbone reduction. Note that an even (1,3)-reduction of vertex 2 has been executed,

and a (2,5)-reduction is left. At this moment, the greedy algorithm still has a chance

to choose the right vertex, by choosing the odd-backbone reduction with root vertex 8.

However, in the following analysis in this section, we will not adopt such an approach;

the discussion of this approach is relocated to Section 6.4.

A crucial observation has been found in the study of bad isolated cycle reductions.

Let us call it R, and, without loss of generality, assume that R is an 5-odd-cycle. We

know that if Φ(R) = −1, which means that it is a bad reduction, it must have all 3

debt edges. Now, we consider the previous reduction R′, and assume that the execution

of R′ will create R. Then if either all edges from R′ are connected to vertices which

are in the independent set or are not in the independent set, formally, ∀e ∈ ER′contact,

(N(e) \ VR′) are black or ∀e ∈ ER′contact, N(e) \ VR′ are white, then there exists a high-

priority reduction in R∪R′. This reduction is not R itself, if R itself is a high-priority

reduction. In the next section, we can generalise this observation by induction for all

sequences of reductions S, where Φ(S) = −1.

Now, let us consider a reduction R which creates two such structures, which means

that after the execution of R, two disjoint such structures are created. Then before

this execution, if the edges from R which are connected to these two structures satisfy

above property, then in both structures, if the assumption is correct, then there should

be two high-priority reductions in there. Also because of the disjointedness of the

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 87

two structures, R and together with these two structures form a tree-like graph. This

observation of such tree-like structure implies that the greedy algorithm should be

advised to choose the leaf reduction of this tree rather than the reduction that is non-

leaf. We discuss the role of leaf reductions in next subsection 6.3.2. This argument

would be crucial to the final proof.

At this moment, we present the Ultimate Greedy algorithm of Algorithm 9. We will

prove that the ultimate greedy algorithm 9 obtains a 4
3 -approximation ratio. For the

reminder of this Section, when we mention greedy algorithm in the proof, this phase

refers to the ultimate greedy algorithm.

Algorithm 9 Ultimate Greedy algorithm in extended reduction version

Input: a graph G = (V,E)

GE = extended graph of G

U ← VE

S ← ∅
while U 6= ∅ do

choose a reduction R according to the following order in GE [U]:

1: single edge non-branching reduction

2: single edge branching reduction.

3: loop reduction

4: even-backbone reduction in the leaf

5: odd-backbone reduction

U ← U \ VE(R)

S ← S∪ root vertices in R

end while

return S

6.3.2 The leaf reduction

In this subsection, we discuss the definition of even-backbone reductions in the leaf and

how the algorithm finds such a reduction.

Definition 22. We say that a graph contains or that there exists a high-priority re-

duction in the graph, if there exists a vertex with degree at most 2, where the greedy

algorithm can choose it as a reduction whose priority is at least the priority of the

even-backbone reduction.

88 Nan Zhi

a

b c

H1

H2
H3

Figure 6.9: Example of an even-backbone reduction in the leaf.

Given a graph G, we consider a spanning tree of G, and a leaf path of a spanning

tree is a path whose one endpoint has degree 1.

Definition 23. Given a graph G, an even-backbone reduction R is in the leaf, if for

a spanning tree of G, at least one vertex of VR belongs to a leaf path of this spanning

tree.

In Figure 6.9, we present an example to show which even-backbone reduction is

the leaf one. In the example, there are three different even-backbone reductions, and

their root vertices are respectively a, b, c. Consider a spanning tree T of G, where the

spanning tree will cover all vertices in the graph. Let us assume that both b and c are

degree one vertices of T , and a and the adjacent vertices of a are not in any leaf path.

Then the even-backbone reductions in H2 and H3 are in the leaf. Therefore, the greedy

algorithm of Algorithm 9 will execute either even-backbone reductions in H2 or H3,

but not the reductions in H1.

Lemma 5. There exists an algorithmic way to find a leaf high-priority reduction in

O(n) time complexity.

Proof. Assume that the current graph is G, and the execution of R will create at least

two disjoint connected components C1 and C2. If as assumed, in both C1 and C2, there

exist high-priority reductions Ra and Rb, then, there must exists a path p from Ra to

Rb, and one of the vertices of R belongs to p, i.e. ∃v ∈ V (R), v ∈ p. Therefore, a

spanning tree can be implemented in O(n) time.

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 89

6.3.3 Proof for existence of 4
3
-approximation greedy algorithm

We will prove a less tight result for MIS problem with ∆ ≤ 3, to show the existence of

a 4
3 -approximation greedy algorithm with O(n2) time complexity. Though this result is

a progressive achievement to the ultimate greedy algorithm, it is interesting in its own

right, because it improves the previously known analysis of the greedy. The previous

best known ratio of the greedy on sub-cubic graphs was 3
2 [31]. As we show in Claim

7, the 9
7 -approximation greedy algorithm in [31] is incorrect.

Since here we prove less tight ratio, we can reformulate the potential function as:

Φ(R)
4
3 = 4|SOL(R)| − 3|OPT (R)|+ |Eloan(R)| − |Edebt(R)|

In this section, we will only consider Φ
4
3 (R).

Lemma 6. For any reduction R, Φ
4
3 (R) = Φ

5
4 (R), except a bad (2,6)-reduction, for

which we have Φ
4
3 (R) = 1 and a bad (2,5)-reduction, for which Φ

4
3 (R) = 0.

Proof.

D(R) =Φ
5
4 (R)− Φ

4
3 (R)

=5|SOL(R)| − 4|OPT (R)|+ |Eloan(R)| − |Edebt(R)|

− (4|SOL(R)| − 3|OPT (R)|+ |Eloan(R)| − |Edebt(R)|)

=|SOL(R)| − |OPT (R)|

Observe that if |SOL(R)| = |OPT (R)|, then D(R) = 0. It is easy to check for every

reduction R, that only a bad even-backbone reduction and a bad odd-backbone reduc-

tion R satisfy |SOL(R)| = |OPT (R)| − 1. Then in this case, we have: D(R) = −1.

Therefore, we have: Φ
5
4 (R) + 1 = Φ

4
3 (R), and thus obtain the lemma.

Remark. For the consistence of notation, when we talk about a bad odd-backbone re-

duction, Φ(R) is an abbreviation of Φ
4
3 (R).

Now, we introduce some concepts to characterise the property we described in the

previous subsection. For an isolated cycle reduction R, observe that if the previous

reduction R′ provides only single type of edges to connect R, i.e. all edges that are

connected only to v ∈ VR have black v or all the edges that are connected to v ∈ VR have

white v, then there exists a high-priority reduction in graph G(R′ ∪ R). We extend

this observation to every graph G such that Φ(G) = −1. To formally capture this

observation, we introduce the dummy graph as follows. Before that, given a connected

90 Nan Zhi

graph G and an independent set I in G, we call any path p in G alternating if the black

and white vertices on p alternate, i.e., for any two consecutive vertices u, v joined by

an edge on path p, we have that |{u, v} ∩ I| = 1.

Definition 24. Let G be a connected graph with minimum degree ≤ 2 and I an inde-

pendent set in G. We construct a black dummy graph (resp. white dummy graph),

denoted G̃, as follows. First, add a dummy vertex ω /∈ V (G) and choose a non-

empty subset of dummy black edges (resp. dummy white edges) : Ẽ ⊆ {(ω, v), v ∈
V (G), dG(v) ≤ 2, v ∈ X} where X = I (resp. X = V (G) \ I), and define G̃ =

(V (G) ∪ {ω}, E(G) ∪ Ẽ). A dummy graph G̃ might contain parallel edges (ω, v) but

must satisfy d
G̃

(v) ≤ 3, ∀v ∈ V (G).

We say that an (extended) reduction R in G is of white type or white (black type

or black, respectively) if the root of R is white (black, respectively).

Then, we say that G is potentially problematic if, for any black (white, respectively)

dummy graph G̃, there exists a non-odd-backbone reduction R of white type (black type,

respectively), such that V (R) ⊆ V (G).

Lemma 7. Given a problematic odd isolated cycle reduction or an isolated single

edge reduction R, its any black (white, respectively) dummy graph contains a non-odd-

backbone reduction R of white type (black type, respectively), such that V (R) ⊆ V (G).

Proof. Observe that for a bad isolated cycle reduction R, if the length of R is k, then

there are k−1
2 vertices v, and for each of them, v is black. We have: ∃v1, v2 ∈ VR, and

v1 and v2 are white, and v1 ∈ NR(v2). Moreover, let p be a path of R, then for every

pair of distinct vertices vs, if vs and ve are black, then there exists a path p with vs

and ve as its two endpoints, and |p| is an even number. Therefore, if we consider the

black dummy graph G̃ of R, then either there exists an extended edge ee with label 0,

which means there exists an even-backbone reduction, or there exists a loop reduction.

In both cases, we have a high-priority reduction.

The argument is the same for the white dummy graph. For every pair of vertices

vs and ve with vs 6= ve, if vs and ve are white, then there exists a path p with vs and

ve as its two endpoints, and |p| with even. Then either there exists an extended edge

ee with label 0, which means there exists an even-backbone reduction, or there exists

a loop reduction. Again, in both cases, we have a high-priority reduction.

For a single edge reduction R, the arguments for both white and black dummy

graph are the same. Thus, there are high-priority reductions of each corresponding

type within it.

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 91

The strategy of the next lemma is: for every connected component C, we first prove

Φ(C) ≥ −1. Then, if Φ(C) = 1, then let us consider a reduction R, such that after

the execution of R C is created. Then there is a high-priority reduction R′ in R ∪ C
and R′ 6= R if all contact edges of R are of the same type. Therefore, if R1 is a bad

odd-backbone reduction, then R1 will not be executed, since it would violate the greedy

order. We consider all kind of reductions and we will prove that either it will not be

executed because of the greedy order, or their potential value is enough to pay for these

connected components.

Lemma 8. Let G be a graph, and R be a non-mixed reduction in G and VR ⊂ V (G)

and ERcontact ⊂ E(G), and Φ(R) ≤ 0. If the connected component C = G(V (G) \V (R))

is potentially problematic, then G is potentially problematic.

Proof. We consider each kind of a reduction.

1. Suppose R is an even-backbone reduction, the by the assumption, if Φ(R) ≤ 0,

then Φ(R) = 0. Let p be the backbone ofR with length k, p = {(v1, v2), . . . , (vk, vk+1)}.
Let us consider a sub-backbone of p, p′ = {(v2, v3), . . . , (vk−1, vk)}. Denote by

j the number of vertices v such that v is black in p′ and by ` the number of

vertices v such that v is white in p′. We have: j + ` = k − 3, SOL(R) = k
2 ,

OPT (R) = j + 2, |ERloan| = 4 and |ERdebt| = ` + 2, and Φ(R) = 0. Then we have:

Φ(R) = 5·k
2 − 4(j + 2) + 4 − (` + 2) = 3

2(` − j + 1). In the even path p′, by the

property of an independent set, j ≤ `+ 1. Then, note that j = `+ 1, Φ(R) = 0.

Therefore, in the even backbone p′, ` + 1 + ` = k − 3, and then ` = k
2 − 2 and

j = k
2 − 1. Therefore, in the backbone p, the number of vertices v such that v is

black is k
2 . And, the number of vertices v such that v is black is k

2 + 1, and by the

property of an independent set in an even path, it is an alternating backbone.

Because C is potentially problematic, then by the definition, if Econtact ⊆ Ẽ of

dummy white edges (dummy black edges, resp.), then there exists a high-priority

reduction R of black type (white type, resp.). Therefore, we obtain the lemma.

2. Suppose R is an odd-backbone reduction, then by the assumption, if Φ(R) ≤ 0,

then Φ(R) = 0. Let p be the backbone ofR with length k, p = {(v1, v2), . . . , (vk, vk+1)}.
Let us consider a sub-backbone of p, p′ = {(v3, v4), . . . , (vk−2, vk−1)}. Denote by

j the number of vertices v such that v is black in p′ and by ` the number of

vertices v such that v is white in p′. We have: j + ` = k − 3, SOL(R) = k
2 ,

OPT (R) = j + 2, |ERloan| = 3 and |ERdebt| = ` + 2, and Φ(R) = 0 by assumption,

then we have: Φ(R) = 4·k
2 − 3(j + 2) + 3− (`+ 2) = `− j + 1 (Recall that Φ(R)

92 Nan Zhi

in here is an abbreviation of Φ
4
3 (R)). In the even path p′, by the property of an

independent set, j ≤ ` + 1. Then, note that j = ` + 1, Φ(R) = 0. Therefore,

in the even backbone p′, ` + 1 + ` = k − 3, and then ` = k
2 − 2 and j = k

2 − 1.

