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A TWO-PHASE SPH MODEL FOR MASSIVE SEDIMENT MOTION IN 1 

FREE SURFACE FLOWS 2 
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Abstract 4 

Massive sediment motion in water with a free surface is an important kind of geophysical 5 

flows such as hyper-concentrated sediment laden river flows discharging into estuarine delta 6 

and turbidity currents generated by subaqueous landslides. One of the key and common 7 

characteristics of such flows is that interactions between water and sediment as well as those 8 

among sediment particles are equally important in affecting the sediment motion and the fluid 9 

flow. This paper presents a numerical model that builds on and extends an earlier two-phase 10 

SPH model based on a continuum description formulation of solid-liquid mixtures [Comput. 11 

Phys. Commun. 221 (2017) 259] to provide a unified description of account for massive 12 

sediment motion in free surface flows. In the model, a constitutive law based on the rheology 13 

of dense granular flow is introduced to express the intergranular stresses while the interphase 14 

drag force is determined by combining the Ergun equation for dense solid-fluid mixtures and 15 

the power law for dilute suspensions. The model can thus represent not only sediment 16 

transport by water flows but also gravity-induced underwater granular flows. The proposed 17 

model is firstly applied to the study of collapse of loosely or densely packed granular columns 18 
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submerged in water. The computed surface profiles of the granular column are found to be in 19 

good agreement with the experimental data. It shows that the loosely packed and the densely 20 

packed columns behave rather differently due to the differences in water-sediment interaction 21 

processes. The model is then used to simulate a dam-break flow over a mobile sediment bed. 22 

The computed configurations of the flow and the movable bed also agree well with the 23 

measured data. The predicted position on the leading edge of the flow has a mean error of 24 

0.8% while the mean error for the maximum bed height is 12.9%. To further identify the 25 

dynamic processes involved, effects of water-sediment interactions on the motion of bed 26 

materials are investigated by examining the spatial and temporal variations of pressure and 27 

flow velocity. As shown in the applications, the proposed two-phase SPH model can 28 

successfully represent both the gravity-driven underwater granular flows and the shear flow 29 

driven intense sediment transport, implying its potential use in practical scenarios in which 30 

the two kinds of flows exist simultaneously, such as landslides triggered by storm in shallow 31 

sea and flows resulted in barrier or dam breaks. 32 

Keywords: Two-phase SPH model; Sediment motion; Water-sediment interactions; 33 

Underwater granular column collapse; Dam-break erosion 34 

1 Introduction 35 

Massive sediment motion in free surface flows often occurs in nature. One example is the 36 

large-scale submarine landslide which has been reported to be the main cause of several 37 

destructive tsunamis (Keating and McGuire, 2000; Lynett and Liu, 2002). The rapid erosion 38 

of riverbed by dam-break flow, which may result in significant morphological changes of the 39 

channel system and increased flooding risk, is another typical case (Capart and Young, 1998; 40 

Wu and Wang, 2007). Consequently, accurate prediction of massive sediment motion in free 41 

surface flows is essential in disaster prevention and mitigation as well as in infrastructure 42 

safety assessment. 43 

Massive sediment motion in free surface flows, including the gravity-induced 44 
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underwater granular flow and the shear flow driven intense sediment transport, is 45 

characterized by the high concentration of the particle phase. Although the flows may be 46 

different in driving forces, the stresses generated by interphase and intergranular interactions 47 

within the solid-liquid mixtures are intrinsically the same and play a similarly important role 48 

in the flows Both interphase forces and intergranular stresses are thus important (Dong and 49 

Zhang, 2002; Shi and Yu, 2015; Lee and Huang, 2018). In some situations, the large 50 

deformation of free water surface may also occur (Spinewine, 2005). Therefore, a unified 51 

numerical model for different types of massive sediment motion is required to accurately 52 

describe the interactions not only between water and sediment but also among sediment 53 

particles at a wide range of sediment concentration and to be capable of capturing the 54 

complex deformation of the free water surface. 55 

This is however not an easy task. As most of the available numerical models for 56 

sediment motion adopt mesh-based Eulerian approach, they have difficulties in simulating the 57 

complicated deformation and fragmentation of free water surface (Fu and Jin, 2016). At a 58 

more fundamental level, it requires improved understanding and formulations of intergranular 59 

stresses and interphase forces (Bakhtyar et al., 2010; Chauchat, 2018) with a two-phase model 60 

in which the primary flow variables of both water and sediment are fully resolved (Dong and 61 

Zhang, 1999; Bakhtyar et al., 2010).  62 

Mesh-free particle methods, such as the Smoothed Particle Hydrodynamics (SPH) and 63 

the Moving Particle Semi-implicit (MPS) methods, have proven to be powerful in tracking the 64 

violent motion of free water surface (Gotoh and Khayyer, 2018), and have also been 65 

introduced to the simulation of sediment laden flows (Ulrich et al., 2013; Fourtakas and 66 

Rogers, 2016; Nodoushan et al., 2018). However, most of the existing particle models for 67 

sediment motion are not formulated strictly in the two-phase framework. Instead, they treat 68 

clear water and sediment-water mixture as two immiscible fluids and represent the two phases 69 

by different sets of SPH/MPS particles. The sediment phase considered in these models is a 70 

mixture of water and sediment, and variables of the mixture rather than those of each 71 

individual phase are solved. As a result, they are unable to address directly the intergranular 72 

stresses and the interphase forces. Furthermore, suspended load cannot be rigorously resolved 73 
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by these two-immiscible-fluid models and it was just approximated by a kernel-averaged 74 

volumetric sediment concentration (Ulrich et al., 2013; Zubeldia et al., 2018). Only a few 75 

attempts (Bui et al., 2007; Wang et al., 2016; Pahar and Dhar, 2017; Shi et al., 2017) have 76 

been made to develop a complete two-phase particle method for liquid-solid mixtures, all of 77 

which, however, contain some questionable assumptions. For instance, the variation of 78 

sediment concentration was ignored in Pahar and Dhar (2017); idealized constitutive laws for 79 

intergranular stresses, i.e., the elastic-perfect plastic model was assumed in Bui et al. (2007). 80 

Shi et al. (2017) recently presented a two-phase SPH model for suspended sediment motion in 81 

free surface flows, which performed well both in idealized and in practical problems with 82 

suspended load. However, the formulations for intergranular stresses and interphase drag 83 

force in the model are not sufficiently accurate under high-concentration conditions.  84 

In this paper, the two-phase SPH model developed by the authors (Shi et al., 2017), 85 

which is formulated strictly in a two-phase framework, Shi et al. (2017) is extended to 86 

describe massive sediment motion. It is aimed to give a unified description of gravity-induced 87 

underwater granular flows and intense sediment transport by flowing water. represent not only 88 

sediment transport by water flows but also gravity-induced underwater granular flows. The 89 

structure of the model remains unchanged, but a number of substantial improvements have 90 

been introduced to better describe the underlying physics of dense sediment motion. 91 

Specifically, a constitutive law based on the rheology of dense granular flows is used to 92 

represent the intergranular stresses. To estimate the interphase drag force in both high- and 93 

low-concentration regimes, the Gidaspow (1994) formula is adopted, which combines the 94 

Ergun equation for dense solid-fluid mixtures and the power law for dilute suspensions. The 95 

proposed model is applied to the study of collapse of underwater granular columns and bed 96 

erosion by dam-break flows. In the former case, the flow is driven by the falling of sediments 97 

into still water, while in the latter the falling water causes rapid erosion of the mobile 98 

sediment bed and strong near-bed sediment suspension. The computed surface profiles of both 99 

loosely and densely packed granular columns submerged in still water with a free surface are 100 

compared with experimental data. Effects of water-sediment interactions on the collapse of 101 

loosely/densely packed columns are examined. The fluid flow within the granular material is 102 
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simulated and the evolution of water vortex in the process of granular column collapse is 103 

discussed. For the dam-break induced erosion problem, the computed configurations of the 104 

free water surface and the movable bed are compared with experimental results. The effects of 105 

water-sediment interactions on both the motion of bed materials and the bed erosion process 106 

are investigated.  107 

The rest of the paper is organized as follows. The governing equations of the two-phase 108 

model and their SPH formulations are described in Section 2. Applications of the model to 109 

underwater granular column collapse and sediment transport by dam-break flow are presented 110 

in Sections 3 and 4, respectively. Finally, conclusions are drawn in Section 5.  111 

2 A two-phase SPH model for intense sediment transport 112 

2.1 Governing equations for the two phases 113 

The continuum description of a sediment-water mixture flow is based on the assumption 114 

that water and sediment are coupled two phases within the domain of interest. Both phases are 115 

governed by the conservation laws for mass and momentum. The general two-fluid form of 116 

continuity and momentum equations for two-phase flows originally derived by Drew (1983) 117 

are employed in this study. To deal with the turbulence of the two phases, the sub-particle 118 

scaling technique (Dalrymple and Rogers, 2006; Mayrhofer et al., 2015) is applied. The 119 

governing conservation equations are then spatially filtered by virtue of the Favre averaging 120 

