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Abstract

Shelf seas are relatively small regions. They account for 9% of the ocean’s

area and less than 0.5% of the ocean’s volume (Simpson and Sharples,

2012). Despite their relatively small size shelf seas play a key role in

global biogeochemical cycles. It is estimated that 20% of the global ocean

annual primary production (Behrenfield et al., 2005) and 79% of the to-

tal CO2 oceanic intake occurs in shelf seas (Jahnke, 2010). The physics

governing cross-shelf transport and exchange between the shelf and the

ocean impact the shelf sea biogeochemical cycles. For instance, the NW

European shelf is generally seen as a net carbon sink (Hartman et al.,

2018) with carbon thought to be exported from the shelf into the ocean

(Thomas et al., 2004; Painter et al., 2017). In addition, it is estimated

that globally about 56-58% and 85-90% of the phosphorus and nitrogen

required by shelf seas to maintain high productivity are supplied from

the ocean (Liu et al., 2010). Therefore, understanding the mechanisms

governing transport, both within the shelf and in shelf-ocean exchange,

will help to better comprehend how the high productivity of shelf seas is

supported and how export of shelf seas contributes to the global carbon

cycles.

This thesis focuses on the temperate and wide Celtic Sea, where it is

unclear how nutrients supplied either at the shelf break or near the coast

are transported into the interior of the shelf to sustain primary produc-

tivity or, conversely how carbon is exported from the shelf to drive net



shelf sea absorption of atmospheric CO2. This research particularly fo-

cuses on the mechanisms supplying and transporting nutrients onto and

across the Celtic Sea.

Results indicate that throughout summer, due to wind-driven dynam-

ics, nutrients are chiefly supplied from the North Atlantic onto the outer

Celtic Sea and on the shelf, nutrients are advected across the shelf in

the bottom mixed layer. At the shelf edge off-shelf export in the bottom

layer was found to be negligible. In the interior of the Celtic Sea evidence

of stratification being maintained by wind-driven advection of relatively

high salinity waters in the bottom layer was observed in late-autumn

2014 and spring 2015.
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Chapter 1

Introduction

Shelf seas are characterised as shallow areas with depths typically less

than 200 m and smooth sloping seabed. These regions account for only

7% of the ocean’s area and 0.5% of the ocean’s volume (Simpson and

Sharples, 2012). However, despite their relatively small size, about 20%

of the global ocean annual primary production is estimated to occur in

shelf seas (Behrenfield et al., 2005; Jahnke, 2010). Primary production is

controlled by the role that the physics of stratification and mixing plays

in controlling phytoplankton access to light and nutrients. A key event

in the seasonality of primary production is the spring bloom, triggered

by the onset of stratification (Pingree et al., 1976; 1977; Poulton et al.,

2018).

The general view is that stratification over most of the shelf is triggered

by atmospheric heat input. However, the vertical distribution of salinity

may be important in generating a stable water column (Pingree et al.,

1976; Hill et al., 1997). Once the water column stabilises in spring, phy-

toplankton located above the pycnocline in the euphotic zone increase

their biomass whilst nutrients are available (Pingree et al., 1976, 1977;

Hickman et al., 2018). About 56-58% and 85-90% of the phosphorus and

nitrogen required to maintain high productivity in shelf seas are thought

to be supplied from the open ocean (Liu et al., 2010). The total dissolved
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inorganic nitrogen supply to shelf seas has been estimated to be 27-40

Tmol N yr−1 (Walsh 1991). Globally rivers are estimated to supply 2.5-

3.5 Tmol N yr−1 and 0.68-0.71 Tmol P yr−1 accounting only for 10-14

and 42-44% of the shelf sea needs for N and P, respectively (Liu et al.,

2010). The role of riverine nutrients in fuelling shelf sea primary produc-

tion is less well understood. Processing of nutrients within estuaries and

the coastal zone will reduce the effects of riverine nutrients further out

in the shelf sea (Sharples et al., 2017).

The physical mechanisms governing the nutrient supply from rivers and

the ocean set the nutrient budget available for biological processes. They

also affect the fate of the primary production, i.e. the transport of carbon

within the shelf system and between the shelf and the open ocean. Tem-

perate shelf seas are generally seen to be net sinks for atmospheric CO2

(Thomas et al., 2004; Chen, 2010; Jahnke, 2010), driven by a combination

of carbon fixation by the shelf phytoplankton and seasonal temperature

changes (Liu et al., 2010). For instance, in winter the shelf-water column

absorbs a larger influx of atmospheric CO2, due to greater solubility of

the water column, that remains in the bottom mixed layer once strat-

ification is established again (Chen, 2010; Liu et al., 2010). Shelf seas

account for 79% of the total CO2 oceanic intake (Jahnke, 2010) resulting

in 0.23-0.28 Pg C yr−1. Therefore, understanding the mechanisms gov-

erning transport, both within the shelf sea and in shelf-ocean exchange,

will help to better comprehend how the high productivity of shelf seas

is supported and how shelf sea primary production contributes to the

global carbon cycle.

The focus of this thesis is on the Celtic Sea of the NW European shelf,

a wide shelf sea, where it is unclear how nutrients supplied either at the
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shelf edge or near the coast are transported into the interior to sustain

primary productivity or, conversely, how carbon is exported from the

shelf to drive net shelf sea absorption of atmospheric CO2. This research

particularly focuses on the mechanisms supplying and transporting nu-

trients onto and across the temperate and wide shelf of the Celtic Sea.

In the following introduction the processes that govern transport across

shelf seas and exchange with the open ocean are described, followed by

a broad description of the oceanography of the Celtic Sea.

1.1 Theoretical Background

1.1.1 Taylor-Proudman Theorem

Exchange between the ocean and shelf seas is hindered by the nature of

geostrophic flows. If we consider a steady flow, the frictional forces are

negligible, e.g. far from the seabed and with no stress applied at the sea

surface, and at relatively long spatial scales, leading to a small Rossby

number (Ro), so the non-linear terms ((u∇)u) can be disregarded from

the equations of motion, we get a balance between the pressure gradient

force and the Earths rotation. If we assume hydrostatic pressure variation

in the vertical the equations of motion are reduced to:

−fv = − 1

ρ0

∂P

∂x
(1.1)

fu = − 1

ρ0

∂P

∂y
(1.2)

0 = − 1

ρ0

∂P

∂z
− g (1.3)

and the continuity equation is:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (1.4)
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Some of the constraints on geostrophic flows can be understood by elim-

inating the pressure terms by taking the y-derivative of eq. (1.1) and

adding it to the x-derivative of eq. (1.2) as follows:

∂u

∂x
+
∂v

∂y
=

1

fρ0

(
− ∂2P

∂y∂x
+

∂2P

∂y∂x

)
(1.5)

leading to:

∂u

∂x
+
∂v

∂y
= 0 (1.6)

and the continuity eq. (1.4) requires that:

∂w

∂z
= 0 (1.7)

This is the Taylor-Proudman theorem, which applies to slowly varying

flows in a homogeneous, rotating, inviscid fluid. The last restriction

(1.7) implies that geostrophic flow cannot cross isobaths and must flow

along them. Thus cross-shelf exchange is limited by the tendency of

geostrophic flows to follow bathymetric contours (Allen et al., 2009). If

isobaths converge the flow will accelerate (e.g. Oke and Middleton, 2000).

Thus, topography combined with the Earths rotation constrains large-

scale flows from crossing the shelf edge. Geostrophic currents present

zero divergence. Transfer across isobaths is enabled only when the flow

is not geostrophic, in the boundary layers near the surface and seabed

where frictional effects are important, or at large Rossby numbers giving

rise to non-linear flow. All mechanisms that exchange water across the

shelf break require one or more assumptions underlying geostrophy to be

invalid.
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1.1.2 Cross-slope exchange mechanisms

Wind-driven exchange

Wind stress acting on the sea surface, combined with the Earths rotation,

leads to a net transport of upper ocean water (the ”Ekman Layer”) to

the right of the wind direction (northern hemisphere) (Ekman, 1905).

In terms of exchanging water between the shelf and the open ocean, we

can consider a wind stress parallel with the coast or shelf edge aligned

along the y-axis as described in Figure 1.1. As the wind stress starts,

water in the surface layer will initially accelerate in the same direction of

the wind. Where depth allows the existence of a surface boundary layer,

after 1 inertial period the Coriolis force balances the frictional force of the

wind stress. Subsequently the alongshore transport is deflected offshore

in the surface Ekman layer (Fig. 1.1). Transport (U) within the Ekman

layer can be quantified as:

U =
τy
fρ

(1.8)

and if we vertically integrate the continuity eq. (1.4) we get:

∂U

∂x
= −w (1.9)

Thus the divergence of flow near the coast results in vertical velocities (eq.

1.9) and generates upwelling of relatively cold and nutrient-rich waters

from the subsurface to replenish waters transported offshore (Fig.1.1).

Along with the upward flow, mass conservation triggers a compensatory

onshore current below the surface Ekman layer as described in Figure

1.1. Once the water from the lower layer is advected onshore by the

upwelling mechanism, its shoreward motion is abruptly halted (Austin

and Lentz, 2002; Tilburg, 2003), and the cold water remains at the inner

shelf where it is subject to an advective-diffusive balance (Austin and

Lentz, 2002). In contrast, wind stress aligned with the coast but in the
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opposite direction generates convergence at the coast and leads to down-

welling of surface waters. During downwelling events the water column

becomes unstable because cross-shelf circulation forces lighter water un-

der denser water, driving convection and turbulent mixing occurs (Austin

and Lentz, 2002; Pedlosky, 2007).

Figure 1.1: Wind-driven upwelling schematics. Modified from Talley et
al. (2011).

Bottom Ekman transport

Far from the sea bed friction between geostrophic flows and the bot-

tom is negligible. However, friction governs dynamics within the bottom

boundary layer (DB) resulting in a gradual decrease of the velocity close

to the seabed. Similar to the cross-slope wind driven flow that is caused

by an external stress, cross-slope flow within the bottom boundary layer

is generated by the drag of the bottom on an along-slope geostrophic flow

(Simpson and Sharples, 2012). The stress is proportional to the squared

geostrophic current above the bottom boundary layer. In the northern

hemisphere the flow within the bottom boundary layer is deflected to the

left of the direction of the geostrophic current. The cross-slope transport

(UB) can be calculated using the velocity of the geostrophic flow (vg)

as follows (Cushman-Roisin and Beckers, 2009; Simpson and Sharples,
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2012):

UB =
vg
2
DB (1.10)

Transport in the bottom boundary is replenished above the bottom bound-

ary layer by flow in the opposite direction.

Cross-slope transport within the bottom boundary layer is an impor-

tant shelf-deep ocean exchange mechanism that has been seen in sev-

eral regions. For example, along the eastern edge of the Yucatan shelf,

Moliniari and Morrison (1988) reported encroachment of the Yucatan

Current upon the shelf. During these events the current was topographi-

cally controlled along the eastern shelf break resulting in an ageostrophic

flow enhancing transport across isobaths through the bottom bound-

ary layer. Oke and Middleton (2000) in the eastern shelf of Australia

reported that the alongshelf flow accelerates as a consequence of the nar-

rowing of the shelf. This increase in velocity enhances the bottom stress,

generating a stronger onshore flow through the bottom boundary layer

and transporting nutrient-rich waters from the subsurface to the surface.

On the other hand, an example of downwelling or Ekman drainage has

been described on the NW European shelf (Souza et al., 2001; Holt et

al., 2009; Simpson and Mcandliss, 2013). The geostrophic flow heads

poleward along the shelf break slope and exports shelf waters into the

North Atlantic Ocean in the bottom layer. The Ekman drainage is an

important mechanism for export of carbon from shelf seas into the ocean

(Simpson and Mcandliss, 2013; Painter et al., 2017), in contrast to the

upwelling case which is important for nutrient supply.

Cascading

An efficient process in transporting water through the bottom bound-

ary layer into the ocean is cascading (Huthnance, 1995). Cascades occur
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when dense water formed on the continental shelf become unstable, spills

over the shelf edge and descends down the shelf slope as a gravity cur-

rent near the bottom (Cooper and Vaux, 1949; Hill et al., 1998; Ivanov

et al., 2004). Cascading events have been reported on several shelves all

around the world (Ivanov et al., 2004). However it is possible that these

events occur only once per year for short periods (few days), when the

environmental conditions are favourable for cascading, and that they are

highly intermittent (Huthnance et al., 2009).

Several mechanisms contribute to the formation of relatively dense water

on the shelf and depend on the local environmental conditions. For in-

stance, in the Gulf of California strong summer evaporation (1 m yr−1)

and moderate winter cooling occur (Ivanov et al., 2004). High salinity

waters are found throughout the shallow northern gulf in summer and

autumn. During winter, the water temperature cools, further increasing

the water density and triggering a density current. In this case, tem-

perature and salinity contribute equally to the initiation of the cascade

(Lavin et al., 1995). Another example has been reported off the west

coast of Scotland in the Malin Shelf (Hill et al., 1998). In winter con-

vection occurs up to 200 m on the shelf whilst in the adjacent ocean

penetrated up to at least 500 m. However, the temperature difference

between the ocean and the slope, where a poleward current occurs and

transports waters with relatively high salinity, is not enough to onset the

cascading mechanism. The high salinity of the slope current combined

with the relatively cold waters trigger the cascading event.

Internal waves

Cross-slope exchange can also be produced by the action of internal tidal

waves. These internal waves are generated by the barotropic tide flowing
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over steep topography, onto and off the shelf (Fig. 1.2). In a stratified

water column, the pycnocline is uplifted and depressed as the barotropic

tidal flow moves on- and off-shelf. The vertical movement of the py-

cnocline results in the generation of waves propagating onto the shelf

and into the open ocean in the tidal frequency. In the Celtic Sea inter-

nal waves can propagate up to 170 km from the shelf edge (Inall et al.,

2011). The periodicity of this motion is rapid enough to not be limited

by geostrophic constraints (Simpson and Sharples, 2012).

Figure 1.2: Generation of internal waves by the barotropic tidal flow.
From Simpson and Sharples (2012).

Internal waves generate enhanced turbulence and mixing (Simpson and

Sharples, 2012) that modify the vertical flux from the nutrient-rich bot-

tom waters onto the surface layer (Sharples et al., 2001; Sharples et al.,

2007). In addition, propagation of these waves results in baroclinic flows
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that may contribute to net exchange between the shelf and the ocean.

For instance, Inall et al (2001) described off-shelf flow in the bottom layer

of 5 m2 s−1 for 1.5 hours sustained by internal waves. Another example

was reported by Hopkins et al. (2012) in the Celtic Sea. Lenses of rela-

tively high salinity water from the North Atlantic intruded up to 100 km

on-shelf within the pycnocline layer. The intrusion of high salinity was

attributed to the second baroclinic mode of an internal wave.

Non-linear flow

Geostrophic currents flow along isobaths. However, sharp changes in

topography may result in large radial accelerations resulting in the non-

linear terms to be significant (Simpson and Sharples, 2012). To describe

geostrophic flows, we assumed that the rotation of the Earth and the

pressure gradient force dominated the dynamics of the flow and hence

we neglected the non-linear terms from the equation of motion. In order

to discern whether these terms should be neglected we used the spatial

Rossby number (Ro) defined as follows:

Ro =
u

fL
(1.11)

where u is the along-slope current speed and L is the length scale over

which the flow has to vary. In the context of geostrophic flows along

the shelf slope, L would be the radius of curvature of the bathymetry.

Ro compares the relative importance between the Coriolis and inertial

acceleration as the flow attempts to remain parallel to the isobaths. If

>0.1 the flow is ageostrophic (Simpson and Sharples, 2012) and therefore

the non-linear terms cannot be neglected. An example of non-linear flow

can be seen in the Kuroshio region where the Kuroshio current crosses

the 200 m isobath (Hsueh et al., 1996; Centurioni et al., 2004) and is

controlled by sharp changes in topography giving rise to the non-linear
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terms (Hsueh et al., 1996).

1.1.3 Oceanography of the Celtic Sea

The Celtic Sea is a wide shelf sea (>500 km) and can be considered a

transition zone between the oceanic Atlantic waters at the margins of

the European Continental shelf and the low salinity waters of the Bristol

Channel and the Irish Sea (Brown et al., 2003; Uncles, 2010). Winter is

the wettest period (Pingree, 1980) and results in the maximum riverine

discharge into the Bristol Channel (Uncles and Rashford, 1980; Uncles,

2010). Compared to winter, freshwater input is a minimum throughout

the rest of the year (Uncles and Rashford, 1980; Uncles, 2010). Low

salinity waters from the Bristol Channel are supplied into the Celtic Sea

(Uncles, 2010) and are directed northward towards the Irish Sea (Uncles,

2010). Therefore, the effects of the low salinity water from the Bristol

Channel further into the interior of the shelf are expected to be limited.

Off the mouth of the Bristol Channel, low salinity may contribute up to

50% of the buoyancy input in summer (Brown et al., 2003; Young et al.,

2004).

In winter the Celtic Sea is fully mixed. A combination of heat loss,

intensified wind stress and tides generate a homogenous water column

(Pingree et al., 1976; Pingree, 1980; Simpson, 1981; Wihsgott et al.,

2019). Across the shelf a salinity and temperature gradient occurs, with

saltier and warmer waters at the shelf edge (Pingree, 1980). This salinity

gradient is intensified in the north of the Celtic Sea by the low salinity

waters supplied from the Bristol Channel (Uncles, 2010). Across the shelf

it is thought that horizontal gradients in temperature and salinity at least

partially compensate in their effect on density, as the water is cooler and

fresher towards the coast (Pingree, 1980). In summer, away from the
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coasts and the influence of estuaries, surface heating is the predominant

factor (85-90%) in determining the density of the water column (Brown

et al., 2003) and the onset of stratification (Wihsgott et al., 2019). Over

large areas of the shelf the mean annual contribution of salinity to sur-

face buoyancy is relatively small. Nonetheless, in the early part of the

stratified period, when the rate of surface heating is low, the relative

importance of salinity differences may be important in determining the

density structure (Pingree et al., 1976; Hill et al., 1997; Horsbourgh et

al., 1998).

In summer the circulation in the Celtic Sea is governed by a cyclonic

baroclinic jet associated with a dense (cold and saline) pool of bottom

water at the boundary between the Irish Sea and the Celtic Sea (Hors-

bourgh et al., 1998; Brown et al., 2003; Young et al., 2004). The low

temperature feature is localized in summer and generated when saline

and cold winter water is left at the bottom in a depression (the Celtic

Deep) after the formation of the pycnocline (Young et al., 2004). The

cyclonic circulation transports relatively high salinity waters from the

south. It has been inferred that high salinity waters from the North At-

lantic are transported across the shelf eventually reaching the Irish Sea

(Hydes et al., 2004; Bowers et al., 2013) and are gradually diluted as they

move northward (Brown et al., 2003; Gowen and Stewart, 2005). In ad-

dition, low salinity waters from the Bristol Channel are transported into

the north western region of the Celtic Sea, off the coast of Ireland, by the

cyclonic circulation (Horsburgh et al. 1998; Brown et al., 2003). East

of the Celtic Sea, the English Channel is supplied with relatively high

salinity waters originated in the North Atlantic through the Celtic Sea

(Uncles and Stephens, 2007) and probably are transported by an east-

ward flow near the shelf edge of the Celtic Sea (Pingree and Le Cann,
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1989).

Along the shelf break a poleward along-slope current centred on the 500

m isobath has been observed in the NW European shelf (Souza et al.,

2001; Simpson and Mcandliss, 2013). This current has a maximum flow

in winter (0.05 m s−1) (Pingree and Le Cann, 1989). Nonetheless, the flow

may reverse and head southward in summer (Porter et al., 2016). The

poleward along-slope flow transports warmer and saltier waters from the

south (Hill et al., 1998; Pingree et al., 1999). Associated with this flow,

long term simulations have calculated a net downwelling along the Euro-

pean shelf break in the bottom boundary layer (1.2 sv) leading to export

of shelf waters from the Hebridean shelf into the North Atlantic (Holt et

al., 2009; Simpson and Mcandliss, 2013). In the Celtic Sea evidence of

exchange with the North Atlantic has been observed at the shelf break.

The prevailing winds are from the west-southwest with a tendency for

more south westerly winds (Pingree, 1980) and are favourable for surface

off-shelf transport. Pingree and LeCann (1990) observed wind-driven

southward surface currents at the shelf edge. Cross-slope exchange gen-

erated by internal waves has also been reported at the shelf break of the

Celtic Sea (Inall et al., 2001; Hopkins et al. 2012). Nonetheless internal

waves can be generated in the interior of the shelf as well (Palmer et al.,

2013), as sharp changes in topography occur across and along the Celtic

Sea (e.g. Jones Bank). Due to transport generated by internal tides

oceanic waters may intrude up to 100 km on-shelf within the pycnocline

(Hopkins et al., 2012). The general view is that transport between the

Celtic Sea and the North Atlantic is governed by nonlinear waves gen-

erated by the internal tide (Sharples et al., 2007; Hopkins et al., 2012),

wind-driven Ekman transport (Huthnance et al., 2009) and transport in

the bottom boundary layer (Huthnance et al., 2009; Porter et al., 2016).
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1.1.4 Shelf Sea Biogeochemistry programme and project

data

The Shelf Sea Biogeochemistry programme was developed to understand

the influence of shelf seas in the wider and global biogeochemical cy-

cles. The programme aims to better comprehend the role of shelf seas in

processes such as carbon storage, cycling of key nutrients and determin-

ing primary and secondary production. A specific objective of the pro-

gramme is to assess the role of cross-slope exchange mechanisms between

the shelf seas and the ocean. Assessment of the cross-slope exchange

mechanisms will identify the relative importance in carbon storage and

cycling of oceanic water supply onto the shelf and export of shelf waters

into the ocean.

Within the Shelf Sea Biogeochemistry programme 9 oceanographic cam-

paigns were carried out between March 2014 and August 2015 to assess

the vertical and horizontal distribution of sea water properties of the

Celtic Sea. The study of the shelf sea was complemented with time se-

ries of salinity and temperature and current measurements from moorings

across the shelf. In addition, autonomous vehicles (gliders) sampled the

Celtic Sea in-between oceanographic cruises.

For the development of this thesis, CTD and nutrient data sampled dur-

ing 9 oceanographic cruises were combined with hydrographic data from

the shelf slope collected by gliders. Temporal variability was analysed by

using the time series of freshwater discharge, salinity, temperature and

horizontal velocities. The atmospheric influence on the water column

was assessed with meteorological buoys and remote sensing data.
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1.1.5 Thesis structure

Chapter 2 uses a series of cross-shelf CTD section in the Celtic Sea to pro-

vide a seasonal summary of how the hydrographic and nutrient (nitrate)

structure of the Celtic Sea changes. The amount of nutrients supplied

from riverine discharge and the shelf edge are estimated. Evidence of nu-

trients being advected across the shelf is presented and is used to provide

an estimate of the relative importance of physical advection and reminer-

alisation of nutrients. This chapter is an overview of the oceanographic

features that will be analysed and explained in more detail throughout

the thesis.

In chapter 3 some of the oceanographic features described in chapter

2 are elucidated. These features include the dynamics behind exchange

between the Celtic Sea and the North Atlantic Ocean within the pyc-

nocline and the mechanisms driving cross-shelf advection. A particular

focus is on the relative roles of wind-driven transports and transport as-

sociated with internal tidal waves in summer.

Chapter 4 explains the physical processes driving the supply of nutrients

from the North Atlantic Ocean onto the Celtic Sea and under which forc-

ing mechanisms cross-slope exchange is inhibited in autumn and winter.

The implications of this inhibition on the dynamics of the Celtic Sea are

explained. In addition, input of fresher waters from the Bristol Channel

and exchange at the shelf edge in winter are assessed. It is found that

nutrients are supplied from the ocean onto the Celtic Sea throughout

summer and that cross-slope exchange is minimum in late-autumn and

winter.

In chapter 5 the driving mechanisms and the effects of cross-shelf trans-
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port on the onset and maintenance of stratification in spring are elu-

cidated. A comparison between spring 2014 and 2015 is carried out,

illustrating that the general view that spring stratification is triggered

by surface heating does not always hold; wind stress combined with the

horizontal salinity gradient can also play a role.
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Chapter 2

Seasonality in the Cross-Shelf
Physical Structure of a
Temperate Shelf Sea and the
Implications for Nitrate
Supply

This chapter is an article currently in press. The full citation is:

Ruiz-Castillo, Eugenio, Jonathan Sharples, Jo Hopkins, Malcolm Wood-
ward. 2018. Seasonality in the Cross-Shelf Physical Structure of a Tem-
perate Shelf Sea and the Implications for Nitrate Supply. Progress in
Oceanography. In press. https://doi.org/10.1016/j.pocean.2018.07.006

Abstract

We address a long-standing problem of how nutrients are transported

from the shelf edge and from rivers to support regular, seasonal primary

production in the interior of a wide, temperate, shelf sea. Cross-shelf

sections of hydrography and nutrients, from a series of cruises between

March 2014 and August 2015, along with time series of river discharge

and river nutrient load are used to assess the seasonality of cross-shelf

transports. Riverine nitrogen inputs are estimated to account for 30%

of the nitrate available for the spring bloom on the inner shelf, and 10%

in the mid- to outer-shelf. In the bottom layer in summer, high salinity,

nutrient-rich waters are transported on-shelf as a result of wind-driven
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Ekman transport, cross-shelf pressure gradients and/or internal tidal

wave Stokes drift. In the centre of the shelf this advection is respon-

sible for 25% of the increase in bottom water nitrate seen between April

and November 2014. The remaining nitrate increase suggests that about

50-62% of the nitrogen fixed into organic material during spring, summer

and autumn phytoplankton growth is recycled in the bottom water over

the 12 months between March 2014 and March 2015. In winter, when the

water column is vertically mixed, there is a weak net off-shelf transport

of about 1 m2 s−1, possibly driven by a reversal of the horizontal density

gradient caused by excess cooling of shallower shelf waters. Overall, shelf

nitrate concentrations are maintained by a combination of riverine sup-

ply, recycling of organic material, and summer on-shelf transports. We

suggest that the main driver of inter-annual variability in pre-spring ni-

trate concentrations is variability in the depth of the winter mixed layer

over the shelf slope.

2.1 Introduction

Compared to their relatively small size, continental shelves are highly

productive regions. Despite accounting for only 9% and 0.5% of the

oceans area and volume respectively (Simpson and Sharples, 2012), it

is estimated that 20% of the global ocean annual primary production

takes place on continental shelves (Behrenfeld et al., 2005; Jahnke, 2010).

Globally, rivers supply about 1.6 Tmol of dissolved inorganic nitrogen

(DIN: NO2, NO3 and NH4) per year with about 25% of this thought to

be used by biogeochemical processes on the shelf (Sharples et al., 2017).

However, DIN supplied from rivers is generally low compared to oceanic

input. The open ocean is generally viewed as the dominant source of

nutrients to the shelf, supplying between 85-90% of the nitrogen and 56-

58% of the phosphorus required by shelf seas (Liu et al., 2010).
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For a wide continental shelf sea it is unclear how nutrients supplied at the

coastal and ocean boundaries are transported into the interior of the shelf

to drive primary production. The concept of a down-welling circulation

as a mechanism for driving the continental shelf pump (Holt et al., 2009),

where waters enter the shelf at the surface and leave at depth, is able to

account for the export of carbon off-shelf but does not provide a physical

means of nutrient supply to bottom waters. The nutrient distribution

along and across a shelf will be controlled by the particular seasonal dy-

namics of the shelf (e.g. Liu et al., 2000; Roughan and Middleton, 2002).

The question we address here concerns how nutrients supplied either at

the open ocean or coastal boundaries of a wide, temperate shelf system

are able to penetrate into the interior of the shelf sea to support the reg-

ular seasonal high primary production (e.g.Seguro et al.,2017; Hickman

et al., 2018).

The focus of this study is the Celtic Sea (Fig. 2.1), an approximately

500 km wide section of the Northwest European Shelf (Huthnance et al.

2009). It is supplied with low salinity water from the Bristol Channel

(Uncles, 1984; Hydes et al., 2004), as seen in Figure 1, and is connected

to the deep Northeast Atlantic Ocean across a steep shelf edge. The hy-

drography of the Bristol Channel is mainly linked to seasonal variability

in the riverine flows, (e.g. Uncles, 2010). Winter is the wettest season

in the region (Pingree, 1980) and the freshwater flow into the Bristol

Channel is a maximum during this period (Uncles and Radford, 1980;

Uncles, 2010). The shallow water depth and strong tidal currents within

the Bristol Channel ensure that the water column is mixed throughout

the year (Uncles, 2010). During the summer near the mouth of the Bris-

tol Channel, freshwater may contribute to 50% of the buoyancy input
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(Brown et al., 2003; Young et al., 2004). Beyond the mouth, the fresher

waters strengthen horizontal gradients in the northern Celtic Sea (Brown

et al., 2003; Young et al., 2004). However, the buoyant low salinity water

from the Bristol Channel is mainly diverted northward by the effect of

the Earths rotation, so its influence across the wider Celtic Sea to the

south is likely to be limited. In contrast, it has been inferred that high

salinity water from the Atlantic Ocean makes its way across the Celtic

Sea and into St. Georges Channel (e.g. Hydes et al., 2004; Bowers et

al., 2013). Thus, the Celtic Sea is a wide transition zone where oceanic

waters with initially high salinity are gradually diluted as they progress

northwards, eventually entering the Irish Sea (Brown et al., 2003; Gowen

and Stewart, 2005).

Away from the influence of the Bristol Channel, the Celtic Sea is a typi-

cal temperate shelf system, where the seasonal changes in water column

structure are governed by a competition between surface heating and

vertical mixing, the latter formed by varying contributions from tidal

currents, wind stress and convective mixing (e.g. Simpson, 1981). In

winter, convection (surface heat loss), the tide, and enhanced winds ver-

tically mix the water column. In spring vertical stratification begins

once the rate of heating is able to overcome the ability of tidal and wind

mixing in redistributing the heat. This seasonally-stratifying region is

bounded to the north by the Irish Sea. Most of the Irish Sea remains

fully mixed all year, due to shallow water and strong tidal currents, with

a tidal mixing front in St. Georges Channel separating the Irish Sea

from the stratified Celtic Sea in summer (Simpson, 1976; Horsburgh et

al., 2000). East of the Celtic Sea is the English Channel with relatively

high salinity originating from the North Atlantic Ocean via the Celtic

Sea (Uncles and Stephens, 2007).
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Figure 2.1: Map of the Celtic Sea. Black diamonds show the location of
CTD casts. Black circles indicate the location of rivers discharging into
the Bristol Channel where nutrient data was available. S and W stand
for the Severn and Wye Rivers, respectively. The blue asterisk is the

reference used in the hydrographic sections. Locations of the Celtic Deep
(CD), East of Haig Fras (EHF) and Central Celtic Sea (CCS) moorings

are marked by blue circles and in parenthesis distance to the blue
asterisk. The density at 75 m between the shelf edge and central shelf is

based on interpolation of 8 towed undulating CTD transects in June
2010. Red contours, every 0.1 g kg−1, are the surface salinity in May

2015 constructed from the ships underway sampling. Vectors indicate the
average wind speed (4.41 m s−1 in the north and 3.06 m s−1 in the south)

from 1st January 2014 to 31st December 2015 from Era-interim data.

To the south and west the Celtic Sea is bounded by the shelf edge and

the adjacent Northeast Atlantic Ocean. The shelf edge and slope region

guide a slope current of generally salty water (Pingree and Le Cann,

1989; Holt et al., 2009), with strong internal mixing over the 200 meters

isobath caused by a breaking internal tide during the stratified season

(New, 1988; New and Pingree, 1990).