Therefore, in backbone p, the number of vertices v such that v is black is k
2 , and

the number of vertices v such that v is black is k
2 + 1. By the property of an

independent set in an even path, it is an alternating backbone.

Because C is potentially problematic, then by the definition, if Econtact ⊆ Ẽ of the

dummy white edges (dummy black edges, resp.), then there exists a high-priority

reduction R of black type (white type, resp.). Therefore, we obtain the lemma.

Lemma 9. Let G be a graph, and R be a single edge branching or a single edge non-

branching reduction in G. Let VR ⊂ V (G) and ERcontact ⊂ E(G), and Φ(R) ≤ 1. If

graph G′ = G(G(V) \ VR) forms at most 2 connected components C1 and C2, such that

C1∩C2 = ∅ and C1∪C2 = G(V (G)\V (R)) and C1 and C2 are potentially problematic,

then G is potentially problematic.

Proof. We consider two cases.

1. Suppose R is a single edge non-branching reduction and by the assumption,

Φ(R) = 0. Let p be the path of R with length k, {(v1, v2), . . . , (vk, vk+1)},
where k is odd. Firstly, suppose vk+1 is black. Let us consider the sub-backbone

of p, p′ = {(v1, v2), . . . , (vk−2, vk−1)}. Denote by j the number of vertices v

such that v is black in p′, and by ` the number of vertices v such that v is

white in p′. We have: j + ` = k − 1, SOL(R) = k+1
2 , OPT (R) = j + 1,

|ERloan| = 1 and |ERdebt| ≤ ` + 2. In an odd path p′, we have: j ≤ `. Then,

Φ(R) = 5·(k+1)
2 − 4(j + 1) + 1− (`+ 2) = 3

2(`− j) = 0, and thus, ` = j. And by

the property of an independent set in an odd path, this implies that the path is

alternating.

Secondly, vk+1 is black. Let us consider sub-backbone of p, p′ = {(v1, v2), . . . , (vk−1, vk)}.
Denote j as the number of vertices v such that v is black in p′ and ` as the

number of vertices v such that v is white in p′. We have: j + ` = k + 1,

SOL(R) = k+1
2 , OPT (R) = j, |ERloan| = 0 and |ERdebt| ≤ ` + 1. Then Φ(R) =

5·(k+1)
2 − 4j+ 0− (`+ 1) = 3

2(`− j)− 1 = 0. This is contradiction, then ERdebt ≤ `,
then if j = `, Φ(R) = 0. And by the property of independent set in odd path,

this implies the alternating of the path.

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 93

2. Suppose R is a single edge branching reduction and by assumption, Φ(R) = 0.

Let p be the path of R with length k, {(v1, v2), . . . , (vk, vk+1)}, and note k is

odd. Firstly, suppose vk+1 is black. Let us consider a sub-backbone of p, p′ =

{(v1, v2), . . . , (vk−2, vk−1)}. Denote by j the number of vertices v such that v is

black in p′ and by ` the number of vertices v such that v is white in p′. We have:

j + ` = k − 1, SOL(R) = k+1
2 , OPT (R) = j + 1, |ERloan| = 1 and |ERdebt| ≤ `+ 2.

In an odd path p′, we have: j ≤ `. Then, Φ(R) = 5·(k+1)
2 −4(j+1)+1− (`+2) =

3
2(` − j) = 0, and thus, ` = j. And by the property of an independent set in an

odd path, this implies that the path is alternating.

Secondly, let vk+1 be black. Let us consider a sub-backbone of p, p′ = {(v1, v2), . . . , (vk−1, vk)}.
Denote by j the number of vertices v such that v is black in p′, and by ` the num-

ber of vertices v such that v is white in p′. We have: j+` = k+1, SOL(R) = k+1
2 ,

OPT (R) = j, ERloan = 0 and ERdebt ≤ `+1. Then Φ(R) = 5·(k+1)
2 −4(j)+0−(`+1) =

3
2(`−j)−1 = 0. This is a contradiction because ERdebt ≤ `, and if j = `, Φ(R) = 0.

And by the property of an independent set in an odd path, this implies that the

path is alternating.

We present now the main lemma for the proof of an 4
3 -approximation ratio the

greedy algorithm.

Lemma 10. Let G be a connected graph with minimum degree ≤ 2, I an independent

set in G and the sequence of reduction S = {R1, · · · , Rk} executed by greedy algorithm

on G, then:

1. Φ(S) ≥ −1.

2. if Φ(S) = −1, then G is potentially problematic.

Proof. We prove this result by induction on the number k of the executed reductions.

Firstly, we consider the base case. If k = 1, it implies that the reduction R1 has

no contact edges, i.e. it would be one of an odd problematic cycle, isolated single edge

reduction or an isolated vertex reduction. From Claim 8, we know that the potential

value of each of those reductions is at least −1. Among them, the odd problematic

cycle and bad isolated single edge reduction’s potential value is exact −1. Then due to

Lemma 7, G(R1) is potentially problematic. The inductive base is true.

Then, we prove the inductive step. Suppose that S contains k ≥ 2 reductions. Now

we consider the following cases depending on how reduction R1 can look like. In all

94 Nan Zhi

C1 C2

R1

Figure 6.10: Single edge branching
reduction in Lemma 10

C1 C2

R1

Figure 6.11: Bad even-backbone
reduction in Lemma 10

these cases the induction hypothesis will be applied to each connected component of

the graph after executing reduction R1.

We will frequently refer to Claim 10, Claim 15, and to Lemmas 7, 8, 9.

1. Let R1 be a single edge branching reduction. Note that Φ(R) = 1. If the execu-

tion of R1 creates only one connected component C, then due to the inductive

hypothesis, Φ(C) ≥ −1. Then Φ(R1) + Φ(C) ≥ 0. If the execution of R1 creates

2 connected components, see Figure 6.10, C1 and C2, the due to the inductive

hypothesis, Φ(C1) ≥ −1 and Φ(C1) ≥ −1. Then Φ(R1) +
∑2

i=1Ci ≥ −1. Due

to Lemma 8, G(R1 ∪
⋃2
i=1Ci) is potentially problematic, thus the inductive hy-

pothesis is preserved.

2. Let R1 be a bad even-backbone reduction. Note that Φ(R1) = 0. If the execution

of R1 creates only one connected component C, the due to the inductive hypoth-

esis, Φ(C) ≥ −1. Then Φ(R1) + Φ(C) ≥ −1. Due to Lemma 8, G(R1 ∪ C) is

potential problematic.

If the execution of R1 creates at least two connected components, see Figure

6.11, say Ci where i ∈ {1, . . . , k} and k ≤ 4, then due to the inductive hypothesis,

Φ(Ci) ≥ −1, ∀i ∈ {1, . . . , k}. Assume that there are at least two connected

components C1 and C2 with Φ(C1) = Φ(C2) = −1. Because for each Ci, E
R1
contact ⊆

Ẽ of dummy white edges of Ci, there exists a high-priority reduction R′ of black

type because Ci is potentially problematic. Due to the leaf order of the greedy,

R1 will not be executed which leads to a contradiction. Thus, there is at most

one connected component with Φ(R1) = −1. Therefore, the inductive hypothesis

is again preserved.

3. Let R1 be a bad odd-backbone reduction. Note that Φ(R1) = 0. If the execution

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 95

of R1 creates k connected components Ci, where i ∈ {1, . . . , k} and k ≤ 3, the due

to the inductive hypothesis Φ(Ci) ≥ −1 for i ∈ {1, . . . , k}. Assume that there is

at least one connected component C with Φ(C) = −1. Because for C there exists

a high-priority reduction R′ of black type, because Ck is potentially problematic,

by the order of greedy, R1 will not be executed. This leads to a contradiction.

Thus, no connected component Ci has its potential value equal to −1. Thus,

∀i ∈ {1, . . . , k}, Φ(Ci) = 0. Then Φ(R1) +
∑k

i=1 Φ(Ci) ≥ 0, and therefore, the

inductive hypothesis is preserved.

4. Let R1 be a good mixed odd-backbone reduction. Note that Φ(R1) = 1. If

the execution of R1 creates only one connected component C, then due to the

inductive hypothesis, Φ(C) ≥ −1 and Φ(R1) + Φ(C) ≥ 0.

If the execution of R1 creates at least two connected components, say Ci for

i ∈ {1, . . . , k} and k ≤ 3, then due to the inductive hypothesis, Φ(Ci) ≥ −1,

∀i ∈ {1, . . . , k}. Assume that there are at least two connected components C1

and C2 with Φ(C1) = Φ(C2) = −1. Since R1 provides 2 edges of one type and

1 edge of another type, at least one connected component, say C1, receives only

one type of edges. Due to the inductive hypothesis, C1 is potentially problematic,

and then there exists a high-priority reduction R′ of black type. Then R1 will

not be executed by the order of the greedy which leads to a contradiction.

Thus, at most one connected component created by R1 has potential value −1,

and then Φ(R1) +
∑k

i=1 Φ(Ci) ≥ 0. Therefore, the inductive hypothesis is pre-

served.

5. Let R1 be a good mixed even-backbone reduction. Note that Φ(R1) = 2. If

the execution of R1 creates at most two connected component C1 and C2, then

due to the inductive hypothesis, Φ(C1) ≥ −1 and Φ(C2) ≥ −1. Then Φ(R1) +∑2
i=1 Φ(Ci) ≥ 0.

If the execution of R1 creates at least 2 connected components, say Ci for i ∈
{1, . . . , k} and k ≤ 4, then due to the inductive hypothesis, Φ(Ci) ≥ −1, ∀i ∈
{1, . . . , k}. Assume that there are at least three connected components Ci,

i = 1, 2, 3, with Φ(Ci) = −1 for i = 1, 2, 3. Because R1 provides only two edges of

one type and two edge of another type, at least two of the connected components

receive only one type of edges. Let us say that C1 and C2 are those two connected

components. Due to the inductive hypothesis, C1 and C2 are potentially prob-

lematic, and then there exists a high-priority reduction R′ of black type in both

96 Nan Zhi

C1 and C2. Thus, R1 will not be executed by the leaf order of the greedy which

leads to a contradiction. Thus, at most two of the connected components created

by R1 have potential value −1. Then Φ(R1) +
∑k

i=1 Φ(Ci) ≥ 0. Therefore, the

inductive hypothesis is again preserved.

6. Let R1 be a good non-mixed even-backbone reduction. Note that Φ(R1) = 1. If

the execution of R1 creates only one connected component C, then due to the

inductive hypothesis, Φ(C) ≥ −1, and Φ(R1) + Φ(C) ≥ 0.

If the execution of R1 creates at least 2 connected components Ci, where i ∈
{1, . . . , k} and k ≤ 4, then due to the inductive hypothesis, Φ(Ci) ≥ −1, ∀i ∈
{1, . . . , k}. Assume that there are at least two connected components, say C1 and

C2, with Φ(C1) = Φ(C2) = −1. Since for each Ci, E
R1
contact ⊆ Ẽ of dummy black

edges of Ci, there exists a high-priority reduction R′ of white type, because Ci

is potentially problematic. Due to the leaf order of the greedy, R1 will not be

executed which leads to a contradiction. Thus, there is at most one connected

component with Φ(R1) = −1. Therefore, the inductive hypothesis is preserved.

7. Finally, let R1 be a good non-mixed odd-backbone reduction. Note that Φ(R1) =

0. If the execution of R1 creates k connected components Ci, where i ∈ {1, . . . , k}
and k ≤ 3, then due to the inductive hypothesis, Φ(Ci) ≥ −1 for each i. Assume

that there is at least one connected component, say C1 with Φ(C1) = −1. For

C1 there exists a high-priority reduction R′ of white type by the fact that C1 is

potentially problematic. Due to the order of the greedy, R1 will not be executed

thus we have a contradiction. Consequently, no connected component Ci has −1

potential value, thus, ∀i ∈ {1, . . . , k}, Φ(Ci) = 0. Then Φ(R1) +
∑k

i=1 Φ(Ci) ≥ 0.

Therefore, the inductive hypothesis is preserved.

This concludes the proof of the lemma.

Then we will show that the first reduction in the entire sequence of reductions

executed by the greedy has a saving of 1 to pay for the cases in which the potential

value of the execution is −1.