(Shi et al., 2017). The filtered continuity equations are 121 
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in which, t  is the time; x  is the coordinate, and , 1, 2, 3i j   represent the coordinate 124 

directions, for which the summation convention is valid; the subscripts f  and s  represent 125 

the water phase and the sediment phase, respectively;   is the volume fraction, and 126 

1f s   ;   is the density; u  is the velocity. 127 
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The filtered momentum equations for the two phases are written as 128 
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  (4) 130 

where, p  is the pressure; 0
f  is the viscous stress of the water phase, while 0

s  is the 131 

intergranular stress of the sediment phase; t  is the sub-particle scale (SPS) stress; g  is the 132 

gravitational acceleration; F  is the force on the solid phase by water excluding the 133 

pressure-gradient-related buoyancy, which is a part of the first terms on the right side of the 134 

momentum equations. F  is formulated in the subsection on two-phase interactions. 135 

The viscous stress 0
f  and the intergranular stress 0

s  are determined by 136 

 0 0
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  (7) 139 

in which, ,k f s ; ,k ijS  are the rate-of-strain tensors of the two phases; 0
f  and 0

s  are 140 

the kinematic viscosities; sp  is the intergranular pressure of the sediment phase, resulting 141 

from enduring contact, collision, and friction between the solid particles. The viscosity 0
s  142 

and the pressure sp  are estimated by a rheology-based constitutive law for the sediment 143 

phase in the following subsection. 144 

The SPS stresses t
k  are modelled based on Boussinesq hypothesis: 145 

 , , ,

2
2

3
t t
k ij k k k ij k ll ijS S      

 
  (8) 146 

where, t
k  ( ,k f s ) are the eddy viscosities of the two phases. The well-known 147 

Smagorinsky model (Smagorinsky, 1963) is utilized to determine t
k , but a modification is 148 

made to consider the turbulence damping by sediment particles (Chen et al., 2011): 149 
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in which,   is the characteristic length of filter, which is set to be the initial particle size in a 151 

SPH model; S  is the rate-of-strain tensor, and its norm , ,2k k ij k ijS SS ; sm  is the 152 

maximum sediment volumetric concentration, at which the turbulence is assumed to be totally 153 

suppressed; n  is a coefficient; C  is Smagorinsky constant. In this study, sm  is set to be 154 

equal to the jamming volume fraction defined in the following subsection, at which the dense 155 

sediment phase is in static. As in Shi et al. (2017), 5n   and 0.1f sC C  . 156 

In the present study, the weakly compressible SPH (WCSPH) approach is adopted. 157 

Specifically, the water phase is assumed to be weakly compressible, and the water density f  158 

is thus a variable. The equation of state (EOS) proposed by Shi et al. (2017) is utilized to 159 

compute the fluid pressure fp  in the sediment-water mixture:  160 

 
2
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0

1f f f s f f f s f
f

f f f

c
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  (10) 161 

where, 7  ; 3
0 1000 kg mf

   is the reference water density at 0fp  ; 0c  is the 162 

sound speed in water at the reference density, which is usually set to be ten times the 163 

maximum water velocity in the problem of interest. 164 

2.2 A rheology-based constitutive law for intergranular stresses 165 

A constitutive law based on the rheology of dense granular flows (Lee et al., 2016; 166 

Chauchat, 2018) is employed to represent the intergranular stresses of the particles phase in 167 

sediment-water mixture flows. This law depends on the frictional characteristic of granular 168 

materials, i.e., the shear stress components are related to the pressure. It has been successfully 169 

applied to bedload transport (Chiodi et al., 2014), sheet flows (Lee et al., 2016), and 170 

underwater granular column collapse (Lee and Huang, 2018). 171 

In the constitutive law, the sediment pressure sp  has two components, a 172 

shear-rate-dependent component r
sp  for the rheological characteristics of the bulk granular 173 
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materials and a shear-rate-independent component e
sp  for the enduring elastic contact 174 

between the solid particles: 175 

 r e
s s sp p p    (11) 176 

Boyer et al. (2011) and Trulsson et al. (2012) carefully investigated the rheological 177 

characteristics of the dense granular materials in an interstitial fluid. It is found that the 178 

rheology of dense granular materials is dominated by both inter-particle forces and viscosity 179 

of the interstitial fluid. According to their results, the shear-rate-dependent component r
sp  180 

can be evaluated by  181 
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where, 0s  is the jamming volume fraction, which is the maximum packing fraction of the 183 

sheared granular particles; sd  is the diameter of sediment particles; 1c  and 2c  are model 184 

parameters. On the other hand, when the packing fraction s  increases to the random 185 

loose-packing concentration  , the component e
sp  comes into play. As the volume fraction 186 

increases further to the random close-packing concentration  , the granular materials 187 

present a transition from fluid-like to solid-like behavior (Johnson and Jackson, 1987). 188 

Following Hsu et al. (2004) and Lee et al. (2016), the shear-rate-independent pressure e
sp  is 189 

estimated by  190 
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  (13) 191 

in which, K  is a coefficient related to the Young’s modulus and the Poisson’s ratio of the 192 

solid material;   is a model parameter. Generally, the parameters 1 0.75 1.00c   , 193 

2 0.01 1.00c   , and 1.5 5.5    (Trulsson et al., 2012; Chiodi et al., 2014; Lee and Huang, 194 

2018; Chauchat, 2018), and in the present computations their values as well as that of K  are 195 

determined based on sensitivity studies. In the applications, values of 0s ,  , and   are 196 

set depending on the specific solid materials. 197 

Relating the viscous stress of sediment phase to the inter-granular pressure according to 198 

the frictional law and introducing the Papanastasiou regularization technique (Papanastasiou, 199 
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1987) to avoid singularity in the expression for viscosity, we obtain 200 

  0 1 sms
s

s s

p
e




  S

S
  (14) 201 

where,   is the friction coefficient of the assembly of sediment particles, varying with the 202 

inertia number I ; m  is a parameter for regularization. Fourtakas and Rogers (2016) had 203 

examined the effect of m  on the sediment stresses, and accordingly m  is set to be 50 in the 204 

present study, a value at which the effect of regularization on sediment transport is negligible. 205 

Following Boyer et al. (2011) and Trulsson et al. (2012), the friction coefficient   is 206 

estimated by 207 

 2 1
1

01 I I
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  (15) 208 

and the inertia number I  is determined by  209 
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  (16) 210 

where, 1 tan   is the friction coefficient when 0I   and the assembly is in static, with 211 

  being the internal friction angle of the solid particles; 2  is the friction coefficient when 212 

I  approaches infinite and the sediment moves extremely rapidly; 0I  is a model parameter; 213 

1c  is the same parameter as in Eq. (12). In general, 2 tan 1.0    and 0 0.1 0.3I    214 

(Lee et al., 2016), and in this paper the values are determined according to a sensitivity 215 

analysis. 216 

The present constitutive law can provide information on the pre-yield and post-yield 217 

regimes of the sediment phase, and thereby avoids the need of special technique for yield 218 

judgment (Pahar and Dhar, 2017; Zubeldia et al., 2018). When the assembly of solid particles 219 

is in quasi-static or static state, the stress related to the shear-rate-independent pressure e
sp  220 

plays a similar role to the yield stress in Bingham and Herschel-Bulkley models (Fourtakas 221 

and Rogers, 2016). For unyielded sediment, the viscosity calculated by Eq. (14) is particularly 222 

large due to its zero shear rate, which then keeps the solid phase static. 223 

2.3 Two-phase interactions 224 
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In the proposed model, the two-phase interactions are formulated in terms of the primary 225 

flow variables of the two phases. The pressure-gradient-related buoyancy on the solid 226 

particles is taken into account by the first term on the right side of Eq. (4), and other 227 

interphase forces are included in the term iF  in the momentum equations. Generally, iF  228 

consists of drag force, virtual-mass force, lift force, etc (Drew, 1983). In a problem with high 229 

sediment concentration, the drag force is predominant (Hsu et al., 2004; Wang et al., 2016; 230 

Lee and Huang, 2018), and hence, for simplicity, here only drag force is considered. 231 

Assuming the drag force to be proportional to the relative velocity between the two phases, 232 

we have 233 

  , ,i s f i s iF u u    (17) 234 

in which, the coefficient   can be estimated based on the formula proposed by Gidaspow 235 

(1994): 236 
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where, DC  is the drag coefficient for solid particles in an infinite fluid; u  is the norm of 238 

the velocity vector; DC  is a function of the particle Reynolds number 239 

0Res f f s s fd  u u  and can be determined by the well-known Schiller and Naumann 240 

(1935) formula: 241 
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  (19) 242 

Note that Eq. (18) is considered to be more robust than the power law for   used by 243 

Shi et al. (2017), which is based on the study of sediment settling in still water by Richardson 244 

and Zaki (1954) and is not valid for 0.4s   (Yin and Koch, 2007; Lee and Huang, 2018). 245 

