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Abstract

Wireless sensor networks (WSNs) have a wide range of applications in the re-

alization of the Internet of Things (IoT). However, WSNs are confronted with

dynamic wireless medium, limited bandwidth, limited energy supply (in battery

powered WSNs) and the often present blind spot problems. In particular, battery

powered WSNs used for the in-door applications, such as impromptu surveillance

installation or industrial chemical process monitoring (mains powered WSNs are

prohibited due to safety concerns), have stringent energy budgets. Power line

communication (PLC) is considered as a promising technology for data transmis-

sion that utilises the widespread presence of power line (PL) cables as a commu-

nication medium. Owing to this advantage, PLC networking can be considered

as a practical supplement to existing in-door WSNs. In this thesis, it is aimed

to investigate the performance improvement (i.e., network lifetime) in the hybrid

wireless-PL sensor networks for in-door applications through cross-layer design.

In the first contribution, a hybrid sensor network for industrial sensor network

applications, which consists of both wireless and PL sensor nodes is proposed.

Since the data rate requirement for such applications is typically low, and for the

ease of derivation, the power consumption model takes into account the transmis-

sion signal power and the power consumption of the power amplifier. To the best

of our knowledge, it is the first reported work in the literature that focuses on the

cross-layer design of such a heterogeneous network. The hybrid sensor network

takes the advantage of the flexibility of WSNs while the PL sensors are deployed

to prolong the lifetime of the network. This work studies the joint design of the

PHY, MAC and network layers to maximize the hybrid network lifetime, which
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is limited by the battery capacity of wireless sensors. Second, closed-form ex-

pressions of the globally optimal solution for lifetime maximization of the hybrid

sensor network are derived for two different network topologies, namely string

topology and linear topology. Such closed-form solutions give insights in factors

that are significant to the network lifetime when designing the hybrid sensor net-

work. Third, the impacts of different network configurations such as source rate,

sensor node densities, etc., on the hybrid network lifetime are investigated. The

impact of different transmission strategies of PL nodes on the effectiveness of the

network is studied.

In the second contribution, a hybrid video sensor network (HVSN) which

comprises both battery-powered wireless sensor nodes and PL sensor nodes is

proposed to maximize the network lifetime. Since HVSN have a high data rate

requirement, the power consumption model includes the power consumption due

to video encoding, data transmission and reception. To the best of our knowl-

edge, it is the first reported work to investigate video sensor networks with hybrid

power sources and hybrid communication schemes. The proposed HVSN utilizes

the flexibility of wireless nodes while PL nodes are used to extend the network

lifetime. Second, the joint design of video encoding rate, aggregate power con-

sumption, channel access control, along with link rate allocation is studied for

maximizing the hybrid network lifetime. The joint design achieves much better

performance than separate optimization. Third, a distributed algorithm is pro-

posed for the network lifetime maximization problem. The distributed algorithm

divides the computational burden among all nodes with much lower communi-

cation overhead. Fourth, the impact of dynamic network change and network

scalability is studied. The effectiveness of the proposed algorithm is validated

through extensive simulation results.
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Chapter 1

Introduction

1.1 Background

The Internet of Things (IoT) envisions physical objects of pervasive presence to

be equipped with transceivers and micro-controllers for telecommunications [1],

and by proper designed protocol stacks, these objects are enabled to share in-

formation and cooperate with each other and with the users to achieve common

purposes in the foreseeable future [2]. With such a communication paradigm [3],

the IoT will boost the development of a wide variety of applications such as home

and industrial automation, elderly care, home security surveillance, energy man-

agement and smart grids [4–9] that utilise the tremendous amount and diversity

of information gathered from these everyday life objects, such as surveillance

cameras, home appliances, monitoring sensors, etc., to provide new services to

customers [2].

In the realm of IoT, wireless sensor networks (WSNs) are deployed in a pletho-

ra of applications due to its advantages such as rapid deployment, low cost and

high flexibility [10, 11]. However, WSNs are confronted with dynamic wireless

medium, limited bandwidth, limited energy supply (in battery powered WSNs)

and the often present blind spot problems [12, 13]. In order to tackle these prob-

lems, extensive studies [14–23] have been carried out to investigate the perfor-

mance improvement (e.g. throughput, robustness, energy consumption, network

lifetime) on a hybrid network (i.e., mixed wireless and wireline network). The
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basic idea of these studies is that by adding a few wireline as the shortcut in

the network (termed “small-world network” [19]), the average hop count can be

reduced drastically and thus improving the network performance. However, these

studies focus on the analysis of the network performance improvement based on

a single protocol layer, e.g., physical layer, network layer (details on the network

protocol stack will be presented in Chapter 3), in which the resources (e.g., band-

width, energy) of the hybrid network are not utilised efficiently. For example, in

order to improve the quality of service (QoS) of the network, both the channel

capacity and the bit error rate (BER) at the physical (PHY) layer and the chan-

nel access method at the medium access control (MAC) layer, as well as routing,

source rate adaptation, etc., at the upper layers should be jointly considered.

Therefore, a cross-layer design of the hybrid network is necessary. In addition,

indoor battery powered WSNs are suitable for applications such as chemical and

petroleum refining industrial process monitoring (as mains powered WSNs are

prohibited due to safety concerns) and impromptu surveillance installation due

to the advantages of discreet and unobtrusive installation and removal. Also, in-

door battery powered WSNs are immune to the failure of the power distribution

system. In such applications, the indoor battery powered WSNs often have strin-

gent energy budgets, how to prolong the network lifetime becomes a challenging

problem.

Power line communication (PLC) is considered as a promising technology for

data transmission that utilises the widespread presence of power line (PL) cables

as a communication medium [24]. This ubiquitous infrastructure enables every

line-powered device to become potential target of value-added services [25]. PLC

is adopted in advanced energy services such as automatic electricity meter read-

ing, supply management and energy control [26]. Owing to the high data rates

that can be supported by PLC (comparable with domestic Ethernet and WiFi),

another attractive application of PLC lies in the area of home networking [27–29],

in which the advantage of the pervasive presence of PL cables and outlets is fully
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capitalised [30]. With the recent advances in PLC technology and regulatory and

standardization efforts [31], it is announced by chip manufacturers of PLC devices

that millions of these devices are being shipped annually for the application of

indoor and smart grid communication and the number is expected to grow in the

future [32].

Among all the wired solutions for communication, PLC is the only technology

that has a comparable deployment cost with the wireless solution since unlike

other wired solutions such as the Ethernet, where the communication medium

(Ethernet cables) needs to be installed, PLC uses existing PL cables as the com-

munication medium [33]. Also, the communication through obstacles in PLC is

reliable with high transmission rates, which however often degrades the signals

in the wireless counterpart [32]. In addition, PLC can be utilised as an economi-

cal alternative to complement existing communication networks when ubiquitous

coverage is desired. An architecture design of using PLC as a backhaul for WSNs

to implement a smart home control network is reported in [34]. Owing to these

advantages, PLC networking can be considered as a practical supplement and a

strong competitor to existing WSNs.

As both WSNs and PLC are the composing parts of the IoT [3], the integra-

tion of existing communication technologies is the trend for future communication

networks [15]. This trend of the flourishing of hybrid networks can be forecasted

from the recent advances in the development of software-defined networking (SD-

N) [35–37]. Recent studies in [38–48] have reported the performance improvement

in the indoor home networks or smart grids by exploiting the diversity of hybrid

wireless and PLC channels. These studies either utilise the hybrid channel in

serial or in parallel to improve the network throughput or reliability. Neverthe-

less, similar to the work in small-world network [14–23], these studies analysed

the performance of such a hybrid channel in an information theoretic framework

based on a single protocol layer, by which the resources in the hybrid channel are

not utilised efficiently.
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Network utility maximization (NUM) is used as a modelling tool, to integrate

specified objectives, diverse types of constraints, design freedom and stochastic

dynamics into a single optimization problem [49]. The basic NUM problem (or

the Monotropic Programming) appears in the formulation in [50], and has been

studied since the 1960s [51], in which NUM is used as an analytic tool of reverse-

engineering transmission control protocol (TCP) congestion control [52]. Recent-

ly, it is reported in [49, 53, 54] that different protocol layers can be systematically

integrated into a single coherent theory, which provides a general viewpoint to

understand the interactions across various layers in the network protocol stack.

In such a framework, NUM problem is decomposed into different layers. Each

layer iterates on associated subsets of the optimization variables using local infor-

mation to attain individual optimality [55]. By combining the results from these

local algorithms, a global objective can be attained. Therefore, given a network

resource allocation problem, a most suitable distributed solution can be obtained

by NUM decomposition.

1.2 Research Contributions

The research conducted during this PhD study is aimed to investigate the per-

formance improvement in the hybrid wireless-PL sensor networks for in-door ap-

plications through cross-layer design in the framework of NUM. In particular,

network lifetime maximization is considered as the main design criteria in this

study due to the wide spread applications of battery powered WSNs. Neverthe-

less, network lifetime is chosen as the network utility function to illustrate the

performance improvement of the hybrid network as compared to traditional pure

WSNs. The work in this thesis (Chapter 5) can be easily modified to consider

other utility functions, such as minimizing total energy consumption. In this PhD

research, a joint optimal design of PHY, MAC and network layers to maximize

the network lifetime for hybrid wireless-PL sensor networks is investigated, and a

cross-layer video encoding, channel access control and like rate allocation scheme
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is developed for hybrid wireless-PL video sensor networks.

The main contributions are summarized as follows:

• A hybrid sensor network for industrial sensor network applications (e.g.,

industrial automation process monitoring), which consists of both wireless

and PL sensor nodes is proposed. The next-generation industrial automa-

tion system involves three different levels [56]: the field level, where the

automation process is monitored and controlled directly by the sensors and

actuators, the automation level, where the industrial controllers, such as

programmable logic controllers are used to perform the process control de-

cision making, and the management level, where best-effort IP traffic is

exchanged. Typically, the devices in the field level are interconnected by an

industrial wireless sensor network, while the automation and management

levels are connected to wired networks [57]. According to [58], industrial

WSNs differ from traditional WSNs mainly in the following aspects. Indus-

trial WSNs are expected to have lower delay and higher QoS requirements

than traditional WSNs, such that critical messages can be collected and

delivered in a timely manner to handle a process disturbance or emergency.

Also, industrial WSNs can be exposed to caustic or corrosive environment,

such that attaching the sensor nodes to the mains power is prohibited due

to safety concerns. In such environment, industrial wireless sensor nodes

are commonly powered by batteries and it is of paramount importance to

prolong the operating lifetime of the network. Other aspects of differences

between industrial WSNs and traditional WSNs include interoperability,

autonomous operation, robustness, and scalability, etc. Please refer to [58]

for details on these aspects of differences.

This work is different with existing work in the following aspects. First,

to the best of our knowledge, it is the first reported work in the literature

that focuses on the cross-layer design of such a heterogeneous network.

The hybrid sensor network takes the advantage of the flexibility of WSNs
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while the PL sensors are deployed to prolong the lifetime of the network.

This work studies the joint design of the PHY, MAC and network layers

to maximize the hybrid network lifetime, which is limited by the battery

capacity of wireless sensor nodes. Second, closed-form expressions of the

globally optimal solution for lifetime maximization of the hybrid sensor

network are derived for two different network topologies, namely string

topology and linear topology. Such closed-form solutions give insights in

factors that are significant to the network lifetime when designing the hybrid

sensor network. Third, the impacts of different network configurations such

as source rate, sensor node densities, etc., on the hybrid network lifetime

are investigated. Finally, the impact of different transmission strategies of

PL nodes on the effectiveness of the network is studied.

• A hybrid video sensor network (HVSN) which comprises both battery-

powered wireless sensor nodes and PL sensor nodes is proposed to maximize

the network lifetime. This work differs with existing work in the following

aspects. First, to the best of our knowledge, it is the first reported work

to investigate video sensor networks with hybrid power sources and hy-

brid communication schemes. The proposed HVSN utilizes the flexibility of

wireless sensor nodes while PL sensor nodes are used to extend the network

lifetime. Second, the joint design of video encoding rate, aggregate power

consumption, channel access control, along with link rate allocation is stud-

ied for maximizing the hybrid network lifetime. The joint design achieves

much better performance than separate optimization. Third, a distributed

algorithm is proposed for the network lifetime maximization problem. The

distributed algorithm divides the computational burden among all nodes

with much lower communication overhead. Fourth, the impact of dynamic

network change and network scalability is studied. The effectiveness of the

proposed algorithm is validated through extensive simulation results.
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1.3 Thesis Organisation

The rest of this thesis is organized as follows. An overview of sensor networks

and more detailed background of wireless and PLC communications are provided

in Chapter 2. Chapter 3 overviews the network protocol stack and the theory

of optimization and decomposition. A joint optimal design of PHY, MAC and

network layers to maximize the network lifetime for hybrid wireless-PL sensor

networks is presented in Chapter 4. In Chapter 5, a cross-layer video encoding,

channel access control and link rate allocation scheme is developed for hybrid

wireless-PL video sensor networks. Conclusions and future work are presented in

the final chapter.
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Chapter 2

Overview of Sensor Networks,
Wireless Communications and
Power Line Communications

In this chapter, the architecture of sensor networks, the background of wireless

communications and PLC technology are reviewed. In section 2.1, the basic com-

ponents, data collection and communication of sensor nodes as well as typical

applications of sensor networks are presented. Section 2.2.1 introduces briefly on

the history of wireless communications. Section 2.2.2 presents the wireless com-

munication channels, with focus on the large-scale propagation effects, small-scale

propagation effects, and the wireless Additive White Gaussian Noise (AWGN)

channel. Section 2.3.1 and 2.3.2 shed light on the history, regulation and stan-

dards in PLC. The overall PLC network architecture and indoor PLC structure

are presented in Section 2.3.3 and 2.3.4, respectively. With a focus on indoor

PLC, random PLC topology generator is introduced (Section 2.3.5) along with

two PLC channel modelling approaches (Section 2.3.6). Noise modelling is re-

viewed in Section 2.3.7. Finally, this chapter is summarised in Section 2.4.

2.1 Overview of Sensor Networks

2.1.1 Architecture of Sensor Networks

Sensor nodes are deployed to collect ambient conditions (e.g., temperature, hu-

midity, sound, movement) from the observed phenomenon and then the measure-
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ments can be processed and analyzed to reveal some characteristics of interest

about the surrounding environment of the sensor nodes [59]. A larger number of

the sensor nodes can be networked to perform specific tasks collaboratively and

thus forming a sensor network.

Power unit

Sensor ADC
Processor

Storage
Transceiver

Sensing unit Processing unit Communication unit

Figure 2.1: Basic components of a sensor node

Typically, a sensor node consists of four basic components [60], namely, a

sensing unit, a processing unit, a communication unit and a power unit. As

shown in Fig. 2.1, there are two subunits within the sensing unit, which are called

the sensor and the analog-to-digital converter (ADC). The sensor collects target

information from the observed environment and fed it into the ADC in analog

signals. Then the analog signals are converted by the ADC into digital signals

and the digital signals are transferred to the processing unit. The processing unit,

which generally contains a small storage unit, performs some local information

processing, such as data compression, and manages the procedures that allow

the sensor node collaborate with the other nodes to carry out assigned sensing

tasks [60]. The communication unit connects the node to the sensor network.

Finally, the power unit provides energy supply to all the other units. In addition,

depending on the specific application, the sensor node may also contain additional

units, such as a location finding system to provide knowledge of location and a

mobilizer that allows the sensor node to change its location or configuration (e.g.,

to change antenna’s radiation direction to enhance the signal strength) [61].

A sensor network generally contains hundreds or thousands of sensor nodes [59],

which are either randomly deployed (e.g., dropped from an airplane in a disaster
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area) or the positions of the sensor nodes are predetermined (e.g., fire alarm sen-

sors in a facility). As shown in Fig. 2.2, the sensor nodes are scattered in an area

called the sensor field. Each of the sensor nodes is capable of collecting intended

data and route data back to the sink node. The sink node may communicate with

the task manager node via Internet or mobile network such that the user can have

access to the collected information and further data processing and analyzing can

be carried out.

Sink

Sensor nodes
Sensor field

A

B
C

D
E

Internet or 

Mobile network

Task manager 

node

User

Figure 2.2: Overview of a sensor network

In particular, data collection and communication in sensor nodes can be di-

vided as [62]: clock-driven, event-driven and query-driven. In a clock-driven data

collection and communication fashion, each sensor node gather and send data at

constant periodic intervals. Over time these periodically collected data can be

combined to produce temporal and spatial information about the sensor field [62].

An example of such a data gathering and communication scheme is the monitor-

ing of the humidity of soil, where the sensor nodes are buried into the soil and

“snapshots” of the humidity is collected and routed to the sink node periodically.

The event-driven and query-driven data collection and communication are trig-

gered by certain events or queries, such as the detection of fire in a warehouse or

the user requires the sensor nodes to report their positions. In addition, the com-

munications between sensor nodes to the sink node can be classified into three

categories as summarized below [62].
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1. Direct transmission: In this transmission scheme, each sensor node for-

wards its locally generated data directly to the sink node and there is no

communication between the sensor nodes. The advantage of such a trans-

mission scheme is simple in design. However, for a sensor network that

spans a large area, this approach has an inherent scalability problem since

it is a many-to-one communication [62], especially when hundreds or thou-

sands of sensor nodes are deployed in the sensor field. Also, the distance

of the sink node away from the sensor field is limited since all the sensor

nodes should be in reach with the sink directly. In addition, for the sensor

nodes that are far away from the sink node, they may consume more energy

for transmission than those sensor nodes that are close to the sink. This

exposes that the sensor nodes that are far away from the sink node may be

drained of energy quickly. Depending on the specific applications, the data

rate of each sensor node varies between several kbps to several hundred

kbps.

2. Multi-hop routing: In such a communication scheme, each sensor node

in the sensor filed plays a dual role as data transmitter and data router and

may communicate with the sink node in a multi-hop fashion. For example,

in Fig. 2.2, sensor node A collects data and forward it to the sink node

through the path A→B→C→D→E→Sink. This approach requires col-

laboration between sensor nodes and it can be designed to realize different

objectives, e.g., maximize network throughput or minimize per node energy

consumption. One potential drawback of such a routing scheme however

is that there may exist some “hot spots” to which many sensor nodes will

forward their data. The sensor nodes on “hot spots” may be exhausted of

energy rapidly and causes significant topological changes and rerouting of

packets and reorganization of the network may be necessary [59]. General-

ly in this case, depending on the specific applications, the data rate of the

sensor nodes that are far from the sink node varies between several kbps to
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several hundred kbps. While the sensor nodes that are closer to the sink

node perform more duty on relaying and therefore have data rate on the

order of several hundred kbps to several Mbps.

3. Clustering: In a clustered sensor network, the sensor nodes form clusters

dynamically with neighboring sensors. This approach localizes traffic and

allows more scalability of the sensor network by selecting a sensor node in

each cluster as the cluster head that is responsible for relaying data from

each sensor node in the cluster to the sink node. In addition, data fusion and

compression may occur in the cluster head due to the fact that data from

neighbouring sensors that are close enough may be in high correlation [62].

While due to the nature of the cluster head, it will inevitably consume

more energy and run out of power supply than the rest nodes in the cluster.

Therefore, some protocol designs (e.g., the Low Energy Adaptive Clustering

Hierarchy [63]) have focused on distributed cluster formation and dynamic

cluster head selection problem. Depending on the specific applications,

the data rate of each sensor node (except the cluster head) varies between

several kbps to several hundred kbps, while the sensor nodes performing as

the cluster heads have data rate on the order of several hundred kbps to

several Mbps.

2.1.2 Applications of Sensor Networks

The networked sensors are widely used and deployed to collect measurements

from entities of interest, e.g., they can be distributed on the ground, in the soil,

embedded inside building structures, or in human bodies to monitor environmen-

tal parameters and detect the occurrence of events [64]. Some applications of

sensor networks are listed as follows.

1. Structural Health Monitoring: Sensor networks can be deployed to

monitor structural parameters such as strain in a large region. Broadly s-

peaking, structural health monitoring [65–68] aims at using sensor networks
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to localize damage that is significant enough to influence the properties of

the entire structure or large sections of it (e.g., severe damage to an entire

cable on a bridge) through structural responses due to external excitations

such as heavy winds and passing vehicles. An example of such a sensor

network is the deployment of 64 wireless sensor nodes over the main s-

pan and a tower of the Golden Gate Bridge to measure ambient structural

vibrations [69].

2. Industrial Process Control: With the rapid improvement and miniatur-

ization in hardware, low-cost hardware components such as complementary

metal-oxide semiconductor (CMOS) cameras and microphones are integrat-

ed in wireless sensor nodes and thus enabling the development of wireless

multimedia sensor networks [70, 71]. Such networks are able to retrieve

visual and audio content, still images and scalar sensor data such as tem-

perature, pressure, location of objects, etc. Therefore, wireless multimedia

sensor networks are able to simplify and add flexibility to machine vision

systems for visual inspections and automated actions in automated manu-

facturing processes [70].

3. Homeland Security: Electrochemical sensor networks can be used to

detect weapons of mass destruction such as the bio-weapons equipped by

terrorists [64]. Also, sensor networks can be used to monitor and protect

critical infrastructures such as railways, airports, utility, and water sup-

plies [72]. For example, sensor networks can be deployed in the airport to

monitor the chemistry of the environment such as identifying toxic odours.

4. Healthcare: Wireless sensor nodes can be placed inside, on and around the

human body to form a body area network (BAN) such that physiological

signs and parameters such as blood pressure can be monitored [73]. Unlike

conventional wired healthcare system, the wireless body area network (W-

BAN) potentially provides ubiquitous real-time monitoring without com-

promising the convenience of users [64].
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2.2 Overview of Wireless Communications

2.2.1 A Very Brief History of Wireless Communications

The very first stage of wireless communications dates back to the Pre-industrial

era [74], when signal combinations such as torch signalling, smoke signalling and

flag signalling, etc., were designed to enable line-of-sight (LoS) information trans-

mission. An example of such a wireless communication system is the signalling of

smoke at beacon towers along the Great Wall to warn of enemy attacks in ancient

China.

In 1864, the electromagnetic theory of light was developed by James Clerk

Maxwell, who also predicted the existence of radio waves [75]. Later in 1887,

Heinrich Hertz proved experimentally the physical existence of these radio waves.

Based on the pioneering work of Maxwell and Hertz, the field of radio commu-

nications was initiated. The first wireless communication system [74] occurred

in 1894, when Oliver Lodge managed to send a radio signal at a distance of 150

m. In 1897, the entrepreneur Guglielmo Marconi founded The Wireless Tele-

graph and Signal Company in the UK, and demonstrated a series of experiments

on wireless communications. Years later, Marconi’s wireless system became the

world’s first wireless system that could enable transatlantic communication.