Corollary 2. Let S = {R1, . . . , R`} be a sequence of reductions executed by the greedy

algorithm on G, then Φ(S) ≥ 0.

Proof. By Lemma 10 we have that Φ({R2, . . . , R`}) ≥ −1 and we now consider the

very first reduction, R1, in the sequence, depending on how it may look like.

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 97

1. Let R1 be any good-reduction, including: good even-backbone reduction, good

mixed odd-backbone reduction, good mixed even-backbone reduction and good

odd-backbone reduction. If any of those is the first executed reduction, then

Φ(R1) ≥ 1 as we know, and therefore, we proved that Φ(S) ≥ 0.

2. Let R1 be a bad odd-backbone reduction and let Epast = ∅. Then Φ(R1) = 1,

therefore, we have Φ(S) ≥ 0.

3. Let R1 be a bad even-backbone reduction and Epast = ∅. Then Φ(R1) = 2,

therefore, we again have Φ(S) ≥ 0.

Therefore, we have proved the following theorem.

Theorem 20. The ultimate greedy algorithm of Algorithm 9 for MIS on sub-cubic

graphs, obtains a 4
3 -approximation ratio and its time complexity is O(n2), where n is

the number of vertices of the input graph.

6.3.4 Towards a proof of existence of the ultimate greedy algorithm

We will show now that the previous proof does not work when we apply it to prove a
5
4 -approximation for the greedy algorithm.

To prove the 5
4 -approximation we would need to apply following potential function:

Φ(R) = 5|SOL(R)| − 4|OPT (R)|+ |Eloan(R)| − |Edebt(R)|.

Note that Φ(R) = −1, if R is an odd-backbone reduction. Then in the proof of

Lemma 10, we cannot preserve the inductive hypothesis in the case of a bad odd-

backbone reduction R1. Note that in such a case, if the potential value of one of the

connected components created by R1 is −1, then we are able to show that such a case

violates the greedy order, then it leads to a contradiction. However, if the potential

values of all of these connected components are 0, then the sequence of reductions

{R1, . . . , Rk}’s potential value is −1. But we cannot prove that the inductive hypothesis

is preserved, i.e. that G({R1, . . . , Rk}) is potentially problematic. Observe that this

problem does not happen in the proof for the 4
3 -approximation ratio, where we use a

different potential function (with 4 and 3 instead of 5 and 4, respectively).

Payment delaying approach: The crucial observation for solving this problem is

that the analysis fails only under the circumstances where in a connected component

98 Nan Zhi

there exists a special cycle structure. At this moment, the inductive hypothesis cannot

be preserved.

We construct an example to show the problematic case. Consider the sub-sequence

of reductions S = {R1 · · · , R4}, and let R4 be a bad isolated cycle reduction with 9

vertices. Let us call the vertices in R4 as follows V (R4) = {v1, v2, . . . , v9}, where v1 and

v2 are two adjacent vertices, v1 and v2 are white, and vk is the anti-clockwise vertex

adjacent to vk−1. Note that in a bad isolated cycle reduction, for i = 0 mod 2 and 1,

vi is white, and for i = 1 mod 2, vi is black. R3 is a good non-mixed (2,5)-reduction

such that Φ(R3) = 1 and let v10 and v11 be two vertices adjacent to the root vertex of

R3. Assume also that v10 is white and v11 is black, and before the execution of R3, in

current graph, there exists the set of edges {(v10, v5), (v10, v7), (v11, v6)}. R2 is a bad

(2,5)-reduction such that Φ(R2) = −1, and let us denote two non-root vertices as v12

and v13. Before the execution of R3, there exists the set of edges {(v12, v4), (v13, v8)}.
Finally, R1 is a good non-mixed (2,6)-reduction, and assume that before the execution

of R1, v14 is the vertex connected to v3 and v9. Note that for the sub-sequence of

reductions S′ = {R2, R3, R4}, we have Φ(S′) = −1. However, even if v9 and v3 are

black, satisfying the inductive hypothesis in Lemma 10, there is still no high-priority

reduction in S. Therefore, the inductive hypothesis cannot be preserved.

6.4 Technique of Super-Advice

The content of this section is independent from the other sections.

We will explain here an approach that has a potential to prove that our ultimate

greedy algorithm has a 5
4 -approximation ratio, and it even has a potential to help

improve the approximation ratio beyond this ratio using a non-greedy approach. We

explain this last point in the conclusion section of this thesis.

To start we will make the following interesting observation in the study of the

greedy algorithm about the properties of (2,5) and (2,6)-reductions. We observe that

one of the two choices of the roots of an (2,5)-reduction must be a good reduction,

depending of the type of the root vertex that the greedy chooses. It is also true for

a (2,6)-reduction, however, the difference between it and the (2,5)-reduction is that

the choice of the vertex adjacent to the root vertex of the (2,6)-reduction violates the

greedy order. Thus, we cannot modify any greedy algorithm to accommodate for such a

rule. However, it seems that this provides a potential implication for the further study

of the maximum independent set problem. Particularly, for the design of an algorithm

with a better approximation ratio, which is not necessary greedy. Nevertheless, we also

Chapter 6. Towards Ultimate Greedy for MIS in sub-cubic graphs 99

expect to adopt such technique to obtain a better greedy algorithm. Therefore, the

following section will present the technique based on such observation and general idea

of how to use it to improve the performance of the algorithm, even though the analysis

here is not complete.

Firstly, we consider a simple case to illustrate the general idea of Super-Advice. In

this section, the default potential function Φ(R) is Φ
5
4 (R). Let us consider a sequence of

reductions Sa = {Ra1, . . . , Rak} executed by the ultimate greedy algorithm of Algorithm

9, where Ra1 is a bad odd-backbone reduction. We know that for an odd-backbone

reduction, there exists an alternative choice by choosing a vertex b adjacent to the

root vertex a of reduction Ra1, which we denote by Rb1. And if the greedy algorithm

chooses Rb1 and executes the subsequent reductions, then we denote this sequence of

reductions as Sb = {Ra1, . . . , Ram}. Now, assume that for any reduction R ∈ Sa and

R′ ∈ Sb, except Ra1 and Rb1, both R and R′ are not odd-backbone reductions. Then for

one of the choices, say a, Φ(Sa) ≥ 0. Note that it is the moment when the analysis for

the 5
4 -approximation ratio fails, because the inductive hypothesis cannot be preserved.

Moreover, at this moment, the greedy algorithm in the worst case will choose the wrong

vertex as a bad (2,5)-reduction. But by the super-advice, at this moment, the greedy

algorithm is able to choose the right vertex as good a (2,5)-reduction.

Lemma 11 (Super-advice). Consider a sequence of reductions Sa = {Ra1, . . . , Rak},
where R1 is a bad odd-backbone reduction. Now consider the alternative choice of

such a bad odd-backbone reduction, which means, that greedy algorithm now chooses

the alternative degree 2 vertex b. This implies a new sequence of reductions Sb =

{Rb1, . . . , Rbm} than after the execution of Rak or Rbm. Moreover, for any reduction

R ∈ Sa and R′ ∈ Sb, except Ra1 and Rb1, both R and R′ are not odd-backbone reductions.

Then for one of the choices of a,b, say a is the right choice, we have Φ(Sa) ≥ 0.

Proof. Note that the choice of the greedy algorithm will be arg maxi∈{a,b} |Si|, which

means that the sequence of reductions will be Sa or Sb depending of which maximises

the size of the solution. Firstly, let us assume that the size of the solution by choosing

a is larger than when b is chosen. Thus a is the right choice, which means Φ(Ra1) = 0.

Thus, by the contact edge lemma, Φ(Sa) ≥ 0, because there is no reduction R in Sa

with Φ(R) = −1. Secondly, assume that the size of the solution by choosing a is larger

than b, but b is the right choice. This means that Φ(Rb1) = 0. In this case, note that

Ra1 is possible to be a bad odd-backbone reduction, which means that Φ(Ra1) = −1.

However, the sizes of the optimum in both sequences of reductions are equal, because

the optimum is fixed. Thus, we have that |OPT (Sa)| = |OPT (Sb)|. Also, we assume

100 Nan Zhi

that the size of Sa is equal to Sb. By the property of the potential function and the

fact that Φ(Sb) = Φ(Rb1) + Φ(Sb1 \ Ra1) ≥ 0, we obtain that |OPT (Sb)|
|SOL(Sb)| ≤

5
4 . Then, we

have:

|OPT (Sa)|
|SOL(Sa)|

=
|OPT (Sb)|
|SOL(Sb)|

≤ 5

4
.

This implies that Φ(Sa) ≥ 0. If the size of Sa is strictly larger than Sb, then we

have
|OPT (Sa)|
|SOL(Sa)|

≤ |OPT (Sb)|
|SOL(Sb)|

≤ 5

4
.

This also implies that Φ(Sa) ≥ 0, which concludes the proof of the lemma.

Inspired by the above lemma, we can generalise it: we can not only apply it to the

case where for every reduction R in (Sa \Ra1) ∪ (Sb \Rb1), its potential value of Φ(R)

is non-negative, but also to the case where Φ(Sa \Ra1) ≥ 0 and Φ(Sb \Rb1) ≥ 0.

Lemma 12. For Sa and Sb, if Φ(Sa \ Ra1) ≥ 0 and Φ(Sb \ Rb1) ≥ 0, then one of the

choices of a and b is the right choice, and if a is the right choice, then Φ(Sa) ≥ 0.

Remark. The technique of Super-Advice is aimed to obtain a greedy algorithm with
5
4 -approximation ratio, however, it does not work alone. But, this technique can be used

to address the problem when the input graph is cubic.

Chapter 7

Further applications

We study further applications of the techniques we developed in the previous chapter.

The chapter is organised as follows. In Section 7.1.1, we extend our method to MIS

on general degree bounded graphs, to obtain an alternative proof that the primitive

greedy algorithm is a ∆+2
3 - approximation algorithm for any ∆ bounded degree graph.

Next, in Section 7.2, we present a 1.8-approximation ratio for the greedy algorithm

for MIS on degree at most 4 graphs. In the next section, we address a closely related

optimisation problem: minimum vertex cover, and we present a complementary greedy

algorithm for this problem on degree at most 3 graphs.

7.1 Greedy algorithm for MIS on bounded degree graph

In this section, we study what performance the greedy algorithm can obtain in bounded

degree graphs. We first present an alternative and simpler proof for a ∆+2
3 -ratio for

primitive greedy algorithm on bounded degree graphs. Secondly, we present a lower

bound of ∆+1
3 for any greedy algorithm on bounded degree graphs.

7.1.1 Alternative proof for ∆+2
3

-ratio greedy algorithm on ∆-degree

graphs

Halldorsson and Radhakrishnan [31] proved that for any bounded degree graph, the

primitive greedy algorithm obtains ∆+2
3 -approximation ratio. In here, we present an

alternative proof for the same result, but using our method of a payment scheme. Our

proof will be incredibly short as compared to the proof in [31].

101

102 Nan Zhi

Let us define the following potential function:

Φ(R) = (∆ + 2) · ∆ + k

3
· |SOL(R)| − 3 · ∆ + k

3
· |OPT (R)|+ |Eloan(R)| − |Edebt(R)|,

where k ∈ {0, 1} is fixed. If S is the sequence of all reductions, note that |Eloan(S)| −
|Edebt(S)| =

∑
R∈S(|Eloan(R)| − |Edebt(R)|) = 0. If we prove that Φ(R) ≥ 0 for any

reduction R, then we obtain that Φ(S) = (∆+2)·∆+k
3 ·|SOL(S)|−3·∆+k

3 ·|OPT (S)| ≥ 0,

and |OPT (S)|
|SOL(S)| ≤

∆+2
3 . Therefore, we want to show for all reductions R ∈ S, Φ(R) ≥ 0.

We note that although there are many types of reductions, their structure is highly

regular. The idea of the proof is to find the worst type reduction and show that its

potential is non-negative. Observe that if we want to find a reduction R∗ to minimise

the potential, R∗ = arg minR∈RΦ(R), then such reduction needs more debt edges and

vertices in OPT and less loan edges. Also, for each v ∈ V (R) \ v∗, if dR(v∗) = k,

dR(v) ≥ k, by the greedy rule. For any reduction R, let j be the number of vertices in

OPT and ` be the number of vertices not in OPT . We have following formulas:

|Eloan| ≥ (j + `− 1− `) · j,

|Edebt| ≤ (∆− j − `+ 1) · `.