The Gidaspow (1994) formula combines Wen and Yu (1966)’s power law for dilute 246 

suspensions and the Ergun equation, originally obtained by Ergun (1952) for pressure drop in 247 

the flow through packed columns and valid for dense solid-fluid mixtures. This formula has 248 
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been well validated and widely applied to the study of intense sediment motion (Neri et al., 249 

2003; Li et al., 2018; Si et al., 2018).  250 

It is necessary to point out that, in the present model, the interphase momentum transfer 251 

term    Sct
f s i fx      in the governing equations in Shi et al. (2017), which is due to 252 

the SPS turbulence and results from the Favre averaging in the spatial filtering, is neglected as 253 

it was found to play a negligible role in the simulations of both underwater granular column 254 

collapse and bed-erosion by dam-break flows.  255 

2.4 Governing equations in Lagrangian form 256 

The solid-liquid two-phase system is discretized into a single set of SPH particles, which 257 

move with the water velocity and carry properties of both phases. Hence, the substantial 258 

derivative of a physical quantity   associated to a SPH particle is expressed as  259 
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  (20) 260 

Note that the water is assumed to be weakly compressible, while the sediment is 261 

incompressible. Thus, the water density f  is an unknown, while the sediment density s  262 

is a constant with 0sd dt  . Rewriting the Eulerian form of the conservation equations (1) 263 

- (4) into Lagrangian form by virtue of Eq. (20), the governing equations for water density, 264 

sediment concentration, water velocity, and sediment velocity carried by a SPH particle are 265 

obtained as  266 
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where,  0
, , ,

t
k ij k ij k ij kT      ( ,k f s ). 271 

The equation for the water density, i.e., Eq. (21), comes from the continuity equation for 272 

the water phase and describes the evolution of f f   due to the volume change of the SPH 273 

particle. For the sediment concentration s , the continuity equation for the sediment phase is 274 

rewritten into Eq. (22), with the first term on the right side representing the contribution of the 275 

volume change of the SPH particle and the second term representing the effect of the 276 

inter-particle sediment mass flux. Note that as the velocities of the two phases are different, 277 

there may be mass and momentum fluxes of sediment among different SPH particles. Eqs. (23) 278 

and (24) are derived from the momentum conservation equations of the water and the 279 

sediment phases, respectively. The first four terms on the right side of the equations represent 280 

the effects of the fluid pressure, the viscous and turbulence stresses, the gravity, and the 281 

interphase drag force. The last term on the right side of Eq. (24) is a convection term for the 282 

inter-particle sediment momentum flux and is also a result of the relative velocity between the 283 

two phases.  284 

2.5 SPH formulations 285 

The detailed SPH formulations of the proposed two-phase model can be referred to Shi 286 

et al. (2017). Here, for completeness, a short description as well as some improvements in the 287 

discretizations of fluid stress term and inter-particle flux terms are presented. In a SPH model, 288 

the value of a physical quantity   carried by SPH particle a , i.e., a , is approximated by 289 

the summation over all neighboring particles in the supporting domain of the kernel function 290 

W : 291 

 a b ab b
b

W V    (25) 292 

in which, b  is the value of   carried by the neighboring particle b ; bV  is the volume of 293 

particle b  defined by 294 

 
f

b
f f b

m
V

 
 

   
 

  (26) 295 

with fm  being the water mass carried by the particle, which remains constant during the 296 
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simulations;  ,ab a bW W h x x , where ax  and bx  are the positions of particle a  and 297 

b , respectively; h  is the smoothing length of the kernel function W , and is set to be 1.3 298 

times the initial particle spacing. In the present model, the quintic kernel function proposed by 299 

Wendland (1995) is utilized. 300 

The volume of sediment phase carried by particle a ,  s a
V , is given by  301 

      f
s a s sa a a

f f a

m
V V  

 
 

    
 

  (27) 302 

where, aV  is the volume of particle a . As time runs, the water mass fm  of particle a  303 

keeps constant, while the sediment mass    s s sa a
m V  is variable. According to Eqs. (21) 304 

and (22), the volume of sediment carried by a SPH particle varies as a consequence of the 305 

inter-particle fluxes of sediment mass. 306 

The divergence of the water velocity at particle a  is discretized as  307 

      ,
, ,

f j
f j f j a ab bjb a

bj a

u
u u W V

x

          
   (28) 308 

in which, 309 

 a b
a ab

a b

W
W

r


 

 
x x

x x
  (29) 310 

and  a ab j
W  is its component in j-direction. 311 

The symmetric scheme utilized in Violeau and Rogers (2016) which conserves 312 

momentum is adopted to formulate the fluid pressure terms, i.e., the first terms on the right 313 

side of Eqs. (23) and (24). Attention should be paid to the formulation of the shear stress 314 

terms, as s  in the denominator may vanish when dealing with possible concentration 315 

discontinuity (Shi et al., 2017). In Eq. (30), the shear stress term is separated into a gradient 316 

term of stress and a gradient term of concentration. Replace    k k j k kx        by 317 

 ln k k jx   , which is a preferable form to increase the robustness of the model for 318 

problems with discontinuity of sediment concentration. Then, the symmetric scheme proposed 319 

by Ren et al. (2014) is applied. Hence, 320 
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     

     
   

, , , ,
,

, ,

ln1

1
1 ln

2

k k k ij k ij k ij k ijk k k k
k ij

k k j j k k j j ja aa

k k b
k ij k ij a ab bja b

b k k a

T T T T
T

x x x x x

T T W V

     
   

 
 

       
        

             

 
         


  (30) 321 

An upwind scheme is proposed for the formulations of the inter-particle sediment mass 322 

flux term, i.e., the second term on the right side of Eq. (22), and sediment momentum flux 323 

term, i.e., the fifth term on the right side of Eq. (24): 324 

 

           
            

, ,

, , , ,

, , , ,

max , 0 max , 0

min , 0 min , 0

s s j f j

j
a

s s j f j a ab s s j f j a aba j a ja b
b

s s j f j a ab s s j f j a ab bb j b ja b

u u

x

u u W u u W

u u W u u W V



 

 

        

            

           

   (31) 325 

 
         

    

,
, , , , , ,

, ,

min , 0

min , 0

s i
s j f j s i s i s j f j a ab ja b a

bj a

s j f j a ab bjb

u
u u u u u u W

x

u u W V

                

    


  (32) 326 

Finally, the discretized SPH equations for sediment-water mixture flows become  327 

 
   ,

i a
f i a

d x
u

dt
   (33) 328 

 
         , ,

f f a
f f f j f j a ab bja b a

b

d
u u W V

dt

 
          (34) 329 

 

         

           
            

, ,

, , , ,

, , , ,

max , 0 max , 0

min , 0 min , 0

s a
s f j f j a ab ba jb a

b

s s j f j a ab s s j f j a aba j a ja b
b

s s j f j a ab s s j f j a ab bb j b ja b

d
u u W V

dt

u u W u u W

u u W u u W V




 

 

     

           

           



   (35) 330 
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       

     
   

 
   

,

0

, ,

, ,

1

1
1 ln

2

f i a
f f a ab bia b

bf

f f b
f ij f ij a ab bja b

b f f a

a s a
i f i s i a

f f a

d u
p p W V

dt

T T W V

g u u



 

 

 
 

     

 
          

  



   (36) 331 

 

       

     
   

 

       
    

,

, ,

, ,

, , , ,

, ,

1

1
1 ln

2

min , 0

min , 0

s i a
f f a ab bia b

bs

s b
s ij s ij a ab bja b

b s a

a
i f i s i a

s

s i s i s j f j a ab ja b a
b

s j f j a ab bjb

d u
p p W V

dt

T T W V

g u u

u u u u W

u u W V









     

 
         

  

        

    







  (37) 332 

with the following EOS for the water pressure 333 

      
 

   2
0 00 0

0

1
f f s f f f s fa af a a

f a
ff f a

c
p


       

  

       
    

  (38) 334 

Note that Eq. (33) determines the position of the SPH particle. 335 

2.6 Time integration and Shepard filtering 336 

The predictor-corrector scheme of Monaghan (1989) is adopted to integrate Eqs. (33) - 337 

(37) with respect to time. The time step is variable and restricted by the numerical sound 338 

speed, the maximum inertia forces, and the viscous forces of the two phases through the CFL 339 

conditions (Ulrich et al., 2013; Shi et al., 2017). 340 

The strategy of Shepard filtering proposed by Shi et al. (2017) is utilized to damp the 341 

pressure oscillation in the sediment-water mixture. The filtering is performed every 20 time 342 

steps by reinitializing the water density of each particle according to 343 
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  
 

 
 

 
 

1
f b

abf ab bb b sb b
f a

ab b f b
b ab

b f f b

m
WW V

W V m
W

 


 


 





  (39) 344 

Both the water mass and the sediment mass carried by a SPH particle are conserved in the 345 

Shepard filtering, resulting in 346 

    
       f f a

f f f aa
f f s faa a

 
  