In this chapter it is demonstrated that seasonality in the outflow from

the Bristol Channel combined with the high salinity boundary of the

Northeast Atlantic Ocean set up cross-shelf gradients in density that
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drive shelf-wide circulation and important cross-shelf transports. We

show that despite the dilution of riverine water, the rivers supply an im-

portant fraction of the nutrients to the Celtic Sea. However, we find that

the nutrients available to each years spring bloom are a combination of

ocean-supplied nutrients and recycled material from the previous year.

2.2 Methods

We combine hydrographic and nutrient data collected by the UK Shelf

Sea Biogeochemistry (SSB) Programme along with river flow and nutri-

ent time series from tributaries of the Bristol Channel to build a season-

ally resolved understanding of shelf-scale density distributions, circula-

tion and nutrient transports.

2.2.1 CTD transects

Hydrographic data were collected between March 2014 and August 2015

during 9 oceanographic cruises on board the ships RRS Discovery and

RRS James Cook. On each cruise a Seabird 911plus CTD (Conductiv-

ity, Temperature and Depth) system collected full water column pro-

files of temperature, conductivity and pressure. Raw data was processed

onto a 1 db grid using standard Seabird Data Processing Software and

customized quality control routines. Derived salinity was subsequently

calibrated against in situ samples analysed on a Guildline Autosal sali-

nometer. The TEOS-10 functions (IOC et al., 2011) were used to derive

thermodynamic properties. A total of 315 CTD casts were performed

along the track shown in Figure 1, and used to construct cross-shelf sec-

tions of conservative temperature, absolute salinity and potential density

during each cruise. The main cross-shelf CTD transect was set orthog-

onal to the shelf edge and the general slope of the continental shelf.
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Spatial interpolation of bottom water density measurements made from

a towed undulating CTD package in June 2010 across a 284 km by 146

km area (Fig. 2.1) also confirmed that the transect was orthogonal to the

typical orientation of bottom water isopycnals. The distance along each

hydrographic transect is measured from the eastern side of St. Georges

Channel, north of the Bristol Channel mouth (blue asterisk at 51.79oN,

5.2oW; 0 km in Fig. 2.1). The distance between CTD stations was on

average 25 km and a minimum of 5 km, much greater than (on average),

or as a minimum equal to the spatial scale of semi-diurnal tidal excur-

sions in the Celtic Sea (Polton, 2015). Although each CTD transect was

typically completed over 2-4 weeks, given our focus on low frequency and

seasonal variability each transect was assumed to be a synoptic picture

of that month. Evolution of the hydrographic structures was consistent

with the long-term mooring time series of velocity and hydrography, de-

scribed later in section 2.4, confirming that each transect represents a

synoptic picture on the time scales of interest. The coarser spatial res-

olution of the sampling in March 2014 and 2015 on the shelf, between

250 km and 450 km distance from the coast, was augmented by using

surface temperature and (calibrated) salinity data (from 6 metres depth)

recorded continuously along the ships path. The water column is verti-

cally mixed during these months (Huthnance et al., 2001; Whisgott et

al., 2019), as will be described in the hydrographic sections, therefore the

surface temperature and salinity values are representative of the whole

water column.

Absolute salinity is used as a conservative tracer to track the movement

of the waters in the Celtic Sea. The 35.2 and 35.7 g kg−1 isohalines were

used to identify the influence of fresher water from the Bristol Chan-

nel and high salinity Atlantic Water, respectively. In previous studies
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around the Bristol Channel mouth and south of St. Georges Channel

(e.g. Brown et al., 2003) salinities below 35 have been used to describe

waters from river origin. In this research the salinity chosen (<35.2 g

kg−1) to represent the fresher water influence is based on the new equa-

tion of state (IOC et al., 2010), where Absolute Salinity shows an increase

of about 0.17 units compared to practical salinity.

2.2.2 CTD nutrient data

Water samples were collected on average from 6 depths between the sur-

face and near bed on each CTD cast and analyzed onboard for dissolved

inorganic nutrients using a 5-channel Bran and Luebbe AAII segmented

flow auto-analyser following the molybdenum blue method. For further

details can be found in Woodward (2016) and Poulton et al. (2018). Our

focus here is on nitrite (NO2) plus nitrate (NO3) (referred to for the rest

of this chapter as nitrate), with nitrogen generally being the limiting nu-

trient for new primary production in this system (Holligan et al., 1984;

Pemberton et al., 2004; Davis et al., 2014).

Supported by measurements taken during the cruises (e.g. Garcia-Martin

et al., 2017; Poulton et al., 2018; Hickman et al., 2018), we assume that

nitrate at 80 metres depth, i.e. below the seasonal pycnocline and much

deeper than the euphotic zone (1% light level is 46 metres), is largely

unaffected by phytoplankton consumption, and therefore nitrate can be

considered a quasi-conservative tracer. The nitrate-salinity relationship

from March 2014 was used as the pre-spring bloom state of shelf nitrate

distributions, and to provide estimates of the physical transport of nitrate

in bottom waters at CCS throughout the rest of the stratified period of

the year by tracking the movement of isohalines. Subsequent increases
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in bottom water nitrate concentrations above the values estimated from

the conservative behavior based on the March nitrate-salinity relation-

ship are then assumed to indicate addition of deep shelf water nitrate

caused by regeneration of organic material.

2.2.3 River discharge and nutrient load

Daily river flow data, provided by Natural Resources Wales and the Na-

tional River Flow Archive, from 33 tributaries that discharge into the

Bristol Channel were added together to quantify the total freshwater in-

put into the Bristol Channel between the 1st of July 2013 and the 30th

of September 2015. After analysing the hydrographic data, the Bristol

Channel was identified as the main source of fresher water; therefore only

tributaries that discharge directly into the channel were considered (Fig.

2.1). Although data were not available for all, the Severn and the Wye

Rivers are included which are the main freshwater suppliers accounting

for about 54% of the total input of freshwater (Uncles and Radford, 1980;

Jonas and Millward, 2010).

Time series data provided by Cefas (courtesy of Dr. Sonja van Leeuwen)

were used to assess the total inorganic nitrogen (NH4, NO2 and NO3) in-

put into the Bristol Channel from 9 tributaries (black circles in Fig. 1).

Water samples were analysed for NH4, NO2 and TON (Total Oxidised

Nitrogen) using a Konelab discrete analyser at the National Laboratory

Service (http://natlabs.co.uk). NO3 was then calculated from TON and

NO2 (TON - NO2= NO3). NH4 is not included in CTD nutrient data.

As reported in Jonas and Millward (2010) the contribution to the total

inorganic nitrogen load made by each tributary scales with their fresh-

water discharges. Of the total inorganic nitrogen input supplied by the
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9 tributaries summed here, the Severn and Wye Rivers account for 43%

of the 2013-2014 winter total. Additional contributions from the Bristol

Avon, Cadoxten, Parrett, Rhymney, Taff, Thaw and Usk, many of which

are identified as significant contributors to both the freshwater and total

inorganic nitrogen load by Jonas and Millward (2010) are also accounted

for. Data in the period between the 1st of October 2013 and the 30th of

September 2014 are used here. The impact of the offset between riverine

time series and Celtic Sea is negligible as the effects of freshwater input

are expected to be observed after March.

2.2.4 Moorings

Salinity time series from moorings located in the central Celtic Sea (CCS)

and the Celtic Deep (CD) (Fig. 2.1) were available with temporal reso-

lutions of 5 and 30 minutes respectively (Wihsgott et al., 2016; Hull et

al., 2017). The surface salinity time series at CD was collected between

the 23rd March 2014 and the 8th July 2015. At CCS two salinity time

series were used to compare the hydrographic conditions in the upper

and bottom layers, at 20 metres and 120 metres below the sea surface,

between the 26th March 2014 and the 23rd of August 2015. The salinities

were calibrated against in-situ samples analysed on a Guildline Autosal

Salinometer with a stated accuracy of < 0.002 psu. All three salinity

time series were filtered using a low-pass Lanczos filter (Thompson and

Emery, 2014) with a cut-off frequency of 1/24 h−1, so only fluctuations

with periods longer than 1 day were considered.

ADCP velocity time series at CCS, Celtic Deep and at a site referred

to as East of Haig Fras (Fig. 2.1) are used to assess the speed and di-

rection of bottom water currents. Near full water column velocity time

series were available at CCS between the 22nd June 2014 and the 25th
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July 2015, with a 57 day gap during early summer 2014 (Wihsgott et al.,

2018). Velocities were recorded in 2.5 metres vertical bins between 7.5

metres and 127.5 metres above the seafloor (mean total water depth of

147 metres), over 2.5 min ensembles. At East of Haig Fras (EHF) and at

the Celtic Deep, velocities were recorded every hour within the bottom

40 m of the water column only, at a vertical resolution of 0.5 m (Thomp-

son et al., 2017; 2018). Data was successfully returned at EHF from

22nd March 2014 to 24th October 2014 and then from 17th March 2015

to 30th August 2015. At the Celtic Deep velocities were recorded from

autumn 2014 until spring 2015 (23rd October 2014 to 8th May 2015),

with a short 22 day gap starting mid-February 2015.

A depth mean of the instantaneous velocities within the bottom 40 me-

tres of the water column at all sites was calculated. Temporal averaging

was then performed within a moving window of twenty M2 tidal periods

(10.3 days). These time series reveal the net movement of near bottom

water across the shelf on an approximate 10 day time scale and are used

to independently support the estimates of transport inferred from the

movement of isohalines across the shelf.

2.3 Results

2.3.1 Shelf-wide seasonal hydrogrpahy

In March 2014 and 2015 the Celtic Sea was vertically mixed with cross-

shelf horizontal gradients in conservative temperature (Fig. 2.2a and

2.2e). Relatively cold waters with values below 10 oC were located over

the central Celtic shelf while slightly warmer waters were located near

the shelf break. In April and May 2015 the water column gained heat

and the upper 30 metres warmed up across the entire shelf (Fig. 2f and
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2g). A two-layer system had developed by May (Fig. 2.2g) with a weak

thermocline at a depth of about 50 metres separating upper and lower

layers with temperatures of 11.5oC and 10 oC respectively. Throughout

summer, June to August (Fig. 2.2b, 2.2c, 2.2h, and 2.2i), vertical thermal

stratification strengthened. Maximum near surface temperature of 16 oC

occurred in August (Fig. 2.2c and 2.2i). In November (Fig. 2.2d),

the thermocline deepened below 50 metres, as the surface layer cooled

and generated convective vertical mixing. Throughout the year water

near the shelf break (approximately 450 km from the coast; depth of

200 m) remained warmer than bottom water across the rest of the shelf,

probably because of the along-slope (poleward) flow of warmer waters

originating from more southerly latitudes as well as strong internal tidal

mixing acting to redistribute heat vertically.

Figure 2.2: Conservative temperature sections across the Celtic Sea.
Vertical gray lines indicate the location of the CTD casts. Gray circles at
the bottom show the position of the moorings at Celtic Deep (CD) and

the central Celtic Sea (CCS).

In March 2014 and 2015 the vertical isohalines across the whole shelf
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reflected the vertically well-mixed, isothermal conditions (Fig. 2.3a and

2.3e). A horizontal cross-shelf salinity gradient was maintained between

the low salinity input of the Bristol Channel in the north and the high

salinity (> 35.7 g kg−1) oceanic water near the shelf edge. In April 2015

(Fig. 2.3f) a band of low salinity water (35.2 g kg−1) was observed in

the northern Celtic Sea and remained within 100-150 km of St. Georges

Channel. The 35.2 g kg−1 isohaline was vertically sheared, with lower

salinity water extending further offshore above the thermocline. Noting

that isohalines during the previous winter were vertical, this suggests an

off-shore transport of low salinity surface water. Through late spring and

summer of both years (Fig. 2.3b, 2.3c, 2.3g, 2.3h, 2.3i) this suggestion

of differential transport between surface and bottom layers strengthened,

with marked shear also observed in the 35.4 and 35.45 g kg−1 isohalines

further out across the central shelf.

Figure 2.3: Absolute salinity sections across the Celtic Sea. CTD casts
and mooring locations marked as per Figure 2. White contours represent

the 35.2 g kg−1 isohaline that indicates the presence of fresher water.

The salinity of bottom water across the Celtic Sea increased from March
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into late autumn (Fig. 2.4a). Between March and August 2014, the 35.6

g kg−1 isohaline at the sea bed moved from the shelf edge to just beyond

CCS, a distance of approximately 100 km. This isohaline was initially

vertical in March, but sheared in August, suggesting a persistent on-

shelf transport of bottom water over the summer and autumn months.

In 2015 the 35.6 g kg1 isohaline did not move as far. Instead, evidence

of on-shelf bottom water transport is found in the 35.5 g kg−1 isohaline

that moved 120 km on-shore between March and August 2015. In 2014

and 2015 the mean on-shore flows inferred from isohaline displacement

were about 1 km day−1 (Fig. 2.4b). Maximum velocities above 1.5 km

day−1 occurred in November 2014 and August 2015. The ingression of

more saline oceanic water onto the shelf beneath the thermocline and the

off-shore spread of fresher water above it ensured that much of the Celtic

Sea was vertically stratified in salinity as well as temperature throughout

the summer.

Between November 2014 and March 2015 there is an indication of wa-

ter moving from mid-shelf towards the outer shelf and shelf edge. All

isohalines in November 2014 make some progress towards the shelf edge

(Fig. 2.3d, e). A consistent off-shelf movement occurred (0.8 km day−1)

from December 2014 to April 2015 (Fig. 2.4b) of bottom water salinity

as a part of the broader seasonal cycle of salinity variations (Fig. 2.4).

However, the extent of the apparent movement will be altered due to

vertical mixing from mid-December through to March (Fig. 2.4a).
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Figure 2.4: Bottom water absolute salinity (at 80 metres) along the CTD
transect and b) velocities calculated from the isohaline displacement
along the CTD transect. Gray dashed lines show the location of CD,

EHF and CCS. Location of the shelf break is represented by -.- gray line.
Black asterisks in b) indicate where CTD casts were carried out.

Together, the temperature and salinity structures determined the ver-

tical and horizontal density gradients across the Celtic Sea (Fig. 2.5).

From May to August (Fig. 2.5b, 2.5c, 2.5g, 2.5h, 2.5i) the bottom-surface

density difference across most of the shelf was 1 to 1.2 kg m−3. June,

July and August were the most strongly stratified (Fig. 2.5b, 2.5h and

2.5i). The pycnocline, over both the shelf and the deep ocean, was de-

fined by the 1026.8 and 1027 kg m−3 isopycnals. The development of a

low salinity surface plume in April 2015 (Fig. 2.5f) once weak vertical

thermal stratification had started was reflected in a 30-40 metres thick

anomalously low density surface layer in the north of the Celtic Sea.
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Figure 2.5: Potential density sections across the Celtic Sea. CTD casts
and mooring locations marked as per Figure 2.2.

Beneath the pycnocline there were important cross-shelf gradients in bot-

tom water density (Fig. 2.6). Throughout the year, the bottom water

density from CCS towards the shelf-edge typically decreases; this gradi-

ent intensifies during the latter half of the summer and into autumn as

water at the shelf edge becomes increasingly warmer compared to the

central shelf. Moving on-shelf from CCS towards the coast there is also

a general decrease in density with a persistent mid-shelf maximum in

bottom water density varying seasonally between about 200 and 350 km

from the northern end of the transect line.
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Figure 2.6: Bottom water density (at 80 metres) along the CTD
transects. Shelf edge, CD, EHF and CCS locations indicated as per

Figure 2.4a.

2.3.2 Near bed ADCP velocities

The direction and magnitude of near bed velocities recorded at CCS,

East of Haig Fras (EHF) and at the Celtic Deep (CD) are supportive

of the direction and magnitude of flows inferred from the movement of

isohalines (Fig. 2.7). During April at CCS there was on average a 1

km day−1 current directed increasingly on-shelf in the bottom 40 metres

of the water column (Fig. 2.7a). At the end of April strong, on-shelf

northeastward velocities of 1.8 km day−1 were recorded. Much weaker

on-shelf flows were observed at CCS throughout July and early August,

in agreement with the 0(0.5 km day−1) velocities predicted from the iso-

haline movement (Fig. 2.4b). During the second half of August, however

velocities increase to on average 1.7 km day−1 and the current turns to-

wards the northeast (on-shelf), the timing of which is consistent with the

33



predicted increase in on-shelf flow at this time (Fig. 2.4). Throughout

September, October and early November episodes of opposing strong (1-

3 km day−1) on-shelf and off-shelf flow occur. The net result is a weak

(0.1 km day−1) east-northeast flow, which is supportive of the reduced

on-shelf movement of isohalines over this period at CCS. Isohaline move-

ments at CCS during 2015 predict on-shelf transport from May onwards,

increasing to 0.8 km day−1 in early August 2015 (Fig 2.4b). Bottom cur-

rents from the ADCP at CCS average 0.6 km day−1 north-east, directly

on-shelf between 1st May 2015 and the end of July 2015.

As is observed at CCS, the latter half of April 2014 at Haig Fras is dom-

inated by strong on-shelf bottom water flows, peaking at 3 km day−1

(Fig. 2.7b). The predicted off-shelf movement during August 2014 (Fig.

2.4b) is supported by a period of sustained 0.5 km day−1 off-shelf flow

recorded by the ADCP at Haig Fras. In 2015 the latter stages of signifi-

cant off-shelf winter transport at Haig Fras estimated from the isohaline

displacement is supported by an average flow of 1.2 km day−1 southward

between 22nd March and 13th April 2015.

The ADCP record at CCS over the winter months confirms the antici-

pated off-shelf movement of bottom water. Between the 26th November

2015 and 26th January 2015 the bottom water currents averaged 0.9 km

day−1 towards the south (Fig. 2.7a). During the remainder of the well

mixed period at CCS bottom water currents oscillated between being

on- and off-shelf, suggesting that the majority of the off-shelf transport

over the outer shelf likely occurred during early winter, a detail that is

reflected by the sharp decrease in bottom water salinity recorded during

December 2014 at CCS (Fig. 2.8c). Further on-shelf at the Celtic Deep

near bed currents over the winter were stronger and more persistently
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off-shelf (Fig. 2.7c), averaging 1.2 km day−1 southwest between 5th De-

cember and 1st May 2015, and in agreement with the greater cross-shelf

displacements estimated for lower value isohalines.

Figure 2.7: Mean velocities within the bottom 40 metres of the water
column at (a) CCS, (b) East of Haig Fras and (c) Celtic Deep. At each
location, the instantaneous velocities were averaged within a running

window of 20 x M2 tidal periods (10.3 days). For clarity, one vector every
24 hours in plotted. Note that panel (c) has a different vertical scale.

2.3.3 River flow,nutrient and salinity time series

River discharge into the Bristol Channel was greatest during winter (Fig.

2.8a). Maximum flows of 1800 m3 s−1 and 1200 m3 s−1 were reached

during the winters of 2013/2014 and 2014/2015, respectively. Relatively

high discharge was sustained throughout most of the 2013/2014 winter

period (December to March), whereas 2014/2015 was characterized by

a series of smaller peaks (below 950 m3 s−1) from October onwards.

After March, the river discharge decreased significantly and remained
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low throughout spring and summer.

Figure 2.8: (a) River discharge in m3 s−1 (dashed line) and nutrient
input in Tonnes of Nitrogen per day−1 (gray) into the Bristol Channel.
Peak winter river discharge occurs on 23rd December 2013 and 15th
January 2015. (b) Surface salinity at the Celtic Deep mooring (solid

line). Following peak river discharge the salinity starts to decrease on
6th May 2014 and 13th May 2015. (c) Surface (20 m, solid line) and near

bottom (140 m, dashed line) salinity at the central Celtic Sea (CCS)
mooring. Open gray circles in (b) and (c) are the salinities measured

independently from the CTD during the cruises and validate the quality
of the salinity time series at each mooring.

The total nitrogen supply into the Bristol Channel is strongly correlated

with the freshwater discharge (Fig. 2.8a) with a Pearson correlation coef-

ficient (R2) of 0.97. Maximum input was during winter with peak values

above 700 tonnes of nitrogen day−1, decreasing to values below 200 tonnes

of nitrogen day−1 in spring and summer. We can estimate the nitrate

contribution from rivers by assuming that the total nitrogen (the sum

of nitrate, nitrite and ammonium) indicates the potential nitrate as the

nitrogen enters the coastal sea, ammonium would rapidly be turned into

nitrite by bacteria. Taking a mean winter discharge rate of 1200 m3 s−1,

or 1×108 m3 day−1, combined with a mean total nitrogen load of 550
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tonnes per day suggests that the freshwater total nitrate concentration

during the winter preceding spring 2014 was about 390 mmol m−3.

At the Celtic Deep, in the northern Celtic Sea, the surface salinity de-

creased from 35.4 g kg−1 in early May to 35 g kg−1 in mid-June 2014

(Fig. 2.8b). A pronounced 0.4-0.5 g kg−1 decrease in salinity also started

in mid-May 2015 and continued until the end of the record (July 2015).

For context, the range in surface water salinity experienced over a spring

tidal cycle at the Celtic Deep is 0.03 g kg−1 an order of magnitude less

than the May decrease. These trends are consistent with the perspective

provided by the CTD transects (Fig. 2.3) and support the idea of low

salinity water spreading out over the northern Celtic Sea. Throughout

the latter half of summer 2014 the surface salinity at the Celtic Deep in-

creased and remained around values of 35.4 g kg−1 from October onwards.

In the central Celtic Sea the bottom water salinity increased over the

summer and reached a maximum in November/December (Fig. 2.8c).

This pattern is again consistent with the seasonal hydrographic sections,

which we interpret as indicating a near-bed transport of high salinity

water across the shelf. Sustained periods of time between July 2014 and

January 2015, where the top to bottom salinity difference was 0.05 to 0.1

g kg−1, reveal prolonged episodes of vertical salinity stratification on the

central shelf.

2.3.4 Nitrate distribution across the Celtic Sea

The distribution of nitrate across the shelf is shown in Figure 2.9. Dur-

ing both March 2014 and March 2015 (Fig. 2.9a and 2.9e), when the

water column was vertically well mixed, nitrate was also homogeneously

distributed throughout the water column. Across the shelf there was a
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horizontal nitrate gradient with higher concentrations at the shelf edge

(8-9 mmol m−3) decreasing to about 6 mmol m−3 in the Celtic Deep.

Following the onset of stratification in April (Fig. 2.9f), nitrate concen-

trations rapidly reduced to near zero in the surface layer due to uptake by

primary producers (Garcia-Martin et al.,2017; Poulton et al., 2018). The

surface layer remained depleted in nitrate until the onset of surface layer

deepening arising from convective and wind-driven mixing in autumn

(Wihsgott et al., 2019). It is clear that convection entrained deep-water

nutrients up into the autumn surface layer (Fig. 2.9d, November 2014),

when nitrate reached 2-3 mmol m−3.

Figure 2.9: Nitrate sections across the Celtic Sea. The black line
represents the 8 mmol m−3 contour.

In April 2015 (Fig. 29f) the bottom water nitrate concentration across

the shelf was 6 mmol m−3. A higher pool of nitrate (> 8 mmol m−3) was

located seaward of the shelf-break. A pool of higher bottom water nitrate

(> 7 mmol m−3) was also observed at the northern end of the section,

coincident with lower salinity water (Fig. 2.3f), thought to originate from
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the Bristol Channel. Throughout the stratified months (Fig. 2.9b-d and

2.9g-i) the bottom water nitrate concentration across the whole shelf

increased, typically reaching 9-10 mmol m−3 by August. The on-shelf

movement of the 8 mmol m−3 contour between April 2015 and May 2015

(Fig. 2.9f and 2.9g) appears to imply that there was a physical transport

across the shelf-break.

2.4 Discussion

Based on the patterns of the isohalines from the CTD sections (Fig. 2.3

and Fig. 2.4) and the salinity time series at the mooring sites (Fig. 2.8)

the results indicate several important aspects of cross-shelf flows. In

particular, (1) offshore surface flow of low density water in the north of

the transect in spring, (2) onshore flows of bottom water in the central

Celtic Sea and near to the shelf edge during summer, and (3) off-shelf

flows of bottom water across the shelf and towards the shelf edge during

winter. We will now consider each of these aspects of mean flow to

assess the likely driving force and also to consider the consequences for

the transports of nutrients. While we lack data to track how the shelf

evolved over winter, we can make some assessment of the net changes

to the shelf system between November 2014 and March 2015 which are

relevant to understand whether or not the shelf receives new nutrients

from the ocean during winter. Finally, we will consider the implications

for nutrient supplies to the central Celtic Sea.

2.4.1 Surface offshore flow in the northern Celtic

Sea

The low density, low salinity water exiting the Bristol Channel has typ-

ically been assumed to mainly head north towards the Irish Sea as a
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buoyancy-driven flow influenced by Coriolis (Uncles, 2010). However,

salinity transects (Fig. 2.3) suggest a gradual freshening in the northern

Celtic Sea, and a sharpening of the horizontal salinity gradient, from

November 2014 through to April 2015. Riverine input from the southern

coast of Ireland into the Celtic Sea is minor and flows westward within

a coastal current (Brown et al., 2003). Freshening of the northern Celtic

Sea between winter and spring is therefore more likely to be associated

with elevated winter discharge from the Bristol Channel.

In April 2015, significant shear in the salinity structure is clear, with

a plume-like low-salinity layer in the northern Celtic Sea developed coin-

cident with the thermally-stratified surface layer (Fig. 2.2). Over most

of the Celtic Sea in spring, surface salinity tends to reduce compared to

the bottom water, indicating an offshore transport that sets up a haline

stratification across the shelf that persists until winter re-mixing. The

shear of the 35.2 g kg−1 isohaline in April 2015 suggests a relative move-

ment of the surface layer offshore by about 35-40 km over the bottom

layer. Assuming that this shear must have developed after the March

2015 survey suggests a mean surface layer flow relative to the bottom

layer of at least 1.4 km day−1 (1-2 cm s−1). The position of the 35.2 g

kg−1 isohaline stayed roughly constant after this April 2015 event. The

speed of the flow, followed by the halt of further offshore progression,

suggests initial relaxation of the horizontal density gradient triggered by

the spring thermal stratification switching off mixing between surface and

bottom waters. This is akin to the estuarine-style baroclinic circulation

described by Linden and Simpson (1988) for a number of shallow seas and

estuaries worldwide. As fresh water from the Bristol Channel is allowed

to extend towards the northern Celtic Sea it is continually mixed with

(and freshens) surrounding water, a non-reversible process that extends
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the southward influence of the Bristol Channel.

The width of the surface relaxation should equal a few internal Rossby

(Ro) :

Ro =

√
ghs

4ρ
ρ0

f
(2.1)

where g = 9.81 m s−2, 4ρ is the bottom-surface density difference ( 1 kg

m−3), ρ0 the reference density (1027 kg m−3), f the Coriolis parameter

and hs the surface layer thickness of about 40 metres. Using these typical

values Ro is 5.5 km. The scaling between the width of the fresher water

plume ( 40 km) and Ro is 7.2. The width of the relaxation is therefore

about 7 times Ro (7 × 5.5 km = 38.5 km), a scaling that lies within

the range of values reported by Sharples et al. (2017) for the width of a

fresh water plume. The width of the relaxation will vary depending on

the prevailing wind conditions, the strength of the river discharge, the

level of tidal mixing and the strength of the existing horizontal salinity

gradient. Once the surface plume has reached its maximum southward

extent it will feel the effects of rotation and the low salinity water will

join the cyclonic geostrophic gyre circulation described by Horsburgh et

al. (1998) and Brown et al. (2003).

The potential for nutrient supply from rivers to support the Celtic Sea

spring bloom can be considered by noting the dilution of the salt content

and the initial river nitrate concentration of 390 mmol m−3 which will

be modified by biogeochemical processing during transit from the rivers

to the Celtic Sea. An estimate of the transit time of fresh water from

the Severn Estuary and Bristol Channel to the Celtic Sea can be made

by considering the time between peak river discharge and the sharpen-

ing of the horizontal salinity gradient and drop in surface salinity in the

northern Celtic Sea, i.e. assuming changes in salinity are only due to
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freshwater flow. In 2013/2014 the decrease in salinity at the Celtic Deep

(on 6th May 2014) takes place 4.5 months after peak river discharge (on

23rd December 2013). In 2014/2015 a drop in salinity at the Celtic Deep

starts just 3.5 months after the peak in river input (on 15th January

2015), or a more conservative 4.5 months if the earlier secondary peak in

discharge during December 2014 is considered. On average therefore, it

takes about 4 months for fresh water to reach the northern Celtic Sea.

For context, Uncles and Radford (1980) estimate the residence time of

the Severn Estuary (from Maisemore Wier north of Gloucester to Mine-

head) to be about 100 days (3.3 months) in the winter, a timescale well

aligned with the evidence presented here.

A 4 months transit time, based on the time between the peak of freshwa-

ter input and the minimum in salinity time series at Celtic Deep, would

imply a mean flow of about 2-3 cm s−1, which is a reasonable value for

a mean surface flow in the Bristol Channel (Uncles, 2010). Removal

of nitrogen by biogeochemical processing over 4 months will reduce the

riverine nitrate concentration. Based on data collected from lakes, rivers,

estuaries and continental shelves Seitzinger et al. (2006) established a re-

lationship between the removal of DIN (by de-nitrification) from aquatic

systems and the residence time of water within them whereby the per-

centage (%) of DIN removed, DINrem, is related to the residence time

Tres (months) by DINrem = 23.4T 0.204
res . This empirical relationship sug-

gests that about 30% of the total riverine nitrate will be removed over

4 months. It is less clear how long the riverine influence would take to

reach the CCS mooring site. Bottom onshore transport was 1-1.5 m2

s−2 throughout summer, as will be described in the following section. A

transport of 1.25 m2 s−2 in a 50-60 m layer thickness leads to velocities of

1.7-2.1 km day−1 and therefore fresher waters from the Bristol Channel
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would take at least 6 months to reach CCS. Assuming 6-12 months, and

again using the relationship from Seitzinger et al. (2006) would mean a

reduction in the original riverine nitrogen input of between 34% and 40%.

Taking the oceanic salinity to be 35.7 g kg−1, and the spring salinities

in the northern Celtic Sea and at the CCS mooring site to be 35.4 and

35.55 g kg−1 respectively, results in the freshwater fraction to be 0.8% in

the north and 0.4% at CCS, based on dilution of North Atlantic waters.

Thus the contribution of river nitrate load to the nitrate observed at the

Celtic Deep in spring is about 2.2 mmol m−3 of the observed 7 mmol m−3,

so about 30% of the nitrate available to the spring bloom in the Celtic

Deep is riverine in origin. In the Central Celtic Sea, by the CCS mooring

site, the same calculation (denitrification and percentage of freshwater

that reaches CCS) suggests 0.9-1.0 mmol m−3 of river-sourced nitrate

out of a total of 8 - 9 mmol m−3, so approximately 10% of the nitrate

available to the spring bloom at CCS is riverine.

2.4.2 On-shelf bottom water flows

In March 2014 the 35.6 g kg−1 isohaline was situated at the shelf edge.

During summer 2014 this water in the bottom layer moved approximately

100 km onto the shelf by August 2014. In spring-summer 2015 the same

isohaline remained almost fixed, just 30 km onto the shelf from the shelf

edge. The 35.5 g kg−1 isohaline, initially 25 km on-shelf from CCS, had

moved about 120 km further onto the shelf by July-August 2015. Bot-

tom water transports can be estimated by taking the mean flow implied

by the isohaline movement and the thickness of the layer. For March to

August 2014 the movement of the 35.6 g kg−1 isohaline (speed approx-

imately 0.87 km day−1 (1 cm s−1), layer thickness 150 metres) suggests

a transport of 1.5 m2 s−1. For March to July 2015, the movement of the

35.5 g kg−1 isohaline (speed approximately 0.87 km day−1, layer thick-
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ness 100 metres) suggests a transport of 1 m2s−1.

