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Effects of loss aversion on the evaluation of decision outcomes 

Aikaterini Kokmotou 

 

Abstract 
 

Loss aversion is the tendency to prefer avoiding losses over acquiring gains of 

the same amount. This thesis aimed to explore the neural correlates of loss aversion 

and its effects on the evaluation of monetary decision outcomes. Decision making in 

different contexts was investigated in order to identify specific conditions that could 

modulate the loss aversion effects. 

Individual differences in loss aversion were estimated by employing a 

gambling task and parametric modelling of participants’ choice behaviour. 

Electroencephalographic (EEG) recordings and event-related potential (ERP) analysis 

were utilised in order to investigate the neural mechanisms underlying loss aversion 

during the processing of decision outcomes. 

Results from across four experimental studies showed that loss aversion was 

consistently associated with feedback ERPs. Specifically, the first study demonstrated 

that loss aversion was associated with feedback-related negativity (FRN) component 

after learning the decision outcome. Individual differences in orbitofrontal cortex 

(OFC) activity during the FRN time window were further associated with individual 

differences in loss aversion. In the second study, loss aversion was associated with 

FRN as well as with P300 component following obtained gains and losses. However, 

no such associations were found for counterfactual gains and losses (i.e., outcomes 

that could have been obtained if a different decision has been made). The third study 

showed that outcomes from choices made by participants themselves and outcomes 

resulting from choices that were arbitrarily inflicted upon participants were processed 

differently. This effect was specific for losses in that losses resulting from unchosen 

decisions produced stronger ERP amplitudes compared to losses resulting from 

decisions chosen by participants. Furthermore, this result was only found for 

participants who displayed increased P300 amplitudes following an obstruction of 

their choice and loss aversion was associated with FRN only in the condition of 

outcomes freely chosen by those participants. The fourth study investigated loss 

aversion within a social context and revealed that participants experienced similar 

levels of loss aversion for themselves and others. For decisions regarding the self, the 

classic FRN was found, however, for decisions regarding others, the FRN was of 

opposite polarity. Furthermore, loss aversion was associated only with FRN following 

decisions that participants made for themselves but not with FRN following decisions 

that participants made for others. 

 This thesis concludes that individual differences in loss aversion exert robust 

effects on the neural evaluation of decision outcomes. These effects were represented 

in feedback ERP components, under the condition that decision outcomes had real 

monetary consequences for the decision makers. Moreover, specific conditions that 

could modify the association between loss aversion and feedback ERPs were 

identified. The motivational significance of the decision outcomes for the decision 

makers appears to be the main factor shaping such effects. 
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Chapter 1 

 

General Introduction 

 

 

1.1 Decision making, loss aversion and outcome processing 

 

Decision making affects nearly all aspects of daily life. Understanding how 

individuals make choices and how the brain evaluates alternative prospects has 

implications for improving everyday decision making (Camerer et al., 2005; 

Rustichini, 2009). Both environmental and idiosyncratic factors can interfere with the 

decision maker’s ability to make optimal choices (Camerer and Hare, 2013; Glimcher, 

2004), and this is even more problematic in cases where such factors are subliminal 

(Pessiglione et al., 2008). Importantly, many decisions involve risk, which is often 

associated with potential negative consequences (Platt and Huettel, 2008). 

In this thesis, decision making was investigated within the framework of 

prospect theory (PT; Kahneman and Tversky, 1979; Tversky and Kahneman, 1992), 

one of the most influential models of choice behaviour (Fox and Poldrack, 2013; 

Trepel et al., 2005). Specifically, the research that will be described in the following 

sections investigated the neural mechanisms of loss aversion, which is a core 

component of PT. Loss aversion refers to the notion that decision makers tend to prefer 

avoiding losses over acquiring gains of equivalent size (Kahneman and Tversky, 

1979). Although extensive behavioural research has highlighted the influence of loss 

aversion on economic choice (Camerer, 2005; Novemsky and Kahneman, 2005), its 

neural underpinnings are still poorly understood (Fox and Poldrack, 2013). 

After a decision has been made, its outcomes need to be evaluated by the 

decision maker in order to determine whether the decision led to a desirable 

consequence or whether the course of the decision making process needs to be changed 

in order to produce better future results (Rangel et al., 2008). Neuroimaging research 

has demonstrated where and when this outcome processing occurs in the brain (for 

reviews see Bartra et al., 2013; Glimcher, 2013), although several questions still 

remain unanswered, especially regarding risky and uncertain choices (Tobler and 
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Weber, 2013). Understanding the neural mechanisms that underlie decision making 

and the factors that can influence choice is important both from a theoretical point of 

view and for improving actual decision making (Camerer et al., 2005). Furthermore, 

knowledge of the brain’s function, and therefore dysfunction, has implications for 

understanding maladaptive decision making. For example, several psychiatric 

disorders are characterised by impairments in decision making and altered hedonic 

evaluation of choice outcomes, such as heightened sensitivity to negative emotions 

and events (Endrass et al., 2013; Horan et al., 2012; Nieuwenhuis et al., 2005b; 

Trémeau et al., 2008). Therefore, detailed knowledge about the neural processing 

behind decision making and its associated impact on behaviour might provide helpful 

insights into particular decision making deficits, which could be targeted by specific 

interventions. 

 

1.2 Prospect theory 

 

Early economic theory (reviewed in Trepel et al. (2005)), was based on the 

assumption that decision makers choose the option that is associated with the highest 

expected value (EV). A simple example is a prospect that offers a specified amount of 

money x with probability p and nothing otherwise. In such a case, the EV of the 

prospect is calculated by multiplying the amount of money with its associated 

probability, so that EV = p·x. Therefore, a decision maker should always prefer a risky 

prospect that offers a 50% chance of a £100 gain over a sure gain of £49, because the 

EV of the gamble is higher than the value of the sure option. However, EV 

maximisation does not account for risk aversion, as, for example, in the case that the 

decision maker preferred the sure gain over the risky prospect. 

To account for this, Bernoulli (1954/1738), cited in Trepel et al. (2005), 

proposed that decision makers do not evaluate prospects by their objective EV but 

rather by their subjective utility, and that the utility of a given amount of money 

decreases as wealth increases. This diminishing sensitivity gives rise to a utility 

function that is concave over levels of wealth. A concave utility function means that 

the utility of £50 is more than half the utility of £100, so that a decision maker should 

prefer receiving £50 for sure over a 50% chance of receiving £100. 
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A set of axioms have been proposed by von Neumann and Morgenstern (1947), 

cited in Fox and Poldrack (2013), in order to formally represent a decision maker’s 

choices by the maximisation of expected utility. One of the central axioms of expected 

utility theory (EUT) is the ‘substitution’ or ‘independence’ axiom, according to which 

if a decision maker prefers prospect A over prospect B then this preference should not 

be influenced if prospects A and B are combined in a third prospect. Another central 

EUT axiom is the ‘sure-thing’ principle (Savage, 1954), according to which if two 

options yield the same consequence when a particular event occurs, then a decision 

maker’s preference between these options should not depend on the particular 

consequence that they have in common. 

However, Allais (1953), cited in Kahneman and Tversky (1979), questioned 

both of the above axioms by designing a range of decision questions that are referred 

to as the Allais paradox (Allais, 1953, 1979). The following version was adapted from 

Kahneman and Tversky (1979): 

Decision A: 80% chance of £4000 gain (1) or 100% of £3000 gain (2). 

Decision B: 20% chance of £4000 gain (3) or 25% of £3000 gain (4). 

Most respondents choose (2) over (1), but (3) over (4). However, choices (3) and (4) 

are ¼ of choices (1) and (2), respectively. As such, the above responses violate the 

substitution axiom, according to which (3) should be preferred over (4) if and only if 

(1) is preferred over (2). 

Decision C: 33% chance of £2500 gain, 66% chance of £2400, 1% chance of 

£0 (5) or 100% chance of £2400 gain (6).  

Decision D: 33% chance of £2500 gain (7) or 34% chance of £2400 gain (8). 

In this case, most respondents prefer (6) over (5), but (7) over (8). However, choices 

(5) and (6) can be transformed into choices (7) and (8), respectively, by eliminating 

their common consequence (i.e., 66% chance of £2400 gain). As such, the above 

responses violate the independence axiom, according to which (7) should be preferred 

over (8) if and only if (5) is preferred over (6). 

PT is a decision making model that explains choice behaviour under risk 

(Kahneman and Tversky, 1979; Tversky and Kahneman, 1992). It was developed as 
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an effort to explain the inconsistencies with EUT described in the previous paragraphs 

and to account for the observation that decision makers do not always behave as 

completely rational agents (Kahneman and Tversky, 1979). 

According to PT, the value V of a simple prospect that offers x with probability 

p and nothing otherwise is given by: 

V(x, p) = w(p)·v(x), 

where w measures the impact of probability p on the attractiveness of the prospect, 

and v measures the subjective value of outcome x. 

Specifically, PT describes decision making under risk between prospects with 

known probabilities, and can be described by two functions, the value function and 

the probability weighting function (Kahneman and Tversky, 1979). 

 

1.2.1 Value function 

 

PT assumes an S-shaped value function, which is depicted in Figure 1.1. The 

value function has three properties. Firstly, the value function measures the subjective 

value of gains and losses relative to a reference point (Kahneman and Tversky, 1979). 

This reference-dependence property of the value function means that decision makers 

evaluate outcomes as positive or negative (e.g., amount of money won or lost) relative 

to a given reference point rather than from absolute levels of wealth. For monetary 

outcomes, a zero reference point or the status quo (wealth level at the time of the 

decision) generally serve as the reference point distinguishing losses from gains. In 

this framework, a decision maker perceives any negative departure from zero or from 

the status quo as a loss, while perceives any positive departure as a gain. 

Secondly, the value function has a shape that is concave for gains and convex 

for losses (Abdellaoui, 2000; 2007; Gonzalez and Wu, 1999). The curvature of the 

value function implies risk aversion in the gain domain (concavity) and risk seeking 

in the loss domain (convexity). Risk aversion for gains means that decision makers 

tend to prefer a sure gain of £100 over a gamble offering 50% chance of winning £200 

or nothing. Within PT, risk aversion is defined as the preference for a sure outcome 

over a gamble with higher or equal expected value. Conversely, risk seeking is defined 
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as the rejection of a sure thing in favour of a gamble of lower or equal expected value 

(Kahneman and Tversky, 1979; 1984). On the contrary, risk seeking for losses means 

that people tend to prefer a gamble offering 50% chance of losing £200 or nothing 

over losing £100 for sure. Moreover, the curvature of the value function is consistent 

with diminishing sensitivity, the notion that people are more sensitive to changes near 

the reference point than to changes further away from the reference point. For instance, 

the difference between a gain/loss of £100 and a gain/loss of £200 has substantially 

more impact than the difference between a gain/loss of £1100 and a gain/loss of £1200. 

Thirdly, the value function is steeper for losses than for gains, which gives rise 

to loss aversion; the tendency to overestimate losses compared to gains of the same 

amount as ‘losses loom larger than gains’ (Kahneman and Tversky, 1979). In the 

context of decision under risk, loss aversion gives rise to risk aversion for mixed (gain-

loss) gambles, so that people typically reject a gamble that offers 50% chance to gain 

£10 or lose £10. 

 

 

 

Figure 1.1. The PT value function. Adapted from Kahneman and Tversky (1979). 
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1.2.2 Probability weighting function 

 

PT assumes probability weighting, the notion that the values of outcomes are 

not weighted by their objective probabilities but, rather, by decision weights, which 

represent the impact of the relevant probability of an event on the evaluation and 

corresponding desirability of a prospect. The decision weight is not necessarily a 

measure of subjective belief as a person may report that they believe that the objective 

probability of a fair coin landing heads is ½ but nevertheless give this event a weight 

of less than ½ in the evaluation of a prospect. The decision weights are computed with 

a probability weighting function, which is depicted in Figure 1.2. 

 

 

 

Figure 1.2. The PT probability weighting function. Adapted from Kahneman and Tversky (1979). 

 

The probability weighting function is an inverse S-shaped function that is 

concave near zero and convex near one. Similar to the value function capturing 

diminishing sensitivity to changes in the amount of money gained or lost, the 

weighting function captures diminishing sensitivity to changes in probability, ranging 

from impossibility to certainty. This shape leads to the fourfold pattern of risk 

attitudes, so that low probabilities are overweighted, leading to risk seeking for gains 
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and risk aversion for losses, and moderate to high probabilities are underweighted, 

leading to risk aversion for gains and risk seeking for losses (Abdellaoui, 2000; 

Gonzalez and Wu, 1999; Tversky and Fox, 1995; Tversky and Kahneman, 1992). 

Table 1.1 shows an example of the fourfold pattern of risk attitudes, adapted from 

Tversky and Kahneman (1992). The certainty equivalent (i.e., the sure payment that 

the decision maker deems as equally attractive to the risky prospect) of a prospect (x, 

p) that offers x with probability p is given by c(x, p). Choices consistent with this 

fourfold pattern have been observed in several studies (Fishburn and Kochenberger, 

1979; Hershey and Schoemaker, 1980; Kahneman and Tversky, 1979; Payne et al., 

1981). Risk seeking for low probability gains may contribute to the attraction of 

gambling, whereas risk aversion for low probability losses may contribute to the 

attraction of insurance. Risk aversion for high probability gains may contribute to the 

preference for certainty, as in the Allais (1953) paradox, whereas risk seeking for high 

probability losses is consistent with the tendency to undertake risk to avoid facing a 

sure loss. 

 

              Table 1.1. A fourfold pattern of risk attitudes. Adapted from Tversky and Kahneman (1992). 

 Gains Losses 

Low probability c(£100, 5%) = £14 

Risk seeking 

c(-£100, 5%) = -£8 

Risk aversion 

High probability c(£100, 95%) = £78 

Risk aversion 

c(-£100, 95%) = -£84 

Risk seeking 

 

 

It has been suggested that the fourfold pattern of risk attitudes for (gain-only 

or loss-only) gambles that offer a gain or a loss with low or high probability is driven 

primarily by the curvature of the weighting function, because the value function is not 

particularly curved (Tversky and Kahneman, 1992). Risk aversion for mixed (gain-

loss) gambles that offer an equal probability of a gain or loss is driven almost entirely 

by loss aversion because the curvature of the value function is typically similar for 

losses versus gains and decision weights are similar for gain versus loss components 

(Novemsky and Kahneman, 2005). Table 1.2 summarises the main components of PT. 
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Table 1.2. Summary of the major components of PT. Adapted from Trepel et al. (2005). 

Component Phenomenon Description Manifestation 

Value      

function 

Sensitivity to gains 

and losses 

Concave for 

gains / convex 

for losses 

Risk aversion in the 

gain domain / risk 

seeking in the loss 

domain 

Loss aversion Steeper for losses 

than for gains 

Risk aversion for 

mixed gambles 

Weighting 

function 

Diminishing 

sensitivity 

Convex near 0 

Concave near 1 

Fourfold pattern of 

risk attitudes 

 

 

1.3 Loss aversion 

 

Losses tend to be overvalued compared to gains of the same amount, a 

phenomenon known as loss aversion (Kahneman and Tversky, 1979). This tendency 

suggests that the negative affective state that a decision maker experiences by losing 

a specific amount of money is greater than the pleasure derived by gaining the same 

amount of money (Kahneman and Tversky, 1979). 

In the context of decision making under risk, loss aversion gives rise to risk 

aversion for mixed (gain-loss) gambles. Within PT, risk aversion refers to a preference 

for a sure option over a risky prospect as indicated by the curvature of the value 

function (Kahneman and Tversky, 1979). Decision makers tend to reject fair bets that 

offer equal chances of winning or losing the same amount of money. For instance, 

individuals typically reject a 50% chance to gain £100 or lose £100. It is important to 

note that loss aversion, which relates to the steepness of the value function (for lower 

values), should be distinguished from risk aversion, which relates to the curvature of 

the value function, specifically the concavity of value function in the gain domain 

(Kahneman and Tversky, 1979). As such, risk aversion can occur even without the 

prospect of a loss. For example, decision makers tend to prefer a sure gain of £5 over 

a gain-only prospect that offers 50% chance of a £10 gain or £0 otherwise (e.g., Sokol-

Hessner et al., 2009). In contrast, loss aversion by definition requires the evaluation of 

potential negative consequences. 

Several studies have demonstrated that loss aversion can be extended from 

decisions about risky gambles to objects (Kahneman et al., 1990) and ‘mock’ 
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investments (Gneezy and Potters, 1997; Thaler et al., 1997). Additionally, analyses of 

field data have observed loss aversion for the pricing and purchasing of consumables 

(Hardie et al., 1993; Putler, 1992), for house investments (Genesove and Mayer, 

2001), and even for the choice of work hours by cabdrivers (Camerer et al., 1997). 

Moreover, it has been proposed that loss aversion might have an evolutionary basis as 

experiments with primates have demonstrated that they also exhibit loss aversion 

(Chen et al., 2006). Furthermore, loss aversion is even observed in the trading 

behaviour of children (Harbaugh et al., 2001), which suggests that it may reflect a 

fundamental feature of how potential decision outcomes are assessed by the brain. 

Thus, loss aversion appears to exist across different domains and species. Loss 

aversion has been used to explain many effects obtained in decision making research, 

such as the sunk-cost effect (Arkes and Blumer, 1985), the status-quo bias (Knetsch, 

1989; Schweitzer, 1994), the endowment effect (Kahneman et al., 1990; Van Dijk & 

Van Knippenberg, 1998), and the framing effect in negotiations and coalition 

formation (De Dreu et al., 1994; Van Beest et al., 2005). 

Loss aversion is also evident in riskless choice contexts when consumers 

compare one product attribute against another. For instance, Tversky and Kahneman 

(1991) asked participants to choose between two hypothetical jobs. The first job was 

characterised as ‘limited contact with others’ and a 20-minute daily commute, whereas 

the second job was characterised as ‘moderately sociable’ with a 60-minute daily 

commute. Participants were more likely to choose the first job if they had been told 

that their present job was socially isolated with a 10-minute commute than if they had 

been told it was very social but had an 80-minute commute, consistent with the notion 

that individuals are loss averse for attributes that present relative advantages and 

disadvantages in comparison to a reference point. 

Different theories have been proposed regarding the psychological 

mechanisms that lead to loss aversion. Some theories describe loss aversion as a 

‘hedonic property’, suggesting that it represents a hedonic preference relative to losses 

because losses hurt more than gains feel good, such that avoiding a negative affective 

state is preferred over gaining a positive affective state (Novemsky and Kahneman, 

2005). Other theories suggest that loss aversion represents a ‘judgmental error’ due to 

an exaggerated fear of losses relative to their actual impact (Camerer, 2005; Kermer 

et al., 2006), or due to an underestimation of emotional adaptation to negative events 
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(Wilson and Gilbert, 2005). From this perspective, when an individual is asked to 

predict how they will feel after experiencing negative outcomes, they tend to anticipate 

that losses will have a greater impact than they actually do because individuals 

underestimate their own tendency to rationalise and discount actual losses (Kermer et 

al., 2006), whereas, in reality, the experience of loss is not as bad as originally 

anticipated. One fundamental question for the study of decision making is whether 

loss aversion reflects the engagement of distinct emotional processes when potential 

losses are considered. It has been suggested that enhanced sensitivity to losses is 

driven by negative emotions, such as fear or anxiety (Camerer, 2005). In line with this 

notion, it can be hypothesised that exposure to increasing potential losses should be 

associated with increased activity in brain structures that are thought to mediate 

negative emotions in decision making such as the amygdala or anterior insula (Kahn 

et al., 2002; Kuhnen and Knutson, 2005). Furthermore, loss aversion could reflect an 

asymmetric response to losses versus gains within a single system that encodes the 

subjective value of the potential prospect, such as within ventromedial prefrontal 

cortex (VMPFC), orbitofrontal cortex (OFC) or ventral striatum (VS) (Breiter et al., 

2001; Knutson et al., 2003; McClure et al., 2004). 

 

1.3.1 Neurophysiological research on loss aversion 

 

1.3.1.1 Psychophysiological studies 

 

The first study that investigated the neural correlates of loss aversion required 

participants to make decisions regarding whether they would accept or reject a series 

of gambles that offered 50% chance of gaining or losing different amounts of money 

(Tom et al., 2007). Importantly, this study focused on neural responses during the 

evaluation of potential outcomes, therefore, the gambles were not resolved and 

participants did not receive any outcomes until the end of the experiment. The study 

showed that a set of brain areas displayed increasing activity as potential gains 

increased, including VS, VMPFC, ventrolateral prefrontal cortex (VLPFC), anterior 

cingulate cortex (ACC), and OFC. There were no brain regions showing decreasing 

activation as gains increased and no brain regions showing increasing activation as the 

size of the potential loss increased. Instead, a group of brain regions showed 
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decreasing activity as the size of potential losses increased. This loss-responsive set of 

regions included the striatum, VMPFC, ventral ACC and medial OFC. Importantly, 

the VS and VMPFC exhibited a pattern of neural loss aversion, meaning that they 

showed joint sensitivity to both gains and losses whereby the slope of the decrease in 

activity for increasing losses was greater than the slope of the increase in activity for 

increasing gains. Notably, individual differences in behavioural loss aversion were 

associated with neural loss aversion in the VS and VMPFC. These results appear to 

be consistent with the suggestion of PT for a value function that is steeper for losses 

compared to gains. 

Along those lines, Sokol-Hessner et al. (2013) asked participants to accept or 

reject a series of gambles offering 50% chance of gaining or losing different amounts 

of money. Participants completed these sets of choices under two cognitive strategies: 

‘attend’ and ‘regulate’ strategy. In the attend strategy, participants were instructed to 

consider each choice in isolation, as if it were the only choice in the experiment. In the 

regulate strategy, participants were asked to consider each choice in a greater context, 

considering each choice as if it were one of many. The behavioural results showed that 

the regulate strategy decreased loss aversion compared to the attend strategy. The 

authors explain this by arguing that, in the regulate strategy, participants evaluated 

choices and outcomes as part of a broader portfolio, thus, reducing the expected cost 

of each individual loss. In terms of the fMRI results, at the time of outcome 

presentation, stronger activity in the amygdala for losses compared to gains was 

associated with behavioural loss aversion. Furthermore, the reduction of loss aversion 

by the regulate strategy also correlated with individual differences in the reduction of 

amygdala activation following losses but not gains. 

The above results regarding the effects of the regulate strategy in decreasing 

loss aversion were supported by another study, in which behavioural loss aversion was 

associated with stronger skin conductance responses (SCR) to loss outcomes relative 

to gain outcomes (Sokol-Hessner et al., 2009). Likewise, another study demonstrated 

increased behavioural loss aversion and SCR to losses during the outcome period 

while perceiving an unpleasant odour (Stancak et al., 2015). 

Amygdala activation has been found to increase as the gain/loss ratio deviates 

from the individual certainty equivalents (i.e., the point at which participants accepted 
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and rejected gambles with equal probability). This response pattern has been shown to 

be more strongly expressed in loss averse individuals, so that amygdala activation was 

associated with individual differences in loss aversion at the time of choice (Gelskov 

et al., 2015). Further support for the role of the amygdala in loss aversion comes from 

a study with individuals with bilateral amygdala lesions (De Martino et al., 2010). The 

participants completed a set of gambling tasks and showed decreased loss aversion 

compared to matched controls. 

Canessa et al. (2013) observed both bidirectional and gain/loss-specific 

responses while evaluating gambles, with brain regions such as the amygdala and 

posterior insula specifically tracking the magnitude of potential losses. Moreover, 

individual differences in loss aversion were reflected both in limbic fMRI responses 

and in grey matter volume in a structural amygdala–thalamus–striatum network. 

Similarly, Canessa et al. (2017) demonstrated that neural responses in the VS and the 

right posterior insula/supramarginal gyrus during resting state activity were associated 

with individual differences in behavioural loss aversion evaluated using the gambling 

task from the study by Tom et al. (2007). Notably, the brain regions which were found 

to be associated with loss aversion in these two studies were very similar, and cross-

study analyses confirmed that this correlation holds when voxels identified were used 

as regions of interest in task-related activity and vice versa. Taken together, these 

results suggest that the individual degree of (neural) loss aversion represents a stable 

individual difference which reflects in specific brain activity at rest and might also 

modulate cortical excitability at the time of choice. 

Furthermore, an association was found between grey matter volume in bilateral 

posterior insula as well as left medial frontal gyrus with individual loss aversion, so 

that higher loss aversion was associated with lower grey matter volume in these brain 

regions (Markett et al., 2016). Another study utilised positron emission tomography 

(PET) scans and demonstrated a negative correlation between loss aversion and 

norepinephrine transporters (NET) binding in the thalamus (Takahashi et al., 2012), 

so that individuals with low thalamic NET showed pronounced loss aversion. 
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1.3.1.2 EEG studies 

 

EEG studies investigating loss aversion are extremely scarce. Specifically, at 

the time we started the experiments presented in the current thesis no EEG studies 

existed on loss aversion. Since then, and to the best of our knowledge, only two EEG 

studies have been published, one investigating loss aversion during the decision 

making phase (Heeren et al., 2016) and the other in association with resting state brain 

activity (Duke et al., 2018). 

In the Heeren et al. (2016) study, the authors investigated loss aversion during 

the decision making phase by comparing ERP responses to easy versus difficult 

decisions. The gain/loss ratio of gambles was used as a measurement of conflict and 

difficulty of the decision. Large quotients (i.e., large gains and small losses) mean low 

decision conflict and attractive gambles. Low quotients (i.e., similar amounts of gains 

and losses) also mean low conflict because the gamble is clearly unattractive and 

participants can easily decide to reject it. Decisions with an intermediate difference 

between offered gains and losses are considered difficult. Results showed that both 

easy and difficult decisions induced a P300 potential during the evaluation of the 

available options. However, high conflict decisions were associated with smaller P300 

amplitudes compared to low conflict decisions. Importantly, P300 amplitudes were 

modulated by individual differences in loss aversion such that P300 amplitudes were 

further reduced for high loss averse participants even in low conflict trials and 

irrespective of the attractiveness of the gamble. Loss aversion was measured using the 

task used in the study by Tom et al. (2007). Specifically, participants were asked to 

accept or reject a series of mixed gambles offering a 50% chance of gaining one 

amount of money or losing another amount. Loss aversion was calculated for each 

participant by entering gains and losses into a binary logistic regression analysis as 

independent variables and predicting the individual decision (accept or reject). 

Importantly, there were no differences in P300 amplitudes between high and low loss 

averse participants during high conflict decisions. Hence, the reduced P300 was 

observed in high loss averse participants even in easy decisions associated with low 

conflict. Thus, this study demonstrated differences in ERPs between high and low loss 

averse participants and provided an approximation of the timing at which loss aversion 
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influences decision making while participants were contemplating potential gains and 

losses. 

 In the study by Duke et al. (2018), participants played a gambling task and 

later their resting state EEG activity was recorded. The authors found that individual 

differences in loss aversion were associated with increased cortical activity in the right 

compared to the left hemisphere at central and posterior electrode sites. These findings 

support the idea that lateralisation of the right hemisphere may underlie individual 

variation in behavioural loss aversion. 

 The studies described above have two important shortcomings. Firstly, neither 

study controlled for the potentially confounding risk aversion effects. As already 

mentioned, loss and risk aversion can co-occur but they represent distinct properties 

of PT and affect decision making in different ways. Secondly, both studies utilised an 

EEG system with only nine electrodes. Although this would not represent an issue for 

experiments investigating well studied ERP components, in exploratory studies such 

as these, the use of only nine electrodes is extremely limited and, additionally, it can 

obstruct any opportunities for source localisation. 

Table 1.3 summarises the main findings from the psychophysiological and 

EEG studies discussed in this section. 
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Table 1.3. Main findings from psychophysiological and EEG studies of loss aversion. 

Study Method Participants Task Outcome Results 

Tom et al. 

(2007) 

fMRI 16 256 mixed 

gambles 

No VS, VMPFC 

De 

Martino et 

al. (2010) 

fMRI 8 256 mixed 

gambles 

No amygdala 

Sokol-

Hessner et 

al. (2013) 

fMRI 39 240 mixed 

gambles, 60 

gain-only 

gambles 

Yes amygdala 

Canessa et 

al. (2013) 

fMRI 56 104 mixed 

gambles 

No amygdala, 

thalamus, 

striatum 

Canessa et 

al. (2017) 

fMRI 57 104 mixed 

gambles 

No VS, insula 

Gelskov et 

al. (2015) 

fMRI 16 128 mixed 

gambles 

No striatum, 

amygdala 

Markett et 

al. (2016) 

fMRI 41 256 mixed 

gambles 

No insula 

Heeren et 

al. (2016) 

EEG 36 256 mixed 

gambles 

No P300 attenuation 

for high loss 

averse 

participants 

Duke et al. 

(2018) 

EEG 40 256 mixed 

gambles 

No alpha band 

asymmetry at 

central and 

posterior sites 

Sokol-

Hessner et 

al. (2009) 

SCR 29 240 mixed 

gambles, 60 

gain-only 

gambles 

Yes SCR differences 

in arousal to 

losses versus 

gains 

Stancak et 

al. (2015) 

SCR 30 240 mixed 

gambles, 60 

gain-only 

gambles 

Yes unpleasant odour 

increased loss 

aversion 

Takahashi 

et al. 

(2012) 

PET 19 40 mixed 

gambles 

No higher loss 

aversion in 

individuals with 

lower NET in 

the thalamus 
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1.3.2 Phenomena related to loss aversion 

 

It has been suggested that loss aversion leads to a range of behavioural 

phenomena (e.g., Kahneman et al., 1991). One such phenomenon is the endowment 

effect, which refers to the notion that people often demand much more money in order 

to part with a possession compared to the amount of money that they would be willing 

to pay in order to acquire it (Thaler, 1980). The endowment effect has been 

demonstrated in several experiments using a variety of objects. In a classic experiment 

by Kahneman et al. (1990), half of the participants were given coffee mugs and the 

other half were given pens of equal monetary value. Participants who were given mugs 

were reluctant to trade their mug for pens, and similarly, participants who were given 

pens were reluctant to trade them for coffee mugs. The endowment effect has generally 

been interpreted as a manifestation of loss aversion on the assumption that once an 

object has been acquired, the pain associated with parting with that object is larger 

than the pleasure associated with exchanging it for another equally priced object 

(Kahneman et al., 1990; Thaler, 1980; Van Dijk and Van Knippenberg, 1996). 

Variations of the above experiments included investigating the discrepancies 

between willingness to pay (WTP) and willingness to accept (WTA) prices. In these 

experiments, half of the participants were endowed with an item (e.g., coffee mugs, 

chocolate bars) while the remaining half were not endowed with anything (Kahneman 

et al., 1990). Participants that were endowed with the item (‘sellers’) were informed 

that they could sell the object in their possession to one of the participants who were 

not endowed with an item (‘buyers’). It was found that sellers demanded much higher 

prices to part with the object compared to the amount of money that buyers were 

offering to acquire the same object. The authors concluded that the endowment effect 

does not reflect the appeal of the good one owns but, rather, reflects the pain of parting 

with the good, so that the disutility of giving up an object is greater that the utility 

associated with acquiring it. Of course, it must be noted that loss aversion does not 

affect transactions with goods that were initially intended for sale (Novemsky and 

Kahneman, 2005). 

A study investigating the neural basis of the endowment effect found that WTP 

prices were associated with VMPFC activation, whereas WTA prices were associated 

with OFC activation (De Martino et al., 2009). Overall, the ventral striatum showed a 
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pattern indicative of the endowment effect being more activated during selling 

compared to buying trials. Importantly, individual differences in the endowment effect 

(i.e., WTA/WTP differences) were associated with bilateral ventral striatal activity. 

Additionally, Plassmann et al. (2007) utilised an auction paradigm which compared 

free-bid trials, in which participants decided how much to bid on a food item, with 

forced-bid trials, in which participants were told how much to bid. Results showed 

that activity in VMPFC and DLPFC was associated with WTP in the free-bid trials 

but not the forced-bid trials, suggesting that these regions are particularly involved in 

coding for decision utility. Subsequent work using WTP paradigms has confirmed that 

the VMPFC activation is associated with decision utility across a broad range of goods 

(Chib et al., 2009), suggesting that the VMPFC serves as a common pathway for value 

representation. 

Similarly, De Martino et al. (2006) manipulated framing during a decision 

making task in which participants chose between a sure outcome and a gamble after 

receiving an initial endowment on each trial. Framing was manipulated by offering 

participants the choice between a sure loss and a gamble (loss frame; e.g., lose £30 

versus gamble) or the choice between a sure gain and a gamble (gain frame; e.g., keep 

£20 versus gamble). Participants showed risk seeking in the loss frame and risk 

aversion in the gain frame. Amygdala activation was associated with the dominant 

choices, with increased activity for sure choices in the gain frame and risky choices in 

the loss frame. The dorsal ACC displayed the opposite pattern across conditions. 