Nowadays, based on various application scenarios, wireless communication

systems have been developed into many types, such as cellular telephone systems,

wireless local area networks (WLANs), satellite networks and Bluetooth, only to

name a few. Detailed descriptions of the aforementioned application scenarios of

wireless communication systems can be found in [74].

2.2.2 Wireless Communication Channels

The wireless channel serves as the physical transmission medium between the sig-

nal transmitter and receiver. Its characteristics have a dominate impact on the

performance of the wireless communication systems, such as the maximum achiev-

able channel capacity and the outage probability. Therefore, it is of paramount
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importance to understand the characteristics of wireless channel to enable reliable

high-speed communication.

2.2.2.1 Large-Scale Propagation

Large-scale propagation involves variations of the signal strength at the receiver

over distance caused by path loss and shadowing. Typically, these variations

occur over relatively large distances (100-1000 m in the case of path loss and 10-

100 m in the case of shadowing in outdoor scenario and less in indoor scenario),

and hence the name “large-scale propagation” [74].

Path Loss

Path loss is the reduction of signal strength owing to the separation of large

distance between the transmitter and the receiver. In wireless communications,

the transmitter radiates the energy of a signal, which then propagates through a

certain medium in the form of electromagnetic waves. If part of the energy can be

received at the receiver side, the information carried within the signal can possibly

be recovered correctly, and therefore establishing a wireless communication link.

Tx Rx

d

Effective 

aperture

Figure 2.3: Propagation of the electromagnetic wave (d denotes the distance
between Tx and Rx)

Assuming the radiation pattern of the antenna is isotropic (i.e., the antenna

radiates signal equally in all directions) and the electromagnetic wave propagates

in the vacuum environment, then the electromagnetic wave propagates in the pat-
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tern of a sphere. The energy conservation law [76] indicates that the total energy

of the radiated signal remains constant through any sphere centered at the trans-

mitter. Therefore, in the case of isotropic antenna and free space propagation,

the energy at the unit area on the spherical surface centered at the transmitter

decreases with the increase of the distance that the electromagnetic wave travels

(the area of the spherical surface increases). Denoting the radius of the spherical

surface centered at the transmitter as d, and the transmit antenna is isotropic,

then the power density, Peff , on the surface can be given as [76]:

Peff =
Pt

4πd2
(2.1)

where Pt is the transmit power. In the case that the transmit antenna is not

isotropic, the transmit antenna gain Gt in the direction of the receive antenna

should be taken into account in the expression of Peff as [76]:

Peff =
GtPt
4πd2

(2.2)

The effective aperture (shown in Fig. 2.3) is a measure of the effectiveness of an

antenna at receiving the power of electromagnetic waves. Mathematically, it can

be expressed as [76]:

Aeff =
λ2

4π
Gr (2.3)

where λ is the wavelength of the operation frequency, and Gr is the receive anten-

na gain. According to the Friis’ law [76], the received power Pr can be determined

as:

Pr = Peff × Aeff =
PtGtGrλ

2

(4π)2d2
(2.4)

Therefore, the free-space linear path loss (defined as the ratio of the transmit

power to the receive power [76]) can be calculated as:

PL =
Pt
Pr

=
(4π)2d2

GtGrλ2
(2.5)

More generally, the linear path loss can be expressed as:

PL =
Pt
Pr

=
(4π)2dn

GtGrλ2
(2.6)
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where n is the path loss exponent. Typically, the value of the path loss exponent

can vary between 1.6 to 6 based on different propagation environments (shown

in Table 2.1).

Table 2.1: Path Loss Exponent Values in Different Environment

Environment Path Loss Exponent n
In building line-of-sight 1.6 to 1.8

Free space 2
Obstructed in factories 2 to 3

Urban area cellular 2.7 to 3.5
Shadowed urban cellular 3 to 5
Obstructed in building 4 to 6

Practically, the path loss often appears in the log form (dB value of the linear

path loss). Therefore, (2.6) can be expressed in dB as:

PL(dB) = 10log10

Pt
Pr

= 10log10

[
(4π)2dn

GtGrλ2

]
(2.7)

which can also be rewritten as:

PL(dB) = C + 10nlog10d (2.8)

where C = 10log10

[
(4π)2

GtGrλ2

]
. In addition, a simplified path loss model as a

function of distance is often used in designing a wireless system, the expression

can be given as [74]:

Pr = PtK

[
d0
d

]n
(2.9)

which can be written in the log form as:

Pr(dB) = Pt(dB) + 10 log10K + 10nlog10

[
d0
d

]
(2.10)

where K is a constant that is related to the antenna characteristics and the

average channel attenuation, n denotes the path loss exponent, d0 represents the

reference distance for the antenna far field, and d is the distance of interest from

the transmitter. Since distance affects the path loss greatly, the path loss plays

a major role in designing and analysing a wireless communication system.
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Shadowing

A signal may encounter obstacles (such as buildings, trees and walls) in its path

of propagation. These obstacles cause effects such as reflection1, diffraction2

and scattering3 to the signal and thus introducing random variations about the

path loss. A widely adopted model for such random variations is the log-normal

shadowing model, which has been empirically proven to be accurate in both

indoor and outdoor radio propagation scenarios [74].

The effect of path loss and shadowing can be captured by a combined model

that superimposes these two components. In the combined model, the average

path loss is represented by the path loss model and random variations due to

shadowing are then added into the model. Specifically, the ratio of the received

power to the transmitted power in the log form in the combined model can be

expressed as [74]:

Pr
Pt

(dB) = 10 log10K + 10n log10

[
d0
d

]
+Xσ (2.11)

where Xσ is a Gauss-distributed random variable with a zero mean and variance

of σ2, which is caused by the effect of shadowing.

2.2.2.2 Small-Scale Propagation

Small-scale propagation effect or multipath fading is the rapid fluctuations of the

amplitudes, phases, or multipath delays of a wireless signal over a short period

of time or distance (on the order of the signal wavelength, and hence the name

“small-scale fading”), in which case the large-scale path loss effects could be ig-

nored [74]. Small-scale fading is typically due to multipath propagation, which

is often the case in urban environments. In such environments, the presence of

buildings, trees, vehicles and pedestrians, etc., around the transmitter and the

1Reflection occurs when radio waves encounter a surface with dimensions that are relatively
large compared to the wavelength of the signal, e.g., the surface of buildings.

2Diffraction occurs when radio waves propagate around the sharp edge of an object that is
impenetrable with dimensions larger than the wavelength of the signal, e.g., street corners.

3Scattering occurs when radio waves encounter an object with dimensions in the order of
the wavelength of the signal or less, e.g., rain drops.
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receiver could cause reflection, diffraction, and scattering of the transmitted sig-

nal. Consequently, the transmitted signal arrives at the receiver through different

paths, and each of the paths generates a unique wave of the transmitted signal

with random variations of the amplitude, phase, and delay. Finally, all the waves

undergoing different paths are combined at the receiver, and causes distortion

and fading to the transmitted signal. In the following, factors and parameters

relating to small-scale fading will be introduced.

Root Mean Square Delay Spread

In wireless communications, the transmitted signal undergoes different paths and

therefore, arrives at the receiver at different times of arrival. The delay spread is

a measure of the difference between the time of arrival of the earliest multipath

component and the time of arrival of the latest multipath component. The delay

spread can be characterised by the power delay profile, which is the distribution of

received signal power as a function of the propagation delays, and can be obtained

empirically [74]. Denoting gi and τi as the path gain and delay for the i-th path

of a transmitted signal, respectively, then the mean excess delay τ̄ , which is the

first moment of the power delay profile, can be defined as [77]:

τ̄ =

∑
i g

2
i τi∑

i g
2
i

(2.12)

The root mean square (RMS) delay spread is the square root of the second central

moment of the power delay profile [77] and can be determined as:

σ =

√
τ̄ 2 − (τ̄)2 (2.13)

where

τ̄ 2 =

∑
i g

2
i τ

2
i∑

i g
2
i

(2.14)

These delays are measured relative to the first detectable signal arriving at

the receiver at τ0 = 0. If there is only one path, the RMS delay spread would be

zero. The RMS delay spread is a representation of the effect of multipath, i.e., a

higher RMS delay spread value indicates a larger effect of the multipath.
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Coherence Bandwidth

The coherence bandwidth is a statistical measure of the range of frequencies over

which the channel can be considered “flat”, that is a channel passing all spectral

components with approximately equal gain and linear phase. Or coherence band-

width is the range of frequencies where two frequency components have a strong

potential correlation for amplitude [77]. The coherence bandwidth can be derived

from the RMS delay spread, while the exact relationship between the coherence

bandwidth and the RMS delay spread depends on the definition. If the coher-

ence bandwidth is defined as the bandwidth over which the frequency correlation

function is above 0.9, then the coherence bandwidth is approximately [77]:

Bc ≈
1

50σ
(2.15)

where σ is the RMS delay spread. While in the case that the coherence bandwidth

is defined as the bandwidth over which the frequency correlation function is above

0.5, then the coherence bandwidth is approximately [77]:

Bc ≈
1

5σ
(2.16)

It can be noticed that the coherence bandwidth and the RMS delay spread are

inversely related. An increase of the RMS delay spread value will result in a

decrease of the coherence bandwidth.

Doppler Spread

Doppler spread, Bd, is a measure of the broadening in spectrum due to the time

varying nature of the mobile radio channel. For example, in the case of mobile

radio channel, when a pure sinusoidal wave with frequency fc is transmitted, the

received signal spectrum (or the Doppler spectrum4) will have components rang-

ing from fc − fd to fc + fd, where fd denotes the Doppler shift5. Specifically, the

4Doppler spread can be regarded as the “bandwidth” of the Doppler spectrum.
5Doppler shift is caused by the movement of the user (or surrounding physical presences in

the environment). The user’s velocity will induce a shift in the frequency of the transmitted
signal along each signal path.
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Doppler shift is a function of the relative velocity of the mobile v, the wavelength

of the carrier frequency λ, and the angle between the direction of the mobile

user’s motion and the direction of the received signal wave θ. Mathematically,

the Doppler shift can be expressed as [77]:

fd =
ν

λ
cos θ (2.17)

In wireless communications, a transmitted signal may undergo different paths

through its way to the receiver, and each path will induce different Doppler

shifts. The maximum Doppler shift is achieved when the direction of the mobile

user’s motion is in accordance with the direction of the received signal wave, with

θ = 0 and fmax = ν
λ
. The difference in Doppler shifts between different signal

components is referred to as the Doppler spread.

Coherence Time

The coherence time, Tc, is the time duration over which the channel impulse

response remains invariant, or the time duration over which two received signals

have a strong potential correlation in amplitude [77]. Generally, the coherence

time can be employed to characterise the time varying nature of the frequency

dispersiveness of the channel in the time domain. The coherence time and Doppler

spread are inversely proportional to each other, as given by [77]:

Tc ≈
1

fmax
(2.18)

where fmax is the maximum Doppler shift. In the case that the coherence time

is defined as the time over which the time correlation function is above 0.5, then

the mathematical expression for coherence time becomes [77]:

Tc ≈
9

16πfmax
(2.19)

The definition of coherence time suggests that two signals arriving with a time

separation larger than Tc will be affected differently by the channel.
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Types of Small-Scale Fading

With the factors and parameters relating to small-scale fading introduced (i.e.,

RMS delay spread, coherence bandwidth, Doppler spread, and coherence time),

different types of small-scale fading can be categorised based on the thresholds

of the relating factors and parameters, together with the characteristics of the

transmitted signal, e.g., signal bandwidth and symbol period. Generally, four

types of fading effects can be categorised, namely, flat fading, frequency selective

fading, fast fading and slow fading [74]. These fading types and the corresponding

conditions are shown in Table 2.2. In the following, these types of fading will be

explained in detail.

Table 2.2: Small-scale fading types

Flat Fading Signal Bandwidth < Coherence Bandwidth
Frequency Selective Fading Signal Bandwidth > Coherence Bandwidth

Fast Fading Coherence Time < Symbol Duration
Slow Fading Coherence Time � Symbol Duration

• Flat Fading - If the symbol period of a transmitted signal, Ts, is larger

than the RMS delay spread of a wireless channel, σ, or the bandwidth of the

transmitted signal, Bs, is smaller than the channel coherence bandwidth,

Bc, then the channel is referred to as a flat fading channel [74]. In a flat fad-

ing channel, the channel exhibits approximately the same channel gain and

linear phase throughout the transmission bandwidth. The channel gains of

a flat fading channel is time-varying according to certain distributions such

as Rician fading, Rayleigh fading, and Nakagami fading [77].

• Frequency Selective Fading - Contrary to the flat fading channel, if the

symbol period of a transmitted signal, Ts, is smaller than the RMS delay

spread of a wireless channel, σ, or the bandwidth of the transmitted signal,

Bs, is larger than the channel coherence bandwidth, Bc, then the channel
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is referred to as a frequency selective fading channel [74]. In a frequency

selective fading channel, the previous transmitted symbols can cause inter-

ference to the current transmitted symbols, as the waves with long delays

of the previous transmitted symbols and the waves with short delays of the

current transmitted symbols can arrive at the receiver concurrently. This

interference is known as the inter-symbol interference (ISI). In the frequen-

cy domain, the ISI is presented by a formation that frequency components

of the received signal spectrum have different amplitudes.

• Fast Fading - If the symbol period of a transmitted signal, Ts, is larger than

the channel coherence time, Tc, or the bandwidth of the transmitted signal,

Bs, is smaller than the Doppler spread, Bd, then the channel is referred to as

a fast fading channel [74]. In a fast fading channel, the channel changes so

rapidly that the signal undergoes different channels within the time duration

of one symbol period.

• Slow Fading - If the symbol period of a transmitted signal, Ts, is much

smaller than the channel coherence time, Tc, or the bandwidth of the trans-

mitted signal, Bs, is much larger than the Doppler spread, Bd, then the

channel is referred to as a slow fading channel [74]. In a slow fading channel,

the channel remains static over one or several continuous symbol periods.
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Flat and frequency selective fading determine the frequency diversity of the

channel while fast and slow fading determine the time diversity of the channel.

Based on the different fading effects, four small-scale fading channels can be

categorised, namely, flat fast fading channel, flat slow fading channel, frequency

selective fast fading channel, and frequency selective slow fading channel. These

four channels are illustrated in Fig. 2.4 and Fig. 2.5 as classified based on the

symbol period, Ts, with the RMS delay spread, σ, and the channel coherence

time, Tc, as thresholds, and based on the symbol bandwidth, Bs, with the Doppler
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spread, Bd, and the channel coherence bandwidth, Bc, as thresholds, respectively.

2.2.2.3 Additive White Gaussian Noise Channel

The wireless communication channel has various channel impairments that could

cause errors. Noise, which is an inevitable component in the design and analysis

of the performance of a communication system, refers to the undesired signals

that would affect the fidelity of the desired signal. In wireless communication

systems, there are various types of noise. For example, the thermal noise and the

impulse noise. In the case of direct LoS path between the transmitter and the

receiver, the additive white Gaussian noise channel can provide a reasonably good

model. In the AWGN channel, the noise is always assumed to be white which

indicates that all frequency components in the noise exhibit the same power and

the transmitted signal is added with a noise component that has a Gaussian

distribution with zero-mean. Mathematically, the AWGN channel model can be

expressed as [74]:

r(t) = s(t) + n(t) (2.20)

where s(t) is the transmitted signal, n(t) is the zero-mean white Gaussian noise

process with the power spectral density of N0, r(t) is the received signal, and t

denotes the time.

Assuming the AWGN channel has a bandwidth of B, a transmit power of P ,

then the capacity of this channel, C, can be provided by the Shannon’s formu-

la [78]:

C = B log2(1 +
P

N0B
) (2.21)

where N0 is the power spectral density of the noise.

In this thesis, AWGN channel model is used while there are other channel

models such as the Rayleigh fading channel and the Rician fading channel, which

are introduced in detail in [74].
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2.3 Overview of Power Line Communications

2.3.1 A Brief Historical Evolution

The very early prototype of PLC dates back to 1838 [79], when remote electricity

supply metering was proposed aiming to measure the voltage levels of batteries

at unmanned sites. Later in 1897 and 1905, the PL signalling electricity meter

was patented in the UK and U.S., respectively [80]. Transmitting voice messages

over high voltage PL occurred in the 1920s [80], when power companies use PL

as a substitute for telephone lines (running parallel to the PL) for the communi-

cation between transformer stations. Since the telephone circuits are expensive

and telephone lines are fragile to harsh environment (e.g., mountainous terrain,

bad weather). In 1950, Ripple Control systems, as recognised as the first PLC

systems, were designed and then deployed over medium- and low-voltage elec-

trical networks to enable power companies to deliver electricity alongside with

commands such as load control and tariff switching to end-users [81]. Typically,

the aforementioned applications of PLC require low data rates and operate in

the narrow-band (NB) frequency range of PLC, termed NB PLC, and real-time

communication is not required.

With the evolution of technology, the applications in sense of a modern home

network include but are not restricted to simultaneous Internet access, shared

printers, home control and remote monitoring, only to name a few. In these

applications, traditional NB PLC fails to deliver the upsurging data rate require-

ments. On the other hand, these increasing end-user demands coupled with the

deregulated telecommunication market over the past few decades, has prospered

the development of what is known as the broadband (BB) PLC. BB PLC operates

in high frequency bands and can achieve very high data rates (several Mbps to

several hundred Mbps) while at the mean time is able to provide real-time commu-

nication, as required in standard-definition television (SDTV) or high-definition

television (HDTV).

26



PLC technologies can be categorized into three classes according to their op-

erational bandwidth [82], namely, ultra narrowband (UNB), NB and BB PLC,

which are specified in standards of IEEE 1901.2 and IEEE 1901. Table 2.3 sum-

marizes the corresponding bandwidth, achievable data rates and the modulation

types for different PLC technologies.

Table 2.3: Categorization of PLC Technology Based on Operating Bandwidth

PLC classes UNB NB BB

Bandwidth
0.3-3 kHz

or 30-300 Hz
3-500 kHz 1.8-250 MHz

Support data rate around 100 bps
few kbps to

500 kbps
several Mbps to

several hundred Mbps
Modulation CDMA FSK OFDM

Communication range
up to

150 km [32]
up to

several km
up to several

hundred meters

UNB PLC provides a rather modest data rate, near 100 bits-per-second (bps),

while it supports a very large operational range (up to 150 km) mainly due to the

fact that it has a small path loss effect (around 0.01 dB/km) and it is able to pass

through transformers easily [82]. Such a mature PLC technology has been used

in field for at least two decades and it has been deployed for various of utilities.

NB PLC support higher data rate than UNB PLC at the expense of transmission

range. NB PLC can be further divided into low data rate NB PLC and high

data rate NB PLC depending on whether single carrier or multiple carriers are

used. At last, BB PLC supports data rate up to several hundred Mbps. It is

normally limited for the use of home networking due to the fact that it is difficult

to pass through transformers and PL signals on different phases may not be able

to communicate with each other [82].
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2.3.2 Regulation and Standardization Activities

2.3.2.1 Regulation Activities

The superimposing of high-frequency signals on PL causes electromagnetic radi-

ation [83], which is more an issue in BB PLC that operates in high frequency

bands. Therefore, regulations are imposed on PLC to limit the strength of the

signals coupled into PL. For details of these regulations, refer to [24, 29, 84].

Some regulation bodies of NB PLC include the European Committee for Elec-

trotechnical Standardization (CENELEC) bands, the U.S. Federal Communica-

tions Commission (FCC) bands, the Japanese Association of Radio Industries

and Businesses (ARIB) bands and the Chinese Electric Power Research Institute

(EPRI) bands. In particular, the CENELEC in Europe divides the NB PLC into

four frequency bands, where band A (3-95 kHz) is reserved for energy providers,

band B (95-125 kHz) is reserved for users, band C (125-140 kHz) is reserved for

users as well while it is regulated to carrier-sense multiple-access with collision

avoidance (CSMA/CA) mechanism, and band D (140-148.5 kHz) is reserved for

users for alarm and security systems [29].

The regulation activities in BB PLC can be found in European Norm (EN)

50561-1 and Code of Federal Regulations, Title 47, Part 15 (47 CFR Part 15)

by the U.S. FCC. Particularly, EN 50561-1 applies to indoor PLC within the

bandwidth of 1.6-30 MHz. The limits specified in these documents impose power

spectral density (PSD) masks of around -55 dBm/Hz for transmission up to 30

MHz at an impedance of 100 Ω, which is compatible with the PSD requirements

in the standards ITU-T G. 9964 and IEEE 1901 [32].

2.3.2.2 Industrial and International Standards

Since the formation of the Working Group (WG) in June 2005, IEEE P1901 fo-

cuses on indoor and access networks with the frequency band of 2-30 MHz (up

to 50 MHz as optional extension) targeting at a transmission data rate of more

than 100 Mbps at the PHY layer [32]. The Gigabit Home Networking (G.hn)
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standard by International Telecommunication Union (ITU) Telecommunication

Standardization Sector applies to PL, phone lines and coaxial cables aiming at

a data rate of up to 1 Gbps for indoor networking [32]. In this standard, three

bands ranging from 2 MHz to 25, 50, and 100 MHz, are considered for PLC. Other

standardization and industry specifications of PLC include HomePlug Power Al-

liance, Powerline Related Intelligent Metering Evolution (PRIME) and G3-PLC.

For details of standards and industry specifications, refer to [24, 29, 32, 84].

2.3.3 PLC Network Architecture

The electricity distribution systems can be categorised into three network lev-

els according to their transmission voltages (shown in Fig. 2.6). Each network

level can be used as a communication infrastructure for the realization of PLC

networks [85]. Typically, high-voltage (HV) networks (110 - 750 kV) deliver

the electricity from power stations to large supply regions through overhead PL

cables, which usually range a long distance (on the order of hundreds of km).

Medium-voltage (MV) networks (10 - 30 kV) distribute the electricity supply to

sub-stations in densely populated area through both overhead and underground

PL infrastructures. Low-voltage (LV) networks (220 - 400 V) supply power to

end-users through overhead or underground PL networks depending on the de-

ployment environment. In addition, the LV network is composed of two parts:

LV access network (outdoor) and indoor network. The indoor network belongs

to the end-users while the outdoor part is owned by power companies.

The HV and MV PLC networks can be typically used as a means for smart

grid and automatic meter reading. While the indoor PLC network can be used

as an infrastructure for indoor automation or indoor multimedia applications. In

this thesis, the indoor PLC network is considered since it has a wide spread of

applications and is of the interest as a last-mile to the end-users.
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Figure 2.6: Structure of a PLC network [85]

Here, the example of automatic electricity meter readings is described to show

the information flow within these network levels. Local usage information is

collected by meter that is located in the house of end-user and sent across the LV

access network [85]. After data aggregation at an LV router, it reaches an MV

router by passing across the transformer. Finally, the MV routers transmit the

information to a concentrator that can reach the power supply company through

a dedicated communication infrastructure (e.g., Wide area network (WAN)) [85].