There are several potential mechanisms for driving this bottom water

across the shelf. We consider here: (1) horizontal dispersion down the

horizontal salinity gradient, (2) a compensating on-shore transport for a

surface off-shore Ekman transport, (3) a mean density-driven (or pres-

sure gradient) transport, (4) the Stokes drift of an on-shore propagating

internal tidal wave, and (5) on-shore baroclinic transport of high salinity

lenses in the pycnocline (Hopkins et al., 2012).

(1) Horizontal dispersion

The timescale for horizontal dispersion can be estimated as kh
4s
4y where

4s
4y is the horizontal salinity gradient and kh is a horizontal dispersion

coefficient. Observations of dispersion coefficients in shelf seas are typi-

cally 10 - 600 m2 s−1 (Sanders and Garvine, 2001; Houghton et al., 2009).

Taking a high value of 103 m2 s−1 suggests a timescale of over 1 year for

the observed bottom layer isohaline shifts in 2014 and 2015, much slower

than the observed transport.

(2) Ekman transport

For the surface Ekman transport we take the mean cross-shelf Ekman

transport between March and September 2014 and 2015 calculated as

τw
fρ0

with τw the averaged along-shelf edge wind stress (0.01 and 0.02 N

m−2 in 2014 and 2015 respectively),ρ0 1027 kg m−3 and f the Coriolis

parameter at latitude 48oN. In both years we find a weak net off-shelf

wind-driven surface Ekman transport of 0.1-0.2 m2 s−1, which would

drive a weak compensating on-shelf return flow in the bottom layer.
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(3) Pressure-gradient flow

A consistent feature of all of the CTD sections is a cross-shelf horizontal

density gradient (Fig. 2.6) set up by the salinity gradient (Fig. 2.4a), and

modified by seasonal changes in the horizontal temperature structure.

The pressure gradients associated with contrasts in density across the

outer shelf are conducive to driving on-shelf transports in the bottom

layer (Fig. 2.10). Outside of the bottom turbulent boundary layer the

pressure gradient will be balanced by Coriolis, and there would be no net

transport down the density gradient. However, this balance breaks down

in the bottom boundary layer, allowing down-gradient transport. We

assume a simple balance between the horizontal pressure gradient ( 1
ρ0
∂P
∂y

) and stress (τ), to occur within a bottom turbulent boundary layer of

thickness hBL:

1

ρ0

∂P

∂y
=

1

ρ0

∂τ

∂z
(2.2)

Taking the vertical gradient in stress (∂τ
∂z

) to be approximated by the

effect of bed friction, τb = kbρ0v
2 with kb 0.0025 the bottom drag coeffi-

cient, ρ0 the average density and v the mean current speed in the bottom

layer, distributed through the bottom boundary layer,

1

ρ0

∂P

∂y
=

1

ρ0

kbρ0v
2

hBL
(2.3)

for the total transport in the bottom boundary layer(hBL), we have:

vhBL =

√√√√h3
BL

kb

1

ρ0

∂P

∂y
(2.4)

For hBL we take the height above the seabed within which most of the

velocity shear was located. Based on the current meter data available

from the mooring at CCS this was 40 metres. Density was depth aver-

aged from the surface to 80 metres depth for each oceanographic survey
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every 25 km between 100 km and the Central Celtic Sea mooring site.

The depth averaged density was used to calculate the pressure gradient

force at 80 metres along the hydrographic transect. In both years, the

typical mean near bed pressure gradient term,( 1
ρ0
∂P
∂y

), across the central

shelf (between 100 and 350 km) from April to August was about 0.7-1.2

×10−7 m s−2. Using these values in eq. (2.3) gives velocities between

2.9 - 3.8 km day−1 (0.03 - 0.045 m s−1), which are of the same order

to the ones calculated following the salinity contours (Fig. 2.4b), and a

transport 1.3-1.8 m2 s−1. This should be viewed as an upper limit, as we

would expect the flow within the bottom boundary layer to be diverted

across the pressure gradient by Coriolis.

Figure 2.10: (a) Depth averaged density across the Celtic Sea between
CCS and CD. (b) Pressure gradient across the Celtic Sea. The black

contour in (b) represents the 0 m s−2 pressure gradient. Positive values
indicate on-shelf acceleration.
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(4) Internal tide Stoke’s Drift

The Celtic Sea is influenced by internal tidal waves, generated at the

shelf slope and propagating at least 170 km into the Celtic Sea (Inall et

al., 2011). At CCS semi-diurnal isopycnal displacements characteristic

of a propagating internal tide first appear in April, shortly after the

onset of stratification, and persist until December when the water column

becomes isothermal again (Wihsgott et al., 2019). Evidence of isotherm

displacement can also be found at the Celtic Deep, over 300 km from the

shelf edge (not shown). The bottom layer Stokes drift volume transport

(VSt) associated with a propagating internal tidal wave is estimated from:

VSt =
1

2
KA2

0c coth(Khb) (2.5)

with K m−1 the wavenumber, A0 (m) the wave amplitude and hb the

bottom layer thickness (Simpson and Sharples, 2012). The wave speed

is estimated from:

c =

√
g
4ρ
ρ0

hb (2.6)

where g=9.81 m s2, and4ρ is the bottom-surface density difference ( 1 kg

m−3). Using typical values for the wavelength (35 km) and amplitude (15

metres) for the internal tidal wave on the shelf (Inall et al, 2011) eq. (2.5)

suggests a volume transport of about 1 m2 s−1. This on-shore Lagrangian

transport has to be balanced by an off-shore flow. Where in the water

column that balancing return flow occurs will affect the net effect that

the Stokes transport has on bottom layer scalar distributions. If the

return flow occurs within the pycnocline (e.g. Henderson, 2016) then 1

m2 s−1 would represent a reasonable estimate for the onshore bottom

layer transport. Salinity transects suggests for both summer 2014 and

2015 (Fig. 2.3) that there is offshore transport within the pycnocline

layer, which would be consistent with this mechanism.
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(5) High Salinity Lenses

High salinity lenses of water have been identified moving on-shore within

the pycnocline of the Celtic Sea (Hopkins et al., 2012), driven by non-

linear second-mode internal waves. Combined with diapycnal mixing be-

tween the base of the pycnocline and the bottom layer, these would pro-

vide a mechanism for evolving the cross-shelf salinity gradient by trans-

porting salt onto the shelf during the summer. An estimate of the volume

flux driven by these lenses can be made by considering the mean flows

associated with their on-shore propagation (0.02 m s−1) and the typical

lens thickness (30 metres) (Hopkins et al., 2012). This yields a transport

of 0.6 m2 s−1, which will be an upper limit due to the likely temporal

patchiness in the generation of the internal waves and lenses (Hopkins

et al., 2012). Whilst there is some evidence in August 2014 of higher

salinities within the pycnocline near the shelf edge (Fig. 2.3c), there are

also examples throughout the summers of both 2014 and 2015 of lower

salinities than either the upper or lower layers (Fig. 2.3).

The above estimates suggest that the bulk of the on-shelf bottom layer

flow may be a result of wind-driven Ekman transports, near bed pres-

sure gradients and/or internal tide Stokes drift. It seems unlikely that

horizontal dispersion is able to contribute significantly to the on-shelf

transport observed during early summer, and while high salinity lenses

could in principle contribute we cannot find persistent evidence of the

required salinity signal in the summer of 2014 and 2015.

2.4.3 Offshore transports during winter

There is an indication in the salinity transects and evidence from the

near bed currents recorded by the ADCPs across the shelf that water

moves off-shelf between November 2014 and March 2015. While we lack
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CTD transect data through this period, we can make an assessment of

the net effects of winter on the system by considering the changes in the

horizontal salinity structure. The November CTD transect took place as

the shelf water was quickly becoming fully-mixed by a combination of

convection due to surface cooling and wind-driven mixing, and we know

from the CCS mooring data that the shelf was vertically homogeneous

by about mid-December (Wihsgott et al., 2019). The depth-mean salin-

ity structure in November 2014 should therefore be very similar to that

about 3 weeks later in mid-December, and we can compare that with

the pre-spring salinity in March 2015 (Fig. 2.11). The 35.45 g kg−1 iso-

haline moves across the shelf by about 180 km between November and

March, implying a cross-shelf flow of about 2 cm s−1 and a transport over

110 metres depth of 2.2 m2 s−1. Cross-shelf displacements of the higher

value isohalines are less, 70 km for 35.6 g kg−1, 40 km for 35.7 g kg−1.

With mean depths associated with these isohaline movements of about

160 metres and 170 metres, this suggests transports of 1.4 and 0.9 m2

s−1. At CCS evidencefrom ADCP indicates an off-shore flow with mean

velocities above 1 km day−1 between mid-November and February 2015.

Similarly, at CD an off-shore flow occurred between mid-November and

April 2015, with maximum velocities (> 3 km day) in December. With-

out more information over the winter it is difficult to be confident of the

mechanisms driving these isohaline movements, but we can indicate the

likely causes.
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Figure 2.11: (a) Depth-mean salinity in autumn (November 2014) and
(b) Salinity distribution in late winter (March 2015).

The simplest explanation of the overall reduction in shelf salinity be-

tween November and March is rainfall, with the strong winter mixing re-

distributing the freshwater vertically. Considering the mid-shelf between

distances of about 150 and 300 km, the salinity decreased by about 0.1

g kg−1 over a mean depth of 100 metres. Assuming no horizontal trans-

port, and that the total mass of salt in the water column is conserved,

then a precipitation of 31 cm would be sufficient to produce the observed

salinity change. Between November and March the precipitation based

on ERA-interim reanalysis was 16 cm at CCS and 18 cm at the Celtic

Deep. Taking account of the ERA-interim precipitation over the ocean

to be typically 0.3 mm day−1 higher than observations (Dee et al., 2011)

reduces the precipitation by about 3 cm over the period November -

March, suggesting that about 42- 48% of the observed salinity change

can be attributed to rainfall. At the outer shelf, between a distance of

about 330 and 440 km, the observed salinity changes would need a rain-
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fall of 50 cm and so about 26% of the salinity change is likely due to

precipitation.

Based on the analysis of the effects of precipitation above, there remains

a consistent off-shelf transport of about 1 m2 s−1 occurring over winter

that needs to be explained. The along-shelf edge wind stress over the

winter was seen to be consistently driving surface water off-shelf, with

a mean Ekman transport of 0.45 m2 s−1. Considering the cross-shelf

horizontal salinity gradient this off-shelf flux would drive a decrease in

surface salinity, with the compensating return flow increasing deeper wa-

ter salinity. Towards the outer shelf the effect of depth-mean salinity

can be estimated by taking a mean horizontal salinity gradient of 1 ×

10−6 g kg−1 m−1 and assuming that the surface Ekman layer is about

30 metres thick, with the return flow occurring in the lower 120 metres.

Over 3 months advection of the salinity gradient then yields a surface

salinity decrease of 0.12 g kg−1, and a bottom water salinity increase

of 0.03 g kg−1. Weighting these contributions by the layer thicknesses

suggests almost zero change of the depth mean salinity. Taking into

account the non-linearity of the horizontal salinity gradient, with the

gradient tending to steepen at depth near the shelf edge, would lead to a

slight salinity increase in the depth mean salinity of O(0.001 g kg−1). It

is therefore unlikely that wind-driven Ekman transport can explain the

overall reduction of shelf salinity and the implied off-shelf flux of 1 m2

s−1. One possible candidate mechanism for this transport could be a flux

through the bottom boundary layer driven by a cross-shelf pressure gra-

dient. Assessing this is difficult without further data between November

and March: the problem largely depends on whether the excess cooling in

the shallower water on the shelf, compared to the deeper outer shelf, can

reverse the horizontal density gradient set up by the horizontal salinity
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gradient across the shelf.

2.4.4 Implications for nitrate sources to the central

Celtic Sea

The time series of nitrate at CCS allows us to make some inferences on

the fate of nitrate throughout the year, and how the shelf is set up with

nitrate ready for the spring bloom.

We have suggested, based on dilution and processing of riverine nitro-

gen, that the major riverine sources of nitrogen in the Bristol Channel

could be responsible for about 1 mmol m−3 of the nitrate in the central

Celtic Sea. There are two sources of error to these estimates. There is

an uncertainty of about 15% in the empirical fit linking nitrate removal

to transport timescale (Sharples et al., 2017), and there is uncertainty in

the time it takes riverine water to be transported to the central Celtic Sea.

The on-shelf flow of bottom water during summer will also supply nitrate

to the shelf. We can quantify this by using the time series of salinity from

CTD at 80 metres depth at CCS (Fig. 2.12) combined with a relation-

ship between salinity and nitrate concentration at 80 m depth across the

shelf in March 2014, i.e. before the spring bloom and any biogeochemical

modification of nitrate. The salinity-nitrate relationship implies that hor-

izontal movement of the isohalines indicates a similar displacement of the

background concentration of nitrate (Fig. 2.13). There is a near linear

increase in observed bottom water nitrate between April and November

2014, from 8 mmol m−3 to 9.7 mmol m−3 (Fig. 2.12b, dashed line). Of

this 1.7 mmol m−3 increase, 0.4 mmol m−3 or 25% can be attributed to

on-shelf transport in the bottom layer between March and August (Fig

2.12b. solid line) using the nitrate-salinity relationship. The total depth

52



at CCS was 145 metres, which in summer we will assume was made up

of a 40 metres surface layer and a 105 metres bottom layer. Within the

bottom layer a 0.4 mmol m−3 nitrate increase, suggests a transport con-

tribution to total water column nitrate at CCS of about 40 mmol m−2.

The on-shelf movement of isohalines at CCS slows between August and

November (Fig. 2.4a) and only an additional 0.05-0.1 mmol m−3 nitrate

is supplied by advection during this period. From late summer onwards

the surface layer deepens, and by November has reduced the depth of the

bottom layer to 85 metres (Wihsgott et al. 2019). Therefore approxi-

mately 7 mmol m−2 of nitrate is transported to CCS in the bottom water

during this later summer and early autumn period.

Figure 2.12: (a) Bottom water salinity at CCS from CTD casts. (b)
Observed nitrate concentration in CCS bottom water (dashed line) and

nitrate concentration (black line) inferred from the movement of
isohalines from the March 2014 nitrate-salinity relationship. (c)

Difference between observed nitrate and the predicted supply from
physical transport.
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Figure 2.13: Nitrate-salinity relationship from CCS to the North Atlantic
Ocean at 80 m depth in March 2014. The relationship was obtained from

interpolated cross-shelf sections of nitrate and absolute salinity.

Pre-spring nitrate concentration at CCS in 2014 was 8 mmol m−3 in a

water column of 145 metres, so a total of 1160 mmol m−2 (Fig. 2.14a). At

the end of August 2014 the 40 metres deep surface layer was completely

depleted in nitrate whereas the bottom 105 metres saw an increase in

nitrate concentration to 9 mmol m−3, equating to a total water column

DIN content of 945 mmol m−2 (Fig. 2.14b). The generation of organic

material during the spring bloom, vertical fluxes of nitrate into the base

of the thermocline sustaining a subsurface chlorophyll maximum during

the summer months, on-shelf transport in the bottom layer and the re-

generation of organic material all contribute to the 215 mmol m−2 total

water column decrease in nitrate during this period. Firstly, the spring

bloom nitrate use is taken as the surface mixed layer thickness (40 metres)

multiplied by the initial pre-bloom nitrate concentration of 8 mmol m−3,

contributing a 320 mmol m−2 reduction. The diapycnal nitrate flux to

the subsurface chlorophyll maximum, that we assume is all consumed, is
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estimated by using measurements of vertical eddy diffusivity made close

to CCS by Williams et al. (2013). Wind stress pulses generate dyapic-

nal mixing and supply nutrients across the pycnocline from the bottom

layer. For the 4 months of May-August based on Williams et al. (2013)

fluxes, we assume a background 1.5 mmol m−2 d−1 for 110 days and

storm driven fluxes of 20 mmol m−2 d−1 for 10 days using ERA-interim

data sets (Dee et al., 2011), giving a total decrease of 365 mmol m−2.

Whereas nitrate is lost temporary from the system to the spring bloom

and SCM production, on-shelf transport in the bottom 105 metres of the

water column over the summer provides a 40 mmol m−2 increase to the

total water column nitrate budget. Considering the change in nitrate

concentration over the bottom 105 metres between March and August

(1 mmol m−3 increase) and taking into account decreases via diapycnal

mixing (-365 mmol m−2) and gains due to on-shelf advection (+40 mmol

m−2), there remains a 430 mmol m−2 excess in nitrate suggesting a sig-

nificant amount of organic material has been regenerated in the bottom

layer. Distributed over 105 metres this equates to a concentration of

4.1 mmol m−3, which would have originated from the upper 40 metres

of the water column. Given the original pre-bloom concentration of 8

mmol m−3, this implies that 51% of the nitrate taken up by the spring

bloom had been recycled into the bottom layer by August. Note that

this recycling estimate assumes that neither de-nitrification nor nitrate

fluxes from sediments are significant.

55



Figure 2.14: Total water column dissolved inorganic nitrogen budget at
CCS between March 2014 and March 2015 based on observed nitrate

concentrations (in mmol m−3) and our estimates of bottom layer
transport and nitrate uptake by phytoplankton. All losses (decreases in

nitrate) and gains (in mmol m−2) are relative to the previous date.

The total water column nitrate in November was made up of a 60 metres

deep surface layer (nitrate concentration of 2 mmol m−3) plus a 85 metres

bottom layer (with 9.7 mmol m−3 nitrate), yielding 945 mmol m−2 (i.e.

no change in total water column budget since August, Fig. 2.14c). Ni-

trate used by the autumn bloom is estimated by convectively mixing the

August surface layer from 40 metres to 60 metres, entraining 20 metres

of water with 9 mmol m−3 nitrate concentration. Distributing this over

the 60 metres autumn mixed layer gives a concentration of 3 mmol m−3.

Knowing that in November only 2 mmol m−3 was observed in the surface

layer, 1 mmol m−3, or 60 mmol m−2, is assumed to have been used by

the autumn bloom by the time of the November survey. Between August

and November there is an order of magnitude reduction in the advected

bottom water supply of nitrate, estimated to be just 7 mmol m−2. This is

insufficient to explain the 60 mmol m−2 nitrate excess that accumulated

between August and November (85 m × 0.7 mmol m−3 concentration)

and 53 mmol m−2 nitrate is therefore assumed to have been recycled.

This represents 62% of the 1 mmol m−3 used during the autumn bloom.
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By March 2015 the total water column nitrate had increased to 1015

mmol m−2 (Fig. 2.14d). Over winter the 145 metres deep water column

was fully mixed and nitrate concentrations pre-spring bloom in 2015 were

7 mmol m−3. Off-shelf transport over the winter works to reduce the to-

tal water column nitrate at CCS. Taking into account the effect of winter

rainfall, the reduction in nitrate is calculated by taking the depth-mean

salinity and nitrate profiles in November 2014 and advecting them off-

shelf to align with the depth-mean salinity in March 2015. This suggests

that off-shelf advection reduces the total water column nitrate by 70

mmol m−2. Knowing that there was a 70 mmol m−2 increase in total wa-

ter column nitrate between November 2014 and March 2015, 140 mmol

m−2 (approximately 1 mmol m−3 in 145 metres water column) must have

been either recycled and/or physically re-supplied.

The closeness of our nitrate budget estimate and the observed pre-bloom

nitrate suggest that a combination of on-shelf advection of nitrate (25%)

from the shelf edge during the summer and 50-62% recycling of organic

nitrogen are sufficient to maintain the shelf nitrate pool. River supplies

also make a contribution, potentially providing some of the 140 mmol

m−2 required to close the budget in March 2015, but we again note the

significant uncertainties in our understanding of river nitrogen process-

ing on the shelf and the transport time from the rivers to the mid and

outer-shelf.

Finally, there is a 1 mmol m−3 difference in pre-spring nitrate con-

centrations across most of the shelf between 2014 and 2015. This implies

significant inter-annual variability in the shelf nutrient pool, which likely

arises from changes in the shelf edge and riverine boundaries as the main
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sources of nutrients to the shelf. An assessment of the winter freshwa-

ter nitrogen concentration (Fig. 2.15) indicates a range in the nitrogen

concentration of 200 - 450 mmol m−3, so a median of 325 mmol m−3

with a range of ∼40%. At CCS this would translate into a mid-range

riverine nitrate contribution of 0.8 mmol m−3, with a range of 0.5 - 1.1

mmol m−3. Considering the shelf edge boundary, changing the depth

of the winter mixed layer will alter the nitrate concentration boundary

condition adjacent to the shelf. Typical winter mixed layer depths in the

Northeast Atlantic range between 212 and 476 metres (Hartman et al.,

2014). Using the nitrate profile over the shelf slope in November 2014

and mixing it down to depths of 200 and 500 metres changes the mixed

layer nitrate concentration from 6.4 to 8.9 mmol m−3. Our tentative

suggestion therefore is that variability in both riverine nutrient supplies

and the depth of the ocean winter mixed layer are significant in driv-

ing inter-annual variation of shelf nutrient pools, with the oceanic mixed

layer depth being the most important.
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Figure 2.15: Averaged nitrate concentration input into the Bristol
Channel during winter calculated from the river and nitrate time series.
Each period covers the 1 of December to the 21 of March of the following

year.
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Chapter 3

Internal Wave and
Wind-Driven Ekman
transport in a Temperate
Wide Shelf Sea in Summer

Abstract

In the Celtic Sea a bottom onshore flow and exchange within the py-

cnocline between the shelf and the North Atlantic in summer occurs.

In this Chapter the mechanisms generating mean (non-tidal flows) are

addressed. A 13-month time series of water column velocities and hydro-

graphic observations from a mooring were used to calculate transport in

the surface, pycnocline and bottom layers in summer. Transport within

each layer was separated into the Eulerian and Stokes components, with

the latter representing the transport generated by internal waves. The

effects of the wind-stress on the water column were estimated from wind

velocity recorded by a meteorological buoy. Variability of the velocity in

the water column was assessed through an Empirical Orthogonal Func-

tion analysis. Results indicate that in the surface and bottom layers

wind-driven Ekman transport was the dominant forcing agent resulting

in an averaged surface offshore transport through the summer and an

onshore compensatory flow in the bottom layer. In the pycnocline layer

transport and exchange between the Celtic Sea and the North Atlantic
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Ocean was generated by internal waves. The spatial variability of the first

and second modes of the EOF analysis is consistent with the suggested

mechanisms described in this Chapter.

3.1 Introduction

Evidence of net onshore advection of nutrients in the bottom layer and ex-

change within the pycnocline between the North Atlantic and the Celtic

Sea was observed in summer (Ruiz-Castillo et al., 2018; Chapter 2 of

this thesis). Whilst the mean onshore advection of bottom water was

persistent and therefore well described by hydrographic observations, as-

sessment of other components of the advection between the shelf and the

ocean and quantification of the seasonal exchange required greater tem-

poral resolution. Westerly winds are predominant in the Celtic Sea (Pin-

gree, 1980) and in principle may explain the bottom flow as a response

to wind-driven Ekman transport. However the shelf -ocean exchange

within the pycnocline could result from other mechanisms. For instance,

Hopkins et al. (2012) described relatively high salinity lenses intruding

at least 100 km on-shelf within the pycnocline attributed to the second

mode of a non-linear internal wave. Internal wave Stokes transport is

also possible within the pycnocline (e.g. Henderson, 2016).

Transport across the Celtic Sea is thought to be dominated by nonlinear

waves generated by the internal tide (Sharples et al., 2007; Hopkins et al.

2012), wind-driven Ekman transport (Huthnance et al., 2009) and a pole-

ward along-slope current (Huthnance et al., 2009, Porter et al., 2016).

In this Chapter, with long-term observations of temperature and salinity

combined with velocity profiles recorded over a year at the Central Celtic

Sea site, net advection resulting from internal waves and wind-driven Ek-

man transport are quantified. The main mechanisms responsible for the
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bottom onshore advection in the Celtic Sea and exchange within the

pycnocline between the ocean and the shelf are elucidated.

3.2 Methods

At the Central Celtic Sea site (Fig. 3.1) time series of salinity and tem-

perature combined with current velocities from a 150 kHz ADCP seabed-

mounted were used to calculate the Eulerian and Stokes transport in the

surface, pycnocline and bottom layers. The effects of the wind stress on

the water column were estimated using data from a meteorological buoy.

Figure 3.1: Map of the Celtic Sea. Blue circle indicate the location of the
mooring at Central Celtic Sea site and meteorological buoy location and

black circle indicate the zero point of the distance axis (0 km). The
blue-dashed line indicates the location of hydrographic transects.
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3.2.1 Mooring data

Hydrographic data

Full depth temperature and salinity time series from moorings located

at the Central Celtic Sea site were available from Wihsgott et al. (2016)

(Fig. 3.1). Vertical resolution of temperature ranged from 2.5 m in the

pycnocline up to 5 to 20 m in the surface and bottom layers, and salinity

resolution ranged from 5 m in the pycnocline up to 30 m in the bot-

tom and surface layers, with the shallowest and deepest measurements of

both time series at 10 m and 145 m, respectively. Each time series had a

temporal resolution of 2.5 minutes. Temperature data were interpolated

vertically every 2.5 m and spatially every 5 minutes. A scattered inter-

polation was used to evaluate salinity on the same grid (e.g. Hopkins et

al., 2014). Further details on how data was processed can be found in

Wihsgott et al. (2016). Conservative temperature and absolute salinity

were calculated using TEOS-10 functions (McDougall and Barker, 2011)

and potential density was calculated for each time step. Noise was re-

moved from the time series using a low-pass Lanczos filter with a cut off

frequency of 3 cycles per day (3cpd; Emery and Thompson, 2014). The

periods assessed in this study include summer 2014 (22nd of June - 26th

of December) and early summer 2015 (25th of April and 26th of July

2015) when the water column was stratified.

Current data

Current profile time series from moorings located at the Central Celtic

Sea site were utilised to analyse velocity variability and transport in the

water column throughout summer 2014 and 2015. An upward facing

narrowband 150 khz FlowQuest Acoustic Current Profiler was used. Ba-

sic quality control was carried out for compass errors and sea surface

echoes. Relatively high instrument noise was removed using a third-
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order low pass Butterworth filter with a low pass cut-off frequency of

ω=0.25−1 cycle m−1 for each profile. All velocity data were interpolated

on a regular grid, with vertical and temporal resolution of 2.5 m and 5

minutes. For further details on how data were processed see Wihsgott

et al.,(2018). Velocity used in this research cover from 145 m (7 metres

above the seabed) up to 20 m depth (relative to mean sea level). Simi-

larly to the hydrographic time series, a low-pass band Lanczos filter with

a cut off frequency of 3 cpd was performed on each velocity time series.

3.2.2 Determination of the thicknesses of the sur-

face, pycnocline and bottom layers

The depths of the upper and lower interfaces of the pycnocline were de-

termined to identify the thicknesses of the surface and bottom mixed

layers. There was significant seasonal variability in density, with min-

imum values below 25.5 kg m−3 in August compared to the minimum

values around 27 kg m−3 by the end of December, so identifying the up-

per and lower bounds of the pycnocline based on a fixed isopycnal was

not possible. Instead the upper and lower boundaries of the pycnocline

were chosen based on a density increase and decrease from the mean den-

sity between 10 and 15 metres depth and the mean density between 140

and 145 metres, respectively (Table 3.1). In different regions thickness

of the surface, pycnocline and bottom layers has been found to be vari-

able throughout the year resulting in different seasonal values of density

increase and decrease to estimate the thickness of each layer (e.g. Kara

et al., 2000; Gomez-Valdes and Jeronimo, 2009). Vertical profiles of den-

sity were used to estimate the increase and decrease in density that best

identifies the depth of the thicknesses of the surface and bottom layers in

different months (Fig. 3.2). From the density time series, vertical profiles

with a 10-day time step were plotted and the depths of the upper and
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lower boundary of the pycnocline layer were chosen. The values used to

estimate the surface and bottom mixed layer thicknesses are shown in

Table 3.1. As mention before the original datasets had a greater verti-

cal resolution in temperature than in salinity before the time series were

vertically interpolated every 2.5 m. In addition, in the interior of the

Celtic Sea density is controlled chiefly by temperature throughout most

of the stratified period (Brown et al., 2003). Therefore, the depth of the

boundaries chosen with density profiles were also evaluated for temper-

ature profiles (Fig. 3.2). The thicknesses and depths were consistent for

both variables.

Table 3.1: Values utilised for estimation of the upper and lower interface
of the pycnocline.

Period Density increase (kg m−3) Density decrease (kg m−3)

22 Jun- 9 Jul 2014 0.04 0.05

9 Jul-27 Jul 2014 0.04 0.04

27 Jul-21 Aug 2014 0.04 0.1

22 Aug-27 Nov 2014 0.04 0.04

27 Nov-1 Dec 2014 0.028 0.032

1 Dec-27 Dec 2014 0.016 0.02

25 Apr-27 Jul 2015 0.018 0.015
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Figure 3.2: Profiles of density (black line) and temperature (red line).
Scale for density and temperature are at the top and bottom of each

subplot, respectively. Green dashed-lines show the depth of the upper
and lower boundaries. Note the change in scale for temperature and

density.

To increase confidence in the estimation of the depths of the bound-

aries the square BruntVäisälä frequency (N2) was calculated:

N2 = − g

ρo

dρ

dz
(3.1)

where dρ
dz

represents the vertical density gradient, g=9.82 m s−2 is gravity

and ρo the depth averaged density at each time step. The upper and lower

boundaries of the pycnocline obtained using the values in table 3.1 were

plotted on the time series of N2 (Fig. 3.3). As expected the maximum

values of N2 in the water column corresponded to the pycnocline layer

and minimum values were indicative of the surface and bottom layers.

Observed vertical displacement of the interfaces was due to the passing

of internal waves.
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Figure 3.3: Square Brunt-Väisälä frequency at Central Celtic Sea. Grey
lines indicate the upper and lower interfaces of the pycnocline based on
the criteria in Table 3.1. Maximum values correspond to the pycnocline

layer.

3.2.3 Non-tidal velocity anomalies and transport in

surface, pycnocline and bottom layers

To assess the vertical shear in the horizontal velocities the depth-averaged

flow (ut ) was calculated over the vertical span of the ADCP data, missing

out the upper 20 and lower 7 metres of the water column, as follows:

ut =
1

H − z

∫ z

H
udz (3.2)

where u are the instantaneous horizontal velocities and H and z are 7

metres above the sea bed and 20 metres below the mean sea surface. The

most intense velocities corresponded to an approximate 15 day periodic-

ity resulting from the spring and neap tidal cycle (Fig. 3.4).
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Figure 3.4: a) Zonal and b) meridional components of the
depth-averaged flow

As the focus of this chapter is on the vertical variability of the horizon-

tal velocity field, the horizontal velocity anomalies (uc) were calculated

by removing the depth-averaged flow such that:

uc = u− ut (3.3)

See Figure 3.5. To obtain the corresponding transport for the surface,

pycnocline and bottom layers velocity anomalies (uc) were vertically in-

tegrated within each layer. At each time step instantaneous transport

(ULi, m2 s−1) was calculated between the upper (hui) and lower (hli)

boundaries as follows:

ULi =
∫ hui

hli

ucdz (3.4)

where the sub index i represents each layer, being 1, 2 and 3 the surface,

pycnocline and bottom layer, respectively. The shallowest time series of

velocity measurement was at 20 m depth, 10 m deeper than the upper
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Figure 3.5: a) Zonal and b) meridional components of the velocity
anomalies.

hydrographic time series. Thus, when the interface between the surface

and pycnocline layers was above 20 m depth, the upper interface of the

pycnocline was considered at 20 m and transport in surface layer was

assumed to be 0. The net transport in the water column for each time

step was zero. In the periods when transport in the surface mixed layer

was above 20 m depth, the effects of surface transport on the water

column, i.e. compensatory flows below the surface mixed layer, could not

be quantified. Nonetheless, analysis of the filtered velocities revealed that

when the surface layer was above 20 m depth the maximum variability

of the flow was constrained between 40-100 m depth.