   



  (40) 347 

    
       s a

s fa a
f f s faa a


 

   



  (41) 348 

2.7 Boundary conditions 349 

In SPH models, free water surface can be naturally tracked by particles but special 350 

attention should be paid to the solid wall boundaries. In the present model, the dynamic 351 

boundary condition proposed by Crespo et al. (2007) is employed to avoid the kernel 352 

truncation near the solid boundaries. The solid boundary is represented by allocating three 353 

layers of SPH particles along it, which satisfy the same equations as those for the fluid 354 

particles but do not move in response to the computed forces exerted on them. They keep 355 

fixed in position for immobile boundaries or move according to externally imposed trajectory 356 

for prescribed moving boundaries. 357 

2.8 Numerical implementations 358 

The proposed model is implemented on the basis of the open-source SPH package 359 

GPUSPH, which was originally developed by Hérault et al. (2010). GPUSPH is programmed 360 

with CUDA and C++, and conducts parallel computations on Nvidia CUDA-enabled Graphics 361 

Processing Units (GPUs). The numerical computations in the present study are carried out on 362 

an Nvidia Tesla K40c GPU with 2880 processor cores. 363 
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3 Collapse of underwater granular columns 364 

Collapse of a submerged granular column under gravity is a classical problem of massive 365 

sediment motion in free surface flows, which occurs in a variety of natural and hazardous 366 

processes such as underwater landslide and submarine avalanches (Rondon et al., 2011). It has 367 

also been widely used as a benchmark problem for validation of numerical models for dense 368 

granular motion in fluid (Meruane et al., 2010; Savage et al., 2014; Wang et al., 2017a; Si et 369 

al., 2018). However, the relevant collapsing process is still not well understood. During 370 

collapse, the sediment phase may be fluid-like, solid-like or in a transition state according to 371 

its shear rate, which makes modelling the behavior of the granular column very difficult. The 372 

solid-fluid interactions make the situation even more complicated. The variation of the fluid 373 

pressure in the porous material can either stabilize or destabilize the assembly of particles 374 

(Iverson et al., 2000), and the drag force between the solid particle and the fluid may resist or 375 

accelerate the collapsing process of the granular column depending on the relative velocity 376 

between the two phases (Si et al., 2018). The initial volume fraction of the solid phase plays a 377 

very important role in the phenomenon (Rondon et al., 2011; Wang et al., 2017b). In this 378 

section, the proposed two-phase SPH model is carefully validated and employed to 379 

investigate the effects of water-sediment interactions on the collapse of loosely/densely 380 

packed granular columns submerged in still water. Effects of the free surface motion are 381 

discussed as well. 382 

Rondon et al. (2011) had conducted a well-known experimental study on the role of 383 

initial porosity in the case of a granular column collapse in a viscous fluid. Due to the large 384 

fluid viscosity and the low ratio of the column height to the fluid depth in Rondon et al. 385 

(2011), the motion of the free surface resulting from the granular column collapse was 386 

negligible. Following Rondon et al. (2011), Wang et al. (2017b) performed a similar 387 

experiment with a larger granular column size and using water as the ambient fluid. In this 388 

experiment, the fluctuation of free water surface was visible, though not significant. In the 389 

present study, the proposed two-phase SPH model is applied to the experiment of Wang et al. 390 

(2017b). 391 

The experiment of Wang et al. (2017b) was conducted in a rectangular tank of 392 
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50cm-long, 10cm-wide, 15cm-high as shown in Figure 1. A granular column was initially 393 

confined at the left end of the tank by a removable gate. The horizontal and the vertical 394 

directions are defined as x  (i.e., 1x  in the governing equations) and z  (i.e., 3x  in the 395 

equations) directions, respectively. L  is the distance from the left end of the tank to the front 396 

of the granular avalanche, and H  is the height of the column at 0x  . The particles used 397 

were glass beads of density 32500 kg ms   and mean diameter 300 msd   , with an 398 

internal friction angle of 25 0.4    . The granular column was prepared in both 399 

loose-packing and dense-packing state. In the loose-packing case, the glass beads were gently 400 

poured into the space delimited by the wall and the gate, resulting in an initial shape of  401 

6 cm 8 cmL H    granular column. The initial sediment volume fraction of the 402 

loosely-packed column was 0.53 0.005s   . In the dense-packing case, the tank was gently 403 

tapped and an initial solid volume fraction of 0.57 0.003s    was obtained. The initial 404 

length of the column L  was 6 cm , and the initial height of the column H  was reduced to 405 

7.8 cm . The granular column was submerged in 10-cm-deep water (with fluid density 406 

31000 kg mf   and viscosity 0 6 210 m sf  ). The time period taken to remove the gate 407 

was shorter than 0.1 s and its influence on the column collapse could be ignored (Wang et al., 408 

2017b). Once the gate was removed, the column collapsed and the final deposition of the 409 

granular mass was reached in just a few seconds.  410 

The physical problem as described above can be treated as a two-dimensional problem. 411 

To simulate such a problem with a three-dimensional numerical model, the computational 412 

conditions are kept the same as those in the experiments, except in the width direction of the 413 

tank ( y  direction), for which a periodic condition is imposed and a minimum 4 layers of 414 

SPH interpolating particles are arranged. The initial size of SPH interpolating particles is set 415 

to be 0.002 m according to a convergence study, and in the present simulations, the solid-fluid 416 

mixture is discretized into a set of 250 50 4 50000    SPH particles. Besides, the dynamic 417 

boundary condition is applied to the bottom and the sidewalls in x  direction, with three 418 

layers of fixed SPH particles representing the solid boundaries. Hence, in each computation, a 419 

total of 50000 interpolating particles for the two-phase mixture and 4464 particles for the 420 

solid boundaries are used. Figure 2 shows the particle configuration at 0 st   after removal 421 
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of the gate in the loose-packing case, in which the red particles are those carrying the initial 422 

sediment volume fraction 0.53  and represent the saturated granular column. Values of the 423 

model parameters and some physical quantities of the solid material used in the present 424 

simulations are summarized in Table 1. The sensitivities of the granular avalanche front 425 

position L at t = 0.5 s in the loose-packing case and the column height H at t = 4.0 s in the 426 

dense-packing case to model parameters are shown in Table 2. It is seen that the numerical 427 

results are not significantly affected by a variation of the parameters as long as the variation is 428 

limited in the specified range. The parallel computations are carried out on an CUDA-enabled 429 

Nvidia Tesla K40c GPU, and it requires about 25 minutes of computational time to simulate 1 430 

second of the physical experiment.  431 

3.1 Model validations 432 

Figures 3 and 4 show the comparisons of the computed profiles of the granular column 433 

by the present model with the experimental data for the loose-packing and dense-packing 434 

cases, respectively. Results of the earlier two-phase SPH model developed by Shi et al. (2017) 435 

are also presented. The predictions by the present proposed model are generally in good 436 

agreement with the experimental data in both cases and are much more accurate than those by 437 

the model of Shi et al. (2017). Small discrepancies are observed at 0.5 st   in the 438 

loose-packing case and at 1.0 st   in the dense-packing case, but they are still acceptable. 439 

For the loosely-packed column, upon the removal of the gate, the whole upper part falls 440 

immediately, leading to a thin surge of solid materials at the front of the granular mass. The 441 

flow front moves quickly and stops at 22.0 cmx   with a long runout distance L . 442 

Simultaneously, the grains in the main body of the column flow down the surface, and a 443 

triangular final deposition profile is reached in 2.5 seconds. For the dense-packing case, a 444 

very different collapsing process is observed. Once the gate is removed, particles at the upper 445 

right corner and on the lateral surface fall freely, resulting in a steep profile with a round 446 

corner before 1.0 st  . The left upper part of the column keeps unmoved at the initial stage 447 

and assumes a plateau-like shape. As time goes on, the erosion propagates inward, and the 448 
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plateau is eroded gradually. The flow front stops at 18.0 cmx   in 1.5 seconds, with a 449 

shorter runout distance than that in the loose-packing case. A bump is formed behind the flow 450 

front, and the concave region between the column body and the bump is filled gradually by 451 

the particles falling down from the top of the column. This so-called “hydraulic-like granular 452 

jump” behavior shown in the experiment (Wang et al., 2017b) is captured by the proposed 453 

model. The final deposition profile of the initially densely packed column is obtained after 4.0 454 

seconds, implying a longer collapse duration than that in the loose-packing case. 455 

