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Abstract

The aim of image registration is to align sets of similar images which have been captured

at di�erent time points, from di�erent perspectives or obtained using di�erent imaging

modalities (e.g. CT, MRI, X-ray). In oncology, image registration is a very powerful

tool which can be used in an array of di�erent applications such as anatomic image

segmentation, 4D dose accumulation maps and lung ventilation maps. In order to align

a given set of images, we �rst assign one image in the set to be the `�xed' reference

image to which we align the remaining `moving' template images. We are then tasked

with �nding suitable transformations which deform the template images to match the

reference image. In this thesis, we model the image registration problem mathematically

through the minimisation of an energy functional.

We begin by proposing an improved non-linear multigrid method, based upon the

method proposed by Chumchob and Chen in [33], via a more accurate analysis of

the scheme and new solver to improve convergence, accuracy and CPU time. Next we

extend our improved Chumchob-Chen model to incorporate an additional constraint to

prevent folding in the transformation, thus leading to physically accurate di�eomorphic

registrations. After this we further extend our proposed constrained model to improve

robustness with regard to accuracy in cases of severe folding, in addition to parameter

choice. We then demonstrate these improvements using a combination of real lung CT

images and a synthetic hand X-ray image set.

Next we consider a di�erent approach to addressing the problem of folding in the trans-

formation, by formulating an inverse consistent image registration model based upon

the model �rst proposed by Christensen and Johnson in [28]. Our proposed idea is to

linearise the inverse consistency constraint in the Christensen-Johnson model, which is

extremely expensive to compute with regard to computational cost due to its non-linear

nature, in addition to implementing a fast non-linear multigrid scheme to further help

reduce the computational cost of the model. We then perform some numerical tests on

a mix of real CT images and a synthetic example, to highlight the advantages of our

proposed inverse consistent model.

Finally, we present three 3D image registration models based upon the models discussed

throughout this thesis, in addition to 3D extensions of the associated non-linear multi-

vi



grid schemes. We then show some preliminary results, using eight examples taken from

the Hugo image database [80] along with clinically drawn contours for nine di�erent

objects within the CT images, comparing our proposed models with a state of the art

commercial software used in hospitals.
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Chapter 1

Introduction

One of the most useful, and challenging, tasks in image processing is image registration.

The goal of image registration techniques is to align pairs or sequences of similar images

by �nding correspondences between various features within the images. Other names

for image registration include image fusion, image matching and image warping. One

area where registration plays a crucial role is in medical imaging, especially in problems

which involve images of the lungs. The reason why image registration is especially

important in such medical image problems is due to the various types of motion which

can occur when treating patients with lung diseases over long periods of time. Some

examples of the di�erent types of motion include the tracking of tumour movement

over time in response to treatment, and movement resulting from patient breathing

during the scanning process. Therefore image registration is required for tasks such as

radiation therapy [136], determining changes in lung volume and function [20], radiation

dose estimation [38,64,102] and motion correction [107,119].

One speci�c example of where image registration can be used in the treatment of patients

with lung cancer, is deforming contours between image phases. Typically a radiologist

will contour several key areas on one phase of the 4D image sequence including the

gross tumour volume (GTV), clinical target volume (CTV) and planning target volume

(PTV). The GTV is simply an outline of the visible tumour on all slices of the image,

the CTV is an expanded region encompassing the extreme boundaries of the tumour

motion across all image phases and the PTV is a further expanded region to include

an area of uncertainty to which radiation will be applied. Due to the time consuming

process of contouring the tumour on a single phase, possibly taking up to several hours,

image registration can be used to track the motion of the tumour across the other phases

to give the CTV region. From this the PTV region can be computed easily, and the

treatment can therefore be commenced.

In this thesis, we aim to develop mathematical registration models with a focus on phys-

ical deformations. The remainder of this chapter consists �rstly of a brief introduction
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(a) Reference image R. (b) Template image T .

Figure 1.1: Example of multi-modal images consisting of a pair of di�erently weighted
brain MRI images.

into how image registration is formulated mathematically before giving an outline of

this thesis.

1.1 Introduction to image registration

The process of image registration involves searching for a geometric transformation

between a template (or target) image and a reference (or source) image, with the goal

of aligning the two images by applying the found transformation to the template image.

In order for us to be able to match the two images, it is typical to assume the template

and reference images are of the same visual scene with some variations.

We can classify image registration into two categories, namely mono-modal and multi-

modal image registration. In the former class the set of images to be registered are

obtained using the same imaging apparatus, and so we can match the images according

to intensity values since the same features have the same values in each image. Now

for the latter case, we are unable to use intensity values to match the images since dif-

ferent features possess di�erent values as illustrated in Figure 1.1. However, the main

focus of this thesis will be on the former type of image regisration, i.e. mono-modal

registration. For the case of mono-modal images, where we employ intensity based reg-

istration methods, we can further classify such methods into di�erent categories. Some

examples of these categories include physical (rigid and non-rigid), mathematical (linear

and non-linear) and complexity (parametric and non-parametric). Let us consider the

complexity categories, i.e. parametric and non-parametric registration. In the former
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(a) Reference image R. (b) Template image T .

Figure 1.2: Two squares example.

class, the transformation which we seek is governed by a small, �nite number of param-

eters. An example of this is a�ne registration (which allows for translations, rotations,

scaling and shearing) where we are required to determine 6 parameters in the 2D case,

and 12 parameters in the 3D case. However, the focus of this thesis will be on the

second class of registration models, namely non-parametric registration. For this class

of registration model, we typically determine the desired transformation by forming an

energy functional and look to �nd its minima. The functional in question is usually

obtained based on some physical process, for example elasticity or �uid �ow.

The challenge in image registration arises from the fact the associated minimisation

problem which needs to be solved is ill-posed in the sense of Hadamard since the solution

is not unique. Supposing we are given the reference and template images as shown in

Figure 1.2. We can clearly see the transformation describing a pure translation as

well as the transformation combining a translation with a clockwise rotation through π
2

both match the template image in Figure 1.2(b) to the reference image in Figure 1.2(a),

thus we see the solution is not unique unless some additional information is given.

We discuss how the problem of ill-posedness can be overcome in �2.3. Non-parametric

models are an ideal choice for real-life problems involving non-uniform deformations,

one such example being motion correction of lung images where parametric models

perform poorly. However, these models are not without drawbacks which need to be

addressed. One of the biggest challenges facing non-parametric image registration is

computational speed.

Typically the transformation is determined pixel by pixel (or voxel by voxel in 3D),

and so the number of unknowns which need to be computed is proportional to the
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number of pixels (or voxels) in the images. Therefore we see the numerical solution the

non-parametric model may be practically too slow, especially for large images. Thus

we must look to construct computationally robust models and numerical schemes for

real-life applications.

1.2 Outline of thesis

The remainder of this thesis will be set out as followed.

Chapter 2 � Mathematical preliminaries

In this chapter we introduce some basic mathematical tools which we use throughout the

remainder of this thesis. We introduce some useful de�nitions and theorems, in addition

to including examples of relevant topics which include normed linear spaces, functions of

bounded variation, calculus of variations, ill-posed inverse problems and regularisation,

discretisation of partial di�erential equations (PDEs) using �nite di�erence methods

(FDMs), the iterative solution of both linear and non-linear systems of equations and

a brief introduction into multigrid (MG) methods.

Chapter 3 � Mathematical models for image registration

In this chapter we discuss how the image registration problem can be formulated in a

mathematical setting. We do this by introducing the concept of similarity measures such

as the sum of squared distances (SSD) and mutual information (MI) measures. Next we

outline the mathematical formulation of the parametric and non-parametric registration

models. For the former type we discuss the rigid body and a�ne registration models,

while for the latter type we discuss the di�erent possible choices of regularisation such

as elastic and curvature based regularisation terms. Finally we introduce the discretise-

optimise and optimise-discretise schemes for solving the registration problem.

Chapter 4 � A more robust multigrid for di�usion type registration models

In this chapter we introduce a robust non-linear multigrid (NMG) method applied to a

di�usion model based upon the scheme proposed by Chumchob and Chen in [33]. We

include a more accurate analysis of the proposed smoother scheme using local Fourier

analysis (LFA) to achieve optimal e�ciency in the NMG scheme, and improve upon the

convergence when compared with the Chumchob-Chen model. In addition we propose

an extension to the di�usion model to produce transformations which are physical and

contain no folding, in addition to robustness with respect to the choice of weighting pa-

rameter α via the inclusion of a constraint and adaptive updating of the parameter α.

Finally we present some numerical results demonstrating the robustness of our model

with respect to folding and parameter choice, in addition to showing how the proposed

NMG scheme possesses optimal e�ciency. Moreover, we show how our improved analy-
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sis of the Chumchob-Chen NMG scheme improves upon the convergence and CPU time

in addition to improving the accuracy of the registration.

Chapter 5 � An e�ective di�eomorphic model and its fast multigrid algo-

rithm for the registration of lung CT images

In this chapter we propose a simpli�cation of the inverse consistent model proposed

by Christensen and Johnson in [28] with the goal of producing di�eomorphic transfor-

mations (i.e. transformations with no folding) and reducing the computational cost

of solving the model numerically. We then describe a NMG scheme, along with three

potential smoother schemes, before performing a detailed analysis using LFA to achieve

optimal e�ciency. Finally we show some numerical tests on real lung CT images to

demonstrate how the proposed inverse consistent model achieves good accuracy, while

maintaining physically accurate registrations, when compared with a typical di�usion

model.

Chapter 6 � Preliminary validation of two non-folding 3D registration models

for use in oncology

In this chapter we extend the three proposed models from Chapters 4 and 5 into 3D, in

addition to extending the associated multigrid schemes into 3D. After this we perform

an analysis on the multigrid schemes in 3D using LFA in order to obtain a multigrid

scheme with optimal e�ciency. Finally we present some test results comparing the

accuracy of our two non-folding registration models with a standard 3D di�usion model

on eight real lung CT examples taken from the Hugo dataset [80], before providing

some preliminary results comparing the three discussed models with a state of the art

commercial software called Eclipse which is currently used in hospitals.

Chapter 7 � Conclusions and future research

In this �nal chapter, we present some conclusions regarding the work discussed in this

thesis in addition to describing some possible avenues of future work related to the

described work.
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Chapter 2

Mathematical preliminaries

In this chapter, we begin by discussing various basic mathematical concepts which

will be used throughout the remainder of this thesis. Then we introduce some relevant

theory regarding calculus of variations, before moving on to discuss inverse problems and

regularisation. Next we introduce the concept of the discretisation of partial di�erential

equations (PDEs), in addition to some relevant notations. After this we look at some

iterative methods used to solve linear systems of equations, before moving onto iterative

methods which can be used to solve non-linear equations. Finally we conclude with a

brief introduction into multigrid methods and theory.

2.1 Normed linear spaces

De�nition 2.1.1 (Linear vector space). Suppose V is a set where the two operations
addition and scalar multiplication are de�ned. Also suppose that u,v ∈ V are elements
of the set V , with the sum of u and v denoted by u + v and the scalar multiplication
of u with an element λ ∈ F of a scalar �eld F denoted by λu. Then we call V a linear
vector space, over a scalar �eld F , if the following ten axioms hold ∀u,v,w ∈ V and
∀λ, µ ∈ F :

(i) Closure under addition:

u+ v ∈ V ;

(ii) Commutativity under addition:

u+ v = v + u;

(iii) Associativity under addition:(
u+ v

)
+w = u+

(
v +w

)
;
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(iv) Identity element of addition:

∃0 ∈ V such that u+ 0 = u;

(v) Existence of additive inverse:

∀u ∈ V, ∃ − u ∈ V such that u+
(
− u

)
= 0;

(vi) Closure under scalar multiplication:

λu ∈ V ;

(vii) Distributivity under scalar multiplication (I):

λ
(
u+ v

)
= λu+ λv;

(viii) Distributivity under scalar multiplication (II):(
λ+ µ

)
u = λu+ µu;

(ix) Associativity under scalar multiplication:

λ
(
µu
)

=
(
λµ
)
u;

(x) Identity element of scalar multiplication:

∃ I ∈ F such that Iu = u.

Example 2.1.2 (Linear vector space). Examples of linear spaces include:

(i) The vector space F [x] given by polynomial functions f(x) = λ0 +λ1x+λ2x
2 + . . . ;

(ii) The spaces Rn and Cn ∀n ∈ N.

De�nition 2.1.3 (Norm and semi-norm). Let V be a linear vector space over a scalar
�eld F , also let u, v ∈ V be elements of V and λ ∈ F be a scalar. Then a norm | · | on
V is a non-negative real valued function | · | : V → R such that the following properties
hold:

(i) |u| > 0 if u > 0 and |u| = 0 ⇐⇒ u = 0;

(ii) |λu| = |λ| |u|;

(iii) |u+ v| ≤ |u|+ |v|.

A semi-norm is de�ned in a similar way to a norm, with the exception property (i) is
replaced with

|u| ≥ 0∀u.
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De�nition 2.1.4 (Normed linear space). A normed linear space is a linear vector space
V which is equipped with a norm | · |.

Example 2.1.5 (p-norm). Suppose x ∈ Rn, then for any 1 ≤ p ∈ R the p-norm of x
is de�ned as

|x|p =

(
n∑
i=1

|xi|p
) 1

p

.

In the case when p = 2, we recover the Euclidean norm which is de�ned by

|x|Rn =
√
x · x =

√√√√ n∑
i=1

x2
i .

The Euclidean scalar product, denoted by x · y, is de�ned by

x · y = |x||y| cos θ

where θ denotes the angle between x and y.

Example 2.1.6 (Lp-norm). Let f be a function de�ned on a domain Ω and 1 ≤ p ≤ ∞,
then the Lp-norm of f on Ω is de�ned as

|f(x)|p =

(∫
Ω
|f(x)|p dx

) 1
p

.

Note this is a generalisation of Example 2.1.5 since the number of components is now
arbitrary.

Example 2.1.7 (L∞-norm). When p =∞, we have a special case of the Lp-norm from
Example 2.1.6 (namely the L∞-norm), de�ned by

|f(x)|∞ = sup
x
|f(x)| .

De�nition 2.1.8 (Inner product). An inner product on a linear vector space V , de�ned
over the scalar �eld F , is a function 〈·, ·〉V on V × V which satis�es the following
conditions:

(i) Conjugate symmetry:

〈u,v〉V = 〈u,v〉V ∀u,v ∈ V ;

(ii) Linearity under scalar multiplication:

〈λu,v〉V = λ 〈u,v〉V ∀u,v ∈ V and λ ∈ F ;

(iii) Linearity under vector addition:

〈u+ v,w〉V = 〈u,w〉V + 〈v,w〉V ∀u,v,w ∈ V ;
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(iv) Positive de�niteness:

〈u,u〉V > 0 ∀u 6= 0 ∈ V.

Example 2.1.9 (Inner product). The standard example of an inner product is the
function 〈·, ·〉Rn de�ned on Rn × Rn by

〈x,y〉Rn = yTx =

n∑
i=1

xiyi ∀x,y ∈ Rn.

De�nition 2.1.10 (Support of a function). Suppose f is a real (or complex) valued
function whose domain Ω is a non-empty set in Rn (or Cn). Then the support of f is
de�ned as

sup(f) =
{
x ∈ Ω: f(x) 6= 0

}
.

Moreover, if sup(f) is a compact set (i.e. a closed and bounded set) in Ω then we say
f ∈ Ω ⊂ Rn has compact support in Ω.

De�nition 2.1.11 (Cauchy sequence). A sequence {xk}k∈N in a normed linear vector
space V is called a Cauchy sequence if ∀ ε > 0 there exists K such that any

k, l ≥ K =⇒ |uk − ul| < ε.

Furthermore, if every Cauchy sequence converges then we say V is complete.

De�nition 2.1.12 (Banach space). A complete normed linear vector space is called a
Banach space.

De�nition 2.1.13 (Hilbert space). An inner product space which is complete with
respect to the norm induced by the inner product is called a Hilbert space.

Example 2.1.14 (Hilbert space). Two relevant examples of Hilbert spaces are the space
Rn together with the Euclidean inner product and the space L2(Ω) with the inner product

〈f, g〉L2(Ω) =

∫
Ω
f(x)g(x) dΩ.