3.2.4 Spectral Density

To evaluate fluctuations of energy in transport throughout summer of

2014 and 2015, and identify potential forcing agents, a spectral density

analysis was performed on transport within each layer. The dominant
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tidal constituent in the Celtic Sea is M2 (Pingree, 1980; Polton, 2015) and

previous studies (e.g. Inall et al., 2013; Hopkins et al., 2014) have shown

that the inertial frequency (∼1.5 cpd) is significant as well suggesting that

most of the energy is bounded between these two frequencies. A spec-

tral density analysis was performed on the longest and continuous time

series between the 23rd of August and 21st of November, i.e. in-between

periods when the instruments were serviced. During this period the wa-

ter column was stratified with the surface mixed layer extending below

20 m depth enabling calculations of the energy of transport in the sur-

face mixed layer. Spectral density analysis confirmed that energy peaked

around the semidiurnal and inertial bands and was negligible below 1.3

cpd at Central Celtic Sea (Fig. 3.6). To assess in more detail changes

in transport variability within each layer the temporal resolution of the

spectral density analysis was increased. Time series of transport were

separated into periods of 50 hours (4 M2 periods) and a spectral density

analysis was performed for each period. The analysis was constrained to

frequencies above the diurnal constituent (0.95 cpd or 25 hours) hence

ruling out any potential variability introduced by low frequency signals

(<1 cpd). However, for the whole time series there was no evidence of

energy being significant below 1 cpd (Fig. 3.6). Energy obtained be-

tween two continuous periods was averaged every 100 hours to improve

statistical confidence up to 4 degrees of freedom. Here, the semidiurnal

and inertial frequency bands were represented between 1.9 and 2 cpd,

which includes M2, and between 1.45 and 1.55 cpd, respectively.
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Figure 3.6: Spectral density analysis performed on surface (top),
pycnocline (middle) and bottom (bottom) transport time series from the

23rd of August to the 21st of November 2014. Blue lines indicate the
upper and lower intervals of confidence.

3.2.5 Stokes and Eulerian transport

Internal waves

Internal tidal waves have been reported in the Celtic Sea (Sharples et

al., 2007; Green et al., 2008; Inall et al., 2011). They result from the

combination of stratification of the water column and propagation of

the barotropic tide from the deep ocean over the shelf and vice versa.

As the tide propagates on and off the shelf the pycnocline is uplifted

and depressed leading to the formation of steep waves that propagate

in the tidal frequency. For infinitesimal waves the motion of a particle

is symmetric and circular, moving forward and backward with the crest

and the trough respectively, and returns to its original position leading

to zero residual flow. In contrast, steep waves are characterized by sharp

crests and flatter troughs (Simpson and Sharples, 2012). As the internal
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tidal wave passes, the motion of the water particles turns asymmetric

leading to a net residual flow. Associated with the passing of internal

waves, advection of properties occurs due to this residual transport (Inall

et al., 2001; Henderson 2016) which results from the difference between

the velocity experienced by a moving particle (Lagrangian) and velocity

at a fixed position (Eulerian) over a wave period; this mean transport is

known as the Stokes drift (Henderson, 2016).

Calculation of Stokes and Eulerian transport in each layer

In section 3.2.3 the transports at the Central Celtic Sea site were cal-

culated within the bottom, pycnocline and surface layers. The layer-

averaged Lagrangian-mean velocities can be recovered by dividing trans-

port (ULi) by the thickness of each layer as:

uLi =
ULi

hui − hli
(3.5)

Following Henderson (2016), under the assumptions of statistically steady

and weakly nonlinear waves, the velocity uLi at the mean depth of the

layer Z̄ can be related to:

〈uLi〉 ≈ 〈uE〉+ uS (3.6)

where 〈〉 indicates velocities were averaged over a wave period. The

term on the left hand side is the Lagrangian velocity, or the velocity

experienced by a moving particle. The first term of the right hand side

is equivalent to the Eulerian mean velocity (uE) and the second term

represents the Stokes drift (uS) calculated from vertical displacement

(Z
′
) of the interface from the mean depth of the layer (Z̄) and has been
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defined previously as (e.g., Henderson, 2016) :

uS =
∂

∂z
〈u′Z ′〉 (3.7)

where u
′

= uc − ūc, with ūc being the temporal mean of the velocity.

Stokes drift can be separated into:

unb = 〈Z ′ ∂u
′

∂z
〉 (3.8)

and

ub = 〈u′ ∂Z
′

∂z
〉 (3.9)

The non-bolus velocity (unb) accounts for the shear between the mean

Eulerian velocity and the mean velocity at the depth of the interface,

whilst the bolus velocity (ub) represents fluctuations of the interface

and therefore fluctuations in the layer thickness. The Eulerian trans-

port (UEi) in each layer can be estimated by vertically integrating the

velocities within the averaged layer thickness (Spingys, 2016) such that:

UEi =
∫ h̄ui

h̄li

ucdz (3.10)

where h̄ represents the mean depth of the boundaries of each layer. Stokes

transport (USi) can be estimated by vertically integrating (3.7) leading

to:

USi = 〈u′Z ′〉 (3.11)

The Stokes transport (USi) represents variations from the mean transport

over a wave period. Finally, with transport averaged over wave-periods

yields:

〈ULi〉 = 〈UEi〉+ 〈USi〉 (3.12)
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The dominant tidal constituent in the Celtic Sea is semidiurnal, predom-

inantly M2 (Pingree, 1980; Polton et al., 2015). In addition, spectral

density analysis revealed most of the variability was bounded around the

semidiurnal and f frequency bands (Fig. 3.6). Thus, transport was time

averaged over 50 hours to account for variability produced by the iner-

tial (∼16 h ×3=∼50 h) and semidiurnal (∼12.5 h ×4=∼50 h) periods

(Hopkins et al., 2014). Moreover, within this time-interval deepening

and/or shallowing of the interface depths due to seasonal variability can

be considered negligible (e.g. Henderson et al., 2016).

Due to different hydrographic conditions Eulerian and Stokes transport

were averaged over three periods (22nd June - 5th October 2014, 6th

October- 26th December 2014 and 25th April - 25th July 2015). During

the first period heating of the water column occurred leading to maxi-

mum stratification (Fig. 3.2, 3.3 and 3.7) and constraining transport in

the surface layer above 20 m depth for most of the time, i.e. above the

shallowest velocity time series. In the second period the upper interface

of the pycnocline deepened below 20 m depth due to heat loss to the

atmosphere leading to breaking down of stratification (Fig. 3.7). Weak

stratification was persistent until early January 2015, however up to the

26 of December the maximum value of the Brunt-Väis̈lä frequency was

greater than the inertial frequency such that the constrain for internal

waves (f < ω < N) was accomplished (Cushman-Roisin and Beckers,

2009). In the third period, after the winter 2014-2015, stratification was

again becoming established.
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Figure 3.7: a) Temperature time series at 10 m depth and b) difference
between the upper and bottom density time series indicating

stratification in the water column. Dashed lines indicate the periods with
different hydrographic conditions.

Ellipses of variability of the Stokes and Eulerian transport

To assess the predominant direction of variability of the Stokes and Eu-

lerian transports the ellipses of variability were calculated for each layer

and for the whole time series. An example on how the axis of variability

was calculated for the Eulerian transport is described below. Through

this analysis the predominant direction of variability can be obtained

through the matrix of covariance (C) as follows:

U
′

Ei = UEi − ŪEi (3.13)

V
′

Ei = VEi − V̄Ei (3.14)

w = [U
′

Ei, V
′

Ei] (3.15)

C = (n− 1)−1(wTw) (3.16)
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where U
′
Ei and V

′
Ei are the zonal and meridional anomalies of the Eulerian

transport, ŪEi and V̄Ei are the mean transport of each component,n is

the number of elements in U
′
Ei, and T indicates the transpose of the

matrix. The size of the matrix w has n rows and 2 columns. Following

Preisendorfer and Mobley (1988) the angle (θ) of maximum variability

of the transport can be calculated from the covariance matrix as:

θ =
1

2
tan−1[2C(2, 1), C(1, 1)− C(2, 2)] (3.17)

Consequently, Eulerian transports were rotated to the angle of maximum

variability using a rotation matrix as follows:

 Uri

Vri

 =

 cos θ − sin θ

sin θ + cos θ


 UEi

VEi

 (3.18)

where Uri and Vri are the zonal and meridional components of the Eule-

rian transports rotated to the maximum axis of variability for each layer.

The major (M) and minor (m) axis of the ellipses can be estimated from

the standard deviation of Uri and Vri, respectively, or from the covariance

matrix of the rotated Eulerian transports (Cri) as follows:

M =
√
Cri(1, 1) (3.19)

m =
√
Cri(2, 2) (3.20)

Ellipses of variability for the Stokes transport were calculated in a similar

manner.
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3.2.6 Wind data and Ekman transport

Wind data

At the Central Celtic Sea site wind data at 3 m above sea level was

recorded every hour by a meteorological buoy. These data were used

to assess the influence of the wind stress on the water column. Data

were compared with the nearest time series at 10 m above sea level from

ERA-interim data sets (Dee et al., 2011). High correlation coefficients

(R2) between data sets, 0.97 and 0.96 for the zonal and meridional com-

ponents (Fig. 3.8), was observed. Several coefficients, such as the drag

coefficient (Cd) have been calculated thoroughly in literature. Nonethe-

less, estimation of these coefficients is based on wind velocity at 10 m

height. Therefore, the wind data at 3 m was used to calculate wind ve-

locity at 10 m by rearranging eq. (3.21) to estimate the friction velocity

of the wind (w∗) (Cushman-Roisin and Beckers, 2009):

wz =
w∗
k
ln
z

z0

(3.21)

where wz is the wind velocity at height z, k is the von Karman constant

(0.41) and z0 is the roughness which was set constant at 2×10−4 following

Blanc et al.(1987). Spatial coverage was expanded to the whole shelf

using ERA- interim data sets for each period described in section 2.5.
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Figure 3.8: Time series of a)zonal and b)meridional components of the
wind velocity of Era-interim (blue) and buoy (red) data. Correlation of
the c) zonal and d)meridional components of the wind from Era-interim

and buoy data

Ekman transport calculation

The effects of the wind stress on the water column are constrained within

a certain depth or surface layer known as the Ekman Depth or Ekman

layer (Dw). Within this layer the wind stress forcing at Central Celtic

Sea can be described as:

∂uw
∂t
− fvw =

1

ρ0

∂τx
∂z

(3.22)

∂vw
∂t

+ fuw =
1

ρ0

∂τy
∂z

(3.23)

where uw and vw represent the zonal and meridional velocities generated

by the wind stress, respectively, referred to as the Ekman velocities, f

is the Coriolis parameter, τx and τy represent the zonal and meridional

components of the wind stress, respectively and ρ0 is the mean density

within the Ekman Layer. The terms on the left hand side are the local
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acceleration and the effects of the Earths rotation whilst the term on the

right hand side represents the wind stress forcing on the water column.

The vertical coordinate was not included given that wind stress was as-

sumed to be parallel to the sea surface. Wind-driven Ekman transport in

the Ekman layer can be calculated by vertically integrating the Ekman

velocities such that:

Uw =
∫ 0

Dw
uwdz (3.24)

and therefore eq. (3.22) and (3.23) become:

∂Uw
∂t
− fVw =

τx
ρ0

(3.25)

∂Vw
∂t

+ fUw =
τy
ρ0

(3.26)

In the scope of this research of particular interest were motions on time-

scales greater than the inertial period that may help elucidate the mech-

anisms generating net advection throughout the summer in the Celtic

Sea. Under this scenario the resultant balance for low frequency motions

is:

−fVw =
τx
ρ0

(3.27)

fUw =
τy
ρ0

(3.28)

From the latter equations it can be inferred that Ekman transport is

orthogonal to the direction of the wind. In the Central Celtic Sea wind

velocity (uw) time series from the buoy were used to calculate the wind-

driven Ekman transport. From the wind time series wind stress was

estimated as:

τx = ρaCd|uw|uw (3.29)

τy = ρaCd|uw|vw (3.30)
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where uw and vw represent the zonal and meridional components of the

wind velocity at 10 m above the sea surface. The air density (ρa) was

assumed to be constant at 1.25 kg m−3 and the drag coefficients varied

with the winds intensity following Smith and Banke (1975) such that:

cd = 1× 10−3(0.63 + 0.066(uw, vw)) (3.31)

Ekman transport is expected to occur in the surface mixed layer, thus

surface density (ρs) averaged between 10 and 15 m depth was assumed to

represent the mean density of the Ekman layer. Wind stress and surface

density were averaged every 50 hours (4 M2 periods), which is a period

short enough to provide a detailed analysis of the evolution of the Ekman

transport and is great enough to account for low frequency motions only.

Finally wind-driven Ekman transport was calculated as:

Vw = − τx
fρs

(3.32)

Uw =
τy
fρs

(3.33)

where f = 1.043× 10−4, s−1 was evaluated at Central Celtic Sea site.

Variability of the surface Ekman transport was quantified using the el-

lipses of variability as in section 3.2.5. Time series of Eulerian, Stokes

and wind-driven transport were compared through a Pearson correla-

tion analysis. An example on how correlation was calculated between

the zonal components of wind-driven transport and Eulerian transport

is provided below:

R2 =
cov(U

′
w, U

′
Ei)

std(U ′w)std(
′
Ei)

(3.34)

where cov represents the covariance matrix and std the standard devia-

tion.
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3.2.7 Empirical Orthogonal Functions

To identify spatial and temporal patterns within the time series and

compare with the physical mechanisms presented here, an independent

statistical assessment of the variability in the time series was carried

out. An Empirical Orthogonal Function analysis using singular value

decomposition (Venegas, 2001) was performed on the velocity (uc) and

salinity (sc) anomalies. The latter were calculated by removing the depth

average salinity from the instantaneous salinity (s) obtained from the

mooring as follows:

sc = s− 1

H − z

∫ z

H
sdz (3.35)

The empirical orthogonal analysis was performed to assess the temporal

and spatial variability of each field; therefore the temporal mean was

removed from each series:

u
′
= uc − ūc (3.36)

v
′
= vc − v̄c (3.37)

s
′

c = sc − s̄ (3.38)

and the matrix W
′

was created as follows:

W
′
= u

′
+ iv

′
(3.39)

where¯represents the temporal mean and
′

anomalies from the temporal

mean.

The singular value decomposition was performed on W
′

and s
′
c. Salinity

was chosen given that signals corresponding to seasonal cycles are neg-

ligible compared to temperature or density, i.e. changes in temperature
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due to seasonal heating and cooling of the water column. Secondly salin-

ity is able to identify waters from different origins such as fresher waters

from the Celtic Sea and relatively high salinity waters from the North

Atlantic (Ruiz-Castillo et al., 2018; Chapter 2). Due to the horizon-

tal salinity gradient, with salinity increasing towards the North Atlantic

Ocean, positive and negative values indicate oceanic and fresher waters,

respectively, revealing transport patterns in Central Celtic Sea. Time

series of the averaged salinity within each layer were compared with the

temporal modes or principal components of the EOF analysis.

3.3 Results

3.3.1 Internal waves and Stokes transport

During the stratified period the surface, pycnocline and bottom layers

were identified (Fig. 3.9). Maximum seasonal heat input into the surface

layers hinders the capacity of winds to vertically mix the water column

leading to the minimum thickness of the surface layer (<15 metres) be-

tween the 20th of July and the 10th of August 2014 and 15th of June to

10th of July 2015. After August 2014 surface density gradually increased

and stratification broke down leading to a deepening of the surface mixed

layer, reaching maximum depths of 70 m by the end of December 2014.

In contrast, the thickness of the bottom mixed layer remained constant

at around 90 m from June to September 2014 and from April 2015 until

the end of the record. From the 25th of April 2015 to mid-June 2015

enhanced vertical displacement occurred in the upper boundary of the

pycnocline layer and can be attributed to a competition between atmo-

spheric heat input and wind stress mixing. The mean thickness of the

pycnocline was 26 m from June to December 2014 and 40 m from April

to July 2015. The averaged depth of the pycnocline layer deepened from

83



late June 2014 to late December 2014, from 30 m to 80 m, respectively.

Throughout the stratified period internal waves were identified in the

density time series by the vertical displacement of the upper and lower

boundaries of the pycnocline layer (Fig. 3.9). Between mid-June and

September 2014 vertical fluctuations, i.e. small amplitude of the ver-

tical displacements, were relatively low for the pycnocline layer. From

September to mid-December fluctuations were intensified to up to 25

m. From the 25th of April 2015 to the 25th of July vertical displacement

due to internal waves was greater in the lower interface than in the upper

interface of the pycnocline.

Figure 3.9: Density time series. White gaps indicate periods when
instruments were removed from the water. White dashed line shows the

upper extent of the ADCP measurements. Grey lines represent the
upper and bottom boundaries of the pycnocline layer.

The temporal changes of the energy in transport in each layer are

shown in Figure 3.10. Variability within the inertial frequency band

intensified in the period October - late-December 2014 and late-April-
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June 2015, being occasionally greater than the semidiurnal band par-

ticularly between October and late-December 2014. In contrast, in the

pycnocline layer (Fig. 3.10b) maximum variability of the transport was

bounded by the semidiurnal band and decreased from October 2014 on-

wards consistent with the period when stratification was breaking down

(Fig. 3.7). Energy of the vertical displacement of the upper and lower

interfaces of the pycnocline peaked in the semidiurnal frequency band

mainly throughout the stratified period, revealing the passing of inter-

nal waves (Fig.3.10d). However, from November to late-December 2014

and between April and May 2015, events when the inertial frequency

and the diurnal frequency bands were considerable occurred. Apart from

mid-May, energy within the semidiurnal band was greater in the upper

boundary.

Figure 3.10: Spectral density analysis of the zonal (left column) and
meridional (right column) components of total transport within the a)

surface, b) pycnocline and c) bottom layers and d) upper (left) and lower
(right) interface of the pycnocline layer.

The maximum averaged Stokes transport (∼0.08 - 0.1 m2 s−1) in the pe-
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riods mid-June - 5th October and 6th October - 26th December 2014 oc-

curred at the pycnocline and was off-shelf in the first period and on-shelf

in the second (Fig. 3.11a-b). Stokes transport in the pycnocline layer for

both periods was compensated in the surface and bottom layers by flow in

the opposite direction. From late-April 2015 until the end of the record,

minimum averaged Stokes transport occurred for the three layers being

maximum (∼0.025 m2 s−1) in the bottom layer in the on-shelf direction

(Fig. 3.11c). For the whole time series the greatest variability occurred

within the pycnocline layer with the ellipses of variability aligned per-

pendicularly to the 200 m isobath (Fig. 3.11d). Surface Stokes transport

variability was also orientated perpendicular to the 200 m isobath whilst

bottom Stokes transport was lined up in the south-north axis. Overall,

throughout the record (Fig. 3.11d) Stokes transport was a maximum in

the pycnocline heading off-shelf and was compensated in the surface and

bottom layers in the on-shelf direction.
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Figure 3.11: Averaged Stokes transport for the periods a) 22nd June to
5th October 2014, b) 6th October to 26th December 2014, c) 25th April

to 26th July 2015 and d) Ellipses of variability and averaged Stokes
transport for the whole record. Blue, red and black represent the

surface, pycnocline and bottom layer, respectively.

3.3.2 Eulerian and Ekman transport

At Central Celtic Sea site the predominant winds were westerly south-

westerly with mean velocities between 4 and 8 m s−1 (Fig. 3.12). Events

when northeasterly winds occurred were observed. However in the long

term north easterly winds may be considered negligible compared to the

westerly wind events. Overall, for the whole shelf westerly winds pre-

vailed throughout the summer of 2014 and 2015 (Fig. 3.13). Similarity

between the averaged winds in Central Celtic Sea and the whole shelf

indicates wind-driven dynamics described at the mooring location can

be considered representative of the whole shelf.
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Figure 3.12: Histogram of winds direction and velocity (m s−1), from
their origin, and intensity at Central Celtic Sea at 10 m above sea level

for the periods 22nd June to 29th December 2014 and from 25th April to
26th July 2015.

Figure 3.13: Average wind field for the periods a) 22nd June - 5th
October 2014, b) 6th October - 29th December 2014 and c) 25th April -

26th July 2015. The green vector represents the averaged wind
calculated at Central Celtic Sea.

During summer 2014 and 2015 the averaged wind-driven Ekman trans-
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port was offshore (Fig. 3.14), south-south eastward and coincided with

the direction of surface Eulerian transport from 6th October 2014 to

late-July 2015 (Fig. 3.14b-c). Eulerian transport in the surface layer

and Ekman transports were a maximum, ∼ 0.5 m2 s−1 and 0.45 m2

s−1, respectively, between October and late-December 2014 (Fig. 3.14b).

Variability for both transports was orientated along the south-south east-

ward direction throughout the record (Fig. 3.14d), being more intense

for the Ekman transport. Between October and late-December 2014

bottom Eulerian transport was a maximum with values around ∼0.5 m2

s−1 and was in the opposite direction to the surface Eulerian and Ek-

man transports (Fig. 3.14b), although its variability was predominately

aligned with the ellipses of variability of the Ekman and surface Eulerian

transport (Fig. 3.14d). In the pycnocline layer Eulerian transport was

of the same order of magnitude for the three periods (∼0.07 m2 s−1),

and was onshore in the first and third periods and offshore in the second

one. Most of the variability was aligned with the north-south axis (Fig.

3.14d), nonetheless, low eccentricity of the ellipse indicates variability

of the Eulerian transport within the pycnocline was more disorganised

compared to Eulerian transport in the surface and bottom layers. In the

first and third periods, bottom transport was off-shelf similarly to surface

Ekman transport.
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Figure 3.14: Averaged Eulerian and Ekman transports for the periods a)
22nd June to 5th October 2014, b) 6th October to 26th December 2014,

c) 25th April to 26th July 2015 and d) Ellipses of variability and
averaged Eulerian transport for the 3 periods (a-c). Blue, red and black

represent the surface, pycnocline and bottom layer. The green vector
indicates the surface and Ekman transport.

Time series of the Ekman and surface and bottom Eulerian transport

are shown in Figure 3.15. Surface Eulerian transport was negligible from

mid-June to mid-August 2014 when stratification was a maximum for

the zonal and meridional components. The shallowest velocity time se-

ries was below the surface layer leading to a relatively low correlation

coefficient (R2 < 0.5) between the Ekman and the surface Eulerian trans-

ports (Table 3.2). From mid-August to late-December 2014 the zonal and

meridional components of the surface and bottom transports responded

to variations in the Ekman transport time series. Intensification and re-

laxation of the Ekman transport were reflected in increases and decreases

of the surface transport, respectively. Particularly, the meridional com-

ponent of the Eulerian surface and Ekman transports was highly corre-

lated (R2 between 0.73 and 0.82). In contrast, strong negative correlation
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between the Ekman and Eulerian bottom transports occurred (R2 of -0.71

and -0.7) indicating bottom transport responded to wind-driven Ekman

flow in the opposite direction. From the 26th of April 2015 onwards, de-

spite periods when surface Eulerian transport was negligible, events when

maxima and minima coincided were observed and reflected in a relatively

high correlation (R2) between Ekman and surface Eulerian transport of

0.64 and 0.71 for the zonal and meridional components, respectively. For

this period in the bottom layer negative correlation coefficients (R2= -

0.54 and -0.46) were observed. Low correlation in the period 23rd of

June - 18th of August 2014 and events between mid-June and July 2015

when bottom transport was aligned to surface Ekman transport indicate

cross-shelf transport was not governed by wind driven Ekman dynamics.

Figure 3.15: a) Zonal and b) meridional component of Ekman transport
(green), surface (blue) and bottom (black) Eulerian transport.

Discontinuity in the time series corresponds to winter and the periods
when the mooring was serviced.
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Table 3.2: Correlation R2 between Ekman and surface, pycnocline and
bottom Eulerian transport.

23 Jun-
18 Aug
2014

23 Aug-
17 Nov
2014

22 Nov-
26 Dec
2014

25 Apr-
3 Jul
2015

Meridional surface
transport

0.43 0.74 0.83 0.71

Meridional Pycno-
cline transport

0.11 -0.29 0.12 -0.28

Meridional bottom
transport

-0.47 -0.71 0.70 -0.46

Zonal surface trans-
port

0.41 0.53 0.06 0.64

Zonal pycnocline
transport

0.18 -0.29 -0.17 0.38

Zonal bottom trans-
port

-0.23 -0.15 -0.049 -0.54

3.3.3 Empirical Orthogonal Functions

The first mode of the velocity anomalies explains between 61 and 79% of

the total variability (Fig. 3.16, top). Similarly, the first mode of the salin-

ity anomalies explains between 63 and 71% of the total variability except

for the 4th period where it accounts for 91% (Fig. 3.16 2nd row). The

spatial modes of velocity and salinity anomaly indicate that variability

can be represented in a three layer system except in the period between

22nd June and 21st August 2014 for the velocities. In this interval the

shallowest velocity time series was below the surface layer throughout

most of the time, therefore, variability in this period is represented by a

two layer system. Seasonal deepening of the layers was observed in the

spatial mode and consistent with density time series. Variability of the

velocities indicates flows in the bottom layer were opposite to flows in

the surface layer. Similarly, salinity anomalies indicate that events where

fresher water was in the surface layer, relatively high salinity occurred in

the bottom layer and vice versa which is consistent with the variability
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described for the velocity anomalies.

The patterns observed in the principal component of the first mode of

salinity anomalies described the evolution of the time series of averaged

salinity within each layer (Fig. 3.16 5th and 6th row). In the period

mid-July - mid-September the principal component increased to max-

imum positive values indicating intensification of the spatial structure

(Fig. 3.16 2nd row), thus freshening of waters in the surface layer and

increases in salinity in the bottom. Depth-averaged salinity within each

layer showed that salinity in surface and pycnocline layer decreased to

35.4 g kg−1 whilst bottom salinity remained around 35.62 g kg−1 fitting

with the principal and spatial component of the first mode (Fig. 3.16 6th

row). Afterwards, the principal component decreased and turned nega-

tive between mid-September and mid-October and fitted with shortening

of the difference between surface-pycnocline and bottom salinity being

salinity in the pycnocline and surface layer higher than salinity in the

bottom. From mid-October until December the vertical difference in

salinity increased, with higher salinity in the bottom layer as described

by the positive values of the principal component in this period. In early

December an event of greater salinity in surface and pycnocline layers

than in the bottom layer occurred and was consistent with the negative

values of the principal component. The spatial mode changed direction

between mid-June 2015 and the end of the record, the principal com-

ponent was negative indicating relatively high salinities occurred in the

surface and pycnocline layers.
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Figure 3.16: Spatial first mode of the zonal (red) and meridional (blue)
components of the velocity anomalies (top) and anomaly of salinity
(black) (2nd row). Principal component of the zonal (3rd row) and

meridional (4th row) velocity anomalies, salinity anomalies (5th row) and
averaged time series of salinity (g kg−1) in surface, pycnocline and

bottom layers (bottom).

Similarly, the second spatial mode of the velocity and salinity anoma-

lies can be expressed in a three-layer system, with the same exception in

the first period of the velocities (Fig. 3.17 1st and 2nd row). The second

mode expressed between 19 and 33 % of the total variability except for

the 4th period of the salinity anomalies where the variability accounts

for 4.9%. Seasonal deepening of the layers was observed. The spatial

mode of the velocities indicates that the more intense velocities occurred

at mid-depths within a layer coinciding with the location of the pycno-

cline. Velocities in this layer were opposite to velocities in the surface

and bottom layers. Similarly, the highest variability of the spatial mode

of salinity anomalies occurred at mid-depths. When relatively high salin-

ity occurs at mid-depths, fresher salinity was found in the surface and

bottom layers and vice versa.
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The principal component indicates two different regimes in the period

June-December 2014 (Fig. 3.17, 5th row). Overall, between June and

mid-October positive values were more predominant in the principal com-

ponent. In contrast, from mid-October until the end of the year nega-

tives values were more common. From mid-May 2015 until the end of

the record values of the principal component fluctuated around zero sug-

gesting variability due to the second mode was negligible in this period,

consistent with the relatively low percentage of the variability explained

by this mode (4.9%).

Figure 3.17: Spatial second mode of the zonal (red) and meridional
(blue) components of the baroclinic velocities (top) and anomaly of

salinity (black) (2nd row). Principal component of the zonal (3rd row),
meridional (4th row) velocity anomalies and salinity anomalies (bottom).
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3.4 Discussion

3.4.1 Internal waves and Stokes transport

During the summer of 2014 and 2015 in the Central Celtic Sea inter-

nal waves were identified by the vertical displacements of the upper and

lower boundaries of the pycnocline layer. Previous studies have shown

that internal tides generated at the shelf break can propagate on-shelf

(Sharples et al., 2007; Vlasenko et al., 2012) at least up to 170 km in

the Celtic Sea (Inall et al., 2011) well beyond the Central Celtic Sea site.

Nonetheless, internal tides can also be generated on the Celtic Sea (e.g.

Palmer et al., 2013) due to sharp changes in topography (e.g. Jones

Bank) and propagate off the shelf. Overall, spectral density analysis

showed that variability of the vertical movement of the boundaries was

greater within the semidiurnal frequency band in summer 2014 and 2015

indicating internal waves oscillated in a semidiurnal period fitting with

previous observations in the Celtic Sea (Pingree and New, 1995; Inall

et al., 2013; Hopkins et al., 2014). In the upper boundary of the py-

cnocline only, intensified vertical displacement was found between the

25th of April and mid-June 2015 suggesting a combination of processes

occurred simultaneously. Potentially, this could arise from competition

between atmospheric heat input and strong wind stress events, stratify-

ing the water column and redistributing the heat vertically between the

surface and pycnocline layers. The enhanced variability is linked to the

meteorological forcing. This competition caused maxima fluctuations of

the upper boundary within the diurnal frequency band. However, when

compared to transport in the surface and pycnocline layers (Fig. 3.10),

there was no evidence of transport fluctuations bounded by the diurnal

band. In fact, transport peaked on the inertial and semidiurnal frequency

bands throughout the record for the surface, pycnocline and bottom lay-
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ers. Therefore, transport in each layer resulted from a combination of

internal tides and wind-stress forcing.

Associated with the internal waves, Stokes transport was calculated for

each layer. In the surface and bottom layers variability introduced by

wind stress was reflected in energy peaking in the inertial frequency band

and being occasionally greater than energy bounded by the semidiurnal

band as seen in Inall et al. (2013). However, in the pycnocline maxima

variability of transport and the vertical displacements of the interfaces

were bounded by the semidiurnal frequency band indicating most of its

variability resulted from internal tides and not from the wind stress.

Therefore, Stokes transport is expected to govern dynamics within the

pycnocline whilst Eulerian transport due to wind stress can be consid-

ered minimum. Maximum Stokes transport associated to the passing of

internal waves occurred in the pycnocline and was off-shelf and on-shelf

between mid-June and the 5th of October and between the 6th of October

and late-December 2014, respectively, with opposite flows in the surface

and bottom layers. In these periods, within the pycnocline layer aver-

aged Stokes transport (0.10 - 0.08 m2 s−1) was greater than the averaged

Eulerian transport (0.067 - 0.049 m2 s−1) and in the opposite direction

(Fig. 3.11). Even though, averaged over periods of 50 hours, the magni-

tude of the Eulerian transport in the pycnocline layer was more intense

its variability was disorganised compared to Stokes transport variability

which was clearly aligned perpendicularly to the shelf break (Fig. 3.11).