Individual differences in behavioural framing-related bias were correlated with 

framing-related activation in right OFC and VMPFC, so that participants who showed 

less framing bias showed more activity for sure choices in the gain frame and risky 

choices in the loss frame compared to the other two conditions. Thus, whereas 

amygdala showed the framing-related pattern across all participants, in the OFC this 

pattern was stronger for participants who showed less of a behavioural framing effect. 
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1.4 Evaluation of decision outcomes in the brain 

 

It is evident from the previous sections that loss aversion manifests in response 

to anticipated and experienced negative outcomes (e.g., Sokol-Hessner et al., 2013; 

Tom et al., 2007). Accordingly, it has been hypothesised that the striatum represents 

loss aversion at the time of a binary choice between a gamble or a sure outcome by 

encoding the values assigned to prospective outcomes (Tom et al., 2007) and that these 

values are then processed by the amygdala so that the amygdala represents loss 

aversion at the time of outcome receipt (Sokol-Hessner et al., 2013). The implication 

of the striatum and the amygdala in reward evaluation is supported by several fMRI 

studies which have aimed to identify the brain regions that encode value, both during 

the decision making phase and during the receipt of the decision outcome phase. Meta-

analyses of those studies (Bartra et al., 2013; Kringelbach, 2005; Lebreton et al., 2009; 

Padoa-Schioppa and Conen, 2017) suggest that the VS, the amygdala, the VMPFC, 

the posterior cingulate cortex (PCC), and the OFC are the main brain regions that 

collectively form the brain’s valuation system. Activation in these regions tends to 

increase when considering the subjective value of the available options during choice, 

as well as with the value of the reward received, thus, implicating a common set of 

brain regions in the evaluation of both prospects and outcomes (Bartra et al., 2013). 

Importantly, these brain regions have been found to respond to outcomes in multiple 

domains, including both primary rewards (e.g., food) and secondary rewards (e.g., 

monetary or social rewards), suggesting that the valuation system is domain-general 

(Delgado, 2007; Grabenhorst and Rolls, 2011; Kable and Glimcher, 2009; Knutson 

and Cooper, 2005; Levy and Glimcher, 2012; Montague and Berns, 2002; O'Doherty 

et al., 2004; Peters and Büchel, 2010). 

 

1.5 ERP correlates of decision outcomes 

 

This section describes the spatiotemporal aspects of the neural evaluation of 

decision outcomes by focusing on EEG research. Although there is undoubtedly a 

range of ERP components that might be associated with outcome evaluation, the two 

components prevailing in the literature are feedback-related negativity (FRN) and 

P300. 
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1.5.1 FRN 

 

FRN is one of the most extensively studied ERPs in the reward processing 

literature (Walsh and Anderson, 2012). It is commonly elicited by experimental 

paradigms that employ forced-choices between two gambles which are subsequently 

followed by presentation of gain or loss feedback (Gehring and Willoughby, 2002; 

Hajcak et al., 2006; Holroyd et al., 2006; Nieuwenhuis et al., 2004b; Yeung and 

Sanfey, 2004). FRN is typically evaluated as the difference waveform between 

averaged potentials time-locked to the presentation of gain and loss outcomes 

(Gehring and Willoughby, 2002). The resulting potential difference has a fronto-

central scalp distribution and its maximum amplitude occurs between 200-350 ms 

after feedback presentation (Walsh and Anderson, 2012). The brain region that has 

most often been suggested to contribute to the generation of the FRN is the ACC 

(Bellebaum and Daum, 2008; Cohen and Ranganath, 2007; Gehring and Willoughby, 

2002; Hewig et al., 2007; Miltner et al., 1997; Potts et al., 2006; Ruchsow et al., 2002; 

Tucker et al., 2003; Zhou et al., 2010). Other sources that have also been suggested as 

the potential neural generators of the FRN include the PCC (Badgaiyan and Posner, 

1998; Cohen and Ranganath, 2007; Donamayor et al., 2011; Luu et al., 2003; Müller 

et al., 2005; Nieuwenhuis et al., 2005c) and the striatum (Carlson et al., 2011; Foti et 

al., 2011; Martin et al., 2009). 

The two experiments that first identified the FRN component were conducted 

by Miltner et al. (1997) and Gehring and Willoughby (2002). Miltner et al. (1997) 

utilised a time estimation task in which participants had to estimate the duration of 1 

s. At the beginning of the task a tolerance window of ± 100 ms was used during which 

a response was considered a correct response. This window was adjusted for each trial 

based on participants’ responses so that when they guessed correctly, the window 

decreased by 10 ms, whereas when they were incorrect, the window was increased by 

10 ms. Following their responses, participants received feedback as to whether their 

guess was correct in the form of visual, auditory or tactile stimulus. By comparing the 

average correct and incorrect waveforms, the authors observed an ERP component 

evoked by performance feedback peaking approximately 250 ms after stimulus onset. 

This component was elicited irrespective of the modality in which feedback was 

provided. 
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In the experiments conducted by Gehring and Willoughby (2002), a monetary 

gambling task was employed whereby participants made choices between two cards 

associated with 50% chance of winning or losing money. Following their choice, 

participants received feedback about whether the gamble resulted in gain or loss. By 

comparing grand average ERPs to gain and loss trials, the authors observed a negative-

polarity ERP component, peaking approximately 265 ms after feedback onset, which 

was stronger for loss compared to gain trials. The Gehring and Willoughby (2002) 

gambling task is the most commonly used task for FRN elicitation and studies using 

comparable experimental paradigms have consistently found FRN following monetary 

losses (Hajcak et al., 2005; Holroyd et al., 2004; Nieuwenhuis et al., 2004; Yeung et 

al., 2005; Yeung and Sanfey, 2004). 

A range of theoretical accounts have been proposed to explain the generation 

of FRN (Botvinick et al., 2001; Yeung et al., 2004). The most influential theory has 

been the FRN reinforcement learning theory, which postulates that the FRN reflects a 

reinforcement learning reward prediction error (Holroyd and Coles, 2002). According 

to the theory, the ACC, the midbrain dopamine system and the basal ganglia form a 

reinforcement learning system within the medial-frontal cortex (Schultz, 2002). 

Discrepancies between expected and received outcomes (i.e., reward prediction errors) 

are computed by the basal ganglia and then conveyed to the ACC through the midbrain 

dopamine system. In this way, the dopamine system monitors outcomes to determine 

whether things have gone better or worse than expected. Outcomes that are better than 

expected (i.e., positive prediction errors) induce phasic increases in the dopamine 

firing rates of a mesencephalic dopamine system, producing smaller FRN amplitudes. 

Outcomes that are worse than expected (i.e., negative prediction errors) induce phasic 

decreases, producing stronger FRN amplitudes. These signals are thought to guide 

action selection mediated by the ACC, through the reinforcement of the action 

associated with positive outcomes and the punishment of the action associated with 

negative outcomes. 

 

1.5.1.1 Outcome valence 

 

The most robust finding in the FRN literature is that the FRN component is 

primarily modulated by outcome valence. For instance, several studies have 
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consistently reported the presence of the FRN component when participants receive 

negative compared to positive performance feedback (Hajcak et al., 2005; Hajcak et 

al., 2006; Holroyd and Coles, 2002; Holroyd et al., 2004; Luu et al., 2003; 

Nieuwenhuis et al., 2004b; Ruchsow et al., 2002; Yeung et al., 2005; Yeung and 

Sanfey, 2004). The FRN also occurs following the presentation of stimuli indicating 

monetary loss or non-reward compared to reward (Gehring & Willoughby, 2002; 

Hajcak et al., 2005, 2006; Holroyd et al., 2006; Yeung et al., 2005; Yeung & Sanfey, 

2004). Therefore, FRN can be elicited following both performance and monetary 

feedback (Gehring and Willoughby, 2002; Hajcak et al., 2005; Luu et al., 2003; 

Miltner et al., 1997; Yeung et al., 2005; Yeung and Sanfey, 2004). Nieuwenhuis et al. 

(2004b) compared these two feedback types within a single study and demonstrated 

that FRN could be elicited by either utilitarian (monetary loss) or performance 

(incorrect response) information, even within the same decision context. Specifically, 

when feedback included information about both dimensions simultaneously, the 

aspect of the feedback that elicited the FRN was the one that had been emphasised to 

participants. These findings suggest that monetary losses and negative performance 

feedback can be considered functionally equivalent because both reflect outcomes 

along a good-bad dimension. 

Furthermore, it has been suggested that the FRN is context-dependent 

(Holroyd et al., 2004). For example, feedback indicating that participants received no 

reward elicited FRN when the alternative outcomes were rewards. However, the same 

feedback did not generate FRN when the alternative outcomes were monetary losses. 

Thus, FRN was elicited by unfavourable outcomes, however, what constituted an 

unfavourable outcome was determined by the alternative feedback within the given 

task context. Taken together, the above findings suggest that FRN categorises 

outcomes in a binary manner by distinguishing between good and bad or better and 

worse than expected outcomes (Hajcak et al., 2006). 

 

1.5.1.2 Outcome probability 

 

Another factor that has been shown to modulate FRN amplitude is outcome 

probability. Some researchers have suggested that FRN amplitude is stronger for 

improbable (unexpected) compared to probable (expected) negative outcomes. For 
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instance, in a study by Hajcak et al. (2007), participants were presented with four doors 

and were instructed to guess which door hid a prize, with the goal of winning as many 

prizes as possible. Prior to each trial, a cue was presented indicating how many doors 

hid a prize (1, 2 or 3). Thus, the probability of positive feedback could be inferred 

from this cue (25%, 50%, or 75%, respectively). Following their choice, participants 

received feedback about whether they had guessed correctly. FRN was the most 

negative following improbable events (i.e., associated with small probabilities), in that 

it was the most negative in trials associated with 75% probability to receive rewards. 

Other studies utilising variations of the Hajcak et al. (2007) task have also provided 

support for a modulation of FRN by outcome probability (Bellebaum and Daum, 2008; 

Bellebaum et al., 2010b; Cohen et al., 2007; Hewig et al., 2007; Holroyd and 

Krigolson, 2007; Holroyd et al., 2011; Holroyd et al., 2003; Kreussel et al., 2012; Liao 

et al., 2011; Martin and Potts, 2011; Martin et al., 2009; Potts et al., 2006; Walsh and 

Anderson, 2011). Nevertheless, other experiments have not found support for such a 

reward probability modulation (Hajcak et al., 2005). 

 

1.5.1.3 Outcome magnitude 

 

When considering the modulation of FRN by reward magnitude, it has been 

suggested that the evaluative system could determine the favourableness of events 

according to the value of the feedback, so that large losses should elicit an enhanced 

FRN relative to small losses, and small gains should elicit a larger FRN compared to 

large gains (Holroyd et al., 2004). Alternatively, FRN might reflect the binary 

categorisation of good versus bad outcomes, so that an event is simply categorised as 

either good or bad (Yeung and Sanfey, 2004). Although it appears to be intuitive that 

an outcome evaluation system would be influenced by outcome magnitude, many 

studies fail to find such a modulation regarding FRN (Goyer et al., 2008; Hajcak et 

al., 2006; Marco-Pallarés et al., 2008; Masaki et al., 2006). Furthermore, in the studies 

that manipulated reward magnitude and found support for such a modulation 

(Bellebaum et al., 2010b; Holroyd et al., 2004; Kreussel et al., 2012), outcome values 

were known in advance (Nieuwenhuis et al., 2004a). Therefore, it is possible that the 

monitoring system might scale its response to negative feedback based on the potential 

outcomes on each trial, so that losing 5 when 5 could have been won may be similar 
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to losing 10 when 10 could have been won. Several fMRI studies have demonstrated 

that, in such circumstances, the brain displays adaptive scaling. Neural firing rates and 

BOLD responses adapt to the range of outcomes so that maximum deviations from 

baseline remain constant regardless of absolute reward values (Bunzeck et al., 2010; 

Nieuwenhuis et al., 2005a; Tobler et al., 2005). Failure to find an effect of reward 

magnitude on FRN strength might indicate that the FRN also scales with the range of 

reward values (Nieuwenhuis et al., 2004a). 

To further investigate the possibility of FRN modulation by reward magnitude, 

Hajcak et al. (2006) employed a paradigm in which participants did not know in 

advance whether the potential reward would be small or large. Specifically, 

participants performed a gambling task in which four outcomes that varied in 

magnitude and valence were equally likely to be presented as feedback. For each trial, 

participants could gain 25, gain 5, lose 5, or lose 25. FRN was consistently observed 

following monetary loss, but FRN magnitude was insensitive to the magnitude of the 

loss. In a second experiment, the authors included a condition in which participants 

could break even (i.e., receive nothing). Results showed that feedback indicating that 

participants had broken even did not elicit FRN with a magnitude intermediate to gains 

and losses. Rather, the FRN observed following zero feedback was similar in 

magnitude to the FRN following losses. In addition, large and small losses both 

elicited equally large FRN. These results support the idea that the FRN reflects a 

coarse differentiation of favourable versus unfavourable outcomes (Yeung and 

Sanfey, 2004). 

 

1.5.1.4 Counterfactual outcomes 

 

The research described up to here has focused on the evaluation of obtained 

decision outcomes. However, in order to determine whether the decision made led to 

the best possible outcome, decision makers often need to compare the obtained 

outcome with other possible outcomes that could have been obtained, if they had 

chosen differently. This comparison process is generally referred to as ‘counterfactual 

thinking’ (Roese and Olson, 1993). When counterfactual comparisons indicate that the 

obtained outcome could have been better if another decision had been made, this can 

lead to negative feelings, including regret or disappointment. When counterfactual 
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comparisons show that the obtained outcome could have been worse, this can lead to 

positive feelings, including elation or satisfaction (Roese and Epstude, 2017). In 

gambling tasks, a counterfactual comparison can generally be evoked by feedback 

informing participants about both the received outcome and the alternative possible 

outcome (Osinsky et al., 2014). Along those lines, it has been hypothesised that FRN 

might categorise counterfactual outcomes in a way that corresponds to the encoding 

of actually obtained outcomes, so that missed desirable outcomes are counterfactually 

evaluated as losses and missed undesirable outcomes are counterfactually evaluated 

as gains (Roese and Epstude, 2017). However, FRN literature on this topic does not 

provide comprehensive results. Although some studies suggest that missed gains are 

indeed experienced as losses, whereas escaped losses are experienced as gains (Gu et 

al., 2011; Yu and Zhou, 2009), others fail to find such a differentiation between 

counterfactual outcomes (Marciano et al., 2018; Yeung and Sanfey, 2004; Yu and 

Zhou, 2009). Finally, others propose that both chosen and unchosen outcomes are 

processed similarly, such that FRN encodes only positive or negative valence (Osinsky 

et al., 2014). Therefore, it is clear that more research is needed on this topic in order 

to fully understand the spatiotemporal characteristics of counterfactual thinking, and 

this could be achieved by using the EEG technique. The role of FRN in the processing 

of missed outcomes was further investigated in the second study (detailed in Chapter 

4). 

 

1.5.1.5 Free versus obstructed choices 

 

Another open question concerning the role of FRN in decision making is how 

this component encodes outcomes that were not freely chosen by individuals. The 

research described in previous paragraphs investigated decision making under 

unobstructed choice conditions, thus, allowing participants to freely select among 

available prospects (Gehring and Willoughby, 2002; Goyer et al., 2008; Hajcak et al., 

2006, 2007; Holroyd et al., 2004; Nieuwenhuis et al., 2004b). Even though it is 

undeniably important to understand the neural mechanisms of free choice, perhaps it 

is even more crucial for real world decision making to also understand choice under 

conditions of unexpected circumstances that force us to change the path of our decision 
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making. The role of FRN in the processing of unpredictable and unchosen outcomes 

formed the topic of the third study (detailed in Chapter 5). 

 

1.5.1.6 Social context 

 

Social context during decision making is an important factor that could 

influence FRN. Social comparison, which is intuitively at the core of feelings 

associated with upward counterfactuals, might play a role in outcome evaluation even 

in situations where the good fortune of another individual does not affect the fortune 

of the participant (Dvash et al., 2010). The effects of making decisions for others and 

processing of vicarious rewards on FRN have been shown to be modulated by empathy 

(Liu et al., 2018) or by social distance (Leng and Zhou, 2014). The role of FRN in a 

social context whereby participants made decisions either for themselves or for others 

formed the topic of the fourth study (detailed in Chapter 6). 

 

1.5.1.7 Methodological issue 

 

An important methodological issue that needs to be considered when 

investigating FRN is that this component is typically evaluated as the difference 

potential waveform between the canonical ERP waveforms following gains and losses 

(Luck, 2014). Therefore, whether the resulting difference waveform has a positive or 

negative valence will depend on the subtraction performed: it will have a negative 

polarity if losses are subtracted from gains and a positive polarity if the inverse 

subtraction is performed, meaning that FRN represents a relative rather than an 

absolute negativity. This often produces confusion in the literature, mainly because of 

the component nomenclature (Krigolson, 2017). In the initial FRN experiments 

(Gehring and Willoughby, 2002; Miltner et al., 1997), the component was named as 

such because of the negative shift that could be observed only on the loss but not on 

the gain canonical feedback ERP waveforms. Furthermore, initial investigations 

considered FRN to represent a variation of the error-related negativity (ERN); a 

component that indexes internal error representations when external feedback is not 

necessary in order to evaluate whether an action has been successful or unsuccessful 
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(Falkenstein et al., 1991; Gehring et al., 1993). The similarities in the elicitation and 

topography of FRN with ERN have led several researchers to consider that the two 

components are part of the same error detection mechanism (Krigolson, 2017). 

Furthermore, some researchers have suggested that it is positive, rather than negative, 

feedback that modulates the FRN, and suggested that the component should instead 

be referred to as reward positivity (Proudfit, 2015). Therefore, one needs to keep in 

mind that the subtraction performed will not influence the conclusions drawn 

regarding the experimental findings, rather, it will only influence whether the final 

component is graphically represented as a negativity or a positivity. 

 

1.5.2 P300 

 

In addition to FRN, another ERP component that has been suggested to play 

an important role in outcome evaluation and reward processing is the P300; a positive 

shift in the electrocortical potential occurring approximately 300-500 ms after 

stimulus onset and acquiring its maximum amplitude at parietal scalp locations 

(Polich, 2007, 2012). The P300 has been one of the most studied ERPs since it was 

first reported (Sutton et al., 1965), and is thought to be associated with several 

cognitive and affective processes, including information processing and attention 

allocation (Donchin et al., 1978; Duncan‐Johnson and Donchin, 1977; Polich, 2007). 

Early P300 studies investigated the role of stimulus probability and task 

relevance by utilising oddball paradigms (Donchin et al., 1978; Pritchard, 1981). The 

oddball task presents two different stimuli in a random sequence, with one occurring 

less frequently (target) than the other (standard), and participants are instructed to 

respond only to the target stimulus. Discriminating the target stimulus from the 

standard stimulus produces a P300 component that increases in amplitude as the 

probability of occurrence of the target stimulus decreases (Duncan-Johnson and 

Donchin, 1982; 1977). Subsequent studies investigated the role of attentional resource 

allocation, by employing dual-task performance paradigms in which a primary task is 

performed while the participant is also engaged in a secondary task of mentally 

counting target oddball stimuli. P300 amplitude from the oddball task decreases as the 

difficulty of the primary task increases (Kramer et al., 1985; Wickens et al., 1983). 

For tasks that require large compared to small amounts of attentional resources, the 
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P300 amplitude is relatively small and the peak latency is later because processing 

resources are being used for task performance (Polich, 2003). 

The generation of the P300 has been explained within the context-updating 

theory (Donchin, 1981; Polich, 2003). This theory proposes that the P300 component 

is associated with the revision of the mental representations induced by stimuli. After 

initial sensory processing, a comparison process evaluates the representation of the 

previous event in working memory in order to ascertain whether the current stimulus 

is either the same as the previous stimulus or not. For instance, in the oddball task, the 

comparison process is employed to determine whether a standard or a target stimulus 

was presented. If no differences in the stimulus are detected, the current mental model 

of the stimulus context is maintained, and only sensory evoked potentials are generated 

(N100, P200, N200). If a new stimulus is detected, the subject allocates attentional 

resources to the target, and the neural representation of the stimulus environment is 

changed or updated, so that a P300 potential is generated in addition to the sensory 

evoked potentials. 

Importantly, P300 has also been observed in tasks involving decision making 

and outcome evaluation and is thought to reflect the evaluation of the functional 

significance of feedback stimuli (Hajcak et al., 2005; 2007; Sato et al., 2005; 

Toyomaki and Murohashi, 2005; Yeung et al., 2005; Yeung and Sanfey, 2004). 

Specifically, in the context of value-based decision making, P300 has been 

consistently shown to be sensitive to the magnitude of the reward, being more positive 

for larger compared to smaller rewards (Bellebaum et al., 2010b; Gu et al., 2011; Sato 

et al., 2005; Wu and Zhou, 2009; Yeung and Sanfey, 2004). In addition to reward 

magnitude, studies have demonstrated that the P300 is also sensitive to reward 

valence, being more positive for gain compared to loss feedback (Bellebaum et al., 

2010b; Hajcak et al., 2005; 2007; Holroyd et al., 2004; Leng and Zhou, 2010; Li et al., 

2010; Wu and Zhou, 2009; Yeung et al., 2005). Nevertheless, other studies found no 

support for P300 amplitude modulation by outcome valence (Sato et al., 2005; Yeung 

and Sanfey, 2004). Finally, similarly to studies that utilised the oddball paradigm 

(Courchesne et al., 1977; Duncan‐Johnson and Donchin, 1977; Johnson and Donchin, 

1980), studies employing gambling tasks have also found that P300 is modulated by 

outcome probability, so that unexpected rewards elicited stronger P300 amplitudes 
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compared to expected rewards (Cohen et al., 2007; Hajcak et al., 2005; 2007; Holroyd 

and Krigolson, 2007; Holroyd et al., 2003). 

Motivated by research demonstrating that FRN is typically sensitive to reward 

valence whereas the P300 is sensitive to reward magnitude, it has been proposed that 

the FRN and the P300 components might encode different aspects of outcome 

evaluation (Kamarajan et al., 2009; Sato et al., 2005; Toyomaki and Murohashi, 2005; 

Yeung and Sanfey, 2004; Yu and Zhou, 2006). In particular, it is possible that the FRN 

serves as an early automatic evaluation process that coarsely differentiates between 

good and bad outcomes, whereas the P300 is a later cognitive/affective appraisal 

process for which factors related to the allocation of attentional resources, including 

reward valence and magnitude, are of importance (Yeung and Sanfey, 2004). 

 

1.6 Interim summary 

 

 In light of the research discussed in the previous sections, it is evident that loss 

aversion plays a profound role in decision making. Brain regions that are important 

for value computation and reward processing have also been suggested to encode loss 

aversion. Given the definition of loss aversion as a cognitive bias towards potential 

losses and the sensitivity of FRN in differentiating between gain and loss outcomes, 

FRN provides a suitable candidate to investigate the neural underpinnings of loss 

aversion during the outcome receipt phase of the decision making process. 

 

1.7 Research problems 

 

Although loss aversion has been proven to be a robust behavioural 

phenomenon, the neural mechanisms underlying its influence on decision making and 

evaluation of decision outcomes are still poorly understood due to the limited amount 

of neuroimaging studies, especially those employing EEG. Most importantly, the 

temporal aspects of loss aversion effects on decision making and outcome evaluation 

are an important, yet still not investigated, topic. Moreover, little is known about 

whether loss aversion measured at the time of the decision influences subsequent 

evaluation of decision outcomes during the learning of the outcome phase. It is not 
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clear if (and which) ERP components are associated with loss aversion, and 

specifically the timing of such modulation. Furthermore, the majority of existing 

neuroimaging research did not control for potential risk aversion effects, which is a 

possible source of confound in both the behavioural and the neuroimaging data. Such 

questions have wider relevance for the general literature on risky decision making and 

reward evaluation, and can only be investigated using a neuroimaging technique with 

high temporal resolution, such as EEG. The first experimental study of the current 

thesis, which is described in detail in Chapter 3, served as a starting point towards 

answering these questions. 

Additionally, it is not known whether potential loss aversion effects exert 

similar modulation on outcome evaluation during simple decisions and during more 

complex decision situations. The second experiment (detailed in Chapter 4) aimed to 

compare two different types of undesirable outcomes; experienced losses and missed 

gains. To this end, participants were prompted to engage in comparisons relating to 

counterfactual thinking and processing of missed opportunities. Given that loss 

aversion is a bias towards avoiding negative outcomes, it might correspondingly affect 

the processing of missed opportunities, if these are perceived as negative prospects. 

This topic has great importance for decision making research as not only are we 

frequently required to make decisions by simultaneously considering alternative 

options, but also we are often confronted with regret associated with wrong decisions. 

Furthermore, there is also the potential of anticipated regret about making the wrong 

decision such that regret can occur both before and after making a decision. 

Furthermore, decision making is often limited by the amount of freedom (or 

lack thereof) that the decision maker has. The role of loss aversion is of evident 

relevance in such a context as decision makers can be inflicted by losses irrespective 

of whether these losses were the consequence of their own freely-made choices or not. 

This topic of obstructed, relative to free, decision making was investigated in the third 

experimental study (detailed in Chapter 5). 

Finally, in order to understand how decisions might differ depending on the 

recipient of the decision outcome, the fourth study (detailed in Chapter 6) investigated 

loss aversion within a social context. Loss aversion and corresponding outcome 

evaluation patterns were directly compared in two decision making situations; in one, 
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participants made a series of gambling decisions for themselves and kept the rewards 

earned, whereas in the other they gambled for another participant and gave their 

earnings to that participant. 

 

1.8 Aims 

 

The main aims of the current thesis were: 1) to investigate the neural correlates 

of loss aversion at the time of receiving a decision outcome, 2) to identify the timing 

of potential loss aversion effects by taking advantage of the temporal resolution of the 

EEG technique, 3) to ensure that the observed results pertained only to loss aversion 

by utilising an incentivised gambling paradigm that allowed a simultaneous separation 

of loss and risk aversion, and 4) to explore specific conditions under which such 

influences do and do not occur. 

 

1.9 Hypotheses 

 

 Individuals with large loss aversion will show stronger FRN amplitude 

compared to individuals with small loss aversion (study 1). 

 Individual differences in loss aversion will be correlated with FRN amplitude 

strength following actual outcomes but not with FRN following counterfactual 

outcomes (study 2). 

 Individual differences in loss aversion will be correlated with FRN amplitude 

following outcomes resulting from free choices but not with FRN amplitude 

following outcomes resulting from choices that were arbitrarily imposed on 

participants (study 3). 

 Individual differences in loss aversion will be correlated with FRN amplitude 

following outcomes obtained for participants themselves but not with FRN 

amplitude following outcomes obtained for others (study 4). 
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Chapter 2 

 

General Methods 

 

2.1 Loss aversion estimation 

 

Several methods have been used in behavioural and neuroimaging experiments 

in order to evaluate loss aversion. The main methods fall broadly into the following 

categories: 

 

2.1.1 Questionnaires 

 

 The first efforts to obtain loss aversion estimates utilised short questionnaires 

in which participants selected their preferred option between a set of choice problems 

(Kahneman and Tversky, 1979). The problems presented symmetric bets offering 

equal probability to win or lose the same amount of money, based on the idea that if 

these bets are considered unattractive this would be evidence for loss aversion 

(Kahneman and Tversky, 1979). Subsequent experiments asked participants to rate the 

acceptability of pairs of mixed prospects (e.g., 50% chance to lose £100 and 50% 

chance to win an alternative amount) in which the alternative amount varied over trials 

(Tversky and Kahneman, 1992). Variations of these problems consisted of comparing 

a fixed prospect (e.g., 50% chance to lose £20 and 50% chance to win £50) to a 

different set of prospects (e.g., 50% chance to lose £50 and 50% chance to win x) in 

which x varied from trial to trial. 

 

2.1.2 Endowment paradigms 

 

Another set of experiments focused on loss aversion in riskless contexts based 

on the idea that people tend to value objects more after they come to feel that they own 

them, a phenomenon known as the endowment effect (Thaler, 1980; Tversky and 

Kahneman, 1991). This has the implication that the minimum amount of money that 
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a person is willing to accept to part with an object generally exceeds the minimum 

amount of money that the person is willing to pay to obtain the same object, and these 

differences between WTA-WTP values are interpreted as evidence for loss aversion 

(Kahneman et al., 1991; Novemsky and Kahneman, 2005). For instance, Kahneman 

et al. (1990) presented a coffee mug to one group of participants (‘sellers’), told them 

that the mug was theirs to keep, and then asked them to state the minimum WTA 

amount to give up the mug. A second group of participants (‘buyers’) were told that 

they had the option of receiving an identical mug or an amount of money and asked 

which they preferred at various prices. The sellers quoted higher prices compared to 

the buyers, presumably because the former framed the choice as a loss of a mug against 

a gain of money, whereas the latter framed the choice as a gain of a mug against a gain 

of money (Kahneman et al., 1990). These findings have been replicated in similar 

endowment paradigms using a variety of products, including lottery tickets (Knetsch 

and Sinden, 1984), basketball tickets (Carmon and Ariely, 2000), gift vouchers (Sen 

and Johnson, 1997), snack choices (Levin et al., 2002), chocolate (Kahneman et al., 

1991), and wine (Van Dijk and Van Knippenberg, 1998). 

 

2.1.3 Gambling/choice tasks 

 

 This category differs from questionnaires in that the tasks did not rely solely 

on a small (typically less than ten) number of gambling choices but rather 

systematically employed a range of carefully selected amounts of money in order to 

achieve more robust individual decision making parameters that were not influenced 

by the specific selection of gambling stakes. Tasks within this category can be further 

divided into non-parametric and parametric methods. 

 

2.1.3.1 Non-parametric 

 

Non-parametric methods do not make any assumptions regarding the form of 

the value and probability weighting functions. These methods rely on a two-stage 

process whereby the value function is estimated first and then it is used to estimate the 

probability weighting function. One of the most commonly used non-parametric 

methods for loss aversion estimation entails asking participants to choose between a 
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number of two-outcome gambles associated with different probabilities with the goal 

to assess certainty equivalents for each choice (Gonzalez and Wu, 1999). Each gamble 

offers a 50% chance to win a specified amount of money or nothing versus a sure 

smaller amount. For instance, assuming a gamble prospect of £100 or £0, if a 

participant preferred a sure prospect of £40 over the gamble, but preferred the gamble 

over a sure prospect of £20, then the following round of choices would be designed 

such that it reduces the range to be between £40 to £20. This process is repeated until 

exact certainty equivalents can be estimated. That is, if a participant preferred a sure 

£36 over a gamble, but preferred the gamble over £35, then a certainty equivalent for 

this participant is £35.5. Each possible outcome amount and probability weight are 

parameters that are estimated using a least squares procedure whereby each step either 

held weight constant and estimated value or held the value constant and estimated 

weight. 

Another commonly used non-parametric example is the trade-off method 

(Wakker and Deneffe, 1996). This method requires participants to choose between a 

pair of two-outcome prospects. The prospects offer a specified probability to win an 

amount of money or an alternative amount for sure (e.g., win x with probability p or 

receive y for sure), with one of the outcomes being adjusted following each choice. 

For instance, a participant might be offered a choice between a fixed 50% probability 

to win £100 or £20 for sure versus 50% to win £70 or £40 for sure. If the participant 

prefers the latter gamble, then the variable prospect of the first gamble (e.g., the £100 

amount) will increase or decrease (e.g., £110). This amount will vary until both 

prospects are equally attractive for the participant. Once indifference is established for 

a first pair of prospects, the procedure continues with a second pair of prospects with 

the same probability and reference outcomes but with a different variable outcome. 

By combining the two indifference values, equal value intervals can be estimated such 

that a standard set of equally spaced outcomes can be produced, creating a parameter-

free value function for gains. The disadvantage of non-parametric methods is that they 

are generally quite cognitively demanding for participants, requiring choices between 

multiple two-outcome prospects (or even more complicated choices). 
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2.1.3.2 Parametric 

 

In parametric approaches, specific functional forms for the value and 

probability weighting functions are fitted directly to the obtained choice data. One 

such method entails asking participants to choose whether they want to accept or reject 

a series of mixed-gambles offering 50% chance of winning or losing different amounts 

of money (Tom et al., 2007). In order to estimate individual differences in sensitivity 

to gains and losses, a logistic regression is performed on each participant’s choice data 

with the potential gain and loss amounts as independent variables and participant’s 

decision (accept vs reject gamble) as the dependent variable, thus leading to separate 

measurement of sensitivity to gains and losses (the regression coefficients). A measure 

of loss aversion can then be computed as the ratio of the loss response to the gain 

response, such that loss aversion equals -βloss / βgain, where βloss and βgain are the 

unstandardised regression coefficients for the loss and gain variables, respectively. 

This method does not take into account the PT value and weight functions. This 

method assumes a piecewise linear value function, and identical decision weights for 

a 50% probability to gain or lose money. This method has been used almost 

exclusively in neuroimaging research for the estimation of loss aversion (Canessa et 

al., 2017; 2013; De Martino et al., 2010; Duke et al., 2018; Heeren et al., 2016) as it 

is easy to implement within a neuroimaging experiment. However, this method has 

the disadvantage that it does not allow for separate estimation of risk aversion. It has 

been proposed that loss aversion and risk aversion are often confounded (Sokol-

Hessner et al., 2009) and this might lead to mistaken assumptions regarding the source 

of the obtained choices and corresponding brain activation. 

A modification of this method has been proposed in order to accommodate an 

estimation of risk aversion (Sokol-Hessner et al., 2009). This method requires 

participants to make two different types of choices that each allow the estimation of 

either loss or risk aversion. Specifically, for the loss aversion estimation, participants 

are required to choose between mixed-gambles offering 50% chance of winning or 

losing different amounts of money and a sure zero outcome. For the risk aversion 

estimation, participants are required to choose between gain-only gambles versus a 

sure non-zero outcome, which is smaller than the gain from the corresponding gamble 

in each trial. The rationale for this is that risk aversion can be present even without the 
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prospect of potential loss, whereas loss aversion by default requires the measurement 

of loss outcomes. Importantly, this method allows for a behavioural separation of loss 

and risk aversion, and researchers can separately investigate the brain processes 

underlying specifically each of these variables by including only the neuroimaging 

data from each type of trials. This is the method that was chosen for the experiments 

presented in the current thesis, and a detailed description of the task and the estimation 

procedure used are given in Chapter 3. 