De�nition 2.1.15 (Linear operator). Let V and W be vector spaces, then a mapping
L : V →W is called linear if

L
(
λ1u1 + λ2u2

)
= λ1L

(
u1

)
+ λ2L

(
u2

)
∀u1, u2 ∈ V and where λ1, λ2 ∈ R are scalars.

Example 2.1.16 (Linear operator). A linear operator mapping Rn → Rm is de�ned by
a matrix L of size m× n. Then given x ∈ Rn we have

y = Lx ∈ Rm.

De�nition 2.1.17 (Convex set). A set S is said to be convex if ∀u, v ∈ S, and for any
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0 ≤ λ ≤ 1, we have

λu+ (1− λ)v ∈ S.

De�nition 2.1.18 (Convex function). A function f , de�ned on a convex set S, is called
convex if ∀u, v ∈ S and 0 ≤ λ ≤ 1

f (λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v).

Moreover, if this inequality holds ∀u 6= v and 0 ≤ λ ≤ 1, then f is said to be strictly
convex.

Example 2.1.19 (Convex function). An example of a convex function is the total
variation (TV) of a function u : Ω ⊂ Rn → R (denoted by TV (u)), de�ned as followed

TV (u) =

∫
Ω
|∇u(x)| dΩ.

2.2 Calculus of variations

In this section we consider a particular class of minimisation problem which is a very

common occurrence in many real world imaging problems. The idea is to search for an

appropriate function, rather than the value of a variable, which makes a given quantity

(typically an energy integral in imaging problems) stationary. The method of calculus

of variations aims to �nd the extrema of a given quantity (usually of the form of a

de�nite integral), depending on some unknown function and possibly its derivatives.

2.2.1 Variation of a functional

De�nition 2.2.1 (Admissible functions). An input function u(x), which is acceptable
to a functional, is called admissible provided it satis�es the function smoothness condi-
tion and boundary conditions.

Consider a general functional E(u) : F → R where F denotes some normed linear

solution space consisting of admissible functions (for example F ⊂ Rd where d ≥ 1)

with the following form

E(u) =

∫
x
L
(
x,u(x),∇u(x)

)
dx.

In other words the functional E(u) depends upon the variable x = [x1, . . . , xd]
T , the

unknown function u(x) and the gradient of the unknown function ∇u(x). Then the

method of calculus of variations aims to solve the following minimisation problem

min
u

{
E(u)

}
.
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2.2.2 Gâteaux derivative of a functional

De�nition 2.2.2 (Gâteaux derivative). Let F de�ne a Banach space, and also let E(u)
be a functional de�ned such that E : F → R. Then the Gâteaux derivative of E is de�ned
as

δE(u(x);φ(x)) = lim
ε→0

{
E(u(x) + εφ(x))− E(u(x))

ε

}
=

d

dε
E(u(x) + εφ(x))

∣∣∣
ε=0

.

The limit denoted by δE(u(x);φ(x)) is also known as the �rst variation of E at u(x)
in the direction of φ(x) where

φ(x) ∈ C∞0 (Ω)

denotes a test function.

De�nition 2.2.3 (Neighbourhood). Let F de�ne a solution space, u∗ ∈ F de�ne a
function and 0 < ε ∈ R de�ne a positive scalar. Then the neighbourhood of u∗ (denoted
by Nε(u

∗(x))), is de�ned as

Nε(u
∗(x)) = {u ∈ Ω: |u− u∗| < ε} .

De�nition 2.2.4 (Local minimiser). The functional E : F → R has a local minimiser
u∗(x) if there exists a neighbourhood Nε(u

∗(x)) such that

E(u∗(x)) ≤ E(u(x))∀u(x) ∈ Nε(u
∗(x)).

De�nition 2.2.5 (Global minimiser). The functional E : F → R has a global minimiser
u∗(x) if

E(u∗(x)) ≤ E(u(x))∀u(x) ∈ F .

De�nition 2.2.6 (Stationary point). Suppose at an admissible function u(x) ∈ F the
functional E has zero �rst variation, in other words we have

δE(u(x);φ(x)) = 0, ∀φ(x) ∈ C∞0 (Ω).

Then the admissible function u(x) is said to be a stationary point of the functional E.

Theorem 2.2.7 (Necessary condition for a local minimiser). For any minimiser of the
functional E : F → R, a necessary condition is the vanishing of the �rst variation δE.
In other words we require

δE(u(x);φ(x)) =
d

dε
E(u(x) + εφ(x))

∣∣∣
ε=0

= 0.
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2.2.3 The divergence theorem

The divergence theorem (or Gauss theorem) relates the �ux of a vector �eld through a

surface, to the divergence of the vector �eld inside the surface. Let us suppose Ω ⊂ Rd

is a compact subset of Rd which possesses a piecewise smooth boundary denoted by ∂Ω,

and also suppose

F ≡ F (x) ∈ C∞(Ω)

is a continuously di�erentiable vector �eld. Then∫
Ω

(
∇ · F

)
dΩ =

∫
∂Ω
F · n dS (2.1)

where ∇ · F denotes the divergence of the vector �eld F , and n denotes the outward

unit normal of ∂Ω.

2.2.4 Green's identities

One result of the divergence theorem is, depending on the form of the scalar �eld F ,

we can derive several relations known as Green's identities.

Corollary 2.2.8 (Green's �rst identity). Given a vector �eld of the form

F = µ∇ν

where

µ ∈ C1(Ω), ν ∈ C2(Ω)

are scalar functions de�ned on Ω ⊂ Rd, then∫
Ω

(
µ∆ν +∇µ · ∇ν

)
dΩ =

∫
∂Ω
µ
(
∇ν · n

)
dS (2.2)

where ∆ denotes the Laplace operator and n denotes the outward unit normal of the
boundary ∂Ω.

Corollary 2.2.9 (Green's second identity). Given a vector �eld of the form

F = µε∇ν − νε∇µ

where

ε ∈ C1(Ω) and µ, ν ∈ C2(Ω)

are scalar functions. Then∫
Ω

[
µ∇ ·

(
ε∇ν

)
− ν∇ ·

(
ε∇µ

)]
dΩ =

∫
∂Ω
ε

(
µ
∂ν

∂n
− ν ∂µ

∂n

)
dS.

12



Or in the special case where ε = 1, we have∫
Ω

(
µ∆ν − ν∆µ

)
dΩ =

∫
∂Ω

(
µ
∂ν

∂n
− ν ∂µ

∂n

)
dS (2.3)

where ∂µ
∂n and ∂ν

∂n are equivalent to the directional derivatives of µ and ν in the direction
of the outward unit normal n respectively, i.e.

∂µ

∂n
≡ ∇µ · n, ∂ν

∂n
≡ ∇ν · n.

Corollary 2.2.10 (Green's third identity). Given the special case of Corollary 2.2.9
where we have ν = G, with G denoting the fundamental solution of the Laplace operator
at the point η de�ned by

∆G(x,η) = δ(x− η).

Then, if µ ∈ C2(Ω) is a scalar function de�ned on Ω ⊂ Rd, we have∫
Ω

[G(x,η)∆µ(x)] dΩ− µ(η) =

∫
∂Ω

[
G(x,η)

∂µ

∂n
(x)− µ(x)

∂G(x,η)

∂n

]
dS.

Corollary 2.2.11 (Integration by parts). Given a scalar function g and vector �eld
F , we can apply the divergence theorem (2.1) to the product gF which results in the
following ∫

Ω

(
F · ∇g + g∇ · F

)
dΩ =

∫
∂Ω
gF · n dS. (2.4)

In the 1D case we have

F = u(x), g = v(x), ∇F = u′(x), ∇g = v′(x).

Thus the integral (2.4) reduces to the integration by parts formula given by∫
Ω
u(x)v′(x) dx = v(x)u(x)−

∫
Ω
v(x)u′(x) dx.

2.2.5 Fundamental lemma of calculus of variations

From the method of calculus of variations, in order for a functional E to possess a min-

ima, then it is necessary for its �rst variation δE to vanish. This necessary condition

can be satis�ed by �rst deriving, and then solving, the Euler-Lagrange (EL) equations.

However, to do so we must use the fundamental lemma of calculus of variations (other-

wise known as the Du Bois-Reymond lemma), which is given by the following:

Lemma 2.2.12 (Du Bois-Reymond lemma). Given some locally integrable and contin-

13



uous function u de�ned on the open interval Ω ⊂ Rd, then if∫
Ω
u(x)φ(x) dΩ = 0∀φ(x) ∈ C∞0 (Ω) (2.5)

we have u(x) = 0.

Example 2.2.13. Suppose we have the di�usion regularisation term given by

E(u) =
1

2

∫
Ω
|∇u|2 dΩ (2.6)

de�ned on the open interval Ω ⊂ Rd. Also suppose we wish to determine the �rst varia-
tion of the functional (2.6), then we begin by introducing the small positive parameter ε
and test function φ ∈ C∞0 (Ω). Next we introduce the small perturbation εφ and compute
the following

δE(u;φ) =
1

2

d

dε

∫
Ω
|∇(u+ εφ)|2 dΩ

∣∣∣
ε=0

= lim
ε→0

1

2ε

∫
Ω
|∇(u+ εφ)|2 − |∇u|2 dΩ

= lim
ε→0

1

2ε

∫
Ω

(
ux1 + εφx1

)2
+
(
ux2 + εφx2

)2 − (u2
x1 + u2

x2

)
dΩ

= lim
ε→0

1

2ε

∫
Ω
u2
x1 + 2εux1φx1 + u2

x2 + 2εux2φx2 −
(
u2
x1 + u2

x2

)
+O(ε2) dΩ

= lim
ε→0

1

2ε

∫
Ω

2ε
(
ux1φx1 + ux2φx2

)
+O(ε2) dΩ

=

∫
Ω
∇u · ∇φdΩ. (2.7)

Now in order for us to use the Du Bois-Reymond lemma (2.5), we must �rst get the
integral (2.7) into the form ∫

Ω
uφ dΩ.

We do this by applying Green's �rst identity (2.2), with the substitutions

φ = µ, u = ν.

Doing so gives ∫
Ω
∇u · ∇φdΩ =

∫
∂Ω
φ
(
∇u · n

)
dS −

∫
Ω
φ∆u dΩ.

The EL equations for the functional E are then derived by setting the �rst variation δE
equal to zero, or in other words

−
∫

Ω
φ∆u dΩ +

∫
∂Ω
φ
(
∇u · n

)
dS = 0. (2.8)

After using the Du Bois-Reymond lemma (2.5) on each integral separately in (2.8), we

14



obtain the following EL equations{
−∆u = 0 in Ω,

∇u · n = 0 on ∂Ω.
(2.9)

The solution of the partial di�erential equations (PDEs) (2.9) yield a minimiser of the
functional given in (2.6).

2.2.6 Functions of bounded variation

Given a bounded open subset Ω ⊂ Rd and u ∈ L1(Ω), then the total variation (TV) of

u is given by

TV (u) =

∫
Ω
|Du| dΩ = sup

ϕ∈V

{∫
Ω
u(x)∇ ·ϕ dx

}
where V denotes the set of test functions given by

V =
{
ϕ =

[
ϕ1, . . . , ϕd

]T ∈ C1
0

(
Ω,Rd

)
: ‖ϕ‖L∞ ≤ 1 ∀ i = 1, . . . , d

}
with ∇ ·ϕ denoting the divergence de�ned by

∇ ·ϕ =

d∑
i=1,j=1

∂ϕi
∂xj

and where dx denotes the Lebesgue measure.

Remark 2.2.14. In Euclidean space, the Lebesgue measure is the standard way to
assign a measure (e.g. length, area, volume) to a given subset. Hence, sets which have a
�nite Lebesgue measure are known as Lebesgue measurables. This is the measure which
is used to de�ne Lebesgue integration.

There is an interesting case (as described in [57]) when u ∈ C1
(
Ω,Rd

)
and after the use

of integration by parts we get∫
Ω
u∇ ·ϕ dx = −

∫
Ω

d∑
i=1

∂u

∂xi
ϕi dx

for every

ϕ ∈ C1
0

(
Ω,Rd

)
and ∫

Ω
|Du| dx =

∫
Ω
|∇u| dΩ

15



with

∇u =
∂u

∂xi

for i = 1, . . . , d. Then a function u ∈ L1(Ω) is said to have bounded variation in Ω if

the total variation of u is �nite, i.e.

TV (u) <∞.

The space of all such functions in L1(Ω) is denoted by BV (u).

Example 2.2.15. Consider the following three 1D functions u1, u2 and u3 de�ned by

u1(x1) = cos(x1)

u2(x1) = x2
1 sin(x1)

u3(x1) =

{
0 x1 = 0

x1 sin
(

1
x1

)
x1 6= 0

with

x1 ∈ Ω = [0, 1].

Computing the TV of u1(x1) and u2(x1), we get

TV (u1) =

∫
Ω
|∇u1(x1)| dx1

=

∫ 1

0

∣∣∣∣∂u1

∂x1

∣∣∣∣ dx1 =

∫ 1

0
|− sin(x1)| dx1 = 0.4597

and

TV (u2) =

∫
Ω
|∇u2(x1)| dx1

=

∫ 1

0

∣∣∣∣∂u2

∂x1

∣∣∣∣ dx1 =

∫ 1

0

∣∣2x1 sin(x1) + x2
1 cos(x1)

∣∣ dx1 = 0.8415

respectively. Thus the functions u1(x1) and u2(x1) belong to the space of functions
with bounded variations BV (Ω). The function u3(x1) however, does not belong to the
space BV (Ω) since it has in�nite TV. This is shown in Figure 2.1(c) where we see the
oscillations increase as x1 → 0, thus increasing the value of TV

(
u3

)
.

2.3 Ill-posedness and regularisation

Ill-posed inverse problems are a common occurrence in many real-world applications

such as astronomy [37, 59, 140], oceanography [128] and especially image processing

[7, 50, 109]. In 1902, French mathematician Jaques Hadamard coined a de�nition to

determine whether a problem is well-posed or not. According to Hadamard, for a
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(a) u1(x1). (b) u2(x1). (c) u3(x1).

Figure 2.1: From left to right we have the graphs of the functions
u1(x1), u2(x1), u3(x1) where the functions u1(x1) and u2(x1) are of bounded variation
on the domain Ω = [0, 1]. The function u3(x1) however has in�nite total variation, and

is therefore is not of bounded variation on the domain Ω = [0, 1].

problem to be well-posed then the following three conditions must hold:

(i) Existence. The solution exists;

(ii) Uniqueness. The solutions is unique;

(iii) Stability. The solution depends continuously on the data, i.e. small changes in

the data do not cause large changes in the solution.

If any of these conditions do not hold, then the problem is said to be ill-posed in the sense

of Hadamard. In this section we consider ill-posed problems, and how such problems

can be solved numerically through the use of Tikhonov regularisation [129].

2.3.1 Inverse problems

De�nition 2.3.1 (Forward and inverse problems). Suppose we have the following

Au = f (2.10)

with

A ∈ L(H,F), u ∈ H, f ∈ F

and where H,F de�ne Hilbert spaces. Then we de�ne the forward problem to be the
problem which determines the data f from the parameter u using the operator A. In
other words

f = Au for u ∈ H, f ∈ F . (2.11)
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An inverse problem, on the other hand, is de�ned to be the problem which determines
the parameter u ∈ H from the data f ∈ F such that (2.11) (or some approximation)
holds.

De�nition 2.3.2 (Well-posedness). The problem (2.10) is said to be well-posed, in the
sense of Hadamard, if the following conditions all hold:

(i) Existence. ∀f ∈ F , there exists a solution u ∈ H such that (2.10) is true;

(ii) Uniqueness. ∀f ∈ F , the solution u ∈ H is unique;

(iii) Stability. The solution u ∈ H depends continuously on the data.

If any of the above do not hold, then we say the problem (2.10) is ill-posed in the sense
of Hadamard.

Example 2.3.3 (Ill-posed problem). Suppose we have the system shown in (2.10) with

A =

[
3 5
9 15

]
, f =

[
3
9

]
, u =

[
u1

u2

]
. (2.12)

We notice the two equations are not linearly independent, thus we say the system
is under-determined (i.e. there are fewer equations than unknowns). Such under-
determined systems are known to possess an in�nite number of solutions, for example
two possible solutions to the problem (2.12) are

[u1, u2]T =

[
0,

3

5

]T
, [u1, u2]T = [1, 0]T .