Information flow in the opposite direction applies when control data is sent from

the power supply company to the end-user.

2.3.4 Indoor PLC structure

Indoor PLC networks take the existing internal PL cables as communication

medium, a simplified structure of indoor PLC network is shown in Fig. 2.7. In

such a network, different types of home appliances (light bulb, washing machine,

microwave oven, etc.) are attached to micro-controllers, which collect the infor-
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mation, such as energy consumption, of each home appliance. Then through PLC

adaptors, home appliances are able to exchange such information through the ser-

vice panel. The service panel (or gateway), which interconnects all the devices

attached to the PLC adaptors, controls the indoor PLC network, and enables

inter-device communication. The service panel can be positioned with the Meter

(as shown in Fig. 2.6), or in any other places in the indoor PLC network, which

can potentially connect to the outdoor network through PLC access system or an

access system provided by other communication technology (e.g., Ethernet) [24].

Other applications of indoor PLC include file sharing between laptops (laptops

are attached to PLC adaptors), printing (e.g., from computers to printer), etc.

Disturbances in the indoor PLC networks can be caused by electricity distri-

bution, operating devices, and the plug in/out of appliances inside the network,

along with external interference (e.g., radio station or base station). In addition,

the impedance mismatch [24] between different types of loads and PL causes

multi-path channel fading, which makes PL a harsh environment for data trans-

mission.

Figure 2.7: Illustration of an indoor PLC network [24]
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2.3.5 Random Indoor PLC Topology Generator

Before PLC channel characteristics are presented, it is essential to introduce a

random indoor PLC topology generator [86] that can reflect the physical reality.

The random topology generator provides an insightful understanding of PLC

network dynamics.

Figure 2.8: An example of detailed indoor PLC structure showing derivation
boxes and connections with power sockets [86]

From the analysis of European indoor norms and wiring practices, it is found

that an indoor PLC topology can be divided into areas that contain the deriva-

tion box and all the power sockets that are connected to it [86], referred to as

“clusters” (as shown in Fig. 2.8). A two-level connection structure presents in

this network topology. The first connection level exists between the power sock-

ets and the corresponding derivation box and the second connection level is the

inter-connection between derivation boxes. The derivation boxes are used as the
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coordinator in the associated clusters and typically, for an indoor PLC network

to connect with the outdoor network, one of the derivation boxes is assigned as

the service panel or gateway (as shown in Fig. 2.7). Generally, as proved by

experimental evidence, the clusters have a rectangular shape and are of the same

area on average [86]. Therefore, a statistical topology model can be generated

based on the concept of clusters.

Considering a certain topology area of Af and by adopting the concept of

clusters, the topology area can be divided into several clusters that are of the

same area. If the cluster area is denoted as Ac, it satisfies a uniform distribution

over a proper interval, i.e., Ac ∼ U (Am,AM), where the values of Am and AM are

obtained from experimental data [86], i.e., the values are obtained from statistical

study of numerous real-life scenarios. The number of clusters Nc can be calculated

according to:

Nc =

⌈
Af
Ac

⌉
(2.22)

The symbols d·e represent the ceiling operator.

Given a certain area, and with the concept of clusters, and the number of

clusters determined, the random topology can be generated as follows. A boolean

matrix of the size r × c is used to represent the division of the area in rc clusters,

where 1 in the matrix represents the presence of the cluster while 0 represents

the absence of the cluster area. For the boolean matrix below,

M =

[
1 1 1 1

1 1 0 0

]

it represents the topology layout shown in Fig. 2.9, where each block represents

a cluster.
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Figure 2.9: An example of cluster arrangement

To increase the randomness of the topology, r is required to obey a uniform

distribution that satisfies the condition, r∼ U (1,Nc). Thus the number of column

can be find from c = dNc/re. The above calculation of the number of column

may make the overall matrix element number rc larger than the cluster number

Nc. Therefore, when the value of rc exceeds the number of clusters, Nc, all the

elements in the first r -1 rows and c-1 columns of the matrix are set to 1. Then

a set of elements, Nc-(r -1)(c-1), in r -th row and c-th column is randomly chosen

and set to 1. Thus the overall elements in the matrix is equal to the number of

clusters.

Derivation boxes can be regarded as the “root” of the cluster, as it can be

seen as the top node of the tree representation that illustrates the power socket

connections inside a cluster [86]. It is assumed that the derivation box is always

placed on the top left corner in a cluster. But the position of the derivation

box can be shifted from the corner by a bidimensional offset as described in [86].

For a topology representation matrix, one of the derivation box in the clusters

is considered as the service panel or gateway of the indoor PLC network [86].

All the derivation boxes in the rest clusters are either directly connected to the

gateway or to the nearest derivation box in the direction of the gateway [86]. For

the derivation box connections, it is required to satisfy the minimum distance

criterion and the root connections cannot be cyclic [86]. Fig. 2.10 shows a possible

derivation box connection for the topology layout in Fig. 2.9, where the derivation

box located in M(1, 2), i.e., the first row and the second column, is the gateway.
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Figure 2.10: An example of connections within derivation boxes (derivation boxes
are denoted by the green squares)

Figure 2.11: Common connection structures between outlets and derivation box
(a) type SD (b) type SP and (c) type BP (the blue dots represent power sockets)
[86]

The power sockets are situated along the cluster perimeter and the number of

power sockets satisfies a Poisson arrival process with a mean of ΛoAc, where Λo

is the density of power sockets in a cluster [86]. For the connection between the

power sockets and the associated derivation box (as shown in Fig. 2.11), there

are generally three types, namely type SD (Star structure that satisfies the min-

imum Distance criteria), type SP (Star topology with conductors placed along

the Perimeter) and type BP (Bus topology with conductors placed along the

Perimeter). The distance between each power socket to the derivation box fol-

lows certain probability density function (PDF) based on cluster side length [86].

Each power socket is then randomly attached with certain load with or with-

out frequency-selective impedance [87]. Fig. 2.12 depicts a randomly generated

indoor PLC network topology with the parameters in Table. 2.4.
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Table 2.4: Parameters used for random PLC topology generation

Parameter value description
Af (m

2) 160 total topology area
Ac(m

2) U(20,50) cluster area
Λ0(outlets/m2) 0.2 outlet density in a cluster

1

2

3

4

 5

 6

 7

 8 9 10 11 12 13 14 15 1617 18 19 20 21 2223 24 25 26

Figure 2.12: Tree plot of a randomly generated indoor PLC network topology
with the parameters in Table. 2.4 (circles marked with blue numbers indicate
derivation boxes and circles marked with black numbers denote power sockets)

2.3.6 PLC Channel Modelling

Starting from the random indoor PLC topology generator, it is now possible to

model the indoor PLC channel. Initially designed for the purpose of electricity

distribution, the PL channel is a very harsh medium for data communication.

Generally, it suffers from frequency selective fading which is caused by signal

reflections due to impedance mismatch between different types of loads and PL

cables [24]. Also, it is prone to topology changes caused by factors such as the

plug in/out of appliances, which makes the PL channel time-varying. Various

sources of noise in PLC further degrade the performance of the PL channel [29].

Therefore, the modelling of PLC channel to explore PLC channel characteristics,

which facilitates the development of advanced technology to combat these PLC
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channel impairments has become an inevitable necessity.

Research efforts on PLC channel modelling during the recent years have pros-

pered in two directions, the bottom-up approach (or deterministic approach) [30,

86–88] and the top-down approach (or statistical approach) [89–91]. The bottom-

up approach exploits the transmission line (TL) theory to compute the channel

transfer function (CTF) and henceforth obtaining frequency response of the PL

channel. The CTF can be obtained deterministically based on the network topol-

ogy. While the bottom-up approach captures physical reality, it has a rather

high computational complexity. The top-down approach, however, treats the PL

channel as a black box and the channel response is obtained by fitting certain

statistical data from experiment into the channel parametric function [89]. This

approach enables a fast channel simulation while at the cost of lossy link to the

physical reality.

2.3.6.1 Bottom-Up Approach

Bottom-up approach is developed based on the TL theory [92], in which com-

plete information of the network topology is required. In order to calculate the

CTF between any pairs of power sockets in the PLC network, backbone path

(the shortest path between the pair of power sockets) identification and topology

remapping is necessary. Fig. 2.13 shows the identification of the backbone path

for a randomly generated topology as detailed in Section 2.3.5 to obtain the CTF

between node 9 and node 4. Fig. 2.14 depicts the remapped PLC topology along

the backbone path.

37



Figure 2.13: Backbone path identification (the path marked by red line is the
backbone path)

Figure 2.14: Topology remapping along the backbone path

To simplify the calculation of CTF, the impedances that are not on the back-

bone path are carried back on the backbone path exploiting TL theory (i.e., node

2, 5-8, and 10, 11 in Fig. 2.14). To start with, it is assumed a transverse electro-

magnetic (TEM) or quasi TEM propagation mode6 [86]. As shown in Fig. 2.15,

for a TL of the length l, characteristic impedance ZC and propagation constant

γ, with an impedance load ZL, the equivalent impedance ZR from the line input

can be calculated exploiting TL theory [86],

ZR = ZC
ZL + ZCtanh(γl)

ZC + ZLtanh(γl)
= ZC

1 + ρLe
−2γl

1− ρLe−2γl
(2.23)

where ρL = (ZL − ZC)/(ZL + ZC). The above equation is used recursively for

impedance carry-back.

6In the Transverse Electric (TE) mode, the electric vector (E) is always perpendicular to the
direction of propagation, while there is only a magnetic field along the direction of propagation.
In the Transverse Magnetic (TM) mode, the magnetic vector (H) is always perpendicular to the
direction of propagation, while there is only an electric field along the direction of propagation.
In the TEM mode, both the electric vector (E) and the magnetic vector (H) are perpendicular
to the direction of propagation.
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Figure 2.15: Illustration of a section of transmission line terminated with load

Figure 2.16: Elements in backbone portion [86]

To calculate the CTF, considering a backbone portion (shown in Fig. 2.16)

that consists an output node (towards the receiver terminal) and an input node

(towards the transmitter terminal), if the characteristic impedance of a trans-

mission line segment is denoted as ZCb
, the propagation coefficient is denoted

as γb, the length of the associated backbone line unit is lb and the load at the

output node is ZLb
, then the load reflection coefficient for the backbone portion

is calculated as [86]

ρLb
=
ZLb
− ZCb

ZLb
+ ZCb

(2.24)

Then, based on the voltage ratio approach (VRA) [86], the CTF for a back-

bone portion can be obtained by

Hb =
Vb
Vb−1

=
1 + ρLb

eγblb + ρLb
e−γblb

(2.25)

where Vb−1 and Vb are the voltage at the input node and output node, respectively.

If the backbone is divided into N + 1 units, and denoting f as the operating

frequency, the total CTF can be computed as [86]

H(f) =
N+1∏
b=1

Hb(f) (2.26)
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where the characteristic impedance of the transmission line segment, ZCb
, and

the propagation coefficient, γb, are frequency dependent.

Other than VRA, ABCD matrix method [93] can also be used to calculate

the CTF.

2.3.6.2 Top-Down Approach

The bottom-up approach is able to obtain deterministic CTF with the require-

ment of global information of all elements in the PLC network (e.g., PL cable

types, PL cable lengths, load impedances). Especially, when a large scale of PLC

network is considered, it would incur tremendous computational complexity, not

to mention the required global information is usually difficult, if not impossible,

to obtain [89]. In light of the drawbacks of bottom-up approach, top-down ap-

proach is advocated by a lot of studies [89–91] due to much reduced complexity.

Top-down approach treats the PL channel as a black box [89], of which the gen-

eral statistics of CTF is studied based on extensive experimental measurements.

By analysing the measurement results, general channel parametric function is de-

rived to obtain CTF by data fitting, which requires very few relevant parameters

(or statistical data) of the PLC network.

A widely adopted top-down approach to model the CTF is reported in [89],

in which the effects of multipath propagation, cable length, multipath delay, and

frequency selective attenuation are jointly considered. In this model [89], the

frequency response of CTF is given by

H(f) =
N∑
i=1

gi · e−(a0+a1·f
k)·di · e−j2πf(di/vp) (2.27)

where N is the number of paths, gi is a weighting factor that is related to the

reflection and transmission factors along a propagation path. a0 and a1 are atten-

uation parameters, while k is the exponent of the attenuation factor with typical

values between 0.5 and 1. These three parameters are typically derived from

measurement statistics of the CTF. di and f indicate the length of path i and

the frequency, respectively. The second term, e−(a0+a1·f
k)·di , as a whole accounts
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for the attenuation on the ith path, which becomes more severe with the increase

of di and f . vp represents the propagation speed and di
vp

indicates the delay τi on

the ith path. The last portion of this model,
∑N

i=1 e
−j2πf(di/vp), accounts for the

multipath delay.

In the PL signal propagation, it does not only occur along a direct line-of-

sight (LoS) path between the transmitter and the receiver, but additional paths

(signal reflections) should also be taken into account, which results in a multipath

signal propagation scenario. For example, in the network topology shown in

Fig. 2.17, considering point A as the transmitter and C as the receiver, then the

signal propagation paths due to multiple reflections could be: A → B → C,

A → B → D → B → C, A → B → D → B → D → B → C, and so on.

The signal propagation undergoing different paths would arrive at the receiver at

different times, and hence causes multipath delay.

Figure 2.17: PLC multipath signal propagation

The top-down model allows fast CTF generation with statistical data fitting.

However, extensive experimental measurements are required to determine the pa-

rameters (e.g., a0, a1 and k). In [94], the Open PLC European Research Alliance

(OPERA) classed 9 reference channels as representatives of real PL channels for

LV/MV network. Later in [95], 9 sets of parameters are reported corresponding

to the 9 reference channels in [94], which allows the fast statistical generation of

9 class CTF.

2.3.7 PLC Noise Modelling

Unlike other communication systems, PLC channel experiences various types of

noise from various sources. Generally, noise in PLC can be broadly classified in-
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to two categorises [96]: background noise and impulsive noise (IN). Background

noise can be considered as stationary since it varies slowly for a relatively long pe-

riod of time [96]. Based on the origin, occupant spectrum, duration and intensity,

background noise can be further classified into coloured background noise and NB

noise, while IN can be categorised into periodic IN asynchronous to the mains

frequency, periodic IN synchronous to the mains frequency, and asynchronous IN.

A detailed classification of noise in PL channel is shown in Fig. 2.19 and detailed

descriptions are provided below.

Figure 2.18: Coloured background noise by the model in eq. 2.28

• Coloured background noise: This type of noise is caused by electric devices.

Generally, it has a smooth and relatively low PSD. Owing to numerous

sources of noise occupied in the low frequency spectrum, the PSD of this

type of noise exhibits a decreasing trend with the increase of frequency,

as shown in Fig.2.18, and hence the name coloured (coloured noise has

different signal power at different frequencies). Also, since this type of

noise is stationary for a relatively long period of time, hence it is called

background noise.

• NB noise: NB noise is introduced by external broadcasters, i.e., AM, FM
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and amateur radio. It typically has the form of sinusoidal.

• Periodic IN asynchronous to the mains frequency: This type of noise orig-

inates from the switching of power supplies with a repetition rate of 50 to

200 kHz.

• Periodic IN synchronous to the mains frequency: This type of noise is

mainly induced by light dimmers and typically has a repetition rate of 50

to 100 Hz.

• Asynchronous IN: This is caused by switching transients of load or lights

in the PLC network. The impulse spans a large frequency band and causes

the occurrence of burst error due to its high amplitudes.

PLC

Transmitter
PLC Channel + PLC Receiver

+
Coloured background 

noise

Narrowband noise

Periodic impulsive noise 

asynchronous to the mains 

frequency Periodic impulsive noise 

synchronous to the mains 

frequency

Asynchronous

impulsive noise

Figure 2.19: Noise classification of PLC networks

The closed-form expression of typical PL noise models facilitate the develop-

ment and design of advanced PLC systems. In the following, some well-known

noise models in PLC are introduced.

2.3.7.1 Coloured Background Noise Model

A widely accepted model for coloured background noise is presented in [97], where

three parameters are required for data fitting and the noise is treated as Gaussian
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with PSD,

P (f) = a+ b · |f |c [
dBm

Hz
] (2.28)

where a, b and c are parameters obtained from measurements and f is the fre-

quency in MHz.

The OPERA consortium suggested a model for coloured background noise

in [94] as

P (f) = P∞ + P0 · e−f/f0 [
dBm

Hz
] (2.29)

where P∞ is the PSD as f → ∞, P0 is the difference between P∞ and the

maximum PSD. f0 indicates the decaying exponential rate.

2.3.7.2 Impulsive Noise Model

IN exists for short time intervals in the PL channel, but is the main cause of errors

in PLC due to its high PSD. Some well-known IN models in PL are the Bernoulli-

Gaussian model [96], the Middleton’s class A model [98] and the cyclostationary

Gaussian model [99].

The Bernoulli-Gaussian model [96] is based on Gaussian mixture distribution

with two terms, in which one term is used for IN and the other for background

noise. Mathematically, the PDF in this model at a certain time instant can be

expressed as [96]

pη(ν) = (1− p) · N (0, σ2
b ) + p · N (0, σ2

b + σ2
i ) (2.30)

where p is the probability that the impulsive noise occurs, which follows Bernoul-

li random process, σ2
b and σ2

i are the variances for background noise and IN,

respectively.

The Middleton’s class A model [98] is an infinite Gaussian mixture model.

The PDF of this model is given by [98]

pη(ν) =
∞∑
k=0

e−A · Ak

k!
· 1√

2πσ2
k

· exp(− v2

2σ2
k

) (2.31)

with

σ2
k = (1 +

1

Γ
) · ((k/A) + Γ

1 + Γ
) · σ2

b (2.32)
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where 1√
2πσ2

k

· exp(− v2

2σ2
k
) is a Gaussian distribution with zero mean and variance

σ2
k, i.e., N (0, σ2

k).
e−A·Ak

k!
is the Poisson distributed probability for the kth IN

term, which reflects the occurrence of IN. The parameter A is called impulsive

index and Γ is the background-to-impulsive noise ratio, and σ2
b is the variance of

background noise. Typically, the first three terms are sufficient (i.e., k = 0, 1, 2)

to approximate the Middleton’s class A model. In this case, the PDF is very

similar to the Bernoulli-Gaussian model [96].

The periodic IN synchronous to the mains frequency can be represented by

the cyclostationary Gaussian model [99]. This type of noise changes periodically

with the frequency the same as or twice the mains frequency [24]. Therefore,

it can be modelled as a sum of sinusoidal wave of different amplitudes and fre-

quencies [99]. The periodic IN can be modelled with zero mean and time-varying

variance Gaussian process, in which the amplitude PDF is expressed as

pη(ν(iTs)) =
1√

2πσ2(iTs)
· exp(− v2(iTs)

2σ2(iTs)
) (2.33)

where Ts is the sampling period, σ2(iTs) is the instantaneous variance of the

noise that is synchronous to the mains frequency owing to different phases of AC

voltage, and is given by

σ2(t) =
L−1∑
l=0

Al

∣∣∣∣sin(
2πt

T0
+ θl)

∣∣∣∣nl

(2.34)

where T0 is the mains cycle duration, Al, θl, nl denotes the characteristics of the

noise.

To summarise, noise in PLC exhibits the coloured nature, and is the super-

position of noise sources from the classifications in Fig. 2.19. Also, the power

of numerous noise sources are situated in the low frequency spectrum and hence

the background noise and the periodic IN dominate the noise in NB PLC. In BB

PLC, the aperiodic IN is considered as the dominant term [100]. The background

noise in BB PLC has low and constant PSD, and can be considered as AWGN,

and since the periodic IN has relatively low amplitude, it has a low impact on

noise power in BB PLC [96].
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2.4 Summary

In this chapter, the general overview of sensor networks, wireless communica-

tions and PLC were provided. The basic components, data collection and com-

munication of sensor nodes were outlined along with some applications of sensor

networks. A brief history of wireless communications is provided together with

the introduction of wireless channel characteristics (large-scale and small-scale

propagation effects) and the wireless AWGN channel. Also, background and

the general architecture of PLC network were discussed. With a focus on in-

door PLC structure, random PLC topology generator was introduced together

with the bottom-up and top-down channel modelling approaches. Finally, noise

classification and some well-known PLC noise models were presented. With the

characteristics of WSNs and PLC network, it is a natural process to utilise both

technologies to supplement each other.

Although random topology change, the time-varying and frequency-selective

fading nature, and the complex noise scenarios of PLC make PL a harsh medi-

um for data communication, some advanced PLC technologies such as PLC

topology inference [101–104], orthogonal frequency division multiplexing (OFD-

M) PLC [105–107], and PLC noise detection and mitigation [85, 108–110] have

been developed to combat the channel impairments of PLC.
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Chapter 3

Overview of Network Protocol
Stack and Optimization Theory

This chapter presents the foundations of the research topics covered in this thesis.

In Section 3.1, the network protocol stack is discussed. The general optimization

theory is presented in Section 3.2. Finally, Section 3.3 summarises this chapter.

3.1 Overview of Network Protocol Stack

This section outlines the structure in the network protocol stack and the corre-

sponding functionalities in each layer. Then the drawbacks of traditional layered

design is discussed. Finally, the architecture of cross-layer design and the main

challenges are presented.

The network protocol stack can be divided into the PHY layer, data link layer,

network layer, transport layer and the application layer as shown in Fig. 3.1 with

the illustration of some main functionalities in each layer. More details of each

layer are provided below.

1. The PHY layer concerns with establishing a reliable communication link

through robust modulation, transmission and data receiving techniques.

The design factors corresponding to the PHY layer include carrier frequency

selection and generation, power control, modulation, coding, equalization,

(multiple-input multiple-output) MIMO, signal detection and data encryp-

tion [60].
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2. The data link layer deals with data stream multiplexing, detection of data

frame and medium access (or the MAC layer, which is embedded in the data

link layer) and error control [60]. In particular, the MAC layer manages the

mechanism of channel access for multiple users (or devices). Depending on

the channel access scheme, users/devices can access the channel in a deter-

ministic or a random manner. In the deterministic channel access method,

based on the channelization mechanism, the entire spectrum is divided in-

to channels by time, frequency or code, and each user/device is assigned

with dedicated channels, termed time division multiple access (TDMA),

frequency division multiple access (FDMA), and code division multiple ac-

cess (CDMA), respectively. In a random channel access fashion, each active

user/device (by active, it means the user/device has data to transmit) can

access the channel dynamically. Some well-known mechanisms are Aloha,

carrier sensing multiple access (CSMA), and CSMA/CA.