 

2.2 Electroencephalography (EEG) 

 

2.2.1 Physiological basis of the EEG signal 

 

Neurons in the brain communicate with each other through discrete voltage 

spikes, known as action potentials. These action potentials travel from the cell body 

along the axons towards excitatory or inhibitory terminals called dendrites 

(Speckmann and Elger, 2005). When action potentials reach the dendrites, 

neurotransmitters are released which bind with the receptors of the postsynaptic cell 

membrane causing ion channels to open. A postsynaptic potential is then created 

between intracellular and extracellular space. These potentials are called field 

potentials (Speckmann and Caspers, 1979), and they constitute the basic mechanism 

underlying the potentials recorded by EEG. While action potentials last approximately 

one millisecond, field potentials can last tens or even hundreds of milliseconds (Luck, 

2014). The activity recorded through EEG is thought to be generated mainly by 

pyramidal cells, which have a perpendicular orientation relative to the cortical surface 

(Fisch, 1999). When thousands of field potentials occur simultaneously at a similar 

location and orientation, it is possible for their summated activity to be detected as a 

voltage difference on the scalp, and it can be recorded using EEG (Lopes da Silva and 

Van Rotterdam, 2005; Nunez and Silberstein, 2000). 

 

2.2.2 EEG signal acquisition and processing 

 

The EEG technique utilises the measurement and recording of fluctuating field 

potentials in the brain over time (Kamp et al., 2005). To this end, electrodes are 
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positioned on the scalp at locations based on the Standardised International 10-20 

system, which employs relative distance measurements using internationally 

recognised anatomical landmarks on the skull (Jasper, 1958; Klem et al., 1999). This 

standardised electrode placement ensures that the names and positions of electrodes 

are consistent across different laboratories so that the corresponding EEG recordings 

can be comparable allowing for meaningful interpretation of findings. For the 

placement of electrodes, a suitable gel or liquid must be applied in order to facilitate 

the conduction of signal (Rowan & Tolunsky, 2003). 

For all the EEG recordings described in the current thesis, a 129-channel net 

with sponge electrodes (Electrical Geodesics, Inc.) was used. Figure 2.1 shows a 

flattened representation of the net and the positions of its electrodes. This high density 

net allows for full head coverage, including much of the face. A saline solution was 

used as the conductor medium. The Cz vertex electrode was used as the reference 

(denoted by ‘REF’ in Figure 2.1). Recordings were taken at a sampling rate of 1000 

Hz. A high-pass filter of 0.01 Hz was used online. 

 

 

 

 

Figure 2.1: Schematic of the 129-channel Geodesics net. 
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Typically, the adult EEG recording signal ranges between 10 and 100 μV in 

amplitude (Aurlien et al., 2004). This signal needs to be amplified before it can be 

measured (Luck, 2014). The resulting amplified signal is subsequently digitised, and 

the digital recording enables the display and analysis of data. The signal at each 

specific electrode at a specific time point represents the voltage difference between 

this electrode and a reference electrode (Luck, 2014). There are different methods that 

can be used to acquire the reference signal. These include mean recordings from 

bilateral mastoid electrodes, Laplacian comparison between each electrode and the 

weighted average of its surrounding electrodes or the common average method which 

refers to the mean signal of all EEG channels (Nunez et al., 1997). During the EEG 

recording, low-pass filters can be used to attenuate high frequency signals and high-

pass filters to attenuate low frequency potentials (Luck, 2014). 

 

2.2.3 Advantages and limitations of EEG 

 

The most important advantage of using the EEG technique is that it offers 

excellent temporal resolution which is in the range of milliseconds (Schneider and 

Strüder, 2012). This allows for an understanding of stimulus processing in real time 

which can be particularly useful during investigation of cognitive processes that occur 

quickly in the brain, such as during decision making. Additionally, EEG offers a more 

direct measure of neuronal activity compared to indirect responses measured through 

fMRI or positron emission tomography (PET) (Hari et al., 2010). Furthermore, there 

are practical advantages for the use of EEG in that it is a non-invasive technique, it 

can be recorded wirelessly allowing for recordings in a wide range of environments, 

and is relatively inexpensive compared to fMRI, magnetoencephalography (MEG) or 

PET (Schneider and Strüder, 2012). 

The main disadvantage of the EEG technique is that it has a limited spatial 

resolution compared to fMRI. Because the EEG activity is recorded from scalp 

electrodes, the original signal needs to pass through several brain layers such as 

cerebrospinal fluid and the skull (Nunez et al., 1997). Therefore, exact identification 

of the source of activity is impossible. Even though advanced source localisation 

methods can be used to approximately identify intracranial sources, these are by 

default limited and depend on the accuracy of conductivity models and brain templates 
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used (Schneider and Strüder, 2012). Despite the accuracy of source localisation 

methods improving with increasing number of electrodes used during recordings 

(Babiloni et al., 2001; Lantz et al., 2003; Michel et al., 2004), these techniques can be 

used as source estimates, but with caution as they are not definitive (Luck, 2014). 

 

2.2.4 Artifact rejection 

 

EEG recordings are sensitive to artifacts, which are electrical signals that do 

not originate from within brain, but, nevertheless, can obscure the brain signals. Given 

that an amplification of signal is required during EEG recordings, this also leads to 

amplification of the artifacts which are not relevant for the analysis of the cognitive 

activity being investigated. These artifacts can include eye blinks (electrooculographic 

activity, EOG), parallel eye movements (or saccades), electrocardiographic activity 

(ECG), muscle movements, or accidental electrode sway. Furthermore, external noise 

from the environment, such as activity from electrical sources or appliances, can 

induce a 50 Hz wavelength artifact in the EEG signal. The two main problems 

associated with artifacts are that they can be large compared to the EEG signal of 

interest, thus, decreasing the signal-to-noise ratio (SNR), and, sometimes, they can 

occur systematically (e.g., eye blinks) rather than randomly in isolated instances 

(Luck, 2014). Even though some caution can be taken to reduce external noise, 

specific types of artifacts, such as eye blinks, cannot be completely eliminated. 

Therefore, prior to a meaningful interpretation of experimental findings, these artifacts 

must be eliminated from the EEG recording (Luck, 2014). 

The simplest, but also the most time consuming, artifact rejection technique is 

the visual inspection of individual trials and manual disregarding of trials containing 

artifacts (Luck, 2014). Additionally, filter application might help with the rejection of 

artifacts, particularly those that are of a known amplitude. For instance, 50 Hz noise 

can easily be reduced by applying a ‘notch’ filter (Luck, 2014). Sometimes, it might 

be the case that only one channel is showing an artifactual pattern consistently 

throughout the experiment (e.g., because the electrode is broken). Interpolation of this 

electrode, which entails replacing the original waveform with interpolated values from 

the surrounding electrode sites, is usually the most suitable strategy in this case. 

Furthermore, in cases where artifacts have a consistent pattern of activity, such as 
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those created by eye blinks, principal component analysis (PCA; Berg and Scherg, 

1994) or independent component analysis (ICA; Jung et al., 2000) techniques can be 

used. PCA and ICA do not eliminate entire trials, but rather identify and subsequently 

separate the average pattern associated with a specific type of artifact and finally 

subtract the isolated artifactual component from the data (Luck, 2014). Therefore, 

artifact rejection techniques are a necessary step in the processing of EEG recordings 

in order to ensure clean data pertaining only to the activity of interest and not to 

irrelevant extra-cerebral noise. 

It needs to be noted, however, that artifact rejection reduces the number of 

trials, and, consequently, the SNR. Furthermore, participants for whom a large 

percentage of trials has been rejected (e.g., 25% of trials) usually have to be excluded 

from subsequent analysis (Luck, 2014). The number of trials that were rejected for 

each participant and condition is reported in every experimental study presented in the 

current thesis. 

 

2.2.5 Event-related potentials (ERPs) 

 

ERPs refer to averaged EEG activity that is time-locked to an event or stimulus 

(Lopes da Silva, 2005). Conventionally, ERP responses to different conditions or 

stimuli are compared in order to quantitatively analyse EEG data with the underlying 

assumption that differences in ERP activity are associated with differential processing 

between conditions (Lopes da Silva, 2005). 

Four main steps are typically followed during measurement and quantification 

of ERPs, namely, the extraction of relevant epochs, baseline correction, averaging, 

and latency/amplitude measurement (Luck, 2014). Fixed-length segments of data are 

extracted from the continuous EEG, which are time-locked to the event/stimulus of 

interest. The exact epoch length depends on the ERP component being measured but, 

commonly, epochs range between 500-1500 ms following the onset of the stimulus. A 

pre-stimulus baseline period also needs to be measured for comparison. The baseline 

period is usually set to be one fourth of the total length of the epoch (typically 100-

200 ms), although this can vary depending on the experiment (Luck, 2014). Baseline 

correction is achieved by subtracting the average pre-stimulus voltage from the 

waveform. From trial to trial there is variability due to the fact that the EEG is the sum 

of many different sources of electrical activity in the brain, many of which are not 
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involved in the processing of the stimulus. However, any brain activity that is 

consistently elicited by the stimulus is assumed to have approximately the same 

latency from trial to trial. Thus, by averaging EEG epochs corresponding to each 

experimental condition from several trials, the component of interest is isolated from 

the remaining EEG activity. This averaging of event-locked EEG activity to different 

trials from specific electrodes produces a mean waveform, which has positive and 

negative voltage deflections that represent different ERP components (Luck, 2014). 

The ERP waveform becomes more stable as more trials are averaged together. Finally, 

the two main characteristics of ERP components that are usually compared between 

conditions are latency and amplitude (Luck, 2014). The two most common ways to 

quantify the magnitude of a given ERP component are the peak and mean amplitude 

and latency. The peak method simply uses the largest positive or negative peak voltage 

observed at a single time point within a given time window. The mean method uses 

the mean voltage over a specified time window. Furthermore, deviations in latency 

and/or amplitude of known ERP components can be used to make inferences about a 

particular function or a specific population (Duncan et al., 2009). 

The main advantage of using the ERP technique is the temporal resolution 

which is given at the range of milliseconds. The main disadvantage is the large number 

of trials that are required for averaging. This can lead to prolonged experiments, 

repetitive tasks, and participant fatigue. Nevertheless, the number of trials that are 

necessary to see robust ERP activity depends on the component of interest, and well 

established components with a known latency and topographic pattern tend to require 

less trials (Luck, 2014). 

 

2.2.6 EEG analysis using statistical parametric mapping (SPM) 

 

The main difference between SPM analysis and standard ERP analysis is that 

SPM employs a whole scalp approach, using data from all electrodes during a selected 

time epoch. Therefore, SPM constitutes a data-driven clustering approach compared 

to the classical a priori ERP component analysis (Maris and Oostenveld, 2007). This 

can be particularly useful when investigating exploratory research questions or when 

it is difficult to make hypotheses regarding when or where to look for an effect (Kiebel 

and Friston, 2004; Worsley, 2003). SPM was used to analyse the differences between 

responses to gains and losses over the entire time epoch after feedback onset and in all 
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scalp electrodes in the first experiment described in the current thesis, as it represented 

an initial exploratory investigation. 

SPM constitutes a voxel-based approach that employs classical inference to 

interpret regionally specific responses to experimental factors (Friston et al., 1994; 

Kiebel and Friston, 2004). Every voxel in the brain is analysed using statistical tests 

and the resulting statistical parameters create an image called statistical parametric 

map (Friston et al., 1994). Similarly to three-dimensional space volumes in fMRI 

analysis, SPM during EEG data analysis uses three-dimensional volumes in which 

time represents the third dimension. In SPM maps, the value at each voxel represents 

a statistic that expresses evidence against the null hypothesis (Friston et al., 1994). 

SPM uses principles of Gaussian random field theory to control for multiple 

comparisons (Adler, 1981) and degrees of freedom are adjusted for non-sphericity 

(Kiebel and Friston, 2004). Hence, SPM provides robust control over Type I error 

while, at the same time, maintains sensitivity for the detection of significant results. 

The first stage in SPM analysis includes the modelling and standard estimation of ERP 

effects within subject and trial type, and this can involve observation of multiple ERPs. 

The second stage models the parameters defined at the first stage among trial type and 

participants, allowing classical inference (using t- or F-statistics) about experimental 

effects using contrast vectors (Kiebel and Friston, 2004). SPM analysis offers an 

unbiased analysis which does not assume that an effect needs to cover the full duration 

of an ERP component or its peak. As ERP components are usually generated by 

multiple cortical source dipoles, it is likely that an effect can also occur in areas of the 

scalp other than the site manifesting the dominant part of the component. In particular, 

in FRN, which was the main component of interest in the experiments presented in the 

current thesis, strong components of opposite polarity often co-occur with the 

activation cluster seen on the vertex. Thus, SPM during an exploratory investigation 

can reveal more aspects of data compared to the standard ERP analysis which would 

focus on one selected component. 
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2.2.7 Source analysis 

 

The ultimate goal of cognitive neuroscience is to discover how brain structure 

and function give rise to the cognitive processes under investigation. The EEG 

technique, although limited in spatial resolution compared to imaging techniques such 

as fMRI, provides the temporal resolution that is essential in order to measure 

cognitive processes in real time. As such, the goal of EEG source localisation is to 

provide a measurement of the time course of neural activity in specific brain regions. 

Topographic maps that represent the configuration of the potential field at a single 

moment in time can be constructed from EEG recordings. The analysis and 

interpretation of these topographic maps can provide information about the potential 

brain sources and direct the next source analysis steps. The underlying concept behind 

EEG source analysis is to fit sources at all brain regions contributing to the observed 

topographic maps. Therefore, EEG source localisation entails inferring the active brain 

source from the observed EEG signal. The resulting source waveforms represent the 

modelled brain activities and answer the question of if and when activity takes place 

in a specified brain region. 

In general, the source localisation of EEG activity is associated with the 

‘forward’ and ‘inverse’ problems. The forward problem refers to determining the 

potential scalp distribution given a number of intracerebral sources. In the forward 

solution, source locations and orientations represent independent variables and their 

associated source waveforms constitute the dependent variables. If a single dipole is 

placed in a conductive sphere, it is relatively simple to estimate the precise distribution 

of voltage that will be observed on the surface of the sphere. To solve the forward 

problem, a head model is created that describes the propagation of the volume currents 

to the scalp and represents the voltage at any electrode due to a current dipole with a 

given location and orientation. The head model needs to take into account the different 

electrical conductivity properties of several parts of the head, such as the skull. The 

volume conduction of the brain results in a widespread scalp topography with a 

maximum over the activated cortical sheet. A corresponding activity of opposite 

polarity appears on the other side of the head, so that any negativity has a 

corresponding positivity at another scalp location and vice versa. The inverse problem 

refers to the identification of intracerebral sources based on the observed scalp 
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potential distribution (i.e., what are the sources if the scalp waveforms/topographies 

are known). However, it is difficult to estimate a unique solution for the inverse 

problem because a large number and combination of possible source locations can 

contribute to the observed topographic distribution. In order to find a plausible 

solution, several assumptions and constraints must be considered in order to reduce 

the number of potential alternative solutions. The forward problem is an integral part 

of the inverse problem in that the inverse problem is estimated using the forward 

solution. In the hypothetical condition where there is only one dipole placed in a 

conductive sphere with known conductivity properties and there is no noise, the 

inverse problem can be solved by comparing forward solutions from a model dipole 

with the observed scalp distribution and then adjusting the dipole to reduce the 

discrepancy between the predicted and observed distributions. However, no unique 

solution can be found if the number of sources and their locations are unknown, as in 

the case of real EEG recordings. In other words, for any given scalp distribution, there 

is an infinite number of possible sets of dipoles that could produce that specific scalp 

distribution (Helmholtz, 1853; Plonsey, 1963). Nevertheless, it is possible to reduce 

the number of possible solutions which consequently reduces the error in source 

placement and several techniques have been proposed to address this.  

The techniques that have been proposed for source analysis of EEG data fall 

into two main categories: (1) discrete source models and (2) distributed source models. 

The discrete source approach utilises a small number of equivalent current dipoles 

(ECDs), each of which represents the activity over a small cortical region (up to 3 

cm3), and assumes that these dipoles vary only in strength over time. Each ECD is 

represented by its location, orientation and strength. One of the most commonly used 

discrete source approaches is ECD fitting within Brain Electrical Source Analysis 

(BESA; MEGIS GmbH, Germany) program. BESA is based on the assumption that 

the spatiotemporal distribution of voltage can be adequately modelled by a small set 

of dipoles (less than 20), each of which has a fixed location and orientation but varies 

in magnitude over time (Scherg and Von Cramon, 1985). Each dipole has six major 

parameters, three indicating its location, two indicating its orientation, and a 

magnitude parameter which varies over time. Each dipole is represented by a sphere 

indicating its location and a short line showing its orientation. Each dipole is also 

associated with a source waveform which graphically represents the temporal 
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evolution of the dipole moment, thus, showing how the estimated magnitude for that 

dipole varies over time. 

The first step to create a source model using the BESA ECD fitting approach 

is to define an initial model by fitting one ECD at a single time point or over a specified 

time interval. The BESA algorithm fits the ECD by determining the optimum location 

and orientation in order to explain the data in the specified interval as well as possible. 

The second step is the re-evaluation of the current model of ECD locations and 

orientations. BESA calculates the forward model topography for the fitted ECD(s) by 

computing a magnitude for each dipole at each time point so that the sum of the dipoles 

yields a scalp distribution that matches the observed distribution as closely as possible 

for each time point. Next, the predicted model scalp distribution is compared with the 

observed scalp distribution of voltage resulting from the recorded data. The difference 

between recorded data and modelled data defines the residual waveforms. The 

normalized sum of squares over electrodes of this residual activity is the residual 

variance (RV), that is, the unexplained fraction of the data variance. The goal of the 

BESA algorithm is to find the set of dipole locations and orientations that provide the 

optimal fit between the model and the data (the fit that yields the lowest RV). Finally, 

ECD location and orientation are adjusted until the RV is maximally reduced. That is, 

on each iteration, the forward solution is calculated, producing a particular RV, and 

then the locations and orientations of the ECDs are adjusted to try to reduce the RV. 

Distributed source models divide the brain into voxels creating a cubic grid 

spanning the whole brain volume. Such models compute a pattern of activation 

strengths for these voxels that can explain the observed distribution as well as satisfy 

additional mathematical constraints. The most important advantage of distributed 

approaches is that they do not depend on assumptions about the number and location 

of brain generators. Nevertheless, as distributed source models contain more sources 

than electrodes, there are many different source current distributions that could 

produce the observed scalp distribution. Even a coarse segmentation of the brain 

requires the computation of several different dipole strengths. This non-uniqueness 

problem is intensified as the brain is divided into smaller voxels. Therefore, constraints 

need to be defined in order to enable selection of the optimum solution. For instance, 

it has been proposed to select the one solution that both produces the observed scalp 

distribution and has the minimum overall source magnitudes (minimum norm 
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solution; Hämäläinen and Ilmoniemi, 1994). Derivatives of this method include Low 

Resolution Electromagnetic Tomography (LORETA; Pascual-Marqui et al., 1994), 

standardised LORETA (sLORETA; Pascual-Marqui, 2002), and Local Auto 

Regressive Average (LAURA; de Peralta Menendez et al., 2001). The result of the 

method used is displayed superimposed on the anatomical MR image. Because no 

individual MRI is available, BESA software implementing these procedures 

automatically uses a standardised MRI template for this purpose. The main advantage 

of using distributed source approaches compared with discrete source approaches is 

that the former are relatively quickly generated and the experimenter does not have to 

decide on the number of sources and the respective fit intervals. Despite this, all 

distributed source approaches suffer from smearing and crosstalk causing the 

reconstructed image to appear blurred and non-focal and, consequently, the 

reconstructed activity at one source location represents not only brain activity at the 

modelled location but also from other brain regions. Iterative approaches, such as 

Classical LORETA Analysis Recursively Applied (CLARA; Hoechstetter et al., 2010) 

aim to combine advantages from discrete and distributed source images and can help 

to make distributed images more focal. They iteratively apply distributed source 

images with a successive shrinking of the source space. The result is more focal than 

the general distributed methods, decreasing the spread of activity substantially. 

Therefore, to directly compare discrete and distributed approaches, in discrete 

source analysis, each ECD represents an extended brain region and the number of 

sources is smaller than the number of electrodes. The discrete source model is defined 

by fitting or seeding, and the result is a multiple source model and source waveforms. 

If the source model contains all active brain regions, the source waveforms represent 

their activity, meaning that they separate and mutually contrast their activities with 

minimum crosstalk. However, because the source model needs to be defined, user 

interaction is required (e.g., decision on the number of sources, fit intervals). In 

distributed source analysis, each ECD represents one small brain segment and the 

number of sources is larger than the number of electrodes. The distributed source 

model is predefined (along the brain surface or on a regular volume grid), and the 

result is a 3D volume image, one for each time point. However, the images show 

smeared, non-focal activity, with substantial crosstalk between sources, and it is 

difficult to separate activity of brain regions positioned close to each other. Despite 
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this, because the source model is pre-defined, source images are generated easily and 

quickly, with minimum user input. 

In the current thesis, both a discrete and a distributed source localisation 

method were employed. The first technique involved source modelling using BESA 

(i.e., discrete method) by fitting ECDs sequentially in the order of peak latencies of 

grand average ERPs evaluated using global field power (GFP) waveform. Each ECD 

was fitted in the time window corresponding to a peak in the GFP waveform. As such, 

ECDs were fitted consecutively beginning with short latency components. The fitting 

procedure was stopped if the residual variance was not considerably reduced by adding 

another source dipole. The second technique employed CLARA (i.e., distributed 

method) as an independent source localisation method to verify the presence of each 

ECD fitted using the sequential technique. CLARA is an iterative application of the 

LORETA algorithm that reduces the source space in each iteration. First, a regularised 

LORETA is computed. Then, in iterative steps, CLARA smooths the previous image 

and sets all voxels with amplitudes of less than 10% of the maximum activation to 

zero, effectively eliminating them from the analysis and from the source space in the 

following step. 

However, as already mentioned, EEG source localisation is limited because, 

although a unique solution with parameters can be produced, it cannot be determined 

whether this solution is definitively correct. Nevertheless, approximate reconstruction 

of intracranial sources for a given EEG signal can be useful if the above limitation is 

taken into account when interpreting source analysis findings. Importantly, the 

advantage of the high density EGI system used for the experiments presented in the 

current thesis is that it offers whole head coverage, which includes electrodes 

positioned over lower scalp regions and face. This characteristic allows for superior 

modelling of the head sphere and improved source localisation compared to standard 

EEG systems, which is essential for identification of deep cortical sources, such as 

those located in OFC (Luu et al., 2001; Tucker, 1993). Indeed, it has been proposed 

that the first step for correct source analysis should be the adequate spatial sampling 

of the scalp potential fields, which necessitates a high number of electrodes (Michel 

and He, 2011). 
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2.3 Summary 

 

 The experiments presented in the current thesis employed parametric 

modelling of choices to investigate individual differences in loss aversion. EEG 

recordings were used in order to investigate ERP responses following the receipt of 

positive and negative decision outcomes. Given that loss aversion is a cognitive bias 

occurring only as a small fragment of the decision making process, the temporal 

resolution of the EEG technique offered an excellent measure to investigate its neural 

correlates. 
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Chapter 3 

 

Study 1: Effects of loss aversion on neural responses to losses: an 

event-related potential study. 

 

 

This experiment investigated the effects of individual differences in loss aversion on 

the evaluation of monetary decision outcomes using EEG. 

 

It is published in Biological Psychology (2017), doi: 

10.1016/j.biopsycho.2017.04.005. The format has been altered to match the style of 

the thesis. 
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3.1 Abstract 

 

Loss aversion is the tendency to prefer avoiding losses over acquiring gains of 

the same amount. To shed light on the spatio-temporal processes underlying loss 

aversion, we analysed the associations between individual differences in loss aversion 

and electrophysiological responses to loss and gain outcomes in a monetary gambling 

task. 

Electroencephalographic feedback-related negativity (FRN) was computed in 

29 healthy participants as the difference in electrocortical potentials between losses 

and gains. Loss aversion was evaluated using non-linear parametric fitting of choices 

in a separate gambling task. 

Loss aversion was associated with FRN amplitude (233˗263 ms) at electrodes 

covering the lower face. Feedback-related potentials were modelled by five equivalent 

source dipoles. From these dipoles, stronger activity in a source located in the 

orbitofrontal cortex (OFC) was associated with loss aversion. 

The results suggest that loss aversion implemented during risky decision 

making is related to a valuation process in the OFC, which manifests during learning 

choice outcomes. 
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3.2 Introduction 

 

Loss aversion is the tendency to prefer avoiding losses over acquiring gains of 

the same amount (Kahneman and Tversky, 1979). Loss aversion affects a large range 

of economic behaviours, such as willingness to part with an object in one’s possession 

(Kahneman et al., 1990), relative sensitivity to price changes (Hardie et al., 1993; 

Putler, 1992), decision making in a monetary gambling task (Sokol-Hessner et al., 

2009; Takahashi et al., 2012; Tom et al., 2007), or the style of playing golf (Pope and 

Schweitzer, 2011). 

 In prospect theory of decision making (Kahneman and Tversky, 1979), 

individual decisions are modelled by two functions, the probability weighting function 

and the value function. Loss aversion, typically evaluated in tasks involving decision 

making under risk (Barkley-Levenson et al., 2013; Canessa et al., 2013; Tom et al., 

2007; Wright et al., 2012), is defined as a value function that is steeper for losses than 

for gains of equal size. Similarly, losses are associated with greater autonomic (Sokol-

Hessner et al., 2009; Stancak et al., 2015) and cerebral (Sokol-Hessner et al., 2013; 

Tom et al., 2007) responses in people with high loss aversion compared to people with 

low loss aversion. Individual levels of loss aversion have been shown to negatively 

correlate with the presence of norepinephrine transporters in the thalamus (Takahashi 

et al., 2012). Further, a recent structural magnetic resonance imaging (MRI) study 

revealed a positive correlation between loss aversion and grey matter volume in 

amygdala, thalamus and striatum (Canessa et al., 2013). 

A loss in a monetary gambling task is a negative feedback. A wealth of 

electrophysiological data suggests that presenting information about losses compared 

to gains is associated with a negative deflection in the electrocortical potential, which 

is superimposed on the subsequent, typically large, positive P300 component 

(Nieuwenhuis et al., 2004b; Yeung et al., 2005). This negative electrocortical 

potential, known as feedback-related negativity (FRN), occurs between 200 and 350 

ms after feedback presentation (Gehring and Willoughby, 2002; Miltner et al., 1997; 

Nieuwenhuis et al., 2004a; Walsh and Anderson, 2012) and shows a characteristic 

scalp potential map with a spatial maximum in the fronto-central midline region of the 

scalp (Gehring and Willoughby, 2002; Hajcak et al., 2006; Nieuwenhuis et al., 2004b; 

Walsh and Anderson, 2012; Yeung and Sanfey, 2004). The cortical source of FRN has 
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been located near or in the anterior cingulate cortex (ACC) (Bellebaum and Daum, 

2008; Gehring and Willoughby, 2002; Hewig et al., 2007; Miltner et al., 1997; Potts 

et al., 2006; Ruchsow et al., 2002). However, the potential fields during the period of 

FRN appear to have a more complex topography with positive components occupying 

the bilateral temporal regions of the scalp, suggesting the possibility that multiple 

cortical sources might be involved (Gehring and Willoughby, 2002). Indeed, several 

studies have identified additional brain regions contributing to the generation of FRN 

(for reviews see Hauser et al., 2014; Walsh and Anderson, 2012), such as the PCC 

(Badgaiyan and Posner, 1998; Cohen and Ranganath, 2007; Müller et al., 2005; 

Nieuwenhuis et al., 2005c) and the striatum (Martin et al., 2009; Nieuwenhuis et al., 

2005c). 

 In the context of the present study, punishment sensitivity has been shown to 

be related to the amplitude of FRN (Santesso et al., 2011; Unger et al., 2012). In studies 

exploring effects of framing, stronger FRN amplitudes were found in prospects framed 

negatively compared to those framed positively (Ma et al., 2012; Yu and Zhang, 2014). 

Further, a recent study showed that loss aversion attenuated amplitudes of a posterior 

positive slow wave during decisions involving low conflict between competing 

options (Heeren et al., 2016). These studies suggest the possibility of an association 

between FRN and loss aversion. 

 The purpose of the present study was to identify the cortical regions and time 

period when loss aversion modulates the cortical response to losses during the 

evaluation of choice outcomes. Although loss aversion affects decision making during 

the period of evaluation of expected utilities of individual prospects, previous studies 

also found processing of loss outcomes related to loss aversion (Sokol-Hessner et al., 

2013; Sokol-Hessner et al., 2009; Stancak et al., 2015). Neural responses to expected 

(Knutson et al., 2001) and actually perceived (Delgado et al., 2000; May et al., 2004) 

losses or gains are processed in an overlapping set of regions. Meta-analyses of fMRI 

studies typically point to ventral striatum, OFC and VMPFC as playing a central role 

in value-based decision making (Bartra et al., 2013; Clithero and Rangel, 2014). 

Therefore, we postulated that loss aversion will be associated with the 

electrophysiological responses to choice outcomes in one or more regions belonging 

to the brain valuation system (Bartra et al., 2013; Clithero and Rangel, 2014; Lebreton 

et al., 2009). To identify the brain regions involved in mediating the relationship 

between loss aversion and FRN, we applied source dipole analysis and analysed the 
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associations between source dipole waveforms and loss aversion using correlation 

analysis. To differentiate the effects of sensitivity to losses from sensitivity to risk, a 

non-linear parametric method was employed to model the individual choices using 

three parameters: loss aversion, curvature of the value function (i.e., risk attitudes) and 

choice sensitivity (Sokol-Hessner et al., 2013; Sokol-Hessner et al., 2009; Stancak et 

al., 2015). Although the primary focus of the present study was on loss aversion, the 

curvature of the value function was evaluated as well to check the potentially 

overlapping effects of these two preference parameters. Finally, choice sensitivity 

served as an estimation of participants’ response consistency throughout the 

experiment. 

 

3.3 Methods 

 

3.3.1 Participants 

 

A total of 31 participants (16 females) completed the study. Two participants 

were removed from subsequent analyses due to technical issues encountered during 

EEG recordings. Thus, the final sample included 29 participants (14 females), aged 

22.5 ± 3.6 years (mean ± SD), 4 left-handed. The experimental procedures were 

approved by the Research Ethics Committee of the University of Liverpool. All 

participants gave written informed consent in accordance with the Declaration of 

Helsinki. 

 

3.3.2 Procedure 

 

The experiment involved two different tasks. The first one was a monetary 

gambling task comprising 100 trials. Participants had to select between two prospects 

with one of them offering a sure zero outcome or sure non-zero gain and the other an 

uncertain gain or loss of variable amounts. This task was used to assess individual loss 

aversion levels. Next, participants completed an EEG experiment involving only 

uncertain monetary gambles followed by presentation of the outcome. The event-

related potential (ERP) analysis of the outcome period served to evaluate the 
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individual FRN potentials. The purpose of the experiment was explained to 

participants, who were given instructions for the tasks at the beginning of the session. 

 

3.3.2.1 Loss aversion task 

 

The initial monetary gambling task was adapted from previous studies (Sokol-

Hessner et al., 2013; Sokol-Hessner et al., 2009; Tom et al., 2007), and in particular 

from Stancak et al. (2015). Participants received an initial endowment of £20 and were 

instructed to use it for gambling during the experiment. They were informed that 10% 

of the difference between their total gains and losses would be added to or subtracted 

from this £20 endowment and they would receive the remaining amount as a 

reimbursement for their participation. 

The task consisted of a total of 100 trials. In 80 of those trials, participants 

decided between a gamble and an alternative sure zero outcome. Each gamble 

consisted of 8 possible gain amounts (£1.0, £2.0, £3.0, £3.5, £4.5, £5.0, £5.5, £6.0) in 

combination with 10 possible losses. The losses were computed by multiplying each 

particular gain value with a coefficient from 0.2 to 2.0 in 0.2 steps in all possible 

permutations (8 gains × 10 losses). The gain and loss amounts used for these 80 

gambles are listed in Table 3.1. Potential gains and losses were associated with equal 

probabilities (i.e., 50%). In additional 20 trials, participants decided between a gain-

only gamble and a sure non-zero outcome. Here, the gain-only gambles offered a 50% 

chance to win a certain gain amount or zero otherwise, whereas the sure alternative 

was a smaller gain. These 20 gambles are listed in Table 3.2. Trials were presented in 

random order for each participant. 

Participants were seated in front of a 19-inch CRT monitor, and rested their 

right hand on a computer mouse. The stimuli were presented using Cogent software 

2000 (UCL, London, United Kingdom) for Matlab (Mathworks, Inc., USA). The trial 

structure is shown in Figure 3.1. Each trial began with two possible choices that were 

displayed on the screen for 4 s. Half of the screen presented a gamble option (e.g., 

‘You win £3.0, You lose £3.0’) in yellow text on black background. Participants were 

informed that the outcome was always random (i.e., 50% probability). The other half 

of the screen showed the value of a sure outcome (e.g., £0). Participants were 

instructed to choose between the two prospects by pressing the left or right mouse 

button according to the part of the screen they preferred. If the participant selected the 
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risky gamble option, feedback about the outcome was shown for 1 s (‘You won’ or 

‘You lost’). A fixation cross appeared before the start of the next trial that stayed on 

the screen for 1 s. The duration of this initial gambling task was approximately 15 min. 

 

 

Table 3.1. Gain and loss amounts used for the 80 mixed gambles. 