Therefore the problem does not have a unique solution, and hence the problem is ill-posed
in the sense of Hadamard.

2.3.2 Tikhonov regularisation

As we have mentioned, ill-posed problems are a very common occurrence in a lot of

real-world image processing problems, one notable example being image registration.

Therefore it is crucial we are able to solve such problems. In [129] Andrey Tikhonov

proposed the idea of an additional constraint, known as a regularisation term, to be

included in the original ill-posed problem in order to stabilise the solution. In general,

the regularisation term is chosen according to some prior physical information on the

solution.

Example 2.3.4 (Tikhonov regularisation). Let us consider the problem of registering a
pair of images to one another according to the matching of intensity values. In practice
this is typically done by minimising the sum of squared distances (SSD) between a given
template image (which we look to deform) and a given reference image (which remains
�xed) which we denote by

T, R ∈ Ω ⊂ Rd

18



respectively. In other words, we are looking to solve the following

min
ϕ

{∣∣T (ϕ(x)
)
−R(x)

∣∣2
2

}
(2.13)

where

ϕ(x) ∈ Ω ⊂ Rd

denotes the transformation which matches the template image to the reference image,
i.e.

T (ϕ(x)) = R(x).

Unfortunately, minimising the SSD measure alone is not su�cient to produce a unique
solution, and thus (2.13) is ill-posed. However, through the inclusion of an additional
regularisation term we can ensure the solution obtained is unique. Hence the problem

min
ϕ

{∣∣T (ϕ(x)
)
−R(x)

∣∣2
2

+ α
∣∣R(ϕ(x)

)∣∣2
2

}
where R denotes the regularisation operator and α ∈ R+ is a weighting parameter
between the two terms, is well-posed.

The general form of a Tikhonov regularisation model can be expressed in the following

way

min
ϕ

{
D(R, T,ϕ) + αR(ϕ)

}
where D denotes the similarity (or �tting) term and R the regularisation term, with

α ∈ R+ representing a weighting parameter between these two terms.

2.4 Discrete PDEs and notation

In general, when continuous partial di�erential equations (PDEs) are encountered, we

must look to obtain a numerical approximation of the solution as typically analytical

solutions are not possible to obtain. Suppose we have some open and bounded domain

in Rd denoted by Ω with boundary given by Γ = ∂Ω, then we can de�ne a continuous

linear d-dimensional boundary value problem (BVP) by the followingLΩu(x) = FΩ(x) for x = [x1, . . . , xd]
T ∈ Ω,

LΓu(x) = FΓ(x) for x = [x1, . . . , xd]
T ∈ Γ

(2.14)

where L denotes some linear operator and

u ≡ u(x) = [u1(x), . . . , ud(x)]T
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is the unknown function to be determined. Similarly we can de�ne a non-linear BVP

in the following wayNΩu(x) = FΩ(x) for x = [x1, . . . , xd]
T ∈ Ω,

N Γu(x) = FΓ(x) for x = [x1, . . . , xd]
T ∈ Γ

(2.15)

where N denotes some non-linear operator.

De�nition 2.4.1 (Laplace operator). The Laplace operator, or Laplacian, is a di�er-
ential operator which is de�ned to be the divergence of the gradient of a function in
Euclidean space and is typically denoted by ∆. Alternatively, the Laplace operator can
also be denoted by ∇2, ∇ · ∇ or div(∇). Consider some scalar function f(x1, x2), then
we de�ne the Laplacian of f by

∆f(x1, x2) = ∂2
x1f + ∂2

x2f =
∂ 2f

∂x2
1

+
∂ 2f

∂x2
2

.

Example 2.4.2 (Poisson equation). Consider the Poisson equation in 2D given by the
following

−∆u(x) = F (x) in Ω

with Neumann boundary conditions

∇u · n = 0 on Γ

where ∇ denotes the 2D spatial gradient operator and n the outward unit normal.

In image registration, the domain Ω ⊂ R2 is typically rectangular with known values f

at points uniformly distributed throughout the domain. For this reason discretisation

based upon a �nite di�erence method (FDM) is typically favoured over other discreti-

sation methods such as the �nite element method (FEM) [3, 77].

In the 2D setting let us assume

Ω = (a, b)× (c, d)

is rectangular, then we impose a Cartesian mesh (or grid) with the following spacing

h1 =
b− a
n1

, h2 =
d− c
n2

in the x1 and x2 directions respectively. Now there are two ways in which we can dis-

cretise the mesh, these are vertex-centred discretisation and cell-centred discretisation.

In vertex-centred discretisation, the grid points are placed at the vertices of the mesh

such that there are (n1 + 1)× (n2 + 1) points including those on the boundary. For this

case, the grid point (i, j) is located at

(x1i , x2j ) = (ih1, jh2) for 0 ≤ i ≤ n1, 0 ≤ j ≤ n2.
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(a) Cell-centred grid. (b) Vertex-centred grid.

Figure 2.2: Visual representation of a cell-centred and vertex-centred discretisation for
a square domain.

In cell-centred discretisation, the grid points are placed at the centre of cells such that

there are n1 × n2 points. For this case, the grid point (i, j) is located at

(x1i , x2j ) =

(
a+

2i− 1

2
h1, c+

2j − 1

2
h2

)
for 0 ≤ i ≤ n1, 0 ≤ j ≤ n2.

In either case the interior of the mesh is denoted by Ωh and the boundary by either Γh

or ∂Ωh. Figure 2.2 shows an example of a vertex-centred and cell-centred discretisation

applied to a square mesh. After the discretisation method has been decided, any op-

erators in the PDE can be approximated locally using Taylor expansions given by the

following

u(x1 + h1, x2) = u(x1, x2) + h1
∂u

∂x1
(x1, x2) +

h2
1

2

∂2u

∂x2
1

(x1, x2) +O(h3
1)

and

u(x1 − h1, x2) = u(x1, x2) + h1
∂u

∂x1
(x1, x2)− h2

1

2

∂2u

∂x2
1

(x1, x2) +O(h3
1)

where O(h3
1) denotes the terms containing powers of h1 of order 3 and above. Now the

operator ∂u
∂x1

(x1, x2) can also be approximated locally in three di�erent ways. These are

the �rst order forward di�erence, �rst order backward di�erence and �rst order central

di�erence and are de�ned by the following:

First order forward di�erence.

δ+
x1(u)i,j =

(u)i+1,j − (u)i,j
h1

≈
(
∂u

∂x1

)
i,j

;
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First order backward di�erence.

δ−x1(u)i,j =
(u)i,j − (u)i−1,j

h1
≈
(
∂u

∂x1

)
i,j

;

First order central di�erence.

δcx1(u)i,j =
(u)i+1,j − (u)i−1,j

2h1
≈
(
∂u

∂x1

)
i,j

.

Similarly higher order derivatives can be approximated in a similar manner, for example

the second order central di�erence approximation of the derivative ∂2u
∂x21

(x1, x2) is given

by

δcx1x1(u)i,j =
(u)i−1,j − 2(u)i,j + (u)i+1,j

h2
1

≈
(
∂2u

∂x2
1

)
i,j

. (2.16)

Moreover, we denote the discrete versions of (2.14) and (2.15) by

Lhuh = F h, N huh = F h

respectively.

Remark 2.4.3. In image registration, the domain Ωh represents an image domain.
While both vertex-centred discretisations (e.g. [12�16, 18]) and cell-centred discretisa-
tions (e.g. [32�35, 67]) are used, the choice of which discretisation to use is typically a
matter of preference. Moreover, while the choice of the image domain Ωh can be arbi-
trary, there are commonly only two possibilities which are used in practice. The �rst
choice is to de�ne Ωh such that the grid spacing is equal to 1 in each dimension, for
example if we have an image of size 256× 128 then we would take

Ωh = [0, 256]× [0, 128].

The second choice is to de�ne Ωh as the unit square, in other words we take

Ωh = [0, 1]× [0, 1]

with grid spacing

h1 =
1

n1 − 1
, h2 =

1

n2 − 1

in the x1, x2 directions respectively. The latter is the most common choice in the liter-
ature, and is indeed the choice we use throughout this thesis.
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2.4.1 Stencil notation

Consider the discrete Poisson equation de�ned on the unit square Ωh = [0, 1]2 with

interval h and Dirichlet boundary conditions, in other words−
(
∆huh

)
i,j

=
(
F h
)
i,j

in Ωh,(
uh
)
i,j

=
(
F h
)
i,j

= 0 on Γh.
(2.17)

Now the discrete Laplace operator
(
∆huh

)
i,j

can be written, using the second order

di�erence approximation (2.16), in the following way(
∆huh

)
i,j

= δc hx1x1
(
uh
)
i,j

+ δc hx2x2
(
uh
)
i,j

=
1

h2

[(
uh
)
i−1,j

− 2
(
uh
)
i,j

+
(
uh
)
i+1,j

]
+

1

h2

[(
uh
)
i,j−1

− 2
(
uh
)
i,j

+
(
uh
)
i,j+1

]

=
1

h2

[(
uh
)
i,j−1

+
(
uh
)
i−1,j

− 4
(
uh
)
i,j

+
(
uh
)
i+1,j

+
(
uh
)
i,j+1

]
(2.18)

which can be written using the following stencil notation

(
∆huh

)
i,j

=
1

h2

0 1 0

1 −4 1

0 1 0

(uh)i,j . (2.19)

2.4.2 Matrix notation

An alternate way of writing the discrete system

Lhuh = F h

is to use matrix notation. We do this by stacking the grid functions uh along rows,

starting from the bottom left (labelled 1 in Figure 2.3) and ending with the top right

point (labelled (n− 2)2 in Figure 2.3), to form a column vector ūh. Such a method of

ordering is known as lexicographical ordering, and an example can be seen in Figure 2.3.

The vector on the right hand side is stacked in much the same way to produce a column

vector F̄ h. Then the discrete linear system can be written in the form

Ahūh = F̄ h.
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i = 2 i = i i = n− 1

j = 2

j = j

j = n− 1

1 n− 2

k

(n− 2)2

Figure 2.3: Illustration of a lexicographic ordering system. The indexing on the
interior points show how the discrete interior points are ordered in a lexicographic
system. The solid dark blue lines represent the interior Ωh with points indicated by
the solid dark blue circles, while the dashed light blue lines denote the boundary ∂Ωh

with points indicated by the solid light blue circles.

Example 2.4.4. Returning to the Poisson equation in (2.17), we can see from (2.18)
for a general row k of the system matrix Ah the diagonal elements are

ak,k =
4

h2

and the o�-diagonal elements are

ak±1,k = ak,k±1 = − 1

h2

with all remaining entries being zero, and where appropriate modi�cations have been
made for boundary points. This results in Ah being a (n − 2)2 × (n − 2)2 block tri-
diagonal matrix consisting of blocks of size (n− 2)× (n− 2).

2.4.3 Boundary conditions

Commonly there are two types of boundary conditions (BCs) which arise in PDEs, these

are Dirichlet BCs and Neumann BCs. Dirichlet BCs specify the values of the function

which must be satis�ed on the boundary, while Neumann BCs specify values which the

normal derivative of the function on a surface must satisfy. Again looking back to the

Poisson equation (2.17), if we have Neumann BCs

∇u · n = 0

instead of Dirichlet BCs, we need to access so-called `ghost' points when we are su�-

ciently close to the boundary. For example, if we consider points on the right boundary
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Figure 2.4: Illustration of how ghost points outside of the domain Ωh, using a
vertex-centred discretisation, are de�ned. The solid blue lines represent the discretised
domain Ωh with solid blue circles representing the vertex-centred grid points, while
the dashed light blue lines and solid light blue circles represent the ghost points

outside of the domain Ωh. The solid red circles indicate the points used in the FD of
the example point show in (2.20)

we have (
uh
)
n+1,j

−
(
uh
)
n−1,j

2h
= 0 (2.20)

and we see the `ghost' point
(
uh
)
n+1,j

must be accessed, which is outside of the mesh.

A visual representation of `ghost' points can be seen in Figure 2.4. Along the right

boundary, using stencil notation, we can write

−
(
∆huh

)
i,j

=
1

h2

 0 −1 0

−1 3 0

0 −1 0

(uh)i,j =
(
F h
)
i,j

where we have assumed Ωh is given by the unit square.

2.4.4 Non-linear equations

For non-linear PDEs we can use the same treatment which we used for linear PDEs,

namely we approximate the non-linear equation locally on a discrete mesh using a FDM.

We denote the discrete form of the non-linear equation by the followingN h
Ωu

h(x) = F h
Ω(x) for x = [x1, . . . , xd]

T ∈ Ωh,

N h
Γu

h(x) = F h
Γ (x) for x = [x1, . . . , xd]

T ∈ Γh.
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It is possible to write the non-linear equations using the matrix notation shown in �2.4.2,

in this case the non-linear equations would take on the form

Ah
[
uh
]
ūh = F̄ h. (2.21)

2.5 Iterative methods

In this section we give a brief overview of some iterative methods which can be used to

solve linear systems of the form shown in (2.21), where

A ∈ Rn×n, x, b ∈ Rn×1.

For the vast majority of applications where linear systems are required to be solved,

the system is far too large to solve via direct methods, and so iterative methods are

required to approximate the solution.

Suppose we are given a general system of linear equations with the form shown in

(2.21). Then iterative methods, starting with some initial guess x(0), aim to generate a

sequence
{
x(l)
}∞
l=1

from the recurrence relation

x(l) = Tx(l−1) + c (2.22)

where the matrix T and vector c are given by

T = M−1N , c = M−1b (2.23)

and the matrices M , N are obtained by splitting the matrix A according to

A = M −N

whereM is non-singular. For every step which computes x(l) from x(l−1), we typically

refer to this as an iteration step or relaxation sweep.

2.5.1 Jacobi method

The Jacobi method solves the ith equation of the linear system (2.21) using the following

xi =

n∑
j=1,i 6=j

(
−aijxi

aii

)
+
bi
aii

for i = 1, . . . , n.

Moreover, given x(l−1) (l ≥ 1) the update x(l) is computed using

x
(l)
i =

n∑
j=1,i 6=j

(
−
aijx

(l−1)
i

aii

)
+
bi
aii

for i = 1, . . . , n
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Algorithm 1 [x]← Jacobi(A, b,x(0), IMAX, Tol)

1: Set l = 1, n = size(x(0), 1)
2: for l = 1, . . . , IMAX do
3: for i = 1, . . . , n do
4: Set

x
(l)
i =

n∑
j=1,i6=j

(
−aijx

(l−1)
i

aii

)
+

bi
aii

(2.24)

5: end for
6: if

∣∣Ax(l) − b
∣∣
2
< Tol or

∣∣x(l) − x(l−1)
∣∣
2
< Tol then Exit else Continue

7: end for

where we have assumed

aii 6= 0.

However, supposing one or more aii are zero, then we can use a re-ordering such that

aii 6= 0∀ i = 1, . . . , n.

We do this by splitting the matrix A into a diagonal part D, strictly lower-triangular

part L and strictly upper-triangular part U via the relation

A = D −L−U .

Then the linear system (2.21) can be written as[
D −L−U

]
x = b ⇐⇒ x = D−1

[
L+U

]
x+D−1b

which we see is of the same form as (2.23) with

T = D−1
[
L+U

]
, c = D−1b.

Then the matrix form of the Jacobi method can be written in the following way

x(l) = TJx
(l−1) + cJ (2.25)

where

TJ = D−1
[
L+U

]
, cJ = D−1b.

The algorithm for solving (2.21), using the Jacobi method, is shown in Algorithm 1

An alternative to the Jacobi method, is the so-called weighted Jacobi method. In this

method an intermediate value x̄(l) is computed using the current approximation x(l−1)
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via the following relation

x̄
(l)
i =

n∑
j=1,i 6=j

(
−
aijx

(l−1)
j

aii

)
+
bi
aii

for i = 1, . . . , n (2.26)

and then the new approximation x(l) is computed according to

x(l) =
(
1− ω

)
x(l−1) + ωx̄(l) (2.27)

where

0 < ω ∈ R

is a weighting parameter to be selected. Here we remark if ω = 1 in (2.27) then the

weighted Jacobi method reduces to the Jacobi method. Using matrix form, the weighted

Jacobi method can be written as

x(l) =
[(

1− ω
)
I + ωTJ

]
x(l−1) + ωcJ

≡ Tωx(l−1) + cω

where I denotes the identity matrix and TJ , cJ are as given in (2.25).