3. The network layer connects the users/devices in the network by establish-

ing end-to-end links. Typical functions in this layer are neighbour discovery

and routing. In particular, in applications where users/devices always have

data to transmit, two effective routing strategies are the centralised and the

distributed routing [74]. In the centralised routing, each user/device deter-

mines its local channel conditions and network topology and transfers such

information to a centralised panel. The panel then decides and broadcasts

the routing tables for all users/devices based on the global information of

the network. While this routing strategy provides the most effective solu-

tion, it is vulnerable to rapid changes in channel conditions and network

topology. Also, this strategy incurs heavy communication overhead. In the

distributed routing, each user/device exchange its local information to its

neighbouring users/devices. Each user/device determines the routes based

on its local information, which saves much communication overhead and

can respond to topology changes rapidly.
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4. The transport layer manages retransmissions, error recovery and flow con-

trol and is especially needed when the network has an urge to be accessed

by external networks [60].

5. The application layer generates and processes the data in the network with

main functions of source coding and source decoding.

Physical (PHY) layer

(Power control, modulation, coding, 

equalization)

Data link layer (MAC layer within)

(Data stream multiplexing, channel access)

Network layer

(Neighbour discovery and routing)

Transport layer

(Retransmission, flow control and error 

recovery)

Application layer

(Source coding/decoding)

Figure 3.1: Network protocol stack with illustration of main functionalities in
each layer

A through discussion of network layers and the corresponding functionali-

ties can be found in [60, 70, 74, 111–113]. The network protocol stack depicted

in Fig. 3.1 was initially proposed for computer networking [111], with which

the modularity simplifies and facilitates the development of the protocols in the

Internet. In this architecture, each layer is developed individually with static

established interfaces only with neighbouring layers, and neglecting specific net-

work constraints and requirements of different applications. The overall system

flexibility, therefore, is compromised in this architecture since the interfaces are

predefined and each layer is concealed from non-neighbouring layers [112].
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The fundamental reasons for the layered design of the protocol stack to provide

adequate performance in computer networking are [74]: the dynamics in each

layer are limited since the communication medium (e.g., Ethernet cables) has

little channel impairment, and the performance in each layer can be over-designed

to combat the dynamics from neighbouring layers as the system resources (e.g.,

power and bandwidth) are relatively unrestricted. However, in wireless network

or PLC network, the communication channel is prone to the environment and

experiences various channel impairments such as time-varying channel condition,

and frequency selective fading. Also, in these networks, the available resources

(e.g., power and bandwidth) are usually limited (e.g., due to PLC regulations

as discussed in Chapter 2). Consequently, to overcome the dynamics by over-

designing the layers is unacceptable in these networks. Therefore, the overall

wireless/PLC network design focused on isolated elements of the layered structure

would lead to poor performance, especially under stringent resource constraints

or performance requirements (e.g., energy consumption, delay). To overcome

these challenges, a cross-layer protocol design that takes the resource constraints,

application requirements into account, with interdependencies between different

layers is favoured.

Contrary to the layered design of the protocol stack, a cross-layer design im-

proves the overall network performance by jointly optimizing multiple layers in

the protocol stack with application specific resource constraints and requirements

in an integrated and hierarchical framework [74]. Such a design mechanism allows

information exchange between different neighbouring or non-neighbouring layers

(as shown in Fig. 3.2), and adds on the adaptivity at each layer of the protocol

stack [74]. For example, to minimize the total energy consumption of a sensor

network, the application layer of each node should adapt its source rate by source

coding to ensure the minimum QoS requirements (e.g., distortion). This infor-

mation can be used by the power management plane to monitor the encoding

power and the network layer to establish routes for each node. The adaptivity at
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both the application layer and the network layer should be informed to the PHY

layer and the MAC layer to determine the power control and channel access for

each link. Such information can then be used in the power management plane

to monitor the transmission and data reception power, and be fed back to the

application layer to compensate for the channel diversity. The major challenges

in the cross-layer design are to integrate the resource constraints and applica-

tion specific requirements into protocol designs at each layer, and to determine

the information to be exchanged across different protocol layers as well as the

mechanism of each layer to adapt to such information [74].

Application layerApplication layer

ransport layerTransport layer

Network layerNetwork layer

Data link layerData link layer

Physical (PHY) layerPhysical (PHY) layer

Resource

constraints

and

application

specific

requirements

Resource 

constraints 

and 

application 

specific 

requirements

Information

exchange

Information 

exchange

Figure 3.2: Cross-layer design architecture

3.2 Overview of Optimization Theory

In section 3.1, the major challenges in the cross-layer design are discussed, which

are detailed as follows:

1. How the resource constraints and application originating requirements can

be integrated into the protocol designs at each layer?

2. What kind of information should be exchanged across each protocol layer?

3. How each layer should adapt to the exchanged information?
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Recent development in NUM has reported that different protocol layers can

be systematically integrated into a single coherent theory, which provides a gen-

eral viewpoint to understand the interactions across various layers in the network

protocol stack [49, 53, 54]. In such a framework, NUM is used as a modelling

tool, to integrate specified objectives, diverse types of constraints, design free-

dom and stochastic dynamics into a single optimization problem [49], which is

then decomposed into different layers. Each layer iterate on associated subsets

of the optimization variables using local information to attain individual opti-

mality [55]. By combining the results from these local layers, a global objective

can be attained. Therefore, NUM provides a coherent approach to solve the

challenges in the cross-layer design. In the following, the general optimization

theory, as the foundation of NUM is outlined, including the basics of convexi-

ty, Lagrange duality, optimality conditions, different decomposition techniques

and distributed solutions. Detailed descriptions concerning these subjects can be

found in [49, 52–54, 114].

3.2.1 Convexity

A set S is said to be convex if the line segment between any two points in S lies

in S. Mathematically, for any points x1, x2 ∈ S and any θ with 0 ≤ θ ≤ 1, the

set S is convex if [114],

θx1 + (1− θ)x2 ∈ S (3.1)

Fig. 3.3 depicts the idea of convex and non-convex sets with simple illustrations.

Figure 3.3: Simple illustrations of convex (left) and non-convex (right) sets [114]

A function f : Rn → R (n indicates the number of elements and R is used to
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indicate the set of real numbers) is convex if the domain (denoted as dom) of f

is a convex set and if for all x, y ∈ domf , and θ with 0 ≤ θ ≤ 1, the following

inequality holds [114]:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (3.2)

Roughly, the above inequality indicates that the line segment between (x, f(x))

and (y, f(y)) lies above the graph of f , as shown in Fig. 3.4. A function f is said

to be concave if −f is convex.

Figure 3.4: Illustration of a convex function. The line segment between any two
points on f lies above the graph [114].

Generally, a problem to find x that minimizes f0(x) among all x that satisfy

the conditions fi(x) ≤ 0, i = 1, ...,m, and hi(x) = 0, i = 1, ..., p, can be formulated

into an optimization problem as:

min
x

f0(x)

s.t. fi(x) ≤ 0 1 ≤ i ≤ m

hi(x) = 0 1 ≤ i ≤ p (3.3)

where x ∈ Rn is the optimization variable, f0 (Rn → R) is the objective function,

f1, ..., fm (Rn → R) are them inequality constraint functions, and h1, ..., hp (Rn →

R) are the p equality constraint functions. The optimization problem in (3.3)

is a convex optimization problem if the objective (f0) and inequality constraint

functions (fi, i = 1, ...,m) are convex and the equality constraint functions (hi, i =

1, ..., p) are linear (or affine, in general). A point x ∈ domf0, fi, hi (the domain of

the optimization problem) is said to be feasible if all the inequality and equality

constraints are satisfied (fi(x) ≤ 0, and hi(x) = 0). The optimization problem
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in (3.3) is feasible if there exists at least one feasible point of x. The optimal

solution of the problem is denoted as x∗, at which the optimal value f ∗ can be

obtained, i.e., f ∗ = f0(x
∗).

A convex optimization problem is much easier to solve than a non-convex

one. A local optimum solution (optimal feasible point in a local domain of the

problem) is also globally optimal (optimal feasible point in the whole domain of

the problem) in convex optimization problems [114].

3.2.2 Lagrange Duality and Optimality Conditions

The theory of Lagrange duality can transform the original optimization problem

(or primal problem) in (3.3) into a dual maximization problem, which facilitates

the decomposition. The basic idea of Lagrange duality is to integrate the con-

straint functions into the objective function with a weighted sum. The Lagrangian

associated with problem (3.3) is defined as [114]:

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x) (3.4)

where λi and νi are the Lagrange multipliers corresponding to the ith inequality

constraint, fi(x) ≤ 0 and to the ith equality constraint, hi(x) = 0, respectively.

The optimization variable x is the primal variable and the Lagrange multiplier

vectors λ and ν are called the dual variables. f0(x) is the primal objective, and

the dual objective g(λ, ν) is defined as the minimum value of the Lagrangian over

x. Mathematically,

g(λ, ν) = inf
x
L(x, λ, ν) (3.5)

g(λ, ν) is concave regardless of the convexity of the original problem [114]. The

dual objective g(λ, ν) takes the infimum regarding to all x (could be an infeasible

point). The dual variables λ and ν are dual feasible if λ ≥ 0.

For any feasible x, λ and ν, the primal and dual objectives satisfy f0(x) ≥

g(λ, ν) [114]. Therefore, a lower bound on the optimal value f ∗ of problem (3.3)
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can be obtained by maximizing the dual function, as

max
λ,ν

g(λ, ν)

s.t. λ ≥ 0 (3.6)

which is always a convex optimization problem whether or not the primal problem

is convex.

The duality gap is defined as the difference between the optimal primal ob-

jective f ∗ and the optimal dual objective g∗, of which f ∗ − g∗ ≥ 0 always holds

since g∗ is a lower bound on f ∗ (weak duality). Given the original problem is a

convex optimization problem, strong duality (i.e., the duality gap is 0, f ∗ = g∗)

usually (not always) holds. One simple constraint qualification for strong duality

is Slater’s condition [114].

Assuming strong duality holds, let x∗ denotes the primal optimal and (λ∗, ν∗)

indicates the dual optimal point, it can be derived that

f0(x
∗) = g(λ∗, ν∗) (3.7)

= inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x) +

p∑
i=1

ν∗i hi(x)

)
(3.8)

≤ f0(x
∗) +

m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

ν∗i hi(x
∗) (3.9)

≤ f0(x
∗) (3.10)

The equality (3.7) indicates that strong duality holds, (3.8) is obtained from the

definition of the dual function. (3.9) holds since the infimum of the Lagrangian

over x should not exceed its value at x = x∗. (3.10) follows since λ∗ ≥ 0,

fi(x
∗) ≤ 0, i = 1, ...,m and hi(x

∗) = 0, i = 1, ..., p. It is obvious that the

inequalities (3.9) and (3.10) should hold with equality and

m∑
i=1

λ∗i fi(x
∗) = 0 (3.11)

λ∗i fi(x
∗) = 0 (3.12)

in which (3.12) is known as the complementary slackness condition [114].
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Further, since x∗ minimizes the Lagrangian L(x, λ∗, ν∗) over x, it follows that

the gradient of the Lagrangian should be 0 at x∗. Mathematically, it holds that

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0

Therefore, it concludes that

fi(x
∗) ≤ 0, i = 1, ...,m

hi(x
∗) = 0, i = 1, ..., p

λ∗i ≥ 0, i = 1, ...,m

λ∗i fi(x
∗) = 0, i = 1, ...,m

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0, (3.13)

which are known as the Karush-Kuhn-Tucker (KKT) conditions [114]. For any

optimization problem (convex or non-convex) with differentiable objective and

constraint functions for which strong duality holds, the necessary condition for

any pair of primal and dual points to be optimal is to satisfy the KKT condi-

tions [114]. In particular, if the primal optimization problem is convex, the KKT

conditions are also sufficient for the points to be primal and dual optimal.

3.2.3 Decomposition Theory

Basically, decomposition is to divide the original optimization problem into dis-

tributively solvable subproblems that are controlled by a high-level master prob-

lem through certain types of messaging [49, 52–54]. Typically, there are two types

of decomposition techniques, namely, dual decomposition and primal decomposi-

tion. Dual decomposition deals with decomposing the Lagrangian dual problem,

while primal decomposition concerns with decomposing the original primal prob-

lem [49, 53]. In the dual decomposition technique, the master problem decides the

prices for the resources to each subproblem, which then acquires certain amount

of resources depending on the price. In the primal decomposition technique, the

master problem assigns some amount of the available resources directly to each

subproblem.
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Figure 3.5: Illustration of optimization problem decomposition [52]

3.2.3.1 Dual Decomposition

The dual decomposition suits in the occasions when the problem has a cou-

pling constraint, and when it is relaxed, the optimization problem is able to

be decoupled into several subproblems. For instance, consider an optimization

problem [52]

max
xi

∑
i

fi(xi)

s.t. xi ∈ Xi, ∀i∑
i

hi(xi) ≤ c (3.14)

For example, the above optimization problem applies to a communication

network that has a fixed capacity on each link, and a certain number of nodes,

each transmitting at a source rate, which is to be optimized. Each node has a

specified path which includes a fixed set of links. The objective function in this

case could be to maximize the total utility,
∑

i fi(xi), say the network throughput.

The constraint xi ∈ Xi means that the source rate for each node should satisfy

a pre-defined range. The inequality constraint
∑

i hi(xi) ≤ c indicates that the

total data rate on each link originating from all the nodes should not exceed the

maximum capacity of the link.

Obviously, if the inequality constraint were absent, the original problem could

decouple. Therefore, the optimization problem can be relaxed by forming the

Lagrangian with respect to the coupling constraint in (3.14) as

max
xi

∑
i

fi(xi)− λT
(∑

i

hi(xi)− c
)
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s.t. xi ∈ Xi, ∀i (3.15)

where λ is the Lagrange multipliers. The original problem is now divided into

two levels of optimization. At the lower level, there are the subproblems (La-

grangians), one for each i, as

max
xi

fi(xi)− λThi(xi)

s.t. xi ∈ Xi, ∀i (3.16)

The master dual problem at the higher level updates the dual variable λ by solving

the dual problem, as

min
λ

g(λ) =
∑
i

gi(λ) + λT c

s.t. λ ≥ 0 (3.17)

in which gi(λ) is the dual function obtained as the maximum value of the La-

grangian solved in (3.16) for a certain λ. This decomposition technique actually

solves the dual problem instead of the original primal optimization problem.

3.2.3.2 Primal Decomposition

The primal decomposition suits in the occasions when the problem has a coupling

variable such that, when it is fixed to certain value, the remaining optimization

problem can be decoupled into several subproblems. For instance, consider an

optimization problem [52]

max
y,xi

∑
i

fi(xi)

s.t. xi ∈ Xi, ∀i

Aixi ≤ y

y ∈ Y (3.18)

Obviously, if the variable y were fixed to certain value, the original optimiza-

tion problem could decouple. Therefore, it is easier to solve the problem in (3.18)
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by separating it into two levels of optimization. At the lower level, there are the

subproblems, one for each i, in which the original optimization problem decouples

with a fixed value of y, as

max
xi

fi(xi)

s.t. xi ∈ Xi, ∀i

Aixi ≤ y (3.19)

While the master problem at the higher level updates the coupling variable y by

solving the problem, as

max
y

∑
i

f ∗i (y)

s.t. y ∈ Y (3.20)

where f ∗i (y) is the optimal objective value obtained from problem (3.19) for a

fixed value of y.

3.2.3.3 Hierarchical Decomposition

For a complex optimization problem, the use of dual and primal decomposition

alone would fail to deliver a simple and manageable solution. However, such com-

plex optimization problems can be divided into smaller and smaller subproblems

by using the dual and primal decomposition techniques recursively (as depicted

in Fig. 3.6).

Figure 3.6: Illustration of hierarchical decomposition [52]
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For instance, consider a problem that has both a coupling constraint and a

coupling variable [52]

max
y,xi

∑
i

fi(xi, y)

s.t. xi ∈ Xi, ∀i∑
i

hi(xi) ≤ c

Aixi ≤ y

y ∈ Y (3.21)

A possible solution to solve the above optimization problem is by first taking a

primal decomposition with respect to the coupling variable y, followed by taking

a dual decomposition with respect to the coupling constraint
∑

i hi(xi) ≤ c.

Therefore, this leads to a two-level optimization decomposition: a master primal

problem, a secondary master dual problem, and the subproblems.

If multiple levels of decomposition are applied to an optimization problem,

and in each level some iterative algorithms are used to find the solution, the con-

vergence and stability are guaranteed if the lower level master problem can be

solved on a faster time scale than the higher level master problem. In this case, at

each iteration of a master problem, convergence of the algorithms applied to all

the problems at a lower level has already been achieved [115]. It is worth noting

as reported in [55] that in principle, the algorithm at the lower level subprob-

lem should run till convergence before the higher level master problem could be

updated, while in practice, the algorithms at both levels can run simultaneously.

3.2.4 Gradient and Subgradient Algorithms

With the original optimization problem being decoupled into subproblems, effi-

cient algorithms can be used to obtain the solutions. Depending on whether the

resulting problem is differentiable or not, gradient and subgradient algorithm-

s provide a simple and straight-forward way to find a solution owing to their

advantages such as simplicity, and little requirements of memory usage [52, 114].
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For a concave maximization (or convex minimization) problem over a convex

set in its general form:

max
x

f0(x)

s.t. x ∈ X (3.22)

Both the gradient and subgradient projection approaches generate a sequence of

feasible points {x(t)} as [52],

x(t+ 1) = [x(t) + α(t)s(t)]X (3.23)

where s(t) is a gradient or subgradient of the objective function f0 calculated

at the point x(t) depending on whether f0 is differentiable or non-differentiable.

α(t) is a positive step-size and [·]X indicates the projection onto the feasible set

X . Different choices of the step-size impact on the convergence of the gradient

and subgradient algorithms. For instance, it is reported in [116] that a dimin-

ishing step-size rule with α(t) = 1+m
t+m

can guarantee the algorithms to converge

to the optimal value, where m is a fixed non-negative number. The widely used

constant step-size α(t) = α in distributed algorithms can guarantee the gradient

algorithm to converge to the optimal value with a sufficiently small step-size [117],

while gives a best value to converge to some range of the optimal value in the

subgradient algorithm [116].

3.2.5 Time Scale and Order of Updates

The update of different variables in the optimization problem differs in timescale

and order. For instance, the variables can have full convergence and thus be

optimized in one-shot, or can be optimized iteratively with the gradient or sub-

gradient algorithm. Also, there are generally two types of algorithms concerning

the order of updates. In the nonlinear Gauss-Seidel algorithm, one set of vari-

ables are iteratively optimized in a circular fashion while the rest variables are

kept fixed [115]. In the nonlinear Jacobi algorithm, one set of variables are itera-

tively optimized in a parallel fashion while the rest variables are kept fixed [115].
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Mathematically, for the Gauss-Seidel algorithm, variable x is updated as

xi(t+ 1) = arg min
xi∈Xi

f
(
x1(t+ 1), ..., xi−1(t+ 1), xi, xi+1(t), ..., xn(t)

)
(3.24)

and for the Jacobi algorithm, variable x is updated as

xi(t+ 1) = arg min
xi∈Xi

f
(
x1(t), ..., xi−1(t), xi, xi+1(t), ..., xn(t)

)
(3.25)

The combinations of all these possibilities lead to various algorithms that have

different characteristics in terms of convergence properties, amount of message ex-

change. Therefore, it is necessary to design an algorithm with specific application

requirements.

3.3 Summary

In this chapter, the background of network protocol stack and optimization the-

ory have been reviewed, which provide the foundations of the research topics

covered in this thesis. The general structure in the network protocol stack and

the corresponding functionalities in each layer have been presented, followed by a

discussion on the drawbacks of traditional layered design as well as the architec-

ture of cross-layer design and the main challenges. To address these design chal-

lenges, the optimization theory and decomposition theory have been introduced,

covering topics of convexity, Lagrange duality, optimality conditions, different

decomposition techniques and distributed solutions.
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Chapter 4

Cross-Layer Network Lifetime
Maximization for Hybrid Sensor
Networks

In this chapter, a hybrid sensor network, which consists of both wireless sensor

nodes and PL sensor nodes is proposed for industrial sensor network application-

s. In particular, the network lifetime is chosen as the main design criteria to

demonstrate the performance improvement of such a hybrid sensor network as

compared to the traditional pure WSNs. This study can also be applied to other

applications of the sensor network with stringent energy budgets, such as struc-

tural health monitoring, where building stress and motion sensors are inserted

into the concrete before it is poured [74].

The next-generation industrial automation system involves three different lev-

els [56]: the field level, where the automation process is monitored and controlled

directly by the sensors and actuators, the automation level, where the industri-

al controllers, such as programmable logic controllers are used to perform the

process control decision making, and the management level, where best-effort IP

traffic is exchanged. Typically, the devices in the field level are interconnected

by an industrial wireless sensor network, while the automation and management

levels are connected to wired networks [57].

In such networks, the wireless sensors in the automation level are required to

constantly monitor and sample the process, and to send critical messages such
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as the measurement and actuation signals to the automation and management

levels within a given time. Such that a process disturbance or emergency can

be handled in a timely manner, or actuators may misbehave and potentially

cause material or physical damage or even hazardous consequences. An example

of such a network is the chemical and petroleum refining industry [118] where

wireless sensors are scatted in the chemical reaction pool or refineries to monitor

the process. For the wired network in the automation and management level,

the cost of installing wires for communication within refineries is very high due

to safety requirements [119]. One potential candidate for the implementation of

the wired network in industrial applications is the PLC, which has the advantage

of the ubiquitous infrastructure of PL cables. Also, in situations where wired

communication infrastructure is a problem (e.g., installing new communication

systems in old facilities), PLC is an attractive solution that provides a much lower

installation time and costs [120].

In this chapter, a hybrid sensor network for industrial automation system,

which consists of both wireless and PL sensor nodes is proposed. This work is

different in the following aspects. First, to the best of our knowledge, it is the

first reported work in the literature that focuses on the cross-layer design of such

a heterogeneous network. The hybrid sensor network takes the advantage of the

flexibility of WSNs while the PL sensors are deployed to prolong the lifetime of

the network. This work studies the joint design of the PHY, MAC and network

layers to maximize the hybrid network lifetime, which is limited by the battery

capacity of wireless sensors. Second, closed-form expressions of the globally op-

timal solution for lifetime maximization of the hybrid sensor network are derived

for two different network topologies, namely string topology and linear topology.

Such closed-form solutions give insights in factors that are significant to the net-

work lifetime when designing the hybrid sensor network. Third, the impacts of

different network configurations such as source rate, sensor node densities, etc.,

on the hybrid network lifetime are investigated. Finally, the impact of different
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transmission strategies of PL nodes on the effectiveness of the network is studied.

The rest of this chapter is organized as follows. Related work is presented

in section 4.1. Section 4.2 describes the system model. Section 4.3 formulates

the optimization problem. In section 4.4, analytical expressions for the hybrid

network lifetime are derived for two topologies. Section 4.5 analyzes the numerical

results. This chapter is summarised in section 4.6.