Figures 5 and 6 show the sequential configurations of the free water surface for the 456 

loose-packing and the dense-packing cases, respectively. Compared with the observed surface 457 

motion in the original video records (available from the web version of Wang et al. (2017b)), 458 

the simulated fluctuations of the free water surface are consistent with the experimental 459 

results. Also as expected, the water surface fluctuation in the dense-packing case is smaller 460 

than that in the loose-packing case due to a slower collapsing process. Specifically, at the 461 

initial stage, the collapsing column pulls down the water surface. The free surface is thus 462 

disturbed and the wave propagates back and forth in the tank until it dissipates due to the fluid 463 

viscosity.  464 

The evolutions of the solid volume fraction carried by the SPH particles in the two cases 465 

are shown in Figures 5 and 6. For the loose-packing case, as shown in the dark-colored zone 466 

at the lower left corner of the granular pile, the maximum solid volume fraction of the column 467 

increases from the initial value of 0.53 to about 0.55 in the early collapse stage and keeps 468 

increasing gradually as time goes on, indicating a contraction behavior of the loosely-packed 469 

column. On the contrary, for the dense-packing case, the value decreases from 0.57 to 0.56 in 470 

the initial stage, presenting a dilation behavior of densely packed materials. The result of the 471 

contraction/dilation of the granular column is consistent with that found in Rondon et al. 472 

(2011), Wang et al. (2017b), and Lee and Huang (2018), further validating the present 473 

two-phase SPH model. In addition, the suspension of solid particles around the flow front is 474 

well captured by the present model, as shown in Figures 5(b) and 6(b). The particles are 475 

suspended by the water vortices when rapid collapse occurs in the early stage of the process, 476 

and soon settle down as the granular flow propagates. This phenomenon is clearly shown in 477 
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the original video records as shown in Figure 7.  478 

3.2 Water-sediment interactions 479 

As shown in the previous section, the behaviors of the initially loosely packed and the 480 

densely packed columns are significantly different. In this section, the calculated fluid 481 

pressure and the interphase drag force are presented, and the effects of the water-sediment 482 

interactions on the collapse of loosely/densely packed underwater granular columns are 483 

investigated. 484 

Figure 8 shows the distributions of the fluid pressure of the SPH particles in both the 485 

early and the final collapse stages for the loose-packing case, and Figure 9 for the 486 

dense-packing case. Note that the initial hydrostatic water pressure at the bottom of the tank is 487 

981f gh  Pa above the legend is added to indicate the initial hydrostatic water pressure at 488 

the bottom of the bank. For the loose-packing case, the fluid pressure in the lower part of the 489 

column increases due to the contraction of the granular material in the early stage of the 490 

collapse, with a maximum value of 1200 Pa reached. The high pressure disperses with the 491 

spreading of the granular mass. However, for the dense-packing case in Figure 9, a large 492 

low-pressure zone is observed in the column at the initial collapse stage, and it lasts for quite 493 

some time. It should be pointed out that fully restoration of the water pressure to the 494 

hydrostatic condition is not pursued in the present simulations due to a considerable increase 495 

of the computational efforts. It is shown that the numerical results of the fluid pressure are 496 

consistent with those of Wang et al. (2017b) and Si et al. (2018). The gradient of the fluid 497 

pressure field produces a force on the solid phase. High pressure within the column in the 498 

loose-packing case then leads to an outward force on the solid phase that accelerates the 499 

collapse, while low pressure in the densely packed column leads to an inward force that helps 500 

to stabilize the granular column. Note that in Figure 8(a), due to lowering of the free water 501 

surface, the fluid pressure within the upper column becomes smaller is lower than the 502 

hydrostatic value at the same height. This result is physically more realistic than that of Si et 503 

al. (2018) and Lee and Huang (2018), in which the rigid-lid hypothesis is imposed on the 504 
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water surface and thus the motion of the free surface is neglected. 505 

Effects of the interphase drag force on the granular column collapse are presented in 506 

Figures 10 and 11. The distributions of the computed drag force at representative times in the 507 

two cases are shown in Figure 10.  d s f s F u u , and its norm dF  is normalized by 508 

s g . In both cases, at the initial collapse stage, the water is pulled down from a static state by 509 

the grains that are about to crush. This in turn exerts a strong drag force on the solid particles, 510 

which points inward to the core of the column and hinders the collapse. The magnitude of the 511 

drag force near the column surface where the particles move rapidly is generally larger than 512 

that in the inner zone. At the initial stage of collapse, the magnitude of the drag force in the 513 

densely packed column (with a maximum value of about 0.30 s g ) is much larger than that 514 

in the loosely packed one (with a maximum value of 0.14 s g ), resulting in a more stable 515 

state of the granular mass in the dense-packing case. Besides, in the later stage when the 516 

magnitude of the drag force decreases with the deceleration of the collapse, the drag force in 517 

the main part of the densely packed column at 2.4 st   is still stronger than that in the 518 

loosely packed material at 1.0 st  . Notably, different from the situation in the main body of 519 

the column where the interphase drag helps to stabilize the granular column, in the flow front 520 

the drag force on the solid particles may show a positive effect and drive the granular flow, as 521 

shown in the zoomed-in view in Figure 10(b). Due to the stronger effect of the drag force in 522 

the flow front, the granular flow in the loose-packing case has a longer runout distance than 523 

that in the dense-packing case. 524 

To further identify the effects of the interphase drag force, more simulations of the 525 

collapse are carried out using the present model but excluding the drag force. 0   is set, 526 

while the values of all the other parameters and coefficients are kept the same as in the above 527 

computations. Figure 11 shows comparisons of the computed sequential profiles of the 528 

granular column with and without the formulation of the drag force. In both the loose-packing 529 

and the dense-packing cases, when ignoring the drag force, the columns move faster at the 530 

initial collapse stage, with a wider spread of the particles and a smaller column height H  at 531 

the left end of the tank. However, in the later stage, for the loosely packed column the drag 532 

force on the solid particles drives the front part of the granular flow, as shown in the 533 
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comparisons at 1.0 st   and 2.5 st   in Figure 11(a). The situation is different for the 534 

dense-packing case where the positive effect of the drag force is insignificant. In almost the 535 

entire period of the collapse, the column simulated without the drag effects has a larger runout 536 

distance than that including the interphase drag. Neglect of the drag force results in a longer 537 

duration of collapse in both cases. The computed profiles of the deposit without the drag force 538 

for both loose and dense packing cases are quite similar as shown in Figures 11(a) and 11(b), 539 

which demonstrates that the importance of the initial solid volume fraction on column 540 

collapsing process can be revealed only when the water-sediment drag is properly taken into 541 

account. 542 

3.3 Evolution of water vortices generated by granular column collapse 543 

The simulated evolutions of the water vortices are shown in Figures 12 and 13 to help 544 

understand the two-phase problem better as very few similar studies contain the results of the 545 

vortex evolution and the fluid flow within the porous materials. 546 

The simulated evolutions of vortices generated by the granular column collapse are 547 

shown in Figures 12 and 13. Well representation of the dynamic process of these vortices is an 548 

advantage of the present numerical model. It is shown that at the initial stage of the collapse, a 549 

large vortex is induced by the movement of the solid grains. For the loose-packing case, the 550 

vortex core is around the upper right corner of the column, and the water velocity in the whole 551 

upper column is notable, as shown in Figure 12(a). On the other hand, for the dense-packing 552 

case in Figure 13(a), the vortex core is around the right-side surface of the column, implying 553 

that the column collapse starts from the right side of the surface and propagates inward. The 554 

moving layer of the water flow within the granular mass in the loose-packing case is much 555 

thicker than that in the dense-packing case. During the later stage of the collapse process in 556 

both cases, the vortex propagates and grows with the acceleration of the collapse as shown in 557 

Figures 12(b) and 13(b). Once the front of the granular flow stops, the vortex moves upward 558 

and finally disappears due to the fluid viscosity.  559 

The vortex can induce suspension of solid particles. The areas encircled in Figures 5(b) 560 
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and 6(b) for the particle suspension are in the core of the vortices, as shown in Figures 12(b) 561 

and 13(b). The vortex may also be affected by the fluctuation of free water surface. In Figure 562 

12(a), the vortex is restricted by the free surface, and the sinking of the surface increases the 563 

velocity of the water flowing into the upper part of the porous material, resulting in a 564 

downward drag force on the solid particles in the upper column as shown in Figure 10(a). 565 

4 Sediment transport by dam-break flows 566 

Dam break over a movable bed may cause a significant amount of sediment to be eroded 567 

and transported, leading to substantial changes of the downstream river morphology and 568 

possible damages to infrastructures. It has long been the subject of many experimental and 569 

numerical studies in hydraulic and river engineering (Capart and Young, 1998; Ran et al., 570 