2.5.2 Gauss-Seidel method

The Gauss-Seidel (GS) method is an improvement to the Jacobi method, whereby the

most recent updates are used to compute the value x(l)
i (rather than only using the old

approximations). In other words we use the values

x
(l)
1 , . . . , x

(l)
i−1

instead of the values

x
(l−1)
1 , . . . , x

(l−1)
i−1

to compute the update x(l)
i . Then the update x(l)

i is computed according to

x
(l)
i = − 1

aii

 i−1∑
j=1

aijx
(l)
j +

n∑
j=i+1

aijx
(l−1)
j

+
bi
aii

for i = 1, . . . , n (2.28)

which can be re-written in the following way

aiix
(l)
i +

i−1∑
j=1

aijx
(l)
j = −

n∑
j=i+1

aijx
(l−1)
j + bi. (2.29)
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Therefore we can write the GS method in the following matrix form[
D −L

]
x(l) = Ux(l−1) + b

⇐⇒ x(l) =
[
D −L

]−1
Ux(l−1) +

[
D −L

]−1
b

≡ TGSx(l−1) + cGS . (2.30)

The algorithm for the GS method is near identical to the one corresponding to the

Jacobi method (i.e. Algorithm 1), with the exception equation (2.24) in Algorithm 1 is

replaced with equation (2.28).

2.5.3 SOR method

The successive over relaxation (SOR) method is similar to the weighted Jacobi method,

except applied to the GS method. Given the current approximation x(l−1)
i , the inter-

mediate values x̄(l)
i are determined using the GS method, and then the values x(l) are

computed via

x(l) =
(
1− ω

)
x(l−1) + ωx̄(l)

where

0 < ω < 2

is some weighting parameter. If 0 < ω < 1 the scheme is referred to as under-relaxation

and is used if the GS method does not converge, while if 1 < ω < 2 the scheme is

referred to as over-relaxation and is used to accelerate the convergence of systems for

which the GS method also converges. Also note if ω = 1, then the SOR method reduces

simply to the GS method. The SOR method can also be written in matrix form using

the following matrix splitting

ωA =
[
D − ωL

]
−
[
ωU +

(
1− ω

)
D
]

and can be expressed using the following relation

x(l) =
[(
D − ωL

)
−
(
ωU +

(
1− ω

)
D
)]
x(l−1) + ω

[
D − ωL

]−1
b

≡ TSORx(l−1) + cSOR.

2.5.4 Block methods

Suppose the vectors x and b are partitioned into several sub-vectors, in other words we

have

x =
[
xT1 , . . . ,x

T
n

]
, b =

[
bT1 , . . . , b

T
n

]
.
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Then we can write the system (2.21) in the following block form
A11 . . . A1n

...
...

An1 . . . Ann



x1

...

xn

 =


b1

...

bn

 (2.31)

where the blocks Aij are of size np×nq, and the blocks xj , bj are of size nq× 1. Under

the assumption the diagonal blocks Aii are non-singular, we can extend the Jacobi and

GS methods to be used on the block system (2.31). For the block Jacobi method, we

update the block xi according to the following relation

x
(l)
i = A−1

ii

 n∑
j=1,i 6=j

−Aijx
(l−1)
j + bi


for i = 1, . . . , n. Similarly for the block GS method, we update the block xi via the

following

x
(l)
i = A−1

ii

 i−1∑
j=1

−Aijx
(l)
j +

n∑
j=i+1

−Aijx
(l−1) + bi

 .
Now we remark since we have to invert the matrixAii in order to update each block x

(l)
i ,

then naturally the larger the block xi is the more expensive the update is to compute.

However, while the block methods are more expensive computationally than their point

relaxation counterparts (per relaxation sweep), they may bene�t from an improved rate

of convergence and therefore require fewer iterations to converge. Similar to the point

relaxation schemes, we can also express the block variations using matrix notation. For

the block Jacobi method we have

x(l) = D−1
B

[
UB +LB

]
x(l−1) +D−1

B b

≡ TBJx(l−1) + cBJ

and for the block GS method we have

x(l) =
[
DB −LB

]
UBx

(l−1) +
[
DB −LB

]
b

≡ TBGSx(l−1) + cBGS .

Example 2.5.1 (Line Gauss-Seidel). An example of a block method is the line GS
method, where each block xi in (2.31) corresponds to an entire row of x values from the
discrete mesh which we update simultaneously.
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2.5.5 Convergence

In this section we show the sequence
{
x(l)
}∞
l=0

converges to the true solution (of the

linear system (2.21)) given by x, where

x(l) = Tx(l−1) + c

if and only if the spectral radius of the matrix T is less than 1 i.e.

ρ
(
T
)
< 1.

De�nition 2.5.2 (Spectral radius). Given some matrixM , then we de�ne the spectral
radius of M by the following

ρ
(
M
)

= max |λ|

where λ denotes the eigenvalues of M .

De�nition 2.5.3 (Convergent matrix). A square matrix M is said to be convergent if

lim
k→∞

{
Mk

}
= 0.

Theorem 2.5.4 (Convergence of a matrix). A matrixM is a convergent matrix if and
only if the spectral radius of M is less than 1, in other words

ρ
(
M
)
< 1. (2.32)

Proof. A proof of Theorem 2.5.4 can be found in [118].

Lemma 2.5.5. Suppose the spectral radius satis�es (2.32), then the inverse

[
I −M

]−1
=

∞∑
k=0

Mk

exists where I denotes the identity matrix.

Proof. Suppose λ denotes an eigenvalue of the matrix M , then this implies
(
1 − λ

)
is

an eigenvalue of the inverse matrix
[
I −M

]−1. Now using the fact (2.32) is true (from
Theorem 2.5.4), implies λ = 1 is not an eigenvalue of M , then we know[

1− λ
]

= 0

is not an eigenvalue of
[
I −M

]−1 and hence
[
I −M

]−1 is not singular. Next let us
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de�ne the sequence Sm by the following

Sm = I +M + · · ·+Mm

=⇒
[
I −M

]
Sm =

[
I +M + · · ·+Mm

]
−
[
M + · · ·+Mm+1

]
= I −Mm+1.

From Theorem 2.5.4 we know (2.32) implies M is a convergent matrix, and therefore

lim
m→∞

{[
I −M

]
Sm
}

= lim
m→∞

{[
I −Mm+1

]}
= I

=⇒
[
I −M

]−1
= lim

m→∞
{Sm} =

∞∑
k=0

Mk.

Theorem 2.5.6 (Convergence of a sequence). Given some

x(0) ∈ Rn

then the sequence
{
x(l)
}∞
l=0

which is de�ned by

x(l) = Tx(l−1) + c, l > 0

converges to the unique solution x of

x = Tx+ c (2.33)

if and only if the spectral radius of T is less than 1 i.e.

ρ
(
T
)
< 1. (2.34)

Proof. Using the assumption (2.34), then we have

x(l) = Tx(l−1) + c

= T
[
Tx(l−2) + c

]
+ c

...

= T lx(0) +
[
T (l−1) + · · ·+ T 2 + T + I

]
c. (2.35)

Using equation (2.35), along with Theorem 2.5.6 and the assumption (2.34), then we
have the following

lim
l→∞

{
x(l)
}

= lim
l→∞

{
l−1∑
k=0

T kc

}
. (2.36)

From Lemma 2.5.5, we know (2.36) is equivalent to[
I − T

]−1
c.
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Therefore the sequence
{
x(l)
}∞
l=0

converges to the unique solution (2.33) since

x =
[
I − T

]−1
c.

On the other hand, let us assume (2.33) possesses the unique solution denoted by x∗.
Now if we also introduce an arbitrary vector

y ∈ Rn

and take the initial guess

x(0) = x∗y

then we have

lim
l→∞

{
T ly

}
= lim

l→∞

{
T l
[
x∗ − x(0)

]}
= lim

l→∞

{
T l−1

[
x∗ − x(1)

]}
...

= lim
l→∞

{[
x∗ − x(l)

]}
.

Since we chose the vector y to be arbitrary, then this implies the matrix T must be
convergent, and from Theorem 2.5.4 we get

ρ
(
T
)
< 1.

For a general iterative scheme, we can de�ne the convergence rate by the following

ρ = lim
l→∞


(

sup
e(0)∈Rn

∥∥e(l)
∥∥∥∥e(0)
∥∥
) 1

l

 (2.37)

where e(l) denotes the error between the true solution x∗ of the system (2.21) and the

approximation at step l x(l), which is de�ned by

e(l) = x∗ − x(l). (2.38)
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From (2.38), we can write

e(l) = x∗ − x(l)

= Tx∗ + c−
[
Tx(l−1) + c

]
= T

[
x∗ − x(l−1)

]
= Te(l−1)

...

= T le(0). (2.39)

Then using (2.39), and the fact for any matrix norm

lim
l→∞

{(∥∥∥M l
∥∥∥ 1
l

)}
= ρ
(
M
)

we can write the expression for the convergence rate (2.37) in the following way

ρ = lim
l→∞

{(∥∥∥T l∥∥∥) 1
l

}
= ρ
(
T
)

and thus we see the optimal iterative method is the one whose iteration matrix possesses

the smallest spectral radius.

Now we present some useful convergence theorems [84] which we state without proof.

Theorem 2.5.7 (Spectral radius of the Jacobi and Gauss-Seidel methods). If a matrix
A has positive diagonal entries and all other entries are negative or zero, then only one
of the following statements hold:

(i) 0 < ρ
(
TGS

)
< ρ
(
TJ
)
< 1;

(ii) 1 < ρ
(
TJ
)
< ρ
(
TGS

)
;

(iii) ρ
(
TJ
)

= ρ
(
TGS

)
= 0;

(iv) ρ
(
TJ
)

= ρ
(
TGS

)
= 1;

where TJ and TGS denote the iteration matrices, as shown in (2.25) and (2.30), for the
Jacobi and GS iterative methods respectively.

From Theorem 2.5.7, we see if either the Jacobi or GS method converges then so does

the other. Conversely, if one of the two diverges, then the other does too. Moreover,

if the two methods converge, then the GS method will converge faster than the Jacobi

method.

34



Remark 2.5.8. In order for the Jacobi method to converge, a su�cient condition is the
system matrix A must be strictly diagonally dominant. For convergence of the Gauss-
Seidel method however, one of the two following conditions must be satis�ed:

(i) The system matrix A is strictly diagonally dominant;

(ii) The system matrix A is symmetric positive de�nite (SPD).

All image registration models considered in this thesis possess diagonally dominant SPD
system matrices, hence the Jacobi and Gauss-Seidel methods will converge for these
models.

De�nition 2.5.9 (Regular splitting).

A = M −N

is called a regular splitting if M is non-singular and M , N are non-negative.

Theorem 2.5.10. If M and N are a regular splitting of A, and

T = M−1N

then ρ
(
T
)
< 1 ⇐⇒ A is non-singular and A−1 non-negative.

Theorem 2.5.11. If all of the diagonal elements of A are non-zero then

ρ
(
TSOR

)
≥ |ω − 1|

hence the SOR method converges only when 0 < ω < 2.

Theorem 2.5.12. If A is a positive de�nite matrix, i.e.

xTAx > 0

for any x, and 0 < ω < 2, then the SOR method converges for any initial guess x(0).

Theorem 2.5.13. If the matrix A is positive de�nite and tri-diagonal, then

ρ
(
TGS

)
= ρ
(
TJ
)2

and the optimal value for ω is

ω =
2

1 +
√

1− ρ
(
TJ
)2

for which

ρ
(
TSOR

)
= ω − 1.
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2.5.6 Iterative methods for non-linear equations

Suppose we now wish to solve the following non-linear system

Fi
(
x1, . . . , xn

)
= 0 for i = 1, . . . , n (2.40)

which we can obtain from the discretisation of a non-linear PDE or optimisation problem

of the following form

min
{
E
(
x1, . . . , xn

)}
.

Then the system (2.40) can be written in the form

F (x) = 0, F =
[
F1, . . . , Fn

]T
, x =

[
x1, . . . , xn

]T (2.41)

and where 0 denotes the zero column vector of dimension n× 1. Our aim is to �nd the

solution x∗ ∈ Rn of the system (2.40). For the remainder of this section, we outline

several methods which we can use to solve non-linear systems such as the one shown in

(2.40).

2.5.7 Newton method

Let us begin by denoting the Jacobian matrix of F by J , and de�ne it in the following

way

J =
(
J
)
ij

=
∂Fi(x)

∂xj

for i, j = 1, . . . , n. In addition let us assume the Jacobian J is Lipschitz continuous,

then the Newton method looks to �nd the solution of (2.41) via the use of the following

recurrence relation

x(l) = x(l−1) −
[
J(x(l−1))

]−1
F (x(l−1))

which can be written as

Solve d(l−1) = −
[
J(x(l−1))

]−1
F (x(l−1)),

Update x(l) = x(l−1) + d(l−1)

where d(l−1) denotes the search direction.
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2.5.8 Gradient descent method

Suppose we seek to �nd the solution x of the non-linear system (2.41), then we can use

a method called the gradient (or steepest) descent method. This method generates a

sequence x(l), for l ≥ 1, according to the following recurrence relation

x(l) = x(l−1) + α(l−1)d(l−1), d(l−1) = −∇F (x(l−1)) (2.42)

where α(l−1) denotes the so-called step length and d(l−1) the search direction. The

purpose of the gradient descent method is the search direction d(l−1) is always a descent

direction, and as a result each iteration decreases from the previous. In other words we

have

F (x(l)) ≤ F (x(l−1)).

Now supposing we replace the step length α(l−1) with the time step ∆t in (2.42), then

we obtain the so-called time-marching method [47�49,72,74,90,100,126].

2.5.9 Quasi-Newton method

Let us suppose we have an optimisation problem of the following form

min
x

{
E(x)

}
(2.43)

where E is some functional and

E : Rn → R ∈ C2.

Also suppose we are given some initial guess x(0), then we look to introduce an iterative

method to generate a sequence of approximations which converge to the true minimum

value x∗. Moreover, let us denote the gradient of E at x(l) by

∇E(x(l))

and the Hessian matrix by

H(l) = ∇2E(x(l)).

The second order Taylor expansion of the functional E, around the approximation x(l),

is de�ned by the following

Ê(ε) = E(x(l)) + εT∇E(x(l)) +
1

2
εTH(l)ε
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where

ε = x− x(l).

Now the expression Ê(ε) de�nes a quadratic model of E around x(l), and the gradient

with respect to x is de�ned by the following

∇Ê(ε) = ∇E(x(l)) +H(l)ε. (2.44)

For minimal values of the expression ∇Ê(ε) in (2.44), we require the following

ε(l) = −
[
H(l)

]−1
∇E(x(l)) (2.45)

and so the Newton method is given by the following recurrence relation

x(l+1) = x(l) + α(l)ε(l) (2.46)

where the value of ε(l) is determined by solving (2.45). However, since the solution of

(2.45) requires the computation of the inverse of the Hessian matrix, i.e.[
H(l)

]−1

this method may be too expensive computationally for large problems. In order to avoid

this cost, and directly computing the inverse Hessian matrix, the quasi-Newton method

seeks to �nd an approximation of the Hessian matrix which is easier to invert. Some

examples of how the Hessian can be approximated can be seen in the works [98,127].

2.5.10 Line search method

For recurrence relations of the form shown in (2.46) the choice of the step length α(l), in

addition to the search direction ε(l), need to be carefully considered in order to obtain

a method which is convergent. While the initialisation of the step length is typically

taken to be α(0) = 1, for subsequent iterations we can impose the following condition

in order to get a reduction in E

E(x(l) + α(l)ε(l)) ≤ E(x(l)).