Therefore, transport within the pycnocline was governed by Stokes trans-

port generated by internal tides.

Through internal tides exchange between the Celtic Sea and North At-

lantic Ocean is enabled due to the semi diurnal time-scale and therefore
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the Taylor-Proudman theorem beaks down (Huthnance, 1995; Inall et

al., 2001). Hydrographic sections carried out in summer 2014 and 2015

(Fig. 3.18), which were orientated in the same direction of the ellipses of

variability, illustrate exchange within the pycnocline layer between the

Celtic Sea and the North Atlantic Ocean. The 35.7 g kg−1 isohaline

separates the relatively high salinity waters from the Atlantic and the

fresher waters of the Celtic Sea (Ruiz-Castillo et al., 2018; Chapter 2).

In August 2014 (Fig. 3.18a), relatively high salinity waters intruded at

least a 100 km into the Celtic Sea. This fits with previous studies in

the Celtic Sea (Hopkins et al., 2012) and other shelf seas (e.g. Lentz,

2003) where high salinity waters within the pycnocline are advected on-

shelf. In contrast in July and August 2015 fresher waters were exported

off-shelf (Fig. 3.18b-c).

Figure 3.18: Absolute Salinity sections. Each section was carried out
between a) 5-7 of August 2014, b) 22-25 of July 2015 and c) 21-23

August 2015. Distance is referenced to the coast and CCS is located at
360 km. White dashed lines indicate the 26, 26.5 and 27 kg m−3 contours

representing the location of the pycnocline.
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3.4.2 Eulerian and Ekman transport

In the Celtic Sea westerly winds were predominant in the summer of

2014 and 2015 generating favourable conditions for an averaged offshore

Ekman transport and a compensatory onshore flow in the surface and

bottom layers, respectively. At Central Celtic Sea evidence of Ekman

transport occurring was identified. For instance, transport variability in

surface layer peaked in the inertial frequency band, indicative of wind

stress forcing. In addition, averaged Ekman and Eulerian transport in

the surface layer was off-shelf, south-south eastward, with both of their

ellipses of variability aligned in the same direction. Eulerian transport

in the surface layer was less than wind-driven Ekman transport given

that Eulerian transport was not quantified in the upper 20 metres of the

water column. Finally, high correlation coefficients, particularly from

mid-August onward (R2 of 0.71 - 0.82), indicated that wind stress, in

the form of wind-driven Ekman transport, was the main forcing agent

in the surface layer. However, low correlation between the 23rd of June

and the 18th of August 2014 and events between mid-June and July

2015 revealed dynamics at Central Celtic Sea were generated by another

mechanism. In the periods when transport was not controlled by Ek-

man dynamics, stratification was a maximum, i.e. the surface layer was

above 20 m depth and above the shallowest velocity time series. The

wind headed towards the east (Fig. 3.19a) and the velocity anomalies

were stronger along the zonal component describing a more intense east-

ward flow between 40 and 100 m depth (Fig. 3.19b). Time series of

magnitude (Fig. 3.19c) of the low frequency flow (¡1 cpd) and averaged

raw velocities with its ellipses of variability (Fig. 3.19d) indicate the

flow was more intense between 40 and 100 m depth and was aligned zon-

ally from 40 to 140 m depth. The enhanced eastward current probably

resulted from the density cross-shelf gradient within the bottom mixed
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layer. The background horizontal density gradient set in the previous

winter combined with bottom onshore transport results in a cross-shelf

density gradient with denser waters north of CCS as will be described in

the following chapter. Under this scenario an eastward geostrophic flow

would be generated. After mid-August deepening of the upper bound-

ary of the pycnocline allowed measurement of transport in the surface

layer, i.e. weakening of stratification, and variability in surface Eulerian

transport responded to intensification and relaxation of the wind-driven

Ekman transport.

Figure 3.19: Time series at the Central Celtic Sea of a) wind velocity, b)
zonal velocity anomalies, c) time series of the magnitude of the filtered

and raw (anomalies plus the depth averaged flow) velocity and d)
averaged velocity and ellipses of variability between 20 and 40 m depth
(blue), 40 and 100 m depth (red), 100 and 140 m depth (black) in the

period 22nd of June - 18th of August. High frequencies above 1 cpd were
removed from b), c) and d). In b) positive values indicate eastward.

Variability in bottom transport peaking in the inertial frequency band

indicated wind stress forcing occurred in the bottom layer in the form of

a compensatory flow. This compensatory flow (Uwb) was assumed to be
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in the form:

Uwb = −Uw (3.40)

Ekman and bottom Eulerian transport time series were negatively cor-

related indicating bottom transport responded to Ekman transport vari-

ability in the opposite direction fitting with a compensatory onshore flow

as described in equation (3.40). Furthermore, the ellipse of variability in

the bottom layer was aligned in the south-south westward direction coin-

ciding with most of the ellipse of variability of the Ekman transport (Fig.

3.14). For the surface and bottom transports, stronger correlation was

found along the meridional components due to the predominant westerly

winds that generate transport mainly in the north-south direction.

In the Celtic Sea relatively high salinity waters intruding coastward in the

bottom layer occurred following the onset of stratification in the summer

of 2014 and 2015 (Ruiz-Castillo et al., 2018; Chapter 2). The maximum

northward intrusion was between November and December 2014 consis-

tently with the greatest (negative) correlation between the Ekman and

Eulerian bottom transports (R2=0.71), which suggests that this bottom

onshore flow can be explained mainly as the result of a compensatory

flow of off-shelf wind-driven Ekman transport. Ekman and bottom flow

between October and late-December 2015 was 0.5 m2 s−1 and taking the

bottom layer thickness to be 70 m on average leads to a mean-layer ve-

locity of 0.6 km day−1, which is well aligned to the velocities described

in Ruiz-Castillo et al. (2018) based on the salinity displacement across

the Celtic Sea.

Previous studies indicate westerly winds prevail in the Celtic Sea (Pin-

gree 1980; Pingree et al., 1999) creating favourable conditions for wind-

driven upwelling events throughout the year, i.e. wind-driven Ekman
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dynamics. Nonetheless, no clear evidence has been observed such as cold

water creeping up on-shelf or a band of cold water along the coast (e.g.

Ruiz-Castillo et al., 2016). Due to the Ekman transport relatively high

salinity waters were advected to the inner shelf (depth <100 metres).

Stratification prevailed throughout summer in the relatively deep inner

shelf hindering mixing so that high salinity waters from the bottom were

not seen in the surface. In addition, waters would be advected across the

inner shelf by a cyclonic jet (Horsbourgh et al., 1998; Brown et al., 2003,

Young et al., 2004). Far from the inner shelf, dynamics may be governed

by the poleward along-slope current at the shelf edge (Pingree et al., 1999;

Huthnance et al., 2001; Holt et al., 2009). Nonetheless, events where the

along-slope generated upwelling in the bottom layer due to reversal of the

along-slope current had been documented (Porter et al., 2016). However,

on average, this current is thought to be in the poleward direction and

therefore export shelf waters to the deep ocean through an Ekman drain

mechanism at the bottom boundary layer (Souza et al., 2001; Holt et

al., 2009; Simpson and McCandliss, 2013). Thus the wind-driven Ekman

dynamics would oppose Ekman drain dynamics and the along-slope cur-

rent may inhibit wind-driven upwelling (e.g. Roughan and Middleton,

2002; Marchesiello and Estrade, 2010; Rossi et al., 2013). Therefore,

despite favourable conditions, wind-driven Ekman dynamics might be

clearly identifiable in the Central Celtic Sea, but be masked by other

processes towards the shelf edge, such as the poleward along-slope cur-

rent. Further evidence of these two processes occurring simultaneously

and the implications for oceanic waters supply onto the Celtic Sea are

described in the following chapter.
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3.4.3 Empirical Orthogonal Functions

At the Central Celtic Sea site an independent statistical assessment of the

variability of the velocity and salinity anomalies was performed through

an empirical orthogonal function analysis. The first and second modes

explain between 83 and 95% of the total variability throughout the record

with the variability patterns consistent with the dynamics observed in

the Central Celtic Sea. For instance, the first and second spatial modes

of the velocity and salinity anomalies describe a three-layer system and

deepening of each layer is consistent with seasonal deepening observed in

density time series. In addition, spatial mode 1 of the velocity anomalies

indicates transport across the shelf in the surface layer was opposite

to the bottom layer. Related to this transport as seen in mode 1 of

the salinity anomalies when relatively high salinity waters were found

in the surface layer, fresher waters occur in the bottom layer, and vice

versa. The evolution of the first principal component was consistent

with the fluctuations of the averaged salinity within each layer and fitted

with the spatial mode. Finally, the second mode of variability indicated

waters were transported across the shelf at mid-depths, advecting either

fresher waters offshore or relatively high salinity waters onshore. Thus,

both mechanisms governing transport in the Celtic Sea coincide with

the spatial variability patterns described by the Empirical orthogonal

function analysis.

3.5 Summary

Hydrography and transport at the Central Celtic Sea site were assessed

using a three layer system approach. The thickness of the layers changed

throughout the stratified period. In each layer transport was separated

into Stokes and Eulerian components.
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Stokes transport was a maximum in the pycnocline, being greater on

average than the Eulerian transport. Variability of the Stokes transport

was aligned perpendicular to the shelf edge.

Eulerian transport in surface and bottom layers was mainly generated

by wind-driven Ekman dynamics. Westerly wind-stress generate offshore

surface transport and a compensatory bottom onshore flow.

Bottom onshore advection in the Celtic Sea and exchange between the

shelf and the North Atlantic in the pycnocline layer can be explained by

wind-driven Ekman transport and Stokes transport generated by internal

tides.
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Chapter 4

Cross-shelf exchange between
a temperate shelf sea and the
North Atlantic Ocean in
autumn and winter

Abstract

In the interior of the Celtic Sea wind stress forcing from predominantly

westerly winds governs cross-shelf flow leading to the potential for off-

shelf surface transport and onshore advection in the bottom layer. This

process could potentially extend to the shelf edge enabling exchange

between shelf waters and the deep-ocean region. However at the shelf

edge a poleward along-slope current occurs and generates off-shelf trans-

port in the bottom layer through an Ekman drain mechanism opposing

wind-driven exchange. In this chapter exchange between the Celtic Sea

and the North Atlantic Ocean is elucidated. The mechanism on how

oceanic properties, particularly nutrients, from the North Atlantic are

transported onto the Celtic Sea is explained. Time series recorded at

Celtic Deep and Central Celtic Sea from the 1st of November 2014 to

the 15th of March, of surface wind-stress, hydrography and horizontal

velocities in the water column were combined with hydrographic data

obtained from glider and CTD casts to assess transport and exchange

between the Celtic Sea and the North Atlantic Ocean. Nutrient data
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was utilised to quantify advection of nutrients from oceanic origin. Re-

sults indicate that North Atlantic waters are transported 80 km onto

the Celtic Sea in the bottom layer due to wind-driven transport in a 7-8

month period. In the bottom layer of the Celtic Sea about 50% of the

nutrients observed were advected from the North Atlantic Ocean. In De-

cember, evidence of Ekman drain and wind-driven transport were found

to occur simultaneously in the cross-shelf direction. Interaction of both

processes resulted in convergence at the shelf edge and prevented cross-

slope exchange. Surface waters from the shelf and ocean were forced to

recirculate onshore and off-shelf in the bottom layer, respectively. Veloc-

ities in the bottom layer due to the Ekman drain process were estimated

around 0.06 - 0.1 m s−1 fitting with previous observations. Associated

with the convergence of surface waters, a geostrophic eastward flow is

expected to occur at the shelf edge of the Celtic Sea. Due to recircu-

lation of fresher waters the stratified period was extended beyond that

expected despite heat loss and surface cooling. There was no evidence of

cross-shelf exchange throughout winter.

4.1 Introduction

In the interior of the Celtic Sea relatively high salinity and nutrient-

rich waters originating from the North Atlantic Ocean are transported

across the shelf (Ruiz-Castillo et al., 2018). However, exchange of salinity

and nutrients, as well as other water properties, between shelf seas and

oceans is limited by geostrophic currents flowing along isobaths (Allen et

al., 2009), i.e. the along-slope current. When geostrophy fails cross-slope

transport at the shelf edge of the Celtic Sea is enabled and is thought to

be governed by wind-driven flow (0.85 m2 s−1), Ekman drain (0.5 m2 s−1)

and internal waves (1 m2 s−1) (Huthnance et al., 2009). This Chapter

elucidates how relatively high salinity and nutrient-rich waters from the
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North Atlantic are supplied onto the Celtic Sea.

Observations at the shelf break of the North-western European shelf have

identified a poleward along-slope current centred on the 500 m depth

contour from September-October to March-April (Pingree and Le Cann,

1989; Souza et al., 2001; van Aken, 2002; Simpson and McCandliss,

2013) with mean velocities of 0.05 m s−1 (Pingree and Le Cann 1989;

van Aken, 2002). In contrast, in summer the along slope current weak-

ens/ or appears to be absent (van Aken 2002) and even reverses flowing

equatorward with velocities of 0.015 m s−1 (Pingree and Le Cann, 1989;

Porter et al., 2016). Associated with the along-slope poleward current,

off-shelf export in the bottom layer has been observed through an Ek-

man drain mechanism (Souza et al., 2001; Holt et al., 2009; Simpson and

McCandliss, 2013).

The Ekman drain mechanism can be explained by considering a pole-

ward geostrophic flow in the water column and the frictional forces in

the bottom boundary layer. Away from the seabed friction is negligible.

However within the bottom boundary layer the flow gradually decreases

up to zero at the seafloor. The total velocities (u,v) in the water column

can be expressed as:

u = ug + uEkb (4.1)

v = vg + vEkb (4.2)

where ug and vg represent the geostrophic flow, uEkb and vEkb are the

Ekman velocities which are only important within the bottom boundary

layer (D). Therefore the resulting blance is:

−fv = − 1

ρ0

∂P

∂x
+ Az

∂2u

∂z2
(4.3)
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fu = − 1

ρ0

∂P

∂y
+ Az

∂2v

∂z2
(4.4)

where f is the Coriolis parameter and Az is the vertical viscosity coef-

ficient. The first term on the right hand side in eq. (4.3) and (4.4) is

the pressure gradient force governing the flow far from the seabed. The

frictional forces are represented by the second term and are only impor-

tant within the bottom boundary layer. If we orientate the along-slope

current along the x-axis, as it would be aligned at the shelf edge of the

Celtic Sea, we get:

−fv = Az
∂2u

∂z2
(4.5)

fu− fug = Az
∂2v

∂z2
(4.6)

where fug = − 1
ρ0
∂P
∂y

. At the seabed zonal (u) and meridional (v) veloc-

ities are zero whilst above the Ekman depth u = ug and v = 0. With

the previous boundary conditions the solutions to eq. 4.5 and 4.6 are

(Cushman-Roisin and Beckers, 2009; Simpson and Sharples, 2012):

u = ug

(
1− e(

−πz
D ) cos

(
πz

D

))
(4.7)

v = uge
−(πzD ) sin

(
πz

D

)
(4.8)

Eqs. (4.7) and (4.8) describe a flow within the bottom boundary layer

deflected to the left of the geostrophic current (Fig. 4.1).
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Figure 4.1: Schematic of the flow within the bottom boundary layer.
Geostrophic flow above the Ekman layer is in the eastward direction.

The flow within the bottom boundary layer deflects to the left. Adapted
from Cushman-Roisin and Beckers (2009).

Cross-shelf transport (V ) within the Ekman depth can be estimated in

the form (Cushman-Roisin and Beckers, 2009; Simpson and Sharples,

2012):

V =
∫ D

H
vdz =

ugD

2
(4.9)

Transport within the bottom boundary layer is proportional to the in-

tensity of the geostrophic current and the thickness of the Ekman depth.

For the northwest European shelf deflection is off-shelf due to the pole-

ward along-slope current. The transport in the bottom boundary layer

must be replenished leading to a compensatory flow above the bottom

Ekman depth (e.g. Souza et al., 2001).

In the interior of the Celtic Sea bottom onshore advection results mainly

from wind-driven transport (Chapter 3). The dynamics of how wind

stress generates transport in the water column are described in detail

in the previous chapter. At the shelf edge surface currents have been

observed to be deflected to the right of the wind-stress (Pingree and Le

Cann, 1990) and westerly winds prevail in the Celtic Sea (Pingree, 1980;

Pingree et al., 1999) and are favourable for cross-slope exchange. In

principle, nutrient-rich, cold and relatively high salinity waters would be

advected on-shelf in the bottom layer. However, the Ekman drain mech-
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anism generated by the poleward along-slope current exports shelf waters

off-shelf in the bottom layer (Souza et al., 2001; Holt et al., 2009; Simp-

son and McCandliss, 2013) and would oppose wind-driven exchange. In

this Chapter the mechanisms driving cross-shelf exchange and how wa-

ters from the North Atlantic Ocean are supplied onto the Celtic Sea are

described. In addition, the interaction between wind-driven flow and Ek-

man drain at the shelf edge and its effects on cross-slope exchange are

analysed during autumn and winter.

4.2 Method

Time series recorded in the Celtic Sea (Fig. 4.2), from the 1st of Novem-

ber 2014 to the 15th of March 2015, of surface wind-stress, hydrography

and horizontal velocities in the water column were combined with hy-

drographic data obtained from glider and CTD casts to assess transport

and exchange between the Celtic Sea and the North Atlantic Ocean.
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Figure 4.2: Map of the Celtic Sea. Blue circles indicate the locations of
the Central Celtic Sea and Celtic Deep moorings and the black circle
indicates the reference point. Red points show the track of the glider.
Blue points indicate where CTD casts were carried out in November

2014.

4.2.1 Time series of hydrographic data

At the Celtic Deep (Fig. 4.2) surface time series of salinity and tem-

perature with a temporal resolution of 30 min and 1 hour, respectively,

(Hull et al., 2017), were used to assess the influence of fresher waters

and changes in water column temperature from the 1st of January to

the 15th of April 2015. There was a gap between the 31st of January

and 10th of March in the salinity time series. At the Central Celtic Sea

site near full depth time series of temperature and salinity were recorded

from March 2014 to August 2015. Data utilised in this chapter covers

the period from the 1st of November 2014 to the 15th of March 2015.

Each time series had a temporal resolution of 5 minutes and was verti-

cally interpolated every 2.5 m. A detailed description on how data were
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processed is provided in the previous chapter and Wihsgott et al. (2016).

This Chapter describes long-term fluctuations, slower than the tidal and

inertial motions. Therefore high frequency fluctuations from time series

at the Celtic Deep and Central Celtic Sea were removed using a low-pass

Lanczos filter (Thompson and Emery, 2014) with a cut off frequency of

24−1 h−1 (Fig. 4.3). Conservative temperature, absolute salinity and po-

tential density were calculated (McDougall and Barker, 2011). Relatively

high salinity and fresher waters were considered to represent waters from

the shelf edge and interior of the Celtic Sea, respectively. In winter in-

tensified wind stress and heat loss ensure the water column is fully mixed

(Wihsgott et al., 2019) (Fig. 4.3b-d). Therefore, for the period covering

winter the analysis was carried out on the depth-averaged time series at

Central Celtic Sea whilst at Celtic Deep surface measurements of salinity

and temperature were representative of the whole water column.

Figure 4.3: a) Filtered (red) and raw (black) time series of surface
absolute salinity at Celtic Deep and Hovmöller of diagram of filtered b)
absolute salinity c) conservative temperature and d) density at Central

Celtic Sea.
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4.2.2 Time series of current data

Current measurements at the Central Celtic Sea and the Celtic Deep

were used to evaluate cross-shelf flow. At the Central Celtic Sea time

series of horizontal velocities from near the bottom (150 m) up to 20 m

depth were recorded using an ADCP from March 2014 to August 2015.

Each time series was interpolated on a regular grid with a temporal and

spatial resolution of 5 minutes and 2.5 m respectively (Wihsgott et al.,

2018). At the Celtic Deep a time series was recorded every hour in the

bottom 40 m with a vertical resolution of 0.5 m (Thompson et al., 2017;

Thompson et al., 2018) using an ADCP from mid-November 2014 to

the 1st of April 2015 with a gap in the period 21st of February-13th of

March. For the Celtic Deep site only data between the 1st of January

and 13th of March, when the water column was mixed was analysed. For

the Central Celtic Sea only data in the period 1st of November -15th of

March were analysed in this Chapter. As with the hydrographic time

series a low-pass Lanczos filter was used with a cut off frequency of 24−1

h−1 (Thompson and Emery, 2014).

To assess the net cross-shelf flow depth-mean transport was estimated

at the Celtic Deep and Central Celtic Sea. The depth-averaged velocity

(ū) was calculated from the filtered velocities (u) in the form:

ū =
1

H

∫ 0

H
udz (4.10)

Subsequently, full water column transport (U) was quantified at each

time step as follows:

U = ūH (4.11)

where depth of the water column (H) was set at 100 and 145 m for Celtic

Deep and Central Celtic Sea, respectively.
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To assess the vertical variability of the flow in the water column at Cen-

tral Celtic Sea the horizontal velocity anomalies (uc) were calculated.

As in the previous chapters, the depth-averaged flow (ū) was removed at

each time step from the filtered velocities (u) as follows (Fig. 4.4) (e.g.

Chapter 3):

uc = u− ū (4.12)

Figure 4.4: a) Zonal and b) meridional components of the velocity
anomalies at the Central Celtic Sea. Black contours indicate zero

velocity separating positive (northward and eastward) from negative
(southward and westward) velocities.

4.2.3 Wind data

At the Central Celtic Sea wind data recorded every hour by a meteo-

rological buoy were used to assess the influence of the wind stress on

the water column in the form of wind-driven Ekman transport. As in
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Chapter 3 Ekman transport was calculated in the form:

Vw = − τx
fρs

(4.13)

Uw =
τy
fρs

(4.14)

where the meridional (τy) and zonal (τx) components of the wind stress

were estimated as:

τx = ρaCd|uw|uw (4.15)

τy = ρaCd|uw|vw (4.16)

with uw and vw representing the zonal and meridional components of the

wind. Surface density (ρs) was averaged between 10 and 15 m depth

and the air density (ρa) was set constant at 1.25 kg m−3. The zonal and

meridional components of the wind-stress were averaged every 24 hours

to account for low frequency motions. The drag coefficients varied with

the winds intensity following Smith and Banke (1975) such that:

Cd = 1× 10−3 (0.63 + 0.066 (uw, vw)) (4.17)

Transport in the surface layer

Before the water column was fully mixed at Central Celtic Sea (e.g.

before the 1st of January 2015) the thickness of the surface layer was

determined using the same criteria as in Chapter 3 (Table 3.1). Examples

of the surface and bottom layers in salinity and temperature profiles are

shown in Figure 4.5. Transport in the surface layer was estimated by

vertically integrating the horizontal velocity anomalies at each time step

from the upper boundary of the pycnocline to the shallowest velocity

time series. The Influence of the wind-driven Ekman transport on the

water column was evaluated through Pearson correlation coefficients.
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Figure 4.5: Examples of temperature and salinity profiles used to
estimate depth of the surface layer at Central Celtic Sea. Salinity and
temperature axis are at the top and bottom of each panel. Green lines

indicate the upper and lower interface of the pycnocline layers.

4.2.4 Hydrographic transects

CTD casts

Hydrographic data (CTD) were collected in November 2014 on board the

RRS Discovery (blue dots in Fig. 4.2). Data quality control is detailed

in Chapter 2. Conservative temperature, absolute salinity and poten-

tial density were calculated (McDougall and Barker, 2011) and cross-

shelf transects were constructed. Due to the specific dynamics described

in wind time series, only data collected between the 13th and 16th of

November from the Central Celtic Sea site to the shelf edge were consid-

ered. The distance is referred to the eastern side of St. Georges Channel.

As with the mooring data, absolute salinity is used to determine hori-

zontal displacement from waters adjacent to the shelf edge and on the

Celtic Sea.
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Glider data

A glider was deployed in the Celtic Sea between the 18th of November

2014 and 22nd of March 2015 and measured sea water properties from

the Central Celtic Sea site to the shelf edge. The effect of thermal in-

ertia on the conductivity cell was corrected using NOCL glider thermal

inertia toolbox developed by Dr Matthew Palmer. The average upward

and downward velocity was assumed to be constant at 0.65 m s−1 and

the relaxation time of thermal anomaly was estimated to be 25 s. Pres-

sure, temperature and the corrected conductivity were filtered using a

low-pass band Butterworth filter with a sample rate every 0.2 s−1 and

utilised to estimate practical salinity (Fig. 4.6) using the UNESCO poly-

nomial (1983). Two consecutive upward and downward salinity profiles

are shown in Figure 4.6. Black and red profiles show practical salinity

before and after the thermal inertia correction applied on conductivity,

respectively. Data was bin averaged every metre. The TEOS-10 func-

tions were used to derive absolute salinity, conservative temperature and

potential density (McDougall and Barker, 2011).Glider salinity and tem-

perature were calibrated with CTD casts from the cruise carried out in

November 2014. Only data obtained in the periods 26th of November-

16th of December and 17th of January- 28th of February were analysed

due to glider malfunction. Cross-shelf transects were constructed to anal-

yse hydrographic evolution from the Central Celtic Sea to the shelf edge.
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Figure 4.6: Raw salinity profiles (black lines) and salinity after the
thermal inertia correction on conductivity (red lines).

Nutrients

To analyse advection of nutrients from the North Atlantic onto the Celtic

Sea dissolved inorganic nutrients (NO2 and NO3) sampled between March

and November 2014 were used. Further details on how nutrients were

processed are described in detail in Ruiz-Castillo et al. (2018), Woodward

(2016) and Poulton et al. (2018). This Chapter aims to understand

exchange processes between the shelf and oceanic waters therefore only

nutrients sampled between the Central Celtic Sea and the North Atlantic

Ocean were utilised.
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4.3 Results

4.3.1 Autumn

Wind stress forcing of transport and hydrography in the Central

Celtic Sea

In the Celtic Sea between the 2nd of November and 30th of December

2014 two sustained westerly-wind events occurred in the periods 2-18

of November and 7-28 of December generating favourable conditions for

surface off-shelf wind-driven Ekman transport (Fig. 4.7a). In contrast,

easterly winds favourable for onshore Ekman flow in the surface layer

occurred between the 25th and 30th of November. Northerly winds were

observed in the period 1-7 of December. Throughout the record surface

transport responded to wind-stress forcing (Fig. 4.7b and c). During

the first westerly wind event, between the 2nd and 18th of November,

in Central Celtic Sea surface and wind-driven transport were strongly

correlated R2 = 0.84 and 0.85 for the zonal and meridional components,

respectively. In this period off-shelf transport occurred and was a maxi-

mum, above 2 m2 s−1 on the 8th of November. Ekman transport gradu-

ally decreased to ∼0.1 m2 s−1 on the 18th of November due to relaxation

of the westerly wind stress and surface transport reversed and headed

onshore with values below 0.2 m2 s−1. Between the 25th and 30th of

November onshore transport of 0.4 m2 s−1 occurred in the surface layer

and was consistent with easterly wind stress. Both time series were cor-

related with R2 values of 0.85 and 0.58, for the meridional and zonal

components, respectively. During the northerly wind-event surface and

Ekman transport correlation was greater in the zonal (R2 =0.66) com-

ponent than in the meridional (R2= 0.23). During the second event

of westerly winds, between the 7th and 28th of December, surface and

Ekman time series were strongly correlated, R2= 0.84 and 0.68 for the
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meridional and zonal components, respectively. Maximum off-shelf sur-

face (2 m2 s−1) and Ekman (3.1 m2 s−1) transport occurred on the 10th

of December and were the greatest off-shelf transport for the whole time

series. Reversals of the surface flow were consistent to decreases in Ek-

man transport on the 13th and 21st of December with on-shelf transport

of 0.6 m2 s−1 and below 0.2 m2 s−1, respectively.

Variability in salinity time series was consistent with off and on-shelf

transport in the surface layer (Fig. 4.7d). The freshest waters (< 35.55

g kg−1) occurred in the periods where westerly wind events generate off-

shelf wind-driven flow (8th of November and from the 19th of December

onwards). In contrast, throughout the record increases in surface salinity

coincided with easterly wind events and/or relaxation of the off-shelf Ek-

man flow. In the bottom layer relatively high salinities (>35.6 g kg−1),

indicative of waters originating from the ocean, were observed from the 1

of November until the 26 of December. However, from the 7th until the

19th of December, during westerly wind events, fresher waters between

35.55 and 35.6 g kg−1 occurred in the surface layer and were subsequently

found in the bottom layer in the period 24th - 31st of December. Between

the 1st and 7th of December, salinity above 35.6 g kg−1 was located in

the surface and bottom layers given that northerly winds (Fig. 4.7a)

generated alongshelf Ekman transport.

In the period 1st of November - 28th of December seasonal heat loss

to the atmosphere from the surface layer was observed at Central Celtic

Sea. Maximum surface temperature above 14oC decreased to values be-

low 11oC (Fig. 4.7e). In contrast, in the bottom layer minimum values

below 11oC were observed on the 2nd of November and between the 27th

and 30th of December. From the 28th to the 30th of December colder
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waters with temperature below 11oC in the surface layer overlaid warmer

waters (>11oC) in the bottom.

The water column was stratified between the 1st of November and the

31st of December with relatively low-density waters in the surface layer

(Fig. 4.7f). Increases in density in the surface layer were consistent to

temperature decreases up to the 28th of December. Between the 28th

and 30th of December despite colder waters overlaying warmer waters

a stable water column was maintained by the vertical distribution of

salinity, with relatively high salinity waters occupying the bottom layer.

Figure 4.7: Time series of a) winds velocity, b) zonal and c) meridional
components of surface (black) and Ekman (red) transport, d) absolute

salinity, e) conservative temperature and f) density at Central Celtic Sea.
In a) the scale is in the northeast direction.
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Shelf-Ocean interaction

Salinity sections at the shelf edge in the period 13th-16th of Novem-

ber were consistent with wind-driven transport caused by westerly wind

stress (Fig.4.8a). Above 70 m depth relatively low salinity waters (below

35.75 g kg−1) seemed to be transported in the seaward direction. Waters

with salinity greater than 35.7 g kg−1 were advected on-shelf below 70

m depth intruding up to a 400 km distance from the coast. At the shelf

edge, salinity above 35.75 g kg−1 was observed in the water column be-

tween 460 and 480 km. The breaking of an internal wave over the shelf

break could have, vertically distributed higher salinity from below the

pycnocline and increased salinity in the surface layer (New, 1988; New

and Pingree, 1990; Sharples et al., 2007). Between the 20th and 26th of

November in the upper 80 m relatively low salinity waters below 35.64

g kg−1 extended from Central Celtic Sea (∼360 km) to near 400 km off

the coast and shear in the 35.7 g kg−1 salinity contour remained at 410

km (Fig. 4.8b). Below 80 m depth relatively high salinity waters above

35.75 g kg−1, characteristic of the North Atlantic Ocean, were found at

the shelf break between 450 km and 500 km.

In the following periods oceanward intrusion and retreat of fresher waters

can be attributed to wind-stress forcing (Fig. 4.8c, d and e). For instance,

between the 26th of November and the 3rd of December (Fig. 4.8c) re-

treat of fresher waters (<35.64 g kg−1) occurred and was consistent with

easterly winds in the period 25th-30th of November. Between the 4th and

11th of December (Fig. 4.8d) the fresher waters were located at 360 km

and were advected up to 390 km from the coast in the period 11th-16th of

December (Fig. 4.8e) fitting with surface off-shelf Ekman transport from

the 7th of December onwards (Fig.4.7a). Whilst the low salinity surface

water responded to wind-stress forcing, evidence of another mechanism
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governing the dynamics at the shelf edge and the adjacent ocean region

was found. The 35.72 g kg−1 contours were distributed vertically from

the bottom up to the surface at 420 km in the period 20th - 26th Novem-

ber (Fig. 4.8b). Afterwards shear of this isohaline around 420 km (Fig.