We will justify these bounds now. Given any reduction, the degree of its root

vertex is j + `− 1. The lower bound on Eloan depends on the vertices in OPT , by the

definition. By the greedy order, in the current graph G′, for each of vertex v ∈ OPT ,

|NG′(v)| ≥ j + `− 1. There are at most ` vertices not in OPT which can be connected

to v, thus, the total number of loan edges of v is at least (j + `− 1− `), and we have j

such vertices. The upper bound on Edebt depends on ∆, the degree of root vertex and

the number vertices not in OPT . The number of debt edges is at most ∆− j − `+ 1,

as otherwise it violates greedy order, and we have ` vertices not in OPT .

Φ(R) =
∆ + k

3
· (∆ + 2)|SOL(R)| − (∆ + k)|OPT (R)|+ |Eloan(R)| − |Edebt(R)|

(7.1)

≥ ∆ + k

3
(∆ + 2)− (∆ + k)j + (j − 1)j − (∆− j − `+ 1)` (7.2)

= `2 − (∆− j + 1)`+
∆ + k

3
(∆ + 2)− (∆ + k)j + (j − 1)j (7.3)

Let F (∆, j, `) = `2−(∆−j+1)`+ ∆+k
3 (∆+2)−(∆+k)j+(j−1)j. Then, the question

Chapter 7. Further applications 103

now is to find the minimum value of F (∆, j, `) with constrains ∆, j, ` ∈ Z+ ∪ {0}.
We will first prove that F (∆, j, `) ≥ k/3 − k2/3 − 1/3 for any ∆, j, ` ∈ R+ ∪ {0}.

For any fixed ∆ and j let us first treat the function F (∆, j, `) as a function of `. We

know that it is a parabola with the global minimum at point ` such that ∂F
∂` = 0, which

gives us that ` = (∆− j + 1)/2.

Plugging ` = (∆− j + 1)/2 in F (∆, j, `), we obtain the following function:

F (∆, j, (∆−j+1)/2) = F (∆, j) = −1

4
(∆−j+1)2+

∆ + k

3
(∆+2)−(∆+k)j+(j−1)j =

=
3

4
j2 − (∆/2 + 1/2 + k)j +

∆ + k

3
(∆ + 2)− 1

4
∆2 − 1

2
∆− 1

4
.

Similarly as above, for any fixed ∆, we see that the function F (∆, j) = 3
4j

2−(∆/2+

1/2 +k)j+ ∆+k
3 (∆ + 2)− 1

4∆2− 1
2∆− 1

4 as a function of j is a parabola with the global

minimum for j such that ∂F
∂j = 0, which gives us that j = 2

3(∆/2 + 1/2 + k).

Plugging j = 2
3(∆/2 + 1/2 + k) in F (∆, j) we obtain the following:

F

(
∆,

2

3
(∆/2 + 1/2 + k)

)
= F (∆) = k/3− k2/3− 1/3.

From the above we have that F (∆, j, `) ≥ k/3−k2/3−1/3 for any ∆, j, ` ∈ R+∪{0}.
Now, let us observe that if ∆ ≡ 0, 1 (mod 3), then F (∆, j, `) with k = 0 is an

integer whenever ∆, j and ` are integers. This means that in those cases we have

F (∆, j, `) ≥ −1/3 which in fact implies that F (∆, j, `) ≥ 0. In case when ∆ ≡ 2

(mod 3), we have that F (∆, j, `) with k = 1 is an integer whenever ∆, j and ` are

integers. This again means that in those cases we have F (∆, j, `) ≥ −1/3, again

meaning F (∆, j, `) ≥ 0 .

This proves the following theorem.

Theorem 21. For MIS on any graph with maximum degree ∆, any greedy algorithm

achieves ∆+2
3 -approximation ratio.

7.1.2 Limitations of greedy algorithm on ∆-degree graphs

In this subsection, we present a result showing that the approximation ratio of any

greedy algorithm cannot be improved for graphs with degree at most ∆. This result

is an extension of Theorem 6 in [31]. In this result Halldorsson and Radhakrishnan

present examples where the ratio between the worst execution of the primitive greedy

of Algorithm 5 and the optimal independent set is
∆ + 2

3
− O(∆2/n). However, on

104 Nan Zhi

Figure 7.1: An example when ` = 3. K` and K` respectively denotes a clique and an
independent set of size `.

these examples there exists several vertices with minimum degree and picking the right

minimum degree vertex could lead greedy to an optimal solution. Our extension of these

examples consists in increasing the degree of some vertices by one in these graphs so

that any greedy algorithm outputs a solution of the same size where the corresponding

ratio is
∆ + 1

3
−O(1/∆).

Theorem 22. The approximation ratio of any greedy algorithm in form of Algorithm

4 for MIS on graphs with degree at most ∆ is at least
∆ + 1

3
−O(1/∆).

Proof. We show this construction for the case ∆ ≡ 2 (mod 3). See Figure 7.1. Let

` be the integer such that 3` − 1 = ∆. The graph consists in a chain of subgraphs,

alternating with a clique on ` vertices and an independent set of size `. Each subgraph

is completely connected with the adjacent subgraphs in the chain. This structure ends

with a complete graph on ` vertices. The degree of the vertices in the extreme clique

is 2`− 1, while the degree of vertices of the other cliques and the independent set are

respectively ∆ = 3`− 1 and 2`. Any greedy like algorithm will pick one vertex in each

clique while the optimal solution is the union of all vertices in the independent sets. If

n denotes the number of vertices in the graph, the ratio between the size of the optimal

solution and the size of the output solution is

(n− `)/2
(n− `)/2`+ 1

= `− `

(n− `)/2`+ 1
= `−O(`2/n) =

∆ + 1

3
−O(∆2/n)

In particular for any instance where n = Ω(∆3), we obtain the claimed result.

For the case ∆ ≡ 1 (mod 3), we need a more complicated graph that can be

described as a chain of groups of six subgraphs. Consider the integer ` such that

3` − 2 = ∆. Each group is formed by a chain of subgraphs of size ` or ` − 1 that are

alternately a clique and an independent set. The complete graph consists of a chain of

Chapter 7. Further applications 105

Figure 7.2: The construction when ∆ = 3`− 2.

`(`− 1) + 1 such groups where the last independent set and the first clique of the next

group are completely connected. Then, this chain ends with a clique of size ` fully con-

nected with the last independent set of the last group. Additionally, we add a matching

of size ` − 1 between the first independent set of each group to the first clique of the

next group. Because these independent sets have size `, there is one unmatched vertex

per each such independent set. Finally, we add an edge from each of these vertices to

the final clique. It is not difficult to see that this can be done so that all vertices of the

final clique have degree 3`− 2 = ∆. See Figure 7.2. We can see that on this graph, the

maximum degree is D = 3` − 2, the vertices of the first clique of the first group have

degree 2` − 2, while all independent set vertices have degree 2` − 1. It is not difficult

to check that any greedy algorithm will pick one vertex in each clique for a total of

3(`(`− 1) + 1) + 1 vertices, while the maximum independent set consists of the union

of all independent sets from each group. This number is (3` − 1)(`(` − 1) + 1). The

corresponding ratio is therefore

3`− 1

3
− 3`− 1

9(`(`− 1) + 1/3)
=

∆ + 1

3
−O(1/∆).

The case ∆ ≡ 0 (mod 3) is treated similarly to the previous one, using instead the

following group

K`−1 −K`+1 −K` −K` −K` −K`,

and where the matchings are between the first independent set and the first clique of

the following group and between the last independent set and the last clique of the next

group. Details of the construction and calculation are left to the curious reader.

7.2 MIS on degree at most 4 graphs

We can use the same technique for degree at most 4 graph. The greedy algorithm for

∆ = 4 graph is the primitive greedy algorithm, but it only avoids the execution of a

106 Nan Zhi

v∗

Figure 7.3: (3,7)-reduction

a

b c

Figure 7.4: Avoiding the
(3,7)-reduction

(3,7)-reduction.

Algorithm 10 Greedy algorithm for ∆ = 4 graph

Input: a graph G = (V,E)

U ← V

S ← ∅
while U 6= ∅ do

Choose v ∈ U with minimum degree in G[U].

(3,8)-reduction has higher priority than (3,7)-reduction.

U ← U \ V (R)

S ← S∪ root vertices in S

end while

return S

A important observation of about the greedy algorithm of 10 is stated as follows:

Lemma 13. The reduction (3,7) will not be executed by Algorithm 10.

Proof. When the algorithm meets a (3,7)-reduction, it will execute the adjacent vertex

with degree 3. Observe that in such a case, it will be a (3,8)-reduction, and it is im-

possible that a (3,7)-reduction occurs again. See Figure 7.4. Note that it is impossible

that all three vertices a, b, c are root vertices of the (3,7)-reduction. Therefore, if there

exists a (3,7)-reduction in the graph, then there must exists a reduction with higher

priority than that of the (3,7)-reduction.

Therefore, we obtain the following theorem.

Chapter 7. Further applications 107

a

c1 c2 c3

b1 b2 b3

Figure 7.5: Example for greedy algorithm for minimum vertex cover

Theorem 23. The greedy algorithm of Algorithm 10 for MIS on degree at most 4

graphs achieves a 9
5 -approximation ratio.

Proof. We define the potential function as Φ(R) = 9|SOL(R)|−5|OPT (R)|+|Eloan(R)|−
|Edebt(R)|. Then we can show for all reductions R, except a (3,7)-reduction illustrated

in Figure 7.3, Φ(R) ≥ 0. Therefore, by the same argument as before, it proves the

theorem.

Remark. Observe that for a graph with degree at most ∆ = 4, the ratio given in

Theorem 23 is 9
5 , which is better than the ratio of the primitive greedy algorithm. The

lesson learn here is that if we are able to design a sophisticated greedy algorithm by

advising it to avoid choosing particular graph structures, then it might give a better

approximation ratio. That is because the lower and upper bound on the number of loan

and debt edges in the proof of Theorem 21 might be relaxed.

7.3 Study for vertex cover

In the vertex cover problem, we are given a graph G = (V,E). A vertex cover S is a

subset of V such that each edge has at least one end vertex in S. A minimum vertex

cover of G is a vertex cover of G in which the number of vertices is minimised. The

goal is to find such minimum vertex cover of G. The vertex cover problem is a special

case of the set cover problem.

The approach is basically same as we had for the maximum independent set prob-

lem. We want to identify which graph structures are problematic.

Theorem 24. For any greedy algorithm for the vertex cover problem on degree at most

3 graphs, the approximation ratio r ≥ 4
3 .

108 Nan Zhi

Proof. See Figure 7.5. It is easy to see that the greedy algorithm will take a as the

solution and then c1, c2, c3. The optimum is {b1, b2, b3}, which covers all the edges.

Therefore, the ratio of the greedy algorithm is r = |OPT |
|SOL| = 4

3 .

Conjecture 3. The greedy algorithm achieves the approximation ratio r = 4
3 for the

vertex cover problem on degree at most 3 graphs.

We believe that this conjecture is true and as such it would imply a fundamental

fact about the greedy algorithm for the vertex cover problem. However, in the next

subsection, we will present a different but closely related algorithm whose approxima-

tion ratio is strictly better than 4
3 , and the time complexity is as good as that of the

greedy algorithm.

Remark. In the reminder of this section, we assume that the ultimate greedy algorithm

of Algorithm 9 for MIS on sub-cubic graphs obtains a 5
4 -approximation ratio. Therefore,

some of the following results will be proved conditionally on this assumption. Our

current proof shows only a 4
3 -approximation ratio of the ultimate greedy. But we will

also present unconditional results, that use the 4
3 -approximation ratio of the ultimate

greedy for MIS and apply it to the vertex cover problem.

7.3.1 Complementary Greedy algorithm for vertex cover problem

In this section, we present direct applications of the greedy algorithm with the previ-

ously developed techniques. Given a graph G with degree at most 3, observe that if I

is the maximum independent set of G, then C = V (G) \ I is the minimum vertex cover

of G. Also, for any maximal independent set I ′, C ′ = V (G) \ I ′ is a vertex cover of G.

Therefore, given any algorithm which computes a maximal independent set, if we take

the complement of this set, we will obtain a vertex cover.

This is easy to prove, because a set I of vertices is an independent set if and only

if every edge in the graph is adjacent to at most one member of I, and also if and only

if every edge in the graph is adjacent to at least one member not in I, and thus also

if and only if the complement of I is a vertex cover. Therefore, if I is the maximum

independent set in G, then C = V (G) \ I is the minimum vertex cover in G.