However, as can be seen in [144], this condition is not su�cient to guarantee convergence

of the solution. A popular alternate condition is the so-called Wolfe condition [142,143],

which is given by the following

E(x(l) + α(l)ε(l)) ≤ E(x(l)) + cα(l)∇E(x(l))T ε(l)

where 0 < c < 1 denotes some constant.
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2.6 Multigrid methods

Multigrid (or MG) methods are a form of multilevel strategy �rst proposed by A. Brandt

in [9]. They were developed to be e�cient solvers of a large selection of both linear

and non-linear discrete elliptic PDEs. In MG methods, the idea is to smooth out

any high frequency components of the solution error in the Fourier domain through

the use of a few iterations of a given `smoother' scheme (such as the iterative methods

outlined in �2.5). Once the error has been su�ciently smoothed, we restrict the problem

onto a coarser grid, where we solve a linear/non-linear residual equation. With this

accurate solution, we can compute the so-called coarse grid correction which can then

be interpolated back to the �ne grid and used to update the approximation on the �ne

grid. After the approximation has been corrected, we perform another smoother step to

remove any high frequency interpolation errors which may have been introduced. This

scheme is known as the two-grid V-cycle, for more details on the introduction to MG

methods see [10,25,131].

De�nition 2.6.1 (Fourier mode). Given some initial vector

u(0) =
(
u

(0)
1 , . . . , u(0)

n

)
then the Fourier mode of u

(0)
i is de�ned by the following

u
(0)
i = sin

(
ikπ

n

)
where 0 ≤ i ≤ n and 1 ≤ k ≤ n − 1 denotes the wavenumber or the frequency of u(0).
Note small values of k result in a vector u(0) with low oscillations, while a high value
results in a vector u(0) with high oscillations. An example of low and high frequency
oscillations can be seen in Figure 2.5.

2.6.1 The basic principles of multigrid

MG methods are based upon two key ideas, namely the principles of smoothing and

coarsening.

Smoothing Principle. In general, relaxation schemes like the ones discussed in �2.5,

can be very slow to converge when applied to discrete elliptic PDEs. However, these

same schemes are e�ective at removing high frequency Fourier components (Fourier

modes with large k values in De�nition 2.6.1 and seen in Figure 2.5(b)), and so these

techniques are very e�ective for use in the smoother steps of the MG method. This

then leads into the second key MG principle.

Coarsening Principle. According to the Nyquist-Shannon theorem [122] only low

frequency components of the �ne grid error can be well approximated on a coarser grid.
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(a) Low frequency oscillations corresponding

to k = 1.
(b) High frequency oscillations corresponding

to k = 4.

Figure 2.5: Visual representation of low frequency and high frequency oscillations.

Let us consider the following linear system

Au = f . (2.47)

Moreover let ũ be an approximation of the solution u, then we can de�ne the solution

error by the following

e = u− ũ. (2.48)

By applying the system matrix A to both sides of the error equation (2.48), we can

obtain the so-called residual (or defect) equation which is given by the following

Ae = A
(
u− ũ

)
= F −Aũ ≡ r (2.49)

where r denotes the residual. From (2.49) we see it is possible to obtain u using

u = ũ+ e.

However, this assumes we can solve (2.49) exactly which may be just as expensive as

solving the system (2.47). Instead we look to approximate A on a coarser grid where

it is much cheaper to �nd the error e.

To outline the MG method, let us consider the following discrete linear system

Lhuh = fh
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which results from some elliptic PDE on the discrete domain Ωh with grid spacing

h = (h1, h2) .

Also let ũh denote the smooth approximation obtained from the pre-smoothing step of

the �ne grid problem. Then we de�ne the residual equation by the following

Lheh = fh −Lhũh ≡ rh (2.50)

where we de�ne the error

eh = uh − ũh

and where rh denotes the �ne grid residual. Since only low frequency error components

are left after the pre-smoothing step, we can transfer the �ne grid residual equation

(2.50) to a coarser grid which we denote by ΩH with spacing

H = (H1, H2) .

Doing so gives us the following coarse grid residual equation

Lheh = rh −→ LHeH = RHh rh ≡ rH (2.51)

where we assume the operatorLH is an appropriate coarse grid approximation of the �ne

grid operator Lh, and RHh denotes the restriction operator used to transfer quantities

between the �ne grid Ωh and the coarse grid ΩH (see �2.6.3). The coarse grid residual

equation (2.51) is then solved exactly, using some chosen method, thus allowing us to

determine the coarse grid correction eH . Once eH has been computed, we then use an

interpolation step to obtain the �ne grid correction eh. In other words we compute

eh = IhHeH

where IhH denotes the interpolation operator used to transfer quantities from the coarse

grid ΩH to the �ne grid Ωh (see �2.6.3). With the �ne grid correction eh, we can update

the �ne grid approximation ũh via

ũhnew = ũh + eh.

Finally, we perform a post-smoothing step to remove any high frequency error compo-

nents which may have been introduced by the interpolation. Thus the two-grid V-cycle

MG scheme can be summarised by Algorithm 2.
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Algorithm 2 u
(k+1)
h ← V cycle(u

(k)
h ,Lh,F h, ν1, ν2)

1: Pre-smoothing step by performing ν1 relaxation sweeps

ũ
(k)
h ← Smooth(u

(k)
h ,Lh,F h, ν1)

2: Coarse grid correction

Compute the residual r
(k)
h = F h −Lh(ũ

(k)
h )

Restrict residual and smooth approximations r
(k)
H = RHh r

(k)
h , ũ

(k)
H = RHh ũ

(k)
h

Set coarse grid interval H

Form coarse grid residual equation LH ũ
(k)
H = r

(k)
H

Solve residual equation using a direct or fast iterative solver to obtain accurate solution u
(k)
H

Compute the correction e
(k)
H = u

(k)
H − ũ

(k)
H

Interpolate the correction to the �ne grid level e
(k)
h = IhHe

(k)
H

Update �ne grid level approximations using correction û
(k)
h = ũ

(k)
h + e

(k)
h

3: Post-smoothing step by performing ν2 relaxation sweeps

u
(k+1)
h ← Smooth(û

(k)
h ,Lh,FH , ν2)

2.6.2 Coarsening

A key part of the MG method is the restriction of the problem onto a coarser grid. In

this section we brie�y outline what we mean by a coarse grid, in addition to how we

transfer our problem to the coarse grid. First let us begin by assuming that we have a

discrete Cartesian grid which we denote by Ωh with grid spacing

h = (h1, h2)

called the �ne grid, then we construct the coarse grid denoted by Ω2h with spacing

H = (H1, H2) .

Now there are several ways of determining how the coarse grid, and the associated

spacing H, are constructed depending on the coarsening strategy used which we now

give examples of.

Standard Coarsening. Standard coarsening is the simplest, and most widely used,

strategy for constructing the coarse grid Ω2h. For this method we simply double the

grid spacing in each dimension, on other words we get

H = (2h1, 2h2) .

For vertex-centred grids we obtain a coarse grid Ω2h of dimension(n1

2
+ 1,

n2

2
+ 1
)
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assuming the �ne grid is of dimension

(n1 + 1, n2 + 1) .

Semi-Coarsening. An alternative to the standard coarsening strategy is to double

the grid spacing along only a single dimension, this is known as semi-coarsening. For

example, we could have

H = (2h1, h2) or H = (h1, 2h2) .

Such coarsening strategies are typically used in anisotropic problems where smoothers

only smooth errors along a single direction.

2.6.3 Transfer operators

From the previous sections we highlighted along with the smoothing step, the process

of transferring values from the �ne grid Ωh to the coarse grid Ω2h and vice versa, is

another important part of the MG method. To transfer operators from

Ωh → Ω2h

we require a restriction operator (which we denote by R2h
h ), and to transfer from

Ω2h → Ωh

we require an interpolation (or prolongation) operator (which we denote by Ih2h). For

the following we only consider transfer operators for standard coarsening and vertex-

centred grids, however similar operators can be constructed for the semi-coarsening and

cell-centred grid cases.

Restriction operators for vertex-centred grids

In practice there are three possible choices for the restriction operator, these are:

(i) Bijection;

(ii) Half-weighted restriction;

(iii) Full-weighted restriction.

We now brie�y describe each of these three choices.

Bijection. Bijection is the simplest, and most intuitive, choice of restriction operator.

This type of restriction simply takes every other vertex in each direction, or in other

words we have (
u2h
)
i,j

=
(
uh
)

2i,2j
.
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Half-weighted restriction. The half-weighted restriction operator works by taking a

weighted average of �ve points, and is de�ne by the following

(
u2h
)
i,j

=
1

8

[(
uh
)

2i,2j−1
+
(
uh
)

2i−1,2j
+ 4
(
uh
)

2i,2j
+
(
uh
)

2i+1,2j
+
(
uh
)

2i,2j+1

]
.

Or equivalently, in operator form, we have

u2h = R2h
h u

h (2.52)

where we have written the half-weighted restriction operator R2h
h using the following

stencil notation

R2h
h =

1

8

0 1 0

1 4 1

0 1 0


2h

h

.

Full-weighted restriction. Similar to the half-weighted restriction operator, the full-

weighted restriction operator also works by taking a weighted average, however nine

points are used instead of �ve. We de�ne the full-weighted restriction operator by the

following

(
u2h
)
i,j

=
1

16

[(
uh
)

2i−1,2j−1
+
(
uh
)

2i+1,2j−1
+
(
uh
)

2i−1,2j+1
+
(
uh
)

2i+1,2j+1

+ 2
[(
uh
)

2i,2j−1
+
(
uh
)

2i−1,2j
+
(
uh
)

2i+1,2j
+
(
uh
)

2i,2j+1

]
+ 4
(
uh
)

2i,2j

]
.

Again, we can write the full-weighted restriction operator in the operator form (2.52)

using the following stencil

R2h
h =

1

16

1 2 1

2 4 2

1 2 1


2h

h

.

Interpolation operator for vertex-centred grids

The most common choice for the interpolation operator is bilinear interpolation, which

we de�ne by the following(
uh
)

2i,2j
=
(
u2h
)
i,j

;(
uh
)

2i+1,2j
=

1

2

[(
u2h
)
i,j

+
(
u2h
)
i+1,j

]
;(

uh
)

2i,2j+1
=

1

2

[(
u2h
)
i,j

+
(
u2h
)
i,j+1

]
;(

uh
)

2i+1,2j+1
=

1

4

[(
u2h
)
i,j

+
(
u2h
)
i+1,j

+
(
u2h
)
i,j+1

+
(
u2h
)
i+1,j+1

]
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and can be written in the following operator form

uh = Ih2hu2h

where the interpolation operator I2h
2h is given by the following stencil

Ih2h =
1

4

1 2 1

2 4 2

1 2 1


h

2h

.

Remark 2.6.2. We say an interpolation operator has order k if it can precisely transfer
polynomials of order k−1. In [71] it was explained the sum of the orders of the restriction
and interpolation operators must be greater than or equal to the order of the PDE trying
to be solved for a MG method to be convergent.

2.6.4 Local Fourier analysis (LFA)

As we mentioned in �2.6.1, it is very important to smooth out any high frequency error

components before we restrict to a coarser grid. For this reason being able to measure

how e�ective a given smoother scheme is at removing high frequency components is

crucial. This task can be achieved using a technique called local Fourier analysis or

LFA. In LFA we consider how discrete linear operators Lh, with constant coe�cients,

act upon grid functions which are characterised by

ϕh(x,θ) = exp

(
iθ · x
h

)
= exp

(
iθ1x1

h1
+
iθ2x2

h2

)
over an in�nite grid de�ned by

Ωh
∞ =

{
x =

(
x1i , x2j

)
=
(
ih1, jh2

)
:
(
i, j
)
∈ Z2

}
where

h =
(
h1, h2

)
=

(
1

n1 − 1
,

1

n2 − 1

)
denotes the grid spacing for a vertex-centred grid, i =

√
−1 and θ =

(
θ1, θ2

)
denotes

the frequency. Now assuming θ varies continuously in R2, then it follows

ϕh
(
x,θ

)
= ϕh

(
x, θ̄

)
, x ∈ Ωh

∞

where θ1, θ̄1 and θ2, θ̄2 di�er by multiples of 2π. Owing to the fact the grid functions

ϕh
(
x,θ

)
are periodic, then we need only consider the range

θ = [−π, π)2 ≡ Θ

45



(see [131]). We now de�ne low frequency components by the grid functions ϕh
(
x,θ

)
with frequency

θ ∈ Θlow =
[
−π

2
,
π

2

)2

and high frequency components by the grid functions ϕh
(
x,θ

)
with frequency

θ ∈ Θhigh = Θ \Θlow.

Theorem 2.6.3. For θ ∈ Θ, all grid functions ϕh
(
x,θ

)
are eigenfunctions of any

discrete linear operator Lh with constant coe�cients and the following relation holds

Lhϕh
(
x,θ

)
= L̂h

(
θ
)
ϕh
(
x,θ

)
where L̂h

(
θ
)
denotes the Fourier symbol of the linear operator Lh, and is de�ned by

L̂h
(
θ
)

=
∑
p∈Z2

Lpe
iθ·p.

Proof. A proof of Theorem 2.6.3 can be seen in [131].

We can now use Theorem 2.6.3 to perform an analysis on the smoothing properties of

a given smoother scheme used to solve a discrete PDE which we denote by

Lhuh = F h. (2.53)

First we use the assumption we can write a single step of the smoother scheme locally

in the following way

Lh+uhnew +Lh−uhold = F h (2.54)

where we have denoted the current and previous approximations of uh by uhnew and

uhold respectively, and also where we have split the discrete linear operator Lh in the

following way

Lh = Lh+ +Lh−. (2.55)

Then subtracting (2.54) from the original discrete PDE (2.53), we can obtain the fol-

lowing local error equations

Lh+ehnew +Lh−ehold = 0
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which we can rearrange to get the following

ehnew = −
[
Lh+
]−1
Lh−ehold ≡ Shehold.

Using (2.55), along with Theorem 2.6.3, we notice the grid functions ϕh
(
x,θ

)
are

eigenfunctions of Sh, therefore we have

Shϕh
(
x,θ

)
= Ŝh

(
θ
)
ϕh
(
x,θ

)
= −

[
L̂h+
(
θ
)]−1
L̂h−
(
θ
)
ϕh
(
x,θ

)
under the assumption

L̂h+
(
θ
)
6= 0.

Then we de�ne the so-called local smoothing rate of a given smoother scheme by the

following

µloc ≡ µloc
(
θ
)

= sup
{∣∣∣Ŝh(θ)∣∣∣ : θ ∈ Θhigh

}
.

For a smoother scheme to remove any high frequency error components we require µloc <

1, and the smaller the value of µloc is the better the smoother scheme is at removing

these components and the fewer iterations which will be required in the smoothing step.

Remark 2.6.4. While this analysis has only been shown for linear operators, the work
done by A. Brandt in [9] allowed this analysis to be extended to work with non-linear
operators by locally `freezing' the coe�cients, and thus allowing the non-linear operator
to be approximated locally by a linear operator.

2.6.5 Multigrid cycles

So far we have only explained how the MG method works in the two-grid setting, and

while the coarse grid Ω2h possesses four times fewer grid points compared with the

�ne grid Ωh, a direct solution to the residual equation is probably still too expensive

computationally to perform. Instead we can perform another smoother step on the

coarse grid correction, and then solve the residual equation on the even coarser grid

Ω4h which has four times fewer grid points than the coarse grid Ω2h and sixteen times

fewer than the original �ne grid Ωh. We can keep repeating this process to recursively

interact with even more coarse grids, until a coarse enough grid is reached where a

direct solution to the residual equation can be computed e�ciently. Such a technique

is referred to as a µ-cycle MG step if µ coarse grid corrections have been used to solve

the residual equation approximately. In practice, only µ = 1 and µ = 2 are used which

result in the so-called V-cycle and W-cycle MG methods respectively. The algorithm

for the µ-cycle MG method is shown in Algorithm 3, and diagrams of the V-cycle and

W-cycle MG methods can be seen in Figure 2.6 for the case of four grid levels.
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Algorithm 3 u
(k+1)
level ← µcycle(level, µ,u

(k)
level,Llevel,Flevel, ν1, ν2)

1: Pre-smoothing step by performing ν1 steps

ũ
(k)
l ← Smooth(u

(k)
level,Llevel,Flevel, ν1)

2: Coarse grid correction

Compute the residual r
(k)
level = Flevel −Llevel(ũ

(k)
l )

Restrict residual and smooth approximations r(k)
level−1 = Rlevel−1

level r
(k)
level, ũ

(k)
level−1 = Rlevel−1

level ũ
(k)
level

Set level→ level − 1
Form coarse grid residual equation Llevel−1ũ

(k)
level−1 = r

(k)
level−1

Solve residual equation on coarse grid to obtain approximations ū
(k)
level−1

3: if level = 1 then
Solve to obtain solutions u

(k)
level−1 to high accuracy using a direct or fast iterative solver.