4.1 Related Work

The ubiquitous deployment of WSNs is limited by the energy supply of wireless

sensor nodes since energy is a scarce resource. This arouses tremendous upsurge

of research interest on prolonging the network lifetime of WSNs through different

approaches. Network lifetime has various definitions in the research community.

For example, in [121–124], the network lifetime is defined as the the time duration

till the first node in the network being drained out of energy (as adopted in this

thesis, since each sensor collects critical information in the network). Network

lifetime is defined as the time duration till some target area is uncovered by any

sensor node in [125, 126]. In [127], it is defined as the time duration till the

first occasion that data collection fails. For a detailed survey on the definition of

network lifetime, please refer to [128].

There are various techniques to save the energy consumption and to maxi-

mize the network lifetime in WSNs (the definition of network lifetime in each

work may be different though). In [129], the authors focused on the placement

issues of wireless sensor nodes to increase the power efficiency. In [130], a data

compression algorithm is proposed to reduce the amount of data to be trans-

mitted for each sensor node and thus reducing the energy consumption. In the

work of [131] and [132], the authors considered the routing problems to reduce

energy consumption for wireless sensor nodes. A sensor node control approach

that schedules the nodes’ sleep/wakeup activities is studied in [133–136]. Among

these aforementioned approaches, cross-layer design of the sensor network is an
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active research area [137].

Early studies of cross-layer design of WSNs have been focused on minimizing

the total energy consumption. For example, in [138], the authors investigated

the energy consumption minimization problem for an interference-free TDMA

based WSN through joint design of the PHY, MAC, and routing layers. By

solving the approximated convex optimization problems, the results reveal that

the minimum energy transmission scheme is a combination of multi-hop and

single-hop transmissions. In [139], the energy consumption minimization problem

is extended to a clustered WSNs where slot reuse and packet retransmission are

considered to increase the network throughput.

However, it is pointed out that [140] the minimization of energy consumption

may lead to some nodes being drained of energy rather rapidly. Therefore, the

spatial information collected from the particular sensor node may be lost and

this influences the following data analysis. Hence, instead of minimizing energy

consumption of the sensor nodes, the authors in [140] attempted to maximize

the network lifetime of the sensor network, which is defined as the first sensor

node in the network being exhausted of energy. In [141], the joint design of the

PHY, MAC and the network layer is considered together with the transmission

success probability to maximize the network lifetime. More recently, the authors

in [142] considered the problem of network lifetime maximization with MAC-

aware routing that is capable of multichannel access. In [143], contention and

sleep control probabilities of each node are integrated into the network lifetime

maximization problem. A joint design on the PHY, MAC and network layers to

maximize the network lifetime considering spatially periodic time sharing scheme

is proposed in [122] for a string topology. It is later extended to a fully-connected

WSN with random topology by introducing the concept of route lifetime for each

node in [124].

The aforementioned work has considered different approaches to either mini-

mize the energy consumption of sensor nodes or to maximize the network lifetime

66



in a pure WSN. In this chapter, a hybrid sensor network is proposed. With the

integration of both wireless sensor nodes and the PL nodes, the hybrid sensor

network is expected to prolong network lifetime significantly.

clusters 

sensors cluster head central 

controller

cluster 1 

cluster 2 

dedicated links wirelss/PL links

Figure 4.1: A clustered sensor network

4.2 System Model

A cluster based sensor network for industrial automation system divides the in-

dustrial area into multiple clusters and the operation within each cluster is inde-

pendent. As shown in Fig. 4.1, each cluster covers a certain region and contains

the sensors and a cluster head (or wired access point [118]), where critical mes-

sages such as the measurement and actuation information, is collected by sensors

and is forwarded to the cluster head. The cluster heads will forward the data to

the central controller by dedicated links (such as Ethernet) for further analysis.

A hybrid sensor network that includes both the wireless nodes and PL nodes

(shown in Fig. 4.2) is considered, which could be viewed as the sensor network in

one of the clusters. The wireless nodes can be used to collect critical messages such

as the measurement and actuation information. For example, the wireless nodes

can be scatted in the chemical reaction pool to monitor the process constantly.

The PL nodes can be installed on the overhead power sockets on the ceiling and
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be used as complements of wireless nodes to collect critical information and relay

data through the PL nodes (or be used as the wired network in the automation

and management levels as introduced in the beginning of this chapter), such that

the network lifetime can be prolonged.

Figure 4.2: Topology of the hybrid sensor network, which could be viewed as
the sensor network in one of the clusters (The circles denote wireless nodes, the
squares are PL nodes, dashed arrows represent wireless links and the solid arrows
are PL links, the Sink node is also a PL node)

It is assumed that the N sensor nodes in the hybrid sensor network are po-

sitioned in a line such that two neighbouring nodes has a separation of d, and

the first a nodes are wireless nodes, followed by (N − a) PL nodes, as shown in

Fig. 4.2. The N -th node is considered as the Sink (or cluster head, also a PL

node), to which all the other nodes in the cluster will forward their collected data.

It is also assumed that all the PL nodes are equipped with antennas to receive

wireless signals from the wireless nodes (the received signals are down converted

to baseband by a low pass filter, modulated by the PL carrier frequency, and then

forwarded to the adjacent PL node. A prototype of such a platform can be found

in [144]), such that the following transmission links exist.

• Wireless node → wireless node (through wireless link)

• Wireless node → PL node (through wireless link)

• PL node → PL node (through PL link)

Notations: The wireless nodes set is denoted by W = {1, ..., a} and the

PL nodes set is denoted by P = {a + 1, ..., N}. Lw is defined as the number of
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wireless links and Lp is the number of PL links. Lw and Lp are used to label

all the wireless and PL links, such that Lw = {1, ..., Lw} and Lp = {1, ..., Lp}.

lw ∈ Lw is the index used to denote the l-th wireless link and lp ∈ Lp is used to

represent the l-th PL link. L = Lw
⋃
Lp denotes all the links in the hybrid sensor

network and l∈L indicates the l-th link, which is from a transmitter node i to

a receiver node j and is denoted by (i, j ). Finally, O(i) and I(i) represent the

set of outgoing and incoming links at node i, respectively. x and x
′

are used to

denote variables and parameters related to wireless and PL links, respectively.

4.2.1 Physical Layer

The path loss for the l-th wireless link, Glw , is assumed to be given by Glw =

G0/d
m
lw

, where G0 is the path loss at d = 1 m, dlw is the transmission distance

for link lw, and m is the path loss exponent with typical value 2≤m≤6. The

noise is assumed to be AWGN with single-sided power spectral density N0. Let

plw denote the transmission power over the link lw, then the signal-to-noise ratio

(SNR) is,

γlw =
plwGlw

N0B
(4.1)

where B is the transmission bandwidth for wireless links.

For PL nodes, NB PLC in band B (95-125 kHz), which is specified by CEN-

ELEC is considered [145]. A deterministic propagation model is assumed for the

PL channel, such that the power gain for PL link is given by

Glp = 10−a(f)·dlp (4.2)

where f is the frequency, a(f) varies between 0.004 m−1 (best case) and 0.01 m−1

(worst case), and dlp is the transmission distance for link lp [146]. As in [145], the

single sided noise power spectral density is assumed to be N
′
0. Let plp denote the

transmission power, then the SNR over link lp is given by,

γlp =
plpGlp

N
′
0B
′ (4.3)

where B
′

is the transmission bandwidth for PL links.
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Therefore, for a general transmission link l, it follows that

γl =

{
γlw : l ∈ Lw
γlp : l ∈ Lp

(4.4)

M-ary Quadrature Amplitude Modulation (MQAM) is assumed to be used in

the sensor network. The data rate over link l is expressed as [138],

rl = Bl log2(1 +Kγl) (4.5)

where Bl is the transmission bandwidth for link l and K = −1.5/ ln(5BER) is

the maximum possible coding gain with target bit error rate (BER), BER, for

modulation schemes such as MQAM [147]. This data rate is upper bounded by

the maximum allowable transmission power, pmax, for wireless links and the PSD

mask, p̄, for PL links. The maximum data rate can be achieved for wireless and

PL links (i.e., Clw and Clp) can be obtained by substituting pmax and p̄ into (4.4)

and (4.5), respectively. Therefore, the maximum transmission rate constraint is

rl≤Cl (4.6)

where

Cl =

{
Clw : l ∈ Lw
Clp : l ∈ Lp

(4.7)

4.2.2 MAC Layer

The TDMA approach is considered as the MAC scheme for both transmission

mediums due to interference free and energy saving advantages. In a slotted

synchronous TDMA MAC scheme, each frame of length T is divided into multiple

slots of length ∆. It is assumed that only one wireless/ PL link is allowed to

transmit in each time slot in the wireless/ PL medium. Also, note that wireless

links and PL links follow TDMA approach separately. Therefore, within each

TDMA frame of length T , if link l is allocated nl slots, it transmits for time

tl = nl∆ (4.8)
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Note that the transmission can occur in the wireless link and PL link simultane-

ously and the interference between wireless links and PL links is neglected (e.g.,

due to the coupling circuit in the PL nodes) since they operate in two different

frequency bands. Therefore, it follows that{ ∑
l∈Lw tl ≤ T∑
l∈Lp tl ≤ T

(4.9)

This means the transmission in either wireless or PL links should be completed

within time period T .

4.2.3 Traffic Flow

A single commodity flow [138] is assumed in this work where each node collect

energy management information such as temperature, humidity that needs to be

forwarded to a single Sink node. Assuming each node (except the Sink node)

collects data at the same rate of R, then the Sink node (N -th node) will have

data rate

RN = −
N−1∑
i=1

Ri (4.10)

where the negative sign indicates that the Sink node only has incoming traffic. If

data is transmitted over link l with a data rate of rl for time tl, then the amount

of data transmitted over link l in period T is

Wl = rltl (4.11)

In particular, the flow conservation constraints should be satisfied at the end of

every time period T , i.e., the difference between the outgoing data and incoming

data is equal to the data collected locally of each node i,∑
l∈O(i)

Wl −
∑
l∈I(i)

Wl = RiT (4.12)

4.3 Problem Formulation

In order to investigate the hybrid network lifetime, which is defined as the time

duration till the first wireless node being drained of energy, it is assumed that the
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PL nodes are powered by PL and thus have unlimited power supply, while the

wireless nodes are powered by non-rechargeable batteries (wireless nodes are likely

to be placed where mains power can not be attached, for example the wireless

nodes scatted in the chemical reaction pool and can not be attached to the mains

power due to safety concerns). Therefore, this work only focuses on the energy

consumption model for the wireless nodes. Also, only the energy consumption for

transmission is considered to illustrate the main ideas (as widely adopted in for

example [122, 124, 140]). Therefore, if the transmission power over wireless link

lw is plw , the power consumption at the transceiver circuit of wireless transmitter

node i of link lw is given by

Ptransceiver = (1 + α)plw (4.13)

where α is the inefficiency of the power amplifier and is taken to be a constant

[148].

The actual power consumption of the sensor should take into account the

power consumption for the active mode, the sleep mode, and the transient mode

[149]. The active mode power includes the transmission signal power and the

circuit power consumption. For the ease of derivation, and as widely adopted in

[122, 124, 140], only the power consumption of transmission signal power and the

power consumption of the power amplifier is considered. In the sleep mode the

power consumption is dominated by the leakage current of the switching tran-

sistors. Since for analog circuits the leakage power consumption is usually much

smaller than the power consumption in the active mode, leakage power is ne-

glected in the total energy consumption. Also, since the duration of the transient

mode is much smaller as compared to the slot time, the power consumption for

the transient mode is relatively small and not considered in this chapter. Some

notations of the parameters used in the problem formulation are summarised in

Table 4.1.

From the wireless communication model, the power consumption required to
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support the data rate,
Wlw

tlw
, over link lw is given by

plw =
N0B

KGlw

(2
Wlw
Btlw − 1) (4.14)

This is derived as follows. By substituting eq. (4.1) into eq. (4.5), it has

rlw = B log2(1 +K
plwGlw

N0B
) (4.15)

Note that rlw here is the data rate on the wireless link (notation lw instead of l),

and can be represented by
Wlw

tlw
, therefore, it has

Wlw

tlw
= B log2(1 +K

plwGlw

N0B
) (4.16)

or

2
Wlw
Btlw = 1 +K

plwGlw

N0B
(4.17)

From the above equation, eq. (4.14) can be obtained.

Therefore, assuming the initial battery energy is Ec, the lifetime of wireless

node i is defined as,

Ti =
Ec

Σlw∈O(i)plw(1 + α)
tlw
T

(4.18)

where i ∈W. Then the network lifetime can be represented as,

Tnet = mini∈W Ti (4.19)

Table 4.1: Parameters used in problem formulation
Tnet Network lifetime
q The inverse of Tnet
Ec Initial energy
Ri Data arrival rate for the i− th node
T Time frame
∆ Time slot duration
a Number of the wireless sensor node
N Number of the total sensor node
α Power inefficiency
pi,j Transmission power over wireless link i→j

Wi,j,W
′
i,j Data transmitted over wireless, PL link i→j in period T

ti,j, t
′
i,j Transmission time allocated to wireless, PL link i→j in period T

Ci,j, C
′
i,j Maximum transmission data rate over wireless, PL link i→j
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The objective is to maximize the hybrid network lifetime. Note that the

original objective function Tnet is not convex, it however can be transformed into

a convex function by taking an inverse of the network lifetime, 1/Tnet.

Lemma 4.3.1. The objective function after transformation, 1/Tnet is jointly con-

vex over Wl and tl.

Proof. From the definition of network lifetime, it follows that

1

Tnet
= max

i∈W

1

Ti

= max
i∈W

Σlw∈O(i)plw(1 + α)
tlw
T

Ec

= max
i∈W

Σlw∈O(i)
N0B
KGlw

(2
Wlw
Btlw − 1)(1 + α)

tlw
T

Ec

To prove 1/Tnet is jointly convex over Wl and tl, the first step is to prove

Σlw∈O(i)
N0B
KGlw

(2
Wlw
Btlw − 1)(1 + α)

tlw
T

is jointly convex over Wl and tl. Note that

this expression can be decomposed into N0B
KGlw

(2
Wlw
Btlw − 1)(1 + α)

tlw
T

.

Define,

f(tlw ,Wlw) =
N0B

KGlw

(2
Wlw
Btlw − 1)(1 + α)

tlw
T

and by denoting

βlw =
N0B

KGlw

(1 + α)

f(t,W ) becomes

f(t,W ) = β(2
W
t − 1)

t

T

where the subscripts in f(t,W ) are ignored for the ease of notation, and B is

integrated into t since it is a constant.

The Hessian matrix [114] of f(t,W ) can be calculated as

H(f) =

[
∂2f
∂t2

∂2f
∂t·∂W

∂2f
∂W ·∂t

∂2f
∂W 2

]
=

1

ln 2

[
β
T
· eW

t · W 2

t3
− β
T
· eW

t · W
t2

− β
T
· eW

t · W
t2

β
T
· eW

t · 1
t

]
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According to Schur’s complement condition [114], for a matrix in the form of[
a b

b c

]
with a > 0, it is positive semi-definite as long as the following holds

b2 = ac

It is obvious that the Hessian matrix H(f) satisfies the Schur’s complement condi-

tion. Therefore, H(f) is positive semi-definite, and thus f(t,W ) is jointly convex

over t and W when they take real values [114]. Since the summation of convex

functions are also convex, and taking the maximum of a convex function does not

change its convexity [114], it follows that 1/Tnet is jointly convex over Wl and tl.

This completes the prove.

Therefore, the network lifetime maximization problem can be formulated as

a mixed integer convex optimization problem [114]:

min 1/Tnet

s.t. Tnet ≤ Ec/Σl∈O(i)pl(1 + α) tl
T

(i∈W)

Cl·tl ≥ Wl

Wl ≥ 0

tl ∈ {0,∆, 2∆, ...}

(4.20)

along with (4.9) and (4.12).

The variables to determine are Tnet, Wl and tl. The first inequality in (4.20)

means that the energy consumption for each wireless node should not exceed the

battery capacity for the whole network lifetime. The second inequality is the

maximum transmission power constraint for all links. Constraint (4.9) ensures

that the data relaying in either wireless or PL link is finished within time period

T . Equality (4.12) is the flow conservation constraints for all nodes. For the above

problem formulation, if the integer constraints are relaxed on tl, the optimization

problem would be a convex problem.

4.4 Optimization Approach

In this section, the KKT conditions are used to derive analytical expressions for

the hybrid network lifetime from the relaxed problem for two topologies, which
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provide upper bounds on the network lifetime for the optimization problem in

(4.20). The Lagrangian of the optimization problem in (4.20) is:

L(q, t,W,λ,µ, ϕ, ϕ
′
,ν) =q +

∑
i∈W

λi ·
[ ∑
l∈O(i)

βlw · (2
Wlw
B·tlw − 1) · tlw − Ec · q · T

]
+
∑
l∈L

µl · (Wl − Cl · tl)

+ ϕ · (
∑
l∈lw

tl − T ) + ϕ
′ · (
∑
l∈lp

tl − T )

+
∑

i∈W
⋃
P

νi · (
∑
l∈O(i)

Wl −
∑
l∈I(i)

Wl −RiT ) (4.21)

where q = 1/Tnet and βl = BN0(1+α)
GlK

. λ and µ are the Lagrange multipliers asso-

ciated with the first and the second inequality constraints in (4.20), respectively.

ϕ and ϕ
′

are the Lagrange multipliers associated with (4.9) for the wireless and

PL links, respectively. ν is the Lagrange multiplier with respect to (4.12).

The KKT conditions [114] are

1− EcT (λ1 + λ2 + · · ·+ λa) = 0 (4.22)

β1,2
B
· 2

W1,2
Bt1,2 · λ1 + µ1,2 + ν1 − ν2 = 0 (4.23)

· · ·
β1,a+1

B
· 2

W1,a+1
Bt1,a+1 · λ1 + µ1,a+1 + ν1 − νa+1 = 0 (4.24)

· · ·
βa,a+1

B
· 2

Wa,a+1
Bta,a+1 · λa + µa,a+1 + νa − νa+1 = 0 (4.25)

β1,2[(1−
W1,2

Bt1,2
) · 2

W1,2
Bt1,2 − 1] · λ1 − C1,2 · µ1,2 + ϕ = 0 (4.26)

· · ·

βa,a+1[(1−
Wa,a+1

Bta,a+1

) · 2
Wa,a+1
Bta,a+1 − 1] · λa − Ca,a+1 · µa,a+1 + ϕ = 0 (4.27)

µa+1,a+2 + νa+1 − νa+2 = 0 (4.28)

µN−1,N + νN−1 − νN = 0 (4.29)

−C ′a+1,a+2 · µa+1,a+2 + ϕ
′
= 0 (4.30)

· · ·

−C ′N−1,N · µN−1,N + ϕ
′
= 0 (4.31)
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In particular, the complementary slackness conditions are

λ1 · [β1,2 · (2
W1,2
Bt1,2 − 1)·t1,2 + ...+ β1,a+1 · (2

W1,a+1
Bt1,a+1 − 1)·t1,a+1 − Ec · q · T ] = 0

(4.32)

· · ·

λa · [βa,a+1 · (2
Wa,a+1
Bta,a+1 − 1)·ta,a+1 − Ec · q · T ] = 0

(4.33)

µ1,2 · (W1,2 − C1,2·t1,2) = 0
(4.34)

· · ·

µa,a+1 · (Wa,a+1 − Ca,a+1·ta,a+1) = 0
(4.35)

· · ·

µN−1,N · (WN−1,N − CN−1,N ·tN−1,N) = 0
(4.36)

ϕ · [(t1,2 + t1,a+1 + · · ·+ ta,a+1)− T ] = 0
(4.37)

ϕ
′ · [(ta+1,a+2 + ta+1,N + · · ·+ tN−1,N)] = 0

(4.38)

λ,µ, ϕ, ϕ
′
,ν ≥ 0

(4.39)

4.4.1 String Topology

In a string topology, only one wireless node generates data (i.e., node 1 in

Fig. 4.2). All the other nodes act as relays for that node. To obtain the analyti-

cal expression for the hybrid network lifetime in a string topology, the following

lemma is first proved.

Lemma 4.4.1. Given W1,2, t1,2 ≥ 0, the following expression holds:

β1,2[(1−
W1,2

Bt1,2
) · 2

W1,2
Bt1,2 − 1] ≤ 0

Proof. Since βl,2 = BN0(1+α)
Gl,2K

≥ 0, define x = W1,2

B·W1,2
, it is equivalent to prove

f(x) = (1− x) · 2x − 1 ≤ 0
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The derivation of f(x) with respect to x can be calculated as

df(x)

dx
= 2x · [(1− x) ln 2− 1]

Since x = W1,2

B·W1,2
≥ 0, it follows that df(x)

dx
< 0. This indicates that f(x) is

monotonically decreasing in the region of x ≥ 0. Also, since f(0) = 0, it follows

that f(x) ≤ 0.

This completes the prove.

Lemma 4.4.2. ϕ 6= 0 always holds.

Proof. It is first assumed that ϕ = 0. According to (4.26), it can be derived that

β1,2[(1−
W1,2

Bt1,2
) · 2

W1,2
Bt1,2 − 1] · λ1 = C1,2 · µ1,2

From lemma (4.4.1), β1,2[(1− W1,2

Bt1,2
) · 2

W1,2
Bt1,2 − 1] ≤ 0, and C1,2 > 0. Therefore,

λ1 and µ1,2 must have different signs (this implies that λ1 ≥ 0, µ1,2 ≤ 0 or

λ1 ≤ 0, µ1,2 ≥ 0). However, from (4.39), λ1 ≥ 0 and µ1,2 ≥ 0. This contradicts

with the assumption of ϕ = 0. Therefore, it concludes that ϕ 6= 0 always holds.

This completes the prove.

From lemma (4.4.2) and equation (4.37), it can be derived that

T =
∑
l∈Lw

tl

Therefore, let

t1,2 = t2,3 = ... = ta,a+1 =
T

a
(4.40)

W1,2 = W2,3 = ... = Wa,a+1 = RT (4.41)

It can be proved that the values in (4.40) and (4.41) satisfy the KKT conditions,

and since it is a convex optimization problem, KKT conditions are both sufficient

and necessary for the values in (4.40) and (4.41) to be optimal. The expression

in (4.32) simplifies to

λ1 · [β1,2 · (2
W1,2
Bt1,2 − 1)·t1,2 − Ec · q · T ] = 0 (4.42)
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Hence by combining (4.40), (4.41) and (4.42), it can be obtained that

q =
β1,2 · (2

W1,2
Bt1,2 − 1) · t1,2
Ec · T

=
β1,2 · (2

aR
B − 1)

Ec · a
(4.43)

Therefore, the closed-form expression for the hybrid network lifetime in a string

topology becomes

Tnet =
1

q
=

Ec · a
β1,2 · (2

aR
B − 1)

(4.44)

In eq. (4.44), since β1,2 is a constant, it is clear that the network lifetime of

the hybrid network in the string topology is only related to the initial battery

capacity, Ec, the number of battery powered wireless nodes a, and the data arrival

rate R. Further, the increase of the initial battery capacity will cause the network

lifetime to increase linearly, while the increase of the number of battery powered

wireless nodes and the data arrival rate will result in the network lifetime to

decrease exponentially. Further, as indicated by eq. (4.40), it is obvious that the

optimal routing strategy for the sensor network in the string topology would be

in a multihop fashion, but not a one-hop routing strategy. This derived closed-

form expression provides intuitive guideline for the design of sensor network based

industrial automation system.