2015). It is also a test case for meshless numerical models of sediment transport (Shakibaeinia 571 

and Jin, 2011; Ulrich et al., 2013; Pahar and Dhar, 2017; Zubeldia et al., 2018). However, due 572 

to the violent free-surface motion and the complex bed-erosion process, development of a 573 

comprehensive numerical model for detailed description of the dam-break erosion is still very 574 

challenging (Shakibaeinia and Jin, 2011). In this section, the proposed two-phase SPH model 575 

is applied to the massive sediment transport caused by dam-break flows to assess its 576 

predicative capability. 577 

The case considered is the two-dimensional experiment of dam break over a mobile-bed 578 

carried out by Spinewine (2005), which has been widely used to validate numerical models 579 

for bed erosion caused by dam-break flows (Ran et al., 2015; Pahar and Dhar, 2017). The 580 

experiment was conducted in a 6-m-long flume, where the bottom was covered by a layer of 581 

saturated movable sediment material. As shown in Figure 14, a clear water column with a 582 

height fh  of 0.40 m was initially blocked by a gate located at the middle of the flume. The 583 

initial thickness of the saturated sediment directly below the clear water was 1=sh 0.07 m, 584 

while that of the saturated bed on the downstream side of the gate was 2 =sh 0.12 m. Thus, an 585 

upward step made up of movable sediment particles was assumed. The bed material was 586 

cylindrical PVC pellets, which had a median equivalent spherical diameter of 3.9 mm, a 587 
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specific density of 1580 kg/m3, a friction angle f  of 38º, and no cohesion. Before lifting the 588 

gate, the PVC pellets were initially compacted to the random close-packing concentration   589 

equal to 0.58. 590 

The computational conditions except those in the width direction of the flume are the 591 

same as those in the experiment. Similar to the simulations of the two-dimensional 592 

underwater granular column collapse, the periodic boundary condition is imposed in the width 593 

direction, and 4 layers of SPH interpolating particles are initially placed along the flume 594 

width for the three-dimensional computations. The dynamic boundary condition is applied to 595 

the bottom and the sidewalls in x  direction, and three layers of SPH particles are fixed to 596 

represent the solid boundaries. The initial size of the SPH interpolating particles is 0.01 m, 597 

and a total of 79272 particles are utilized in the whole computational domain. The initial 598 

sediment volume fraction carried by the SPH particles in the movable bed is set to be the 599 

experimental value. The gate is instantaneously removed, and the effect of the time to remove 600 

the gate is neglected. A sensitivity study on the dam-break flow leading position at t = 0.50 s 601 

is conducted as shown in Table 2. Values of the model parameters used in the present 602 

simulation are summarized in Table 1. The GPU-based parallel computation takes about 90 603 

minutes to simulate 1 second of the physical experiment, with a variable time step of about 604 

64 10 s . 605 

4.1 Model validations 606 

Figure 15 shows the comparisons between the computed and the observed interfaces 607 

separating the three characteristic flow regions: a clear water layer, a moving bed layer with 608 

intense sediment transport and the static sediment bed. profiles of the free water surface and 609 

the eroded bed at representative times. General agreement between the numerical and the 610 

experimental results of all the interfaces both the water surface and the sediment bed is 611 

reasonable, especially for the water surface and the surface of the moving bed in the regions 612 

near the gate, such as at 0 0.6 mx    in Figure 15(b) and at 0 1.0 mx    in Figure 15(d). 613 

At the front of the dam-break wave, the simulated interfaces computed profiles of the water 614 
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surface and the sand bed are also broadly comparable to the experimental results. However, at 615 

0.25 st  , a comparatively large error appears in the profiles of both the water surface and the 616 

moving bed layer granular bed, which is believed to be caused by the neglect of the effect of 617 

gate removal. Fortunately, the gate removal effect diminishes rapidly with the propagation of 618 

the dam-break wave, as shown in Figures 15(b)-15(f) (Fu and Jin, 2016). On the movable bed, 619 

both humps and troughs are well captured, which supports the rheology-based constitutive 620 

law used in the model. 621 

The proposed model is shown to be capable of predicting the characteristic flow and 622 

sediment parameters relevant to engineering practice. The computed values of the flow 623 

Numerical results for the leading position of the flow and the maximum bed height at typical 624 

instants of time are compared with the experimental data in Table 3 Table 2. It is shown that 625 

the model accurately predicts the leading position of the dam-break flow at all the typical 626 

instants except at 0.25 st  , with a mean error of 0.8%. Prediction of the maximum bed 627 

height is also reliable with a mean error of 12.9%, even though the accuracy is lower than that 628 

of the predicted flow leading edge position. 629 

For a further verification of the present model, a flat bed case, i.e., a case in which the 630 

thickness of the saturated bed is the same on both upstream and downstream side of the gate, 631 

or, 1 2 0.12 ms sh h  , is simulated. In the experiment, the initial height of the clear water 632 

column is 0.35 mfh  . The vertical profiles of the longitudinal velocity are measured in the 633 

range from 0.95 mx    to the wave front with a spacing of 0.1 m. Similar to the results 634 

shown in Figure 15, the computed interfaces at all the typical instants are in good agreement 635 

with the experimental data, except at 0.25 st  . A similar presentation of figures is thus 636 

omitted for concision. In Figure 16, comparisons of the horizontal velocity are made while the 637 

computed interfaces are also plotted. Generally, the computed velocity profiles agree very 638 

well with the measured data except at certain positions close to the wave front. In the clear 639 

water layer, the horizontal velocity is shown to be rather uniform, and in the moving bed layer, 640 

it decreases nearly linearly with depth and becomes zero at the top of the static bed. Evolution 641 

of the movable bed is also well represented by the proposed numerical model. 642 
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4.2 Two-phase interactions during bed erosion 643 

In this subsection, to study the water-sediment interactions and further reveal the 644 

underlying mechanisms in the bed erosion, numerical results on fluid pressure, sediment 645 

concentration, velocities of the two phases and interphase drag force at three different stages 646 

of dam-break erosion, namely, the initial stage, the intermediate stage and the final stage, are 647 

discussed for a better understanding of the water-sediment interactions and the underlying 648 

mechanisms in the bed erosion. 649 

4.2.1 Initial stage 650 

Figure 17 16 is the snapshot of particle configuration, along with the distribution of 651 

sediment concentration carried by the SPH particles, and the pressure at 0.15 st  . Even 652 

though the computed bed profiles before 0.25 st   are not accurate enough due to the effect 653 

of the gate removal, which is neglected in the numerical model, the numerical results are still 654 

indicative of the dynamics of bed erosion at the initial stage. Figure 18 17 shows the 655 

distributions of the water velocity in the fluid column and in the granular material, the 656 

sediment velocity over the granular bed, and the drag force on the solid phase. The dotted line 657 

in Figure 17(b) 16(b) and the dashed lines in Figure 18 17 represent the top of the moving bed 658 

layer the bed surface, obtained according to the particle configuration in Figure 17(a) 16(a). 659 

Immediately after the gate is removed, the water in the upper part of the column falls 660 

down and the toe of the water column moves with a maximum velocity of 2.5 m/s. The water 661 

pushes the solid particles on the bed surface to move forward, and pulls the particles and the 662 

fluid in the granular material upward. The bed particles are washed out with a maximum 663 

particle velocity of 2.1 m/s, and the velocity of the fluid flow in the granular material is 664 

notable as well. Note that before removing the gate, the hydrostatic fluid pressure in the bed 665 

on the upstream side of the gate is much larger than that in the bed downstream. This 666 

discontinuity of pressure at the gate position disappears rapidly once the gate is removed. This 667 

process is well simulated by the present model as shown in Figure 17(b) 16(b), where the 668 

computed fluid pressure across the dotted interface is continuous with no apparent fluctuation, 669 

which demonstrates the capability of the present SPH model in predicting fluid pressure 670 
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accurately. 671 

The interphase drag and the fluid pressure play an important role in the bed erosion. 672 

Figure 18(b) 17(b) marks the region in which the magnitude of the dynamic pressure force 673 

d
s f s f s sp p         g  is larger than 0.6 s g  ( g  is the gravitational acceleration). 674 

The vector in Figure 18(c) 17(c) represents the drag force, while the contour stands for the 675 

ratio of the magnitude of the drag force to that of the dynamic pressure force. The contour line 676 

of d
d 1s fp  F  is drawn to show the area where the interphase drag is stronger than the 677 

dynamic pressure force. It shows that at the initial stage of the dam-break erosion, the 678 

magnitudes of the drag force and the dynamic pressure force are quite large, with a value 679 

more than 0.5 s g  near the gate position. The drag force plays a greater role near the bed 680 

surface at the toe of the water column, while the dynamic pressure force is more important at 681 

the leading edge of the dam-break wave. 682 

4.2.2 Intermediate stage 683 

Figure 19 18 shows the particle configuration and the computed pressure at 0.70 st  , 684 

and Figure 20 19 presents the distributions of water velocity, sediment velocity, and 685 

interphase drag force. The lines, marks, and contours are included with the same meanings as 686 

in Figures 17 16 and 18 17. More information can be found in the above subsection. 687 