4: else level > 1 Repeat the µ-cycle procedure recursively to the next level using zero grid functions
as initial approximation i.e.

ũ
(k)
level ← µcycle(level − 1, µ, 0,Llevel−1,Flevel−1, ν1, ν2)

5: end if
Compute the correction e

(k)
level−1 = u

(k)
level−1 − ũ

(k)
level−1

Interpolate the correction to next �ne grid level e
(k)
level = Ilevellevel−1e

(k)
H

Update current grid level approximations using correction û
(k)
level = ũ

(k)
level + e

(k)
level

6: Post-smoothing step by performing ν2 steps

u
(k+1)
level ← Smooth(û

(k)
level,Llevel,Flevel, ν2)

2.6.6 Full multigrid methods

In the full multigrid method, we begin by solving the problem on the coarsest level

in order to gain a very good initial guess for the next �ne level which we obtain by

interpolation. This process is then repeated until we reach the original �ne grid level,

and a visual representation of this procedure can be seen in Figure 2.6. The algorithm

for the full multigrid method is shown in Algorithm 4.

2.6.7 Full approximation scheme non-linear multigrid (FAS-NMG)

The full approximation scheme non-linear multigrid (or FAS-NMG) is a very powerful

multigrid technique for solving discrete non-linear PDEs. Let us consider the non-linear

PDE

N huh = F h

discretised on the �ne grid Ωh, and where N h denotes a non-linear operator acting on

uh. Furthermore let us denote the smooth approximation of uh, obtained by performing

a few iterations of a smoother scheme (such as the ones described in �2.5) by ũh. Then

we can de�ne the non-linear �ne grid residual equation by the following

N huh −N hũh ≡N h
(
ũh + eh

)
−N hũh = F h −N hũh ≡ rh (2.56)
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(a) V-cycle multigrid (µ = 1). (b) W-cycle multigrid (µ = 2).

Figure 2.6: Visual representation the V-cycle and W-cycle multigrid methods. Light
blue nodes represent smoother steps while dark blue nodes represent an exact solution

step, also \ and / correspond to �ne-to-coarse restriction and coarse-to-�ne
interpolation respectively.

where

eh = uh − ũh

denotes the solution error and

rh = F h −N hũh

the non-linear residual. As was the case for the linear MG method, in order to be able

to compute the correction eh, we �rst need to compute the coarse grid correction e2h

and interpolate back. Therefore we need to transfer the non-linear residual equation

(2.56) to the coarse grid Ω2h. Doing so leads to the following

N h
(
ũh + eh

)︸ ︷︷ ︸
Nhuh

= rh +N hũh︸ ︷︷ ︸
F h

−→N 2h
(
ũ2h + e2h

)︸ ︷︷ ︸
N 2hu2h

= r2h +N 2hũ2h︸ ︷︷ ︸
F 2h

. (2.57)

Again the next step is similar to the linear case whereby we solve (2.57) using some

chosen method to determine u2h, and obtain the coarse grid correction

e2h = u2h − ũ2h.

Then we interpolate the correction e2h back to Ωh to get eh which we can use to update

the �ne grid approximation via

ũhnew = ũh + eh.

Finally we require another smoother step to remove any interpolation errors. Naturally

we can extend this two-grid case to interact recursively with even coarser grids (like in

�2.6.5) to obtain the µ-cycle FAS-NMG method which can be summarised by Algorithm

5.
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Figure 2.7: Illustration of the full µ-cycle multigrid method with µ = 1. Again light
blue nodes represent smoother steps, dark blue nodes represent an exact solutions step
and \, / represent restriction, smoother steps respectively. In addition // correspond

to FMG interpolation steps.

Algorithm 4 u
(k+1)
level ← FullMG(maxlevel,Llevel,Flevel, ν1, ν2)

1: Coarse grid initialisation
Set level = 0
Solve Llevelulevel = Flevel to obtain initial guess ûlevel

2: for level = 1, . . . ,maxlevel do

Interpolate coarse grid solution u
(0)
level−1 = Ilevellevel−1ûlevel

Employ µ-cycle multigrid algorithm (Algorithm 3) using u
(0)
level−1 as an initialisation

ulevel = µcycle(level + 1, µ,u
(0)
level,Llevel,Flevel, ν1, ν2)

3: end for

Algorithm 5 u
(k+1)
level ← FAScycle(level, µ,u

(k)
level,N level,Flevel, ν1, ν2)

1: Pre-smoothing step by performing ν1 steps

ũ
(k)
level ← Smooth(u

(k)
level,N level,Flevel, ν1)

2: Coarse grid correction

Compute the residual r
(k)
level = Flevel −N level(ũ

(k)
level)

Restrict residual and smooth approximations r(k)
level−1 = Rlevel−1

level r
(k)
level, ũ

(k)
level−1 = Rlevel−1

level ũ
(k)
level

Set level→ level − 1
Compute RHS of coarse grid PDE flevel−1 = r

(k)
level−1 + N level−1ũ

(k)
level−1

Compute an approximation ū
(k)
level−1 to the coarse grid PDE N level−1ũ

(k)
level−1 = r

(k)
level−1

Solve residual equation on coarse grid to obtain approximations ū
(k)
level−1

3: if level = 1 then
Use a direct or fast iterative solver to obtain the high accuracy solutions u

(k)
level−1

4: else level > 1 Repeat the FAS-cycle procedure recursively to the next level using ũ
(k)
level−1 as an

initial approximation i.e.

ū
(k)
level ← FAScycle(level − 1, µ, ũ

(k)
level−1,N level−1,Flevel−1, ν1, ν2)

5: end if
Compute the correction e

(k)
level−1 = u

(k)
level−1 − ũ

(k)
level−1

Interpolate the correction to next �ne grid level e
(k)
level = Ilevellevel−1e

(k)
level−1

Update current grid level approximations using correction û
(k)
level = ũ

(k)
level + e

(k)
level

6: Post-smoothing step by performing ν2 steps

u
(k+1)
level ← Smooth(û

(k)
level,N level,Flevel, ν2)
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Chapter 3

Mathematical models for image

registration

In this chapter we describe the general framework for image registration, in addition to

showing a few widely used models. To begin we explain how image registration works

generally in addition to describing how we measure the similarity between images. Next

we outline the two di�erent types of image registration, namely parametric and non-

parametric registration, before giving some examples of each. Finally we describe the

two di�erent approaches to solving the associated minimisation problems which arise

from image registration.

3.1 Introduction

Image registration is one of the most powerful tools in image processing and plays a key

role in many real world applications spanning areas such as remote sensing [24,41,56,81,

120,148] and astronomy [59,69,97,121,123]. However, one area where image registration

is exceptionally important is medical imaging [2, 8, 20, 21, 29, 30, 36, 44, 50, 55, 60�65, 75,

76, 94, 103, 104, 107, 111, 119, 124, 125, 132, 145, 146, 151, 152, 156]. The process of image

registration works by trying to �nd correspondences between the features in pairs, or

sequences, of images. The aim of a registration model is to �nd the transformation

which deforms one image to the other, with the goal of all images becoming similar

to a single reference image. Once this transformation has been found, it can be used

for other medical tasks such as anatomic image segmentation [23, 53, 70, 105], 4D dose

accumulation [1,42,58,93,114,115,134,137,154] and lung ventilation imaging [83,135].
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3.1.1 The image registration model

The goal of image registration is to �nd the geometric transformation

ϕ ≡ ϕ(x) : Rd → Rd

between the `�xed' image R (called the reference image), and the `moving' image T

(called the template image). The aim is then for the deformed template image T
(
ϕ(x)

)
to become similar to the reference image R(x), in other words we seek

T
(
ϕ(x)

)
≈ R(x) for x ∈ Rd.

This task is achieved by minimising some energy functional E
(
ϕ
)
, with respect to

the transformation ϕ, consisting of a distance (or similarity) measure D
(
R, T,ϕ

)
and

regularisation term R
(
ϕ
)
. In other words, we are looking to solve the minimisation

problem of the form

min
ϕ

{
E
(
ϕ
)

= D
(
R, T,ϕ

)
+ αR

(
ϕ
)}

(3.1)

where α ∈ R+ is a weighting parameter between the two terms. Here we remark

the inclusion of the regularisation term R
(
ϕ
)
is necessary to ensure the minimisation

problem (3.1) is well-posed in the sense of Hadamard (see �2.3).

3.1.2 Variational formulation of the registration problem

An alternative way of thinking about the registration problem (3.1), is to suppose we

are trying to �nd the transformation of the form

ϕ ≡ ϕ
(
u(x)

)
= x+ u(x) for x ∈ Rd

where

u ≡ u(x) =
[
u1(x), . . . , ud(x)

]T ∈ Rd

denotes the displacement �eld, and where the deformed template image is now written

in the following way

T
(
ϕ
(
u(x)

))
= T

(
x+ u

)
≡ Tu. (3.2)

Thus the minimisation problem (3.1) becomes equivalent to

min
u

{
E
(
u
)

= D
(
R, T,u

)
+ αR

(
u
)}

(3.3)

and we see the problem of �nding the transformation ϕ becomes a task of �nding the

displacement �eld u. Note once we have found the displacement �eld u, we must use
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an interpolation step to compute the deformed template image Tu and obtain intensity

values at non-grid locations. The displacement �eld u is searched over the set of ad-

missible functions U which minimise the functional E
(
u
)
. Typically we assume the set

U is given by a Hilbert space H equipped with the following inner product

〈u,v〉H =

∫
Ω
u(x)v(x) dΩ =

∫
Ω
〈u(x),v(x)〉Rd dΩ

where 〈·, ·〉Rd denotes the Euclidean inner product. From �2.2.1, we know a necessary

condition for a minimiser u of the functional E
(
u
)
is the Gâteaux derivative δE(u;φ)

must be zero for all variation directions φ ∈ H. In other words we require

δE(u;φ) = lim
ε→0

{
E(u+ εφ)− E(u)

ε

}
= 0 (3.4)

which is equivalent to

∇uE(u) = 0

where ∇uE(u) de�nes the gradient of the functional E(u). These equations are known

as the Euler-Lagrange (EL) equations. Generally, we assume the energy functional E(u)

is of the following form

E(u) =

∫
Ω
g
(
x,u(x),∇u(x)

)
dΩ (3.5)

where we also assume the function g possesses continuous partial derivatives with respect

to each argument. Computing the limit (3.4), with functional of the form (3.5), along

with using Green's �rst identity from �2.2.4 can be shown to lead to the following EL

equations

−∇ · ∇∇ug +∇ug = 0 (3.6)

where

∇ug ≡
(
∂g

∂u1
, . . . ,

∂g

∂ud

)T
, ∇ · ∇∇ug ≡


∂ 2g
∂u1,1

. . . ∂ 2g
∂u1,d

...
...

∂ 2g
∂ud,1

. . . ∂ 2g
∂ud,d


also where

ui,j ≡
∂ui
∂xj

.

In addition to the PDE (3.6), we also get the Neumann boundary conditions〈(
∇ug

)
,n
〉
Rd =

(
∇ug

)
· n = 0 (3.7)
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where n denotes the outward unit normal on the boundary ∂Ω. Then the PDEs (3.6),

along with their corresponding boundary conditions (3.7), are known as the variational

formulation of the registration problem.

3.2 Similarity measures

In �3.1.1, we explained one of the two terms which make up the energy functional E

is the so-called similarity measure D (as can be seen in (3.3)). Now the choice of this

similarity measure is dependent mainly on whether we are considering the case of mono-

modal or multi-modal images, in addition to whether we wish to match intensity values

or landmarks within the images. In the mono-modal case the images are obtained

using the same imaging modality (e.g. CT), while in the multi-modal case di�erent

imaging modalities are used to obtain the images (e.g. CT + MRI). This means in

the mono-modal case image intensities are comparable, while for the multi-modal case

intensities di�er between the images even for the same features. As a result, we need

di�erent similarity measures for each of these two cases. Moreover, if we are using

intensity values to match the images we look to match the values of every pixel in one

image to their corresponding location in the other image. If we are matching landmarks

however, we look to match a �nite number of distinct features which appear in both

images. Again we need di�erent similarity measures for these two cases.

3.2.1 Sum of squared distances (SSD)

For the case of mono-modal images, where image intensity values are comparable, the

similarity measure is given by the sum of squared distances (or SSD) [47�52, 67, 68, 72,

73,78,86,90,100,126,156]. The SSD measure is de�ned by the following

DSSD
(
R, T,u

)
=

1

2

∫
Ω

∣∣Tu −R∣∣2 dΩ (3.8)

where Tu is de�ned in (3.2) and | · | denotes the Euclidean norm. It can be shown the

Gâteaux derivative of (3.8) is given by

∇uDSSD
(
R, T,u

)
= ∇uTu

(
Tu −R

)
.

3.2.2 Mutual information (MI)

Now in the multi-modal image case, intensity values between the images are not com-

parable, and so the SSD (3.8) cannot be used as a similarity measure. Instead we can

use an alternate similarity measure known as mutual information (or MI). First let us
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denote

I1 ≡ R(x), I2 ≡ T (x+ u).

In addition let us also suppose the intensity values I1, I2 are continuous random vari-

ables with probability density functions (PDFs) denoted by

PR(I1), P Tu(I2)

respectively. Further let us also denote the joint PDF by

PR,Tu(I1, I2).

Then the MI measure is de�ned to be the Kullback-Leibler distance [87,88] between the

joint PDF PR,Tu(I1, I2) and the product between the PDFs PR(I1), P Tu(I2), i.e.

PR(I1) · P Tu(I2).

Then, the MI measure is given by the following

DMI
(
R, T,u

)
=

∫
R2

PR,Tu(I1, I2) log

(
PR,Tu(I1, I2)

PR(I1) · P Tu(I2)

)
dI1dI2. (3.9)

Here we remark if

PR,Tu(I1, I2) = PR(I1) · P Tu(I2) =⇒ DMI
(
R, T,u

)
= 0

and we infer nothing about the random variable I2 from the random variable I1. There-

fore, we must either seek the maximum of (3.9), or equivalently the minimum of

min
u

{
DMI

(
R, T,u

)}
.

3.2.3 Normalised cross correlation (NCC)

Suppose now, in the mono-modal image case, we are interested in matching landmarks

between the images rather than intensity values. Then instead of using the SSD mea-

sure (3.8) as the distance measure, we instead use a measure called normalised cross

correlation (or NCC). In NCC we begin by assuming the intensity values of the images

R and T possess a linear relationship, this means they satisfy the following

λR = µTu

where λ, µ ∈ R are scalars. Then the so-called NCC is de�ned in the following way

DNCC
(
R, T,u

)
=
〈Tu, R〉
|Tu| |R|
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where

〈Tu, R〉 ≡
∫

Ω
TuRdΩ

and

|Tu| ≡
√
〈Tu, Tu〉, |R| ≡

√
〈R,R〉

3.3 Parametric image registration

Along with mono-modal and multi-modal image registration which depend on the type

of images we are trying to register, there are another two classes of registration which

depend on how regularisation is imposed. The �rst class is parametric image registration

where the transformation ϕ(x) is governed by a small number of parameters, and the

second class is non-parametric image registration where a regularisation term R
(
ϕ(x)

)
is added to the energy functional as shown in �3.1.1. In this section we brie�y discuss the

former class of registration, namely parametric registration, and review the rigid body

and a�ne models. While parametric models cannot deal with non-uniform deformations

well, they are useful in images involving bones since they tend to deform rigidly [85,95,

106,130].

3.3.1 Rigid body transformations

Rigid body transformations are the simplest type of transformation which we can con-

sider since they only allow for rotations and translations. This means we can express

the transformation ϕ(x) in the following way

ϕ(x) =

[
ϕ1(x)

ϕ2(x)

]
=

[
cos θ sin θ

− sin θ cos θ

][
x1

x2

]
+

[
b1

b2

]
≡ Ax+ b

where θ denotes the angle of rotation and b the translation vector.