4.4.2 Linear Topology

Unlike the string topology, in the linear topology, all the wireless sensor nodes

collect data. In the network configuration shown in Fig. 4.2, the network lifetime

will be maximized if all the wireless nodes relay their data to the first PL node

(the (a+1 )-th node), since the transmission distance is shortest compared to

other PL nodes. Therefore, in order to simplify the derivation, four terms (i.e.,

Wi,i+1, Wi,a+1, W
′
i,i+1 and W

′
i,N) are considered for optimization. This means,

all the wireless nodes only relay data to the next wireless node or to the first

PL node and the PL nodes relay data to the next PL node or to the Sink node

directly.
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Assuming that all the wireless links use the same constellation size in MQAM.

Then it follows that,

W1,2

t1,2
=
W1,a+1

t1,a+1

=
W2,3

t2,3
=
W2,a+1

t2,a+1

= · · · = Wa,a+1

ta,a+1

(4.45)

Note that in an optimal optimization scheme, all the wireless nodes should be

drained of energy at the same time. Therefore, it can be obtained from (4.32)

and (4.33) that,

β1,2(2
W1,2
Bt1,2 − 1)·t1,2 + β1,a+1(2

W1,a+1
Bt1,a+1 − 1)·t1,a+1 = · · · = βa,a+1(2

Wa,a+1
Bta,a+1 − 1)·ta,a+1

(4.46)

Substituting (4.45) into (4.46), and by further derivation, yields

W1,2 + amW1,a+1 = W2,3 + (a− 1)mW2,a+1 = · · ·

= Wa−1,a + 2mWa−1,a+1 = Wa,a+1

(4.47)

Now from the flow conservation constraint (4.12), it follows that

Wa,a+1 −Wa−1,a = RT (4.48)

From (4.47), it has

Wa−1,a + 2mWa−1,a+1 = Wa,a+1 (4.49)

Solving (4.48) and (4.49), gives,

Wa−1,a+1 =
RT

2m
(4.50)

Combining (4.12) and (4.47), and by repeating the process above, all the

values of Wi,j can be determined. Now with the values of Wi,j, the values of ti,j

can be obtained from (4.45).

The optimal values of Wi,j, and ti,j are summarised as follows.

Wi,a+1 =

{
RT+[(a−i)m−1]Wi+1,a+1

(a+1−i)m : 1≤i≤a− 2
RT
2m

: i = a− 1
(4.51)

Wi,i+1 =

{
iRT −

∑i
j=1Wj,a+1 : 1≤i≤a− 1

aRT −
∑a−1

j=1 Wj,a+1 : i = a
(4.52)
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{
ti,a+1 =

Wi,a+1

WM+WN
· T

ti,i+1 =
Wi,i+1

WM+WN
· T

(4.53)

where WM =
∑a−1

i=1 Wi,a+1 is the total amount of data transmitted from each

wireless node (except the a-th node) to the 1-st PL node and WN =
∑a

i=1Wi,i+1

is the total amount of data transmitted from each wireless node to the next node.

Since the PL nodes have unlimited power supply, it is assumed that all the

PL nodes will relay their data to the next PL node (the effectiveness of this

transmission strategy will be examined in section 4.5) and all PL nodes transmit

at the maximum power, therefore, W
′
i,j and t

′
i,j can be calculated as, W

′
i,i+1 = iRT : a+ 1≤i≤N − 1

t
′
i,i+1 =

W
′
i,i+1

C
′
i,i+1

: a+ 1≤i≤N − 1
(4.54)

From (4.33), and the results of Wa,a+1 and ta,a+1, the closed-form expression for

the hybrid network lifetime maximization can be derived as:

Tnet =
Ec(WM +WN)

βa,a+1(aRT −WM)(2
WM+WN

BT − 1)
(4.55)

Equation (4.55) provides the globally optimal value for hybrid network lifetime

maximization. Since the integer constraints on tl are relaxed, therefore, the

closed-form expression of network lifetime maximization in (4.55) provides an

upper bound to the network lifetime of the hybrid sensor network.

In eq. (4.55), since βa,a+1 is a constant, it is clear that the network lifetime

of the hybrid network in the linear topology is only related to the initial battery

capacity, Ec, the number of battery powered wireless nodes a, and the data arrival

rate R. While the closed-form expression in the linear topology is complication, it

facilities to sensor network system design by fast parameter fitting to investigate

the relationship between the network lifetime and the related system parameters.

Also, unlike in the string topology, where the optimal routing strategy is single-

path multihop routing, the optimal routing strategy in the linear topology is

multi-path multihop routing.
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4.5 Numerical Results and Analysis

In this section, numerical results obtained from the proposed approach are used

to demonstrate the effectiveness of the proposed hybrid sensor network. The

parameters used are summarised in Table 4.2. The radio frequency operates in

the 2.4 GHz in the industrial-scientific-medical (ISM) band, with a reference path

loss at d = 1m of 40 dB. The initial energy of the wireless node is 5000 J, which is

typical for the capacity of an AAA alkaline long-life battery [122]. The maximum

transmit power of the wireless node is 10 mW, as specified in the standard in

[150], and is used as in the literature in [151].

Table 4.2: Parameters Used For Simulation
Symbol Value Description
fc 2.4 GHz Radio frquency
Ec 5000 J [122] Initial energy of wireless node
pmax 10 mW [138] Maximum Tx power of wireless node
N0 -105 dBm/Hz Noise PSD level of wireless link
B 10 kHz Bandwidth of wireless link
d 1.5 m Distance between adjacent nodes
T 1 s Time frame
∆ 0.001T Time slot duration
G0 40 dB Path loss at d = 1m
m 3.5 Path loss exponent
α 1.9 Power inefficiency

BER 10−3 Target BER

f
′
c 110 kHz Carrier frequency of PL link

B
′

30 kHz Bandwidth of PL link

N
′
0 -80 dBm/Hz Noise PSD level of PL link
p̄ -25 dBm/Hz PSD mask

82



4.5.1 String Topology
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Figure 4.3: Comparison of network lifetime in string topology with CVX [152]
and OMNeT++ [153, 154]

In this subsection, the effectiveness of the hybrid sensor network in a string topolo-

gy is examined. To setup the simulation, the default separation between adjacent

nodes is set to 1.5 m. The total number of sensor nodes is 10 with 5 PL nodes.

In order to show the accuracy of the derived closed-form expression, the results

obtained from (4.44) are compared to the results obtained by the CVX optimisa-

tion tool [152] and the results obtained by an event simulation framework built in

OMNeT++ [153, 154]. As shown in Fig. 4.3, the network lifetime obtained from

the closed-form expression matches exactly with the results obtained by CVX

and OMNeT++.

The point of this comparison is that in order to derive the close-form expres-

sion, the number of time slots that each link occupies is relaxed to a positive

real number in the derivation (as in eq. 4.40), which should be a positive in-

teger. Therefore, the accuracy of the derived closed-form expression should be

tested. While in the CVX optimisation tool [152] and the OMNeT++ [153, 154],
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the number of time slots is strictly restricted to a positive integer. Therefore,

by comparing the results obtained from the derived closed-form expression and

the results obtained from the CVX optimisation tool and the OMNeT++, it can

examine the accuracy of the derived closed-form expression. In the case of string

topology, the optimal solution for time slot allocation is that each wireless link

should occupy the same amount of time slots, as derived mathematically. In the

simulation, there are 5 wireless nodes and 5 wireless links (each wireless node

only transmit to the next node in the string topology), which shares evenly of the

1000 time slots (time frame divided by the time slot duration). Therefore, each

wireless link occupies 200 time slots, which is exactly an integer. Therefore, the

result matches exactly with the results obtained by CVX and OMNeT++.
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Figure 4.4: Network lifetime vs. the total number of sensor nodes in string topol-
ogy under different data arrival rates (with 5 PL nodes for the hybrid network)

Fig. 4.4 shows the impact of the total number of sensors on the network

lifetime of the hybrid sensor network (the separation between adjacent nodes is

set to 1.5 m). The number of PL nodes in the hybrid sensor network is fixed to 5.

Actually the number of PL nodes is not quite strict as long as the data rate in the
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PL channel can support the data rate requirement of the sensor network, or by

increasing the number of PL nodes, the intermediate PL nodes may act as relays,

thus improving the throughput of the PL channel. For example, in the industrial

automation system, the PL nodes can act as the nodes in the automation and

management levels. Or PL nodes can act as relay nodes, where the wireless signal

may not penetrate.

It can be observed that when the total number of sensors increases, the net-

work lifetime of the hybrid network drops rapidly. This is due to the fact that

with the increase of the wireless nodes in the network, as each wireless node is

allocated the same portion of the total time period T . Thus each node is allocated

less transmission time. Since the amount of data to be transmitted for each node

remains the same, each node has to increase the transmission power to increase

the data rate. In addition, with the increase of data arrival rate, the network

lifetime reduces. For example, consider the case that sensors are scattered in

the chemical reaction pool, the data arrival rate can be adjusted accordingly to

sample more monitoring information of the process. This is due to the fact that

with the same amount of sensor nodes in the network, each node is allocated a

fixed time duration to access the wireless channel. Therefore, each node has to

increase its transmission power to increase the data rate in order to meet the

requirement of the network data arrival rate. Consequently, each node consumes

more energy and causes the reduction of the network lifetime.
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Figure 4.5: Network lifetime vs. the total number of sensor nodes in string
topology under different separation distances (with 5 PL nodes for the hybrid
network, the data arrival rate is fixed at 4 kbps)

The impact of total number of sensor nodes on network lifetime under different

separation distances in the string topology is depicted in Fig. 4.5, where the data

arrival rate is fixed at 4 kbps. It is obvious that when the separation between

adjacent nodes in the the hybrid sensor network increases, the network lifetime

reduces significantly under the same total number of sensor nodes. The reason

is quite straight-forward. With the increase of the separation, each wireless link

experiences poorer channel conditions and to compensate for the channel loss,

each wireless link tends to use more transmission power. Nevertheless, with the

increase of total number of sensors, each wireless link shares a decreased portion

of the time to access the channel and thus leads to an increase on the transmission

power, and hence a reduced network lifetime.
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4.5.2 Linear Topology
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Figure 4.6: Comparison of network lifetime in linear topology with CVX [152]
and OMNeT++ [153, 154]

To test the accuracy of the derived closed-form network lifetime expression, the

separation between adjacent nodes is set to 1.5 m, and the total number of sensors

is 10 with 5 PL nodes. Fig. 4.6 depicts the comparison of network lifetime

obtained from the closed-form expression with the results obtained by CVX [152]

and OMNeT++ [153, 154]. The results shown that the network lifetime obtained

from the closed-form expression is slightly longer than the results obtained by the

other two methods, especially when the data arrival rate is relatively larger. This

is due to the fact that in deriving the closed-form network lifetime expression,

the integer constraints on tl are relaxed. Therefore, it provides an upper bound

to the network lifetime. However, as shown in Fig. 4.6, this upper bound is very

tight to the optimal solution when integer constraints are taken into account.
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Figure 4.7: Network lifetime vs. the total number of sensor nodes in linear
topology (with 5 PL sensors for the hybrid network)

In Fig. 4.7, the network lifetime of a hybrid sensor network is compared with

a pure WSN (when a = N) with the same total number of sensors (including

the Sink node). Under different data arrival rates, the number of PL nodes in

the hybrid sensor network is fixed to 5 regardless of total number of nodes. The

separation between adjacent nodes is set to 1.5 m. It is obvious that the lifetime

of the hybrid sensor network is much longer than that of the WSN, especially

when the network scale is relatively small and the data arrival rate is relatively

low. For example, with a total of 12 sensors and a data arrival rate of 1 kbps,

the hybrid network lifetime is enhanced by 8 times compared to a pure WSN

with the same total number of sensors and with the same data arrival rate. This

advantage is due to the fact that all the wireless nodes forward their data to

the first PL node in the hybrid network, thus reduces transmission distances for

wireless links. Also, since wireless links and PL links use two different mediums

for transmission, each wireless node in hybrid network can access wireless channel

for a longer time (the PL nodes use PL channel for transmission and does not

interfere with the wireless channel), thus reduces the power requirement for each
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wireless link. However, when the number of sensors is large, the lifetime of both

networks drops rapidly due to lacking of enough energy.

Fig. 4.7 also shows that with the increase of total number of sensors, the life-

time of both networks decreases. This is mainly due to the fact that with an

increase in the total number of sensors, the network scale increases and conse-

quently the transmission distances of wireless nodes to the Sink (in WSN) and

to the first PL node (in hybrid sensor network) increases, thus the wireless links

suffer from poorer channel conditions. Also, since the time period T is fixed,

each node is allocated less transmission time with the increase of total number of

sensor. Therefore, with the same data arrival rate, each sensor node tend to use

more power for transmission and causes a reduction in the network lifetime. Also,

each sensor node will consume more energy for transmission with the increase of

data arrival rate. This explains the reduction of the network lifetime with the

increase of data arrival rate.
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Figure 4.8: Network lifetime vs. the total number of sensor nodes in linear
topology (with 5 PL sensors for the hybrid network)

In the case of string topology, the optimal solution for data transmission is

such that each node transmits data in a single-hop fashion, and the duration
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for transmission of each link is the same, which is exactly the uniform TDMA

transmission mechanism. Therefore, the cross-layer optimization method and

single-layer optimization method would provide exactly the same solution in the

string topology. However, in the linear topology, the multi-hop transmission

mechanism is used, and the joint cross-layer optimization results show that the

optimal solution of time allocation on each link is not uniform TDMA. Therefore,

it is necessary to compare the network lifetime of the hybrid sensor network using

cross-layer optimization method and single-layer optimization method. Fig. 4.8

compares the network lifetime of a hybrid sensor network using the cross-layer

optimization method and single-layer optimization method (where a uniform T-

DMA mechanism is adopted for link time allocation, and the amount of data

to be transmitted on each link is optimized, labelled as ”Uniform TDMA” in

Fig. 4.8) under different total number of sensor nodes and under different data

arrival rates. The network setup is exactly the same as the network setup of the

hybrid sensor network in Fig. 4.7. Fig. 4.8 depicts that the network lifetime of the

hybrid sensor network adopting cross-layer optimization method is much longer

than that of the single-layer optimization method, especially when the network

scale is relatively small and the data arrival rate is relatively low. This proves

the advantage of the cross-layer optimization method on the linear topology.

Since the linear network topology considered in this chapter can be viewed as a

cluster in a sensor network for industrial automation system, the number of nodes

in each cluster could be small, while the span of the network matters. Therefore,

as shown in Fig. 4.9, the network lifetime performance of hybrid networks is

compared under different sensor densities. The hybrid network with a total of 16

nodes including 5 PL nodes as in Fig. 4.7 is used as a reference for comparison.

The total length of the network is 22.5 meters (15 segments multiplied by the

separation of 1.5 meters). With a total of 16 nodes, the separation between two

adjacent nodes is 1.5 meters, while the separation is 2.5 meters with 10 nodes.

The rest simulation parameters are the same as in Table 4.2. From Fig. 4.9, the
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hybrid network with lower sensor density outperforms the reference network in

terms of the network lifetime, especially when the data arrival rate is low. This

is due to the fact that although the distance between adjacent nodes are larger in

the hybrid network with lower sensor density, the distance between each wireless

node to the first PL node is reduced. Also, for a hybrid network with lower sensor

density, each wireless node can access the wireless medium for a longer time, thus

can reduce the transmission power.
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Figure 4.9: Impact of the data arrival rate on the network lifetime with a fixed
total network range of 22.5 m

However, one may argue that the network lifetime is prolonged since the total

amount of data forwarded to the Sink is decreased, which is true as with a same

data arrival rate, 15 nodes will collect data in the reference network while only

9 nodes collect data in the hybrid network for comparison. It can be noticed

from Fig. 4.9 that even with a same total amount of data collected, the hybrid

network with a lower sensor density still exhibits a much longer lifetime than the

reference one. For example, when the data arrival rate for the reference network

is 1 kbps, the total amount of data collected in time period T is 15 kb, and
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the corresponding lifetime is around 0.5 month. This means each node in the

hybrid network with lower sensor density should collect data at a rate of 1.67

kbps to maintain a same amount of data collected. While at R = 1.67 kbps, the

corresponding lifetime is around 0.8 month, which is still much longer than that

of the reference network. Note that since a bandwidth of 10 kHz is considered,

the data arrival rate in this chapter is generally low, which could be suitable for

scalar information (such as temperature and humidity) collection.

Note that in Fig. 4.9, when the data rate is increased from 1 kbps to 2 kbps,

the network lifetime of the hybrid network with 16 nodes drops significantly.

This is due to the fact that only the power consumption of the active mode of the

sensor network is considered. Also, for the ease of derivation of the closed-form

expression, only the power consumption of transmission signal power and the

power consumption of the power amplifier is considered as widely adopted in the

literature [122, 124, 140]. More details on the power consumption of the sensor

network is on p70 of this thesis. By considering the complete power consumption

model would make the derivation very difficult and is left as a future work. In

this case, another reason is that, since the hybrid network has 16 nodes, and each

wireless node performs data collection. When the data arrival rate is increased

from 1 kbps to 2 kbps, the overall amount of data collected by the sensor network

becomes large and the sensor network may not be able to accommodate the

required amount of traffic and hence results in a very low network lifetime.

Based on the above analysis, the hybrid sensor network has a significant im-

provement in prolonging the network lifetime compared to a pure WSN. Also, by

limiting the data arrival rate of sensor nodes and the sensor density in a linear

hybrid sensor network with given length and fixed PL nodes, the hybrid network

lifetime can be maximized.
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4.5.3 Transmission Strategies of PL Nodes

1 2 3 4 5 Sink

Figure 4.10: PL network topology (the greyed squares represent the PL nodes in
the hybrid sensor network while the white squares denote the outlets with Bus
or Star connection, detailed in Chapter 2)

In order to investigate the transmission strategies of PL nodes in the CENELEC

band B (95-125 kHz) for a string/linear hybrid sensor network (i.e., each PL

node transmit data to the next PL node or to the Sink directly), the PL network

topology is constructed as shown in Fig. 4.10 (the rightmost PL node is the

Sink), where 5 PL nodes (labelled as node 1 to 5 in Fig. 4.10) are placed on the

main span. These PL nodes are arranged such that they are evenly spaced at

a separation of 1.5 m. The topology of the branches attached to each PL node

is randomly generated according to the rules described as follows. Each branch

attached to node 1 to 5 in Fig. 4.10 may have 5 to 10 outlets with Bus or Star

connection and the distances between adjacent outlets (or between the outlets to

the PL nodes) varies from 1 m to 5 m. Besides, it is assumed that each outlet

is randomly connected with appliance that exhibit impedances of 5 Ω, 50 Ω, 150

Ω, 1000 Ω or frequency-selective impedances [155] with resistance at resonance

equal to 394 Ω, 863 Ω or 1312 Ω. Please refer to [155] for the frequency-selective

impedance model and the relative parameters. In addition, the impedance of

PL nodes are assumed to be 100 Ω and transmission Cable type 1 in [155] is

considered in this chapter. For the simulation, the impedance carry-back method

and VRA in [86] (details are provided in Chapter 2) is utilised to determine the
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channel frequency responses between each adjacent PL node pairs and between

each PL node to the Sink. The frequency responses for an example PL network

topology are shown in Fig. 4.11 and Fig. 4.12, respectively. Note that the PL

node farthest to the Sink is denoted as the 1-st PL node.
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Figure 4.11: Average channel gain between two adjacent PL nodes
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Figure 4.12: Average channel gain between each PL node and the Sink
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Comparing Fig. 4.11 and Fig. 4.12, it can be noted that the PL channel

between each PL node and the next PL node towards the Sink, in general, has a

better channel performance than that between each PL node and the Sink node

directly. This is mainly due to the fact that without intermediate PL nodes, the

PL channel suffers from less path loss due to multi-path propagation effect and

thus exhibits better channel performance. This is also valid when the PL nodes

are placed at a larger distance (e.g., 15 m) and thus provides larger network

coverage. This fact supports the proposed transmission strategies that each PL

node should relay their data to the PL node next to it. To simulate the achievable

data rate for the PL links, the parameters shown in Table 4.2 is used. From

extensive simulations, the maximum achievable data rate for the transmission of

each PL node to the next PL node is between 100 kbps and 500 kbps depending

on the channel conditions. Such a maximum achievable data rate is sufficient to

support the data relaying for a small scale hybrid sensor network with low data

arrival rate within given time period T .

4.6 Summary

In this chapter, a cross-layer design of a hybrid sensor network is proposed to

maximize the network lifetime. The proposed system is suitable in situations

where the wireless signal may not penetrate or in situations where wired commu-

nication infrastructure is a problem (e.g., installing new communication systems

in old facilities or the cost of installing wires for communication within refineries

is very high due to safety requirements). Also, the optimal transmission scheme

is obtained and the closed-form expression for the globally optimal solution for

network lifetime maximization is derived for two network topologies. From the

closed-form expressions, for both topologies, it is clear that the network lifetime

of the hybrid network is only related to the initial battery capacity, the number

of battery powered wireless nodes, and the data arrival rate. Further, in the

string topology, the increase of the initial battery capacity will cause the network
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lifetime to increase linearly, while the increase of the number of battery powered

wireless nodes and the data arrival rate will result in the network lifetime to

decrease exponentially. While the closed-form expression in the linear topology

is complication, it facilities to sensor network system design by fast parameter

fitting to investigate the relationship between the network lifetime and the re-

lated system parameters. It is also obvious that the optimal routing strategy in

the string topology is single-path multihop routing and in the linear topology

is multi-path multihop routing. Therefore, the proposed cross-layer optimiza-

tion method may perform much better in the linear topology, since multi-path

multihop routing in linear topology allows more design freedom.

The results show that the data arrival rate, the number of sensors, and the

node separation distances have significant impact on the hybrid network in the

string topology. In the linear topology, the hybrid sensor network enables a

significant increase in the network lifetime over the pure WSN, especially with

a relatively low data arrival rate. For example, in the linear topology, with 5

PL nodes in the hybrid network with a total of 12 sensors and a data arrival

rate of 1 kbps, the network lifetime is prolonged by 8 times compared to a pure

WSN with the same total number of sensors and with the same data arrival rate.