In Figure 19(a) 18(a), humps and troughs on the granular bed are formed. Sediment 688 

suspension is observed mainly on the lee side of the humps. In Figure 19(b), 18(b) a high 689 

pressure zone is observed at the leading edge of the flow, which is a result of the dam-break 690 

wave impacting on the granular bed. It is noticed that the bumps in the pressure distribution 691 

fall behind the humps on the bed, implying the push of water on the humps. The dam-break 692 

flow propagates with more water involved. At 0.70 st  , a massive amount of water pours 693 

downstream with a maximum velocity larger than 2.5 m/s. It is shown in Figure 20(a) 19(a) 694 

that the velocity in the free-water layer above the bed in the downstream region ( 0 mx  ) is 695 

almost invariant in the vertical direction vertically constant, consistent with the results of Ran 696 

et al. (2015) and Spinewine and Capart (2013). Inside the granular bed, the water velocity 697 

decreases rapidly towards the bottom. In addition, the streamlines have a similar shape of the 698 
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interface between the water and the moving bed layer bed surface. Bed materials flow with 699 

the water, and the magnitude of the sediment velocity on the lee side of the hump seems to be 700 

larger than that on the front side.  701 

It is shown in Figures 19(b) 18(b) and 20(b) 19(b) that the impact on the bed by the 702 

dam-break wave results in a notable region where the dynamic pressure force plays a 703 

significant role. In Figure 20(c) 19(c), the magnitude of the drag force is not as large as that in 704 

Figure 18(c) 17(c). The regions encircled by the contour line where the drag force is greater 705 

than the dynamic pressure force are located mainly in the troughs, where an active sediment 706 

suspension exists. Inside the granular bed, it seems that the dynamic pressure force plays a 707 

more important role than the interphase drag force. 708 

4.2.3 Final stage 709 

Figures 21 20 and 22 21 show the results of dam-break erosion at 1.50 st  , i.e., in the 710 

final stage. In Figure 21(a) 20(a), more sediment is suspended especially in the front part of 711 

the flow, consistent with the observed turbidity above the bed in the experimental flow. The 712 

bed particles are washed away, and the humps are eroded. The computed pressure is 713 

continuous and reasonable. Some high-pressure zones occur at the leading edge of the 714 

dam-break flow as it can be seen in Figure 21(b) 20(b) and similarly large-dynamic pressure 715 

force zone is marked in Figure 22(b) 21(b).  716 

The water velocity in the front part of the dam-break flow is still quite large, and it is the 717 

same for the sediment velocity near the leading edge of the flow. Similar to the situation in the 718 

intermediate stage, the interphase drag force is weak inside the granular material but quite 719 

strong near the moving bed surface. The regions where the magnitude of the drag force is 720 

larger than that of the dynamic pressure force are corresponding to the regions where active 721 

sediment suspension exists. 722 

5 Conclusions 723 

An improved two-phase SPH model based on the continuum formulation description of 724 

solid-liquid mixtures is proposed for massive sediment motion in free surface flows, 725 
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providing a unified description of gravity-induced subaqueous granular flows and shear flow 726 

driven intense sediment transport. A constitutive law based on the rheology of dense granular 727 

flows for the intergranular stresses of the solid phase and a drag force formula that combines 728 

the power law for dilute suspensions and the Ergun equation for dense solid-liquid mixtures 729 

are adopted. For numerical solutions, the governing equations are solved in a distinctive 730 

two-phase SPH framework discretized with the weakly compressible SPH formulation 731 

schemes, and the numerical model is implemented in CUDA and C++. The parallel 732 

computations are conducted on CUDA-enabled GPUs.  733 

The model is employed to investigate the collapses of both loosely and densely packed 734 

columns in water. The computed profiles of the granular columns during the entire collapsing 735 

process are in very good agreement with the experimental data, and the computed 736 

distributions of sediment concentration are also consistent with the experimental observations. 737 

The behaviours of the loosely packed and the densely packed columns are found to be 738 

significantly different and, based on the computed results of fluid pressure and interphase 739 

drag force along with the evolution of water vortices, it is shown that a much lower pressure 740 

and a stronger interphase drag force in the densely packed column lead to a more stable state 741 

of the granular mass in the dense-packing case. 742 

In the case of dam-break flows, the computed profiles of the free water surface and the 743 

movable bed as well as the numerical results for the leading position of the flow and the 744 

maximum bed height are compared with the measured results. It is shown that the numerical 745 

results are in good agreement with the experimental data. Furthermore, to study the 746 

water-sediment interactions during the bed erosion process, the water pressure, sediment 747 

concentration, velocities of the two phases, and interphase drag force in the early, 748 

intermediate, and final stages of the dam-break erosion are computed. The numerical results 749 

indicate that at the initial stage of erosion, the interphase drag plays a greater role near the bed 750 

surface at the toe of the water column, while the dynamic pressure force is more important at 751 

the leading edge of the dam-break flow. In the intermediate and the final stages, the drag force 752 

is greater than the dynamic pressure force in the regions where active sediment suspension 753 

exists, while inside the granular bed, the dynamic pressure force seems to play a more 754 
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important role. 755 

In summary, it is shown that the proposed two-phase SPH model successfully describes 756 

both the gravity-induced underwater granular flows and the intense sediment transport by 757 

flowing water and reasonably represents the physics of massive sediment motion in water. 758 

Further applications of the model to certain practical scenarios in which the two kinds of 759 

flows exist simultaneously such as landslides triggered by storm in shallow sea and flows 760 

resulted in barrier or dam breaks are thus highly possible.  761 
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Figure Captions 899 

Figure 1. Sketch of underwater granular column collapse in Wang et al. (2017b). 900 

Figure 2. Particle configuration at t = 0 s after the gate removal in the loose-packing case. The 901 

red particles are those carrying the initial sediment volume fraction 0.53s   and 902 

represent the granular column. 903 

Figure 3. Comparisons between numerical and experimental results of granular column 904 

profiles for the loose-packing case. Some results computed by the earlier two-phase 905 

SPH model of Shi et al. (2017) are also presented. 906 

Figure 4. Comparisons between numerical and experimental results of granular column 907 

profiles for the dense-packing case. Some results computed by the earlier two-phase 908 

SPH model of Shi et al. (2017) are also presented. 909 

Figure 5. Computed sequential configurations of free water surface and distributions of solid 910 

volume fraction carried by SPH particles for the loose-packing case. In (b), the 911 

region where solid grains are suspended is highlighted with an ellipse. 912 

Figure 6. Computed sequential configurations of free water surface and distributions of solid 913 

volume fraction carried by SPH particles for the dense-packing case. In (b), the 914 

region where solid grains are suspended is highlighted with an ellipse. 915 

Figure 7. Snapshot of the granular columns in the experiment at about t = 0.6 s. The figure is 916 

captured from the original video records of the collapse process on 917 

https://doi.org/10.1063/1.4986502.2. The arrows roughly represent the direction of 918 

the motion of the suspended solid particles in the front part of the granular flow. Top: 919 

the loose-packing case; bottom: the dense-packing case. 920 

Figure 8. Fluid pressure of the SPH particles in the loose-packing case. 921 

Figure 9. Fluid pressure of the SPH particles in the dense-packing case. 922 

Figure 10. Distributions of the computed drag force in the loose-packing case at (a) t = 0.2 s 923 

and (b) t = 1.0 s, and the dense-packing case at (c) t = 0.3 s and (d) t = 2.4 s. The 924 

drag force on the solid particles  d s f s F u u , and its norm dF  is 925 

normalized by s g . 926 

Figure 11. Comparisons of the simulated sequential profiles of the granular columns with and 927 

without the drag force for (a) the loose-packing case and (b) the dense-packing case. 928 

Figure 12. Evolution of the water vortex induced by the collapse of the loosely packed 929 
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granular column. 930 

Figure 13. Evolution of the water vortex induced by the collapse of the densely packed 931 

granular column. 932 

Figure 14. Set-up of the dam-break erosion experiment of Spinewine (2005). 933 

Figure 15. Comparisons between the computed and the measured interfaces separating the 934 

clear water layer, the moving bed layer with intense sediment transport, and the 935 

static sediment bed profiles of the free water surface and the movable bed at (a) t = 936 

0.25 s, (b) t = 0.50 s, (c) t = 0.75 s, (d) t = 1.00 s, (e) t = 1.25 s, and (f) t = 1.50 s. 937 

The “water” in the legend is for the free water surface, while the “moving bed” and 938 

the “static bed” represent the top of the moving bed layer and that of the motionless 939 

sediment bed, respectively. 940 

Figure 16. Comparisons between numerical (red solid lines) and experimental (black dots) 941 

profiles of longitudinal velocity at (a) t = 0.60 s, (b) t = 1.00 s, and (c) t = 1.40 s in 942 

the flat bed case. The black lines are the computed profiles of the free water surface 943 

(solid lines), the top of the moving bed layer (long dashes), and the top of the static 944 

bed (short dashes). 945 

Figure 17. Simulated (a) particle configuration and sediment concentration, and (b) pressure 946 

field at t = 0.15 s. The dotted line in (b) is obtained according to the particle 947 

configuration in (a) and represents the bed surface. 948 

Figure 18. Computed distributions of (a) water velocity in the fluid column and in the 949 

granular material, (b) sediment velocity inside the granular bed, and (c) drag force 950 

on the solid phase at t = 0.15 s. The red dashed lines represent the surface of the 951 

moving bed. The marked region in (b) is where the magnitude of the dynamic 952 

pressure force d
s f s f s sp p         g  is larger than 0.6 s g . The contour 953 

plot in (c) is for the ratio of the magnitude of the drag force dF  to that of the 954 

dynamic pressure force. The contour line of d
d 1s fp  F  is drawn in (c). 955 

Figure 19. (a) Particle configuration and sediment concentration, and (b) pressure field at t = 956 