3.3.2 A�ne transformations

A�ne transformations can be thought of as an extension to rigid body transformations.

In addition to rotations and translations, a�ne transformations also include scaling and

shearing. Then the transformation ϕ(x) can be expressed in the following way

ϕ(x) =

[
ϕ1(x)

ϕ2(x)

]
=

[
a11 a12

a21 a22

][
x1

x2

]
+

[
b1

b2

]
≡ Ax+ b
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(a) Image I (b) Translation (c) Scaling

(d) Horizontal shearing (e) Vertical shearing (f) Rotation

Figure 3.1: Illustrations of a translation, scaling, horizontal shear, vertical shear and
rotation of the image I.

where the matrix A can be written in the following form

A =

[
a11 a12

a21 a22

]
=

[
cos θ sin θ

− sin θ cos θ

][
S1 0

0 S2

][
1 S3

S4 1

]

and where θ again denotes the angle of rotation, S1, S2 are the scaling parameters

and S3, S4 are the shearing parameters. Again b denotes the translation vector. For

examples of di�erent types of a�ne transformations, see Figure 3.1.

3.4 Non-parametric image registration

Now we discuss the second class of image registration models, namely the non-parametric

registration models. While parametric models are useful when the images to be reg-

istered deform rigidly, non-parametric models excel when the deformation are non-

uniform such as in the case of lung images [8,22,38,39,62,64,91,102,107,119,132,145,

152]. As we have already mentioned, the non-parametric registration model takes on

the form shown in (3.3), with similarity measure D
(
R, T,u

)
and regularisation term

R(u). While there is a limited choice for the similarity measure (largely depending
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on the images and features to be registered), for the regularisation term however the

choice is not so straightforward. In the literature there is a vast amount of work on

di�erent regularisers to use such as elastic regularisers [4,11,54,100], di�usion regularis-

ers [27,30,33,46] and optical �ow [12�17,36,43,75,79,86,99,105,108,133,147,155]. Since

throughout this thesis we only consider mono-modal image registration, we always take

the similarity measure to be the SSD measure shown in (3.8). For the remainder of

this section we brie�y describe some of the most common regularisers and registration

models.

3.4.1 Linear elastic image registration

The linear elastic regulariser, based upon the linearised elastic potential of the dis-

placement �eld u, is the most common choice of regulariser [4,11,54,100] owing to the

physical properties of the model. The linear elastic regulariser is given by the following

RLE(u) =

∫
Ω

µ

4

2∑
s,t=1

(
∂xsut + ∂xtus

)2
+
λ

2

(
∇ · u

)2
dΩ (3.10)

where µ, λ are the so-called Lamé constants with µ denoting the shear modulus and λ

the bulk modulus. It can be shown the EL equations for the linear elastic model are

given by the following

−α
[
µ∆u+

(
µ+ λ

)
∇
(
∇ · u

)]
+ F (u) = 0

with the boundary conditions(
∇um + ∂xmu

)
· n = 0 for m = 1, 2.

Since this model is linear, only small deformations can be found, and furthermore a�ne

linear transformations are penalised. For more details on the linear elastic model see

[4, 11, 100], and for a non-linear elastic model which allows for large deformations see

[94,149,150].

Remark 3.4.1. Here we remark the exact form of the force term F (u) is unknown as
it is dependent upon the choose of similarity measure used, and is independent of the
regularisation term chosen.

3.4.2 Hyper-elastic image registration

The hyper-elastic regulariser, proposed by Burger et al. in [18], is a very powerful

regulariser which enforces the deformation u to be di�eomorphic (i.e. a one-to-one
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mapping). This regulariser is given by the following

RHE(u) =

∫
Ω
α1length(u) + α2surface(u) + α3volume(u) dΩ

where α1, α2, α3 ∈ R+ are weighting parameters and

length(u) = |∇u− I|2F ;

surface(u) =

(
max

{
|∇u|2F − 3, 0

}2
− 3

)2

;

volume(u) =

((
det
(
∇ϕ
)
− 1
)2

det
(
∇ϕ
) )2

also where

ϕ = x+ u

and | · |F denotes the Frobenius norm for matrices and det denotes the determinant of

a matrix.

3.4.3 Di�usion image registration

The di�usion regulariser, �rst introduced by Fischer-Modersitzki in [47], is the simplest

choice of regulariser, in addition to being very widely used [13, 15, 16, 27, 30, 33, 43, 46,

47, 105]. The di�usion regulariser is based upon the L2-norm of the gradient of the

deformation u, and is given by the following

RDiff (u) =
1

2

∫
Ω

2∑
s=1

|∇us|2 dΩ (3.11)

and yields the following EL equations

−α∆u+ F (u) = 0

with Neumann boundary conditions

∇um · n = 0

for m = 1, 2. We remark the di�usion regulariser (3.11) can be thought of as a special

case of the linear elastic regulariser (3.10) with µ = 1, λ = −1. Moreover, the di�usion

regulariser (3.11) also coincides with the Horn-Schunck optical �ow [79] formulation,

which we describe in �3.4.6. This feature is very useful when we require sequences of

images to be registered (rather than simply a pair of images), which is very common

in problems involving lung CT images since each image set is comprised of individual

images at various phases of the breathing cycle.
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3.4.4 Fischer-Modersitzki linear curvature

While all regularisers introduced in this section thus far are all �rst order regularisers

(i.e. only dependent on the �rst order directional derivatives of the displacement �eld),

the linear curvature regulariser [48, 49, 100] �rst proposed by Fischer-Modersitzki in

[48] is second order (i.e. it depends on the second order directional derivatives). The

bene�t which second order regularisers have over �rst order regularisers is no pre-a�ne

registration step is required (as �rst order regularisers penalise rigid deformations),

however the trade o� is second order regularisers lead to higher order PDEs which can

be di�cult to solve. The Fischer-Modersitzki linear curvature regulariser, which is an

approximation of the mean curvature of a surface, is given by the following

RLC(u) =
1

2

∫
Ω

2∑
s=1

(
∆us

)2
dΩ. (3.12)

Remark 3.4.2. The mean curvature of a surface is de�ned by

κ
(
um
)

= ∇ · ∇um√
|∇um|2 + 1

(3.13)

for m = 1, 2. Supposing we have

|∇um| ≈ 0

then the mean curvature (3.13) reduces to

κ
(
um
)

= ∆um

which we see is none other than the equation corresponding to the linear curvature.

The linear curvature regulariser (3.12) leads to the following EL equations

α∆2u+ F (u) = 0 (3.14)

with boundary conditions

∆um = 0, ∇um · n = 0

for m = 1, 2 and where ∆2 denotes the biharmonic operator [112]. Note the EL equa-

tions (3.14) are fourth order PDEs compared to the second order PDEs associated with

the �rst order regularisers. There are also variations of the linear curvature regulariser

(3.12), such as the Henn-Witsch curvature (see [72,74]) and mean curvature (see [34,35]),

however we do not discuss the details here.
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3.4.5 Total variation image registration

Another common choice of regulariser is the so-called total variation (or TV) regulariser

[51, 52, 108, 116]. The TV regulariser is similar to the di�usion regulariser (3.11), with

the exception of the L2-norm being replaced with the L1-norm. In other words we have

RTV (u) =
1

2

∫
Ω

2∑
s=1

|∇us|β dΩ =

∫
Ω

2∑
s=1

√
u2
sx1

+ u2
sx2

+ β dΩ (3.15)

which results in the following EL equations

−α∇ · ∇u
|∇u|β

+ F (u) = 0

with Neumann boundary conditions

∇um · n = 0

for m = 1, 2, and where β ∈ R+ is a small positive quantity to avoid division by zero.

While the previously mentioned regularisers RLE , RHyper, RDiff , RLC yield smooth

deformations ( [33,47�50,72,74,86,100]), they perform poorly however if discontinuities

or steep gradients of u are present (for example if there are occlusions). In these

instances, the TV regulariser (3.15) helps to preserve piecewise constant smoothness

rather than global smoothness of u, and therefore outperforms the regularisers which

yield smooth deformations.

3.4.6 Optical �ow

Optical �ow (or optic �ow) is the apparent motion of objects within a visual scene. In

image registration, optical �ow refers to determining the displacement �elds

u1(x), . . . ,un−1(x)

of a sequence of images

I1, . . . , In

for n ∈ N. Let t denote a particular frame in the image sequence, and also let t + ∆t

denote the next frame in the sequence. Then, in 2D, we use the so-called brightness

constancy assumption given by the following

I
(
x1, x2, t

)
= I
(
x1 + u1, x2 + u2, t+ ∆t

)
(3.16)

where um denotes the displacement in the xm direction for m = 1, 2 respectively. In

addition we also assume the displacement �eld u is small, this then allows the use of a
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�rst order Taylor expansion of (3.16) to give

∂I

∂x1
u1 +

∂I

∂x2
u2 +

∂I

∂t
∆t = 0 (3.17)

where I ≡ I
(
x1, x2, t

)
. Alternatively (3.17) can be written as

∂I

∂x1
Vx1 +

∂I

∂x2
Vx2 +

∂I

∂t
= 0 (3.18)

where Vx1 , Vx2 are the x1, x2 components of the velocity (or optical �ow) respectively.

The equation (3.18) can also be written in the following way

Ix1Vx1 + Ix2Vx2 = −It or ∇IT · V = −It. (3.19)

where

Ixm ≡
∂I

∂xm
, It ≡

∂I

∂t
, ∇IT ≡

[
Ix1 , Ix2

]T
for m = 1, 2. The equation (3.19) is known as the optical �ow equation.

Remark 3.4.3. Here we remark (3.19) has the same ill-posedness problem seen in
(2.13), and so an additional term must be added to overcome this problem.

The two most famous methods of solving the optical �ow equation (3.19) are the Horn-

Schunck and Lucas-Kanade methods, which we now brie�y describe.

Horn-Schunck method. In [79], Horn-Schunck proposed to formulate the optical

�ow equation (3.19) in the form of an energy functional (with a di�usion regulariser to

overcome the ill-posedness), and sought to minimise this functional with respect to the

velocity V . In other words they proposed the following minimisation problem

min
V

{
E
(
V
)

=

∫
Ω

(
Ix1v1 + Ix2v2 + It

)2
+ α2

2∑
s=1

|∇vs|2 dΩ

}
(3.20)

where α ∈ R+ is a weighting parameter. The EL equations of (3.20) are then given by

Ixm
(
Ix1v1 + Ix2v2 + It

)
− α2∆vm = 0, m = 1, 2

and are solved according to the following
(
I2
x1 + α2

)
v1 + Ix1Ix2v2 = α2v̄1 − Ix1It,

Ix1Ix2v1 +
(
I2
x2 + α2

)
v2 = α2v̄2 − Ix2It

where we have used the following approximation for the Laplace operator

∆vm = v̄m − vm

and where v̄m is a weighted average of vm in a neighbourhood around the pixel (x1, x2)
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for m = 1, 2. This then resulted in the following iterative update scheme
v

(l+1)
1 = v̄

(l)
1 −

Ix1
(
Ix1 v̄

(l)
1 + Ix2 v̄

(l)
2 + It

)
α2 + I2

x1 + I2
x2

,

v
(l+1)
2 = v̄

(l)
2 −

Ix2
(
Ix1 v̄

(l)
1 + Ix2 v̄

(l)
2 + It

)
α2 + I2

x1 + I2
x2

.

A big advantage of the Horn-Schunck method is it always produces dense �ow �elds,

however the Horn-Schunck method is sensitive to noise. Despite this, the Horn-Schunck

method is very popular in most modern optical �ow models [12�16, 36, 43, 99, 105, 108,

133,147,155].

Lucas-Kanade method. An alternative method to the Horn-Schunck method for

solving the optical �ow equation (3.19), is the Lucas-Kanade method [96]. The Lucas-

Kanade method uses the assumption the displacements between two image frames are

small and constant within a neighbourhood of the considered point p. Then the optical

�ow equation (3.19) is assumed to hold for all pixels within a window centred at p, or

in other words the velocity

V = [v1, v2]T

must satisfy the following
Ix1(q1)v1 + Ix2(q1)v2 = −It(q1),

...

Ix1(qn)v1 + Ix2(qn)v2 = −It(qn)

(3.21)

where

q1, . . . , qn

denote pixels within the window and

Ixm(qi), It(qi)

are the image derivatives evaluated at qi. The system (3.21) can be written in the form

AV = b (3.22)

where

A =


Ix1(q1) Ix2(q1)

...
...

Ix1(qn) Ix2(qn)

 , V =

[
v1

v2

]
, b =


−It(q1)

...

−It(qn)

 .

63



The system (3.22) is typically over-determined (i.e. more equations than unknowns),

and solved using a least squares principle

ATAV = ATb or V =
[
ATA

]−1
ATb.

The matrix
[
ATA

]−1
is referred to as the structure tensor at the point p of the im-

age. While the Lucas-Kanade method is very robust to noise, it does not ensure the

production of dense �ow �elds like the Horn-Schunck method does. Additionally it is

not as common in modern optical �ow methods when compared with the Horn-Schunck

method.

3.5 General solution schemes

To solve minimisation problems such as the one in (3.3) there are two di�erent ap-

proaches, these are the optimise-discretise and discretise-optimise approaches. For the

former approach we optimise the problem �rst by deriving the EL equations, and then

solve the discrete form of these equations on the discrete domain using some chosen

method. While for the latter approach the problem is �rst discretised onto the discrete

domain and then optimised using an optimisation scheme such as gradient descent.

3.5.1 The optimise-discretise approach

In the optimise-discretise approach the main goal is to solve the EL equations

αA[u] + F (u) = 0 (3.23)

subject to corresponding boundary conditions. In (3.23), the force term F (u) is ob-

tained from the Gâteaux derivative of the similarity measure D
(
R, T,u

)
, while A[u]

is the partial di�erential operator obtained from the Gâteaux derivative of the regular-

isation term R(u) and α ∈ R+ is the weighting parameter. There are two recognised

methods to solve (3.23), namely parabolic and elliptic methods.

Parabolic method. An example of a parabolic method is the so-called time marching

method [47�49, 72, 74, 90, 100] which works by introducing an arti�cial time variable t

and computing the steady state solution of the following

u
(
t(l+1)

)
− u

(
t(l)
)

τ
= αA

[
u
(
t(l+1)

)]
+ F

(
u
(
t(l)
))

(3.24)

where τ ∈ R+ denotes the time step and for convergence is required to satisfy

τ < O

((
1

h

)2
)
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with h denoting the interval width in the discretisation.

Remark 3.5.1. Here we have stated the convergence criteria for a second order PDE as
this is the most common case, if however the PDE is of order four then the convergence
condition would be

τ < O

((
1

h

)4
)
.

A faster and more e�cient scheme is the so-called additive operator splitting (or AOS)

method [100,139]. This is obtained by replacing (3.24) with

u(l+1) =
1

2

2∑
s=1

[I − 2ταAs]−1
[
u(l) − τF

(
u(l)
)]

where As denotes the coe�cient matrix in the xs direction respectively.

Elliptic method. An example of an elliptic method is the so-called �xed point (FP)

iteration scheme [32�34,52,73,156] of (3.23), which we can de�ne by the following

αL
[
u(l+1)

]
+ F

(
u(l)
)

= 0 (3.25)

where L denotes the linearised version of A at u(l), and F
(
u(l)
)
denotes the linearised

force term at u(l) if they are non-linear.

Remark 3.5.2. In order for the �xed point scheme (3.25) to converge to a solution, we
require the displacement u be continuous.

3.5.2 The discretise-optimise approach

Consider the discrete minimisation problem

min
uh

{
Eh(uh) = Dh

(
R, T,uh

)
+ αRh

(
uh
)}
.