Simulation results also validate the advantage of cross-layer optimization method

over individual-layer optimization method on the linear topology. In addition, the

simulation results reveal that the hybrid sensor network with a lower sensor node

density exhibits a much longer network lifetime even when the same amount

of data is collected in the linear topology. It can be concluded that closed-

form expressions provide a useful guideline for the design of the sensor network.

Also, the hybrid sensor network prolongs network lifetime mainly by increasing

channel access time for each wireless link in the string topology while in the linear

topology, it is achieved mainly by a combination of increasing channel access time

and reducing transmission distance of the wireless link. By carefully setting the

distance separation, data arrival rate and the sensor density in a hybrid network
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with given number of PL nodes, the network lifetime can be maximized.

The network lifetime of the hybrid network in the linear topology is compared

to a pure battery powered WSN with the same network configurations in this

chapter, and the hybrid network has a much longer network lifetime. However,

intuitively, in the pure wireless network, with the same number of total sensors as

compared to the hybrid network, assuming that the wireless nodes that are placed

at the same positions of the PL nodes in the corresponding hybrid network are

mains powered. In this case, in the hybrid network, the transmission in the wire-

less link and in the PL link can occur concurrently. While in the wireless network,

although the wireless nodes at the same positions of the PL nodes in the hybrid

network are also mains powered, the transmission of these wireless nodes will in-

terfere with the transmission of the wireless links of the battery powered wireless

nodes. Since TDMA is considered in this chapter and concurrent transmission

is not allowed in the same transmission medium, the transmission of the mains

powered wireless nodes in the wireless network will have to share the transmis-

sion time frame with the battery powered wireless nodes. Therefore, each battery

powered wireless node in the wireless network is allocated less transmission time

as compared to the battery powered wireless node in the hybrid network, which

consequently consumes more transmission power in order to achieve the required

data arrival rate. While this is complicated to be analysed mathematically at the

moment, or algorithms can be developed to solve the problem in this situation,

this is left as a future work.
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Chapter 5

Novel Hybrid Wireless-Power
Line Video Sensor Networks with
Distributed Cross-Layer
Optimization

In Chapter 4, the optimality conditions (or KKT conditions) are used to derive

the closed-form expression for the global optimal solutions for network lifetime

maximization in the string topology and the linear topology. However, the hybrid

sensor network proposed in Chapter 4 adopts the TDMA scheme to access the

channel, which requires global synchronization. Therefore, when network scala-

bility is considered, the hybrid sensor network proposed in Chapter 4 can only

be in a small-scale. In addition, Chapter 4 mainly focuses on the general sensor

network, where scalar information is collected. This has little requirement on

the QoS and the data processing energy can often be neglected due to the low

complexity of processing. In this chapter, a hybrid video sensor network (HVS-

N), which consists of both wireless nodes and PL nodes is proposed for network

lifetime maximization through distributed solution by jointly considering video

encoding rate, aggregate power consumption, channel access control, and link

rate allocation. Nevertheless, it should be noted that network lifetime in chosen

as a design criteria to demonstrate the performance improvement of the HVSN,

and it can be readily modified to other design objectives.

Wireless video sensor networks (WVSNs), which are one of the high data
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rate sensors (or multimedia sensor networks), are tasked to perform video cap-

turing and processing and to deliver the processed video content to a remote

control unit (or the sink node) via wireless channels for further information anal-

ysis and decision making [156]. Unlike standard mains powered WVSNs [157],

battery-operated WVSNs may find widespread applications in fields such as im-

promptu surveillance installation and indoor elder care and home security due

to the advantages of discreet and unobtrusive installation and removal. In addi-

tion, battery-operated WVSNs are immune to failure of the power distribution

system. Several battery powered wireless cameras used for the purpose such as

home security, baby monitoring and assisted living have been manufactured and

marketed [158] [159].

In typical scenarios, battery-powered WVSNs are supposed to support high

data rates and provide high-quality video, which necessitate a huge power con-

sumption at the video sensor. Although battery replacement may be feasible in

certain scenarios, replacing battery for a large number of video sensors regularly

is cumbersome. Consequently, maintaining energy consumption at a low level is

critical for WVSNs. This chapter therefore, focuses on improving the network

lifetime through HVSN, which includes both hybrid wireless and PL video sensor

nodes.

In [160], a distributed algorithm for maximizing the network lifetime of WVSNs

is proposed based on the power-rate-distortion (P-R-D) model [161]. However,

the channel capacity is assumed to be unlimited. The authors in [162] studied

the optimization tradeoff between network lifetime and video distortion by joint-

ly considering source/channel rate adaptation and network coding for an energy

constrained WVSNs. A distributed algorithm is proposed in [163] to achieve op-

timal tradeoff between network lifetime and video distortion by joint design of

coding and routing optimization in WVSNs with correlated sources. In [164],

the authors studied the placement design of motion sensor and camera in order

to maximize the network lifetime, in which the cameras are activated whenever
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motion is detected.

Rate/channel adaptation has been proven as an effective means of enhancing

the wireless network efficiency [165, 166]. In channel adaptation, the data being

communicated are considered to be generic and, therefore, are generally encoded

at the source with fixed rates [162]. However, it is difficult to fully utilize network

resources with flexible channel adaptation together with predetermined source

rate. When the instantaneous channel capacity fails to meet the predetermined

source rate, network congestion would occur and could never be prevented by any

rate adaptation scheme. On the contrary, the channel would be under-utilized.

In [167], the authors investigated the nature of source data and proposed adaptive

source encoding rates to satisfy the distortion constraints. However, the system

they studied is a single-hop wireless system. In this work, a joint source/channel

rate adaptation framework for multihop multipath video sensor network will be

studied.

In this chapter, an HVSN that consists of both battery-powered wireless sen-

sor nodes and PL sensor nodes to is proposed to maximize the network lifetime.

This work is different in the following aspects. First, to the best of our knowl-

edge, it is the first reported work to investigate video sensor networks with hybrid

power sources and hybrid communication schemes. The proposed HVSN takes

the advantage of the flexibility of wireless sensors while PL sensors are deployed

to prolong the network lifetime. Second, the joint design of video encoding rate,

aggregate power consumption, channel access control, along with link rate alloca-

tion is studied to maximize the hybrid network lifetime. The joint design achieves

much better performance than separate optimization. Third, a distributed algo-

rithm for the network lifetime maximization problem is proposed. The proposed

distributed algorithm shares the computational burden among all nodes with

much lower communication overhead. Fourth, the impact of dynamic network

change and network scalability is studied.

The rest of this chapter is organized as follows. Section 5.1 describes the
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system model. Section 5.2 formulates the optimization problem. In section 5.3,

a distributed algorithm is proposed. Section 5.4 analyzes the numerical results.

This chapter is summarised in section 5.5.

5.1 System Model

An HVSN that includes both wireless video sensor nodes and PL sensor nodes is

studied, as depicted in Fig. 5.1. The wireless video sensor nodes are placed high

above the room and perform video capturing, encoding, and routing. The PL

sensor nodes simply perform as relay nodes to help to forward the video content

collected by the wireless nodes to the sink node, which is the remote control unit

acting as destinations of the HVSN. The PL nodes are assumed to be mounted

with wireless receivers, such that they can receive wireless signals.

Figure 5.1: Topology of an example HVSN

Notations: The wireless nodes set is denoted by W = {1, ..., |W |} and the

PL nodes set is indicated by P = {1, ..., |P |}. S is used to denote the single sink

node in the network. Lw is defined as the number of wireless links and Lp is the

number of PL links. Lw and Lp are used to label all the wireless and PL links,

such that Lw = {1, ..., Lw} and Lp = {1, ..., Lp}. lw ∈ Lw is the index used to

denote the l-th wireless link and lp ∈ Lp is used to represent the l-th PL link.

L = Lw
⋃
Lp denotes all the links in the HVSN and l∈L indicates the l-th link,
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which is from a transmitter node i to a receiver node j and is denoted by (i, j ).

Finally, O(i) and I(i) represent the set of outgoing and incoming links at node

i, respectively.

5.1.1 Video Distortion Model

Unlike traditional WSNs, the video content captured by the video sensor network

is first compressed locally before being injected into the channel for transmission.

In video communication over lossy channels, the end-to-end distortion D is di-

vided into two parts: 1) source coding distortion Dc caused by video compression

and 2) transmission distortion Dt owing to channel errors. Since the encoding

and transmission errors are generally uncorrelated [168], it follows that

D = Dc +Dt (5.1)

in mean squared error (MSE). This model is widely used to estimate the end-

to-end distortion in the literature [161, 162, 169]. For the distortion caused by

video compression, an analytic P-R-D model is established in [161], which relates

the encoding rate R(i), power consumption due to video encoding P
(i)
c , and the

distortion caused by video compression D
(i)
c for each wireless node i as

D(i)
c = σ2e

−γ·R(i)·
(
P

(i)
c

)2/3
(5.2)

where γ is a factor related to the encoding efficiency, and σ2 represents the av-

erage input variance. Here, the distortion caused by video compression D
(i)
c is

defined as the distortion of the video quality by comparing the video content after

compression to the original one, and is often measured by MSE.

Fig. 5.2 shows the encoding distortion Dc, measured in MSE, as a function

of source rate after compression, R and encoding power Pc. Apparently, a target

encoding distortion is achievable by adjusting either the encoding power or the

source rate. If the encoding power Pc or the source rate after compression R is

decreased, then the encoding distortion Dc increases for lacking enough power

for compression. On the other hand, with the increase of encoding power Pc, the
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transmission power will consequently decrease, which also results in the increase

of the distortion Dc. Therefore, an allocation of R and Pc should be balanced to

save the power consumption and adjust the video distortion.

Since the source rate shown in Fig. 5.2 is the source rate after compression.

Assuming that the source rate of the original video content is 5 Mbps and the

encoding distortion is fixed, in the first case, the video content is compressed to the

source rateR of 2 Mbps, and in the second case, the video content is compressed to

the source rate R of 1 Mbps. Apparently, compressing the original video content

from 5 Mbps to 1 Mbps would consume more power as compared to the case that

compressing the original video content from 5 Mbps to 2 Mbps. Therefore, less

power consumption is needed for a higher source rate after compression.
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Figure 5.2: Relationship of video encoding power, compressed source rate, and
distortion

On the other hand, for the distortion caused by transmission, it is shown

in [170] that after a certain threshold of BER is achieved, the video quality would

not increase significantly with further decrease in BER. Fig. 5.3 demonstrates

that there is very little or no improvement on the structural similarity (SSIM)

quality measurement [170] of the received video for BER up to 10−4 for H. 264

103



or for 10−3 for compressive video sensing (CVS). This indicates that, although

channel conditions are rather variable, the distortion can be neglected with a

proper target BER value.

Figure 5.3: SSIM vs BER for H.264 and CVS encoders [170]

5.1.2 Channel Access Model

A widely adopted MAC protocol in sensor networks is the contention-based MAC

protocol [171, 172]. In this chapter, the p-persistent contention based MAC pro-

tocol is used. In such a protocol [171, 172], each node i has a certain persistence

probability Pi to compete for channel access. It is assumed that time is split into

intervals and the transmission of the node begins at the start of each interval.

If node i is ready for transmission, it picks a link l ∈ O(i) (i.e., (i, j) ∈ O(i))

out of all its outgoing wireless or PL links with probability ql, and competes to

access the channel with persistence probability Pi. Hence, link l ∈ O(i) has a

transmission attempt probability pl = ql·Pi, where
∑

l∈O(i)ql = 1. Therefore, the

persistence probability is

Pi =
∑

l∈O(i)
pl (5.3)

where 0 ≤ pl ≤ 1,∀l ∈ L, and 0 ≤ Pi ≤ 1,∀i ∈W
⋃
P.

In continuous video acquiring applications, assuming the packet loss proba-

bility through link l is εl, the success probability for packet transmission can be
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expressed as

τl = (1− εl)·pl·
∏

k∈NI
l

(1− Pk) (5.4)

where N I
l is the set of nodes whose transmissions introduces interferences to the

end node of link l. For wireless links, it is assumed that any outgoing link of node

m interferes with link (i, j) if d(m,j) < (1 + Φ)·d(i,j), where Φ ≥ 0 represents the

range of interference. The average throughput of link l can thus be defined as

cl = C0
l · τl (5.5)

where C0
l is the maximum rate support by the channel at link l. In addition, the

information flow rate fl on link l is limited by the link capacity, as

fl ≤ cl,∀l ∈ L (5.6)

In order to obtain the maximum transmission rate C0
l , the ITU indoor path

loss model [173] is used for the wireless links, as

Gl = 20· log10(f) + 10·n· log10(dl) + Lf(n)− 28dB (5.7)

where f is the transmission frequency in MHz, n is the path loss exponent, dl is

the transmission range in m and Lf(n) = 0 for same floor transmission. For PL

links, the random PLC channel generator [174] is used to determine the channel

gain, Gl.

As in Chapter 4, MQAM is assumed in this chapter. Also, assuming the noise

in both links is additive white Gaussian noise with power spectral density Nl.

Then, with the corresponding transmission power pl and transmission bandwidth

Bl, the instantaneous transmission rate is determined as [74]

C0
l = Bl·log2(1 +

K·Gl·pl
Nl·Bl

) (5.8)

where K = −1.5/ ln(5 ·BER) is the maximum possible coding gain given a target

BER, BER, for modulation schemes such as MQAM [147].
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5.1.3 Flow Conservation Constraint

In this chapter, each wireless node is tasked to capture and compress video that

should be delivered to a single destination. Then the video traffic is generated

with a source rate R(i) in each node i, which can be obtained from (5.2). Note

that R(i) = 0 for all PL nodes, that is, ∀i ∈ P. Since the PL nodes perform as

relay nodes. For the sink node, the source rate is defined as R(S) = −
∑

i∈WR
(i).

Therefore, for each node i, the following constraint holds,

∑
l∈I(i)

fl +R(i) =
∑

l∈O(i)
fl,∀i ∈W

⋃
P (5.9)

where fl is the information flow rate on link l. The flow conservation law simply

states that for each node, the outgoing information flow rate should be equal to

the incoming information flow rate plus the data rate generated locally.

5.1.4 Energy Consumption Model

In the HVSN, the energy consumption of the wireless nodes are of interest since

the battery capacity of these nodes limits the network lifetime. In this chapter,

the total power consumption of a wireless node is caused by video encoding, data

transmission and reception.

The power consumption due to video compression can be calculated by the

P-R-D model, as in (5.2). According to the power consumption model widely

adopted in WVSNs [162, 163], the power consumption caused by transmission at

wireless node i is expressed as

P
(i)
t =

∑
l∈O(i)

(α + β · dnl ) · fl
τl

(5.10)

where fl is the rate assigned on link l, τl is the probability for a successful packet

transmission of link l, fl
τl

is the actual rate transmitted through link l. α denotes

the energy cost of the transmit electronics, β represents a coefficient relating to

the energy cost of the transmit amplifier, dl is the transmission range of link l,

and n is the path-loss exponent [74].
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The data reception power consumption at node i is

P (i)
r = cr ·

∑
l∈I(i)

fl
τl

(5.11)

where cr is the energy consumption cost of the radio receiver and
∑

l∈I(i)
fl
τl

is the

actual aggregate rate transmitted to node i.

Therefore, the overall power consumption at wireless node i can be expressed

as

P (i) =

[
1

γ ·R(i)
· ln
(
σ2

D
(i)
c

)] 3
2

+ P
(i)
t + P (i)

r
(5.12)

5.1.5 Network Lifetime

The network lifetime is considered as the duration from the beginning of the

network till the first wireless node running out of energy. In the HVSN, the

battery capacity of each node i ∈ W is denoted as E(i). Therefore, the lifetime

of each node i is

Ti =
E(i)

P (i)
,∀i ∈W (5.13)

Hence, the network lifetime is

Tnet = min
i∈W
{Ti} = min

i∈W
{E

(i)

P (i)
} (5.14)

5.2 Problem Formulation

The problem under study in this chapter can be described as follows: with a pre-

determined static topology of a HVSN, the instantaneous transmission rate on

each link and the battery capacity of each wireless node, to maximize the network

lifetime by joint optimization of the video encoding rate, the encoding power, and

the routing decision as well as the channel contention resolution on each link,

subject to the pre-defined video quality should be satisfied. Mathematically, the

problem can be formulated as:

P1 : max
(f ,R,p,T)

[mini∈W{Ti}] (5.15)
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s.t. σ2e
−γ·R(i)·

(
P

(i)
c

)2/3
≤ D(i)

c , ∀i ∈W (5.16)

E(i)

Ti
= P (i)

c +
∑

l∈O(i)
(α + β · dnl ) · fl

τl
+ cr ·

∑
l∈I(i)

fl
τl
, ∀i ∈W (5.17)

0 ≤ pl ≤ 1, ∀l ∈ L (5.18)

0 ≤ Pi ≤ 1, ∀i ∈W
⋃

P (5.19)

fl ≥ 0, ∀l ∈ L (5.20)

R(i) ≥ 0, ∀i ∈W (5.21)

along with (5.3) - (5.6) and (5.9). Constraint (5.16) represents that the encoding

distortion should not exceed the corresponding upper bound on each wireless

node. Constraint (5.17) reflects the power consumption of each wireless video

sensor node. By observation, variables P
(i)
c , τl and Pi are dummy variables since

these can be determined in expressions of other variables. Hence, the optimization

variables in P1 are fl, R
(i), pl and Ti.

5.3 Optimization Approach and Distributed Al-

gorithm

The problem in P1 is not convex due to non-linearity in constraints (5.4) and

(5.17). In order to convert the problem to a convex problem, constraint (5.4) can

be reformulated by taking the logarithm on both sides. Also, variable qi = 1/Ti

is introduced in (5.17) as node i’s normalized power consumption regarding to

its battery capacity E(i). Hence, the objective function becomes

max(mini∈W{Ti}) = min(maxi∈W{qi})

In addition, (5.16) is simplified by taking the logarithm on both sides. Further,

Fl = fl/τl is introduced as the total aggregated data flow rate on each link.

The objective function, maxi∈W{qi}, however, is non-differentiable and needs

all sensor nodes’ information. Hence, it is difficult to develop a fully distributed

algorithm to solve the problem. One solution is to introduce qi = qj as the

constraints, and the objective function is equivalent to
∑

i∈W q
2
i .
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Therefore, the optimization problem in P1 becomes

P2 : min
(F,R,p,q)

∑
i∈W

q2i (5.22)

s.t.
∑

l∈O(i)
Fl · τl −

∑
l∈I(i)

Fl · τl = R(i), ∀i ∈W
⋃

P (5.23)

1

γ ·
(
P

(i)
c

)2/3 · ln( σ2

D
(i)
c

)
≤ R(i), ∀i ∈W (5.24)

Fl ≤ C0
l , ∀l ∈ L (5.25)

E(i) · qi = P (i)
c +

∑
l∈O(i)

(α + β · dnl ) · Fl

+ cr ·
∑

l∈I(i)
Fl, ∀i ∈W (5.26)

ln τl = ln(1− εl)·pl +
∑

k∈NI
l

ln(1− Pk), ∀l ∈ L (5.27)

Pi =
∑

l∈O(i)
pl, ∀l ∈ L (5.28)

Fl ≥ 0, ∀l ∈ L (5.29)

0 ≤ pl ≤ 1, ∀l ∈ L (5.30)

0 ≤ Pi ≤ 1, ∀i ∈W
⋃

P (5.31)

R(i) ≥ 0, ∀i ∈W (5.32)

qi = qj, ∀i, j ∈W (5.33)

The optimization variables are Fl, R
(i), pl and qi. In P2, it can be proved that

the objective function is strictly convex, the equality constraints are affine, and

the inequality constraints are convex. Hence, P2 is a convex optimization prob-

lem [114].

To develop a distributed algorithm for P2, the primal decomposition method [52]

is used regarding the coupling variable Fl, which results in a two-level optimiza-

tion problem. At the lower level, there is

P2− a : min
(R,p,q)

∑
i∈W

q2i (5.34)

s.t.
∑

l∈O(i)
Fl · τl −

∑
l∈I(i)

Fl · τl = R(i), ∀i ∈W
⋃

P (5.35)

1

γ ·
(
P

(i)
c

)2/3 · ln( σ2

D
(i)
c

)
≤ R(i), ∀i ∈W (5.36)
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E(i) · qi = P (i)
c +

∑
l∈O(i)

(α + β · dnl ) · Fl + cr ·
∑

l∈I(i)
Fl (5.37)

ln τl = ln(1− εl)·pl +
∑

k∈NI
l

ln(1− Pk), ∀l ∈ L (5.38)

Pi =
∑

l∈O(i)
pl, ∀l ∈ L (5.39)

0 ≤ pl ≤ 1, ∀l ∈ L (5.40)

0 ≤ Pi ≤ 1, ∀i ∈W
⋃

P (5.41)

R(i) ≥ 0, ∀i ∈W (5.42)

qi = qj, ∀i, j ∈W (5.43)

and at the higher level, it gives

P2− b : min
(F)

U∗(F) (5.44)

s.t. Fl ≤ C0
l , ∀l ∈ L (5.45)

Fl ≥ 0, ∀l ∈ L (5.46)

P2− a performs a low-level optimization when the coupling variable Fl = fl/τl is

fixed, while P2− b performs a high-level optimization to update Fl. U
∗(F ) is the

optimal value of the objective function in P2− a for given variables, Fl. The out-

put of the low-level optimization is locally optimal and provides an approximation

to the global optimal solution using the result of the high-level optimization.

5.3.1 Low-Level Optimization

To solve the low-level optimization in problem P2− a, the constraints (5.35),

(5.36) and (5.43) in P2− a are relaxed, which yield the following Lagrangian [114]:

L(λ, θ, ν,R,p,q) =
∑
i∈W

q2i +
∑

i∈W
⋃

P

λi · (
∑

l∈O(i)
Fl · τl −

∑
l∈I(i)

Fl · τl −R(i))

+
∑
i∈W

θi · [
1

γ·(P (i)
c )

2/3
· ln(

σ2

D
(i)
c

)−R(i)]

+
∑
l∈Lw

νl · (qi − qj)

(5.47)

where λ, θ and ν are the Lagrange multipliers corresponding to constraints (5.35),

(5.36) and (5.43), respectively. In addition, the corresponding Lagrange dual
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function is

g(λ, θ, ν) = inf
(R,p,q)

L(λ, θ, ν,R,p,q)

s.t. Constraints (5.37) - (5.42) in P2− a
(5.48)

The Lagrange dual problem of P2− a is then defined as

P2− a− 1 : max g(λ, θ, ν)

s.t. θi ≥ 0, ∀i ∈W
(5.49)

The corresponding Lagrange multipliers can be solved with the subgradient

method as

λi(nL + 1) = λi(nL) + ω(nL) · (
∑

l∈O(i)
Fl · τl −

∑
l∈I(i)

Fl · τl −R(i)) (5.50)

θi(nL + 1) = {θi(nL) + ω(nL) · [ 1

γ·(P (i)
c )

2/3
· ln(

σ2

D
(i)
c

)−R(i)]}+ (5.51)

νl(nL + 1) = νl(nL) + ω(nL) · (qO−1(l) − qI−1(l)) (5.52)

where nL represents the low-level iteration index, {·}+ denotes the projection

onto the set of nonnegative real numbers, and ω(nL) is a positive step size in

low-level optimization problems. I−1(l) denotes the node associated with the

incoming link l, O−1(l) denotes the node associated with the outgoing link l.