4.8c, d and e), with relatively high salinity waters overlying fresher ones,

is indicative of relatively low salinity waters from the Celtic Sea being

exported off-shelf in the bottom layer below 90 m depth. Interaction of

the wind-driven dynamics and off-shelf export in the bottom layer can

be followed via the 35.7 g kg−1 contour. Between the 20th of November

and 3rd of December (Fig. 4.8c and d) shear of the 35.7 g kg−1 isohaline

resulted in relatively high salinity waters in the bottom at 410 km. In

the following period (Fig. 4.8d) the shear of the 35.7 g kg−1 contour

fitted with off-shelf export dynamics up to 380 km from the coast when

wind-driven off-shelf surface flow was a minimum. Afterwards, between

the 11th and 16th of December (Fig. 4.8e) displacement of the 35.7 g

kg−1 isohaline indicates retreat of the off-shelf export mechanism beyond

400 km from the coast consistent with the oceanward export of fresher

surface waters. In the deep-ocean region salinity increased above 35.75

g kg−1 in the upper 150 m suggesting oceanic water encroached towards

the shelf.

123



Figure 4.8: Cross-shelf sections of absolute salinity from a) CTD casts,
and b-e)glider data. Contours represent the 35.64, 35.7, 35.72 and 35.75

g kg−1 isohalines.

Relatively warm waters above 13oC were found in the upper 70 m at the

shelf edge and North Atlantic Ocean indicating a two layer system on

and off the shelf in the period 13th -16th of November (Fig. 4.9a). Wa-

ters <12oC were observed over the Celtic Sea below 70 m depth between

380 and 415 km and off the shelf below 150 m depth. At the shelf edge,

minimum temperatures above 12oC and discontinuity in the 14.1oC con-

tour suggests mixing between bottom and surface waters. As observed

in the salinity section, relatively cold waters at the shelf edge may be

explained by the breaking of an internal wave that distributed heat ver-

tically increasing and decreasing temperature in the bottom and surface

layers, respectively. The two layer system on and off the shelf prevailed

until the 11th of December (Fig. 4.9b, c and d). Below the thermocline

waters with minimum temperature of ∼11 oC occurred in the Celtic Sea

(<400 km distance) and were colder than waters at the same depth in

the deep-ocean region. Nonetheless, despite discontinuity of the data at
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the shelf edge, waters off shelf seemed to be colder than waters at the

bottom of the shelf slope at the same depth (440 and 480 km). In the

Celtic Sea and off the shelf temperature decreased in the surface layer

due to seasonal atmospheric heat loss, with temperature decreases more

rapid on the shelf. Between the 11th and 16th of December (Fig. 4.9e)

the surface mixed layer deepened on the shelf and shelf break leading

to a horizontal gradient with warmer waters at the shelf edge. Shear in

the 12 and 12.5oC isotherm, with relatively cold waters at the bottom

corresponds to the off-shelf export mechanism observed in the salinity

sections.

Figure 4.9: Cross-shelf sections of conservative temperature from a)
CTD casts, and b-e) glider data. The minimum isotherm displayed in the

sections is the 11.5oC (gray contour).

As with temperature, a two layer system was observed in the density

sections over the Celtic Sea and the deep ocean region from the 13th of

November to the 11th of December (Fig. 4.10a to d). In the bottom

layer relatively high density waters above 27 kg m−3 were found on the

shelf between 70 and 160 m and in the North Atlantic from 480 km and
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beyond below 200 m depth. Despite discontinuity in the data across

the shelf break, bottom density on the shelf seemed to be greater than

density at the shelf edge. Similarly, water off the shelf seemed to be

denser than waters at the shelf break at the same depth. In the surface

layer minimum densities below 26.8 kg m−3 reflected the warmest waters

above 80 m depth from 360 km up to 500 km and were greater on the

shelf and deep-ocean (>480 km) than at the shelf break. In the period

11th-16th of December (Fig. 4.10e) the horizontal thermal and salinity

gradients between waters from the Celtic Sea and the North Atlantic

Ocean were reflected on density transects generating shear of the 26.95

kg m−3. The 27 kg m−3 contours suggest denser water (>27 kg m−3)

from the shelf were exported to the shelf break.

Figure 4.10: Cross-shelf sections of density from a) CTD casts and b-e)
glider data. The maximum density contour is 27.1 kg m−3 (gray contour).
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4.3.2 Winter

Cross-shelf depth-averaged transport

In winter, overall, depth-averaged transport at the Celtic Deep was south-

westward in the periods 1st - 17th of January, 23rd -30th of January and

18th -21st of February (Fig. 4.11a). South-eastward transport occurred

in the periods 18th - 24th of January and 31st of January - 6th of Febru-

ary. On average, between the 1st and 30th of January transport was

south westward (2.4 m2 s−1) and then eastward from the 31st of January

until the 21st of February (1 m2 s−1). At the Central Celtic Sea south-

ward barotropic transport prevailed between January and mid-February

(Fig. 4.11b) and was on average 2.2 m2 s−1 between the 1st and 30th

of January. Two anomalous northward transport events, lasting 4 and

5 days respectively, occurred on the 1st and 15th of February reaching

maximum magnitudes around 8.5 m2 s−1. Between the 31st of January

and the 1st of March averaged transport was in the north-eastward di-

rection with values of 1.5 m2 s−1. Between the 1st and 15th of March an

average westward transport occurred (2 m2 s−1).
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Figure 4.11: Depth-averaged transport at a) Celtic Deep and b) Central
Celtic Sea.

At Central Celtic Sea westerly wind events were more frequent through-

out winter and occurred in the periods January-February and mid-February

- early March (Fig. 4.12a). The effects of the wind stress were observed

in the vertical variability of the horizontal flow time series (Fig. 4.12b-

c). Despite the water column being vertically mixed throughout winter,

vertical structure of the flow was observed, particularly in the meridional

component (Fig. 4.12c). Southward surface velocities were persistent

in the upper 70 m in the periods January- February, mid-February and

22nd February - 5th of March. In contrast, northward velocities were

consistent with westward wind events in the periods 31st of January -

13th of February. The compensatory flows occurred in a bottom layer

with a thickness of 70-80 m.
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Figure 4.12: a) Wind velocity at 10 m, b) zonal and c) meridional
horizontal velocity anomalies at Central Celtic Sea. Positive values

indicate eastward and northward flow.

Relatively low salinity waters occurred in the Celtic Sea (Fig. 4.13).

Consistent with south-westward flow at the Celtic Deep salinity dropped

from 35.45 g kg−1 on the 1st of January to 35.25 g kg−1 on the 17th

of January (Fig. 4.12a and 13a). Salinity increased in the period 18th

- 23rd of January when the transport was south-eastward. In Central

Celtic Sea salinity gradually decreased from 35.54 g kg−1 to <35.52 g

kg−1 between the 1st and 30th of January coinciding with southward

transport. A sharp increase in salinity (>35.56 g kg−1) was observed

between the 1st and 5th of February as a result of an anomalous north-

ward transport event and was followed by a dropped in salinity to 35.52

g kg−1. Increases in salinity occurred on the 11th of February being con-

sistent again with northward transport (Fig. 4.11b). Salinity gradually

increased from 35.52 to >35.56 g kg−1 on the 1st of March and dropped

to 35.55 g kg−1 on the 8th of March.
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Temperature decreased at the Celtic Deep and the Central Celtic Sea

throughout the winter (Fig. 4.13b). Maximum temperature occurred in

the early winter, being greater at the Celtic Deep (11.6oC) than at the

Central Celtic Sea (11oC). Temperature gradually decreased and by the

end of winter reached minimum values around 9.2oC and 10oC at the

Celtic Deep and the Central Celtic Sea respectively. Between the 16th

and 30th of January a similar temperature was observed at the Celtic

Deep and the Central Celtic Sea (∼10.6oC) indicating a negligible hor-

izontal thermal gradient between both sites. At Central Celtic Sea two

increases in temperature were observed on the 1st and 15th of February

consistent with periods of northward flow.

The influence of low salinity waters and heat loss in the Celtic Sea was

reflected in the density time series (Fig. 4.13c). Density was greater at

the Central Celtic Sea than at the Celtic Deep throughout the winter.

Although temperature was similar at both sites between the 16th and

30th of January, density at Celtic Deep was lower due to relatively low

salinity waters. At the Central Celtic Sea, despite decreases in salin-

ity, density gradually increased and indicated variations in temperature,

particularly heat loss, were dominant in controlling density.
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Figure 4.13: Surface time series at the Celtic Deep (black) and
depth-averaged at the Central Celtic Sea (red) of a) absolute salinity, b)

conservative temperature and c) potential density.

Shelf-Ocean interaction

Throughout winter the water column was vertically mixed and a hori-

zontal thermal gradient occurred between the Central Celtic Sea and the

North Atlantic Ocean, with temperatures increasing towards the shelf

edge (Fig. 4.14). Near the shelf edge, at 440 km temperature decreased

from 11.5oC to 11oC between the 17th of January and 28th of February.

On the shelf, at 390 km, a lesser decrease in temperature was observed.

Temperature was ∼11.7oC in the period 17th of January - 8th of Febru-

ary and in the period 16th - 28th of February temperature decreased to

10.5oC.
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Figure 4.14: Cross-shelf section of conservative temperature. The
Central Celtic Sea site is located at 360 km.

Similarly to the horizontal distribution of temperature, a horizontal salin-

ity gradient prevailed in winter with fresher waters (<35.6 g kg−1) on the

shelf and relatively high salinity waters (35.7 g kg−1) at the shelf edge

(Fig. 4.15). Low salinity waters below 36.5 g kg−1 were observed up to

380 km in the period 17th of January -8th of February. Between the 8th

and 16th of February these low salinity waters occurred 10 km further

offshore at 390 km and in the period 16th-28th of February were found

at 365 km. The horizontal displacement of salinity was consistent with

the variations in salinity time series at Central Celtic Sea. At the shelf

edge, between 420 km and 500 km, waters with salinity (>35.7 g kg−1)

typical of North Atlantic Ocean waters occurred. Despite off-shelf and

onshore movement of relatively low salinity waters, oceanic waters with

a consistent salinity above 35.7 g kg−1 remained from 420 km and further

into the North Atlantic Ocean throughout winter (Fig. 4.14).
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Figure 4.15: Cross-shelf sections of absolute salinity. The Central Celtic
Sea site is located at 360 km.

The horizontal distribution of temperature and salinity were reflected in

the density sections (Fig. 4.16). At the shelf edge density augmented

from 27.1 kg m−3 to 27.21 kg m−3. Salinity remained constant at 35.7

g kg−1 and therefore increases in density resulted from heat loss. In

contrast, near Central Celtic Sea temperature remained around ∼10.3oC.

Nonetheless, density augmented from∼27.19 kg m−3 in the period 17th

January-8th February to >27.21 kg m−3 between the 16th and 28th of

February suggesting salinity was more important on controlling density.
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Figure 4.16: Cross-shelf section of potential density. The Central Celtic
Sea site is located at 360 km.

4.4 Discussion

Based on the results described before, three different regimes were ob-

served in the Celtic Sea between the 1st of November and 15th of March.

During the first event, wind-driven exchange between the Celtic Sea and

the North Atlantic Ocean occurred in the period 2nd-18th of November.

Secondly, interaction at the shelf edge of surface wind-driven transport

and off-shelf export in the bottom layer took place between the 7th and

28th of December whilst the water column remained stratified. In the

third event low salinity waters from the north of the Celtic Sea were ad-

vected oceanward in winter between the 1st and 30th of January. The

implications on transport and exchange between the Celtic Sea and the

North Atlantic Ocean are discussed below for each event.
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4.4.1 Wind-driven exchange in the period 2-18 of

November 2014

Between the 2nd and 18th of November 2014 westerly winds occurred in

the Celtic Sea generating off-shelf wind-driven surface Ekman transport

and a compensatory onshore flow in the bottom layer (Fig. 4.7). Maxi-

mum off-shelf transport in the surface was on the 8th of November caus-

ing fresher waters with salinity below 35.55 g kg−1 to reach the Central

Celtic Sea site (Fig. 4.7d). Hydrographic sections provide evidence that

exchange between the Celtic Sea and the North Atlantic Ocean occurred

between the 13th and 16th of November (Fig. 4.8a). Oceanic waters,

identified by their relatively high salinity (>35.7 g kg−1), intruded on-

shelf in the bottom layer whilst fresher waters were advected off-shelf in

the upper 70 m.

On the shelf, waters with temperatures of 11 - 11.5oC and densities above

27.1 kg m−3 were located between 370 and 400 km from the coast in the

bottom layer reaching maximum depths of 160 m (Fig. 4.9a). In con-

trast, waters with similar properties occurred at least further off the shelf

at ∼470 km from the coast below 250 m. We can identify the origin of the

relatively cold waters and discern whether they were transported onto the

shelf during the westerly wind event in the period 2nd - 18th of Novem-

ber by calculating the horizontal and vertical wind-driven velocities. For

instance, in this period averaged off-shelf Ekman transport was 0.5 m2

s−1 in the surface layer of the Central Celtic Sea. Assuming a similar

and opposite transport in the bottom layer with a 60 m thickness leads

to onshore velocities of 0.72 km day−1 indicating oceanic waters intruded

∼11.5 km on-shelf during this 16 day-long event. Vertical velocities of

the displacement of the pycnocline can be calculated by accounting for
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the horizontal Ekman flow from the continuity equation as follows:

∂uEk
∂x

+
∂vEk
∂y

+
∂wEk
∂z

= 0 (4.18)

where uEk, vEk and wEk are the zonal, meridional and vertical compo-

nents of the Ekman velocity. Integrating vertically within the surface

Ekman layer and applying eq. (4.18) to a westerly wind stress leads to:

−wEk =
∂VEk
∂y

(4.19)

On narrow shelves (<50 km) surface divergence caused by wind-stress

generates vertical and surface outcropping of the pycnocline at the shelf

break (e.g. Torres and Gomez-Valdes, 2015) as described by eq. (4.19).

However, for a wide shelf sea such as the Celtic Sea (∼500 km), sur-

face off-shelf transport at the shelf break was replenished by waters from

further on the shelf and therefore vertical velocities and/or upwelling of

deeper waters at the shelf break are negligible. Thus relatively cold wa-

ters off the shelf from 250 m depth and at 470 km from the coast were not

advected 100 km on-shelf in this period only. The origin of the relatively

cold waters (11-11.5oC) located between 360-390 km from the coast is

explained below with available data throughout the year.

In the previous winter (March 2014) waters in the Celtic Sea were verti-

cally mixed with a horizontal gradient in temperature increasing towards

the North Atlantic Ocean. During the onset of stratification a two layer

system was observed across the shelf and extended into the deep-ocean

region (Ruiz-Castillo et al., 2018; Chapter 2). Surface temperatures even-

tually were similar between the Celtic Sea and North Atlantic as heating

of the water column occurred. However, in the bottom layer the hori-

zontal temperature gradient remained, with warmer waters off the shelf
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(11- 11.5oC at 470 km) than over the Celtic Sea (<10oC). Tempera-

ture in the bottom layer gradually increased from ∼9.4oC in April 2014

to maximum values around 11.3oC by mid-November 2014 in Central

Celtic Sea (∼360 km) (Fig. 4.17a). On-shelf intrusion of relatively warm

waters from the North Atlantic onto the Celtic Sea occurred between

April and mid-November. Waters between 11 and 11.5 oC located at ∼

470 km in March 2014 seemed to be advected to distances of 360 - 400

km (Fig. 4.17b). Westerly winds prevailed in summer and wind-driven

Ekman dynamics govern cross-shelf transport in the surface and bottom

layer (Chapter 3) and extended further into the deep-ocean (Fig. 4.8a).

We can utilise transport of the onshore compensatory bottom flow be-

tween the 2nd and 18th of November (0.5 m2 s−1) to calculate velocities

throughout the stratified period of 2014. If we assume a bottom layer

with a thickness of 90 m and the 1st of April 2014 to be the onset of

stratification, by mid-November (229 days) waters off the shelf would

have been advected 70 - 110 km on-shelf due to net Ekman transport.

This distance fits with the horizontal displacement of waters suggested by

the 11 and 11.5oC (Fig. 4.17b) and indicate increases in bottom temper-

ature resulted mainly from warmer water off the shelf being horizontally

advected to the Celtic Sea in a 7-8 month period. The same analysis can

be applied to waters between 35.65 and 35.7 g kg−1 (white contours in

Fig. 4.17b). In March 2014, these waters were located between 440 and

450 km and by mid-November the waters had been advected between 50

and 90 km on-shelf due to wind-driven transport. Differences in the dis-

placement observed in salinity and temperature contours may be caused

by the breaking of internal waves at the shelf edge (New, 1988; New and

Pingree, 1990; Sharples et al., 2007). The internal waves at the shelf

edge generate mixing and redistribute fresher and warmer waters from

the surface layer below the pycnocline, increasing and decreasing tem-
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perature and salinity in the bottom layer. These features confirm that

cross-shelf wind-driven transport expanded further into the deep-ocean

region enabling cross-shelf exchange.

Figure 4.17: a)Time series of conservative temperature at 130 m depth
at Central Celtic Sea and b) Hövmöller diagram of conservative

temperature (map in colour and black contours) and absolute salinity
(white contours) at 80 m depth. In b) grey lines indicate the location of

the Central Celtic Sea site (360 km) and the shelf edge (440 km).

Implications for nutrient supply to the Celtic Sea

Wind-driven transport across the shelf edge has further implications for

nutrient supply to the Celtic Sea. Based on advection of temperature

and salinity, waters from ∼470 km in March 2014 with a nutrient con-

centration of 8.9 mmol m−3 (Fig. 4.18) would reach distances of 360-

400 km from the coast by mid-November 2014. Averaged wind-driven

Ekman transport was 0.5 m2 s−1 and in a 90 m bottom layer thickness

would result in onshore velocities of 0.5 km day−1. By mid-June, 90 days

after nutrients were quantified at the shelf edge, waters would have been

advected ∼ 45 km on-shelf. Nutrients sampled at 410 km indicate nutri-
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ents in the surface layer were depleted (Fig. 4.18) (Poulton et al., 2018).

By mid-November the nutrient concentration in the bottom layer was

10.28 mmol m−3 (Fig. 4.18) and greater than expected if only Ekman

transport was accounted for (8.9 mmol −3). To further investigate the

relative importance of wind-driven advection, an estimation of the total

amount of nutrients was assessed at 376 km from the coast in a water

column of 160 m. We can assume three layers with an averaged nutrient

concentration of 2.76, 6.34 and 10.28 mmol m−3 in the surface, pycn-

ocline and bottom, respectively. In November an autumn bloom event

occurred in the Celtic Sea (Garcia-Martin et al., 2017; Carr et al., 2018;

Wihsgott et al., 2019) and resupplied nutrients to the surface layer lead-

ing to a decrease in the nutrient concentration below the pycnocline. By

the time the water was sampled in November, 1 mmol m−3 had already

been consumed in the surface layer (Ruiz-Castillo et al., 2018; Chapter

2) therefore the expected nutrient concentration would be ∼3.76 mmol

m−3. If we multiply by each layer thickness 50, 10 and 100 m, integrated

water column nutrient concentration is ∼1279.4 mmol m−2. In addition,

in late April enhanced wind stress and a short heat loss event deepened

the pycnocline 20 m (Wihsgott et al., 2019; chapter 5) and entrained

∼166 mmol m−2, from the bottom layer (chapter 5). We can ignore the

intensified wind stress event in April hence ∼166 mmol m−2 remained in

the bottom layer. Moreover, throughout summer dyapicnal fluxes from

the bottom layer to the pycnocline were estimated to be 365 mmol m2

(Ruiz-Castillo et al., 2018). If we neglect dyapicnal mixing the nitrate

concentration in the bottom layer would be ∼1810.4 mmol m−2. Nutrient

concentrations in the surface layer preceding the bloom were negligible

due to consumption (Pingree et al., 1976) and therefore nutrients are

expected to be within the bottom layer (90-100 m thickness), resulting

in a concentration of 18.1-20.1 mmol m−3. This estimation suggests that

139



44-50% of the nutrient concentration available for the autumn bloom in

the outer shelf were advected from the North Atlantic due to wind-driven

Ekman transport. Therefore between 50-56% of the nutrients were recy-

cled in the water column between March and mid-November.

Background nutrient concentrations off shelf in spring are set by the vari-

ation in the depth of the winter mixed layer (Ruiz-Castillo et al., 2018;

Chapter 2). During the stratified period nutrients are advected ∼70-110

km on-shelf due to wind-driven dynamics in a 7-8 month period before

winter mixing. Therefore, nutrients from the North Atlantic would cover

the whole shelf (500 km) in at least a two year-time period, consistent

with previous estimates (Hydes et al., 2004).

Figure 4.18: Nitrate (NO3+NO2) profiles for March 2014 at 470 km
(red), June 2014 at 410 km (black) and November 2014 at 376 km (blue).
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4.4.2 Interaction between bottom off-shelf and sur-

face wind driven transport in the period 7-28

of December

In the second event westerly winds occurred between the 7th and 28th

of December 2014. At the Central Celtic Sea site surface and Ekman

transport were highly correlated (R2 >0.8) with oceanward surface and

onshore bottom water displacement (Fig. 4.7). Overall, in the Celtic

Sea fresher waters were advected towards the shelf edge above the pyc-

nocline. However, at the shelf edge there was no hydrographic evidence

that supported wind-driven exchange between the Celtic Sea and the

North Atlantic. In contrast, salinity sections obtained between the 26th

of November and the 16th of December indicate shelf waters were ex-

ported off-shelf in the bottom 60-80 m (Fig 4.8 c-e). The off-shelf ex-

port of Celtic Sea waters can be explained by two mechanisms. In the

North-western European shelf cascading (e.g. Hill et al., 1998) and Ek-

man drain (Souza et al., 2001, Simpson and Mcandliss, 2013) have been

documented before. Based on the hydrographic conditions we can as-

sess the likely occurrence of each process. Despite discontinuity in the

data across the shelf break (430 -470 km) bottom density seemed to de-

crease as moving from the ocean towards the shelf break below 160 m

depth (Fig. 4.10). Thus, cascading seems unlikely along the shelf break

and the adjacent North Atlantic between the 13th of November and the

16th of December. However, on the Celtic Sea between 400 and 440 km

favourable conditions such as denser waters on the shelf than at the shelf

edge were observed. Following Shapiro and Hill (1997) the relative in-

fluence of cascading (Ucas) and Ekman drain (UEkdr) can be calculated

as:

Ucas
UEkdr

=
2g′S

fv0

(4.20)
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where g′ is the reduced gravity, S the bottom slope, f the Coriolis pa-

rameter and v0is the velocity of the along-slope current. Using a density

difference of 0.1 kg m−3, of 1026.5 kg m−3, slope of 6.6×10−5 (2 m/ 30 km)

and setting the along slope current at 0.05 m s−1 (Pingree and LeCann,

1989; van Aken, 2002) results in a ratio of 0.02 indicating Ekman drain

is more important on the shelf. Therefore, it is suggested that between

the 7th and 28th of December Ekman drain and wind-driven transport

occurred simultaneously at the shelf edge. The poleward along-slope cur-

rent has been reported to be centred along the 500 m isobath (Pingree

and Le Cann, 1989; Souza et al., 2001), however on-shelf displacement

of the 35.75 g kg−1 isohaline between the 26th of November and 16th

of December (Fig. 4.8c and d) indicates encroachment upon the shelf

of oceanic waters and potentially enhanced cross-shelf flow in the bot-

tom boundary layer (e.g. Roughan and Middleton, 2004; Schaeffer and

Roughan, 2015).

The interaction of the Ekman drain and wind-driven transport at the

shelf edge was reflected in the hydrographic time series at Central Celtic

Sea. For instance, waters with salinity between 35.55 and 35.6 g kg−1

occurred in the surface layer between the 7th and 18th of December and

were advected towards the shelf edge (Fig. 4.7 and 4.8). However, the

along-slope current and the Ekman drain process appears to have inhib-

ited export into the North Atlantic Ocean, impeding intrusion of oceanic

waters onto the Celtic Sea in the bottom layer, and forced onshore re-

circulation of surface shelf waters, i.e. slope current acts as a boundary.

Salinity time series indicate these waters returned to the Central Celtic

Sea site between the 24th and 28th of December in the bottom layer

and earlier in the period 10th-24th of December between 70 and 90 m

depth within the pycnocline (Fig. 4.7). Between the 7th and 24th of
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December, when these waters were first seen in the surface and bottom

layers, the averaged transport in a ∼70 m thick surface layer was 1.14

m2 s−1 suggesting waters were displaced 12 km towards the shelf edge

around the 15th of December and subsequently returned in the bottom.

It is probable that only Celtic Sea waters within a 10 km distance from

the Ekman drain forcing were exported off-shelf.

A spatial analysis of wind driven transport and Ekman drain interacting

simultaneously can be assessed through the salinity sections (Fig. 4.8).

At the shelf edge the Ekman drain mechanism was identified by the shear

of the 35.7 and 35.72 g kg−1 isohalines from the 26th of November on-

wards with maximum intrusion (370 km) of the 35.7 g kg−1 contour in

the period 4th-11th December. Afterwards, between the 11th and 16th

of December the 35.7 g kg−1 contour retreated 20 - 30 km oceanward con-

sistent with the distance that fresher waters were advected due to wind-

stress forcing (Fig. 4.8e). Nonetheless, the oceanward displacement of

the 35.7 g kg−1 isohaline indicates the Ekman drain mechanism remained

whilst waters were advected towards the shelf edge by the wind-driven

flow. Off shelf, oceanic waters with salinities greater than 35.75 g kg−1,

encroached upon the shelf from 450 km from the coast during the period

26th of November- 3rd of December to 420-430 km between the 11th and

16th of December. Although shelf and oceanic waters were advected off-

and onshore, respectively, the 35.72 g kg−1 isohaline remained at 410 km

from the 26th of November until the 16th of December. Hence, exchange

due to Ekman drain was inhibited by the wind-driven mechanism result-

ing in convergence of oceanic and fresher waters between 390 and 440

km. Thus, given that there is no net exchange at the shelf edge, oceanic

waters encroaching on the shelf recirculated off-shelf in the bottom as a

result of the Ekman drain mechanism. Similarly waters on the Celtic Sea
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side recirculated onshore in the bottom (Fig. 4.7d).

Transport generated by the Ekman drain mechanism can be estimated by

neglecting mixing and assuming motions at the shelf edge are constrained

to two dimensions, horizontal distance and depth. In this highly ideal

scenario, the net off-shelf export can be assessed by evaluating the dif-

ference in the area covered by the waters with salinity between 35.7 and

35.75 g kg−1 on the periods 4th - 11th December and 11th - 16th Decem-

ber. The deepest hydrographic observations were on average at 137 m

from 400 to 440 km which will be considered the bottom. The difference

in the area covered was 3.652×106 m2 which in a 7-day period leads to

an off-shelf export of 6 m2 s−1. Based on the salinity sections, transport

was carried out in a 60-80 m thick bottom layer resulting in off-shelf ve-

locities of 0.06 - 0.1 m s−1 being of the same order of magnitude as the

velocities reported previously for the Hebridean shelf of 0.026 - 0.05 m

s−1 (Simpson and Mcandliss, 2013).

Convergence at the shelf edge has further implications on the dynam-

ics in the along-shelf direction on and off the shelf. Using long-term (2

months) current measurements, evidence of an eastward flow with ve-

locities of 0.02 m s−1 has been identified previously at the shelf edge of

the Celtic Sea (Pingree and Le Cann, 1989). Nonetheless, no dynami-

cal explanation has supported this eastward flow. As mentioned before,

wind-driven offshore transport was obstructed at the shelf edge causing

recirculation similar to a wind-driven downwelling type mechanism. The

slope current behaves like a wall at the upper slope and associated with

downwelling events, waters converge in the coastal region and increase

the height of the sea surface (e.g. Tilburg, 2003). Thus, during this

westerly wind-stress event the sea surface at the shelf edge is expected
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to increase reaching maximum height at the shelf edge and gradually

decrease in the onshore direction generating a northward pressure gradi-

ent. The eastward flow observed in Pingree and Le Cann (1989) can be

explained by assuming geostrophic balance in the cross-shelf direction,

flat topography and hydrostatic balance in the vertical as follows:

fu = − 1

ρ0

∂P

∂y
(4.21)

P = −ρ0gH (4.22)

where H represents the mean depth of the water column. Following

Winant (1980) along-shelf transport can be obtained by vertically inte-

grating and combining eq. (4.21) and (4.22) resulting in:

U = −g (H + η)

f

∂η

∂y
(4.23)

where η stands for the sea level anomalies. Eq. (4.23) describes a flow in

geostrophic balance and due to convergence of waters at the shelf edge

the sea level is tilted in the form
(
∂η
∂y
< 0

)
producing an eastward flow.

The balance presented here may explain the eastward velocities observed

in Pingree and Le Cann (1989) as a result of the interaction of off-shelf

surface wind-driven transport with the along-slope current. Off shelf,

convergence at the shelf edge results in a similar balance as described in

eq. (4.23) with sea level decreasing southward enhancing the along-slope

current in the poleward direction.

Finally, in the Celtic Sea recirculation of surface waters in the bottom

layer had further implications for stratification of the water column. For

instance, between the 28th and 31st of December relatively warm waters

(>11oC) occurred in the bottom layer underlying colder waters (<11oC)

(Fig. 4.7e). Heat loss to the atmosphere occurred gradually and de-
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creased the temperature of the surface waters whilst being advected to-

wards the shelf edge. Waters in the surface layer were colder than in

the bottom (Fig. 4.7e), however a stable water column was maintained

(Fig. 4.19) by the vertical distribution of salinity with relatively high

salinity occupying the bottom layer (Fig. 4.7d). The horizontal salinity

gradient, with salinity decreasing onshore, combined with westerly wind

stress ensured fresher waters from the interior of the Celtic Sea flowed

over waters with greater salinity from near the shelf edge and prolonged

the stratified period until the 1st of January. Salinity combined with

westerly winds have further implications in the onset of stratification in

spring, after the mixing period, as will be described in Chapter 5.

Figure 4.19: Differences between surface and bottom temperature
(black) and bottom and surface density (blue).
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4.4.3 Cross-shelf transport in winter in the period

1-30 of January

In winter, at the Celtic Deep and Central Celtic Sea sites decreases in

salinity were observed between the 1st and 30th of January. The hori-

zontal distribution of salinity prior to winter mixing generates a cross-

shelf salinity gradient in winter with relatively low salinity waters in the

north (Ruiz-Castillo et al., 2018; Chapter 2). At Celtic Deep decreases

in salinity were consistent with south-westward flow suggesting waters

off the mouth of the Bristol Channel were advected towards the Celtic

Deep site. For instance, on the 10th of January salinity was 35.44 g

kg−1 and reached a minimum (∼35.25 g kg−1) on the 17th of January

whilst transport was south-westward (Fig. 4.11a and 13a), i.e. heading

off the Bristol Channel. Afterwards salinity gradually increased up to

∼35.42 g kg−1 on the 20th of January coinciding with the period when

the flow turned south-eastward (Fig. 4.11a and 13a), i.e. towards the

mouth of the Bristol Channel. At the Central Celtic Sea decreases in

salinity were consistent with southward advection suggesting transport

of relatively low salinity waters from the north of the shelf. Nonetheless,

winter is the wettest season in the region (Pingree, 1980) and therefore

precipitation may also contribute to decreases in salinity across the shelf.