A natural idea is to run the ultimate greedy algorithm of Algorithm 9, and take the

complement of the output solution, which will form a feasible vertex cover.

In the following subsections, we present a series of analyses to obtain algorithms

for the minimum vertex cover problem with improved running time for a given approx-

imation ratio. In subsection 7.3.3, the analysis shows that the complementary greedy

Chapter 7. Further applications 109

Algorithm 11 Complementary Greedy algorithm:

Require: G
Ensure: Vertex cover S

1: Run ultimate greedy algorithm of Algorithm 9 on G, get independent set I.
2: Let S = V (G) \ I.
3: S is the solution.

algorithm of Algorithm 11 obtains a 4
3 -approximation ratio with running time O(n2).

And in subsection 7.3.4, we present an algorithm based on the complementary greedy

algorithm which obtains o ration of 5
4 and has running time O(n2). For a comparison,

let us recall the known results for the minimum vertex cover problem on sub-cubic

graphs. In [34], the author provides a 4
3 -approximation ratio algorithm with running

time O(n
3
2); and in [12], they provide a 5

4 -approximation ratio algorithm with running

time O(n7.3) for the minimum vertex cover problem on sub-cubic graphs. Here, n

denotes the number of vertices of the input graph.

Firstly, we study limitations of the complementary greedy algorithm of Algorithm

11.

Theorem 25. No kind of complementary greedy algorithm for the vertex cover problem

can achieve an approximation ratio of 8
7 on sub-cubic graphs.

Proof. Consider the example illustrated in Figure 5.5. The complementary greedy

algorithm has an unique sequence of reductions S. The argument is basically the same

as in the Claim 6, but the difference is now that we consider the vertex cover rather

than an independent set. Let r(2,6) be the number of (2,6)-reductions in the graph, and

g2 be the number of good reductions in the graph, thus:

r =
|SOL|
|OPT |

=
2 · r(2,6) +

∑
R∈S g

R
2

r(2,6) +
∑

R∈S g
R
2

≥
2 · r(2,6) + 8|S|
r(2,6) + 8|S|

(7.4)

=
2 · 4k−1

3 + 8 · 4k−1

4k−1
3 + 8 · 4k−1

=
8(4k−1)− 2 + 24 · 4k−1

4(4k−1)− 1 + 24 · 4k−1
≤ 8

7
. (7.5)

Theorem 26. The complementary greedy algorithm of Algorithm 11 cannot achieve a
6
5 -approximation ratio for the minimum vertex cover problem on sub cubic graphs.

110 Nan Zhi

Proof. Consider a graph which contains a seven-cycle, and a (2,6)-reduction that con-

nects to that cycle as illustrated in Figure 5.8. If the algorithm executes the top

(2,6)-reduction, then the solution of the algorithm has size 5. However, the optimum

size is 6.

7.3.2 Naive analysis for 7
5
-approximation ratio

In this section, we present a simple analysis for proving that complementary algorithm

has an 7
5 approximation ratio under the assumption that the ultimate greedy algorithm

for MIS obtains a 5
4 -approximation ratio. This results by itself is less significant, but

it provides the idea of how to use the complementary property between the maximal

independent set and the minimal vertex cover.

Theorem 27. Under the assumption that the ultimate greedy algorithm of Algorithm 9

obtains a 5
4 -approximation ratio for MIS, the complementary greedy algorithm of Algo-

rithm 11 achieves an 7
5 -approximation ratio with running time O(n2) for the minimum

vertex cover problem on sub-cubic graphs.

Proof. Let G = (V,E) and G be sub-cubic. Denote |E| = m. Let I be an independent

set in G found by the ultimate greedy algorithm, which we assume is a 5
4 -approximation

to MIS on G. Let I∗ be the maximum independent set in G. Thus, we have |I| ≥ 4
5 ·|I

∗|.
Note that I is a maximal independent set, because the greedy algorithm always outputs

a maximal independent set. Therefore, S = V (G) \ I is a vertex cover in G. Then, we

have:

|S| = n− |I| ≤ n− 4

5
|I∗| = n− 4

5
(n− |S∗|) = n− 4

5
· n+

4

5
· |S∗| = n

5
+

4

5
· |S∗|

If |S∗| ≥ m
3 , then |S∗| ≥ n

3 , the claim that we prove below. Therefore,

S =
n

5
+

4

5
· |S∗| ≤ 3

5
· |S∗|+ 4

5
· |S∗| = 7

5
· |S∗|

This proves that the complementary greedy algorithm achieves a 7
5 -approximation

ratio for the vertex cover problem on sub-cubic graphs.

Now, we will prove the claim |S∗| ≥ m
3 . We write the linear programming relaxation

of the vertex cover problem and its dual linear program.

Chapter 7. Further applications 111

min
∑
v∈V

xv

s.t. xu + xv ≥ 1, ∀e = (u, v) ∈ E

xv ≥ 0, ∀v ∈ V

max
∑
e∈E

ye

s.t.
∑

u∈N(v)

y(v,u) ≤ 1, ∀v ∈ V

y(v,u) ≥ 0, ∀e ∈ E

Note that
∑

v∈V xv will be a fractional vertex cover. And for the dual linear pro-

gram, assigning each variable y(u,v) = 1
3 is a feasible dual solution. Under such an

assignment,
∑

e∈E ye = m
3 . By the weak duality theorem of linear programming, we

have

|S∗| ≥ min
∑
v∈V

xv ≥ max
∑
e∈E

ye ≥
m

3

This proves the claim we needed.

7.3.3 Sophisticated analysis for 4
3
-approximation ratio

In this section, we present a more sophisticated analysis for the complementary greedy

algorithm which achieves an even better approximation ratio.

Theorem 28. Under the assumption that the ultimate greedy algorithm of Algorithm

9 obtains 5
4 -approximation ratio for MIS, the complementary greedy algorithm of Algo-

rithm 11 achieves a 1.25-approximation ratio with running time O(n2), for the mini-

mum vertex cover problem on sub-cubic graphs.

For the vertex cover problem, we define a potential function Ψ(R) in analogy to

what we did in Chapter 6 for the MIS problem.

Firstly, we present the definition of reductions in the vertex cover problem. A

reduction R executed by the complementary greedy algorithm on graph G is defined

as R = {VR, ER} and it is exactly the same as the reduction in MIS problem. Note

112 Nan Zhi

however that the difference is that the vertex which is in C is black, and the vertex

which is not in C is white.

We present a definition of a loan and debt edges for the vertex cover problem. The

loan edge e of a reduction R is an edge such that e ∈ Econtact and N(e) ∩ VR is white;

and a debt edge of R is an edge e such that e ∈ Epast and NG(e) \ VR is white. The

situation is the same as in the MIS problem, that is for a sequence of reductions S

executed by the complementary algorithm on graph G, we have:
∑

R∈S
∑

e∈Eloan(R) 1 =∑
R∈S

∑
e∈Edebt(R) 1 or

∑
R∈S Eloan(R) =

∑
R∈S Edebt(R).

Then, we define the potential function Ψ(R) for the vertex cover problem:

Ψ(R) = 4|SOL(R)| − 5|OPT (R)| − |Eloan(R)|+ |Edebt(R)| (7.6)

By an argument analogous to that for the MIS problem, we have:

Ψ(S) =
∑
R∈S

Ψ(R) =
∑
R∈S

(4|SOL(R)| − 5|OPT (R)|)− |Eloan(S)|+ |Edebt(S)| (7.7)

=
∑
R∈S

(4|SOL(R)| − 5|OPT (R)|) (7.8)

Therefore, if we can prove for any S executed on a graph G such that Φ(S) ≤ 0,

then

∑
R∈S

(4|SOL(R)| − 5|OPT (R)|) ≤ 0

SOL(S) ≤ 5

4
OPT (S)

This proves the 5
4 -approximation ratio.

To finalise our proof, we need to prove the following lemma. For clarity, we use an

upper index to refer to the different terms in Φ(R) and Ψ(R).

Lemma 14 (The Duality Lemma). For all reductions R except an isolated vertex

reduction, −Φ(R) ≥ Ψ(R).

Proof. Recall the definition of the potential functions:

Φ(R) = 5|SOLΦ(R)| − 4|OPTΦ(R)|+ |EΦ
loan(R)| − |EΦ

debt(R)|,

Chapter 7. Further applications 113

and

Ψ(R) = 4|SOLΨ(R)| − 5|OPTΨ(R)|)− |EΨ
loan(R)|+ |EΨ

debt(R)|.

For any reduction R, it is easy to check the following statement by the definition of

loan edges and debt edges: |EΦ
loan(R)| = |EΨ

loan(R)| and |EΦ
debt(R)| = |EΨ

debt(R)|.
Then, we have:

−|EΨ
loan(R)|+ |EΨ

debt(R)| = −(+|EΦ
loan(R)| − |EΦ

debt(R)|)

Therefore, if we can show for any reduction R, that we have:

5|SOLΦ(R)| − 4|OPTΦ(R)| ≤ −(4|SOLΨ(R)| − 5|OPTΨ(R)|),

then we prove what we desire.

Observe that following claims: |SOLΦ(R)| = |VR| − |SOLΨ(R)| and |OPTΦ(R)| =
|VR| − |OPTΨ(R)|. Thus:

5|SOLΦ(R)| − 4|OPTΦ(R)| ≤ −(4|SOLΨ(R)| − 5|OPTΨ(R)|)

5|SOLΦ(R)| − 4|OPTΦ(R)| ≤ −(4(|VR| − |SOLΦ(R)|)− 5(|VR| − |OPTΦ(R)|))

|SOLΦ(R)|+ |OPTΦ(R)| ≤ |VR| (7.9)

Observe that |VR| ≤ 3, |SOLΦ(R)| = 1 and |OPTΦ(R)| ≤ 2 for any reduction R. These

hold by the following checks:

1. for a single edge reduction R, |VR| = 2, and |SOLΦ(R)|+ |OPTΦ(R)| ≤ 2.

2. for a triangle reduction R, |VR| = 3, and |SOLΦ(R)|+ |OPTΦ(R)| ≤ 2.

3. for a branching reduction R, |VR| = 3, and |SOLΦ(R)|+ |OPTΦ(R)| ≤ 3.

Thus, the inequality (7.9) holds, which concludes the proof of the lemma.

To complete the proof, we need to show that the isolated vertex reduction does not

affect our argument.

Claim 16. For an isolated vertex reduction R, we have Ψ(R) ≤ 0.

Proof. If v∗ is black, then Ψ(R) ≤ −2. If v∗ is white, then Ψ(R) = 0.

114 Nan Zhi

Note that for the case of v∗ being white, Ψ(R) = 0 < 1 = Φ(R). This explains the

reason why the dual lemma does not apply to all reductions.

Proof. (of Theorem 28) For any reduction R, if Ψ(R) = k > 0, then Φ(R) = j < 0 and

−j ≥ k. And for every reduction such that Φ(R) < 0, if such a reduction is executed by

the complementary greedy algorithm, then we have proved there exist unique savings

to pay for it. And thus Φ(S) ≥ 0 when we consider the MIS problem. And by the

Duality Lemma 14, the reductions which have these savings in the MIS problem also

have enough savings for the corresponding reductions in the vertex cover problem.

Therefore, Ψ(S) ≤ 0. This proves Theorem 28.

If we remove the assumption about the 5/4-approximation of the ultimate greedy

for MIS, and we apply the approximation ratio of 4
3 rather than 5

4 of Algorithm 9 from

Theorem 20, then we are able to obtain following theorem.

Theorem 29. The complementary greedy algorithm of Algorithm 11 achieves a 4
3 -

approximation ratio with running time O(n2), for the minimum vertex cover problem

on sub-cubic graphs.

Although the analysis in here shows a worse running time compared to O(n
3
2) by

[34], however, we strongly believe that we are able to obtain a refined ultimate greedy

algorithm of Algorithm 9, whose the running time will be reduced to O(n). Therefore,

in such a case, we could improve the running time from O(n
3
2) to linear time.