Gains Losses 

1.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6   1.8   2.0 

2.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2   3.6   4.0 

3.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8   5.4   6.0 

3.5 0.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6   6.3   7.0 

4.5 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2   8.1   9.0 

5.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0   9.0 10.0 

5.5 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8   9.9 11.0 

6.0 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0 

 

 

Table 3.2. List of 20 pairs of gain-only gambles and assured non-zero gains. 

Pair Gamble Sure gain 

1 1.0 0.5 

2 1.5 0.5 

3 2.0 1.0 

4 2.5 1.0 

5 3.5 1.5 

6 4.0 1.5 

7 6.0 3.0 

8 6.0 2.5 

9 6.0 2.0 

10 7.5 2.5 

11 7.5 3.0 

12 9.5 4.0 

13 11.0 5.0 

14 11.5 5.0 

15 12.5 4.5 

16 12.5 5.0 

17 13.0 5.0 

18 13.0 6.0 

19 14.0 7.5 

20 15.0 6.0 
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Figure 3.1. Trial structure of the loss aversion task. Top panel: Declined gambles. Each trial began with 

the presentation of two possible choices, which were displayed on the screen for 4 s. Half of the screen 

presented a gamble option (e.g., ‘You win £3.0, You lose £3.0’) with a 50% chance of winning or losing 

the displayed amount of money. The other half of the screen showed the value of a sure outcome (e.g., 

£0). Participants were instructed to choose between the two prospects by pressing the left or the right 

mouse button according to the part of the screen they preferred. If participants chose a sure zero 

outcome, they would neither lose nor win anything. In the next 2.5 s, the options stayed on the screen 

and two yellow rectangles appeared at the bottom of the screen. After participants chose their preferred 

option, the yellow rectangle corresponding to that option turned into green colour to highlight 

participants’ choice. Subsequently, a fixation cross appeared on the screen and the next trial started 

after 1 s. Bottom panel: Accepted gambles. If participants selected the risky gamble option, a black 

screen was displayed for 1 s after the 2.5 s response period, and feedback about the gamble outcome 

was shown for 1 s (‘You won’ or ‘You lost’). A 1 s black screen served as a resting period before the 

next trial. 
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3.3.2.2 FRN task 

 

After application of the EEG cap, participants were led into a dimly lit, sound 

attenuated room and completed the second gambling task. This task was similar to 

those used in previous studies (Gehring and Willoughby, 2002; Hajcak et al., 2006; 

Nieuwenhuis et al., 2004b). Figure 3.2 shows the flowchart of the trial procedure. Each 

trial began with a resting interval during which participants viewed a white cross on a 

black background. Participants then saw two white rectangles positioned next to each 

other (one on the left and one on the right side of the screen). After 1 s, the numbers 

25 and 5 were presented in either one of the rectangles. These numbers indicated 

amount of money (in pence) that could be won or lost on that trial. Each number 

appeared on either the left or right side of the screen and this was counterbalanced 

across trials. The rectangles never contained the same number on both sides 

simultaneously. Participants had to choose between these two options by pressing the 

left or right mouse button. Their chosen option was highlighted for 1 s with a yellow 

rectangle. Next, the chosen and the alternative outcomes were displayed again with 

the sign ‘+’ or ‘-’ in front of each number, indicating their valence. The outcome on 

any trial was randomly generated by the computer and participants had a 50% chance 

of winning or losing. Thus, the prospects could be either positive or negative numbers 

but participants could not know this in advance. There were four possible 

combinations of outcomes (+25 +5, +25 -5, -25 -5, -25 +5). During the outcome 

period, participants also received feedback about whether their chosen option was 

better or worse than the other option. The better of the prospects was highlighted with 

a green rectangle and the worse prospect with a red rectangle. For example, in the case 

where both numbers were positive (+25 vs. +5), participants won money no matter 

what they chose. However, winning 25 was still better than winning 5 and, therefore, 

25 was highlighted with green. Finally, participants were reminded that the value of 

each chosen outcome would be added to or subtracted from their initial £20 

endowment. 

The task consisted of 480 trials, split into 15 blocks of 32 trials. The duration 

of each block was approximately 5 min. At the end of each block, participants received 

feedback about the amount of money earned in that block as well as the cumulative 

amount gained from the beginning of the task. 
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Figure 3.2. Trial structure of the FRN task. Each trial began with the display of two white rectangles 

positioned next to each other (one on the left and one on the right side of the screen) on a black 

background. After 1 s, the numbers 25 and 5 were presented in either one of the rectangles. These 

numbers indicated amount of money (in pence). Participants had to choose between these two options 

by pressing the left or right mouse button. Their chosen option was highlighted for 1 s with a yellow 

rectangle. After this, the chosen and the alternative outcomes were displayed with the sign + or – in 

front of each number, indicating their valence. In addition, participants received feedback about whether 

their chosen option was better or worse than the unchosen one. The best prospect was highlighted with 

green colour and the worst with red colour. 

 

 

3.3.3 EEG Recordings 

 

After completing the loss aversion task, participants were connected to the 

EEG system. EEG was recorded continuously using a 129-channel Geodesics EGI 

System (Electrical Geodesics, Inc., Eugene, Oregon, USA) with a sponge-based 

HydroCel Sensor Net. This system allows full head electrode coverage as it includes 

electrodes positioned over lower scalp regions and face, which is essential for 

identification of deep cortical sources, such as those located in OFC (Luu et al., 2001; 

Sperli et al., 2006; Tucker, 1993). The sensor net was aligned with respect to three 

anatomical landmarks; two preauricular points and the nasion. Electrode-to-skin 

impedances were kept below 50 kΩ and at equal levels across all electrodes, as 

recommended for the EGI system we used (Ferree et al., 2001; Luu et al., 2003; Picton 

et al., 2000). The recording band-pass filter was 0.001−200 Hz with sampling rate at 

1000 Hz. The electrode Cz served as the reference. 
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3.3.4 Behavioural analysis 

 

A parametric method was employed to estimate the level of loss aversion using 

a piecewise function: 

 

𝑈(𝑥) =  {
𝑥𝑣+,                 𝑥 ≥ 0
−𝜆(−𝑥)𝑣−,    𝑥 < 0

 

 

where ν is the curvature of the value function parameter that controls the diminishing 

sensitivity, x represents the actual outcome from each trial, and λ is the loss aversion 

coefficient to overstate disutility from losses. Because the whole utility is reference-

dependent, outcomes are regarded as gains when x ≥ 0 or losses when x < 0 . In line 

with previous studies (Sokol-Hessner et al., 2009; Tversky and Kahneman, 1992; Wu 

and Gonzalez, 1996), we employed the assumption of equality of curvature parameters 

(i.e., v+ = v-). 

The estimation process was based on the logit-function, which gives the 

probability of acceptance of a risky gamble. Formally, the function can be written as: 

 

𝐹(𝑝, 𝑥𝑔, 𝑥𝑙 , 𝑥𝑐) = (1 + 𝑒𝑥𝑝 {−𝜇 (𝑈(𝑝, 𝑥𝑔, 𝑥𝑙) − 𝑈(𝑥𝑐))})
−1

 

 

where xg and xl refer to the monetary amount that participants could win or lose and xc 

represents the alternative sure outcome. The probability to win the uncertain gamble is 

represented by p. In the present study, we employed the common simplification of 

linear probability weighting (Canessa et al., 2013; Schulreich et al., 2016; Sokol-

Hessner et al., 2013; 2009; Tom et al., 2007) and probabilities of gains and losses were 

equal throughout the experiment at p = (1 – p) = 0.5. We further assumed that 

participants combined their utility and probability in a linear manner, which implies 

pU(x) = U(px). 

The logit parameter µ denotes the sensitivity to utility deviations. A greater µ 

suggests a greater consistency in applying the respective prospect-theoretic model to 

individual decision making behaviour. On the other hand, smaller µ indicates more 

random choice (approaching a random choice with 50:50 probability of acceptance vs. 

rejection in its extreme. 
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One hundred choices were collected for each participant. Denote Zi as the 

choice related to the gamble i, where Zi equals one if the participant proceeds with the 

uncertain gamble, otherwise Zi will remain zero. The log likelihood function is given 

by: 

∑ 𝑍𝑖 log (𝐹(𝑝, 𝑥𝑔, 𝑥𝑙, 𝑥𝑐)) + (1 − 𝑍𝑖) log (1 − 𝐹(𝑝, 𝑥𝑔, 𝑥𝑙 , 𝑥𝑐))

100

𝑖=1

 

 

The values λ, v and μ were obtained by finding a proper set of estimates to maximise 

the above equation. Since this process involved a non-linear optimisation, a numerical 

approximation method has been applied using the Nelder-Mead simplex algorithm 

(Nocedal and Wright, 2006) implemented in Mathematica 9.0 (Wolfram Research, 

Inc., USA). 

 

3.3.5 EEG analysis 

 

EEG data were pre-processed using BESA software v. 6.0 (MEGIS GmbH, 

Germany). EEG signals were spatially transformed to reference-free data using 

common average reference method (Lehmann, 1987). This spatial transformation 

restored the signal at electrode Cz which was also used in further analyses. Eye blinks 

and, when necessary, electrocardiographic artifacts were removed by principal 

component analysis (Berg and Scherg, 1994). Further, data were visually inspected for 

the presence of any movement or muscle artifacts, and epochs contaminated with 

artifacts were excluded. The average number of accepted trials in each condition was: 

loss feedback: 215.97 ± 7.73 (mean ± SD); gain feedback: 217.62 ± 11.10. The average 

number of trials accepted did not differ across conditions (p > 0.05). Data were filtered 

from 0.5−30 Hz. ERPs in response to outcome were computed separately for each 

feedback condition (gain or loss) by averaging respective epochs in the intervals 

ranging from 100 ms before outcome onset to 500 ms after outcome onset. Epochs 

were baseline corrected using a time window of -100 to 0 ms relative to the onset of 

feedback. 

Data were exported to SPM12 software package (Statistical Parametric 

Mapping, UCL, England; http://www.fil.ion.ucl.ac.uk/spm/software/spm12). Data 

from each subject and each outcome condition during the epoch -100 to 500 ms were 
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converted into three-dimensional scalp-time images. The electrodes were mapped onto 

a standardised scalp grid sized 32 × 32 pixels (pixel size 4.25 × 5.3 mm2) representing 

the field potential planes stacked over the time axis. Images were smoothed with a 

Gaussian kernel of 9 mm × 9 mm × 20 ms (full width at half maximum). 

After calculating the contrast of gain-minus-loss, a multivariate regression 

analysis was computed with the smoothed scalp-time images of 29 participants as the 

dependent variable, and loss aversion λ, curvature of the value function ν and log-

transformed values of choice sensitivity μ as the predictor variables. The T-contrasts 

representing positive or negative correlations with λ and ν were evaluated. An 

uncorrected p value of 0.001 was used to statistically threshold the data, and significant 

clusters were only accepted if they were larger than 20 space-time voxels. 

 

3.3.6 Source reconstruction 

 

Grand average potentials comprising both gains and losses were analysed 

using source dipole analysis in BESA software v. 6.0 (MEGIS GmbH, Germany). 

Equivalent current dipoles (ECDs) were fitted sequentially in the order of peak 

latencies of individual ERPs evaluated using global field power waveform, similar to 

previous studies (Hoechstetter et al., 2001; Stancak et al., 2002; Stancak et al., 2013). 

Classical low-resolution electromagnetic analysis (LORETA; Pascual-Marqui et al., 

1994) recursively applied (CLARA; Hoechstetter et al., 2010) was used as an 

independent source localisation method to verify the presence of each ECD. In 

iterative steps, CLARA smooths the previous image and sets to zero all voxels with 

amplitudes of less than 10% of the maximum activation, effectively eliminating them 

from the analysis. CLARA analysis employed the singular value decomposition 

(SVD) regularisation with a cut-off of 0.01% and four iterations. The source activation 

images covered the whole brain with a voxel size of 7 × 7 × 7 mm3. If a small 

difference, in the range of 10 mm, in the location of an ECD and a corresponding 

CLARA cluster was encountered, the fitted ECD maximum was preferred in order to 

maintain the integrity of the source dipole model over the entire feedback epoch. A 4-

shell ellipsoid head volume conductor model was employed, using the following 

conductivities (S/m = Siemens per meter): brain = 0.33 S/m; scalp = 0.33 S/m; bone 

= 0.0042 S/m; cerebrospinal fluid (CSF) = 1.0 S/m. 
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Approximate Talairach coordinates for each ECD were compared with the 

Talairach atlas (Talairach and Tournoux, 1988), and the source locations were labelled 

according to the nearest cortical location. 

 

3.4 Results 

 

3.4.1 Choice parameters 

 

The mean loss aversion λ was 1.05 ± 0.04 (mean ± SEM) and the mean 

curvature of the value function ν was 0.53 ± 0.03. The mean loss aversion value was 

slightly smaller compared to previous studies (Sokol-Hessner et al., 2009); however, 

it fitted well with the mean loss aversion of 1.11 in a recent study involving 

adolescents and adults (Barkley-Levenson et al., 2013). There was no correlation 

between loss aversion and curvature of the value function (p > 0.05). The assumption 

of a Gaussian distribution was tested using the Shapiro-Wilk test. Both loss aversion 

(W(29) = 0.96, p = 0.33) and curvature of the value function had normal distributions 

(W(29) = 0.94, p = 0.12). As choice sensitivity μ was not normally distributed (p < 

0.001), this variable was log-transformed, resulting in a mean value of 2.31 ± 0.26. 

 

3.4.2 FRN 

 

EEG epochs were averaged for each type of outcome (gains and losses), and 

FRN was quantified by subtracting ERPs to loss trials from ERPs to gain trials (gain-

minus-loss difference waveform; Gehring and Willoughby, 2002). Figure 3.3A shows 

grand averaged waveforms of an averaged EEG potential at electrode Cz at the vertex, 

and at electrode 38 in the left temporal area for losses and gains. Loss trials (2.73 ± 

2.14 μV) resulted in less positive potential amplitudes compared to gain trials (3.30 ± 

2.29 μV; t(28) = 5.49, p < 0.001) during the maximum FRN. Figure 3.3B shows the 

topographic map of FRN displayed on a volume rendering of a human head. In 

accordance with previous studies (Gehring and Willoughby, 2002; Nieuwenhuis et al., 

2004b), FRN had a positive maximum at central and frontal midline electrodes. 

However, we also found negative FRN potential components at electrodes overlying 
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the face, and at lower temporal and parietal electrodes. The presence of multiple 

negative spatial maxima suggests that more than one cortical source contributed to 

FRN. 

 

 

 

 

 

 

Figure 3.3. A. Grand averaged EEG potentials for gain and loss trials shown at electrode Cz at the 

vertex, and at electrode 38 in the left temporal area of the scalp. B. FRN is shown as the amplitude 

difference between gain and loss trials, peaking at 275 ms after feedback presentation (top panel). The 

scalp topographic map of FRN at its peak (275 ms) latency (bottom panel). 

 



64 
 

3.4.3 Correlations with loss aversion 

 

A multivariate regression analysis was computed involving the three decision 

making parameters (λ, ν and μ) and the smoothed scalp-time maps for the gain-minus-

loss contrast in every time sample ranging from -100 to 500 ms relative to the onset 

of feedback. 

Figure 3.4A shows the scalp-time plot, a standardised scalp map and a volume 

rendering of the head representing the statistically significant correlation with loss 

aversion λ. One spatio-temporal cluster operating in the interval 233‒263 ms showed 

a statistically significant negative correlation with λ (uncorrected p < 0.001). The 

temporal maximum of the correlation between FRN and λ had a peak latency of t = 

244 ms (T = 4.64, Z = 3.90, 547 scalp-time voxels). There were no scalp-time voxels 

showing any statistically significant positive correlations with λ (p > 0.05). 

To illustrate the correlation between loss aversion and the negative potential 

during the interval 233‒263 ms, the potential value in the scalp-time cluster shown in 

Figure 3.4A was evaluated in every subject, and correlated with individual loss 

aversion values. Figure 3.4B shows the scatter plot and the linear regression line 

between λ and the cluster representing the negative correlation coefficient of r(28) = -

0.91, p < 0.001. 

 

3.4.4 Source reconstruction 

 

Figure 3.5A shows the grand averaged waveforms and topographic maps of 

brain activity at different ECDs, on data combined from all the sessions. Figure 3.5B 

shows locations of the ECDs, which were fitted using global field power waveform, 

and spatial clusters obtained in the CLARA analysis. The final source dipole model 

accounted for 94.3% of the total variance, and involved five ECDs. 

ECD 1 was located in the PCC (Brodmann area 31; approximate Talairach 

coordinates: x = -4, y = -24, z = 45 mm) and peaked at 185 ms. ECD 1 had a prevailing 

radial orientation, related to the positive maximum in the fronto-central electrodes and 

a negative potential in the lower occipital region of the scalp. ECD 2 was located in 

the left OFC (Brodmann area 11; approximate Talairach coordinates: x = -19, y = 3, z 

= -5 mm). This ECD had the negative pole in the left lower facial electrodes and the 
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positive potential pole at parietal electrodes. ECD 2 peaked at 372 ms. ECD 3 was 

located in the right medial temporal cortex (Brodmann area 35; x = 27, y = 0, z = -8 

mm) and peaked at 388 ms. ECD 3 showed a negative maximum over the occipital 

electrodes and a positive potential component in the lower frontal region of the scalp. 

The negative potential over the occipital area of the scalp was located closer to the 

midline compared to ECD 1, which showed its negative potential component in the 

right occipital region. ECD 4 was located in the rostral ACC (Brodmann area 32; 

approximate Talairach coordinates: x = -2, y = 41, z = 8 mm). However, the CLARA 

cluster also involved the adjacent (VMPFC; Brodmann area 10), suggesting that ECD 

4 picked up activation from both these regions. ECD 4 was a radial dipole showing a 

strong positive potential pole at the vertex region of the scalp. The earliest peak 

occurred at 180 ms. ECD 5 was located in the OFC (Brodmann area 11; x = 6, y = 7, 

z = -2 mm). This source showed a double-peak pattern with peak latencies occurring 

at 227 ms and 380 ms. ECD 5 accounted for a negative potential component in the 

chin and neck region and a positive component in the posterior parietal region. 

The grand average source dipole model was used to quantify the source 

waveforms of each of five ECDs in two outcome conditions (loss, gain), and every 

participant. To test the correlations between loss aversion and feedback related 

potentials in all five sources over the interval showing the statistically significant 

correlation with loss aversion (233˗263 ms), the mean differences between loss and 

gain ECD waveforms were calculated in the time epoch of 233˗263 ms. Loss aversion 

values were correlated with five ECDs using the Pearson’s correlation method. The 

only statistically significant correlation coefficient surviving the correction for 

multiple tests was seen in ECD 5 (r(28) = 0.38, p < 0.05). The scatter plot and the 

linear regression line representing the positive association between the source activity 

in the OFC cortex and loss aversion are shown in Figure 3.4C. 

The correlations between curvature of the value function ν and five ECDs were 

computed in the interval showing the statistically significant correlation with ν in the 

scalp potential data (188˗236 ms). The only statistically significant correlation 

coefficient remaining after applying the correction for multiple tests was found in ECD 

3 (r(28) = 0.44, p < 0.05). The scatter plot and the linear regression line representing 

the positive association between the source activity in the right medial temporal cortex 

and curvature of the value function are shown in Figure 3.4F. 
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Figure 3.4. Correlations between FRN and loss aversion and curvature of the value function. A. The 

vertical green scalp-time plot shows one statistically significant regression between FRN and loss 

aversion (uncorrected p < 0.001). The T values represent the strength and direction of regression over 

the horizontal axis of the scalp in every time sample from -100 ms to 500 ms. The scalp values over the 

horizontal axis of the scalp are averages of T values occurring at each vertical point in time for a given 

horizontal point in the standardised scalp map (from -6.8 cm to +6.8 cm). One interval showed the 

presence of a statistically significant spatio-temporal cluster. In the interval 233-263 ms, one cluster 

showed a statistically significant negative correlation between loss aversion and FRN. Below the green 

panel is the standard scalp map of statistically significant negative regression between loss aversion and 

FRN. The horizontal axis of the standardised scalp-time map is aligned with the space-time map above. 

In the right part of this panel, there are two topographic maps. The upper map shows the FRN potential, 

and the lower map shows the topographic map of the statistically significant regression between loss 

aversion and FRN in T values. B. The scatter plot and linear regression line representing the correlation 

between loss aversion and the strength of FRN, r(28) = -0.91, p < 0.001. C. The scatter plot and linear 

regression line demonstrating the correlation between loss aversion scores and the strength of ECD 5 

located in the right OFC, r(28) = 0.38, p < 0.05. D. The scalp-time plot of the regression between 

curvature of the value function and scalp-time maps. In the interval 188-236 ms, one cluster showed a 

statistically significant negative correlation between curvature of the value function and FRN. The scalp 

map below the scalp-time plot is the standardised topographic map and shows the topographic location 

of the cluster showing the statistically significant correlation with curvature of the value function. The 

two topographic maps in the right part of this panel are the FRN potential map at t = 188-236 ms, and 

the regression map representing the associations between FRN and curvature of the value function at t 

= 188-236 ms. E. The scatter plot and linear regression representing the association between curvature 

of the value function and FRN, r(28) = -0.72, p < 0.001. F. The correlation between curvature of the 

value function and source dipole moments in ECD 3, r(28) = 0.44, p < 0.05. 
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Figure 3.5. Source dipole model and source waveforms underlying ERPs during the outcome period. 

A. Grand average source waveforms and the topographic scalp maps in five ECDs. Peak latencies are 

highlighted with arrows. B. Locations of five ECDs in a standard 3-D anatomical MR image and 

respective CLARA cluster (yellow-orange). Each source is represented by a bar seeded using global 

field power waveform. The ECDs are associated with numbers, which correspond to the source numbers 

in (A). L = left, R = right. 
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3.4.5 Curvature of the value function and FRN 

 

To exclude the possibility that the correlation effects of loss aversion 

overlapped with effects of the curvature of the value function, we also analysed the 

correlation between the scalp-time images and curvature of the value function. Figure 

3.4D shows the spatio-temporal clusters displaying a statistically significant (p < 

0.001) positive or negative correlation with curvature of the value function. The 

statistically significant associations between curvature of the value function and scalp 

potentials were seen in one scalp-time cluster located in the right frontal region of the 

scalp and operating in the interval 188‒236 ms. The maximum of the correlations 

between FRN and ν had a peak latency of t = 203 ms (T = 3.75, Z = 3.31, 76 scalp-

time voxels). Figure 3.4E shows the scatter plot and the linear regression line between 

individual curvature of the value function values and the spatio-temporal cluster 

manifesting a negative correlation (r(28) = -0.72, p < 0.001). Therefore, the data 

showed that correlations of curvature of the value function and scalp-time maps 

showed a different scalp topographic location and a different latency epoch to those 

of loss aversion and scalp-time maps. However, the interpretation value of this 

correlation is limited, owing to the small amplitude of FRN during the 188‒236 ms 

interval (Figure 3.3A). 

 

3.5 Discussion 

 

The present study analysed the associations between loss aversion and the 

spatio-temporal activation patterns during the evaluation of decision outcomes in a 

monetary gambling task using ERPs. Loss aversion was associated with the amplitude 

of the negative potential part of FRN in a cluster of electrodes covering the lower face 

(233˗263 ms). The correlation between feedback-related potentials and loss aversion 

was featured in the ECD located in the right OFC. Given that FRN acquired negative 

signal at the electrodes showing association with loss aversion, the negative 

correlation corresponds to an increased cortical response to losses in individuals with 

high levels of loss aversion. The spatio-temporal pattern associated with loss aversion 

differed from the pattern associated with curvature of the value function; curvature of 

the value function correlated with FRN in an earlier latency interval (188˗236 ms) 
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when FRN was very weak, and the ECD mediating this correlation was located in the 

right medial temporal cortex. 

 

3.5.1 FRN and cortical sources 

 

FRN potential, evaluated as the difference waveform between loss and gain 

trials, was consistent with previous studies both in the peak latency and the fronto-

central spatial maximum (Gehring and Willoughby, 2002; Nieuwenhuis et al., 2004b). 

Our study extends previous research by showing further potential components in the 

lower facial, temporal, and occipital regions of the scalp, suggesting the presence of 

more than one dipole. Source localisation of ERPs during the outcome period yielded 

five cortical sources located in bilateral OFC, rACC/VMPFC, PCC, and the right 

medial temporal cortex. This finding accords previous studies reporting the generators 

of FRN in multiple brain regions (Badgaiyan and Posner, 1998; Cohen and Ranganath, 

2007; Gehring and Willoughby, 2002; Hewig et al., 2007; Luu et al., 2003; Miltner et 

al., 1997; Müller et al., 2005; Nieuwenhuis et al., 2005c; Ruchsow et al., 2002; Walsh 

and Anderson, 2012). 

OFC and VMPFC are prominent parts of the brain valuation system, which is 

employed in outcome processing (Bartra et al., 2013; Clithero and Rangel, 2014), in 

evaluation of goods in the absence of risky decision making (Elliott et al., 2008; 

Lebreton et al., 2009) and whilst decisions are made (Chib et al., 2009; Plassmann et 

al., 2010). However, the three additional cortical regions identified in the source dipole 

model (PCC, rACC and medial temporal cortex) also play roles in decision making. 

PCC has been linked to automatic subjective value computation (Grueschow 

et al., 2015), comparison between alternative choices (FitzGerald et al., 2009) and 

reward magnitude (Ballard and Knutson, 2009). Additionally, the peak latency of the 

source located in PCC corresponded to the P200 component, which has been shown 

to encode the predictability of outcomes (Polezzi et al., 2008), magnitude of monetary 

outcomes (San Martín et al., 2013) and outcome history (Osinsky et al., 2012). 

Activations in rACC have been associated with emotional processing (Bush et 

al., 2000), error detection (Kiehl et al., 2000; Menon et al., 2001; Rubia et al., 2003; 

Ullsperger and von Cramon, 2001) and coding of reward value (Di Pellegrino et al., 

2007; Marsh et al., 2007). 
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As far as the source dipole in medial temporal cortex is concerned, previous 

studies reported activations associated with negative feedback (Coricelli et al., 2005), 

reward expectancies (Ramnani et al., 2004) and risk taking (Paulus et al., 2001). 

Overall, our results show that processing the outcomes of decisions in a 

monetary gambling task involves activations of brain regions implicated in assigning 

values to goods, emotions, reward and punishment, and monitoring outcomes and 

errors. 

 

3.5.2 Loss aversion and FRN 

 

Loss aversion modulated the amplitude of FRN in the early latency period of 

233‒263 ms on the ascending limb of FRN peak (275 ms). Due to rigorous statistical 

thresholding, which was necessary to account for multiple tests, only one small space-

time cluster of activation has survived the correction. However, this cluster was part 

of a strong negative FRN component seen at the whole left lower face (Figure 3.3A). 

The modulation of FRN in lower facial electrodes suggests that one or more deep 

cortical sources were involved (Luu et al., 2001; Sperli et al., 2006; Tucker, 1993). 

Indeed, the negative potential component seen at the face was associated with the ECD 

in the right OFC, which is where the correlation with loss aversion was found. OFC 

has been reported to be involved in computing the values of goods (Elliott et al., 2008; 

Lebreton et al., 2009), encoding reward/punishment magnitude (O'Doherty et al., 

2001; Roesch and Olson, 2004; Tremblay and Schultz, 1999) and mediating hedonic 

experience and evaluation of affective valence of stimuli (Cunningham et al., 2009; 

Kringelbach et al., 2003). Given the importance of OFC in hedonic evaluation of 

decision outcomes and the specific relation of loss aversion to outcomes of negative 

hedonic value, the present data are consistent with the role of OFC in decision making. 

 Previous studies have shown that processing of positive emotional stimuli are 

associated with activity in the left hemisphere, whereas processing of negative 

emotional stimuli are associated with activity in the right hemisphere (Ahern and 

Schwartz, 1985; Canli et al., 1998; Davidson, 1998; Lane et al., 1997; Lang et al., 

1998; Mandal et al., 1991; Tucker, 1981; Windmann et al., 2006). Although the 

outcome period was associated with activation in bilateral OFC, only the right OFC 

showed a statistically significant correlation with loss aversion. Given that loss 

aversion is a response to a negative prospect/outcome (monetary loss), this right-
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hemisphere lateralisation in the correlation between OFC and loss aversion is in line 

with the right-hemisphere prevalence in perception of hedonically negative stimuli 

(Ahern and Schwartz, 1985; Canli et al., 1998; Davidson, 1998; Lane et al., 1997; 

Lang et al., 1998; Mandal et al., 1991; Tucker, 1981; Windmann et al., 2006). 

The present study adds to previous data showing that individual levels of loss 

aversion correlated with activations in the VMPFC (Tom et al., 2007), ACC (Canessa 

et al., 2013), and ventral striatum (Canessa et al., 2013; Tom et al., 2007) during the 

decision period, and in amygdala during the outcome period (Sokol-Hessner et al., 

2013). Our data suggests that OFC provides an individually tuned neural signal about 

subjective value of loss or gain, and that this signal is associated with the tendency to 

avoid losses manifested in declining monetary gambles. Further studies should address 

whether the correlation between the activation in OFC and loss aversion during the 

outcome period would be also found in ERPs during the decision period. 

 Although we also found a correlation between the curvature of the value 

function and the scalp-time maps, the correlation between ERPs and the curvature of 

the value function in the interval 188-236 ms was not interpreted due to the weak FRN 

signal in this latency interval. However, the spatial location of the curvature of the 

value function correlation cluster, the time epoch, and the cortical source displaying a 

correlation with curvature of the value function differed from loss aversion data. These 

differences, together with the lack of correlation between loss aversion and curvature 

of the value function, suggest that the correlation between loss aversion and FRN seen 

in the present study was not contaminated with curvature of the value function. 

To conclude, the individual level of loss aversion is associated with the 

strength of electrocortical response to decision outcomes. Results suggest that 

increased neural signals for loss outcomes in the OFC are associated with utility 

functions that are steeper for losses than gains during decision making under risk. 

Although the present study shows an association between loss aversion and activation 

in OFC only during the evaluation of decision outcomes, it is possible that a similar 

mechanism is also implemented during the evaluation of anticipated outcomes in the 

course of the decision phase. 
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Chapter 4 

 

Study 2: Loss aversion is associated with the processing of actual but 

not counterfactual decision outcomes. 

 

 

This experiment investigated the association of individual differences in loss aversion 

with the neural processing of actual and counterfactual decision outcomes. 

 

It is currently under review. 
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4.1 Abstract 

 

Losses tend to be overvalued compared to gains of the same nominal value, a 

phenomenon known as loss aversion. Loss aversion has been shown to augment the 

neural responses to losses while learning the decision outcomes. However, decision 

outcomes are often evaluated in comparison with foregone outcomes. It is not clear if 

loss aversion also affects neural responses to counterfactual outcomes such as missed 

gains or losses. The present study analysed effects of loss aversion on neural responses 

to monetary outcomes resulting from both chosen and unchosen prospects (actual vs 

counterfactual outcomes) using electroencephalographic (EEG) recordings. A 

monetary gambling task and parametric modelling of choices were used to estimate 

loss aversion. Participants were asked to accept or reject a series of gambles with 50% 

chance of winning or losing variable amounts of money. Feedback was given about 

the actual or counterfactual outcome. Event-related potentials (ERPs) time-locked to 

feedback onset for both actual and counterfactual outcomes were analysed and 

correlated with loss aversion. Feedback ERPs indicated differences in the neural 

processing of actual gains compared to actual losses, while no differences were 

observed between counterfactual gains and counterfactual losses. Critically, loss 

aversion correlated only with ERPs accompanying actual outcomes. In contrast, there 

was no association between loss aversion and counterfactual outcome processing. 

Results suggest that loss aversion is unrelated to the neural processing of unchosen 

decision outcomes and is implemented only during processing of factual outcomes. 
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4.2 Introduction 

 

Economic decisions are often influenced by the tendency to overestimate 

losses compared to gains of the same amount, a phenomenon known as loss aversion 

(Kahneman and Tversky, 1979). A number of functional magnetic resonance imaging 

(fMRI) studies show that loss aversion is encoded by brain regions including the 

striatum (Canessa et al., 2017; Gelskov et al., 2015; Tom et al., 2007), the 

ventromedial prefrontal cortex (Tom et al., 2007), the amygdala (Canessa et al., 2013; 

De Martino et al., 2010; Gelskov et al., 2015; Sokol-Hessner et al., 2013) and the 

insula (Canessa et al., 2017; Markett et al., 2016). Individual differences in loss 

aversion have recently been linked to dopamine or norepinephrine activity (Sokol-

Hessner et al., 2015; Takahashi et al., 2012; Voigt et al., 2015). Further, monetary 

losses are associated with stronger autonomic arousal responses compared to gains 

(Sokol-Hessner et al., 2009; Stancak et al., 2015). 

Recent electroencephalography (EEG) studies provide further evidence to 

support associations between individual differences in loss aversion and 

electrocortical brain activity. Duke et al. (2018) found a correlation between loss 

aversion and resting state EEG activity which was stronger in the right –compared to 

the left- hemisphere in central and posterior scalp regions. In a similar vein, Heeren et 

al. (2016) demonstrated that loss aversion modulated electrocortical potentials during 

the decision making phase when participants evaluated gamble prospects with small 

compared to large gain/loss ratios. Furthermore, Kokmotou et al. (2017) showed that 

loss aversion correlated with feedback-related negativity (FRN), an event-related 

potential (ERP) component signalling differential neural processing of positive versus 

negative decision outcomes which manifests as stronger cortical activity for losses 

compared to gains (Gehring and Willoughby, 2002; Miltner et al., 1997). This 

correlation occurred early (233-263 ms) during the evaluation of decision outcomes 

and was reflected in increased OFC activity. 