The relative influence of the fresher waters off the Bristol Channel and the

effects of precipitation on the salinity in Celtic Deep and Central Celtic

Sea can be estimated using rainfall time series from Era-interim data

sets (Dee et al., 2011). At the Celtic Deep total precipitation between

the 10th and 17th of January was 3 cm, and in a 100 m water column

implied a change of 0.01 g kg−1. Therefore only 5% of the salinity de-

crease can be attributed to precipitation indicating advection governed

salinity variations off the Bristol Channel mouth. Further in the interior
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of the shelf, in Central Celtic Sea salinity dropped from 35.54 g kg−1 to

35.51 g kg−1 in the period 8th -21st of January (Fig. 4.13a) and total

precipitation was 4 cm. In a 150 m water column rainfall input resulted

in a change of 0.01 g kg−1 or 33% of the salinity difference. Hence, av-

eraged south-westward and southward advection dominated dynamics at

the Celtic Deep and the Central Celtic Sea.

Cross-shelf advection was governed by wind-driven Ekman dynamics in

summer and autumn (Fig. 4.7). Whilst the water column was stratified,

fresher and relatively high salinity waters were transported in the surface

and bottom layers, respectively (Fig. 4.8a). In winter, even though the

water column was fully mixed the effects of wind-stress were reflected in

the vertical structure of the horizontal flow and were coherent with wind-

driven Ekman dynamics in Central Celtic Sea (Fig. 4.12). The vertical

variability of the horizontal velocities indicates surface and bottom flow

occupied a 70-80 m thickness in a ∼150 m depth water column. There-

fore advection of salinity in the upper half of the water column would

be compensated in the bottom half leading to a negligible net salinity

change once mixing occurred. Thus cross-shelf southward advection of

fresher waters from the north resulted from another mechanism.

Assessment of the mechanism driving this southward cross-shelf trans-

port across the Celtic Sea can be carried out if we assume that the Bristol

Channel is the only source of fresher water for the shelf (Uncles, 1984;

Brown et al., 2003; Hydes et al., 2004). Whilst it is difficult to describe

transport with only measurements at two sites, a plausible explanation

can be suggested. Events of freshwater discharge into the Bristol Chan-

nel occurred since the previous October (Fig. 8 in Ruiz-Castillo et al.,

2018), being a maximum in winter (Uncles and Radford, 1980; Uncles,
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2010), and strengthened the salinity gradient between waters from the

north of the Celtic Sea and the Bristol Channel. Decreases in salinity at

Celtic Deep indicate relatively low salinity waters were introduced into

the north of the shelf from the Bristol Channel (Fig.4.13) in an averaged

south-westward transport of 2.4 m2 s−1 (Fig. 4.20). A greater decrease

in salinity in Celtic Deep than in Central Celtic Sea may result from the

enhanced salinity gradient off the Bristol Channel mouth. In Central

Celtic Sea southward transport of ∼2.2 m2 s−1 was observed suggesting

0.2 m2 s−1 of the transport at Celtic Deep recirculated in the north of

the shelf and/or left the Celtic Sea through the St. Georges Channel.

Waters from Central Celtic Sea headed southward (2.2 m2 s−1) and were

advected ∼40 km towards the shelf edge. Nonetheless, at the shelf edge

oceanic waters (>35.7 g kg−1) remained at 420 km since December (Fig.

4.8d-e) and throughout winter (Fig. 4.15) suggesting negligible net ex-

change between the North Atlantic Ocean and the Celtic Sea. Following

southward transport, after the 30th of January, salinity increased in the

Central Celtic Sea to values of 35.55 g kg−1 (Fig. 4.13a), above the

salinity observed on the 1st of January, indicating relatively high salinity

waters from regions closer to the shelf edge were transported into the Cen-

tral Celtic Sea site, even though there was no evidence of oceanic waters

(>35.7 g kg−1) intruding further into the interior of the Celtic Sea (Fig.

4.15). Potentially the relatively low salinity waters from Central Celtic

Sea were advected southward and recirculated within the shelf leading

to the northward flow (∼1.5 m2 s−1) in the periods 31st January - 1st

March (Fig. 4.20). Results suggest that there was no exchange between

the Celtic Sea and the North Atlantic Ocean in the winter 2014-2015.
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Figure 4.20: Transport at the Celtic Deep and Central Celtic Sea sites.
Black vectors represent the averaged transport between the 1 and 30 of
January at Celtic Deep (2.4 m2 s−1) and Central Celtic Sea (2.2 m2 s−1).

Red vector represents transport in the period 31 of January and 1 of
March (1.5 m2 s−1).

4.5 Summary

Cross-shelf exchange between the Celtic Sea and the North Atlantic

Ocean was assessed between the 1st of November 2014 and 15th of March

2015.

Wind-driven dynamics govern exchange between the North Atlantic Ocean

and the Celtic Sea between April and mid-November. Relatively high

salinity, nutrient-rich and relatively warm water from the North Atlantic

was advected onto the Celtic Sea. The bottom on-shelf advection oc-

curred in a 7-8 month period and oceanic waters intruded 70-110 km

on-shelf. About 44-50% of the nutrients observed on the shelf were ad-

vected from the North Atlantic Ocean.
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In late autumn, between the 7th and 28th of December Ekman drain and

wind-driven transport occurred simultaneously preventing cross-slope ex-

change between the North Atlantic and the Celtic Sea. Convergence of

waters resulted at the shelf edge and forced surface shelf and oceanic wa-

ters to recirculate onshore and off-shelf in the bottom layer. In the Celtic

Sea, stratification was extended despite of relatively warm waters occu-

pying the bottom layer. Onshore recirculation of relatively high salinity

waters in the bottom, below fresher waters from the interior of the Celtic

Sea, prolonged the stratified period. The convergence of waters at the

shelf edge may generate a geostrophic eastward flow.

In winter relatively low salinity waters were supplied into the north of

the Celtic Sea from the Bristol Channel. Transport towards the shelf

edge occurred between the 1st and 30th of January. Despite southward

transport there was no evidence of exchange between the Celtic Sea and

the North Atlantic Ocean during the winter 2014-2015.
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Chapter 5

Onset and evolution of
stratification in a temperate
shelf sea; implications for
phytoplankton growth

Abstract

Many key biological processes in shelf seas, including phytoplankton

growth, depend on stabilisation of the water column. Therefore un-

derstanding the driving mechanisms responsible for the onset of strat-

ification is essential to better comprehend the biology of shelf seas. This

chapter describes the dynamics responsible for the onset and evolution of

the stratified period in spring 2014 and spring 2015 and the implications

for phytoplankton growth. Meteorological data, measured by an instru-

mented buoy, combined with remote sensing datasets from Era-interim,

were used to assess the effects of wind stress, wind-driven transport and

net heat flux on stratification at the Central Celtic Sea site. In the water

column, horizontal velocities obtained from an ADCP were utilised to cal-

culate cross-shelf advection in the surface layer. The onset and evolution

of stratification was analysed with full-depth time series of conservative

temperature, absolute salinity and potential density. Surface chlorophyll-

a time series were analysed and used as an indicator of phytoplnakton

biomass. The analysis was complemented with in situ nutrient data. Re-
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sults for spring 2014 indicate stratification strengthened due to positive

(into the sea) net heat flux after the 31st of March, leading to a relatively

weak spring bloom until the 12th of April when surface chlorophyll-a flu-

orescence decreased. On the 25th of April intensified wind stress and

an event of heat loss eroded stratification in the upper 60 m. Nutrients

below the pycnocline were introduced into the surface mixed layer and

resulted in a second bloom event which was greater than the first. During

spring 2015 the onset of stratification was triggered by positive net heat

flux on the 26th of March. However, in the early stages of the stratified

period, despite the positive net heat flux, temperature above and below

the pycnocline decreased and increased, respectively and led to colder wa-

ters occupying the upper 70 m. Wind-driven transport introduced colder

and fresher waters above the pycnocline. Thus stability of the water col-

umn was maintained by the vertical distribution of salinity triggering

phytoplankton growth in the absence of stable thermal stratification.

5.1 Introduction

The onset and maintenance of stratification of the water column is vi-

tal for biological processes in shelf seas, such as phytoplankton growth

(Pingree et al., 1977). In winter the Celtic Sea is mixed due to heat

loss combined with tidal and wind stress (Simpson, 1981; Wihsgott et

al., 2019) resulting in a homogeneous distribution of nutrients in the wa-

ter column (Pingree et al., 1976; Ruiz-Castillo et al., 2018; Chapter 2).

The general view is that during spring positive net heat flux overcomes

mixing leading to stratification of the water column and therefore con-

trolled by temperature (Pingree et al., 1976 and 1977; Wihsgott et al.,

2019). However, stratification may be maintained by the vertical dis-

tribution of salinity, with relatively high salinity waters in the bottom,

as seen in Chapter 4 and later on in this chapter. Once the water col-
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umn stabilises primary productivity is enabled within the euphotic zone

(Pingree et al., 1977; Garcia-Martin et al., 2017; Carr et al., 2018) un-

til nutrients are depleted in the surface mixed layer (Pemberton et al.,

2004; Davis et al., 2014; Poulton et al., 2018). Following nutrient de-

pletion phytoplankton biomass decreases (Pingree et al., 1976; Fasham

et al., 1983). This event of sudden growth of phytoplankton in spring

is known as the spring bloom and indicates the onset of primary pro-

ductivity (Rees et al., 1999). It is thought that secondary production of

higher trophic levels depends upon the duration and timing of these rel-

atively short spring bloom events (Townsend et al., 1994). Following the

spring bloom, throughout summer relatively weak but sustained primary

productivity occurs within the pycnocline or nitracline (Hickman et al.,

2012; Carr et al., 2018). Nutrients are supplied from the bottom layer

by diapycnal flux as a response to variations in internal tidal (Sharples

et al., 2001) and wind stress (Williams et al., 2013) forcing. Further-

more, during enhanced wind stress events, surface mixing may reach and

deepen the pycnocline and entrain nutrients from the bottom mixed layer

and promote primary productivity (e.g. Davis et al., 2014). In autumn,

heat loss and intensified winds deepen the pycnocline (Wihsgott et al.,

2019) and resupply surface waters with nutrients from the bottom layer

(Ruiz-Castillo et al., 2018) leading to autumn bloom events (Pingree et

al., 1976; Garcia-Martin et al., 2017; Carr et al., 2018; Wihsgott et al.,

2019).

The Celtic Sea is a highly productive region (Seguro et al., 2017). There-

fore understanding the driving mechanisms controlling the onset and evo-

lution of stratification is essential to elucidate the processes governing its

high productivity. In this chapter the onset and evolution of stratifica-

tion in the spring of 2014 and spring 2015 are analysed and utilised to
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explain variability in the surface chlorophyll-a fluorescence signal (Fig.

5.1). Results indicate that the simple view of surface heat supply does

not always explain how spring stratification is triggered and maintained.

5.2 Methods

Figure 5.1: Map of the Celtic Sea. Blue circle indicates the location of
the Central Celtic Sea mooring. Map in colour represents the

bathymetry of the study area with warmer colours indicating relatively
shallow regions.

5.2.1 Hydrographic data

At the Central Celtic Sea site (Fig. 5.1) full depth time series of tem-

perature and salinity from moored instruments (Wihsgott et al, 2016)

were used to elucidate the mechanisms driving the onset of stratification

and the hydrographic variability in the years 2014 and 2015. Time series

were interpolated on regular grids with a temporal and spatial resolution

of 5 minutes and 2.5 metres. A detailed description on how data were
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processed is provided in the previous chapters and in Wihsgott et al.

(2016). Conservative temperature, absolute salinity and potential den-

sity were calculated (McDougall and Barker, 2011). This chapter focuses

on long-term fluctuations, greater or equal to a cycle per day to include

the daily fluctuations caused by day and night cycles. Thus, the semi-

diurnal signals associated with tidal currents were disregarded by using

a low-pass Lanczos filter at each depth with a cut-off frequency of 24−1

h−1 (Thompson and Emery, 2014). The times analysed in this chapter

cover from the 26th of March 2014, when the record started, until the 1st

of June 2014 and from the 15th of March 2015 to the 1st of June 2015

(late winter-spring). In the second period there is a 7 day gap between

the 5th and 12th of April due to instruments being serviced, thus CTD

casts carried out during a research cruise in the Central Celtic Sea were

utilised to complement the hydrographic time series.

5.2.2 Horizontal velocities

Horizontal current profiles at the Central Celtic Sea were used to esti-

mate transport. Time series of horizontal velocities from near the bottom

up to 20 m depth were recorded from the 26th of March 2014 to the 25th

of July 2015. As with temperature and salinity time series, horizontal

velocities were interpolated on a regular grid with a temporal and spatial

resolution of 5 minutes and 2.5 m, respectively (Wihsgott et al., 2018).

As with the hydrographic time series, at each depth a low-pass Lanc-

zos filter was used with a cut off frequency of 24−1 h−1 (Thompson and

Emery, 2014). In contrast to the temperature and salinity time series

in the winter-spring 2014 only current data between the 26th of March

and 6th of May were analysed due to failure of the battery. For the

winter-spring 2015 horizontal velocities were analysed between the 15th

of March and the 1st of June 2015.

157



The depth-averaged flow (ū) was calculated from the filtered velocities

(u) in the form:

ū =
1

H

∫ 0

H
udz (5.1)

To assess the velocity anomalies (uc) (Fig. 5.2 and 5.3) the depth-average

flow (ū) was removed at each time step:

uc = u− ū (5.2)

Figure 5.2: a) Zonal and b) meridional component of the velocity
anomalies in spring 2014. Positive values indicate eastward and

northward flow.
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Figure 5.3: a) Zonal and b) meridional component of the velocity
anomalies in spring 2015. Positive values indicate eastward and

northward flow.

5.2.3 Wind-driven transport

The effects of the wind stress on the water column were analysed using

wind data recorded every hour by a meteorological buoy. Wind data

was averaged every 48 hours, therefore, only fluctuations greater than

the inertial and semidiurnal frequencies were considered. As in previous

chapters the zonal (Uw) and meridional (Vw) component of the Ekman

transport were calculated in the form:

−fVw =
τx
ρs

(5.3)

fUw =
τy
ρs

(5.4)

where ρs and f represent the surface density and the rotational frequency

of the Earth, respectively. The zonal and meridional components of the
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wind stress were estimated as:

τx = ρaCd|uw|uw (5.5)

τy = ρaCd|uw|vw (5.6)

where uw and vw represent the zonal and meridional components of the

wind velocity at 10 m above the sea surface. The air density (ρa) was

assumed to be constant at 1.3 kg m−3 and the drag coefficients (Cd) were

estimated following Smith and Banke (1975) as in the previous chapters.

5.2.4 Transport in surface layer

The velocity anomalies (uc) were used to assess the effects of wind-stress

on transport in the surface layer. For winter-spring 2014 hydrographic

time series indicate the surface layer occupied the upper ∼30 m of the

water column. In contrast, hydrographic time series indicate that the

surface layer occupied at least the upper 40 m of the water column be-

tween the 15th of March and the 5th of April 2015 and the upper 30 m

in the period 12th of April-1st of June. For the period 15th of March-5th

of April time series of velocity anomalies between 20 and 40 m were used

to calculate the averaged velocity (ūc) in the surface layer. For the other

periods averaged velocity in the surface layer was estimated using the

velocity anomalies time series between 20 and 30 m depth. Therefore,

transport in the surface layer was calculated as follows:

U = ūch (5.7)

where h indicates 30 for the periods March-June 2014 and 12 April -1 of

June 2015 and 40 m for the period 15 of March-5 of April; ūc was defined
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as:

ūc =
1

h

∫ 20

h
ucdz (5.8)

Time series of wind-driven Ekman transport and transport in the sur-

face layer were compared through a Pearson correlation coefficient as

described in detail in Chapter 3.

5.2.5 Net heat flux

To analyse the different meteorological agents competing in the onset

and maintenance of stratification the net heat flux was calculated in the

Central Celtic Sea. Heating and cooling of the water column depend

on heat transfer, particularly absorption of solar energy or shortwave

radiation (Qs), evaporation (QL), conduction (Qc), back radiation from

the sea surface (Qb) and horizontal advection of heat (Qv) (Lynne et al.,

2011; Simpson and Sharples, 2012). The combination of these processes

leads to the total or net heat flux (QT ) and is positive when the water

column gains heat and negative when it loses heat. The contribution of

each process to the heat budget can be resumed in the form:

QT = Qs − (Qb +QL +Qc) +Qv (5.9)

For the analysis in this chapter time series of relative humidity, sea surface

temperature, air pressure, wind speed and air temperature recorded by a

meteorological buoy at Central Celtic Sea were combined with net surface

solar radiation and cloud cover time series obtained from ERA-interim

(Dee et al., 2011). An explanation on how each term in eq. (5.9) was

calculated from bulk formulae is described below.
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Shortwave heat flux (Qs)

The first term on the right hand side of eq. (5.9) represents the solar

radiation that is absorbed by the water column and is always positive.

The net shortwave heat flux was estimated following (Gill, 1982; Sharples

and Simpson, 2012):

Qs = Qi (1− A) (5.10)

where Qi is the net amount of solar radiation that reaches the surface

and A is the fraction reflected from the sea surface known as albedo.

Time series of net heat flux between the 27th and 29th of March 2014

were compared with changes in temperature in the surface mixed layer to

determine the value of albedo that better fits the observations. Albedo

has been previously estimated to be 0.06 (James and Holt, 1999). Heat

loss in the surface layer estimated from hydrographic data was 23 W m−2

and using eq. (5.9) with an albedo coefficient of 0.06 - 0.12 leads to a

heat loss of 16 - 23.5 W m−2. Thus the albedo was set constant at 0.12.

Back radiation (Qb)

The gain or loss of energy by back radiation depends on the upward

radiation from the sea surface and the returned radiation from the at-

mosphere back to the ocean. The atmosphere and the sea radiate as

black bodies proportionally to the fourth power of their temperatures

according to the Stephan-Boltzmann Law (Lynne et al., 2011; Simpson

and Sharples, 2012). Thus, following Josey et al. (1999) back radiation

(Qb) was estimated as:

Qb = εγSBT
4
w

(
0.39− 0.05 (0.01EwRh)

1
2

) (
1− kC2

)
+ 4εγSBT

3
w (Tw − Ta)

(5.11)

where the emittance of the sea surface (ε) was set constant at 0.985 (Holt

and James,1999), γSB is the Stefan-Boltzmann constant (5.67×10−8 W
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m−2 K−4), and are the water and air temperature in degrees Kelvin, k is a

latitude-dependant cloud cover coefficient, which increases with latitude

and was fixed at 0.73 (Josey et al., 1999), Rh is the relative humidity (%)

and C is the fraction of total cloud cover at the Central Celtic Sea. The

saturated vapour of pressure (Ew in mbar) can be estimated following

James and Holt (1999) and Sharples et al. (2006) in the form:

log10Ew =
0.7859 + 0.03477Tw

1.0 + 0.00412Tw
(5.12)

Latent heat flux (QL)

The latent or evaporative heat flux implies a loss of heat from the sea

surface to the atmosphere. The rate of heat loss is defined as (Lynne et

al., 2011; Simpson and Sharples, 2012):

QL = EvLH (5.13)

where Ev is the rate of evaporation in kg s−1 m−2 is the latent heat of

evaporation in kiloJoules. For pure water, the latent heat depends on its

temperature (oC) LH = (2494− 2.2T ) (kJ
kg

) (Lynne et al., 2011). Overall,

in the ocean much of the evaporation depends on the diffusion produced

by the wind (Lynne et al., 2011) and therefore a semi-empirical formula

that depends on the wind speed was used following Holt and James (1999)

and Sharples et al. (2006):

QL = 0.62
(
1.5× 10−3

)
ρaw (qw − qa)LH (5.14)

where w is the wind speed, ρa is the air density and was set constant at

1.3 kg m−3 and LH is 2.5×10−6-2.5×103Tw in J kg−1. Using the saturated

vapour pressure of water (Ew) and the vapour pressure of water (Ea), qw
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and qa were estimated as:

qw =
Ew

P − 0.38Ew
(5.15)

where P is air pressure (mbar). The vapour of pressure of water (Ea) is

related to Ew as follows:

Ea = 0.001EwRh (5.16)

Sensible heat flux (Qc)

Sensible heat flux arises from the differences in temperature between the

sea surface and the air above the sea and therefore the gain or loss of

heat is proportional to the vertical thermal gradient. For the Central

Celtic Sea the sensible heat flux was estimated from (Holt and James,

1999; Sharples et al., 2006):

Qc = chρacρaw (Tw − Ta) (5.17)

where ch is the Stanton number (1.45×10−3), cρa is the specific heat of air

(1004 J kg−1 k−1) and Tw and Ta are the temperature in Kelvin degrees

of the sea surface and air, respectively.

This chapter focuses on the role of positive net heat flux across the sur-

face in the onset of stratification. Therefore the last term (Qv) in eq.

(5.9) was omitted. The annual cycle of the different components of the

heat flux across the sea surface at Central Celtic Sea is shown in Fig.

5.4.
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Figure 5.4: Heat fluxes of a) surface net solar radiation, b) back
radiation, c) latent heat, d) sensible heat and e) net heat flux.

5.2.6 Chlorophyll a

Time series of chlorophyll a fluorescence (Chl-a, hereinafter) measured

wiht a Seapoint Chlorophyll Fluorometer at the surface of the Central

Celtic Sea site by a Cefas smartbuoy were used to assess the evolution

and decay of the spring bloom during 2014 and 2015. Data was recorded

every 30 min. The Seapoint Chlorophyll Fluorometer was standarised to

arbitrary fluorometry units using fluorescent sulphate microspheres after

each deployment at the Cefas laboratories to correct for instrument drift.

To disregard quenching only data recorded at night was used. Further

details on how the Chl-a was processed can be found in Wihsgott et

al. (2019). The periods analysed in this chapter cover from the 26th of

March to the 1st of June 2014 and from the 5th of March to the 1st of

June 2015.
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5.2.7 Nutrients

The vertical distribution of the nutrients, nitrate + nitrite, (NO3 + NO2),

referred to nitrate hereinafter, was used to complement the analysis and

quantify potential nitrate supply from below the pycnocline to the surface

layer. Water samples were collected during a series of research cruises in

March 2014 and March, April and May 2015 at Central Celtic Sea and

analysed for dissolved inorganic nutrients. Details on how nutrients were

analysed can be found in Chapter 2, Woodward (2016) and Poulton et

al. (2018).

5.3 Results

5.3.1 Spring 2014

The effects of heat input and the wind on the hydrography of the water

column at the Central Celtic Sea are shown in Figure 5.5. Averaged heat

loss to the atmosphere occurred between the 27th and 30th of March

(Fig. 5a). Afterwards, positive heat flux was persistent until the 25th of

April when the water column briefly lost heat to the atmosphere. Follow-

ing this heat loss event heat input to the water column continued until

the 21st -24th of May when a second event of negative heat flux was

observed. Before the period of constant positive heat flux (27th-30th of

March) westward winds were observed (Fig. 5.5b). During the begin-

ning of constant heat input period, between the 31st of March and 2nd

of April, northward winds occurred and turned eastward between the

2nd-10th of April. Overall, throughout the record winds were aligned

mainly along the east-west direction. Three events of intensified wind

stress were observed on the 25th-27th of April (∼0.23 kg m−1 s−2), 12th-

17th of May (∼0.18 kg m−1 s−2) and 22nd-24th of May (∼0.15 kg m−1

s−2) (Fig. 5.5c). Throughout the record the time series of the zonal com-
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ponent of transport in the surface layer were not coherent with Ekman

transport (Fig. 5.5d) except for the period 27th of March -5th of April

2014 when northward winds occurred and led to a strong correlation

(R2=0.85). The northwards winds generated a weak eastward flow (0.5

m2 s−1) after the 30th of March. Transport in surface layer and Ekman

transport were strongly correlated with each other (R2=0.77) (Fig. 5.5e).

Before the 31st of March a weak northward wind-driven flow occurred

(0.3 m2 s−1) (Fig. 5.5e) and turned eastward between the 31st of March

and 2nd of April. Afterwards, between the 2nd and 10th of April a weak

southward wind driven flow occurred (0.3 m2 s−1). The strong westerly

wind event (Fig. 5.5b) between the 25th and 27th of April was reflected

on the maximum southward transport (>0.5 m2 s−1).

In the water column the 9.5oC isotherm indicated a two layer system

between the 27th and 30th of March (Fig. 5.5f). Temperature in the

upper 30 m increased consistently from <9.6oC to >11o C from the 30th

of March to the 25th of April when temperature decreased to ∼10.5oC.

The thermocline deepened from 30 to 55 m depth introducing colder wa-

ters from the bottom layer and homogenised waters around 10.5 oC in

the upper 55 m. From the 1st of May onwards temperature in the upper

30 m increased from 10.5oC to >12oC by the end of May. The water col-

umn was homogenous in salinity before the 2nd of April (∼35.47 g kg−1)

(Fig. 5.5g). Afterwards, relatively low salinity (<35.46 g kg−1) in the

upper 30 m coincided with westerly wind events in the periods 2nd-10th

of April, 27th April-4th of May and 20th of May-1st of June. In contrast,

increases in salinity above 30 m depth were observed between the 13th

and 20th of April during an easterly wind event. The vertical distribu-

tion of temperature and salinity was reflected on density time series (Fig.

5.5h). The water column was stratified before the 27th of March 2014
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with the 27.27 kg m−3 contour marking the interface between the surface

and bottom layers. The inclination of the 27.25 kg m−3 density contour,

reaching minimum depths on the 30th of March, indicates stratification

diminished in the upper 40 m depth. In the period 30th of March-2nd

of April salinity remained constant and therefore intensification of strat-

ification was governed by increases in temperature. Afterwards stratifi-

cation strengthened until the 25th of April when density decreased. As

with temperature, the pycnocline deepened down to 55 m and introduced

denser waters from below the pycnocline to the surface mixed layer. Be-

tween May and June stratification enhanced and mirrored the vertical

distribution of temperature. The effects of the relatively strong events

of wind stress on the 10th of May delayed the occurrence of waters with

densities below 26.9 kg m−3 until the 15th of May.

The onset and evolution of stratification was reflected on Chl-a time

series (Fig. 5.5i). Concentration of Chl-a before the 30th of March was

at its minimum (∼1 mg m−3) and gradually increased from the 31st of

March onwards and peaked (6 mg m−3) between the 10th and 12th of

April. As stratification intensified chl-a concentration decreased to ∼2.5

mg m−3 and remained constant from the 15th to the 25th of April. A

second peak in Chl-a was observed from the 25th of April until the 2nd

of May when concentrations reached values above 9 mg m−3 and were

greater than the first peak.
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Figure 5.5: Time series between the 27th of March and 1st of June 2014
of a) Net Heat flux b) wind velocity, c) wind stress, d) zonal and e)
meridional surface (red) and Ekman transport (black), f) Absolute

salinity, g) conservative temperature, h) density, i) Chl-a concentration.
Magenta lines indicate the start of constant heat input.

5.3.2 Spring 2015

The effects of the net heat flux and wind stress on the hydrographic con-

ditions of the water column are shown in Figure 5.6. Positive net heat

flux was observed between the 16th and 24th of March and was followed
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by a heat loss event until the 26th of March (Fig. 5.6a). From the 26th

of March onwards, positive net heat flux occurred with a relatively short

event of heat loss (1-2 days) on the 18th of April.

Prior to the period of sustained positive net heat flux, northerly winds

were observed between the 17th and 26th of March 2015 (Fig. 5.6b).

Westerly winds occurred from the 26th of March until the 4th of April

and coincided with the beginning of the constant positive net heat flux

(Fig. 5.6b). Overall, winds were aligned along the zonal axis with west-

erly winds being dominant in the periods 3rd-10th of May and 15th-31st

of May. In contrast easterly winds occurred in the periods 5th-11th of

April, 14th-24th of April, and 28th of April- 2nd of May. Relatively

weak wind stress (0.1 kg m−1 s−2) occurred during the event of heat loss

between the 24th and 26th of April (Fig. 5.6c) and was followed by in-

tensified wind stress (0.26 kg m−1 s−2) in the period 26th of April- 1st

of May. Transport in the surface layer was coherent with variability in

the wind stress. For instance, before the 5th of April strong correlations

were found between the surface and Ekman transport of R2=0.7 and

R2=0.92, for the zonal and meridional components respectively, indicat-

ing transports in the upper 40 m were mainly wind-driven (Fig. 5.6d

and e). Maximum southward transport (1 m2 s−1) in the surface layer

occurred from the 26th of March to the 4th of April (Fig. 5.6e) and was

consistent with the maximum wind stress (Fig. 5.6c). After the 12th

of April fluctuations observed in zonal surface transport were not con-

sistent with zonal Ekman transport, as winds were mainly aligned along

the east-west direction (Fig. 5.6d). In contrast fluctuations in trans-

port in the surface layer and Ekman transport were strongly correlated

(R2=0.74), influenced by these east-west aligned winds.

170



In the water column between the 17th and 24th of March short daily

increases of temperature above 10oC were observed in the upper 25 m

(Fig. 5.6f). Nonetheless, homogenisation of the water column occurred

promptly during the night until the period 26th- 29th of March when

temperature in the upper 60 m increased and remained above 10oC.

Subsequently from the 29th of March until the 5th of April tempera-

ture decreased below 10oC in the top 70 m. In contrast, in the bottom

70 m temperature remained above 10oC in the periods 29th of March-

2nd of April. From the 11th of April until the 1st of June temperature

gradually increased from 10oC to >12oC in the upper 30 m compared to

10-10.5 oC in the bottom mixed layer.

Salinity time series indicate that the water column was homogeneous

in the period 15th- 26th of March (<35.53 g kg−1) (Fig. 5.6g). Between

the 28th-29th of March and the 6th of April fresher waters, with salinity

below 35.53 g kg−1, occurred. As in the previous year, in the surface

layer relatively low salinity waters in the periods 30th of April- 5th of

May, 11th - 17th of May and 18th - 24th of May coincided with westerly

wind events. In contrast increases in surface salinity and fresher waters

below 35.48 g kg−1 in the bottom 100 m between the 17th and the 23rd

of April were generated by easterly wind events.

The evolution of stratification and the effects on salinity and temper-

ature are observed in the density time series (Fig. 5.6h). Increases in

temperature between the 15th and 23rd of March were reflected in den-

sity decreases in the upper 25 m. Deepening of the 27.24 kg m−3 contour

indicates stratification at Central Celtic Sea started on the 26th of March.

Despite the gap in the time series, CTD data indicates the vertical dis-

tribution of density between the 5th and 11th of April persisted. From
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the 11th of April until the 1st of June the vertical distribution of den-

sity resembled the temperature time series. Density in the surface layer

gradually diminished from >27.24 kg m−3 in late-March 2015 to <26.9

kg m−3 in June 2015.