0.70 s. The high-pressure region due to the wave impact at the leading edge of the 957 

dam-break flow is highlighted in (b). 958 

Figure 20. Same as Figure 18 but for the results at t = 0.70 s. 959 

Figure 21. (a) Particle configuration and sediment concentration, and (b) pressure field at t = 960 
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1.50 s. 961 

Figure 22. Same as Figure 18 but for the results at t = 1.50 s. 962 

Table Captions 963 

Table 1. Model parameters used in this study. 964 

Table 2. Analysis on the sensitivities of granular avalanche front position and column height 965 

in underwater granular column collapse and flow leading position in dam-break 966 

erosion to model parameters in the constitutive law for sediment phase. 967 

Table 3. Comparisons between numerical and experimental results of dam-break flow leading 968 

position and maximum bed height at typical instants of time. 969 

970 
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Table 1. Model parameters used in this study 971 

 972 

Cases fC  sC  n  sm  
1
c  

2
c  0s  K        

2  0I  

Underwater 

granular column 

collapse 

0.1 0.1 5 0.60 1.0 0.1 0.60 3×104 Pa 0.45 0.62 1.5 0.85 0.1 

Sediment transport 

by dam-break 

flows 

0.1 0.1 5 0.58 1.0 0.5 0.58 105 Pa 0.48 0.58 2.5 0.82 0.1 

973 
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Table 2. Analysis on the sensitivities of granular avalanche front position and column height 974 

in underwater granular column collapse and flow leading position in dam-break erosion to 975 

model parameters in the constitutive law for sediment phase. 976 

 977 

Varying 

parameters 

Varying  

ranges 

Underwater granular column collapse 
Sediment transport by 

dam-break flows 

Front position L at 

t = 0.5 s in the 

loose-packing case 

(cm) 

Column height H at 

t = 4.0 s in the 

dense-packing case 

(cm) 

Flow leading position at  

t = 0.50 s 

(m) 

2  tan 1.0   12.1 ~ 11.7 7.0 ~ 7.2 1.16 ~ 1.03 

0I  0.01 ~ 0.09 11.8 ~ 12.0 7.2 ~ 7.0 1.09 ~ 1.11 

1c  0.75 ~ 1.00 11.6 ~ 11.8 7.1 ~ 7.2 1.12 ~ 1.09 

2c  0.01 ~ 1.00 11.9 ~ 11.6 7.1 ~ 7.3 1.14 ~ 1.03 

K  104 ~ 109 11.1 ~ 15.3 7.4 ~ 5.6 1.01 ~ 1.09 

  1.5 ~ 5.5 11.8 ~ 10.5 7.1 ~ 7.7 1.03 ~ 1.14 

 978 

979 
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Table 3. Comparisons between numerical and experimental results of dam-break flow leading 980 

position and maximum bed height at typical instants of time. 981 

 982 

 

Leading position of 

dam-break flow (m) 

Maximum bed  

height (cm) 

Exp. Comp. Exp. Comp. 

t = 0.25 s 0.56 0.69 5.7 7.4 

t = 0.50 s 1.16 1.15 8.2 8.0 

t = 0.75 s 1.74 1.75 11.6 8.9 

t = 1.00 s 2.17 2.15 8.2 7.8 

t = 1.25 s 2.54 2.54 7.4 6.1 

t = 1.50 s 2.93 2.98 5.5 6.4 

983 
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 984 

Figure 1. Sketch of underwater granular column collapse in Wang et al. (2017b). 985 

986 
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 987 

Figure 2. Particle configuration at t = 0 s after the gate removal in the loose-packing case. The 988 

red particles are those carrying the initial sediment volume fraction 0.53s   and represent 989 

the granular column. 990 

991 
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 992 

Figure 3. Comparisons between numerical and experimental results of granular column 993 

profiles for the loose-packing case. Some results computed by the earlier two-phase SPH 994 

model of Shi et al. (2017) are also presented. 995 

996 
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 997 

Figure 4. Comparisons between numerical and experimental results of granular column 998 

profiles for the dense-packing case. Some results computed by the earlier two-phase SPH 999 

model of Shi et al. (2010) are also presented. 1000 

1001 
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 1002 

Figure 5. Computed sequential configurations of free water surface and distributions of solid 1003 

volume fraction carried by SPH particles for the loose-packing case. In (b), the region where 1004 

solid grains are suspended is highlighted with an ellipse. 1005 

1006 
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 1007 

Figure 6. Computed sequential configurations of free water surface and distributions of solid 1008 

volume fraction carried by SPH particles for the dense-packing case. In (b), the region where 1009 

solid grains are suspended is highlighted with an ellipse. 1010 

1011 
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 1012 

Figure 7. Snapshot of the granular columns in the experiment at about t = 0.6 s. The figure is 1013 

captured from the original video records of the collapse process on 1014 

https://doi.org/10.1063/1.4986502.2. The arrows roughly represent the direction of the motion 1015 

of the suspended solid particles in the front part of the granular flow. Top: the loose-packing 1016 

case; bottom: the dense-packing case. 1017 

1018 
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 1019 

Figure 8. Fluid pressure of the SPH particles in the loose-packing case. 1020 

1021 
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 1022 

Figure 9. Fluid pressure of the SPH particles in the dense-packing case. 1023 

1024 
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 1025 

Figure 10. Distributions of the computed drag force in the loose-packing case at (a) t = 0.2 s 1026 

and (b) t = 1.0 s, and the dense-packing case at (c) t = 0.3 s and (d) t = 2.4 s. The drag force on 1027 

the solid particles  d s f s F u u , and its norm dF  is normalized by s g . 1028 

1029 
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 1030 

Figure 11. Comparisons of the simulated sequential profiles of the granular columns with and 1031 

without the drag force for (a) the loose-packing case and (b) the dense-packing case. 1032 

1033 
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 1034 

Figure 12. Evolution of the water vortex induced by the collapse of the loosely packed 1035 

granular column. 1036 

1037 
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 1038 

Figure 13. Evolution of the water vortex induced by the collapse of the densely packed 1039 

granular column. 1040 

1041 
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 1042 

Figure 14. Set-up of the dam-break erosion experiment of Spinewine (2005). 1043 

1044 
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 1045 

Figure 15. Comparisons between the computed and the measured interfaces separating the 1046 

clear water layer, the moving bed layer with intense sediment transport, and the static 1047 

sediment bed profiles of the free water surface and the movable bed at (a) t = 0.25 s, (b) t = 1048 

0.50 s, (c) t = 0.75 s, (d) t = 1.00 s, (e) t = 1.25 s, and (f) t = 1.50 s. The “water” in the legend 1049 

is for the free water surface, while the “moving bed” and the “static bed” represent the top of 1050 

the moving bed layer and the motionless sediment bed, respectively. 1051 

1052 
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 1053 

Figure 16. Comparisons between numerical (red solid lines) and experimental (black dots) 1054 

profiles of longitudinal velocity at (a) t = 0.60 s, (b) t = 1.00 s, and (c) t = 1.40 s in the flat bed 1055 

case. The black lines are the computed profiles of the free water surface (solid lines), the top 1056 

of the moving bed layer (long dashes), and the top of the static bed (short dashes). 1057 

1058 
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 1059 

Figure 17. Simulated (a) particle configuration and sediment concentration, and (b) pressure 1060 

field at t = 0.15 s. The dotted line in (b) is obtained according to the particle configuration in 1061 

(a) and represents the bed surface. 1062 

1063 
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 1064 

Figure 18. Computed distributions of (a) water velocity in the fluid column and in the 1065 

granular material, (b) sediment velocity inside the granular bed, and (c) drag force on the solid 1066 

phase at t = 0.15 s. The red dashed lines represent the surface of the moving bed. The marked 1067 

region in (b) is where the magnitude of the dynamic pressure force 1068 

d
s f s f s sp p         g  is larger than 0.6 s g . The contour plot in (c) is for the ratio of 1069 

the magnitude of the drag force dF  to that of the dynamic pressure force. The contour line 1070 

of d
d 1s fp  F  is drawn in (c). 1071 

1072 
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 1073 

Figure 19. (a) Particle configuration and sediment concentration, and (b) pressure field at t = 1074 

0.70 s. The high-pressure region due to the wave impact at the leading edge of the dam-break 1075 

flow is highlighted in (b). 1076 

1077 
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 1078 

Figure 20. Same as Figure 18 but for the results at t = 0.70 s. 1079 

1080 
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 1081 

Figure 21. (a) Particle configuration and sediment concentration, and (b) pressure field at t = 1082 

1.50 s. 1083 

1084 
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 1085 

Figure 22. Same as Figure 18 but for the results at t = 1.50 s. 1086 