7.3.4 Further analysis for 5
4
-approximation ratio

If the ultimate greedy algorithm of 9 obtains a 5
4 -approximation ratio for the MIS prob-

lem, then we are able to use a Nemhauser-Trotter technique to obtain a 6
5 -approximation

ratio algorithm for the vertex cover problem. In [5], they claim that there is a 7
6 -

approximation algorithm for the minimum vertex cover problem in sub-cubic graphs

by using a 6
5 approximation ratio algorithm for MIS for sub-cubic graph. They only

outline a proof of the this fact but do not provide the full proof. We provide here

a complete proof of the essentially same claim but with different 6
5 ratio, under the

assumption that the ultimate greedy for MIS achieves a 5
4 approximation ratio.

Firstly, we present the Nemhauser-Trotter technique.

Theorem 30 (Nemhauser-Trotter [54]). For any graph G = (V,E), there is a way to

compute a partition {V1, V2, V3} of V with time complexity of the bipartite matching

problem, such that:

Chapter 7. Further applications 115

1. there is a maximum independent set I containing all of the nodes of V1 but none

of V2, i.e. I ∩ V1 = V1 and I ∩ V2 = ∅,

2. there is no edge between V1 and V3, i.e. N(V1) ⊆ V2,

3. α(G(V3)) ≤ 1
2 |V3|.

Note that if graph G is sub-cubic, then the running time of computing such a par-

tition is O(n
3
2).

Therefore, the algorithm would first execute the Nemhauser-Trotter reduction on

the original graph G, and then run the complementary greedy algorithm on G(V3) and

obtain a solution of S. The final solution would be the set V2 ∪ S.

Theorem 31. Under the assumption of the ultimate greedy algorithm of Algorithm 9

obtains a 5
4 -approximation ratio for MIS, the algorithm which combines the Nemhauser-

Trotter reduction with the complementary greedy algorithm of Algorithm 11 achieves a
6
5 -approximation ratio with running time O(n2), for the minimum vertex cover problem

on sub-cubic graphs.

Proof. We apply the Nemhauser-Trotter reduction from Theorem 30 to G = (V,E),

and V is partitioned into V1, V2, V3. Then we run the 5
4 -approximation greedy algorithm

on G3 = G(V3), and we choose the complement of the independent set J output by the

algorithm. Then let C3 = V3 \ J denote the resulting vertex cover in G3. Let also C∗

denote a minimum vertex cover of G, and I∗ be a maximum independent set in G.

Observe that for (any) graph G3, we have that V (G3) \ I∗ is the complement of a

maximum independent set on G3, so its size is equal to the size of the minimum size

of a vertex cover in G3. Analogously, let I∗3 be a maximum independent set in G3 and

C∗3 = V3 \ I∗3 be a minimum vertex cover in G3.

Thus, we have: |C∗| = |V2| + |C∗3 | = |V2| + (|V3| − α(G3)) by Theorem 30. The

vertex cover of G3 computed by the algorithm is C3 = V3 \J . By Theorem 20, we have:

|J | ≥ 4
5α(G3). By Theorem 30, α(G3) ≤ |V3|2 , thus, 0 ≤ |V3|5 −

2
5α(G3), and

|C3| ≤ |V3| −
5

4
α(G3) ≤ |V3| −

4

5
α(G3) +

|V3|
5
− 2α(G3)

5
=

6

5
· (|V3| − α(G3)).

Our algorithm outputs C = V2 ∪ C3 as the vertex cover in G, and we have that

|C| = |V2|+ |C3| ≤
6

5
|V2|+

6

5
|C∗3 | ≤

6

5
|C∗|,

116 Nan Zhi

and this concludes the proof of the approximation guarantee. The running time bound

follows from Theorems 29 and 30.

Without the assumption that the ultimate greedy algorithm obtains a 5
4 -approximation

ratio for MIS, but only a 4
3 -approximation, we obtain the following theorem.

Theorem 32. The complementary greedy algorithm of Algorithm 11 with Nembauser-

Trotter reduction achieves a 5
4 -approximation ratio with running time O(n2), for the

minimum vertex cover problem on sub-cubic graphs.

Proof. The proof is the same as that of Theorem 31, but in this proof, we only apply the

approximation ratio of 4
3 rather than 5

4 of the ultimate greedy algorithm of Algorithm

9 from Theorem 20.

Remark. Theorem 32 shows the existence of an algorithm which obtains the best cur-

rently known running time of O(n2) with an approximation ratio of 5
4 for the minimum

vertex cover problem on sub-cubic graphs.

7.4 Conclusion

In this chapter, we have obtained a series results. We extended our method to MIS on

general bounded degree graphs, and have given an alternative and simple proof of the

known ∆+2
3 -approximation ratio for MIS on graphs with maximum degree ∆. Also,

we have presented an 1.8-approximation ratio greedy algorithm for MIS on degree at

most 4 graphs. Furthermore, we presented an interesting algorithm which is based on

our greedy algorithm for MIS, which obtains a 6
5 -approximation ratio for the minimum

vertex cover problem on sub-cubic graphs.

Chapter 8

Heuristic and experimental study

for MIS

We first note that the experimental analysis presented in this section is preliminary and

it only supplements the theoretical results that are proved in the previous chapters.

Although we have proved in the previous chapter better results for the greedy

algorithm for the maximum independent set problem on degree at most 3 graphs,

such theoretical study only applies to the worst case analysis. It provides very few

insights in terms of practical use of such algorithms. Thus an experimental study

of how the greedy algorithm performs in practice is conducted here to reveal some

connections to the theoretical study. The experimental study shows that even for

the primitive greedy algorithm 5, which in each iteration, arbitrarily chooses one of

the minimum degree vertices v and removes it and all neighbour vertices of v from

the graph, without any specific advice of order, in almost every ”realistic” input, its

approximation ratio is much better than 1.25. For the updated greedy algorithm of

Algorithm 8, the experiments show that it obtains significantly better ratios as we have

expected.

This phenomenon is not surprising, because the tight lower bound examples illus-

trated in Figure 5.5 and others which are not presented, are highly restricted by theirs

peculiar graph structure. More essentially, they are restricted by the specific sequence

of reductions which consists of particular type of reductions after an execution of a

bad reduction. Any slight disturbance of such graph structure will change the order

of greedy execution significantly, and basically, such disturbance rather improves the

performance than attenuates it. As shown in Chapter 6, each bad reduction (2,6) will

receive four units of savings from somewhere in the sequence of reductions. That im-

117

118 Nan Zhi

plies that the good reductions which offer these savings in the sequence of reductions

must exactly satisfy this correspondence to the bad reductions. Intuitively, the number

of instances where such a precise situation occurs should be rare within the set of all

possible instances. To characterise such phenomenon, we need to develop some differ-

ent kind of arguments, but it will depend on the techniques that we developed in the

previous chapter.

Observe that for any sequence of reductions S executed by a given greedy algorithm

on G, the problematic type of reductions are only bad odd-backbone, even-backbone

and isolated odd cycle reductions. The remaining type of reductions, including an

isolated vertex reduction, single edge and single edge branching, good odd-backbone,

even-backbone, and an isolated even cycle reduction, are good. As we have already

shown, in S, if there only exist these good reductions R ∈ S, which means that there

are no debt edge which really requires a payment, then the greedy will provide an

optimal solution. This implies that if the number of good reductions is much larger

than the number of bad reductions, then if the difference between these two numbers

increases, the approximation ratio should decrease and it should tend to 1.

Therefore, we are curious about the following question:

Question 1. What is the distribution of each type of reduction in the sequence of

reductions executed by a given greedy algorithm?

For an initial study, we implement an experimental approach in order to answer

this question. The experiment is conducted by the following steps:

1. Instance generation: The designed program randomly generates a graph G

with degree at most 3. The generation of this graph is as follows: the program

determines the number of vertices of an current instance by sampling a number

from a uniform distribution from U [50, 150]. For each pair of vertices (v, v′) in

V 2 chosen uniformly at random, the program assigns an edge between v and v′

with probability p. If one of the vertices v and v′ in the pair already has degree 3,

then the program will not assign an edge between these two vertices. Note that

if the probability p is set to be higher, than the graph will be denser.

2. Optimum computation: The program will compute an optimum solution OPT

on an instance G by using integer linear programming (ILP). An integer linear

programming formulation of the maximum independent set problem is the stan-

dard one. An ILP solver does not only provide the size of OPT , but also provides

which vertices in G belong to the set OPT . Thus, after the program obtains the

Chapter 8. Heuristic and experimental study for MIS 119

optimum solution, it will label G: for each vertex v, if v ∈ OPT , a label will be

given to v.

3. Execution of the greedy: The program will execute the given greedy algorithm

on such labeled graph G. It will record the number of each type of reductions

according to the vertices’ labels. The experiment considers bad, 1-good and 0-

good reductions among all kinds of reductions.

4. Experimental analysis: The program repeat this process from 1 until it collects

enough data. Then, we will compute a ratio of each type of reductions.

We consider two kinds of greedy algorithms, the primitive greedy algorithm (Algo-

rithm 5) and the updated greedy algorithm (Algorithm 8). For each type of reductions

R ∈ R, let N(R) be the number of occurrences of this reduction in the experiment.

Thus, each cell in Table 8.1 and 8.2 contains the percentage of N(R)/
∑

R∈RN(R).

We run both greedy algorithms for different choices of the probability p. We consider

five cases, where pi = (2 + 0.2i)/|V |, where i ∈ {1, 2, 3, 4, 5}. Note that if i is smaller,

then the graph would be sparser, and denser otherwise. The expected average degree

of such a generated graph is |V | · (1 + 0.5i)/|V | = 1 + 0.5i. Because, if the maximum

of degree of G is 2, then the greedy algorithm always finds the optimum, for our

experiment, we start with the expected average degree from at least 2. Also, because

the maximum degree of G is 3, it is reasonable to set the expected average degree to be

3. For each value of the probability p, we generate and test 10000 instances and 50000

instances in total for each of the greedy algorithms.

8.1 Results and discussion

The results are presented in Table 8.1 and 8.2, and illustrated in the bar chart 8.1 and

8.1. The average approximation ratio is 1.0227 for the primitive greedy and 1.0083 for

the updated greedy algorithm.

We can observe a presence of a significant number of (1,2) and (1,3)-reductions, for

both algorithms, as their proportion is about 67% of the total number of reductions.

This result is not very surprising, and it can be roughly deduced from the following

observation.

Firstly, triangle reductions such as (2,3), (2,4)-1 and (2,5)-1 -reduction are rare,

because if such a reduction is executed, it implies that in the original graph, such

triangle is already present, and the probability to form a 3-clique is low.

120 Nan Zhi

Secondly, observe that for each bad reduction, we can use a 0-good reduction to

balance its demand for payment. In general, a 0-good reduction contributes 1 to the size

of the solution and 0 to the size of the optimum. And a bad reduction contributes 1 to

the size of the solution and 2 to the size of the optimum. Then, together, they contribute

2 to the size of the solution and 2 to the size of the optimum, which is equivalent to two

1-good reductions. Therefore, let Rb be a bad reduction, R0 be 0 a good reduction and

R1 be a 1-good reduction found in an experiment. Then 2(N(Rb) −N(R0) + N(R1))

would be equivalent to the total number of 1-good reductions. By the experiment, the

ratio between the number of 1-good and bad reductions is: for the primitive greedy,

r = 2.56%, and for the updated greedy, r = 1.2%.

Although, the approximation ratio of the updated greedy algorithm is better as

expected, the main difference between the primitive greedy algorithm and the updated

greedy algorithm seems to be that for the former, the number of bad reductions is

smaller, and the number of 0-good reductions is also smaller. For the latter algorithm,

the number of bad reductions is not only larger but it is significantly larger.

Thirdly, for the primitive greedy algorithm, the number of (1,3) reductions of both

1-good and 0-good type is approximately 8.2% larger than that of (1,2)-reductions.

But for the updated greedy algorithm, this relation is opposite, that is, the number of

(1,2)-reductions is about 8.4% lager than that of (1,3)-reductions.

Chapter 8. Heuristic and experimental study for MIS 121

0-good 1-good bad

(0,0) 0.76 5.8 ∅

(1,1) 0.19 2.1 ∅

(1,2) 1.5 30 ∅

(1,3) 1.3 38 ∅

(2,3) 0.00 0.36 ∅

(2,4)-1 0.00 0.15 ∅

(2,5)-1 0.00 0.18 ∅

(2,6) 0.03 4.7 2.7

(2,5) 0.05 6.1 2.0

(2,4) 0.02 1.7 1.6

Table 8.1: Results of experiments for the primitive greedy algorithm.