FRN is one of the most extensively studied ERPs in reward processing 

literature (Hauser et al., 2014; Walsh and Anderson, 2012). It is commonly elicited by 

experimental paradigms employing forced-choices between two gambles which are 

followed by presentation of gain or loss feedback (Gehring and Willoughby, 2002; 

Hajcak et al., 2006; Holroyd et al., 2006; Nieuwenhuis et al., 2004b; Yeung and 
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Sanfey, 2004). FRN is evaluated as the difference waveform between averaged 

potentials time-locked to the presentation of gain and loss outcomes (Gehring and 

Willoughby, 2002). The resulting potential difference has a fronto-central scalp 

distribution and its maximum amplitude occurs between 200-350 ms after feedback 

presentation (Walsh and Anderson, 2012), with the anterior cingulate cortex (ACC) 

identified as its most likely cortical source (Gehring and Willoughby, 2002; Miltner 

et al., 1997; Ruchsow et al., 2002; Zhou et al., 2010). 

In addition to FRN, another ERP component playing important role in outcome 

evaluation is the P300; a positive shift in the electrocortical potential occurring 

approximately 300-500 ms after stimulus onset and acquiring its maximum amplitude 

at parietal scalp locations (Polich, 2007, 2012). P300 is associated with information 

processing and attentional mechanisms (Donchin et al., 1978; Polich, 2007). In the 

context of value-based decision making, it has been suggested to encode reward 

magnitude (Bellebaum et al., 2010b; Gu et al., 2011; Sato et al., 2005; Yeung and 

Sanfey, 2004) and reward valence (Bellebaum et al., 2010a; Hajcak et al., 2005; Li et 

al., 2010; Wu and Zhou, 2009). 

Complete evaluation of decision outcomes often depends on counterfactual 

thinking; the comparison of the actual outcome obtained with alternative possible 

outcomes which were forgone (Roese and Epstude, 2017). Engagement in 

counterfactual thinking is emotionally charged and can alter behaviour by influencing 

subsequent decisions (Zeelenberg, 1999). For example, in the context of decisions 

involving monetary consequences, previous fMRI studies have demonstrated that 

missed gains are perceived as losses and lead to emotions of regret or disappointment 

(Camille et al., 2004; Coricelli et al., 2005). These forgone gains activated the OFC, 

the ACC and the amygdala (Camille et al., 2004; Coricelli et al., 2005), suggesting an 

overlap with regions associated with loss aversion. 

Despite the evidence provided by fMRI studies on counterfactual thinking, the 

spatio-temporal aspects of counterfactual outcome processing are less clear as EEG 

studies provide mixed results. Regarding the role of FRN in counterfactual thinking, 

forgone gains have been shown to produce more negative ERPs compared to losses, 

leading to an opposite-valence FRN (Gu et al., 2011; Yu and Zhou, 2009). In contrast, 

Osinsky et al. (2014) showed that both chosen and unchosen outcomes are processed 
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similarly, with the classic FRN component being present irrespective of whether 

outcomes have an actual economic impact for an individual. However, other studies 

found no evidence for such a differentiation between counterfactual outcomes, 

suggesting that counterfactual gains and losses lead to amplitudes of comparable 

strength (Marciano et al., 2018; Yeung and Sanfey, 2004; Yu and Zhou, 2009). 

Regarding the role of the P300 component in counterfactual outcome processing, 

results do not support strong conclusions either. Some researchers suggest that there 

are amplitude differences between counterfactual gains and losses (Marciano et al., 

2018; Osinsky et al., 2014; Yeung and Sanfey, 2004; Yu and Zhou, 2009), whereas 

others propose that both outcomes are evaluated similarly (Gu et al., 2011). 

Importantly, the process of counterfactual thinking can be sensitive to 

individual differences associated with pursuing of rewards, such as being a maximizer 

versus a satisficer (Jasper et al., 2008; Roese and Olson, 1993). However, to the best 

of our knowledge, no EEG studies have investigated the influence of such individual 

differences on counterfactual ERPs. Crucially, counterfactual thinking is enhanced 

following negative events in general (Roese and Epstude, 2017), and following losses 

compared to gains in particular (Petrocelli and Harris, 2011). Therefore, we postulated 

that individual differences in overestimating losses compared to gains –namely, loss 

aversion- might influence the neural processing of unchosen options. Specifically, we 

expected that loss averse participants would show increased cortical activations for 

unchosen gains compared to unchosen losses, as these foregone gains could be 

counterfactually evaluated as losses. Crucially, the EEG technique offers a temporal 

resolution in the range of milliseconds, which could help to further disentangle the 

temporal dynamics of the various underlying fast and automatic processes occurring 

during decision making. This would be particularly helpful when investigating a 

cognitive bias, such as loss aversion, which only appears as a small part of the decision 

making process. Loss aversion can occur during the evaluation of the alternative 

options and before the outcome of the selected option has been received. Irrespective 

of whether loss aversion will have a small or large effect on the decision made and the 

subsequent evaluation of the decision outcome, it will still only be relevant when the 

decision is being made or when individual differences in loss aversion are to be 

compared to individual differences in neural responses to outcomes. 
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The aim of the present study was to investigate the effects of loss aversion on 

feedback electrocortical potentials for both chosen and unchosen outcomes. A 

gambling task was used to capture subtle individual differences in decision making 

aspects (Sokol-Hessner et al., 2013; 2009; Stancak et al., 2015; Tom et al., 2007), 

during which participants freely decided whether they wanted to accept or reject a 

series of gambles. ERP responses to gains and losses were analysed separately for 

accepted and rejected gambles and correlated with loss aversion. 

 

4.3 Methods 

 

4.3.1 Participants 

 

Thirty healthy participants (16 females) completed the study. Three 

participants were excluded from the analysis as outliers due to extremely low values 

of loss aversion (< 3 SDs from the mean), similarly to previous studies (Sokol-Hessner 

et al., 2009). Importantly, inclusion of the outliers did not change the results and, thus, 

we hereafter report results without them. Therefore, the final sample included 27 

participants (15 females), 3 left-handed, aged 21.44 ± 4.07 years (mean ± SD). The 

study was approved by the Research Ethics Committee of the University of Liverpool. 

All participants gave written informed consent in accordance with the Declaration of 

Helsinki. 

 

4.3.2 Procedure 

 

The monetary gambling task used was adjusted from previous loss aversion 

studies (Kokmotou et al., 2017; Sokol-Hessner et al., 2013; 2009; Stancak et al., 2015). 

The exact gamble amounts used, stimuli presentation and participants’ reimbursement 

were identical to those described in detail previously (Kokmotou et al., 2017). 

Participants were rewarded in the way described in Chapter 3. Specifically, they were 

endowed with an initial amount of £20 and were instructed to use it for gambling 

throughout the experiment. Similar to the experimental procedures from Chapter 3, it 

was explained to participants that 10% of the difference between their total gains and 
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losses would be added to or subtracted from this £20 endowment and they would 

receive the remaining amount as a reimbursement for their participation in the 

experiment. As such, it was further explained to participants that their final payment 

was based on their performance and gambling decisions during the experiment. In 

short, participants were required to choose between a gamble and a sure outcome. The 

gamble offered 50% chance of winning or losing variable amounts of money. The 

alternative sure outcome was either zero or an amount smaller than the potential gain 

from the corresponding gamble in a particular trial. Participants made a total of 300 

choices, split into 3 blocks of 100 trials each. Within each block, 80 trials consisted of 

choosing between a mixed-gamble (e.g., ‘You win £3, You lose £3’) and a sure zero 

outcome. The remaining 20 trials consisted of a gain-only gamble (e.g., ‘You win £3, 

You lose £0’) versus a sure non-zero outcome (e.g., £2). The inclusion of both mixed- 

and gain-only gambles allows for a dissociation of loss aversion (i.e., the steepness of 

the value function) from risk aversion (i.e., the curvature of the value function); mixed-

gambles assess loss aversion while gain-only gambles assess risk aversion (Sokol-

Hessner et al., 2013; 2009). The reason is that in the gain-only trials there is no loss to 

be evaluated so if these are rejected it is because of risk aversion. However, loss 

aversion is relevant when a loss is possible, as in the mixed-gamble trials. As such, the 

gain-only trials serve as an estimation of risk aversion when loss aversion is by default 

excluded because it is not possible to lose. Instead, the potential outcomes of these 

gain-only gambles are whether the participant will receive something or nothing. 

Similarly to previous studies (Sokol-Hessner et al., 2013; 2009), only mixed-gamble 

trials were included in ERP analysis to avoid potential confounding effects of gain-

only trials which primarily elicited risk aversion. It needs to be noted that the task and 

stimuli differed to those described in Chapter 3. Here, both loss aversion and FRN can 

be elicited and measured through the same task because EEG was also recorded during 

the loss aversion task. In contrast, loss aversion could not be evaluated simultaneously 

with FRN in the previous experiment because, during the FRN task, participants did 

not know in advance which option could result in a win or loss. 

If participants accepted the gamble, feedback was given about whether they 

won (Actual Gain) or lost (Actual Loss) at that trial. If participants rejected the gamble, 

feedback was given about whether they would have won (Counterfactual Gain) or lost 

(Counterfactual Loss), if they had chosen to accept it. In both actual and counterfactual 

conditions, feedback constituted of the monetary amount in green colour with a ‘+’ 
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sign and red colour with a ‘-’ sign for gains and losses, respectively. Actual feedback 

was presented on white background while counterfactual feedback on grey 

background, counterbalanced across participants. Figure 4.1 shows the trial structure. 

Parametric modelling of participants’ choices based on prospect theory 

(Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) was used to quantify 

decision making style. Probabilities of gains and losses were kept equal throughout 

the experiment (p = 0.5). The value and logit functions as well as the numerical 

approximation method used have been described in detail in Chapter 3 (section 3.3.4). 

Although the same behavioural analysis as described in Chapter 3 was conducted by 

evaluating loss aversion, risk aversion and choice sensitivity (reported in section 

4.4.1), only loss aversion was the focus of this experiment. Further methodological 

reasons do not allow for a robust association of risk aversion with brain data because 

these are noisy due to the small number of trials available for risk aversion 

(approximately 80% less than the loss aversion trials) when using the task described 

in the previous paragraphs. 

 

4.3.3 EEG Recordings 

 

EEG was recorded continuously throughout the experiment using a 129-

channel Geodesics EGI System (Electrical Geodesics, Inc., Eugene, Oregon, USA) 

with a sponge-based HydroCel Sensor Net. The sensor net was aligned with respect to 

three anatomical landmarks; two preauricular points and the nasion. Electrode-to-skin 

impedances were kept below 50 kΩ, as recommended for this system (Ferree et al., 

2001; Picton et al., 2000). The recording band-pass filter was 0.01−200 Hz, the 

sampling rate was 1000 Hz, and the electrode Cz was used as the reference. 
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Figure 4.1. Trial structure of the loss aversion task. Left panel: Accepted gambles. Right panel: 

Rejected gambles. Each trial began with the presentation of two prospects, which stayed on the screen 

for 3.5 s. Half of the screen presented a gamble option offering 50% chance of winning or losing the 

displayed amount of money (e.g., ‘You win £3.0, You lose £3.0’). The other half of the screen presented 

a sure outcome (e.g., £0). Subsequently, each of the prospects was replaced by a yellow rectangle. 

Participants had 1.5 s to select the rectangle corresponding to the option they preferred by pressing the 

left or right mouse button. Their chosen rectangle turned green for 1 s to highlight their choice and was 

followed by a 1.5 s black screen. Subsequently, feedback was given about the gamble outcome. This 

feedback constituted of the monetary amount in green colour with a ‘+’ sign or red colour with a ‘-’ 

sign for gains and losses, respectively, and stayed on the screen for 1 s. Actual feedback was presented 

on a white background, whereas counterfactual feedback on a grey background. A 1 s black screen 

followed the feedback and a fixation cross was presented before the start of the next trial. 
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4.3.4 ERP analysis 

 

EEG data were pre-processed using BESA v. 6.1 program (MEGIS GmbH, 

Germany). EEG signals were spatially transformed to reference-free data using the 

common average reference method (Lehmann, 1987). This spatial-transformation 

restored the signal at electrode Cz, which was included in subsequent analyses. Eye 

blinks and, when necessary, electrocardiographic artifacts were removed by principal 

component analysis (Berg and Scherg, 1994). Data were also visually inspected for 

the presence of any electrode artifacts due to muscle movement, and epochs 

contaminated with artifacts were excluded. Data were filtered from 0.5−35 Hz. 

ERPs time-locked to feedback onset were computed for each of the four 

possible outcome conditions resulting from the mixed-gamble trials: participant 

accepted the gamble and a) won (Actual Gain) or b) lost (Actual Loss) or participant 

rejected the gamble, but would have c) won (Counterfactual Gain) or d) lost 

(Counterfactual Loss). Respective epochs in the interval ranging from 300 ms before 

outcome onset to 1000 ms after outcome onset were averaged. Epochs were baseline 

corrected using a time window of -300 to 0 ms relative to the onset of feedback. FRN 

was measured as the mean amplitude pooled over three fronto-central midline 

electrodes (Fz, FCz, Cz) over a time interval from 250 to 350 ms after feedback onset. 

P300 was measured as the mean amplitude pooled over three centro-parietal midline 

electrodes (CPz, Pz, POz) over a time interval from 350 to 450 ms after feedback 

onset. It needs to be noted that the EEG analysis reported here differed to the one 

described in Chapter 3. This is because for the previous experiment, which was an 

exploratory one, data were analysed using SPM, which is a whole-brain method to 

analyse EEG and for which no electrodes need to be selected a priori. However, since 

this study is focusing specifically on FRN, electrodes used previously in other studies 

can now be selected (e.g., Gu et al., 2011; Yu and Zhou, 2009; Marciano et al., 2018; 

Osinsky et al., 2014). 

The average number of artifact-free trials in each condition was: actual gains: 

50.0 ± 18.4 (mean ± SD), actual losses: 53.3 ± 20.3, counterfactual gains: 90.3 ± 16.7, 

and counterfactual losses: 86.7 ± 16.7. As participants on average rejected more 

gambles than they accepted (see 4.4.1), this resulted in a larger number of 

counterfactual compared to actual outcomes trials. However, within accept/reject 
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condition, there were no differences in the number of artifact-free trials for gains 

versus losses included in the analysis (ps > 0.05). 

The statistical significance level was set at 0.05 for all analyses and 

Greenhouse-Geisser correction was implemented for ANOVAs whenever necessary. 

 

 

4.4 Results 

 

4.4.1 Behavioural results 

 

Mean loss aversion was 1.26 ± 0.04 (mean ± SEM). The assumption of a 

Gaussian distribution was tested using the Shapiro-Wilk test, which showed that loss 

aversion had normal distribution (W(27) = 0.97, p = 0.53). Following the behavioural 

analysis described in Chapter 3, risk aversion and choice sensitivity were also 

estimated. Mean risk aversion was 0.37 ± 0.03 and mean choice sensitivity was 2.19 

± 0.28. Both risk aversion and choice sensitivity had normal distributions (risk 

aversion: W(27) = 0.94, p = 0.09; choice sensitivity: W(27) = 0.94, p = 0.09). 

Furthermore, there was no correlation between loss aversion and curvature of the value 

function (p > 0.05). 

On average, participants rejected more gambles than they accepted (rejected: 

191.56 ± 7.36 vs accepted: 108.44 ± 7.36; t(26) = -5.64, p < 0.001), and were faster to 

reject than to accept gambles (rejected: 0.42 ± 0.01 s vs accepted: 0.50 ± 0.02 s; t(26) 

= 2.32, p < 0.05). 

 

4.4.2 ERP results 

 

FRN: Figure 4.2A shows the grand averaged ERP waveforms for the four possible 

feedback conditions (AG = Actual Gain, AL = Actual Loss, CG = Counterfactual 

Gain, CL = Counterfactual Loss) pooled over the FRN electrode cluster (Fz, FCz, Cz). 

The grey shaded area indicates the time window used for statistical analysis (250-350 

ms). The two topographic maps represent the amplitude difference between loss minus 
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gain trials for actual (Actual FRN) and counterfactual outcomes (Counterfactual 

FRN). The FRN component can be seen only for the actual outcomes condition 

(Actual FRN). This FRN component showed a negative maximum in central-midline 

and frontal-midline electrodes and peaked approximately 300 ms after outcome 

presentation. 

To investigate the effects of decision and outcome on FRN, mean ERP 

amplitude data during 250-350 ms after feedback onset from the FRN electrode cluster 

(Fz, FCz, Cz) were entered into a 2 (decision: accept vs reject) by 2 (outcome: gain vs 

loss) repeated measures ANOVA. The time window (i.e., 250-350 ms) selected for 

statistical analysis was based on previous FRN research (e.g., Yeung and Willoughby, 

2002; Walsh and Anderson, 2012) and particularly research exploring counterfactual 

FRN (e.g., Gu et al., 2011; Marciano et al., 2018; Osinsky et al., 2014; Yu and Zhou, 

2009). Furthermore, it was selected based on our own data with the goal of choosing 

a time window where the differences between conditions were maximum, similar to 

previous studies (Yu and Zhou, 2009). 

The interaction between decision and outcome was significant (F(1,26) = 6.59, 

p < 0.05). Paired samples t-tests showed that ERPs following actual losses had more 

negative amplitudes compared to actual gains (actual losses: 2.91 ± 0.54 μV vs actual 

gains: 3.70 ± 0.52 μV; t(26) = 2.32, p < 0.05), while there was no difference in 

amplitudes between counterfactual gains and counterfactual losses (p > 0.05). The 

main effect of decision was significant (F(1,26) = 11.58, p < 0.05). Accepted gambles 

yielded more positive amplitudes compared to rejected gambles (accepted: 3.31 ± 0.50 

μV vs rejected: 2.26 ± 0.38 μV).  The main effect of outcome was not significant (p > 

0.05).  

Importantly, results were not dependent upon the specific time window 

selected and, for comparison purposes, we also analysed the data using different time 

intervals. Specifically, data were further analysed using the peak of the FRN averaged 

waveform (300-310 ms) and during the statistically significant time window (292-314 

ms) obtained by using a permutation analysis (Maris and Oostenveld, 2007) with 5000 

permutations in EEGLAB v.12 (Delorme and Makeig, 2004). 

FRN 300-310 ms: The interaction between decision and outcome was 

significant (F(1,26) = 9.63, p < 0.05). Paired samples t-tests showed that ERPs 
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following actual losses had more negative amplitudes compared to actual gains (actual 

losses: 3.06 ± 0.56 μV vs actual gains: 4.12 ± 0.56 μV; t(26) = 2.65, p < 0.05), while 

there was no difference in amplitudes between counterfactual gains and counterfactual 

losses (t(26) = -1.65, p = 0.11). The main effect of decision was significant (F(1,26) = 

15.77, p < 0.001). Accepted gambles yielded more positive amplitudes compared to 

rejected gambles (accepted: 3.59 ± 0.52 μV vs rejected: 2.32 ± 0.39 μV). The main 

effect of outcome was not significant (F(1,26) = 3.09, p = 0.09). 

FRN 292-314 ms: The interaction between decision and outcome was 

significant (F(1,26) = 9.61, p = 0.005). Paired samples t-tests showed that ERPs 

following actual losses had more negative amplitudes compared to actual gains (actual 

losses: 3.01 ± 0.55 μV vs actual gains: 4.05 ± 0.56 μV; t(26) = 2.64, p = 0.01), while 

there was no difference in amplitudes between counterfactual gains and counterfactual 

losses (t(26) = -1.58, p =0.13). The main effect of decision was significant (F(1,26) = 

14.54, p = 0.001). Accepted gambles yielded more positive amplitudes compared to 

rejected gambles (accepted: 3.53 ± 0.52 μV vs rejected: 2.29 ± 0.39 μV). The main 

effect of outcome was not significant (F(1,26) = 3.11, p = 0.07). 

 

P300: Figure 4.2B shows grand averaged ERP waveforms for the four possible 

feedback conditions pooled over the P300 electrode cluster (CPz, Pz, POz). The grey 

shaded area indicates the time window used for statistical analysis (350-450 ms). The 

topographic maps represent the amplitude difference between gain minus loss trials 

for actual (Actual P300) and counterfactual (Counterfactual P300) outcomes. A P300 

component differentiating between gains and losses occurred only for actual 

outcomes. This P300 component had a positive maximum over parietal-midline 

electrodes and peaked approximately 400 ms after feedback presentation. 

To investigate the effects of decision and outcome on P300, mean ERP 

amplitude data during 350-450 ms after feedback onset from the P300 electrode cluster 

(CPz, Pz, POz) were entered into a 2 (decision: accept vs reject) by 2 (outcome: gain 

vs loss) repeated measures ANOVA. The interaction between decision and outcome 

was significant (F(1,26) = 28.30, p < 0.001). Paired samples t-tests showed that actual 

gains yielded more positive amplitudes compared to actual losses (actual gains: 6.04 

± 0.58 μV vs actual losses: 4.92 ± 0.55 μV; t(26) = 5.94, p < 0.001), while there was 
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no difference in amplitudes between counterfactual gains and counterfactual losses (p 

> 0.05). The main effect of decision was significant (F(1,26) = 17.75, p < 0.001). ERP 

amplitudes were more positive following accepted compared to rejected gambles 

(accepted: 5.48 ± 0.56 μV vs rejected: 4.20 ± 0.50 μV). The main effect of outcome 

was also significant (F(1,26) = 14.55, p < 0.05), with gains yielding more positive 

amplitudes compared to losses (gains: 5.10 ± 0.50 μV vs losses: 4.58 ± 0.51 μV). 

Similar to the FRN analysis, different time windows were analysed in order to 

ensure that results were independent of the specific time intervals selected. Again, the 

peak (390-400 ms) of the P300 averaged waveform and the statistically significant 

time window (367-429 ms) obtained using a permutation analysis were analysed. 

P300 390-400: The interaction between decision and outcome was significant 

(F(1,26) = 42.67, p < 0.05). Paired samples t-tests showed that ERPs following actual 

losses had more negative amplitudes compared to actual gains (actual losses: 4.80 ± 

0.66 μV vs actual gains: 6.30 ± 0.62 μV; t(26) = 6.38, p < 0.05), while there was no 

difference in amplitudes between counterfactual gains and counterfactual losses (t(26) 

= -0.74, p = 0.47). The main effect of decision was significant (F(1,26) = 15.61, p < 

0.001). Accepted gambles yielded more positive amplitudes compared to rejected 

gambles (accepted: 5.55 ± 0.58 μV vs rejected: 4.16 ± 0.49 μV). The main effect of 

outcome was significant (F(1,26) = 17.72, p = 0.001), with gains yielding more 

positive amplitudes compared to losses (gains: 5.20 ± 0.52 μV vs losses: 4.51 ± 0.50 

μV). 

P300 367-429: The interaction between decision and outcome was significant 

(F(1,26) = 34.75, p < 0.001). Paired samples t-tests showed that ERPs following actual 

losses had more negative amplitudes compared to actual gains (actual losses: 4.90 ± 

0.55 μV vs actual gains: 6.18 ± 0.60 μV; t(26) = 6.10, p < 0.001), while there was no 

difference in amplitudes between counterfactual gains and counterfactual losses (t(26) 

= -0.65, p = 0.52). The main effect of decision was significant (F(1,26) = 17.30, p = 

0.001). Accepted gambles yielded more positive amplitudes compared to rejected 

gambles (accepted: 5.52 ± 0.56 μV vs rejected: 4.17 ±  0.49 μV). The main effect of 

outcome was significant (F(1,26) = 16.50, p < 0.001), with gains yielding more 

positive amplitudes compared to losses (gains: 5.15 ± 0.51 μV vs losses: 4.55 ± 0.51 

μV). 
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Figure 4.2. A. FRN. Left: Grand averaged EEG potentials for the four possible outcome conditions 

(AG = Actual Gain, AL = Actual Loss, CG = Counterfactual Gain, CL = Counterfactual Loss) pooled 

over the FRN electrode cluster (Fz, FCz, Cz). The grey shaded area indicates the time interval included 

in statistical analysis (250-350 ms). Right: Topographic maps of Actual FRN (AL minus AG) and 

Counterfactual FRN (CL minus CG) shown at 300 ms. B. P300. Left: Grand averaged EEG potentials 

for the four possible outcome conditions pooled over the P300 electrode cluster (CPz, Pz, POz). The 

grey shaded area indicates the time interval included in statistical analysis (350-450 ms). Right: 

Topographic maps of Actual P300 (AG minus AL) and Counterfactual P300 (CG minus CL) shown at 

400 ms. C. Left: Scatterplot, linear regression line and 95% confidence interval lines representing the 

statistically significant correlation between loss aversion and Actual FRN. Right: Scatterplot, linear 

regression line and 95% confidence interval lines representing the lack of association between loss 

aversion and Counterfactual FRN. D. Left: Scatterplot, linear regression line and 95% confidence 

interval lines representing the statistically significant correlation between loss aversion and Actual 

P300. Right: Scatterplot, linear regression line and 95% confidence interval lines representing the lack 

of association between loss aversion and Counterfactual P300. 
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4.4.3 Correlations with loss aversion 

 

Pearson’s correlation analysis was carried out to investigate the relationship 

between loss aversion and feedback ERPs. The following difference waveforms were 

created: actual FRN (actual losses minus actual gains), counterfactual FRN 

(counterfactual losses minus counterfactual gains), actual P300 (actual gains minus 

actual losses), and counterfactual P300 (counterfactual gains minus counterfactual 

losses). Loss aversion correlated with FRN following actual outcomes (r(27) = 0.44, 

p < 0.05, but not with FRN following counterfactual outcomes (p > 0.05). 

Similarly, loss aversion correlated with P300 following actual outcomes (r(27) 

= 0.40, p < 0.05), but not with P300 following counterfactual outcomes (p > 0.05). 

Figures 4.2C and 4.2D show the scatterplots, regression lines and 95% confidence 

interval lines representing the associations of loss aversion with FRN and P300, 

respectively. 

 

 

4.5 Discussion 

 

The present study investigated the effects of loss aversion on feedback ERPs 

following decision outcomes resulting from accepting or rejecting a series of gambles. 

The most important finding was the presence of an association between loss aversion 

and the strength of FRN and P300 components for actual but not counterfactual 

outcomes. This suggests that individual differences in loss aversion are reflected on 

the amplitude strength of feedback ERPs during the evaluation of those outcomes 

which have actual economic impact for the decision maker. Our data also extend 

previous research on feedback processing by demonstrating the presence of FRN and 

P300 potentials in a gambling task tailored to evaluate loss aversion. 

 

4.5.1 Actual feedback 

 

For the actual feedback condition (i.e., when participants accepted the gamble), 

we were able to replicate the robust FRN potential, previously observed in studies 
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using binary forced choice paradigms (Gehring and Willoughby, 2002; Hajcak et al., 

2006; Holroyd et al., 2006; Nieuwenhuis et al., 2004b; Yeung and Sanfey, 2004). Our 

finding is novel in that FRN was for the first time observed in a paradigm in which 

participants could freely decide whether they wanted to gamble or not. In our task, 

participants were given complete choice freedom, and feedback was contingent upon 

their own decision to engage in risk-taking. 

Regarding the P300 potential, our results are in accord with research 

highlighting its important role in outcome evaluation (Polich, 2007). Some studies 

have previously proposed that the P300 potential encodes reward magnitude rather 

than reward valence, suggesting that the brain evaluates outcomes through a double 

dissociation system: reward valence is encoded by FRN while magnitude is encoded 

by P300 (Sato et al., 2005; Yeung and Sanfey, 2004). Even though it is a limitation of 

the current study that potential magnitude effects were not taken into account, our 

results provide support to studies reporting differential processing of positive and 

negative outcomes at the P300 range with stronger amplitudes for gains compared to 

losses during economic decision making (Hajcak et al., 2005; 2007; Holroyd et al., 

2006; Li et al., 2010; Wu and Zhou, 2009). 

 

4.5.2 Counterfactual feedback 

 

The current experiment did not find any difference in feedback ERPs to 

counterfactual (i.e., avoided) losses as compared to counterfactual (i.e., missed) gains. 

This lack of differential neural processing might seem surprising at first, especially 

considering the ample evidence available from fMRI studies that focused on how the 

brain processes missed opportunities (Camille et al., 2004; Chua et al., 2009; Coricelli 

et al., 2005). However, our results are in line with previous EEG research on 

counterfactual outcome processing by demonstrating that ERPs to foregone gains and 

losses share similar spatio-temporal patterns (Gu et al., 2011; Osinsky et al., 2014; Yu 

and Zhou, 2009). In a similar vein, Talmi et al. (2013) showed that foregone outcomes 

yielded similar FRN potentials, irrespective of whether these outcomes were positive 

(monetary reward) or negative (pain). Moreover, our results accord studies 

demonstrating that FRN represents an early binary evaluation of positive versus 

negative outcomes (Hajcak et al., 2006; Holroyd et al., 2006; Yeung and Sanfey, 2004; 

Yu and Zhou, 2006), and, as such, integrates only the obtained outcome valence 
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(Gehring and Willoughby, 2002; Kujawa et al., 2013; Yeung and Sanfey, 2004). In 

our task, counterfactual outcomes might have been appraised as self-irrelevant 

observations because they were economically neutral. This is in line with research 

suggesting that brain potentials when observing someone else losing money in a 

gambling task are weaker compared to when focusing on outcomes of one’s own 

performance (Zhou et al., 2010), and with a general reduction of FRN amplitudes 

during observational feedback learning (Bellebaum et al., 2010a; Kobza et al., 2011). 

It is, of course, not possible to rule out the possibility that the results might 

have been different if larger amounts had been used. However, by including several 

different amounts (ranging from £0 to £12), potential gains and losses were at least 

relatively large by comparing them to the smaller ones. Indeed, neuroimaging research 

shows that the brain adapts relatively to the range of potential amounts (Bunzeck et 

al., 2010; Nieuwenhuis et al., 2005a; Tobler et al., 2005). As such, based on the EEG 

results reported in the previous sections and although it was contrary to our initial 

hypothesis, participants did not consider the counterfactual loss as an economic loss 

relative to what they could have won. Although it cannot be ruled out that there could 

have been regret or disappointment involved during the processing of missed gains, 

this was not reflected on the EEG data. 

Similarly to FRN, we did not find supporting evidence for P300 modulation 

by counterfactual thinking. This result is in accordance with studies reporting a lack 

of P300 modulation by outcome valence following counterfactual outcomes (Goyer et 

al., 2008; Gu et al., 2011). However, it is in contrast with some previous studies 

showing differential effects of counterfactual gains and losses on P300 amplitudes 

(Marciano et al., 2018; Osinsky et al., 2014; Yeung and Sanfey, 2004; Yu and Zhou, 

2009). A possible explanation for this discrepancy rests on the difference between the 

tasks employed. For instance, in previous studies, participants did not have the option 

to completely reject gambles and, thus, the counterfactual outcome was always 

evaluated in association with the obtained outcome. In the present study, actual and 

counterfactual outcomes resulted from different decisions and, consequently, 

comparisons between outcomes were neither meaningful nor possible. Even though 

two studies (Gu et al., 2011; Marciano et al., 2018) tried to control for this comparison 

confound by presenting the counterfactual before the actual outcome, participants 

were still expecting to be presented with actual outcomes resulting from the same 

decision. Given that P300 has been suggested to be influenced by outcome expectation 
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(Bellebaum and Daum, 2008; Hajcak et al., 2007; Holroyd et al., 2004), it is possible 

that presence of a direct comparison of actual and counterfactual outcomes has 

enhanced the P300 component. 

 

4.5.3 Loss aversion and FRN/P300 

 

Unlike in our previous study in which loss aversion and FRN were evaluated 

using different tasks (Kokmotou et al., 2017), in the current study we were able to 

assess individual differences in loss aversion and, at the same time, relate these 

individual differences to FRN amplitudes recorded simultaneously. Importantly, the 

current study confirms the previous correlational results that showed that loss aversion 

measured using a behavioural task was associated with feedback potentials during a 

subsequent gambling task with EEG (Kokmotou et al., 2017). Specifically, in the 

current study, loss aversion correlated with FRN strength in fronto-central midline 

electrodes during 250-350 ms after feedback onset in actual but not in counterfactual 

outcomes. 

Our results expand on two previous studies reporting associations between 

individual differences in loss aversion and EEG activity (Duke et al., 2018; Heeren et 

al., 2016). In particular, higher behavioural manifestation of loss aversion has been 

found to correlate with stronger resting state EEG activity in the right hemisphere 

(Duke et al., 2018). Additionally, loss aversion modulated a posterior slow wave 

potential during the decision making phase, when participants evaluated alternative 

prospects without expecting to learn the outcome of their decisions (Heeren et al., 

2016). Furthermore, behavioural work suggests that hedonic evaluations of prospects 

at the time of the decision differ to those after receipt of outcomes (Kahneman et al., 

1997). Neuroimaging studies further show that, during value-based decision making, 

the decision and outcome phase often employ different brain regions (Breiter et al., 

2001; Knutson et al., 2001; Smith et al., 2009). Our results, combined with the above 

findings, suggest that loss aversion is associated with distinct cortical activity patterns 

and across different stages of the decision making process. Specifically, individual 

differences in loss aversion were associated with both an early medio-frontal ERP 

component (FRN) as well as with a later one with a more posterior activation 

maximum (P300). 
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The above association of loss aversion with FRN can be elucidated by an 

influential theory in the field of decision making which has proposed that risk-taking 

might be driven by anticipatory or experienced affective reactions towards decisions 

(risk-as-feelings hypothesis; Loewenstein et al., 2001). In this context, it seems 

possible that the relationship between loss aversion and FRN could be driven by 

emotional related processes as both variables have been shown to be influenced by 

emotions (Camerer et al., 2005; Hajcak et al., 2006; Sokol-Hessner et al., 2013; 2009). 