The minimum concentration of surface Chl-a (∼1 mg m−3) occurred be-

tween the 15th and 26th of March (Fig. 5.6i). After the 26th of March,

when the stratified period began (Fig. 5.6h), chl-a gradually increased

and reached a maximum (>10 mg m−3) between the 12th and 19th of

April with peaks above 5 mg m−3 until the 26th of April. Afterwards

chl-a concentration gradually diminished and reached minimum values

around 1 mg m−3 on the 1st of June.
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Figure 5.6: Time series between the 15th of March and 1st of June 2015
of a) Net Heat flux b) winds velocity, c) wind stress, d) zonal and e)
meridional surface (red) and Ekman transport (black), f) Absolute
salinity, g) conservative temperature, h) density, i) Chlorophyll-a

concentration. Magenta lines indicate the period of constant heat input.
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5.4 Discussion

5.4.1 Spring 2014

Stratification

The vertical distribution of temperature and density indicate stratifica-

tion in the Central Celtic Sea started before the 26th of March 2014, as

described by the 9.5oC isotherm and the 27.27 kg m−3 density contour

at ∼50 m depth (Fig. 5.5f and h). Between the 27th and 29th of March

a heat loss event occurred (Fig. 5.5a), and averaged over the 3 days

accounted for 23 W m2. In the water column temperature decreased in

the upper ∼50 m ∼0.02oC leading to a 23 W m−2 heat loss (Fig. 5.7a),

being similar to the net heat flux across the surface. Therefore, cooling

in the upper 50 m of the water column was generated by the atmospheric

heat loss event and resulted in surface outcropping of the 27.25 kg m−3

density contour (Fig. 5.5h).

Coinciding with this heat loss event, easterly winds were observed be-

tween the 27th and 29th of March (Fig. 5.5b) and led to a weak north-

ward surface transport (<0.25 m2 s−1) with a compensating southward

flow in the bottom layer. Prior to the onset of stratification a horizontal

gradient in the Celtic Sea resulted in warmer waters at the shelf edge due

to faster cooling on shelf (Chapter 4). Therefore colder waters reached

the Central Celtic Sea site in the bottom ∼100 m due to wind-driven

transport leading to a decrease in temperature of ∼0.02oC (Fig. 5.7a).

A comparison between the thicknesses of the surface (∼50 m) and bot-

tom (∼100 m) layers indicate horizontal advection of heat in the bottom

was double the heat loss in the surface layer. Hence, in the early stages

of stratification horizontal advection has further implications for heat

transfer as will be described later for spring 2015.

174



Figure 5.7: Profiles of a) daily averaged temperature between the 27th
and 30th of March 2014 and b) nitrate (NO2+ NO3) on the 27th of

March 2014. Top (black) and bottom (red) time series in spring 2015 of
c) temperature and d) salinity and e) Hovmöller diagram of nitrate (NO3

+NO2).

A period of constant positive net heat flux began on the 30th of March

2014 and enhanced stratification of the water column. Between the 30th

of March and the 2nd of April heat input coincided with southerly winds

leading to a eastward wind-driven Ekman transport and a compensatory

westward flow in the bottom resulting in negligible cross-shelf advection

of salinity and temperature (e.g. chapter 4). Thus, there were no changes

in salinity or temperature. Afterwards intensification of the stratifica-

tion in the upper 30 m was controlled by positive net heat flux despite

wind-driven dynamics advecting fresher and relatively high salinity wa-

ters across the shelf in the surface and bottom layers. Hence temperature

controlled the vertical distribution of density (Brown et al., 2003) and

established a pycnocline at ∼35 m which gradually intensified until the

25th of April when a combination of heat loss on the 25th of April (Fig.

5.5a) with enhanced wind stress (Fig. 5.5c) between the 23th and 27th

of April mixed the surface layer and deepened the pycnocline up to ∼55

m as described in Wihsgott et al. (2019). Subsequently from the 1st of
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May onwards, consistent with positive net heat flux, stratification within

the surface layer was re-established.

Implications for phytoplankton growth

Intensification and weakening of stratification had further consequences

on phytoplankton growth (e.g. Pingree et al., 1977; Seguro et al., 2017).

For instance, the concentration of chl-a prior to the beginning of constant

heat input was a minimum around 1 mg m−3 despite the water column

being stable prior to the 27th of March (Fig. 5.5h). Based on the spring

2015, concentration in chl-a increased 1 mg m−3 in 6 days after stratifi-

cation began (Fig. 5.6i). Potentially, for the spring 2014 stratification of

the water column had recently started (Fig.5.5h) resulting in a negligible

growth of phytoplankton. With the beginning of consistent positive net

heat flux from the 30th of March, a sudden increase in chl-a concentra-

tion, up to ∼6 mg m−3 on the 12th of April, occurred indicating the

onset of the spring bloom in the Celtic Sea (e.g. Pingree et al., 1976;

Garcia-Martin et al., 2017; Seguro et al., 2017; Wihsgott et al., 2019)

whilst nutrients were still available (e.g. Pingree et al., 1976). Following

this, the maximum peak concentration of chl-a decreased to 3 mg m−3 on

the 17th of April, suggesting mortality of phytoplankton due to grazing

and nutrients in the surface layer being depleted (Pingree et al., 1976;

Poulton et al., 2018). Thus the spring bloom in 2014 lasted ∼21 days,

a time well aligned with previous observations (Rees et al. 1999). Chl-a

concentration remained constant (∼3 mg m−3) until the 25th of April

when a combination of enhanced wind stress (Fig. 5.5d) (Whisgott et

al., 2019) and heat loss (Fig. 5.5a) deepened the surface layer similar to

a storm described in Davis et al. (2014). Consequently nutrients were

supplied above the pycnocline from the upper 20 m of the bottom layer.

The amount of nitrate(NO2+ NO3) introduced into the surface layer can
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be estimated from a nitrate profile obtained on the 27th of March (Fig.

5.7b) and accounting for a 0.3 mmol m−3 nitrate increase by the 25th of

April 2014 due to cross-shelf transport and remineralisation (Fig. 12b

in Ruiz-Castillo et al., 2018; Chapter 2). On the 27th of March in the

bottom 105 m the averaged nitrate concentration was ∼7.97 mmol m−3

and increased to 8.3 mmol m−3 by the 25th of April. Therefore a to-

tal budget of 871 mmol m−2 was observed in the bottom mixed layer

before the mixing event (Fig. 5.8, left panel). Waters from the upper

20 m below the pycnocline were introduced into the surface layer and

supplied the surface layer with ∼166 mmol m−2 which averaged over a

layer with a thickness of ∼50 m yielded in 3.3 mmol m−3 of nitrate in

the upper 50 m (Fig. 5.8, right panel). As a consequence of the mix-

ing event on the 27th of April the concentration of chl-a increased and

reached a maximum of ∼9 mg m−3 on the 3rd of May and suggests a

second phytoplankton bloom, which was greater than the previous spring

bloom. The concentration of nitrate introduced (∼3.3 mmol m−3) into

the surface layer on the 25th of April, compared to the background con-

centration prior to the spring bloom (7.9 mmol m−3), suggests a greater

efficiency of phytoplankton in assimilating the nutrients introduced from

the bottom mixed layer. Nonetheless, it occurred later when more light

was available. Finally, from the 3rd of May onwards chl-a concentration

gradually decreased in the surface layer due to grazing and depletion of

nutrients (Poulton et al., 2018).
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Figure 5.8: Nitrate concentration in the surface and bottom layer before
(left column) and after (right column) the enhanced wind stress event.

Black line represents the pycnocline.

5.4.2 Spring 2015

Stratification

In shelf seas, far from the coastal domain, the beginning and maintenance

of the stratified period is thought to be governed by a competition be-

tween heat input and mixing caused by tidal and wind stress (Atkinson

and Blanton, 1986). During winter, the Celtic Sea is fully mixed due to

heat loss and intensified wind stress (Wihsgott et al., 2019). Nonetheless

a cross-shelf gradient occurs with warmer and saltier waters at the shelf

edge (Pingree, 1980; Ruiz-Castillo et al., 2018)(Fig. 5.9a). In the Cen-

tral Celtic Sea events of positive net heat flux between the 15th and 24th

of March 2015 increased the temperature in the upper 30 m. However,

whilst heat input overcame mixing during the day, heat loss and convec-

tive mixing during the night delayed the onset of the sustained thermal

stratification until the 26th of March, when a two layer system developed

(Fig. 5.6h). From this date onwards positive net heat flux was observed
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at the Central Celtic Sea until the 18th of April. However, increases in

temperature (>10oC) in the upper 70 m occurred between the 26th and

29th of March. Temperature decreased in the period 29th of March- 5th

of April in the upper 70 m below 10oC despite positive net heat flux indi-

cating advection of colder waters. In the Celtic Sea surface and bottom

transport is mainly dominated by wind-driven Ekman dynamics (Pingree

and Le Cann, 1990; Chapters 3 and 4) and strong correlation for the

zonal (R2=0.7) and meridional (R2=0.92) components between the 15th

of March and 5th of April confirms surface transport was wind-driven at

Central Celtic Sea. Consistent with the beginning of the constant posi-

tive net heat flux a westerly wind event occurred from the 26th of March

to the 5th of April and was favourable for off- and on-shelf flow in the sur-

face and bottom layers respectively. Therefore, southward wind-driven

flow advected colder (<10oC) and fresher waters (<35.53 g kg−1) in the

surface layer (Fig. 5.6f and g) and warmer (>10oC) and saltier (>35.53

g kg−1) waters were transported by the compensatory bottom flow. The

effects of cross-shelf transport are illustrated in Figure 5.9.b. The influ-

ence of rain on the changes in salinity can be assessed using ERA-interim

data sets (Dee et al., 2011). At the end of the day on the 28th of March

salinity in the upper 80 m was 35.536 g kg−1. There was a 0.0016 m of

rainfall at the Central Celtic Sea site on the 29th of March. Over the

upper 80 m of the water column this would have reduced the salinity

to 35.535 g kg−1, which accounts only for 3% of the change in salinity,

with averaged salinity being 35.523 g kg−1 at the end of the day on the

29th of March. Between the 29th of March and 4th of April the rain-

water input accounted for 0.0049 m decreasing salinity down to 35.534

g kg−1 greater than the salinity observed (35.486 g kg−1) in the upper

80 m at the end of the day on the 4th of April. Therefore the reduction

in salinity between the 28th of March and 4th of April is attributed to
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wind-driven transport of fresher waters (<35.53 g kg−1) from the north of

the Celtic Sea. Due to wind-driven cross-shelf advection, relatively cold

waters were introduced at the Central Celtic Sea in the surface layer and

overlaid warmer waters in the bottom (Fig. 5.7c and 5.9b). Nonetheless,

a stable water column was maintained (Fig. 5.6h) due to fresher waters

occupying the surface layer above relatively high salinity waters as seen

in the late stages of the stratified period (Chapter 4). Maximum wind

stress (∼0.27 kg m−1 s−2) occurred between the 26th of March and 1st

of April and was greater than the wind stress (∼0.23 kg m−1 s−2) in the

spring 2014 that mixed the surface layer. However, the mixing effects in

spring 2015 were spread over a 70 m thickness layer, greater than the 35

m thickness of the surface layer in April 2014. Therefore, between the

29th of March and 5th of April stratification was not governed by a com-

petition between heat input and mixing. Stratification was maintained

and controlled by cross-shelf advection, particularly wind-driven Ekman

transport of relatively low salinity waters (<35.53 g kg−1) in the surface

layer (Fig. 5.9b). Subsequently, from the 12th of April onwards the fluc-

tuations in density and intensification of stratification were controlled by

heat input and the vertical distribution of temperature (Pingree, 1980;

Brown et al., 2003; Wihsgott et al., 2019). Winds were zonally aligned

and favourable for off- and on-shelf transport. However, after the 11th of

April increases in salinity appeared to have negligible effect on estimating

density.
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Figure 5.9: Schematics of the cross-shelf distribution of salinity (S) and
temperature (T) when a) the water column is mixed (winter) and b)

during westerly wind events.

Implications for phytoplankton growth

As in the previous spring, the onset and maintenance of stratification

influenced the biology of the Celtic Sea. The chl-a concentration was

minimum in winter (Fig. 5.6i), as vertical mixing of the water column

hindered phytoplankton growth (Pingree et al., 1977). Once the wa-

ter column stabilised, the concentration of chl-a increased on the 26th of

March indicating the onset of the spring bloom (Rees et al., 1999). Strat-

ification persisted and therefore chl-a concentration gradually augmented

and was maximum between the 12th and 19th of April (Garcia-Martin et

al., 2017; Seguro et al., 2017; Davis et al., 2018; Wihsgott et al., 2019).

Prior to the spring bloom, the nitrate concentration was 6.5 mmol m−3

and decreased to <2 mmol m−3 on the 20th of April (Fig. 5.7e). There-

fore between 4 and 5 mmol m−3 were utilised during the sudden growth

of phytoplankton. A gradual decrease in nutrients was observed from <2
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mmol m−3 on the 19th to <0.6 mmol m−3 on the 26th of April. Within

this period, despite this reduced nutrient concentration smaller peaks (<6

mg m−3) in chl-a were observed (Fig. 5.6i; Garcia-Martin et al., 2017).

Phytoplankton blooms occurred even though the nutrient concentration

was relatively low (<2 mmol m−3). After the 26th of April nutrients were

depleted in the surface layer leading to a chl-a concentration below 0.6

mmol m−3 (Poulton et al., 2018).

Inter-annual variability was observed in the spring blooms of 2014 and

2015. The background nutrient concentration in winter 2015 (7 mmol

m−3) was lower than the background nutrient concentration in winter

2014 (8 mmol m−3). However, the spring bloom event was greater in

magnitude, by almost a factor 2, than the 2014 spring bloom. Therefore,

the amount of phytoplankton growth appeared to be independent of the

background nitrate concentration in winter. Therefore, further research

should be carried out to elucidate the mechanisms driving inter-annual

variability.

5.5 Summary

The mechanisms driving the onset and evolution of the stratification in

the Celtic Sea for the spring 2014 and 2015 were analysed and used to

assess phytoplankton growth.

In spring 2014 stratification of the water column started before the 27th

of March and was intensified by positive net heat flux until the 25th of

April when enhanced wind stress and heat loss to the atmosphere mixed

the upper 50 m. Stratification in the upper 50 m was re-established from

the 1st of May onwards as a result of positive net heat flux.

182



Associated with the onset of stratification a spring bloom event occurred

and was a maximum on the 12th of April. Following the peak in growth,

chl-a concentration gradually decreased. During the mixing event on the

25th of April, 3.3 mmol m−3 of nitrate were introduced above the pyc-

nocline and triggered a second phytoplankton bloom, which was greater

than the previous spring bloom event.

In the spring 2015 constant positive net heat flux from the 26th of March

onwards triggered stratification at the Central Celtic Sea site. During

positive heat flux between the 28th-29th of March and 5th of April tem-

perature and salinity decreased in the surface layer due to southward

wind-driven transport. The onshore compensatory bottom flow advected

relatively high salinity waters in the bottom layer. In the early stages

of the stratified period a stable water column was not maintained by

heat input, but by the vertical distribution of salinity and therefore by

cross-shelf advection. From the 11th of April onwards stratification and

density were controlled by temperature.

The beginning of the spring bloom in 2015 coincided with the onset

of stratification on the 26th of March. There was a relatively constant

growth until the 15th- 17th of April. The phytoplankton bloom was

greater than the bloom event in the spring 2014 despite lower initial nu-

trient concentration prior to the onset of stratification. Relatively small

blooms were observed between the 20th and 26th of April until the nu-

trient concentration in the surface layer was below 0.6 mmol m−3.

Phytoplankton growth was enabled between the 29th of March and 5th

of April due to stratification being controlled by salinity, i.e. by wind-

driven cross-shelf transport of low salinity waters in the surfce layer.
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Chapter 6

Summary and discussion

6.1 Summary

The Celtic Sea is a temperate and wide shelf where nutrients are supplied

chiefly from the North Atlantic Ocean and to a lesser degree from riverine

sources. However, the mechanisms on how and when nutrients are sup-

plied and advected across the shelf are unclear. In this thesis the physical

processes leading to seasonal cross-shelf transport and exchange between

the Celtic Sea and the North Atlantic Ocean were elucidated. The phys-

ical processes occurring in different time-periods are summarised below.

6.1.1 Cross-shelf transport and exchange in sum-

mer

At Central Celtic Sea transport variability was bounded by the semid-

iurnal and inertial frequency bands indicating the influence of internal

waves and wind-stress forcing. Within the surface and bottom layers

transport variability in the inertial frequency band was greater than the

semidiurnal suggesting wind stress forcing was predominant. In con-

trast, semi-diurnal oscillations governed variability of transport in the

pycnocline layer and was attributed to the passing of internal waves.
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For each layer transport was separated into Eulerian and Stokes compo-

nents. Westerly winds predominated and were favourable for surface off-

shelf (southward) transport and an onshore (northward) compensatory

bottom flow. Wind-driven Ekman transport accounted for most of the

Eulerian transport in the surface and bottom layers with both transports

strongly correlated (R2 >0.7). In addition, their variability was aligned

in the same direction. Therefore, off-shelf transport in the surface layer

was wind-driven whilst onshore transport in the bottom layer resulted

from the wind-driven compensatory flow (Fig. 6.1).

Figure 6.1: Schematics of the main mechanisms leading to cross-shelf
transport and exchange between the Celtic Sea and the North Atlantic

Ocean.

A horizontal salinity and temperature gradient, with salinity and tem-

perature increasing towards the shelf edge and North Atlantic Ocean,

was set in winter. During the onset of stratification the horizontal tem-

perature gradient in the surface layer vanished. However, below the

pycnocline the gradient was maintained throughout summer. As a con-

sequence of wind-driven dynamics in the bottom layer high salinity and
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warmer waters from the North Atlantic were advected on-shelf and in-

truded between 80 and 110 km in a 7-8 month period. Similarly, the

compensatory flow of wind-driven dynamics led to onshore advection of

relatively high salinity waters from the shelf throughout summer until

winter mixing.

Throughout summer evidence of relatively high salinity waters intrud-

ing on-shelf and low salinity waters being exported off-shelf within the

pycnocline was indicative of cross-slope exchange. The on- and off-shelf

transport resulted from Stokes transport, which was greater than the

Eulerian transport within the pycnocline, and was mainly aligned or-

thogonally to the shelf edge. Exchange between the Celtic Sea and the

North Atlantic Ocean within the pycnocline layer was attributed to the

Stokes transport generated by internal waves (Fig. 6.1).

Wind-driven cross-shelf transport has been observed globally in shelf

seas. However, the Celtic Sea is a unique region. On narrow shelves

(∼50 km) surface divergence generated by wind-driven transport results

in vertical and surface outcropping of the pycnocline at the shelf edge

(e.g. Torres and Gomez-Valdes, 2015). In addition, in shelf seas due to

surface divergence relatively cold water from the subsurface is expected

to upwell along the coast (e.g. Ruiz-Castillo et al., 2016). For the wide

Celtic Sea (>500 km) surface off-shelf transport at the shelf break was

replenished by waters from further on the shelf and therefore vertical

velocities and/or upwelling of deeper waters at the shelf break seems to

be negligible. In addition, relatively cold waters are not observed along

the coast. Stratification prevailed throughout summer in the relatively

deep inner shelf hindering mixing so that high salinity and relatively

cold waters from the bottom are not observed in the surface. Instead,
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the relatively high salinity waters from near the shelf edge may entrain

the cyclonic circulation in the north of the Celtic Sea (Horsbourgh et al.,

1998; Brown et al., 2003).

6.1.2 Cross-slope exchange in late-autumn and win-

ter

In NW European shelf cross-slope exchange in autumn and winter has

been typically thought to be important for removing carbon from the

shelf that has been fixed during the stratified period (Thomas et al.,

2004; Painter et al., 2017). In the Celtic Sea in December evidence of

Ekman drainage beneath the poleward along-slope current and wind-

driven transport across the shelf and towards the shelf edge was ob-

served. The Ekman transport resulted in convergence of waters at the

shelf edge. However, the hydrographic sections suggested that the Ek-

man drain exported only shelf edge water into the deeper slope waters.

The wind-driven transport of fresher waters towards the shelf edge ap-

peared to recirculate onshore in the bottom layer (Fig. 6.2). In shelf

seas interaction between wind-driven and bottom Ekman dynamics oc-

curring simultaneously at the shelf edge has been observed before (e.g.

Roughan and Middleton, 2002). However, in the Celtic Sea the inter-

action between wind-driven transport and Ekman drainage results in

bottom recirculation of surface waters, a novel process that has not been

observed previously.

188



Figure 6.2: Schematics of the interaction between wind-driven and
bottom Ekman drainage processes at the shelf edge.

Throughout summer, the along-slope current seems to be absent (van

Aken, 2002) or even reverses (Porter et al., 2016). Westerly winds pre-

dominate in the Celtic Sea and are favourable for off-shelf surface trans-

port. Thus, during the stratified period wind-driven dynamics govern

cross-slope exchange in the Celtic Sea and would be enhanced by the

along-slope current heading southward. In contrast, when the poleward

along slope current occurs Ekman drainage dynamics would inhibit wind-

driven cross-slope. A combination of westerly winds during periods (au-

tumn) when dynamics at the shelf edge are governed by the poleward

along slope current may result in recirculation of surface waters in the

bottom layer as described in this thesis. Thus, in autumn bottom recircu-

lation of surface fresher waters may be a regular feature in the Celtic Sea.

In winter westerly winds and the poleward along-slope current occur

simultaneously. However, hydrographic and current time series indicate
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that the mixing effect of wind and tidal stresses overcame wind-driven

cross-shelf advection. Thus, recirculation of surface fresher waters in the

bottom layer is not plausible.

Southward depth-averaged flow of relatively low salinity waters was ob-

served at the Celtic Deep and Central Celtic Sea sites in winter 2014-2015.

Overall, there was no evidence of exchange between the Celtic Sea and

the North Atlantic Ocean. Shelf waters seemed to not be exported into

the North Atlantic Ocean.

6.1.3 Onset of stratification

In shelf seas, far from riverine influence, stratification is thought to be

maintained by a competition between heat input into the sea surface

and mixing generated by wind and tidal stresses (Simpson, 1981). The

onset and maintenance of stratification was assessed in spring 2014 and

2015. In spring 2014, stratification strengthened due to positive net heat

flux. Similarly, in spring 2015 the onset of stratification was triggered

by positive net heat flux. However, in the early stages of the stratified

period in spring 2015, temperature above and below the pycnocline de-

creased and increased, respectively, despite the positive net heat flux into

the sea surface. This temperature inversion was caused by wind-driven

transport advecting cold and relatively low salinity surface waters from

further north in the Celtic Sea. In this case the stratification of the wa-

ter column was maintained by the vertical distribution of salinity, with

greater salinity from near the shelf edge occupying the bottom layer. In

the absence of stable thermal stratification this vertical salinity gradient

stimulated phytoplankton growth.

Advection of fresher and colder waters in the surface due to wind driven
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transport is highly expected due to the Celtic Sea experiencing predom-

inantly westerly winds. Nonetheless, in late winter and early spring out-

burst of cold and intensified easterly wind events, locally known as the

”beast from the east” may occur and have further implications on the

water column stratification and therefore on the timing and duration

of the spring bloom. These easterly winds are favourable for onshore

surface transport and an off-shelf compensatory bottom flow, opposite

to westerly wind events. In the early stages of spring easterly winds

combined with the horizontal salinity gradient would advect relatively

high salinity and warm waters in the surface layer. The vertical distri-

bution of salinity may generate an unstable water column if salinity has

a greater effect than temperature on controlling density. Moreover, cold

temperatures are associated with the easterly wind events. Therefore,

surface temperature may decrease and contribute to an unstable water

column. Instability of the water column inhibits phytoplankton growth

and therefore spring blooms would be halted and/or delayed.

6.2 Discussion

The results in this thesis have important consequences in particular for

three aspects of shelf sea biogeochemical cycles: (1) the supply of nutri-

ents to shelf sea phytoplankton, (2) the export of carbon from the shelf

sea, and (3) the triggering and maintenance of stratification.

6.2.1 Supply of nutrients to shelf sea phytoplankton

The background nutrient concentration for both the northern and south-

ern Celtic Sea is set in winter, when the water column is fully mixed,

and determines nutrient availability for the following spring bloom. At

the Bristol Channel and shelf edge boundaries the nutrient sources are
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variable between years. In the Bristol Channel riverine nutrient input is

a maximum in winter (Uncles and Radford, 1980; Jonas and Millward,

2010; Uncles, 2010) and eventually, after nitrogen removal (Seitzinger et

al., 2006), nutrients from riverine origin reach the Celtic Sea. At Central

Celtic Sea and Celtic Deep nutrients were estimated to account for 10%

and 30% of the nitrate available, respectively. At the shelf edge and shelf

break the depth of the winter mixed layer is variable as well (Hydes et

al., 2004; Hartman et al., 2014). For the winter 2014-2015 mixing down

to 500 m depth autumn nitrate profiles at the shelf break resulted in

a similar background concentration to the nitrate observed at the shelf

edge and shelf break for the spring 2015. Therefore, winter mixing set

the amount of nutrients at the shelf break and the background nutri-

ent concentration that would be transported northward in the bottom

mixed layer throughout the stratified period by wind-driven dynamics.

During the stratified period bottom nitrate-rich waters were transported

northward/onshore by Ekman dynamics until winter mixing occurred

and distributed nitrate from below the pycnocline throughout the water

column. Therefore, far from the nutrient sources, i.e. far from the Bristol

Channel and the shelf edge, in the interior of the Celtic Sea a combina-

tion of the northward transport with winter mixing set the background

nutrient concentration for the following spring bloom.

The high productivity of the Celtic Sea (Seguro et al., 2017) can only be

maintained whilst nutrients are available (Pingree et al., 1976). Evidence

presented here indicates that in the bottom layer waters from the shelf

break are introduced ∼80-100 km onshore by wind-driven dynamics in a

7-8 month period, before winter mixing. Therefore, for the wide Celtic

Sea nutrients from oceanic origin will be advected north of Central Celtic

Sea in at least 2 years and would reach the coast in a 2-5 year period,
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a time-scale consistent with previous estimates (Hydes et al., 2004). At

the northern boundary, nutrients supplied from the Bristol Channel are

expected to be diverted northward (Uncles, 2010) and therefore its influ-

ence over the wide Celtic Sea is expected to be limited. Thus, in order to

maintain the high productivity the biogeochemical system of the Celtic

Sea seems to be very efficient at recycling nutrients. About 50-60% of the

nutrients located at Central Celtic Sea and within the outer shelf were

recycled in the water column between March and mid-November. Hence,

even though nitrate is chiefly supplied from the North Atlantic Ocean,

and to a lesser extent, from the Bristol Channel, into the Celtic Sea, in

the interior of the shelf the nitrate availability resulted from a combina-

tion of wind-driven bottom onshore advection of recycled nutrients from

the previous years.

6.2.2 Export of carbon from the shelf sea

Temperate shelf seas, are considered to be CO2 carbon sinks (Thomas et

al., 2004; Painter et al., 2017), particularly the Celtic Sea (Hartman et

al., 2018). In the NW European shelf export of carbon from shelf seas in

the form of DIC is thought to be driven by Ekman drainage generated by

the poleward along slope current, particularly from the Hebridean shelf

northwards (Souza et al., 2001; Simpson and Mcandliss, 2013; Painter et

al., 2017). For instance, recent estimates for the Hebridean shelf quanti-

fied that 2.18Tg C day−1 was exported into the North Atlantic through

an Ekman drain mechanism in November and December 2014 with the

export being significant compared to the air-sea CO2 fluxes (Painter et

al., 2017). However, south of the Hebridean shelf in the Celtic Sea previ-

ous observations indicate that in summer the along slope current weakens

and even reverses and flows in the equatorward direction (Pingree and

Le Cann, 1989; Porter et al., 2016), or seems to be absent (van Aken,
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2002). Furthermore, shelf-ocean exchange throughout the stratified pe-

riod is governed by wind-driven dynamics and on average supply oceanic

waters onto the shelf in the bottom layer. Therefore, it is unlikely that

Ekman drain is significant for the Celtic Sea throughout most of the

stratified period. In contrast, in late autumn and winter the along-slope

current occurs in the poleward direction (Pingree and Le Cann, 1989;

Souza et al., 2001; Simpson and McCandliss, 2013) and appears to be

a continuous flow from the Bay of Biscay to the north of the Hebridean

Shelf (Painter et al., 2017) and in a favourable direction for export of

shelf waters in the bottom boundary layer. However, whilst this study

did find a surface Ekman transport of shelf water towards the shelf edge

in late autumn, only the outer 10-20 km of the shelf waters appeared

to gain access to the shelf edge, and the water that did reach the shelf

edge seemed to be recirculated back onto the shelf in the bottom com-

pensatory flow indicating a negligible off-shelf carbon export.

In winter the water column was fully mixed and there was no evidence of

cross-slope exchange. At Central Celtic Sea velocity anomalies were con-

sistent with wind-driven dynamics and headed towards the right of the

direction of the wind in the upper 70-80 m with the compensatory flow

occupying the bottom 70-80 m resulting in a negligible net cross-shelf ex-

change of carbon once mixing occurred. At the shelf break hydrographic

evidence indicates the water column was fully mixed reaching depths be-

low the bottom depth of the shelf slope. If Ekman drain occurred in the

bottom boundary layer at the shelf slope, a compensatory flow would

had transported waters on-shelf above the bottom boundary layer, but

again would result in negligible net exchange of carbon, once the water

column mixes. Thus, whilst in the Hebridean Shelf significant export of

carbon (DIC) occurs (Painter et al., 2017) and in the North Sea seems to
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take place (Thomas et al., 2004), off-shelf export seems negligible along

the shelf edge of the Celtic Sea. Furthermore, if Ekman drain dynamics

governed at the shelf slope, its influence over the wide Celtic Sea (>500

km) would be limited to the vicinity of the shelf slope (10-20 km). For

instance, a rough estimate of the volume of the Celtic Sea and the re-

gion influenced by Ekman drain dynamics in the bottom 60 m yields

5.68×1012 and 4.1×1011 m3 with the latter accounting for only 7% of

the total volume of the Celtic Sea. Therefore, off-shelf export of DIC

in the bottom layer of the whole Celtic Sea cannot be produced by the

Ekman drain mechanism. Particularly if the along-slope current is in the

poleward direction between mid-autumn and spring only (Pingree and

Le Cann, 1989; van Aken, 2002). Overall, export of DIC through Ekman

drain is negligible at the shelf edge of the Celtic Sea implying that DIC is

either accumulating within the shelf, or probably is exported northward

through the Irish Sea in time scales longer than 2 years.

6.2.3 Triggering and maintenance of stratification

Finally, wind-driven transport had further implications for the onset and

maintenance of stratification of the water column in the Celtic Sea. The

canonical view of shelf sea stratification away from freshwater sources is

that surface heating is the key driver (e.g.Brown et al., 2003; Young et al.,

2004; Wihsgott et al., 2019). For the spring 2015 positive net heat flux

occurred at the same time as the onset of the stratified period. However,

despite this heat input the temperature of the surface layer decreased and

overlaid warmer waters in the bottom layer due to wind-driven cross-shelf

advection of a horizontal temperature and salinity gradient. The onset of

stratification coincided with the beginning of a westerly wind event that

advected relatively cold, low salinity surface waters from further north

into the Central Celtic Sea and high salinity and warm waters within
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the compensatory bottom onshore flow. Potentially the initial onset of

spring stratification in 2015 arose from the wind-driven advection of the

horizontal salinity gradient; stratification may have occurred earlier than

it would have done in the absence of the westerly winds.

At the end of the summer stratified period evidence was also found of the

winds extending the period of stratification. In December 2014-January

2015 the stratified period was prolonged despite vertical thermal insta-

bility. Heat loss to the atmosphere cooled waters in the surface layer

generating relatively low temperature waters to overlay warmer waters

in the bottom. A stable water column was maintained by the wind-driven

advection of relatively high salinity and fresher waters in the bottom and

surface layers respectively, and therefore again by wind-driven Ekman

transport. Overall, the role of the wind acting on the horizontal salinity

gradients across the shelf, both in triggering and in extending stratifica-

tion, underlines the importance of regional shelf sea models being able

to accurately simulate horizontal salinity distributions as well as air-sea

heat fluxes if they are to track the biogeochemical cycles of the shelf sea

system.
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