0-good 1-good bad

(0,0) 1.2 3.5 ∅

(1,1) 0.25 1.4 ∅

(1,2) 4.3 33.4 ∅

(1,3) 2.24 27.0 ∅

(2,3) 0.00 0.02 ∅

(2,4)-1 0.00 0.1 ∅

(2,5)-1 0.02 1.4 ∅

(2,6) 0.11 18 8.7

(2,5) 0.03 0.4 0.3

(2,4) 0.06 0.5 0.4

Table 8.2: Results of experiments for the updated greedy algorithm.

122 Nan Zhi

(0,0) (1,1) (1,2) (1,3) (2,3) (2,4)-1 (2,5)-1 (2,6) (2,5) (2,4)

0-good 0.76 0.19 1.5 1.3 0 0 0 0.03 0.05 0.02

1-good 5.8 2.1 30 38 0.36 0.15 0.18 4.7 6.1 1.7

bad 0 0 0 0 0 0 0 2.7 2 1.6

0

5

10

15

20

25

30

35

40

Distribution of reduction for primitive greedy algorithm

0-good 1-good bad

Figure 8.1: The performance of primitive greedy algorithm.

(0,0) (1,1) (1,2) (1,3) (2,3) (2,4)-1 (2,5)-1 (2,6) (2,5) (2,4)

0-good 1.2 0.25 4.3 2.24 0 0 0.02 0.11 0.03 0.06

1-good 3.5 1.4 33.4 27 0.02 0.1 1.4 18 0.4 0.5

bad 0 0 0 0 0 0 0 8.7 0.3 0.4

0

5

10

15

20

25

30

35

40

Distribution of reduction for updated greedy algorithm

0-good 1-good bad

Figure 8.2: The performance of the updated greedy algorithm.

Chapter 9

Conclusions and further study

9.1 Conclusions

In this thesis, we studied the new model of mechanism design in context of ontolo-

gies. We showed negative and positive results on the approximation ratios of truthful

mechanisms in this setting. We moreover showed upper and lower bounds on the price

of anarchy and stability of the Nash implementation of a greedy mechanism in this

setting.

Moreover, we studied the inapproximability of the greedy algorithms for the maxi-

mum size independent set problem (MIS) on general graphs and in particular on planar

cubic graphs. The main and strongest contribution of the thesis is a development a se-

ries of effective techniques to prove the approximation ratios of greedy algorithms for the

MIS problem. The specific achievement is the proof of existence of a 4
3 -approximation

greedy algorithm for MIS on sub-cubic graphs. This result does not only improve on

the current best known ratio of greedy algorithms, but it provides a very precise analy-

sis of the greedy. This new methodology holds a promise to help us obtain even better

approximation ratios, such as 5
4 -ratio of the greedy algorithm. Based on the techniques

we developed, some further applications have also been studied. We proved a ∆+2
3 -

approximation ratio for any greedy algorithm for MIS on bounded degree ∆ graphs.

We showed an improved 9
5 -approximation ratio for the ∆ = 4 case. We have also used

a complement property between the maximal independent set and the minimum ver-

tex cover to show a 5
4 -approximation ratio for the minimum vertex cover problem on

sub-cubic graphs. Finally, We conducted an experimental study to explore the average

approximation ratio of the greedy algorithm on sub-cubic graphs for both practical and

theoretical purposes.

123

124 Nan Zhi

9.2 Further study

9.2.1 Study for ontology mechanism design

The main goal in the future about the ontologies matching game is to prove that the

price of stability is 2.

Question 2. Is it possible to prove that the ontologies matching game has the price of

stability of 2?

Since we already observed that there are only few instances which admit pure Nash

equilibrium, the initial idea is to characterise in which instances pure Nash equilibrium

exists. Then, among these instances, we can start to characterise a sub-class of these

instances, whose structure and properties are nice enough for us to be able to prove the

price of stability of 2. Then, we might try to extend these results from such sub-class

of instances to general cases.

9.2.2 Study for maximum independent set and minimum vertex cover

problems

Although the techniques developed in Chapter 6: Payment scheme with potential func-

tion and Backward inductive method already have proven their usefulness with ad-

dressing the maximum independent set (MIS) and the minimum vertex cover (MVC)

problems, their potential is far from being fully explored. There are numerous intrigu-

ing directions.

The most promising work for the future is to prove that the ultimate greedy algo-

rithm of Algorithm 9 is really ultimate. As we observed in Section 6.3.4, it very likely

to be possible to obtain the analysis of 5
4 -approximation ratio for the ultimate greedy

algorithm of Algorithm 9. The only obstacle is how to address a problem that occurs

in the analysis of the odd-backbone reductions in our inductive proof. We have two

directions to explore here. The first promising approach is to extend the potential func-

tion to Ψ(R) = Φ(R) +L(R), where L is an extra parameter to measure the reduction.

Informally, if a reduction R contains a “blocking” structure, then L(R) = 1. And for

any reduction R, where its contact edges “remove” such “blocking” structures, if the

number of “blocking” structures it “removes” is k, then L(R) = −k. Note that then

for a sequence of reductions S on graph G,
∑

R∈S L(R) = 0. The second promising

approach is to explore the power of greedy advice further. It might be possible to design

a new greedy advice or find out a new way to use the current advice to preserve the

Chapter 9. Conclusions and further study 125

inducting hypothesis that is required. For example, we do not use the greedy advice to

deal with odd-backbone reduction, which might be helpful.

Question 3. Does the ultimate greedy algorithm obtain a 5
4 -approximation ratio with

running time O(n) for the MIS problem on sub-cubic graphs?

The second direction for the future is to study the performance of greedy algorithms

for MIS on bounded degree graphs. Although Theorem 21 implies that the primitive

greedy algorithm cannot be improved to obtain a better approximation ratio than ∆+2
3 ,

Theorem 22 implies that the lower bound for any greedy algorithm is only ∆+1
3 −O(1

∆).

Thus, there exists a chance to improve the approximation ratio, if the greedy algorithm

is advised properly. Therefore, we aim to answer the following question.

Question 4. Is there an ultimate greedy algorithm that obtains a ∆+1
3 -approximation

ratio for MIS problem on ∆-bounded degree graphs?

Moreover, observe in Theorem 25, that for any complementary greedy algorithm,

the approximation ratio cannot be improved to be better than 8
7 . And even if we are

able to prove that the ultimate greedy algorithm obtains a 5
4 -approximation ratio and

thus the complementary greedy algorithm of Algorithm 11 obtains a 6
5 ratio, there still

exists a huge gap between the upper and lower bounds.

Also observe that in the analysis of the complementary greedy algorithm, it seems

that a tighter analysis might be feasible to obtain a 8
7 -approximation ratio for the MVC

problem on sub-cubic graphs. Note that the potential value in the vertex cover problem

is in general better than that for the MIS problem. Therefore, with a carefully designed

advice and greedy order, a tighter approximation ratio might be possible. Therefore,

we aim to answer the following question.

Question 5. Is there a complementary greedy algorithm that obtains a 8
7 -approximation

ratio for the MVC problem on sub-cubic graphs? Or is it possible to find a counter-

example to show a larger lower bound for the complementary greedy algorithm?

Furthermore, in chapter 8, we conducted an experimental study on the power of

two kinds of greedy algorithms on various instances. The results show that for both

primitive and updated greedy algorithm, the observed average approximation ratios

are extremely good. The interpretation of such phenomenon is as follows. Let RbG =

{R ∈ SG|R be a bad reduction}, and G be the set of all sub-cubic graphs. Then for

all G in G with |V (G)| ≤ k, consider the sequence of reductions SG executed by the

greedy algorithm on G. Then the total number of bad reductions in
⋃
G∈G SG should

126 Nan Zhi

be much smaller than the number of good reductions in
⋃
G∈G SG. Therefore, we aim

to answer the following question.

Question 6. How to theoretically prove that
∑

G∈G |RbG| ≤ α ·
∑

G∈G |SG|, for any

α ≤ 1?

Finally, the ultimate goal of further study is to design a non-greedy algorithm which

obtains a better approximation ratio than 5
4 .

Question 7. Is there a non-greedy algorithm that obtains a 6
5 or 7

6 -approximation ratio

with running time O(n2) for the MIS problem on sub-cubic graphs?

We believe that our technique of super-advice will be very useful towards reaching

this goal.

Appendix A

A.1 Graph structure of extended reductions

Figure A.1: Collections of extended reductions

We give an interpretation of extended reductions in Figure A.1. For details see Defini-

tion 17.

(1) Single edge non-branching reduction consist of a series of (1,2)-reductionsR1, . . . , Rk,

where ERi
contact ∩ E

Rj

past 6= ∅ for every i = j − 1.

(2) Single edge branching reduction consist of a series of reductions R1, . . . , Rk in

which R1 to Rk−1 are (1,2)-reductions and Rk is a (1,3)-reduction. Moreover

ERi
contact ∩ E

Rj

past 6= ∅ for every i = j − 1.

127

128 Nan Zhi

(3) Loop reduction consist of a series of reductions R1, . . . , Rk, in which R1 is a (2,5)-

reduction, R2 to Rk−1 are (1,2)-reductions, and Rk is a (1,1)-reduction, where

ERi
contact ∩ E

Rj

past 6= ∅ for every i = j − 1, and ER1
contact ∩ E

Rk
past 6= ∅.

(4) Even-backbone reduction is either a (2,6)-reduction, or it consists of a series of

reductions R1, . . . , Rk, where R1 is a (2,5)-reduction, R1 to Rk−1 are (1,2)-

reductions, and Rk is a (1,3)-reduction. Moreover, ERi
contact ∩ E

Rj

past 6= ∅ for every

i = j − 1.

(5) Odd-backbone reduction consists of a series of reductions R1, . . . , Rk, where R1 is

a (2,5)-reduction, R1 to Rk are (1,2)-reductions. Moreover, ERi
contact ∩ E

Rj

past 6= ∅
for every i = j − 1.

Bibliography

[1] Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs.

Theor. Comput. Sci., 237(1-2):123–134, 2000.

[2] Michael Anslow and Michael Rovatsos. Aligning experientially grounded ontologies

using language games. In Graph Structures for Knowledge Representation and

Reasoning - 4th International Workshop, GKR 2015, Buenos Aires, Argentina,

July 25, 2015, Revised Selected Papers, pages 15–31, 2015.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and Mario Szegedy. Proof verification

and hardness of approximation problems. In Proceedings., 33rd Annual Symposium

on Foundations of Computer Science, pages 14–23, Oct 1992.

[4] Manuel Atencia and W. Marco Schorlemmer. An interaction-based approach to

semantic alignment. J. Web Semant., 12:131–147, 2012.

[5] P. Berman and T. Fujito. On approximation properties of the independent set

problem for low degree graphs. Theory of Computing Systems, 32(2):115–132, Apr

1999.

[6] Piotr Berman and Martin Fürer. Approximating maximum independent set in

bounded degree graphs. In Proceedings of the Fifth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA ’94, pages 365–371, Philadelphia, PA, USA,

1994. Society for Industrial and Applied Mathematics.

[7] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,

284(May):35–43, 201.

[8] Hans L Bodlaender, Dimitrios M Thilikos, and Koichi Yamazaki. It is hard to

know when greedy is good for finding independent sets. Information Processing

Letters, 61(2):101–106, 1997.

129

130 Nan Zhi

[9] Ravi Boppana and Magnús M. Halldórsson. Approximating maximum independent

sets by excluding subgraphs. BIT Numerical Mathematics, 32(2):180–196, Jun

1992.

[10] Patrick Briest, Piotr Krysta, and Berthold Vöcking. Approximation techniques for

utilitarian mechanism design. In Proceedings of the Thirty-seventh Annual ACM

Symposium on Theory of Computing, STOC ’05, pages 39–48, New York, NY,

USA, 2005. ACM.

[11] Miroslav Chlebik and Janka Chlebikova. Inapproximability results for bounded

variants of optimization problems. pages 27–38, 12 2003.

[12] Miroslav Chleb́ık and Janka Chleb́ıková. On approximability of the independent

set problem for low degree graphs. In Ratislav Královic and Ondrej Sýkora, edi-

tors, Structural Information and Communication Complexity, pages 47–56, Berlin,

Heidelberg, 2004. Springer Berlin Heidelberg.

[13] Paula Chocron and Marco Schorlemmer. Vocabulary alignment in openly specified

interactions. In Proceedings of the 16th Conference on Autonomous Agents and

MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, pages

1064–1072, 2017.