According to convex optimization theorem [52], if the original problem P2− a

is convex, it is equivalent to its Lagrange dual problem in (5.49). Then, the

low-level optimization problem P2− a can be further decomposed into a set

of subproblems P2− a− 2 to P2− a− 4 that can be solved in a distributed

manner,

P2− a− 2 : min
∑
i∈W

q2i +
∑
i∈W

θi · [
1

γ·(P (i)
c )

2/3
· ln(

σ2

D
(i)
c

)] +
∑
l∈Lw

νl · (qi − qj)

s.t. (5.37)

P2− a− 3 : min −
∑
i∈W

λi ·R(i) −
∑
i∈W

θi ·R(i)

s.t. (5.42)
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P2− a− 4 : min
∑

i∈W
⋃

P

λi · (
∑

l∈O(i)
Fl · τl −

∑
l∈I(i)

Fl · τl)

s.t. (5.38)− (5.41)

Subproblem P2− a− 2 is the energy conservation in wireless sensor nodes

taking into account impacts both from the MAC layer and the network layer.

Subproblem P2− a− 3 is the source rate control problem at the application

layer. Subproblem P2− a− 4 is the channel contention resolution problem at

the MAC layer. These three problems are solved separately and coordinated by

Lagrange multipliers λ, θ and ν.

Energy conservation problem (application layer): The variable qi in

P2− a− 2 can be solved using the subgradient algorithm as

qi(nL + 1) = {qi(nL)− ω(nL) · ∂L(λ, θ, ν,R,p,q)

∂qi
}+

= {qi(nL)− ω(nL) · [2 · qi −
2

3
· θi ·

ln( σ2

D
(i)
c

)

γ
· (P (i)

c )−5/3 · E(i)

+ (
∑

l∈O(i)
νl −

∑
l∈I(i)

νl)]}+

(5.53)

where P
(i)
c can be obtained as

P (i)
c = E(i) · qi −

∑
l∈O(i)

(α + β · dnl ) · Fl − cr ·
∑

l∈I(i)
Fl (5.54)

The energy conservation at each wireless node i is achieved by adjusting the

value of Fl and qi, with θi working as the energy consumption price, and νl as

the energy balancing price.

Source rate control problem (application layer): The variable R(i) can

be updated using the subgradient algorithm as

Ri(nL + 1) = {Ri(nL)− ω(nL) · ∂L(λ, θ, ν,R,p,q)

∂Ri

}+

= {Ri(nL)− ω(nL) · (−λi − θi)}+
(5.55)

Channel contention resolution problem (MAC layer): The channel

contention resolution problem aims to find the optimal transmission persistence

probabilities of the links under given variable Fl and price λi. Its problem for-

mulation is similar to that in [171]. Hence, the same algorithm can be used in
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which defining

µi =
∑

l∈O(i)
Fl · (λI−1(l) − λO−1(l)) +

∑
k∈LI(i)

Fk · (λI−1(k) − λO−1(k)) (5.56)

where LI(i) represents the set of links whose transmission get interfered from

the transmission of node i, excluding outgoing links from node i. Then the

transmission attempt probability of the link l is

pl =

{
Fl·(λI−1(l)−λO−1(l))

µi
, µi 6= 0

1
|O(i)|+|LI(i)| , µi = 0

(5.57)

5.3.2 High-Level Optimization

The high-level optimization problem aims to find the routing and link rate al-

location, which is in the network layer. Suppose τ̂l, λ̂O−1(l) and λ̂I−1(l) are the

optimal variable and Lagrange price corresponding to (5.35) in problem P2− a.

The optimization approach proceeds as taking a dual decomposition with respect

to (5.45) in problem P2− b and thus formulating the Lagrangian as

L′(ϕ,F) =U∗(F) +
∑
l∈L

ϕl(Fl − C0
l ) (5.58)

where ϕ is the Lagrangian multiplier. The optimal value of Fl can be found by

the subgradient algorithm

Fl(nH + 1) = {Fl(nH)−$(nH) · ∂L′(ϕ,F)

∂Fl
}+

= {Fl(nH)−$(nH) · (τ̂l · (λ̂O−1(l) − λ̂I−1(l)) + ϕl)}+
(5.59)

and the corresponding Lagrangian dual variable is updated as

ϕl(nH + 1) = {ϕl(nH) +$(nH) · (Fl − C0
l )}+ (5.60)

where nH denotes the high level iteration index, and $(nH) is the positive step

size of the high level optimization problem.

5.3.3 Summary of the Distributed Algorithm

The distributed implementation of the proposed two-level iterative algorithm is

summarized in Algorithm 1. In Algorithm 1, each link l = (i, j) is delegated to its
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Algorithm 1 Distributed two-level optimization algorithm

Initialization
• Set nL = 1 and nH = 1
• Initialize optimization variables qi, R

(i), θi, ∀i ∈ W, and λi, ∀i ∈ W
⋃
P, νi,

∀i ∈W and pl, Fl, ϕl, ∀l ∈ L with, e.g., zeros.
repeat

I. Low-level implementation
a) Update at each wireless node, ∀i ∈W

1) Update θi(nL), νl(nL), qi(nL) and R(i)(nL) according to (5.51),
(5.52), (5.53) and (5.55), respectively.

2) Communicate the updated dual variable νi(nL+1) to the end nodes
of incoming links l ∈ I(i).

b) Update at each wireless and PL node, ∀i ∈W
⋃
P

1) Update λi(nL) according to (5.50).
2) Communicate the updated dual variable λi(nL+1) to the end nodes
of incoming links l ∈ I(i).

c) Update at each wireless and PL link, ∀l ∈ L
1) Update pl(nL) according to (5.57).

II. High-level implementation
a) Update at each wireless and PL link, ∀l ∈ L

1) Update Fl(nH) and ϕl(nH) according to (5.59) and (5.60), respec-
tively.

2) Communicate the updated actual transmission rate Fl(nH + 1) to
the corresponding end nodes of outgoing links l ∈ O(i).

until All variables converge to the optimums.
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sender node i, and all computations related to that link will be executed on node

i. It can be seen that the communication overhead at each iteration consists of

conveying λi(nL+1), νi(nL+1) and Fl(nH +1) to the corresponding nodes. Thus

compared to the main stream of video transmission traffic, the communication

overhead introduced by such information exchange is quite small.

The proposed distributed algorithm needs to be implemented whenever the

initial network starts monitoring or the dynamic change of network condition

suddenly happens, to catch up with the optimal network lifetime for the network.

5.4 Numerical Results

Table 5.1: Configuration of Model Parameters in the HVSN

Parameter Description Value
σ2 Average input variance of the video in MSE 3500

γ Encoding efficiency coefficient 5 W 3/2/Mb/s
α Energy cost of the transmit electronics 0.2 J/Mb
β Coefficient term of the transmit amplifier 1.3× 10−8 J/Mb/m4

cr Energy consumption cost of the radio receiver 0.1 J/Mb

E(i) The initial energy at wireless node i 2 MJ
fw Radio frequency 900 MHz
plw Transmission power of wireless link 0.5 W

Blw Transmission bandwidth of wireless link 1 MHz
Nlw Noise PSD level of wireless link -131 dBm/Hz
BER Target BER 10−4

n Wireless path loss exponent 4
εl Packet loss rate at link l 0.1

In this section, the overall performance of the proposed distributed algorithm will

be evaluated. The topology used for the HVSN is a square area of 20 m × 20

m where 8 nodes are randomly placed (including the sink node, as shown in Fig.

5.4). Without lose of generality, the node located at position (0, 0) is considered

to be the sink node. For performance comparison, two WVSN topologies are

considered: a) same as HVSN except that all nodes are wireless nodes, b) same
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as the topology in a) except that PL nodes are removed. In the following, the

topologies in a) and b) are referred to as 8-node and 6-node WVSNs, respectively.

Numerically, the values of all the related model parameters are listed in Table 5.1.

Also, the upper bound of the encoding distortion D
(i)
c in MSE is set to 100 if not

specified otherwise. For PL links, the random PLC channel generator [174] is

used to determine the channel gain. BB PLC with a total bandwidth of 26

MHz consisting 917 subcarriers is considered. Each PL node is allocated with

5 subcarriers. The transmission power of PL link is -50 dBm/Hz and the noise

PSD level is -120 dBm/Hz. A fixed step-size of 0.01 is used.
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Figure 5.4: Randomly generated topology of HVSN with illustration of aggregate
link rates (blue line indicates a wireless link, red line represents a PL link, the
thickness of the line is proportional to the aggregate link rate)

Fig. 5.5, Fig. 5.6 and Fig. 5.7 show the convergence behaviour of the pro-

posed distributed algorithm with the illustrations of iterations of node lifetime,

source rate and link transmission attempt probabilities, respectively based on the

topology shown in Fig. 5.4. It can be observed that these variables converge to

the optimum value within 220 iterations. Therefore, the proposed algorithm can

converge to the steady state in a relatively short period of time. Also, Fig. 5.5
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depicts that the node lifetime of each node in the network can achieve a common

node lifetime in the steady state. The proposed distributed algorithm allows each

node to exchange its local information about node lifetime with its neighbouring

nodes and thus can effectively balance the energy consumption among all nodes.
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Figure 5.5: Iterations of node lifetime
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Figure 5.6: Iterations of source rate
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Figure 5.7: Iterations of link transmission attempt probability

Fig. 5.4 shows the aggregate link rates, where the thickness of the line is

proportional to the aggregate link rate. Combining Fig. 5.4 and Fig. 5.6, it is

found that the nodes have heavy duty in relaying the data tend to encode the

video with a lower encoding power (and hence larger source rate), thus saves

the power for data transmission and reception. For example, node 3 relays the

traffic originating from node 2, therefore node 3 consumes much less energy for

video encoding (consequently, node 3 has a much larger source rate than node

2), which saves energy for data transmission and reception. While for node 2,

since it depends on other nodes to transmit its data to the sink node, it consumes

much energy for video encoding (node 2 has a much lower source rate), this saves

the transmission and reception energy for the relay nodes.

Another example of the randomly generated topology is shown in Fig. 5.8,

where the topology is a square area of 40 m × 40 m where 12 nodes (including

the sink node), which includes 8 wireless nodes are randomly placed.
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Figure 5.9: Iterations of node lifetime
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Figure 5.10: Iterations of source rate
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Figure 5.11: Iterations of link transmission attempt probability

Fig. 5.9, Fig. 5.10 and Fig. 5.11 show the convergence behaviour of the

proposed distributed algorithm with the illustrations of iterations of node lifetime,

source rate and link transmission attempt probabilities, respectively based on the
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topology shown in Fig. 5.8. It can be observed that these variables converge to

the optimum value within 300 iterations. Therefore, the proposed algorithm can

converge to the steady state in a relatively short period of time. Compared to the

convergence speed of the algorithm on the network topology shown in Fig. 5.4,

it is clear that more iterations are required for a more complex network topology.

Also, Fig. 5.9 depicts that the node lifetime of each node in the network can

achieve a common node lifetime in the steady state.

50 100 150 200
0

100

200

300

400

500

600

700

800

Distortion requirement (MSE)

N
et

w
or

k 
lif

et
im

e 
(h

ou
rs

)

 

 

8−node HVSN with distributed algorithm
6−node WVSN with distributed algorithm
8−node WVSN with distributed algorithm

Figure 5.12: Comparison of the network lifetime under different distortion re-
quirements

Fig. 5.12 depicts the network lifetime of the proposed HVSN (shown in Fig.

5.4), the 6-node WVSN and the 8-node WVSN under different distortion re-

quirements. With a smaller distortion requirement, the network lifetime of the

networks decreases. In this case, each node either consumes more power for video

encoding, or encodes the video content with a larger source rate, which increases

the transmission and reception power consumption of each node. By comparing

the network lifetime of the proposed 8-node HVSN with the pure WVSN, i.e.,

the 6-node WVSN and the 8-node WVSN, it can be deduced that the network
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lifetime is increased by around 37.5% and 58.1%, respectively, under different

distortion requirements. The deployment of PL nodes reduces the channel access

contention for the wireless links. This is also the reason that 6-node WVSN has

a longer network lifetime than the 8-node WVSN, as with the increase of wireless

nodes, each wireless link has a lower transmission attempt probability, and thus

consumes more power for data transmission.
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Figure 5.13: Convergence behaviour of the proposed algorithms with dynamic
changes of the video content

The convergence behaviour of the proposed distributed algorithm under dy-

namic changes of the video content for the HVSN illustrated in Fig. 5.4 is shown

in Fig. 5.13. The video content is characterized through the average input vari-

ance σ2. At the startup of the distributed algorithm, the average input variance

is set to be 3500. After it reaches the steady state, at iteration 300, the average

input variance is changed to 2500. It can be observed that the maximum power

dissipation among all nodes adapt themselves to this change and reaches another

steady state in around 140 iterations. It can be observed that the steady state

maximum power dissipation when the average input variance is changed to 2500
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has a smaller value than that when the average input variance is 3500. Then at

iteration 600, the average input variance is changed from 2500 to 5500. Again,

the algorithm quickly adapts itself to converge to a new steady state in around

140 iterations. It can be observed that the steady state maximum power dissipa-

tion when the average input variance is changed to 5500 has a larger value than

that when the average input variance is 3500.

In order to the compare the convergence speed and performance of the pro-

posed algorithm, it is compared to the algorithm that each node has a selection

of pre-defined paths to the sink node, which is generated by existing routing al-

gorithms such as the Dijkstra’s algorithm, denoted as ”fixed route” in Fig. 5.13.

Other optimization parameters are the same as in the proposed algorithm. It

can be observed that the algorithm with fixed route converges faster (within 100

iterations) than the proposed algorithm with respect to the change of the average

input variance. While, since a selection of pre-defined paths to the sink node is

used for each node, this may result in some battery powered wireless nodes being

the ”hot spot” where other nodes may relay data to. Consequently, these nodes

will be drained out of energy very rapidly, and hence the algorithm with fixed

routes has a much shorter network lifetime.

Fig. 5.14 shows the convergence behaviour of the proposed distributed algo-

rithm under dynamic changes of the the network topology for the HVSN shown

in Fig. 5.4. Initially, the HVSN with 8 nodes reaches a steady state. At iteration

300, node 5 (shown in Fig. 5.4) is turned off. The algorithm detects the topology

change, and adapts itself to the change by reaching a new steady state in around

140 iterations. This actually causes the network lifetime to increase significantly

since with the remove of node 5, other wireless nodes can access the wireless

channel for a longer time. Later at iteration 600, node 5 is turned back on. The

algorithm automatically adapts to the topology change and converges to a new

steady state in around 140 iterations.
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Figure 5.14: Convergence behaviour of the proposed algorithms with dynamic
changes of the network topology

Again, in Fig. 5.14, the convergence speed and performance of the proposed

algorithm is compared to the algorithm that each node has a selection of pre-

defined paths to the sink node, which is generated by existing routing algorithms

such as the Dijkstra’s algorithm, denoted as ”fixed route” in Fig. 5.14. It can

be observed that the algorithm with fixed route generally converges within 100

iterations, as compared to 140 iterations by the proposed algorithm with respect

to the removal and addition of node 5. Again, since a selection of pre-defined

paths to the sink node is used for each node, the routing decision for each node

is not optimized. Therefore, this may result in some battery powered wireless

nodes being the ”hot spot” where other nodes may relay data to, or the node

may send data directly to the sink node other than the PL nodes. Consequently,

these nodes will be drained out of energy very rapidly, and hence the algorithm

with fixed routes has a much shorter network lifetime.

From the analysis of Fig. 5.13 and Fig. 5.14, it demonstrates that the pro-

posed distributed algorithm can fast adapt itself under dynamic changes of the

video content or network topology. This indicates that the proposed algorithm is
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suitable for the application where frequent sensor node re-positioning is required.

In addition, by comparing the proposed algorithm with the algorithm with fixed

routes for each node, it demonstrates the effectiveness of the proposed cross-layer

optimization method.
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Figure 5.15: Comparison of network lifetime under different network scales

In order to assess the impact of network scale on the performance of the

proposed HVSN, three larger network topologies are considered. In the first case,

10 nodes are randomly scattered in an area of 40 m × 40 m. In the second case,

20 nodes are randomly deployed in an area of 60 m × 60 m. In the third case, 30

nodes are placed in an area of 80 m × 80 m in a random fashion. The results are

averaged over 50 random realizations in each case for fair comparison. For the

topology setup of the HVSN, 3 PL nodes and 6 PL nodes are randomly placed

on the network in each case. Fig. 5.15 shows that with the increase of network

scale, the network lifetime of the 6-node HVSN, 3-node HVSN and pure WVSN

decreases rapidly. This is due to the fact that with more wireless nodes in the

network, more video content is generated that needs to be forwarded to the sink

node. Therefore, it increases the power dissipation at each node. Also, with the
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increase of the number of wireless links, each link has a lower transmission attempt

probability, which further increases the power consumption. By comparing the

network lifetime of HVSN and WVSN, it is clear that the HVSN can improve

network lifetime significantly, especially when the number of PL nodes is large

in the network. However, as in the case of network with 30 nodes, the 3-node

HVSN improves the network lifetime by a small amount. This is due to the fact

that the throughput of PL links can not support the amount of data generated

in the network.

5.5 Summary

In this chapter, a distributed algorithm for network lifetime maximization in

HVSN is proposed by joint design of video encoding rate, aggregate power con-

sumption, channel access control, along with link rate allocation. Each node

solves the optimization problem locally and only requires information exchange

with its neighbouring nodes. Through numerical simulations, the performance of

the proposed algorithm is evaluated. It is shown that the proposed HVSN can

improve the network lifetime of a pure WVSN significantly (by around 37.5% and

58.1%, with 8-node HVSN compared with the 6-node WVSN and 8-node WVS-

N). Also, the proposed algorithm adapts rapidly with dynamic changes of video

content and network topology. By comparing the proposed algorithm with the

algorithm with fixed routes for each node, it is observed that the proposed algo-

rithm has a longer convergence time (140 iterations compared to 100 iterations)

while can achieve a much longer network lifetime. This proves the effectiveness

of the proposed cross-layer algorithm.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, the performance improvement in the hybrid wireless-PL sensor net-

works for in-door applications have been investigated through cross-layer design

with a particular focus on the network lifetime maximization.

In chapter 4, a cross-layer design of a hybrid sensor network was proposed

to maximize the network lifetime. The proposed system is suitable in situations

where the wireless signal may not penetrate or in situations where wired commu-

nication infrastructure is a problem (e.g., installing new communication systems

in old facilities or the cost of installing wires for communication within refineries

is very high due to safety requirements). Also, the optimal transmission scheme

is obtained and the closed-form expression for the globally optimal solution for

network lifetime maximization is derived for two network topologies. From the

closed-form expressions, for both topologies, it is clear that the network lifetime

of the hybrid network is only related to the initial battery capacity, the number

of battery powered wireless nodes, and the data arrival rate. The closed-form

expression facilities to sensor network system design by fast parameter fitting to

investigate the relationship between the network lifetime and the related system

parameters. It is also obvious that the optimal routing strategy in the string

topology is single-path multihop routing and in the linear topology is multi-path

multihop routing. Therefore, the proposed cross-layer optimization method may
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perform much better in the linear topology, since multi-path multihop routing in

linear topology allows more design freedom. Simulation results validated the ac-

curacy of the derived closed-form expression and demonstrated that in the linear

topology, the hybrid sensor network enables a significant increase in the network

lifetime over the pure WSN. It can be concluded that closed-form expressions

provide a useful guideline for the design of the sensor network.

In chapter 5, a distributed algorithm for network lifetime maximization in

HVSN was proposed by joint design of video encoding rate, aggregate power con-

sumption, channel access control, along with link rate allocation. The proposed

algorithm only requires information exchange with its neighbouring nodes with

very little communication overhead. The performance of the proposed distributed

algorithm was evaluated through extensive simulations. The HVSN can improve

a significant amount of network lifetime as compared to the traditional WVSN.

The proposed distributed algorithm can response to video content or network

topology change rapidly. Therefore, it is suitable for the application where fre-

quent node re-positioning is required. By comparing the proposed algorithm with

the algorithm with fixed routes for each node, it is observed that the proposed

algorithm has a longer convergence time while can achieve a much longer network

lifetime. This proves the effectiveness of the proposed cross-layer algorithm.

As a conclusion, the proposed hybrid sensor network can achieve a much

longer network lifetime as compared to a pure WSN. Also, it is demonstrated

that the proposed cross-layer algorithm performs better in terms of the network

lifetime as compared to the algorithm with pre-defined route for each node. This

validates the effectiveness of the cross-layer approach in this work.

6.2 Future Work

Future directions of this thesis are:

1. In chapter 4, in order to derive the closed form expression of the network

lifetime, only the power consumption in the active mode and only the power
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consumption of transmission signal power and the power consumption of

the power amplifier is considered. While this is widely adopted in the

literature, it is not quite realistic. Future work can be devoted to consider

the complete power consumption model and develop efficient algorithms to

solve the network lifetime maximization problem.

2. In chapter 4, the network lifetime of the hybrid network in the linear topol-

ogy is compared to a pure battery powered WSN with the same network

configurations. However, intuitively, in the pure wireless network, with the

same number of total sensors as compared to the hybrid network, assuming

that the wireless nodes that are placed at the same positions of the PL nodes

in the corresponding hybrid network are mains powered. In this case, in the

hybrid network, the transmission in the wireless link and in the PL link can

occur concurrently. While in the wireless network, although the wireless

nodes at the same positions of the PL nodes in the hybrid network are also

mains powered, the transmission of these wireless nodes will interfere with

the transmission of the wireless links of the battery powered wireless nodes.

Since TDMA is considered in this chapter and concurrent transmission is

not allowed in the same transmission medium, the transmission of the mains

powered wireless nodes in the wireless network will have to share the trans-

mission time frame with the battery powered wireless nodes. Therefore,

each battery powered wireless node in the wireless network is allocated less

transmission time as compared to the battery powered wireless node in the

hybrid network, which consequently consumes more transmission power in

order to achieve the required data arrival rate. Future work can be devoted

to develop algorithms to solve the problem in this scenario.

3. Other technologies such as energy harvesting and simultaneous information

and power transfer can be integrated into the hybrid sensor network to

further extend the network lifetime.
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