For example, loss aversion has been linked to emotions of fear or stress (Camerer et 

al., 2005; Hartley and Phelps, 2012). Furthermore, incidental negative emotional cues 

that are independent to the current decision, such as unpleasant odours (Stancak et al., 

2015) or fearful faces (Schulreich et al., 2016), have the potential to increase loss 

aversion. Additionally, loss aversion can be decreased using emotion regulation 

techniques by successfully reducing the emotional impact of individual decision 

outcomes (Sokol-Hessner et al., 2013; 2009). Furthermore, affective ratings of 

pleasantness have been shown to be more negative following undesirable compared to 

desirable outcomes, thus, mirroring the FRN amplitude pattern (Moser and Simons, 

2009; Rigoni et al., 2010). Additionally, preceding negative outcomes have been 

shown to induce both increased risk-taking for subsequent choices and stronger FRN 

amplitudes, suggesting that FRN reflects the pattern of risk-taking behaviour observed 

following aversive outcomes (Gehring and Willoughby, 2002; Yeung and Sanfey, 

2004). Moreover, FRN has been shown to be associated with a range of emotion 

associated traits such as anxiety (Gu et al., 2010), reward sensitivity (De Pascalis et 

al., 2010; Lange et al., 2012) and impulsivity (Onoda et al., 2010). Such a potential 

mechanism of negative emotionality linking loss aversion and FRN is further 

supported by studies investigating arousal, which is an underlying emotion component 

(Sokol-Hessner et al., 2009; Stancak et al., 2015). For instance, monetary losses are 

associated with increased arousal levels compared to gains (Sokol-Hessner et al., 

2009; Stancak et al., 2015) and individual differences in arousal between gains and 

losses correlate with loss aversion (Sokol-Hessner et al., 2009). 

Importantly, such a potential emotional link, combined with the lack of 

difference in the electrocortical brain activity following counterfactual gains and 

losses, provides an explanatory context for the absence of loss aversion effects on 

counterfactual outcome processing. We postulate that a missed gain is not emotionally 

equated to an experienced loss. It has been suggested that loss aversion has an 
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evolutionary-based purpose, in which a monetary loss is perceived as danger or threat 

(Kahneman, 2011; Kenrick et al., 2009; Li et al., 2012), and, as such, it represents an 

emotional response to anticipated (Camerer, 2005; Tom et al., 2007) and experienced 

losses (Sokol-Hessner et al., 2013). In the case of counterfactual outcomes, the loss 

aversion mechanism has served its purpose since the feared loss has been avoided. 

This is consistent with an interpretation of loss aversion as a decision making bias 

driven by emotions (Sokol-Hessner et al., 2013), which is reduced when outcomes do 

not affect the individual, as, for example, when choosing for others (Andersson et al., 

2014). 

Similarly to FRN, loss aversion was associated with P300 strength only in the 

actual outcomes condition. This relationship might have been driven by two factors 

influencing P300 amplitude. Firstly, P300 strength differs as a function of stimulus 

motivational importance with stimuli that are emotionally significant for the decision 

maker producing higher P300 amplitudes compared to neutral or irrelevant stimuli 

(Duncan‐Johnson and Donchin, 1977; Yeung and Sanfey, 2004). Therefore, it seems 

possible that, in the current study, only actual outcomes were perceived as important 

for participants and attended to while counterfactual ones were deliberately ignored. 

This is in agreement with previous research as EEG studies on counterfactual thinking 

have provided inconclusive results (Gu et al., 2011; Yu and Zhou, 2009; Marciano et 

al., 2018; Osinsky et al., 2014). Secondly, P300 has been suggested to operate as an 

updating process in the context of decision making (Polich, 2007). Given that only 

actual outcomes have the potential to influence overall payoff, it may be that 

participants focused on these outcomes alone to guide subsequent decisions. Taken 

together, loss aversion seems to correlate with both relatively early cognitive processes 

(FRN) and later ones (P300) following learning of decision outcomes. 

Finally, investigating such a link between individual differences in loss 

aversion and outcome processing might enhance understanding of decision making 

deficits observed in various psychiatric conditions. Indeed, some psychiatric 

populations, such as pathological gamblers (Gelskov et al., 2016) or patients with 

schizophrenia (Brown et al., 2013; Currie et al., 2017; Trémeau et al., 2008) exhibit 

reduced loss aversion compared to healthy controls, while depressed people (Pammi 

et al., 2015) and people with obsessive compulsive disorder (Sip et al., 2018) show 

increased loss aversion. Additionally, some studies suggest that FRN is similar in 

schizophrenia and healthy participants, indicating normal processing of external 
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feedback and outcome evaluation (Horan et al., 2012; Llerena et al., 2016; Morris et 

al., 2011), whereas FRN is enhanced in depression (Foti and Hajcak, 2009) and 

diminished in obsessive compulsive disorder (Endrass et al., 2013; O’Toole et al., 

2012). Specifying intact and impaired reward evaluating processes could shed light on 

the diminished motivation commonly seen in these disorders (Strauss et al., 2014). 

Further, potential absence of loss aversion might be indicative of a limited integration 

between emotional and cognitive systems, whereas extreme levels of loss aversion 

might point to a dysfunctional dominance of affective over cognitive incentives, with 

both cases leading to impaired value-based decision making. 

To conclude, we show that feedback potentials, as indexed by FRN and P300, 

were correlated with individual differences in loss aversion, but only when outcomes 

signal a real monetary gain or loss. Given that loss aversion represents a sensitivity to 

losses over gains and FRN/P300 were quantified as the potential difference between 

outcome conditions, this association suggests a larger neural differentiation between 

positive and negative outcomes for the more loss averse individuals. 
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Chapter 5 

 

Study 3: Sensitivity to choice freedom mediates the relationship 

between loss aversion and feedback-related negativity. 

 

 

This experiment investigated the effects of loss aversion on the evaluation of outcomes 

resulting from free or obstructed decisions. 

 

It is currently in preparation for publication in a journal to be confirmed. 
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5.1 Abstract 

 

Losses tend to be overvalued compared to gains of the same amount, a 

phenomenon known as loss aversion. Previous studies have investigated the neural 

mechanisms related to loss aversion, linking it to feedback-related negativity (FRN) 

when participants had freedom of choice. However, real life decisions are often 

constrained by external factors that are outside of the decision maker’s control. 

Whether loss aversion influences neural responses to outcomes that are externally 

imposed upon an individual rather than freely chosen remains to be explored. The 

present study analysed the effects of loss aversion on neural responses to monetary 

outcomes resulting from free and imposed choices using electroencephalographic 

(EEG) recordings. A gambling task and parametric modelling of participants’ choices 

were employed to estimate individual differences in loss aversion. A subsequent 

gambling task served to evaluate neural responses to decision outcomes. Event-related 

potentials (ERPs) following gains and losses resulting from one’s own choices (choice 

freedom) or from an arbitrary violation of such choices (choice violation) were 

analysed and correlated with loss aversion. For participants who exhibited strong 

neural responses to choice violation, feedback ERPs were more negative for losses 

resulting from free compared to forced choices, while no such effect was observed for 

weak responders or for gain outcomes. Crucially, loss aversion correlated with FRN 

only when choices were made freely and only for strong responders. Results suggest 

that loss aversion mediates the neural processing of outcomes exclusively when 

outcomes are contingent upon one’s own choices and only for those participants 

displaying sensitivity towards having choice freedom. 
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5.2 Introduction 

 

The ability to quickly and effectively evaluate obtained outcomes is an 

important part of the decision making process. Previous electroencephalography 

(EEG) studies have highlighted the importance of feedback-related negativity (FRN) 

in outcome evaluation (Gehring and Willoughby, 2002; Miltner et al., 1997). FRN is 

an event-related potential (ERP) component which differentiates between positive and 

negative decision outcomes (Gehring and Willoughby, 2002; Hajcak et al., 2007; 

Holroyd et al., 2004; Nieuwenhuis et al., 2004b; Yeung and Sanfey, 2004), and 

represents one of the earliest components during outcome evaluation, peaking around 

200-350 ms after feedback onset (Walsh and Anderson, 2012). FRN can be elicited 

using simple gambling tasks in which participants select among options that can lead 

to monetary gains or losses (e.g., Gehring and Willoughby, 2002). 

The majority of prior research investigating FRN has focused on paradigms 

where individuals could make unobstructed choices among offered options and, 

consequently, the outcomes were contingent upon their own choices (Gehring and 

Willoughby, 2002; Goyer et al., 2008; Hajcak et al., 2006, 2007; Holroyd et al., 2004; 

Kokmotou et al., 2017; Nieuwenhuis et al., 2004b). Despite this, real-world decision 

making is often hindered by external unforeseen circumstances that operate outside of 

the decision maker’s control. To this end, some studies have employed paradigms that 

manipulate the amount of control participants have over outcomes by distinguishing 

between different agency levels during decision making. In particular, it has been 

shown that FRN is stronger following outcomes produced by choices that participants 

had made themselves compared to when they were passively viewing rewards that 

were randomly selected for them by a computer (Bismark et al., 2013; Martin and 

Potts, 2011; Yeung et al., 2005) or by another person deciding on their behalf (Itagaki 

and Katayama, 2008; Marco-Pallarés et al., 2010). 

Despite these developments, previous studies still divulged to participants in 

advance whether they would be free to make choices or whether they would passively 

receive rewards (Bismark et al., 2013; Itagaki and Katayama, 2008; Marco-Pallarés et 

al., 2010; Martin and Potts, 2011; Yeung et al., 2005). In real world conditions, 

however, it is not always possible to predict when unforeseen circumstances will affect 

our choice, and, often, dealing with such circumstances is considered unpleasant 
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(Leotti et al., 2010). For instance, it has been shown that, if one initially available 

choice is suddenly eliminated, participants report adverse emotions (Brehm et al., 

1966) and try to re-gain access to the eliminated option (Miron and Brehm, 2006). 

Importantly, successful adaptation to new rules and circumstances as directed by the 

environment is fundamental for survival, while failing to do so often negatively 

impacts mental health (Maier and Seligman, 1976; Shapiro et al., 1996). As such, it is 

important to investigate outcome evaluation in situations where choice freedom is 

unpredictable. To the best of our knowledge, the influence of unpredictable events that 

are outside of the individual’s control but nevertheless influence receipt of rewards, 

such as being forced to choose an option other than the originally preferred one, on 

FRN remains to be explored. 

It has also been suggested that the affective experience of having choice can 

be modulated by the valence of the potential outcome. For example, Leotti et al. (2014) 

demonstrated that when participants were faced with the possibility of gain or loss 

simultaneously, they reported liking having choice for cues predicting gains but were 

indifferent for cues predicting losses. Specifically, at the start of each trial, choice trials 

were differentiated from no-choice trials by cue shape (e.g., rectangle for choice trials) 

and the orientation of the cue (pointing upward or downward) indicated whether the 

trial could potentially result in monetary gain or loss. Participants learned the 

associations between the different cues and their respective trials prior to starting the 

experiment. In the choice condition, participants could freely choose between two 

keys, and in the no-choice condition, participants had to accept a computer-selected 

key. The keys were associated with different monetary amounts but participants did 

not know which key would yield which specific monetary amount. Instead, 

participants knew that, for example, in the gain trials, one key would yield a gain of 

£50 and the other a gain of £100. Nevertheless, having choice was associated with 

activity in ventral striatum for both gains and losses, a brain region commonly 

activated during evaluation of rewards (Delgado, 2007; O'Doherty et al., 2004). 

Importantly, in the case of losses, the authors observed large individual differences in 

the preference of having choice. They proposed that this might have been due to 

individual differences in sensitivity to the threat of potential loss influencing the 

affective experience of choice in the context of losses, although this hypothesis was 

not addressed directly. 
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In the current study, we investigated individual differences in sensitivity 

towards losses by focusing on loss aversion; the tendency to overestimate losses 

compared to gains of equivalent amount (Kahneman and Tversky, 1979). Previous 

studies investigating the neural underpinnings of loss aversion have linked it to activity 

in brain regions which are important for reward evaluation and value computation 

during value-based decisions, including the striatum (Canessa et al., 2017; Gelskov et 

al., 2015; Tom et al., 2007), the VMPFC (Tom et al., 2007), the amygdala (Canessa et 

al., 2013; De Martino et al., 2010; Gelskov et al., 2015; Sokol-Hessner et al., 2013) 

and the insula (Canessa et al., 2017; Markett et al., 2016). Importantly, loss aversion 

has previously been shown to be related to FRN (Kokmotou et al., 2017) and this 

association was modulated by situational factors (Kokmotou et al., under review). 

Specifically, the association between FRN and loss aversion was found for actual 

outcomes (i.e., outcomes resulting from gambles chosen by the individual), but not for 

counterfactual outcomes (i.e., outcomes that did not have any economic impact for the 

individual) resulting from unchosen gambles. As economically neutral outcomes were 

considered those that did not lead to any positive or negative monetary outcome. Of 

course, it cannot be ruled out that these outcomes were psychologically different. 

Although a counterfactual gain (i.e., gain that the participant missed but could have 

won if they decided differently) could potentially signify loss relative to what could 

have been won, similar to fMRI studies (Camille et al., 2004; Coricelli et al., 2005), 

this was not the case in the above study, a finding which is further in agreement with 

other EEG studies on counterfactual outcomes (Marciano et al., 2018; Yeung and 

Sanfey, 2004; Yu and Zhou, 2009). Crucially, counterfactual outcomes in the above 

study were not motivationally relevant for individuals since they were economically 

neutral. This suggests that, when participants were free to choose, loss aversion was 

not associated with the evaluation of outcomes that did not impact them. Therefore, 

the relationship between loss aversion and unchosen outcomes that do have an 

economic impact for participants remains to be explored. 

The aim of the present study was to investigate the influence of individual 

differences in loss aversion on FRN following monetary reward or penalty resulting 

either from participants’ free choice or from an arbitrary obstruction of choice. A 

gambling task and parametric fitting of choices were used to evaluate loss aversion 

(Kokmotou et al., 2017; Sokol-Hessner et al., 2013; 2009; Stancak et al., 2015) while 

a second gambling task was used to measure FRN (Gehring and Willoughby, 2002) 
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under two choice conditions. In the choice freedom condition, participants chose 

between two risky gambles, each offering 50% chance of winning or losing and 

received the outcome (gain or loss) from their chosen gamble. In the choice violation 

condition, participants received the outcome from the unselected gamble. FRN was 

evaluated separately for each choice condition and correlated with loss aversion 

values. Given that previous studies reported large individual differences in the 

preference of having choice (Leotti et al., 2014), it was hypothesised that individual 

differences in sensitivity to having choice freedom, as indicated by strength of neural 

activity in each choice condition, would mediate the relationship between loss 

aversion and FRN. 

 

5.3 Methods 

 

5.3.1 Participants 

 

A total of twenty-seven healthy participants (14 females) completed the study. 

After the exclusion of three participants who displayed extremely high values of loss 

aversion (> 3 SDs from the mean), similarly to previous studies (Sokol-Hessner et al., 

2009), the final sample consisted of 24 participants (13 females), 4 left-handed, aged 

22.57 ± 2.31 years (mean ± SD). The study was approved by the Research Ethics 

Committee of the University of Liverpool. All participants gave written informed 

consent in accordance with the Declaration of Helsinki. 

 

5.3.2 Procedure 

 

Participants first completed a monetary gambling task which was used to elicit 

individual loss aversion values. Risk aversion and choice sensitivity were also 

evaluated but, similar to Chapter 4, they were not associated with brain data. 

Participants were endowed with £20 to use for gambling and were informed that they 

could increase or decrease this amount depending on their choices. Figure 5.1 shows 

the trial structure. Participants were required to choose between a gamble and a certain 

outcome. The gamble offered 50% chance of winning or losing variable amounts of 
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money. The alternative certain outcome was either zero or an amount smaller than the 

potential gain from the corresponding gamble in a particular trial. If participants 

accepted the gamble, feedback was given about whether the trial was won or lost, 

whereas, if they rejected the gamble, they proceeded to the next trial. Feedback was 

not given for rejected gambles because in this case participants have selected the sure 

option (i.e., the option associated with 100% probability to receive the stated 

outcome). As such, participants could know what they have received without needing 

to be given any feedback. That was the case both when they received £0 and when 

they received other amounts, irrespective of whether these amounts were small or 

large. For instance, if a participant had to select between a gamble and a sure gain of 

£2, they knew that if they selected the gain they would receive it with 100% 

probability. Therefore, as soon as they selected it, they knew they would receive it. As 

such, the reason for which feedback was not given in this case was because it was not 

needed. Participants made a total of 200 such choices that allowed for estimation of 

individuals’ decision making style by calculating loss aversion based on prospect 

theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992). The exact 

gamble amounts, value and logit functions and numerical approximation method used 

were reported in detail in previous studies (Kokmotou et al., 2017; Stancak et al., 

2015). Participants received the accumulated amount from a randomly selected 10% 

of the trials in addition to the initial endowment as reimbursement for participating in 

the experiment. 
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Figure 5.1. Trial structure of the loss aversion task. Each trial began with the presentation of two 

prospects, which stayed on the screen for 4 s. Half of the screen presented a gamble option offering 

50% chance of winning or losing the displayed amount of money (e.g., ‘You win £3.0, You lose £3.0’). 

The other half of the screen presented a sure outcome (e.g., £0). Subsequently, two yellow rectangles 

appeared under each prospect and participants had 2.5 s to select the rectangle corresponding to the 

option they preferred by pressing the left or right mouse button. Their chosen rectangle turned green to 

highlight their choice and was followed by a 1 s black screen. Next, if participants accepted the gamble 

(top panel), feedback was given about the gamble outcome. This feedback constituted of the monetary 

amount in green colour with a ‘+’ sign or red colour with a ‘-’ sign for gains and losses, respectively, 

and stayed on the screen for 1 s. One more 1 s black screen appeared before the start of the next trial. 

If participants chose the sure option (bottom panel), they proceeded to the next trial. If participants 

rejected the gamble, there was no reason to give feedback because they already knew what the outcome 

was since the sure option was associated with 100% probability to receive the outcome. In the example 

above, participants knew that they received £0 since they chose this option, therefore, there was no 

reason to receive feedback. This was the case with all experiments that used this task. Giving them 

feedback would not have any advantage either in terms of behavioural or EEG data. 
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5.3.3 Choice violation/FRN task 

 

Following the loss aversion task, participants were connected to the EEG 

system and completed a second gambling task during which they could win or lose 

money either as a result of their own choice or irrespective of their choice. The task 

was adapted from previous FRN studies (Gehring and Willoughby, 2002). Figure 5.2 

shows the trial structure. Each trial began with the presentation of two white cards 

positioned next to each other. After 1 s, the numbers 25 and 5 appeared in each of the 

cards, indicating amount of money in pence to be potentially won or lost on that trial. 

The two cards never contained the same number simultaneously. Participants were 

required to choose, at their own pace, one of the cards but were informed that their 

choice could be arbitrarily swapped for the unchosen card. After participants had 

chosen their preferred card, a yellow frame appeared around it for 1 s. A black screen 

was then presented for 1 s serving as a resting interval. Next, participants received 

feedback (henceforth ‘choice feedback’) about whether their original choice was 

retained (‘unchanged’) or swapped for the opposite card (‘changed’). If their original 

choice was retained, participants were presented again with their originally chosen 

card surrounded by the yellow frame, whereas, if it was changed, participants saw the 

yellow frame surrounding the unchosen card. The choice feedback interval lasted for 

2.5 s. It was emphasised to the participants that they would receive the outcome (gain 

or loss) of the final chosen gamble (i.e., the one surrounded by the yellow rectangle 

after the choice feedback) irrespective of whether that was their original choice or not. 

Thus, the choice feedback was economically neutral for participants because both the 

chosen and the alternative card could lead to monetary gain or loss. Unbeknownst to 

participants, the chosen card was swapped for the opposite in half of the trials. After 

the choice feedback, another black screen was shown for 1 s. Finally, participants 

received feedback about the outcome of the gamble (henceforth ‘outcome feedback’). 

The chosen and the unchosen cards were displayed again with the sign of ‘+’ or ‘-’ in 

front of each number, indicating amount won or lost, respectively. Additionally, the 

yellow frame changed to green colour to represent gains and red to indicate losses. 

The outcome on any trial was predetermined by the computer so that gains and losses 

occurred with equal probability (i.e., 50%). The combination of choice and outcome 

feedback produced four possible outcomes: 1) the original choice was retained and 
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participant won (‘unchanged/gain’), 2) the original choice was retained and participant 

lost (‘unchanged/loss’), 3) the original choice was swapped for the unchosen card and 

participant won (‘changed/gain’), and 4) the original choice was swapped for the 

unchosen card and participant lost (‘changed/loss’). 

The task consisted of 384 trials, split into 12 blocks of 32 trials with the 

duration of each block being approximately 6 min. At the end of each block, 

participants received feedback about the amount of money earned in that block as well 

as the accumulated amount gained from the beginning of the task. Participants kept 

the total difference between their gains and losses from all trials of that task. 

 

 

 

 

 

Figure 5.2. Trial structure of the FRN task. Each trial began with the presentation of two white 

rectangles positioned next to each other (one on the left and one on the right side of the screen) on a 

black background. After 1 s, the numbers 25 and 5 were presented in either one of the rectangles, 

indicating amount of money (in pence). Participants had to choose between these two options by 

pressing the left or right mouse button, and their chosen option was highlighted for 1 s with a yellow 

rectangle. This was followed by a 1 s black screen. Afterwards, participants received choice feedback. 

In the choice freedom condition, they saw again the choice screen with their selected rectangle being 

surrounded by a yellow rectangle (top panel). In the choice violation condition, they saw the yellow 

rectangle surrounding the opposite card (bottom panel). In both choice conditions, the choice feedback 

was followed by a 1 s black screen, and after this, outcome feedback was presented whereby the chosen 

and the unchosen cards were displayed again with the sign of ‘+’ or ‘-’ in front of each number, 

indicating amount won or lost respectively. Additionally, the yellow frame changed to green colour to 

represent gains and red to indicate losses. This outcome feedback stayed on the screen for 2.5 s and was 

followed by a 1 s black screen before the beginning of the next trial. 
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5.3.4 EEG Recordings 

 

During the choice violation/FRN task, participants were connected to a 129-

channel Geodesics EGI System (Electrical Geodesics, Inc., Eugene, Oregon, USA) 

with a sponge-based HydroCel Sensor Net. The sensor net was aligned with respect to 

three anatomical landmarks; two preauricular points and the nasion. Electrode-to-skin 

impedances were kept below 50 kΩ, as recommended for this system (Ferree et al., 

2001; Picton et al., 2000). The recording band-pass filter was 0.01−200 Hz, and the 

sampling rate was 1000 Hz. The electrode Cz served as the reference. 

EEG data were pre-processed using BESA v. 6.1 program (MEGIS GmbH, 

Germany). EEG signals were spatially transformed to reference-free data using the 

common average reference method (Lehmann, 1987). Eye blinks and, when necessary, 

electrocardiographic artifacts were removed using principal component analysis (Berg 

and Scherg, 1994), while data were also visually inspected for the presence of any 

electrode artifacts due to muscle movement, and epochs contaminated with artifacts 

were excluded. Data were filtered from 0.5−35 Hz. 

 

5.3.5 Statistical analysis 

 

For statistical analysis, EEG data were exported to Matlab v. R2017a. Grand 

averaged ERPs from the two choice feedback conditions were compared statistically 

using a series of paired samples t-tests for each time sample from 300 to 600 ms 

following the presentation of choice feedback. Grand averaged ERPs from the four 

outcome feedback conditions were analysed with a two-way repeated measures 

ANOVA in the epoch from 200 to 300 ms following outcome feedback onset with 

choice feedback (unchanged vs changed) and outcome feedback (gain vs loss) as 

factors. Statistical significance was evaluated using permutation analysis (Maris and 

Oostenveld, 2007) with 5000 permutations in EEGLAB v.12 (Delorme and Makeig, 

2004). Averaged data from time intervals showing statistically significant effects were 

exported to SPSS Statistics software v. 22.0 (IBM Corp, 2013) for further analysis. 

Pearson’s correlation analysis was used to investigate linear associations between loss 

aversion and ERPs. A 95% confidence interval was employed. 
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5.3.6 ERP analysis 

 

The ERP analysis included two steps. First, ERPs time-locked to the 

presentation of choice feedback (unchanged/changed) were computed by averaging 

respective epochs during the interval from 100 ms before to 1000 ms after choice 

feedback. Epochs were baseline corrected using a time window of -100 ms to 0 ms 

relative to the onset of the choice feedback. A difference waveform was computed by 

subtracting ERPs in response to changed choice from ERPs in response to unchanged 

choice feedback (unchanged-minus-changed difference waveform). The mean number 

of accepted trials was 180.66 ± 1.79 and 182.62 ± 1.57 (mean ± SEM) for changed 

and unchanged choice condition, respectively. 

Second, ERPs time-locked to outcome feedback (gain/loss) were computed for 

each of the four possible outcome conditions (unchanged/gain, unchanged/loss, 

changed/gain, changed/loss) by averaging respective epochs from 100 ms before to 

1000 ms after outcome feedback. Epochs were baseline corrected using a time window 

of -100 ms to 0 ms relative to the onset of the outcome feedback. FRN was quantified 

as the potential difference after subtracting loss from gain ERPs for each of the choice 

feedback conditions. This resulted in ‘unchanged FRN’ (unchanged/gain-minus-

unchanged/loss difference waveform) and ‘changed FRN’ (changed/gain-minus-

changed/loss difference waveform). The mean number of accepted trials per condition 

was as follows: changed/gain: 92.04 ± 1.74, changed/loss: 90.85 ± 1.35, 

unchanged/gain: 92.12 ± 1.21, unchanged/loss: 91.70 ± 1.49. 

 

5.4 Results 

 

5.4.1 ERPs in response to choice feedback 

 

To explore brain responses following choice feedback, ERPs for trials where 

participants’ choice was changed to the opposite option (changed) were compared 

against trials where their original choice was retained (unchanged). Figure 5.3A shows 

grand averaged ERPs in response to choice feedback, the difference waveform 

between these two conditions (unchanged-minus-changed) and the corresponding 

topographic maps. The difference potential peaked approximately 380 ms after 
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presentation of choice feedback and showed a positive maximum at vertex electrodes 

protruding towards posterior electrodes. The selection of electrodes to be used for 

statistical analysis was based on the objective of choosing a cluster of electrodes where 

differences between conditions of interest were the strongest (Yu and Zhou, 2010). 

The resulting cluster consisted of six electrodes including Cz and five adjacent to it 

extending posteriorly (EGI electrodes 31, 54, 79, 80 and 55). 

A paired samples t-test was carried out at each time point from 300 to 600 ms 

after choice feedback to investigate differences between ERPs in response to 

‘unchanged’ and ‘changed’ choice conditions. Statistically significant differences 

were seen between 340-540 ms after choice feedback (shaded area in Figure 5.3A). A 

paired samples t-test on averaged data from this time window showed that 

‘unchanged’ choices yielded significantly stronger amplitudes compared to ‘changed’ 

choices (unchanged: 1.74 ± 0.24 μV, changed: 1.12 ± 0.23 μV; t(22) = 5.62, p < 0.001). 

Further analyses showed that the difference between changed and unchanged ERPs 

was invariant to the selection of particular electrodes in the potential maximum at the 

vertex (Pz: t(23) = 4.61, p < 0.001, unchanged: 1.82 ± 0.30 μV, changed: 1.17 ± 0.26 

μV; CPz: t(23) = 3.82, p < 0.001, unchanged: 1.79± 0.23 μV, changed: 1.21 ± 0.23 

μV; Cz: t(23) = 6.16, p < 0.001, unchanged: 1.68 ± 0.24 μV, changed: 1.06 ± 0.21 

μV). To further ensure that the findings were independent of the selected time window, 

a permutation analysis was conducted for each electrode and yielded very similar 

results (Pz 359-562 ms: t(23) = 4.89, p < 0.001, unchanged: 1.68 ± 0.29, changed: 1.03 

± 0.25; CPz 351-507 ms: t(23)=3.61, p < 0.001, unchanged: 1.90 ± 0.25, changed: 

1.27 ± 0.24; Cz 334-529 ms: t(23) = 6.05, p < 0.001, unchanged: 1.73 ± 0.29, changed: 

1.09 ± 0.22). 

 

5.4.2 ERPs in response to outcome feedback 

 

To evaluate effects of choice feedback on ERP amplitudes during the outcome 

receipt phase, ERPs to gain and loss outcomes resulting from both unchanged and 

changed choices were analysed. Figure 5.3B shows the grand averaged waveforms of 

the four outcome conditions, their corresponding topographic maps and the 

topographic maps of the two FRN difference waveforms (changed and unchanged 

FRN). The FRN waveforms showed a peak at approximately 230 ms and both 
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demonstrated a positive maximum over the vertex. A central midline electrode cluster 

including Cz and FCz as well as the two electrodes positioned immediately between 

them (EGI electrodes 6 and 7) was selected for statistical analysis. 

To investigate effects of choice (unchanged vs changed) and outcome feedback 

(gain vs loss) on ERPs, a two-way repeated measures ANOVA was carried out at each 

time point over a latency interval of 200 to 300 ms after outcome feedback onset. The 

ANOVA yielded a statistically significant main effect of outcome (gain vs loss) during 

220-290 ms after feedback presentation (shaded area in Figure 5.3B). Paired samples 

t-tests on averaged data from this time window showed that losses yielded 

significantly more negative amplitudes compared to gains (losses: 0.69 ± 1.62 μV, 

gains: 1.17 ± 1.65 μV; t(22) = 4.74, p < 0.001), revealing a typical FRN effect. 

Contrary to our hypothesis, there was neither a significant main effect of choice 

feedback nor an interaction between choice and outcome feedback on ERPs (ps > 

0.05), suggesting that brain responses after learning the gamble outcome were only 

modulated by outcome valence irrespective of whether this outcome stemmed from 

participants’ own choice or not. 

 

5.4.3 Associations of loss aversion with choice and outcome ERPs 

 

To investigate associations of loss aversion with choice and outcome feedback 

ERPs, three Pearson’s correlation analyses were carried out between loss aversion and 

each of the three difference potential waveforms (unchanged-minus-changed, changed 

FRN and unchanged FRN) in the time intervals of the statistically significant 

differences between conditions (340-540 ms for choice feedback and 220-290 ms for 

FRN). There was no statistically significant correlation between loss aversion and 

either difference waveform (ps > 0.05). 

 

5.4.4 Effects of individual differences in response to choice violation on FRN 

 

To analyse individual differences in the appraisal of choice violation feedback, 

a median split of the amplitudes of the unchanged-minus-changed difference 

waveform was used to divide the sample into those participants who responded weakly 

to the change of their choice and those who responded strongly. Figure 5.3C shows 
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grand averaged waveforms of the outcome feedback conditions for weak and strong 

responders to choice change. 

To investigate differences in outcome feedback ERPs for weak and strong 

responders to the choice violation feedback, a 2×2×2 repeated measures ANOVA was 

performed on 220-290 ms after outcome feedback with choice (unchanged vs 

changed), outcome (gain vs loss) and choice change response level (weak vs strong) 

as factors. The ANOVA yielded a significant main effect of outcome type (gain vs 

loss) on ERPs (F(1,22) = 29.05, p < 0.001), echoing the first analysis. A paired samples 

t-test on averaged data indicated that losses yielded significantly more negative 

amplitudes compared to gains (losses: 1.12 ± 0.42 μV, gains: 1.75 ± 0.45 μV; t(23) = 

5.51, p < 0.001). Neither the main effect of choice violation nor the main effect of 

response level reached significance (p > 0.05). 

The ANOVA yielded a statistically significant interaction between choice 

change and outcome feedback (F(1,22) = 9.001, p < 0.05). Post-hoc pairwise 

comparisons revealed that this interaction was driven by ERPs in response to losses, 

with ERPs to ‘changed/loss’ feedback being significantly stronger than ERPs to 

‘unchanged/loss’ feedback (changed/loss: 1.29 ± 0.43 μV, unchanged/loss: 0.95 ± 0.41 

μV; t(23) = 2.85, p < 0.05). In contrast, ERPs in response to gains were similar for 

both levels of choice feedback (ps > 0.05). Neither the interaction between response 

level and choice feedback nor the one between response level and outcome type were 

significant (ps > 0.05). 

Most importantly, the three-way interaction between choice feedback, 

outcome type and response level was statistically significant (F(1,22) = 5.29, p < 0.05). 