[14] DAML-S Coalition:, A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Mc-

Dermott, D. Martin, S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and

K. Sycara. DAML-S: Web Service Description for the Semantic Web. In First In-

ternational Semantic Web Conference (ISWC) Proceedings, pages 348–363, 2002.

[15] Keith Decker, Katia Sycara, and Mike Williamson. Middle-Agents for the Internet.

In IJCAI97, 1997.

[16] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, Dec 1959.

[17] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms

for combinatorial auctions with complement-free bidders. In Proceedings of the

thirty-seventh annual ACM symposium on Theory of computing, pages 610–618.

ACM, 2005.

[18] Shaddin Dughmi and Arpita Ghosh. Truthful assignment without money. In

Proceedings of the 11th ACM conference on Electronic commerce, pages 325–334.

ACM, 2010.

Bibliography 131

[19] Jack Edmonds. Matroids and the greedy algorithm. Mathematical Programming,

1(1):127–136, Dec 1971.

[20] Jérôme Euzenat. Interaction-based ontology alignment repair with expansion and

relaxation. In Proceedings of the Twenty-Sixth International Joint Conference

on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017,

pages 185–191, 2017.

[21] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching, Second Edition. Springer,

2013.

[22] Christina Feier, Axel Polleres, Roman Dumitru, John Domingue, Michael Stoll-

berg, and Dieter Fensel. Towards intelligent web services: the web service model-

ing ontology (wsmo). In 2005 International Conference on Intelligent Computing

(ICIC’05), 2005.

[23] András Frank and Éva Tardos. Generalized polymatroids and submodular flows.

Mathematical Programming, 42(1):489–563, Apr 1988.

[24] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The

American Mathematical Monthly, 69(1):9–15, 1962.

[25] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified np-complete graph

problems. Theoretical Computer Science, 1(3):237 – 267, 1976.

[26] Fernando C. Gomes, Cludio N. Meneses, Panos M. Pardalos, and Gerardo Vald-

isio R. Viana. Experimental analysis of approximation algorithms for the vertex

cover and set covering problems. Computers & Operations Research, 33(12):3520

– 3534, 2006. Part Special Issue: Recent Algorithmic Advances for Arc Routing

Problems.

[27] Bernardo Cuenca Grau and Boris Motik. Reasoning over ontologies with hidden

content: The import-by-query approach. Journal of Artificial Intelligence Research

(JAIR), 45:197–255, October 2012.

[28] T. R. Gruber. A translation approach to portable ontology specifications. Knowl-

edge Acquisition, 5(2):199–220, 1993.

[29] N. Guarino. Formal ontologies and information systems. In N. Guarino, editor,

Proceedings of FOIS’98, Amsterdam, 1998. IOS Press.

132 Nan Zhi

[30] Dan Gusfield and Robert W. Irving. The Stable Marriage Problem: Structure and

Algorithms. MIT Press, Cambridge, MA, USA, 1989.

[31] M. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating inde-

pendent sets in sparse and bounded-degree graphs. Algorithmica, 18(1):145–163,

May 1997.

[32] Magnús Halldórsson and Jaikumar Radhakrishnan. Improved approximations of

independent sets in bounded-degree graphs via subgraph removal. Nord. J. Com-

put., 1:475–492, 01 1994.

[33] Magnús M. Halldórsson and Kiyohito Yoshihara. Greedy approximations of inde-

pendent sets in low degree graphs. In John Staples, Peter Eades, Naoki Katoh,

and Alistair Moffat, editors, Algorithms and Computations, pages 152–161, Berlin,

Heidelberg, 1995. Springer Berlin Heidelberg.

[34] Dorit S. Hochbaum. Efficient bounds for the stable set, vertex cover and set

packing problems. Discrete Applied Mathematics, 6(3):243 – 254, 1983.

[35] Johan H̊astad. Clique is hard to approximate within n1−ε. Acta Math., 182(1):105–

142, 1999.

[36] G. Jäger and B. Goldengorin. How to make a greedy heuristic for the asymmet-

ric traveling salesman problem competitive. University of Groningen, Research

Institute SOM (Systems, Organisations and Management), Research Report, 01

2005.

[37] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vi-

jay V. Vazirani. Greedy facility location algorithms analyzed using dual fitting

with factor-revealing lp. J. ACM, 50(6):795–824, November 2003.

[38] Ernesto Jiménez-Ruiz, Terry R Payne, Alessandro Solimando, and Valentina

Tamma. Limiting consistency and conservativity violations through negotiation.

In The 15th International Conference on Principles of Knowledge Representation

and Reasoning (KR 2016), pages 217–226, 2016.

[39] Ernesto Jimnez-Ruiz, Christian Meilicke, Bernardo Cuenca Grau, and Ian Hor-

rocks. Evaluating mapping repair systems with large biomedical ontologies. In

26th International Workshop on Description Logics, July 2013.

Bibliography 133

[40] Rajeev Kohli, Ramesh Krishnamurti, and Prakash Mirchandani. Average perfor-

mance of greedy heuristics for the integer knapsack problem. European Journal of

Operational Research, 154(1):36 – 45, 2004.

[41] B. Korte and L. Lovász. Mathematical structures underlying greedy algorithms.

In Ferenc Gécseg, editor, Fundamentals of Computation Theory, pages 205–209,

Berlin, Heidelberg, 1981. Springer Berlin Heidelberg.

[42] Piotr Krysta. Greedy approximation via duality for packing, combinatorial auc-

tions and routing. In Joanna Jdrzejowicz and Andrzej Szepietowski, editors, Math-

ematical Foundations of Computer Science 2005, pages 615–627, Berlin, Heidel-

berg, 2005. Springer Berlin Heidelberg.

[43] Piotr Krysta, Minming Li, Terry R. Payne, and Nan Zhi. Mechanism design

for ontology alignment. In Proceedings of the 16th Conference on Autonomous

Agents and MultiAgent Systems, AAMAS ’17, pages 1587–1588, Richland, SC,

2017. International Foundation for Autonomous Agents and Multiagent Systems.

Journal version in submission. Estimated no. pages: 27.

[44] Piotr Krysta, Mathieu Mari, and Nan Zhi. Ultimate greedy approximation of inde-

pendent sets in subcubic graphs. Manuscript in preparation., Estimated no. pages:

45, April, 2019.

[45] Harold W Kuhn. The hungarian method for the assignment problem. Naval

research logistics quarterly, 2(1-2):83–97, 1955.

[46] L. Laera, I. Blacoe, V. Tamma, T.R. Payne, J. Euzenat, and T.J.M. Bench-Capon.

Argumentation over ontology correspondences in MAS. In International Confer-

ence on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1285–

1292, 2007.

[47] L. Lovász. Three short proofs in graph theory. Journal of Combinatorial Theory,

Series B, 19(3):269 – 271, 1975.

[48] B. Lucier and A. Borodin. Price of anarchy for greedy auctions. In Proceedings of

the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

’10, pages 537–553, Philadelphia, PA, USA, 2010. Society for Industrial and Ap-

plied Mathematics.

134 Nan Zhi

[49] Brendan Lucier and Allan Borodin. Price of anarchy for greedy auctions. In Pro-

ceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms,

pages 537–553. Society for Industrial and Applied Mathematics, 2010.

[50] Brendan Lucier and Vasilis Syrgkanis. Greedy algorithms make efficient mecha-

nisms. 03 2015.

[51] C. Meilicke and H. Stuckenschmidt. Analyzing mapping extraction approaches. In

Proceedings of the 2Nd International Conference on Ontology Matching - Volume

304, OM’07, pages 25–36, 2007.

[52] Prasenjit Mitra, Peng Lin, and Chi Chun Pan. Privacy-preserving ontology match-

ing, volume WS-05-01, pages 88–91. 2005.

[53] Ahuva Mu’alem and Noam Nisan. Truthful approximation mechanisms for re-

stricted combinatorial auctions. Games and Economic Behavior, 64(2):612 – 631,

2008. Special Issue in Honor of Michael B. Maschler.

[54] G. L. Nemhauser and L. E. Trotter. Vertex packings: Structural properties and

algorithms. Mathematical Programming, 8(1):232–248, Dec 1975.

[55] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic

game theory, volume 1. Cambridge University Press Cambridge, 2007.

[56] James G Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.

[57] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Se-

mantic matching of web services capabilities. In Ian Horrocks and James Hendler,

editors, The Semantic Web — ISWC 2002, pages 333–347, Berlin, Heidelberg,

2002. Springer Berlin Heidelberg.

[58] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[59] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation,

and complexity classes. Journal of Computer and System Sciences, 43(3):425 – 440,

1991.

[60] Terry R. Payne and Valentina Tamma. Negotiating over ontological correspon-

dences with asymmetric and incomplete knowledge. In International Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 517–524, 2014.

Bibliography 135

[61] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and

a sub-constant error-probability pcp characterization of np. In Proceedings of the

Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC ’97, pages

475–484, New York, NY, USA, 1997. ACM.

[62] Tim Roughgarden. Intrinsic robustness of the price of anarchy. J. ACM,

62(5):32:1–32:42, 2015.

[63] Peter W. Shor. The average-case analysis of some on-line algorithms for bin pack-

ing. Combinatorica, 6(2):179–200, Jun 1986.

[64] Pavel Shvaiko and Jérôme Euzenat. Ontology matching: State of the art and

future challenges. IEEE Trans. Knowl. Data Eng., 25(1):158–176, 2013.

[65] R. Studer, V.R. Benjamins, and D. Fensel. Knowledge engineering, principles and

methods. Data and Knowledge Engineering, 25(1-2):161–197, 1998.

[66] K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic service matchmaking among

agents in open information systems. ACM SIGMOD Record. Special Issue on

semantic interoperability in global information systems, 1998.

[67] Katia Sycara and Mattheus Klusch. Brokering and matchmaking for coordination

of agent societies: A survey. In Omicini et al, editor, Coordination of Internet

Agents. Springer, 2001.

[68] C. Trojahn dos Santos, P. Quaresma, and R. Vieira. Conjunctive queries for

ontology based agent communication in MAS. In International Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS), pages 829–836, 2008.

[69] David P. Williamson and David B. Shmoys. The Design of Approximation Algo-

rithms. Cambridge University Press, New York, NY, USA, 1st edition, 2011.

[70] M. Wooldridge. An Introduction to Multiagent Systems. John Wiley and Sons,

2002.

[71] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of

complexity. In Foundations of Computer Science, 1977., 18th Annual Symposium

on, pages 222–227. IEEE, 1977.

	Abstract
	Acknowledgements
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Organisation
	Overview of the main contributions

	Background
	Game theory and mechanism design
	Optimisation, approximation and complexity
	Ontologies and ontology alignment

	Mechanism design for ontology alignment
	Introduction
	Background
	Our contributions
	Preliminaries
	An Implementation in Dominant Strategy
	Mechanism design with payment
	Mechanism design without payment

	Nash equilibria implementation
	Pure strategy
	Relation to smooth games
	Mixed strategy

	Conclusion

	Negative results for greedy maximum independent set
	Introduction
	Inapproximability
	Planar graphs

	Conclusion

	Instance study for maximum independent set problem
	Introduction: Approximability of MIS
	Instances study for Greedy MIS
	Towards computer assisted guide for proof of greedy MIS
	Observation for problematic graph structures
	Isolated odd cycle reduction
	Bad (2,5)-reduction
	Non-locality of payment
	Conclusion

	Towards Ultimate Greedy for MIS in sub-cubic graphs
	Payment scheme
	Definitions
	Ideas
	Value of potential function of payment scheme

	Extended reductions
	Definition of extended reductions
	Value of potential function of extended reduction

	The final proof
	Observations and ideas
	The leaf reduction
	Proof for existence of 43-approximation greedy algorithm
	Towards a proof of existence of the ultimate greedy algorithm

	Technique of Super-Advice

	Further applications
	Greedy algorithm for MIS on bounded degree graph
	Alternative proof for +23-ratio greedy algorithm on -degree graphs
	Limitations of greedy algorithm on -degree graphs

	MIS on degree at most 4 graphs
	Study for vertex cover
	Complementary Greedy algorithm for vertex cover problem
	Naive analysis for 75-approximation ratio
	Sophisticated analysis for 43-approximation ratio
	Further analysis for 54-approximation ratio

	Conclusion

	Heuristic and experimental study for MIS
	Results and discussion

	Conclusions and further study
	Conclusions
	Further study
	Study for ontology mechanism design
	Study for maximum independent set and minimum vertex cover problems

	
	Graph structure of extended reductions

	References