Figure 5.3D depicts mean ERP amplitudes of the four outcome conditions for weak 

and strong responders. Post-hoc t-tests revealed that this interaction was driven by 

ERPs in response to losses, with ‘changed/loss’ being significantly stronger than 

‘unchanged/loss’ for the strong response condition (changed/loss: 1.58 ± 0.51 μV, 

unchanged/loss: 1.06 ± 0.55 μV; t(11) = 2.78, p < 0.05). In contrast, gains were similar 

across both choice feedback and response levels. Results suggest that choice violation 

affected only those participants who responded strongly to the switching of their 

original choice for an arbitrarily imposed choice and only when choices led to losses. 
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5.4.5 Correlations with loss aversion 

 

A Pearson’s correlation analysis was carried out to investigate associations between 

loss aversion and FRN in those participants who responded strongly versus weakly to 

the choice change. A statistically significant correlation was found between loss 

aversion and ‘unchanged FRN’ for strong responders (r(12) = 0.68, p < 0.05). In 

contrast, no significant associations were found between loss aversion and either of 

the remaining FRN waveforms (strong changed FRN: r(12) = 0.19, weak unchanged 

FRN: r(12) = 0.28, weak changed FRN: r(12) = 0.25, ps > 0.05). Figure 5.3E shows 

the scatterplots and linear regression lines of the above correlations. Results suggest 

that loss aversion was associated with FRN only when participants responded strongly 

to choice change and only when outcomes originated from their own choices. 
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Figure 5.3. A. Grand averaged EEG potentials for the two choice feedback conditions and their 

difference waveform (left). The shaded area corresponds to the time interval of the statistically 

significant differences between ‘unchanged’ and ‘changed’ feedback (340-540 ms). Topographic maps 

of choice feedback and the difference potential shown at the peak (380 ms) of the difference waveform 

(right). The black circle indicates the electrode cluster entered into statistical analysis. B. Grand 

averaged EEG potentials for the four outcome feedback conditions (left). The shaded area corresponds 

to the time interval of the statistically significant main effect of outcome type (220-290 ms). 

Topographic maps of each outcome feedback condition and the difference potentials (right). The black 

circles indicate the electrode cluster entered into statistical analysis. C. Grand averaged EEG potentials 

for the four outcome feedback conditions split into weak and strong responders to choice feedback. The 

shaded areas correspond to the time interval of the statistically significant main effect of outcome type 

(220-290 ms). D. Bar graph illustrating the mean EEG amplitudes per condition. Asterisks indicate 

statistical significance. E. Scatterplots and linear regression lines representing the correlations between 

loss aversion and FRN. Confidence intervals are set at 95%. 

 

 

5.5 Discussion 

 

The present study identified two parameters as essential in order for loss 

aversion to be associated with the neural evaluation of decision outcomes: participants 

must display sensitivity to choice freedom and decision outcomes must be a product 

of the participant’s own decisions. A separation of the sample into participants who 

responded weakly versus strongly to the lack of choice freedom revealed that 

responses to losses rather than gains were more pronounced for strong responders. 

Moreover, we showed that the classic FRN effect was present in both choice freedom 

and choice violation conditions, which aligns with studies suggesting that this 

component represents a coarse binary dissociation between positive and negative 

outcomes (Yeung and Sanfey, 2004). 

 

5.5.3 ERPs following choice feedback 

 

Following selection of their preferred option, participants received feedback 

regarding whether this option would actually occur. An ERP component manifesting 

approximately 300-500 ms after receipt of choice feedback was more pronounced in 

the choice freedom compared to the choice violation condition. Based on the latency 
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of its peak, approximately at 380 ms after choice feedback, as well as its centro-

parietal topography, this component is thought to represent the P300 potential 

component (Polich, 2007, 2012). 

Previous research has indicated that the P300 plays important role in decision 

making and stimulus evaluation, encoding attentional and motivational mechanisms 

(Donchin et al., 1978; Polich, 2007). Moreover, some researchers have shown that the 

P300 is sensitive to the degree of personal responsibility experienced, with P300 

amplitudes being stronger in high compared to low responsibility conditions (Li et al., 

2011; 2010; Zhou et al., 2010). In the present study, the choice freedom condition may 

have produced an element of personal responsibility for participants due to the 

contingency of the decision outcome with their own actions. Likewise, the ability to 

choose freely produces an increased sense of personal control (Rotter, 1966), while 

the mere action of having choice leads to enhanced intrinsic motivation and perceived 

competence (Leotti and Delgado, 2011; 2010). Importantly, the P300 has previously 

been shown to be stronger for stimuli that are task-relevant and motivationally 

significant (Polich, 2007). In a similar vein, the choice freedom condition is likely to 

have been more motivationally significant for participants compared to the choice 

violation condition due to perceived increased control over decision outcomes, thus, 

leading to increased P300 amplitudes. 

 

5.5.2 ERPs following outcome feedback 

 

When focusing on ERPs following outcome feedback, irrespective of 

individual differences in sensitivity towards choice freedom, the classic FRN effect 

was observed, with monetary losses yielding more negative amplitudes compared to 

gains (Gehring and Willoughby, 2002; Miltner et al., 1997). Importantly, the FRN was 

observed in both choice freedom and choice violation conditions. This finding is 

consistent with previous FRN studies in the sense that the brain segregates positive 

and negative outcomes irrespectively of the context in which the outcome was 

produced (Hajcak et al., 2006). 

 It is possible that the FRN component in the choice violation condition in the 

current study is comparable to the observational FRN previously reported in tasks 

where participants passively viewed the delivery of rewards and made no overt choices 
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(Bismark et al., 2013; Itagaki and Katayama, 2008; Marco-Pallarés et al., 2010; Martin 

and Potts, 2011; Yeung et al., 2005). However, an important difference is that 

observational FRN studies report stronger FRN amplitudes in the active compared to 

the passive choice condition (Bismark et al., 2013; Itagaki and Katayama, 2008; 

Marco-Pallarés et al., 2010; Martin and Potts, 2011; Yeung et al., 2005), whereas the 

current study observed similar amplitudes in both choice conditions. Therefore, if 

FRN in the current study was simply observational in nature, a smaller FRN amplitude 

would have been observed in the choice violation condition. This discrepancy, taken 

together with the choice condition differentiation by the P300 component, is likely an 

indicator that the manipulation of choice freedom was successful. Participants did not 

appraise outcomes in the choice violation condition as passive rewards, but rather, 

outcomes appear to be evaluated in a different way, which is perhaps sensitive to 

individual differences related to the frustration associated with the disruption of choice 

(Leotti et al., 2010). 

 

5.5.3 Effects of individual differences in sensitivity to choice violation on FRN 

 

When individual differences in sensitivity to having choice freedom were 

considered, choice condition modulated the evaluation of decision outcomes, but only 

for those participants who were sensitive to retaining their choice freedom. Sensitivity 

to choice freedom was defined as the degree to which participants differentiated 

between choice freedom and choice violation conditions at the neural level, based on 

the difference in P300 amplitudes between the two conditions. The rationale for this 

comes from behavioural studies reporting individual differences in the way people 

experience having choice, with some being more sensitive to choice freedom and 

others more indifferent (Leotti and Delgado, 2014; Patall et al., 2008; Ryan and Deci, 

2006). To the best of our knowledge, this is the first study to investigate such 

differences at the neural level and to analyse their influence on loss aversion and 

feedback ERPs. 

Importantly, in our study, the modulation of outcome evaluation by choice 

condition occurred only for losses, which can be seen in Figure 5.3D. In contrast, both 

chosen and unchosen gains yielded similar amplitudes, suggesting that positive 

outcomes were keenly received irrespective of their source. The differences observed 
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for losses might be indicative of feelings of unfairness or of a general tendency to 

attribute failure to external factors (Brewin and Shapiro, 1984; Gregory, 1978; Rotter, 

1966). Along those lines, Leotti et al (2014) demonstrated the importance of outcome 

valence as a moderating factor in both behavioural measures of preference for having 

a choice and neural activation at the time of choice. Specifically, when both loss and 

gain outcomes were equally likely to occur, losses were associated with decreased 

preference for having choice. However, when participants were faced only with 

potential losses and had to try to avoid them, choice preference shifted towards levels 

similar to those for gains. Additionally, striatum activity associated with preference 

for having choice was modulated by outcome valence. In particular, during choice 

cues, which cues were different geometrical shapes associated with either a free-trial 

where participants had choice or a forced-trial where participants did not have a choice 

and just received an option randomly selected by the computer, the striatum was 

activated only for potential gains in the context of both gains and losses, and was also 

activated when choices could only lead to losses but not to gains. Furthermore, 

previous fMRI studies have demonstrated that when rewards are actively chosen by 

individuals, compared to passively delivered rewards, receipt of those rewards is 

associated with stronger activation of the striatum (Bjork and Hommer, 2007; 

O'Doherty et al., 2004; Tricomi et al., 2004), a region linked to emotional and reward-

related processing (Delgado, 2007). In addition, it has been shown that voluntary, 

rather than involuntary, risk taking is associated with activation in a range of brain 

regions relevant for reward-processing (Rao et al., 2008). Our finding that both agency 

and outcome valence contribute to the way in which decision outcomes are appraised 

on the cortical level aligns with the above fMRI studies. 

Regarding participants that were relatively indifferent to having choice in the 

current study, the lack of FRN modulation by choice condition suggests that they did 

not appear to be sensitive to how monetary outcomes were obtained, in the case of 

both rewards and penalties. It could be argued that, in the current task, this was rational 

behaviour given that outcomes were randomly selected by the computer in both choice 

conditions. In terms of cognitive load theory (Paas et al., 2003; Sweller, 1988, 1994, 

2011) and economic models of rational choice, the choice condition feedback could 

be ignored altogether as it has no real influence over outcomes. In this sense, it may 

be that by not emotionally engaging in feedback that was irrelevant for their goals, 

those participants behaved more rationally. 
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5.5.4 Loss aversion and FRN 

 

In the current study, loss aversion was correlated with FRN amplitude 

following outcomes resulting from unobstructed choices for participants who showed 

sensitivity to having choice freedom during 220-290 ms after feedback. This finding 

replicates our previous study, which, using a similar paradigm and experimental 

procedures, demonstrated that loss aversion was associated with FRN during 233-263 

ms after feedback onset (Kokmotou et al., 2017). In addition, it provides support to 

other studies, which, using experimental paradigms more suited to measure loss 

aversion, revealed similar associations between loss aversion and feedback ERPs 

(Kokmotou et al., under review). 

Another study investigated the influence of loss aversion on electrocortical 

potentials at the time of the decision. In particular, Heeren et al. (2016) showed that 

loss aversion mediated a posterior positive slow potential when participants were 

reflecting upon gambles with small gain/loss ratios which were indicative of high 

decision conflict. The authors report that this association was modulated by individual 

differences in trait loss aversion. Specifically, for individuals high in loss aversion, 

this posterior positive component was decreased both for high and low conflict 

decisions. The authors suggest that this indicates a relative negativity associated with 

conflict detection depending on trait loss aversion. Taken together with the fact that 

loss aversion has been theorised to represent an emotional mechanism that acts to 

avoid the negative emotionality associated with potential losses (Sokol-Hessner et al., 

2013; 2009), we postulate that loss aversion and FRN represent behavioural and neural 

manifestations of the same phenomenon: differential sensitivity to the valence of 

reward. Loss aversion is an emotional discomfort at the possibility of an upcoming 

threat, whereas FRN is the affective evaluation of that threat after an outcome has been 

obtained. 

Importantly, the lack of association between loss aversion and FRN under 

specific conditions has implications for outcome evaluation theories and for literature 

on the neural underpinnings of loss aversion by determining exceptions in its 

manifestation. Specifically, in the current study, loss aversion lacked relevance during 

outcome evaluation under three conditions; when individual differences in choice 

sensitivity were unaccounted for, when participants were indifferent towards having 
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choice freedom, and when outcomes were not contingent upon the participant’s 

choice. Firstly, when the whole sample was included in the analysis, loss aversion was 

not associated with FRN, in contrast to our previous study (Kokmotou et al., 2017). 

However, these contradicting findings can be reconciled by studies on observational 

learning (Bellebaum et al., 2010a). Several studies have shown that FRN following 

outcomes resulting from free choices is stronger compared to mere observation of such 

outcomes in which the individual has no agency (Bellebaum et al., 2010a; Coricelli et 

al., 2005). In this sense, we postulate that by including the choice violation 

manipulation, we induced a mixture of self and observational FRN which is different 

compared to the FRN we previously obtained from one single choice condition. This 

resembles our findings for when outcomes were considered self-irrelevant because 

they were counterfactual (Kokmotou et al., under review) and when outcomes 

influenced others but not the participant (Kokmotou et al., in preparation). Secondly, 

regarding the lack of an association between loss aversion and FRN for participants 

responding weakly to the change of their choices, we cannot rule out the possibility 

that this part of the sample may not have fully engaged in the task, may not have 

believed in the rules described, or may have become frustrated due to the lack of 

control and, consequently, became inattentive (Leotti et al., 2010). Finally, regarding 

the changed FRN for strong responders, it may be that they did not perceive the 

outcomes from changed choices as their own. Support for this interpretation comes 

from one study which showed that FRN was sensitive to subjective expectations about 

gambling outcomes (Moser and Simons, 2009). Participants were asked to report 

whether they thought that their selected gamble would win or lose at two time points; 

immediately after making a choice and just before learning the outcome. Results 

showed that in the condition where participants stuck to their initial guess, subjective 

reports of outcome expectations and ERPs associated with those outcomes were both 

stronger compared to when participants changed their original guess. Therefore, this 

finding could be indicative of decreased ownership at the time of the decision (Moser 

and Simons, 2009) and decreased control over action outcomes (Leotti et al., 2010), 

as individuals may assume different levels of responsibility when they have different 

levels of control over outcomes (Coricelli et al., 2005; Walton et al., 2004). 

The above findings add to previous studies suggesting that, like most 

phenomena, loss aversion is context dependent (Novemsky and Kahneman, 2005). For 

instance, studies have shown that loss aversion is absent for small amounts of money 
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(Harinck et al., 2007) and reduced when decisions are considered part of a broader 

portfolio of choices (Sokol-Hessner et al., 2013; 2009), or when decisions influence 

others (Andersson et al., 2014). In addition, one fMRI study showed that successful 

reduction of behavioural loss aversion was associated with decreased amygdala 

activity (Sokol-Hessner et al., 2013), suggesting that behavioural (as explained by a 

reduction in loss aversion with the regulate strategy) and neural (as indicated by the 

fMRI results and the difference which was associated with loss aversion) modulation 

of loss aversion can co-occur. Our study extends understanding of loss aversion by 

showing that, under certain conditions, loss aversion might be accompanied by a 

hindrance in the corresponding neural patterns, even without changes in its 

behavioural manifestation. This means that loss aversion was associated with neural 

activity under certain conditions only. 

To conclude, we showed that loss aversion was not associated with feedback 

potentials unanimously, but rather, this association is subject to certain conditions. 

Specifically, in order for loss aversion to be associated with the evaluation of 

experienced decision outcomes, decision makers must be sensitive to having choice 

freedom and outcomes must be contingent upon their own choices. 
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Chapter 6 

 

Study 4: Loss aversion is associated with the neural processing of 

decision outcomes only when making decisions impacting the self but 

not others. 

 

 

This experiment investigated the effects of loss aversion on the neural evaluation of 

monetary rewards earned either for participants themselves or for another participant. 

 

It is currently in preparation for publication in a journal to be confirmed. 
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6.1 Abstract 

 

Behavioural studies suggest that loss aversion, the tendency to overestimate 

losses over gains, is reduced when deciding for others. Electroencephalography (EEG) 

studies have demonstrated that loss aversion is associated with feedback-related 

negativity (FRN), a component manifesting as stronger activity for negative compared 

to positive decision outcomes. Whether loss aversion is associated with FRN in a 

similar manner when decisions impact others remains to be explored. The present 

study aimed to compare the influence of loss aversion on the neural evaluation of 

monetary outcomes obtained by participants for themselves or for others using EEG 

recordings. 

Participants completed a gambling task in which they could win or lose money 

for themselves (self-condition) or on behalf of another participant (other-condition). 

Parametric modelling of choices was used to estimate loss aversion separately in the 

self- and other-condition. Event-related potentials (ERPs) to outcomes in the self- and 

other-condition were analysed and correlated with loss aversion. 

No statistically significant differences were found for loss aversion between 

the self- and the other-condition. The classic FRN was observed in the self-condition, 

with losses producing more negative amplitudes compared to gains. In contrast, FRN 

in the other-condition demonstrated the opposite pattern. Furthermore, loss aversion 

correlated with FRN in the self-condition only. 

Results suggest that, despite participants deciding similarly for themselves and 

others at the behavioural level, decision outcomes obtained for themselves versus 

others were processed differently at the neural level. This may be reflective of a 

subconscious comparison between self- and other-outcomes, leading to the evaluation 

of others’ gain as a relative loss for themselves. 
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6.2 Introduction 

 

Making decisions on behalf of others might differ to the decisions made for 

oneself. Previous studies have highlighted self-other discrepancies in the context of 

risky decision making, with some studies suggesting that people make riskier 

decisions when deciding for others compared to when deciding for themselves 

(Chakravarty et al., 2011; Hsee and Weber, 1997; Pollai and Kirchler, 2012), although 

these findings are not conclusive (Fernandez-Duque and Wifall, 2007; Stone et al., 

2002). 

When decisions involve the prospect of a loss, people tend to overestimate 

losses compared to gains of the same nominal values, a phenomenon known as loss 

aversion (Kahneman and Tversky, 1979). Previous behavioural studies suggest that 

loss aversion is reduced when deciding for others compared to deciding for the self 

(Andersson et al., 2014). Furthermore, Fullbrunn et al. (2017) demonstrated that, when 

decision outcomes have joint implications for the self and for another person, loss 

aversion is of similar magnitude to when decisions impact only the self. Combined, 

the above findings support a general reduction in loss aversion when making decisions 

for others without consequences for the self. 

Further support for the discrepancies in decision making for the self versus 

others is provided by neuroimaging studies. A meta-analysis of functional magnetic 

resonance imaging (fMRI) studies demonstrated that reward-related brain regions 

were activated for both personal and vicarious reward, while areas relevant for 

mentalising responded specifically to vicarious reward (Morelli et al., 2015). For 

instance, activation of the striatum has been shown to be dependent on whether the 

decision outcome leads to a reward for the self or to a reward for another participant 

(Braams et al., 2014). In particular, rewards won for the self or for a friend were 

associated with increased striatum activity compared to penalties, whereas the 

opposite pattern was found when outcomes concerned a disliked other. Likewise, 

reward-related brain regions have shown increased activation for decisions regarding 

the self, compared to decisions concerning others, both at the decision phase and 

during reward receipt (Jung et al., 2013). 

Electroencephalography (EEG) studies have highlighted the importance of 

feedback-related negativity (FRN) in the neural processing of reward. FRN is an 
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event-related potential (ERP) component manifesting as a negative deflection in the 

electrocortical potential and differentiating between positive and negative outcomes 

(Gehring and Willoughby, 2002; Miltner et al., 1997). FRN occurs between 200 to 

350 ms after feedback onset and displays a negativity over fronto-central scalp 

locations (Walsh and Anderson, 2012). Literature on observational feedback has 

demonstrated that watching rewards and penalties being delivered to others produces 

FRN that is of similar polarity to self-relevant rewards, albeit of smaller amplitude 

(Fukushima and Hiraki, 2009; Kang et al., 2010; Leng and Zhou, 2014; Ma et al., 

2011; Yu and Zhou, 2006). In contrast, antagonistic situations where monetary 

rewards obtained for others translate into losses for the self lead to an opposite-polarity 

FRN (Fukushima and Hiraki, 2006; Itagaki and Katayama, 2008; Marco-Pallarés et 

al., 2010). However, in the above studies, participants passively observed outcomes 

being delivered to others and those outcomes were not dependent upon their own 

actions. 

The effects of making active decisions for others on FRN have recently been 

investigated by Liu et al. (2018). Participants played a gambling game in three 

conditions; for themselves, for an underprivileged student (high-empathy condition) 

and for a student for whom no information was given (low-empathy condition). The 

classic FRN was observed in the self-condition, no differences between gain and loss 

amplitudes were found in the high-empathy condition, while an opposite-valence FRN 

was present in the low-empathy condition. These results suggest that evaluation of 

vicarious rewards is modulated by empathy levels. Crucially, in the above study, gains 

for others were associated with losses for the participant as the amount won for others 

was subtracted from participants’ accumulated rewards. In another study, participants 

gambled for a friend or for a stranger and rewards won for the friend were associated 

with a stronger FRN compared to rewards won for a stranger, suggesting that FRN 

strength is modulated by social distance (Leng and Zhou, 2014).  

FRN has previously been shown to be correlated with loss aversion when 

participants decided for themselves. Specifically, individual differences in loss 

aversion correlated with FRN strength in fronto-central electrode sites during 233-263 

ms after learning the decision outcome (Kokmotou et al., 2017). Furthermore, this 

association between loss aversion and FRN has been shown to be specific only for 

decisions that had real but not hypothetical impact for participants (Kokmotou et al., 
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under review). However, whether loss aversion modulates FRN in a similar manner 

when decisions impact others remains unknown. 

The present study investigated the relationship between loss aversion and 

ERPs following monetary gains and losses resulting from decisions made by 

participants for themselves (self-condition) versus for another participant (other-

condition). A gambling task was employed to evaluate loss aversion while EEG was 

recorded simultaneously. ERPs time-locked to outcome onset were computed 

separately for gain and loss outcomes for the self- and other-condition, and individual 

loss aversion values were correlated with FRN for each condition. 

 

6.3 Methods 

 

6.3.1 Participants 

 

Twenty eight healthy participants (14 females) completed the study. One 

participant was excluded from the analysis due to a technical fault during the 

recording. Because the gambling task allowed participants to reject as many gambles 

as they wanted, nine more participants had to be excluded due to having less than 30 

trials per condition, which is the recommended minimum number of trials necessary 

for FRN averaging (Huffmeijer et al., 2014; Marco‐Pallarés et al., 2011). Therefore, 

the final sample included 18 participants (10 females), 2 left-handed, aged 24.39 ± 

4.02 years (mean ± SD). The study was approved by the Research Ethics Committee 

of the University of Liverpool, and all participants gave their written informed consent 

prior to the start of the experiment. 

 

6.3.2 Procedure 

 

In order to estimate individual loss aversion values and to record EEG activity 

following decision outcomes, participants were asked to play a gambling task while 

connected to the EEG system. Specifically, participants received an initial endowment 

ranging between £9 to £11 to use for gambling during the task and were told that they 

could increase or decrease this amount depending on how well they performed 

throughout the experimental session. Participants were told that they would play this 
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gambling task once for themselves and once for the next participant lined up for the 

study. In the condition where participants gambled for themselves (self-condition), the 

outcomes of a randomly selected 10% from all trials would be given to them on top of 

their initial endowment as compensation for participating in the experiment. In the 

condition where participants gambled for the next participant (other-condition), they 

would keep nothing for themselves. Instead, the outcomes of a randomly selected 10% 

from all trials would become the next participant’s endowment amount. Similarly, it 

was explained to participants that the endowment they received was won for them by 

the previous participant. However, unbeknownst to participants, the specific 

endowment amount was pre-selected before the start of the experiment. Specifically, 

this amount was a random number between £9-11 so that all participants received 

similar endowment amounts. 

The gambling task was adjusted from previous studies (Kokmotou et al., 2017; 

Sokol-Hessner et al., 2009; Stancak et al., 2015) and the exact gamble amounts used 

and stimuli timing were identical to those described in detail previously (Kokmotou et 

al., 2017; Stancak et al., 2015). Figure 6.1 shows the trial structure. Participants were 

required to choose between a gamble and a sure outcome. The gamble offered 50% 

chance of winning or losing variable amounts of money (e.g., ‘You win £3, You lose 

£3’). The alternative sure outcome was either zero or an amount smaller than the 

potential gain from the corresponding gamble in a particular trial. If participants 

accepted the gamble, feedback was given about whether they won or lost at that trial. 

Feedback constituted of the monetary amount in green colour with a ‘+’ sign and red 

colour with a ‘-’ sign for gains and losses, respectively. If participants rejected the 

gamble, they proceeded to the next trial. 

Participants made a total of 200 choices for themselves and 200 choices for the 

next participant in separate blocks. The task was split into 4 blocks of 100 trials each 

with intervening breaks. The order of block type was counterbalanced across 

participants. Within each block, 80 trials consisted of choosing between a mixed-

gamble (e.g., ‘You win £3, You lose £3’) and a sure zero outcome. The remaining 20 

trials consisted of a gain-only gamble (e.g., ‘You win £3, You lose £0’) versus a sure 

non-zero outcome (e.g., £2). The inclusion of both mixed- and gain-only gambles 

enabled a dissociation of loss aversion from risk aversion as mixed-gambles assess 

loss aversion whereas gain-only gambles assess risk aversion (Sokol-Hessner et al., 

2013). Similarly to previous studies (Sokol-Hessner et al., 2013), only mixed-gamble 
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trials were included in the ERP analysis in order to distinguish activity which was 

specifically relevant for loss aversion. It is not possible to assume that there is not a 

component of risk aversion in the decision to avoid a gamble, however, what this task 

does is to measure both loss and risk aversion and, by including the probability of a 

loss outcome in only one subset of the trials, then disentangle the two decision making 

parameters. The analysis conducted was similar to previous studies (Sokol-Hessner et 

al., 2009; 2013). As such, the advantage of this task is not that it assesses only loss 

aversion but rather that it separates it from risk aversion, as in the risk aversion trials 

there is no potential for loss. 

Loss aversion was evaluated separately for the self- and other-condition, using 

parametric modelling of participants’ choices based on prospect theory (Kahneman 

and Tversky, 1979). The exact gamble amounts used, value and logit functions, and 

numerical approximation method used have been reported in detail previously 

(Kokmotou et al., 2017; Stancak et al., 2015). 

 

 

 

 

 

Figure 6.1. Trial structure of the loss aversion task. Each trial began with the presentation of two 

prospects, which stayed on the screen for 3.5 s. Half of the screen presented a gamble option offering 

50% chance of winning or losing the displayed amount of money (e.g., ‘You win £3.0, You lose £3.0’). 

The other half of the screen presented a sure outcome (e.g., £0). Next, two yellow rectangles appeared 

under each prospect and participants had 2.5 s to select the rectangle corresponding to the option they 

preferred by pressing the left or right mouse button. Their chosen rectangle turned green to highlight 

their choice and was followed by a 1.5 s black screen. Subsequently, if participants accepted the gamble 

(top panel), feedback was given about the gamble outcome. This feedback constituted of the monetary 

amount in green colour with a ‘+’ sign or red colour with a ‘-’ sign for gains and losses, respectively, 

and stayed on the screen for 1 s. One more 1 s black screen appeared before the start of the next trial. 

If participants chose the sure option (bottom panel), they proceeded to the next trial. The trial structure 

was identical for both self- and other-condition. 

 

 



127 
 

6.3.3 Recordings 

 

EEG was recorded continuously throughout the experiment using a 129-

channel Geodesics EGI System (Electrical Geodesics, Inc., Eugene, Oregon, USA) 

with a sponge-based HydroCel Sensor Net. The sensor net was aligned with respect to 

three anatomical landmarks; two preauricular points and the nasion. Electrode-to-skin 

impedances were kept below 50 kΩ, as recommended for this system (Ferree et al., 

2001; Picton et al., 2000). The sampling rate was 1000 Hz and data were filtered online 

with a 0.01−200 Hz band-pass filter. The Cz electrode was used as the reference. 

 

6.3.4 ERP analysis 

 

EEG data were pre-processed using BESA v. 6.1 program (MEGIS GmbH, 

Germany). EEG signals were spatially transformed to reference-free data using the 

common average reference method (Lehmann, 1987). Eye blinks and 

electrocardiographic artifacts were removed by principal component analysis (Berg 

and Scherg, 1994). Data were also visually inspected for the presence of electrode 

artifacts due to muscle movement, and epochs contaminated with artifacts were 

excluded. Data were filtered from 0.5−35 Hz. 

ERPs time-locked to feedback onset were computed separately for each of the 

four possible outcome conditions (self-gain, self-loss, other-gain, other-loss) resulting 

from the accepted mixed-gamble trials. Epochs from 200 ms before to 1000 ms after 

outcome onset were averaged for each condition and baseline-corrected using a time 

window of -200 to 0 ms relative to outcome feedback onset. 

 

6.3.5 Statistical analysis 

 

For statistical analysis, EEG data were exported to Matlab v. R2017a. Grand 

averaged ERPs from the four outcome feedback conditions were analysed with a two-

way repeated measures ANOVA from 250 to 350 ms with decision type (self vs other) 

and outcome type (gain vs loss) as factors. The statistical significance was evaluated 

using permutation analysis (Maris and Oostenveld, 2007) with 5000 permutations in 

EEGLAB v.12 (Delorme and Makeig, 2004). Averaged data from time intervals 
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showing statistically significant effects were exported to SPSS Statistics software v. 

22.0 (IBM Corp, 2013) for further analysis. Pearson’s correlation analysis was used in 

order to investigate associations between loss aversion and ERPs. 

 

 

6.4 Results 

 

6.4.1 Loss aversion 

 

Mean loss aversion for decisions regarding the self was 1.81 ± 0.20 (mean ± 

SEM) and loss aversion for decisions regarding others was 1.31 ± 0.16. A paired 

samples t-test showed that there were no statistically significant differences in loss 

aversion for decisions regarding the self versus others (t(17) = 1.81, p = 0.088), 

suggesting that participants decided in similar ways for themselves and others. 

 

6.4.2 FRN 

 

Figure 6.2A shows grand averaged ERP waveforms for the four possible 

feedback conditions (self-gain, self-loss, other-gain, other-loss) of the FRN electrode 

cluster (comprising electrodes FCz and Fz) on the left and their corresponding 

topographic maps on the right. To investigate the effects of decision and outcome type 

on FRN, a 2 (decision: self vs other) by 2 (outcome: gain vs loss) repeated measures 

ANOVA was conducted on data pooled over the FRN electrode cluster from 250-350 

ms after feedback onset. 

The ANOVA revealed a statistically significant interaction between decision 

and outcome type during 315 to 345 ms after feedback (F(1,17) = 15.01, p < 0.05). 

This time window is indicated by the light grey shaded area in Figure 6.2A. A paired 

samples t-test on mean data from this time window showed that, when participants 

were deciding for themselves, losses yielded more negative amplitudes compared to 

gains (losses: 3.55 ± 0.81 μV vs gains: 4.26 ± 0.77 μV; t(17) = 3.29, p < 0.05), 

revealing the classic FRN effect. When deciding for others, results showed the 

opposite pattern with losses being more positive compared to gains (losses: 2.48 ± 
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0.59 μV vs gains: 1.79 ± 0.45 μV; t(17) = -2.20, p < 0.05), suggesting that decisions 

regarding others yielded an opposite-direction FRN. 

The main effect of decision was significant during 286 to 346 ms after 

feedback (F(1,17) = 17.17, p < 0.05). This time window is indicated by the dark grey 

shaded area in Figure 6.2A. A paired samples t-test on mean data from this time 

window showed that feedback following decisions for the self yielded stronger 

amplitudes compared to decisions for others (self-decision: 3.36 ± 0.70 μV vs other- 

decision: 1.73 ± 0.48 μV; t(17) = 2.97, p < 0.05). The main effect of outcome was not 

significant (p > 0.05). 

 

6.4.3 Correlations with loss aversion 

 

Pearson’s correlation analysis was carried out to investigate the relationship 

between loss aversion and FRN following outcomes resulting from decisions for the 

self or for others during the time interval of the statistically significant interaction 

(315-345 ms). For decisions regarding the self, a difference waveform was created by 

subtracting ERPs to self-gains from ERPs to self-losses (self-FRN). For decisions 

regarding the self, a difference waveform was created by subtracting ERPs to other-

gains from ERPs to other-losses (other-FRN). 

Loss aversion for decisions regarding the self correlated with self-FRN (r(18) 

= 0.57, p < 0.05). Loss aversion for decisions regarding others did not correlate with 

other-FRN (r(18) = 0.04, p > 0.05). Figure 6.2B shows the scatter plots, regression 

lines and 95% confidence interval lines representing the associations of loss aversion 

with self-FRN (left) and other-FRN (right). The topographic maps of the two 

difference waveforms are also depicted in Figure 6.2B and 6.2C, where it is evident 

that self-FRN yielded a negativity over fronto-central scalp locations whereas other-

FRN had the opposite pattern. 
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Figure 6.2. A. Grand averaged EEG potentials for the four feedback conditions (self-gain, self-loss, 

other-gain, other-loss) pooled over the FRN electrode cluster (FCz, Fz). The light grey shaded area 

corresponds to the time interval of the statistically significant interaction between decision and outcome 

type (315-345 ms). The dark grey shaded area corresponds to the time interval of the main effect of 

decision type (286-346 ms). Topographic maps of each feedback type are shown at the peak of the 

conditional waveforms (approximately at 320 ms). B. Scatterplot, linear regression line and 95% 

confidence interval lines representing the correlation between loss aversion and FRN in the self-

condition with the corresponding topographic map shown at 320 ms. C. Scatterplot, linear regression 

line and 95% confidence interval lines representing the correlation between loss aversion and FRN in 

the other-condition with the corresponding topographic map shown at 320 ms. 
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Figure 6.3. A. Mean EEG amplitudes for the four feedback conditions (self-gain, self-loss, other-gain, 

other-loss) pooled over the FRN electrode cluster (FCz, Fz) averaged over the time window of the 

statistically significant interaction (315-345 ms). B. FRN averaged potentials in the self-condition (solid 

black line) and other-condition (dashed black line). The light grey shaded area corresponds to the time 

interval of the statistically significant interaction between decision and outcome type (315-345 ms). 

The dark grey shaded area corresponds to the time interval of the main effect of decision type (286-346 

ms). 
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6.5 Discussion 

 

The present study investigated loss aversion and its influence on neural 

evaluation of outcomes during decisions impacting participants themselves versus 

others. Behavioural data showed that loss aversion did not differ between conditions, 

suggesting that participants were equally sensitive to prospective losses irrespective 

of whether those losses concerned themselves or others. However, decision outcomes 

for oneself or for another person appeared to be processed differently at the neural 

level. In the self-condition, the classic FRN component was observed with losses 

yielding more negative amplitudes compared to gains. In the other-condition, the 

inverse pattern was observed, leading to an opposite-polarity FRN effect, suggesting 

that gains (losses) for others were evaluated as losses (gains) for the self. Importantly, 

loss aversion was associated with FRN only in the self-condition. 

The lack of loss aversion differences between conditions was somewhat 

surprising considering previous studies which found reduced loss aversion for 

decisions regarding others (Andersson et al., 2014; Füllbrunn and Luhan, 2017; 

Mengarelli et al., 2014; Polman, 2012b). One possible explanation for this discrepancy 

might be that the participants in the current study perceived similarities between 

themselves and the other person (e.g., student status). Psychological distance, and 

specifically the social aspect of it, that is, how different one considers another person 

to the self (Liberman et al., 2007), has been highlighted as an important factor during 

decision making (Polman and Emich, 2011; Trope and Liberman, 2010). For instance, 

the negative impact of losses is considered smaller for larger compared to shorter 

psychological distances (Malkoc and Zauberman, 2006). Importantly, Polman (2012b) 

showed that, in conditions of low psychological distance, decisions for others were 

similar to decisions regarding the self. Furthermore, smaller perceived psychological 

distance leads to a prevention focus, whereas larger is associated with a promotion 

focus (Trope and Liberman, 2010). Likewise, Polman (2012a) demonstrated an 

association between loss aversion and regulatory focus (Crowe and Higgins, 1997; 

Pennington and Roese, 2003) such that those with a promotion focus showed higher 

loss aversion for themselves versus others, whereas those with a prevention focus 

showed no differences. Therefore, if participants in the current study perceived small 
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psychological distance between themselves and the other participant, losses might 

have been equally aversive in both conditions. 

 

6.5.1 FRN 

 

In the self-condition, we observed the classic FRN component, with losses 

yielding more negative amplitudes compared to gains, thus, replicating many previous 

studies (Gehring and Willoughby, 2002; Nieuwenhuis et al., 2005c; Yeung and 

Sanfey, 2004). In the other-condition, we observed the opposite effect, suggesting that 

participants evaluated the gains (losses) of others as losses (gains) for the self. The 

finding of an opposite-FRN effect for decisions regarding others aligns with the low-

empathy condition in the study by Liu et al. (2018) whereby the other person was a 

student similar to the participant. The authors observed an FRN of opposite polarity 

when participants did not feel empathy for the other person. Similarly, it is consistent 

with previous studies which demonstrated an opposite-polarity FRN in antagonistic 

situations during observational learning (Fukushima and Hiraki, 2006; Itagaki and 

Katayama, 2008; Marco-Pallarés et al., 2010). However, when personal and vicarious 

rewards were independent, observational FRN has been shown to be of the same 

polarity (Fukushima and Hiraki, 2009; Kang et al., 2010; Leng and Zhou, 2014; Ma et 

al., 2011; Yu and Zhou, 2006). Nevertheless, in the above observational learning 

studies, participants did not make active decisions for others, rather, they just observed 

the random delivery of rewards. In the current study, the rewards won for others were 

contingent upon participants’ own actions, perhaps making the other person’s 

outcomes more relevant and, thus, enhancing comparison effects between personal 

and vicarious rewards. 

FRN has been shown to encode outcomes not in absolute but in relative ways 

(Holroyd et al., 2004) based on their motivational significance for participants 

(Gehring and Willoughby, 2002). For instance, it has been shown that when two gains 

of different size are possible but the smaller one is received, participants consider this 

as a relative loss (Holroyd et al., 2004). Similarly, a gain for others might have 

constituted a loss for the self since it signified a missed opportunity. Along those lines, 

Boksem et al. (2011) showed that FRN is dependent on social comparison. 

Specifically, FRN was modulated by another player’s outcome during a gambling task 
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such that it was the most negative when the other player received positive feedback 

while other’s negative feedback did not make any difference. This suggests that FRN 

was the most pronounced during the participant’s comparison with a better 

performance than their own. Likewise, it has been shown that ventral striatum was 

activated similarly during both absolute and comparative rewards, such as when losing 

a specific amount or when winning an amount smaller than another participant (Dvash 

et al., 2010). Moreover, another study showed that people reported being envious 

when others’ outcomes were better than their own, with more envy being associated 

with increased anterior cingulate cortex activity (Takahashi et al., 2009), a brain region 

which is considered a possible FRN source (Gehring and Willoughby, 2002). In 

general, upward comparisons lead to negative emotions (Dvash et al., 2010; Roese and 

Epstude, 2017; Wu et al., 2011; Zeelenberg et al., 1998) and it is these emotions that 

might have been reflected in the FRN response during learning the outcomes obtained 

for others. 

 

6.5.2 FRN associations with loss aversion 

 

The association between loss aversion and FRN strength in the self-condition 

replicates previous findings (Kokmotou et al., 2017). In particular, loss aversion 

measured during a separate task was associated with FRN amplitude recorded using a 

different forced-choice gambling task at fronto-central electrode sites during 233 to 

263 ms after learning the choice outcome (Kokmotou et al., 2017). We postulate that, 

the more prospective negative outcomes were feared during the decision making 

process, as indicated by increased loss aversion, the more the brain differentiated 

between outcomes during the outcome receipt phase in the self-condition. 

Previous studies have investigated the influence of loss aversion on ERPs. For 

instance, loss aversion has previously been associated with stronger resting state EEG 

activity in the right, compared to the left, hemisphere at central and posterior sites 

(Duke et al., 2018). Furthermore, loss aversion has been shown to modulate a posterior 

positive slow wave during difficult decisions, as indicated by small gain/loss ratios 

(Heeren et al., 2016). Additionally, fMRI studies provide evidence for a link between 

loss aversion and a range of brain regions which play an important role in value 

computation and evaluation of rewards, including the VMPFC, the amygdala and the 
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insula (Canessa et al., 2017; 2013; De Martino et al., 2010; Gelskov et al., 2015; 

Markett et al., 2016; Tom et al., 2007). 

In our previous study (Kokmotou et al., under review), loss aversion was 

selectively associated with actual but not with counterfactual outcomes (i.e., outcomes 

resulting from accepted gambles versus hypothetical outcomes resulting from rejected 

gambles that could have been obtained, if the individual had decided differently). This 

suggests that outcomes should have motivational significance for participants in order 

for loss aversion to take effect. Similarly, in the current study, outcomes for others 

were less important for participants since they did not influence their own earnings. 

Therefore, although participants had a similar level of motivation to win for 

themselves and others, as indicated by the lack of differences in the behavioural 

results, loss aversion was not associated with others’ outcome evaluation, namely FRN 

in the other-condition. 

Taken together, the behavioural and EEG results suggest that there might have 

been a two-stage process taking place. Firstly, losses have been evaluated equally 

aversive during the decision time for participants themselves and others alike, leading 

to similar loss aversion values in both conditions. Secondly, an automatic involuntary 

evaluation of decision outcomes after they were received led to social comparisons 

between the rewards achieved for the self versus those for others. The lack of 

association between behavioural and neural data in the other-condition might indicate 

that the emotional responses associated with loss aversion at the time of the decision 

were diminished by the time participants learned the decision outcome. This is in line 

with literature proposing that decision making for the self compared to others recruits 

different neural evaluation mechanisms. For instance, one study showed that making 

decisions with negative consequences for the self was associated with regret, while 

making wrong decisions for others was associated with guilt and, importantly, regret 

led to stronger emotional reactions compared to guilt (Wagner et al., 2012). 

Furthermore, the emotional reactions experienced following risky decisions are not 

always of the intensity that they were hypothesised to be during deliberate thinking 

about those decisions (Loewenstein et al., 2001). Thus, the asymmetry in the neural 

evaluation of self-other outcomes might have been due to a mistaken initial hypothesis 

that participants would be gratified by another individual winning a reward in the same 

way that they would be gratified if they received the reward themselves. 
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To conclude, we showed that loss aversion during a monetary gambling task 

was similar for decisions made both for participants themselves and for others. 

However, the similarities in the amount of loss aversion revealed at decision time were 

not reproduced during the outcome evaluation period. In particular, the classic FRN 

component was observed for self-decisions, whereas an opposite-direction FRN was 

observed for other-decisions, suggesting differential processing of self- and other-

outcomes. Finally, loss aversion was associated with FRN only when making 

decisions for the self but not when making decisions impacting others, further 

emphasising the observed discrepancies between behavioural and EEG data for 

participants themselves versus others. 
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Chapter 7 

 

General Discussion 

 

 

The overall aim of this thesis was to explore the effects of loss aversion on the 

evaluation of decision outcomes, and to investigate the neural mechanisms underlying 

such effects using EEG. It was hypothesised that individual differences in loss 

aversion would correlate with the neural evaluation of monetary decision outcomes, 

and that such modulation would be observed in feedback ERPs. Specific conditions 

influencing the loss aversion effects were identified by studying decision making in 

different contexts. 

 

7.1 Summary of findings 

 

The first study of this thesis investigated whether individual differences in loss 

aversion evaluated using a monetary gambling task were associated with FRN strength 

measured during a second forced-choice gambling task. It was hypothesised that 

people high in loss aversion would also show increased FRN. An exploratory SPM 

analysis showed that loss aversion was associated with FRN strength at fronto-central 

electrode locations during 233 to 263 ms after feedback onset. ERP analysis of the 

scalp data revealed the classic FRN with monetary losses yielding more negative 

amplitudes compared to gains. Correlation of behavioural loss aversion data with 

mean amplitude data from the 233-263 ms time window revealed statistical 

significance, suggesting that higher loss aversion values were associated with stronger 

FRN. Source analysis estimated that OFC was the generator of the FRN, and OFC 

activity strength during the 233-263 ms window was further associated with individual 

differences in loss aversion. Finally, a comparison analysis between loss and risk 

aversion showed that these findings were specific to loss aversion as risk aversion was 

associated both with different scalp topographic pattern and timing while it was not 

associated with FRN amplitudes. 



138 
 

 The second study utilised a single gambling task with EEG recordings in order 

to simultaneously measure loss aversion and neural processing of both actual and 

counterfactual choice outcomes. The aim of this investigation was to replicate the 

correlational results from the first study and, furthermore, to explore the neural 

processing of counterfactual outcomes. It was hypothesised that individual differences 

in loss aversion would correlate with FRN strength following both actual and 

counterfactual outcomes. The findings from the first study were replicated such that 

loss aversion was associated with FRN following obtained gains and losses during 

250-350 ms after feedback onset at fronto-central midline electrodes. In addition to 

FRN, scalp data suggested the presence of a P300 potential, so this component was 

also analysed. Results for P300 mirrored those of FRN, and loss aversion was 

associated with P300 strength during 350-450 ms at centro-parietal electrodes. 

However, contrary to our hypotheses, differences between ERPs following gains and 

losses were not statistically significant in the counterfactual outcome condition, while 

loss aversion was not associated with FRN or P300 to counterfactual outcomes. This 

result suggests that outcomes must have real economic consequences for individuals 

in order for loss aversion to influence the evaluation phase of the decision making 

process. After the exploratory analysis of the first study, this second experiment 

further supported associations of loss aversion with feedback ERPs and set a first 

condition for the loss aversion effects: outcomes must be of significance to the 

participants. 

 The third study aimed to investigate an important factor in decision making 

that has scarcely been investigated in EEG literature, namely, decisions when there 

are obstacles interfering with the choice process and outcome receipt. A modified FRN 

gambling task was used in tandem of real world limitations during decisions. It was 

shown that, following obstructed decisions, participants showed a decreased P300 

component compared to when they were able to choose freely between alternative 

options. Following the receipt of outcomes, the classic FRN was observed for both 

choice conditions. A median split of the sample between participants showing strong 

and weak P300 amplitudes was used to investigate effects of individual differences in 

sensitivity to having choice freedom on outcome processing. Results showed that 

outcomes from choices made by participants themselves and outcomes resulting from 

arbitrary inflicting decisions upon participants were processed differently on the 

neural level. This effect was specific for losses such that losses resulting from 
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unchosen outcomes produced stronger amplitudes compared to those from decisions 

chosen by participants. This effect was not significant for gains. Furthermore, this 

result was only found for strong but not weak responders, suggesting that the latter did 

not focus on how outcomes were obtained but rather focused only on their valence. 

Crucially, loss aversion was associated with FRN only in the condition of outcomes 

freely chosen by participants and only for strong responders. Thus, this third study 

established further conditions for loss aversion to influence the neural processing of 

decision outcomes: participants must be sensitive to having choice freedom and 

outcomes must result from their own choices. 

 The fourth study investigated loss aversion within a social context. 

Specifically, this study aimed to investigate both behavioural differences in loss 

aversion for decisions regarding the self and decisions regarding others as well as the 

neural underpinnings of such decisions. Participants were led to think that they would 

be gambling to win money for themselves or for another participant. Results revealed 

that participants decided similarly for themselves and others on the behavioural level, 

as indicated by a lack of statistically significant differences between loss aversion in 

the self and the other condition. For decisions regarding the self, the classic FRN was 

found. Surprisingly, for decisions regarding others, the FRN was of opposite direction, 

suggesting that rewards gained for others were probably experienced as relative losses 

for the self on the neural level. This finding might have been due to a social 

comparison taking place between gains for the self versus gains for others leading to 

emotions of envy or disappointment. Furthermore, loss aversion correlated only with 

FRN following decisions about the self but not decisions about others, suggesting that 

loss aversion was a reliable predictor of outcome processing only when outcomes 

concerned the individual. These discrepancies between behavioural and neural data 

might suggest that, even though participants appeared to have been equally eager to 

win for themselves and others, rewards for others were not experienced similarly to 

rewards for themselves after learning the decision outcome. This final study further 

clarified that outcomes must be important for the self but not for others in order for 

loss aversion to influence their neural processing. 
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7.2 Themes 

 

Several common themes emerged from the experimental findings in the 

present thesis. The overarching finding was that loss aversion is consistently 

associated with feedback ERPs when it comes to outcomes that are motivationally 

significant for individuals. Such effects were represented in a range of experimental 

conditions, using different types of decisions. 

 

7.2.1 Loss aversion is associated with the processing of important outcomes 

 

A common theme emerging from all four experiments is that loss aversion is 

associated with the neural processing of decision outcomes that are of motivational 

significance for the decision maker. Individual differences in loss aversion were 

associated with individual differences in FRN amplitude strength across all studies 

when decisions had monetary consequences for participants. In contrast, loss aversion 

was not associated with FRN when decisions did not have any monetary consequences 

for participants. Furthermore, loss aversion was not associated with FRN when 

participants were forced to receive a reward or penalty that was randomly selected for 

them by the computer. 

These findings correspond to behavioural studies suggesting that the presence 

and magnitude of loss aversion depend on whether a future reward is deemed as 

worthy (Harinck et al., 2007) and whether the decision maker has the intention to 

pursue a specific outcome (Novemsky and Kahneman, 2005). The findings are also in 

line with literature showing that the motivational significance of a reward influences 

a range of decision making aspects, including the amount of mental (Boksem and 

Tops, 2008; Botvinick et al., 2009; Westbrook et al., 2013) and physical (Hartmann et 

al., 2013; Schmidt et al., 2012) effort dedicated towards achieving the reward, initial 

goal setting (Venables and Fairclough, 2009), attention paid to the task (Engelmann et 

al., 2009; Hübner and Schlösser, 2010; Padmala and Pessoa, 2011), and time spent 

looking at the reward (Krajbich et al., 2010; Libera and Chelazzi, 2006). 

The finding that loss aversion consistently correlated with the processing of 

economically important outcomes extends these results and provides further evidence 
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that important and unimportant outcomes have differential effects on feedback-related 

cortical activity patterns. Likewise, a range of neuroimaging studies have manipulated 

the motivational significance of rewards by differentiating between monetary versus 

non-monetary incentives. For instance, larger FRN amplitudes were observed during 

incentive trials (e.g., where the participant received money for selecting the correct 

option) compared to non-incentive trials (e.g., where the participant received nothing 

or just points that did not translate into monetary rewards), and this effect appeared 

irrespective of whether incentives were defined in terms of earning rewards or 

avoiding penalties (Potts, 2011). Another study directly compared real and 

hypothetical rewards and found that real rewards led to stronger FRN and P300 

amplitudes (Xu et al., 2018). Similarly, feedback about monetary rewards was 

associated with stronger FRN amplitudes compared to non-monetary feedback that 

merely signalled correctness (Van den Berg et al., 2012). Along those lines, an fMRI 

study found stronger OFC and VS activation when participants made real compared 

to hypothetical purchases (Kang et al., 2011). 

The differences in the associations of loss aversion with feedback 

electrocortical potentials regarding important and unimportant outcomes can be 

understood within research frameworks suggesting that the neural representation of 

reward does not reflect a single aspect, but rather, the brain encodes information about 

(at least) two distinct aspects of outcomes, namely, their motivational and affective 

relevance (Carter et al., 2009). The motivational aspect refers to the value of the 

outcome (e.g., important versus unimportant), whereas the affective aspect refers to 

its valence (e.g., gains versus losses). For instance, one study manipulated both the 

motivational relevance of the reward (self- versus charity-directed rewards) and its 

affective relevance (gain versus loss), and found that activation strength within 

nucleus accumbens (NAcc) and ventral tegmental area (VTA) could be described as a 

function of reward magnitude during self-directed trials only, suggesting that 

activation in these brain regions primarily reflected the motivational relevance of the 

reward (Carter et al., 2009). The results from the current thesis extend this research by 

showing that loss aversion correlated with feedback ERPs exclusively in conditions of 

reward significance, while lack of self-relevance masked both loss aversion and 

valence associations, resulting in an attenuation of FRN amplitudes. Therefore, the 

distinction between important versus unimportant outcomes emerges as the most 
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significant factor for the association of loss aversion with feedback ERPs. This finding 

has important theoretical implications for loss aversion research, (i.e., that it is only 

associated with brain activity when the outcomes are important) while the present 

thesis further provides a step towards understanding when loss aversion plays a role 

during outcome processing by highlighting that not all outcomes are processed 

similarly, and, importantly, by identifying an initial set of specific conditions that need 

to hold in order for loss aversion to influence outcome evaluation. 

 

7.2.2 Effects of individual differences on feedback ERPs 

 

The results of the current thesis contribute to a more general literature on the 

role of individual differences in reward processing. Across all four experiments, 

individual differences in loss aversion were reflected in FRN amplitudes. A similar 

pattern of results was also found for the P300 potential in the second experiment. 

Given that both ERP components were computed as difference waveforms between 

gain and loss outcomes, these results appear to suggest that the more participants 

disliked the prospect of losing, the more the brain differentiated between positive and 

negative outcomes after those have been received. Furthermore, findings from the 

third experiment showed that individual differences measured on the neural level were 

associated with different electrocortical patterns during outcome evaluation. 

Specifically, participants who showed enhanced P300 amplitudes in response to 

having choice freedom, evaluated outcomes depending on how these outcomes were 

obtained, and this was seen as amplitude differences in loss ERPs between the two 

choice conditions. 

Investigating the potential influence of individual differences during decision 

making is crucial for a better understanding of the cognitive processes associated with 

and leading to specific choice behaviours (Cohen, 2007). Given that loss aversion 

refers to the tendency to avoid negative consequences at the cost of obtaining positive 

ones, literature investigating individual differences in negativity bias can provide an 

explanatory context. For instance, increased subjective experience of negative affect 

and concern over the outcome of an event have been associated with stronger FRN 

(Santesso et al., 2008; Tucker et al., 2003). This finding is even more pronounced in 

research showing that depressed participants, compared to controls, exhibit enhanced 
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FRN amplitudes following negative feedback in the context of both incorrect 

performance (Tucker et al., 2003) and monetary loss (Santesso et al., 2008). Along 

those lines, it has been argued that the enhanced FRN amplitudes prevalent in 

individuals reporting high worry and anxiety relate specifically to an underlying 

negative emotionality (Hajcak et al., 2003). 

Furthermore, negative affect is thought to be associated with individual 

differences in punishment sensitivity (Watson et al., 1999), which suggests that the 

FRN represents an enhanced neural response to penalties (Boksem et al., 2006). 

Previous studies have shown that individual differences in self‐reported punishment 

and reward sensitivity are associated with FRN strength. Specifically, individuals high 

in punishment sensitivity produced enhanced FRN (Boksem et al., 2006), whereas 

those high in reward sensitivity produced attenuated FRN (Santesso et al., 2011). 

Punishment sensitivity was further associated with greater VMPFC activation during 

the FRN response (Amodio et al., 2008; Santesso et al., 2011). Furthermore, the 

increased FRN effect for individuals scoring high in punishment sensitivity was 

greater when negative feedback was associated with losing money compared to 

incorrect performance (Boksem et al., 2008). On the contrary, individuals high in 

sensation-seeking and reward sensitivity produced lower FRN following incorrect 

performance feedback (Cooper et al., 2014). Similarly, individuals who self-reported 

decreased motivation following negative feedback showed increased FRN amplitudes 

in a range of tasks (Santesso et al., 2008; Tucker et al., 2003), whereas individuals 

who self-reported stronger motivation after losing showed smaller FRN amplitudes 

(Segalowitz et al., 2011). Likewise, extraversion tendency (Campbell et al., 2003; 

Cohen et al., 2005) has been found to modulate FRN amplitudes such that highly 

extraverted individuals exhibited stronger FRN following unexpected rewards and 

smaller FRN following unexpected non-reward outcomes (Smillie et al., 2010). 

 It is evident from the above studies that negative emotionality plays an 

important role in the manifestation of FRN. The results of this thesis extend those 

findings by showing that the more sensitive an individual is to the prospect of negative 

consequences, the more distinctly the brain discriminates between positive and 

negative outcomes. Thus, understanding the role of individual differences in decision 

making and how these are mirrored on scalp data is an important factor that needs to 

be taken into account by decision making models and reward processing research more 
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generally. Towards this direction, the experiments described here focused on loss 

aversion as one decision making variable and its differences among participants and 

feedback ERPs differences in amplitude strength among participants as a reward 

processing variable. By demonstrating a robust association between loss aversion and 

FRN across the studies, we extend the previous literature described above 

investigating whether individual differences are associated with the amplitudes of 

individual ERP components. 

 

7.2.3 Associations of decision utility with experienced utility 

 

The effects of loss aversion measured during the decision making phase (i.e., 

when participants were contemplating among alternative outcomes) on the subsequent 

hedonic evaluation of those outcomes after the decision has been made can be 

understood in relation to research investigating how decision utility is related to 

experienced utility. Decision utility refers to the subjective expected value of an option 

at the time of choice, whereas experienced utility refers to the actual experienced 

hedonic value produced by the outcome at the time of consumption (Kahneman et al., 

1997). Thus, decision utility at the time of choice would ideally lead to experienced 

utility at the time the decision is materialised. That is, when deciding, the goal is to 

receive a reward the hypothesised value of which is reflected on the decision utility. 

As such, by selecting the option that at the time of choice is valued as the most 

probable to lead to the highest reward, we expect this reward to be received and indeed 

be associated with an experienced utility as high as expected. Of course, this is not 

necessarily always the case as a mismatch between the two can lead to disappointment 

and regret and, potentially, a change in the decision strategy. Nevertheless, the reason 

for choosing a specific option is because the decision maker assumes or hopes that the 

chosen option will lead to the highest experienced utility. 

The neural representations of decision utility have been investigated by 

reinforcement learning models, which associate predictive cues with their subsequent 

outcomes, under the assumption that cues indicating higher rewards will be preferred 

in subsequent choices after learning has occurred (O’Doherty, 2004; Schultz, 1997; 

Seymour et al., 2004; Sutton and Barto, 1998). Likewise, experienced utility and the 
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way the brain encodes signals associated with received rewards has been investigated 

by decision making studies under the general assumption that higher experienced 

utility will be associated with stronger activation in reward-related brain regions 

(Bayer and Glimcher, 2005; Delgado, 2007; Knutson and Greer, 2008; Kringelbach, 

2005; Montague and Berns, 2002). 

Although it is important to investigate the specific properties of decision and 

experienced utility separately, it is equally essential to investigate whether and how 

those two different types of utility are associated. Along those lines, individual 

differences in striatal activity during deciding whether to punish a player for an unfair 

offer during an economic game was associated with the amount of money that 

participants actually paid in order to punish that individual (De Quervain et al., 2004). 

Likewise, striatal activity during forced charity donations was associated with the 

amount of money participants donated to charities during voluntary donations 

(Harbaugh et al., 2007). Furthermore, it has been shown that stimulus cues that predict 

outcomes evoke an FRN even before the actual feedback is received, with a 

topographic pattern very similar to the one produced by feedback itself. In particular, 

cues that predicted future losses compared to gains produced stronger FRN and this 

effect was found both when cues signalled sure future losses (Dunning and Hajcak, 

2007; Hajcak et al., 2007) and probable future losses (Holroyd et al., 2011; Liao et al., 

2011; Walsh and Anderson, 2011). Importantly, individual differences in the 

endowment effect, which has been proposed to be a consequence of loss aversion 

(Kahneman et al., 1991), were correlated with the difference in striatal activity strength 

between buying and selling trials (De Martino et al., 2009). 

These studies provide support for the notion that the value assigned to a future 

prospect at the time of the decision depends on a subjective estimation about the 

quality of the experience of that prospect (Kahneman and Snell, 1990). Along those 

lines, loss aversion has been interpreted as a predictive cognitive mechanism 

associated with the psychophysics of hedonic experience (Camerer, 2005). Findings 

from the current thesis appear to provide support for this hypothesis by suggesting that 

loss aversion regarding future prospects was associated with FRN strength following 

the receipt of these prospects. Nevertheless, this postulation needs to be interpreted 

with caution as loss aversion in the current thesis was only measured behaviourally in 

two out of the four studies, while in the remaining two, a single-trial analysis that 
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would allow direct associations between decision and expected utility was not possible 

because of the nature of the experimental design and the ERP components under 

consideration. Nonetheless, our results extend previous fMRI research utilising a 

similar experimental paradigm and associating loss aversion with amygdala activity 

strength for experienced outcomes (Sokol-Hessner et al., 2013). 

 

7.3 Limitations 

 

 The primary limitation of the current thesis is that the methodology used was 

constrained to EEG. The use of fMRI, or combined EEG-fMRI, would have been 

useful to further investigate this topic and relate the timing of loss aversion with 

activation in specific brain regions. However, due to the fact that loss aversion appears 

to constitute only a small part of the decision making process, EEG was deemed as the 

most appropriate method to capture this phenomenon due to its excellent temporal 

resolution. Furthermore, at the start of the experiments discussed here, the gap in the 

literature was specifically the spatiotemporal aspects of loss aversion, while fMRI 

studies, albeit limited, already existed on loss aversion, pointing to structures such as 

the amygdala or the VS (Sokol-Hessner et al., 2013; Tom et al., 2007). The key finding 

regarding the spatiotemporal correlates of loss aversion that emerged from the 

experiments described in the current thesis was that individual differences in loss 

aversion are associated with two distinct ERP components which differentiate between 

monetary gains and losses and which occur after the outcome of a decision has been 

received. Specifically, individual differences in loss aversion were associated with 

early (around 300 ms) medio-frontal (i.e., FRN) and later (around 400 ms) posterior 

(i.e., P300) brain potential components. 

Another obvious limitation, yet one that is often disregarded in research of this 

type, is that experimental participants were predominantly undergraduate and 

postgraduate students. Thus, findings might not be possible to generalise in different 

samples (Peterson, 2001). Including different samples would be helpful to investigate 

the presence of loss aversion in participants that often need to make risky decisions 

and encounter high stake losses, such as police officers. Similarly, cultural variability 

between participants in the current studies was small, therefore, results should be 

interpreted with caution until they have been replicated cross-culturally. Nevertheless, 
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given practical limitations associated mostly with time constraints, we focused on 

students as the most common method for data collection. 

Finally, another limitation is that for loss aversion estimation we only used a 

gambling task. This particular task was deliberately chosen because it has been widely 

validated for loss aversion research (Sokol-Hessner et al., 2013; Tom et al., 2007), and 

allowed us to disentangle loss and risk aversion, which are often confounded, so that 

we could ensure that our results were specific to loss aversion (Sokol-Hessner et al., 

2013). This behavioural analysis disentangling loss aversion from risk aversion was 

followed in all four studies presented in the current thesis, irrespective of whether one 

or two experimental tasks have been used. However, only the first study focused on 

the differences between brain activity corresponding to loss aversion versus brain 

activity corresponding to risk aversion. As mentioned in Chapter 1, the first 

experiment was an exploratory one for which a whole brain approach using SPM was 

utilised. The brain activity corresponding to individual differences in risk aversion was 

investigated in order to ensure that it was different to the brain activity associated with 

individual differences in loss aversion. The reason for which this analysis was not 

followed for the other studies was both methodological and theoretical. The 

methodological constraint was that the number of trials for risk aversion 

(approximately 80% less than the loss aversion trials) would not allow a robust 

averaging of ERPs. The theoretical motivation was that the main focus of the studies 

was primarily loss, rather than risk, aversion. It was loss aversion specifically for 

which the neuroimaging literature was limited, whereas risk aversion has been 

investigated more often using a variety of tasks (e.g., Kuhnen and Knutson, 2005; Wu 

et al., 2012). Further advantage of this task is that rewards had real monetary 

consequences for participants and, presumably, highlighted the impact of decisions 

more compared to a task of hypothetical nature. Nevertheless, it would have been 

interesting to ask participants to make other kinds of decisions, perhaps with different 

(non-monetary) stakes. 

 

7.4 Future research 

 

 One interesting possibility for future research would be to investigate loss 

aversion and/or FRN in clinical samples. Two general variables of the present thesis, 
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namely, decision making and reward processing, are also components whose 

dysfunction has been highlighted in several disorders. For instance, loss aversion is 

generally a negative/prevention mind-set that prevails in disorders such as depression 

or obsessive compulsive disorder (Pammi et al., 2015; Sip et al., 2018). Furthermore, 

feedback processing in the range of FRN in disorders such as schizophrenia is not yet 

fully understood. Therefore, investigating the status of these variables in clinical 

samples might further our understanding of the impaired cognitive and emotional 

information processing associated with particular decision making deficits, which 

could subsequently be targeted by specific interventions (e.g., cognitive behavioural 

therapy focusing on avoidance behaviours occurring due to an asymmetric evaluation 

of positive and negative/feared consequences). 

 Future studies could endeavour to use more realistic experimental paradigms. 

For instance, the use of EEG in combination with simultaneous eye tracking 

recordings during a real card game with two participants would be a possible scenario 

in order to extend the current findings in a more naturalistic setting. During the 

paradigms presented here, and as is common with most research of this nature, 

participants viewed stimuli on a computer screen, the order and timing of stimuli were 

strictly controlled and set in advance, and the entire task was generally very 

constrained. Even though these experimental settings were deliberately chosen in 

order to facilitate the collection of clean data and to ensure that ERP responses were 

time-locked to specific events, it would be interesting to see whether these findings 

hold when the experimental paradigm moves away from the experimenter’s control. 

 Furthermore, the use of single-trial analysis techniques might be an interesting 

way to investigate specific neural activity alterations during reward processing. 

Ultimately, every day decision making is often a one-shot single decision process and 

not repetitive as is the case with the large number of trials necessary for creating grand 

averaged ERPs. Although it is generally considered a difficult challenge to use single-

trial analysis with EEG data, it would be definitely useful for seeing how different 

monetary amounts influence loss aversion and FRN. For instance, we did not include 

reward magnitude as a factor in the current experiments because of the above 

described difficulties and also because previous research has suggested that reward 

magnitude is not encoded by FRN (Hajcak et al., 2006). Nevertheless, reward 
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magnitude changes from trial to trial might influence later components and future 

studies should try to incorporate this variable into a single-trial study design. 

Another possibility would be to further investigate risk aversion and how it 

compares to loss aversion. Even though we made an initial step with the first study 

towards that direction, risk aversion was not the primary focus of the present thesis. 

Particularly, given the limited number of risk aversion trials in the current 

experiments, we were not able to investigate associations with brain data in detail. 

However, given that risk and loss aversion can co-occur and are often confounded in 

decision making research (Sokol-Hessner et al., 2013), it would be useful if future 

studies could disentangle their brain dynamics. 

 

7.5 Concluding remarks 

 

 To conclude, this thesis employed risky decision making tasks and EEG 

recordings to investigate the neural mechanisms underlying loss aversion during the 

processing of decision outcomes. The results point towards an association between 

individual differences in loss aversion and FRN amplitude strength. This pattern was 

replicated across four studies, while at the same time a number of exceptions were 

highlighted. It appears that an important condition for loss aversion to influence the 

evaluation of decision outcomes is that these outcomes must be of motivational 

significance for the decision maker. Motivational significance in the present thesis was 

investigated in terms of counterfactual thinking (hypothetical outcomes that could 

have been obtained if the individual had decided differently), choice freedom 

(outcomes resulting from free choices compared to outcomes arbitrarily inflicted upon 

the individual), and, finally, social context (outcomes affecting others but not the 

decision maker). We showed that loss aversion is associated with FRN (study 1), but 

only when decisions have real economic consequences for individuals (study 2), when 

those consequences stem from individuals’ free choices (study 3), and when the 

receiver of the reward are the individuals themselves (study 4). Results from the 

current thesis add to the growing literature on the neural underpinnings of loss aversion 

and decision making in general. Additionally, they expand previous findings on FRN 

literature and neural processing of rewards by suggesting that individual differences 

in decision making influence such processing. It is hoped that the findings will be 
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useful in future neuroimaging research addressing the effects of individual differences 

in decision making on cortical activity patterns, and the corresponding representation 

of reward processing in the brain. 
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