Then we linearise the discrete functional Eh(uh), about the current approximation u(l)
h ,

using the following Taylor expansion

Eh
(
u

(l)
h + εu

(l)
h

)
= Eh

(
u

(l)
h

)
+ J

(
u

(l)
h

)
εu

(l)
h +

1

2

(
εu

(l)
h

)T
H
(
u

(l)
h

)
εu

(l)
h

where J , H denote the Jacobian and Hessian matrices respectively. Then we update

u
(l+1)
h according to

u
(l+1)
h = u

(l)
h + α(l)εu

(l)
h
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where α(l) is a search direction to guarantee the reduction of Eh. For Newton type

methods we compute the perturbation εu(l) by solving the following normal equation

H
(
u

(l)
h

)
εu

(l)
h = −J

(
u

(l)
h

)
.
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Chapter 4

A more robust multigrid for

di�usion type registration models

Image registration is the process of aligning pairs, or sequences, of similar images. This

alignment is achieved by �xing one image (called the reference image), and then applying

geometric transformations on the remaining images (called the template images) such

that the template images become similar to the reference image. This technique is

a very powerful tool in many real world applications spanning diverse areas such as

computer imaging, weather satellite imaging [41] and especially medical imaging [8,20,

21, 30, 61, 62] which is of interest to us. However, image registration is also one of the

most di�cult tasks of image processing with many challenges to be overcome. Generally

image registration models can be classi�ed into two main categories; parametric and

non-parametric models. In parametric models, the transformations are global and can

be described by matching a �nite number of features in the images, leading to so called

landmark based registration [82, 94], or the transformations are governed by a small

number of parameters such as in the case of a�ne image registration [6, 31] (with six

parameters in 2D and twelve parameters in 3D). However, the focus of this chapter will

be on the latter category, namely non-parametric models.

4.1 Introduction

Denote respectively a reference and a template image (both given as grey-scale images)

R, T ∈ Ω ⊂ Rd.

Then the aim of image registration is to transform this T to R such that they become

similar to one another, or in other words we look to �nd the transformation

ϕ(x) : Rd → Rd

67



which satis�es the following

T ◦ϕ(x) = T
(
ϕ(x)

)
≈ R(x) for x =

[
x1, . . . , xd

]T ∈ Ω ⊂ Rd.

In variational image registration the transformation ϕ(x) is equivalent to �nding the

displacement of every pixel x in the template image T to their corresponding pixel in

the reference image R, and so we can de�ne ϕ(x) in the following way

ϕ ≡ ϕ(x) = x+ u(x)

where

u ≡ u(x) =
[
u1(x), . . . , ud(x)

]T
denotes the displacement �eld. Then the problem of determining ϕ is equivalent to

�nding u. From this point onward we consider only the 2D case (i.e. d = 2), however

all ideas presented are readily extendible to the 3D case (i.e. d = 3). Furthermore we

assume the image domain Ω is given by the unit square, i.e.

Ω = [0, 1]2 ⊂ R2.

In order to determine u, the variational minimisation problem will take the following

form

min
u
{E(u) = D(R, T,u) + αR(u)} (4.1)

where in the energy functional D(R, T,u) is a distance measure, R(u) is the regulari-

sation term and α ∈ R+ is a weighting parameter. Note inclusion of the regularisation

term is a necessity as without it the minimisation would be ill-posed in the sense of

Hadamard. For simplicity we consider only mono-modal images, in other words images

taken using the same imaging modality (e.g. CT), resulting in the image intensities

being comparable. In the mono-modal case, the typical choice of similarity measure is

the sum of squared distances (SSD) measure given by

D(R, T,u) =
1

2

∫
Ω

∣∣Tu −R∣∣2dΩ . (4.2)

where

Tu ≡ T (x+ u), R ≡ R(x)

and | · | denotes the Euclidean norm. Here SSD is only one of many choices of similarity

measure [100]. Moreover, the choice of regularisation term is less straightforward as

there is a large selection to choose from [4,11,34,35,51,52,54,100,108,116] and no one

is yet the best. However we select only one regularisation term, namely the di�usion

regulariser, and focus on optimal solution. As for numerical implementation, the com-
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mon approach is to use an optimise-discretise approach, and indeed this is the approach

which we adopt.

Solutions of variational models can be computationally intensive, but such non-parametric

models are worth the e�ort as they can produce very accurate results and are able to

deal with local deformations e�ectively. This high computational expense is due to the

need of determining the displacement of every pixel in the image. Multigrid techniques

as known fast solvers have been used in previous works [51,52,68,72,73,78,86,126,156] to

greatly reduce the computational cost and produce more accurate results, however few

of these directly deal with the non-linearity resulting from the similarity measure (4.2).

The reason for this is, while multigrid techniques and theories have been established for

linear problems for a long time, achieving optimal convergence in a non-linear multi-

grid framework is never automatic and still poses a great challenge. However, the work

done by Chumchob and Chen [33] introduced a robust multigrid framework for di�usion

type variational models which treats the non-linearity directly. We propose to improve

the convergence problems of the NMG method from [33] through a more in-depth and

accurate analysis of the multigrid framework in addition to using an alternate coarsest

solver to obtain a more e�cient solution, thus resulting in a better method. Next we

address how to overcome mesh folding by incorporating an additional constraint into the

di�usion model presented in [33], this idea can be thought of as a simpli�cation of the

hyper-elastic model introduced in the work by Burger et al. [18]. The addition of this

constraint imposes the transformation produced is regular and di�eomorphic (i.e. there

is no folding). The production of di�eomorphic transformations lead to more physically

meaningful results, which is particularly useful in medical imaging where folding does

not occur. In this chapter, we consider one speci�c (yet widely used) model, namely

the di�usion model to focus on our main aims:

(i) Improving the convergence of the NMG method from [33];

(ii) Development of a fast NMG method for a re�ned di�usion model which controls

folding.

As we have already mentioned, there are many other choices for the regularisation term

R(u) [4,11,34,35,51,52,54,100,108,116], each o�ering a di�erent model and with their

own distinct bene�ts and drawbacks. In particular, we mention

Total variation (TV) [51, 52,108,116].

RTV (u) =

2∑
s=1

∫
Ω

∣∣∇us∣∣ dΩ

where | · | denotes the Euclidean norm;
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Linear elastic (LE) [4, 11, 54,100].

RLE(u) =

∫
Ω

µ

4

2∑
s,t=1

(
∂xsut + ∂xtus

)2
+
λ

2

(
∇ · u

)2
dΩ

where µ, λ are Lamé constants;

Mean curvature (MC) [34, 35].

RMC(u) =
1

2

∫
Ω

2∑
s=1

∇ ·

 ∇us√∣∣∇us∣∣2 + β

2

dΩ

where β is some small positive quantity.

While each such model might be solved by a NMG framework, achieving optimal e�-

ciency would require further work and development.

The remainder of this chapter will be set out in the following way. In �4.2 we in-

troduce the formulation of the registration model focusing speci�cally on the di�usion

model. Next in �4.3 we discuss the non-linear multigrid (NMG) framework applied to

the di�usion model, along with a detailed analysis to highlight how we can improve

the convergence of the Chumchob-Chen NMG method. Then in �4.4 we formulate our

non-folding constraint model, and also present an optimisation for the implementation

of the constraint. �4.5 will comprise of tests and comparisons with our proposed work,

and �nally in �4.6 we present a summary of this chapter.

4.2 Review of the registration model and algorithm of [33]

The di�usion regulariser is a popular choice among variational models as seen in the

works [12,15�17,79]. It imposes a simple smoothness constraint upon the displacement

�eld and is given by the following

RDiff (u) =
1

2

∫
Ω

2∑
s=1

∣∣∇us∣∣2 dΩ . (4.3)

In fact, the di�usion model is one of the few models which coincides with models from

optical �ow frameworks (see [15, 16, 79] as examples), this is particularly useful when

the registration of image sequences are required. The di�usion model is given by the

following minimisation problem

min
u

{
EDiff (u) = D(R, T,u) + αRDiff (u) =

1

2

∫
Ω
|Tu −R|2 + α

2∑
s=1

∣∣∇us∣∣2 dΩ

}
(4.4)
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where

Tu ≡ T (x+ u), R ≡ R(x).

The corresponding Euler-Lagrange (EL) equations are derived from the following limits
lim
ε1→0

EDiff (u1 + ε1φ1, u2)− EDiff (u1, u2)

ε1
= 0,

lim
ε2→0

EDiff (u1, u2 + ε2φ2)− EDiff (u1, u2)

ε2
= 0

which can be shown to result in the following integrals∫
Ω
φm

[
∂umTu

[
Tu −R

]
− α∆um

]
dΩ + α

∫
∂Ω
φm
(
∇um · n

)
dS = 0. (4.5)

for m = 1, 2. Then, we can apply the fundamental lemma of calculus of variations to

(4.5) to obtain the EL equations

−α∆um + Fm(u) = 0 (4.6)

with Neumann boundary conditions

∇um · n = 0

where n denotes the outward unit normal and

Fm(u) = ∂umTu
[
Tu −R

]
(4.7)

denote the force terms, for m = 1, 2.

4.2.1 Optimise-discretise approach for the di�usion model

We consider a numerical approximation to the EL equations (4.6) by discretising the

image domain Ωh into a uniform n × n mesh with interval width h, using a �nite

di�erence (FD) method. The size of the mesh is chosen to be equal to the dimension

of the image (e.g. 512 × 512 to coincide with resolution of the given images) and in

general need not be square, however we only consider the case of square images as this

is common for medical image slices. Using the following central FD approximations

(
∂hu1T

h
u

)
i,j
≈ 1

2h

[(
T hu
)
i+1,j

−
(
T hu
)
i−1,j

]
,
(
∂u2T

h
u

)
i,j
≈ 1

2h

[(
T hu
)
i,j+1

−
(
T hu
)
i,j−1

]
,

(
∆huhm

)
i,j
≈ 1

h2

[(
uhm
)
i,j−1

+
(
uhm
)
i−1,j

− 4
(
uhm
)
i,j

+
(
uhm
)
i+1,j

+
(
uhm
)
i,j+1

]
(4.8)
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at a general discrete point (i, j), leads to the following discrete versions of the EL

equations (4.6)

−α
(
∆huhm

)
i,j

+
(
Fm(uh)

)
i,j

= 0 (4.9)

with the discrete force terms(
Fm(uh)

)
i,j

=
(
∂humT

h
u

)
i,j

[(
T hu
)
i,j
−
(
Rh
)
i,j

]
(4.10)

for m = 1, 2 and i, j = 2, . . . , n− 1.

4.2.2 The collective pointwise smoother

The term smoother, which stems from multigrid theory, is nothing but an iterative

solver. In [33] the lexicographic Gauss-Seidel (GSLEX) method was employed to solve

the linear part of the system (4.9) through an inner iteration loop, and a �xed point

iteration scheme to solve the non-linear part through an outer iteration loop. In a

lexicographical ordering system, a general discrete point (i, j) as in (4.10) is linked to

the global index

k = (j − 2)(n− 1) + (i− 1)

with n the size of the discrete image dimensions. An illustration of the lexicographical

ordering system can be seen in Figure 4.1. Using a lexicographical ordering on the

discrete system (4.9), results in the following

−α
(
∆huhm

)
k

+
(
Fm(uh)

)
k

= 0 (4.11)

for m = 1, 2. Now to solve the non-linear part of this system, we employ the following

semi-implicit �xed point iteration scheme

−α
(
∆huhm

)(l+1)

k
+
(
Fm(uh)

)(l+1)

k
= 0

where (
Fm(uh)

)(l+1)

k
=
(
∂humT

h
u

)(l)
k

[(
T hu
)(l+1)

k
−
(
Rh
)
k

]
(4.12)

with (
T hu
)(l+1)

k
≡
(
T h(x+ u(l+1))

)
k
.
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The key question addressed in [33] was how to treat the non-linear term
(
T hu
)(l+1)

k
in a

GSLEX scheme. It proposed to use the �rst order approximations:

(
T hu
)(l+1)

k
≈
(
T hu
)(l)
k

+
2∑
s=1

(
∂husT

h
u

)(l)
k

[(
uhs
)(l+1)

k
−
(
uhs
)(l)
k

]
which we substitute back into the discrete force terms (4.10) leading to the following

discrete system

−α
(
∆huhm

)(l+1)

k
+
(
∂humT

h
u

)(l)
k

[(
T hu
)(l)
k

+
2∑
s=1

(
∂husT

h
u

)(l)
k

[(
uhs
)(l+1)

k
−
(
uhs
)(l)
k

]
−
(
Rh
)
k

]
= 0 (4.13)

with (
T hu
)(l)
k
≡
(
T h(x+ u(l))

)
k

etc. for m = 1, 2. Then to compute the (l + 1) updates in (4.13), we use a GSLEX

based method. Unfortunately, such an iterative method is not e�ective as a standalone

solver since solving the discrete system of PDEs (4.11) pixel-wise can lead to a very

high computational cost, especially for large images. This fact is well-known for simpler

PDEs such as the Poisson equation (corresponding to Fm = 0 and h→ 0). One natural

way of reducing the cost of calculating the displacement �eld is a NMG method in which

this (slow) iterative method is used as a smoother.

There has already been a lot of work regarding the implementation of NMGmethods [52,

68,72,73,86] for related models, each having its own uni-grid iterative solver. However

most of these works do not address the non-linearity in the similarity measure directly,

instead linear diagonal terms or augmented systems are used. Chumchob and Chen [33]

proposed a robust solver which does directly deal with this non-linearity arising from the

SSD term, however an inaccurate analysis of the NMG method led to a less than optimal

convergence rate for the NMG method which we demonstrate in the next section.

4.2.3 The NMG method

There are two theoretical principles driving multigrid methods for linear PDEs. The �rst

is, although standard iterative methods such as the Jacobi and GS methods have poor

convergence rates when used as independent solvers, they are e�ective at smoothing

out any high frequency error components within a small number of iterations. This

property leads to the second key principle of multigrid methods, namely low frequency

error components can be well approximated on a coarser grid. Naturally an approximate

and accurate solution on a coarser grid can then be interpolated back to the �ne grid
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i = 2 i = i i = n− 1

j = 2

j = j

j = n− 1

1 n− 2

k

(n− 2)2

Figure 4.1: Illustration of how the domain Ωh is discretised by n× n grid points. The
dashed light blue line represents the boundary ∂Ωh of the discrete domain, with the
light blue circle points representing the used boundary points, and the solid dark blue
lines show the (n− 2)× (n− 2) grid corresponding to the interior points represented
by the solid dark blue circles. The indexing on the interior points show how the global

index k is ordered lexicographically.

to approximate the original problem; this two-grid approach is signi�cantly cheaper

than working solely on the �ne grid. In fact this strategy allows us to obtain a more

accurate approximation e�ciently as we can perform a larger number of iterations on

the coarser grid in less time when compared with iterating on the �ne grid alone. This

�ne-coarse-�ne strategy, known as the two-grid V-cycle (see [10] for details), can be

repeated on the coarse grid to interact with even coarser grids until some coarsest grid

with few points.

While multigrid frameworks are known, and indeed very easy to implement for linear

cases, problems like (4.6) which are highly non-linear prove signi�cantly more di�cult

to develop a converging NMG method. Now we present the FAS-NMG algorithm of [33]

for (4.11) before we highlight the omissions in the analysis which resulted in an over-

estimated smoothing rate (thus leading to a less optimal NMG method with slower

convergence rate), and include our more accurate analysis to overcome this problem.

Here FAS stands for `full approximation scheme' by A. Brandt for solving a non-linear

operator equation.

Remark 4.2.1. The FAS can be thought of as a generalisation of the linear multigrid
schemes discussed in �2.6. In fact if the operator being considered is linear, then the
FAS directly reduces to the linear two-grid correction scheme.

First consider a two grid setting where Ωh denotes a �ne grid and ΩH a coarse grid with

h = (h1, h2) =

(
1

n− 1
,

1

n− 1

)
, H = 2h.
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Also denote the system (4.11) using the following operator notation on Ωh

N huh = Gh

where

N h =

[(
N h

1

)
k(

N h
2

)
k

]
, uh =

[(
uh1
)
k(

uh2
)
k

]
, Gh =

[(
gh1
)
k(

gh2
)
k

]

and with

(N h
1 )k =

(
F1(uh)

)
k
− α

(
∆huh1

)
k
, (N h

2 )k =
(
F2(uh)

)
k
− α

(
∆huh2

)
k
,

(gh1 )k = (gh2 )k = 0

for k = 1, 2, . . . , (n− 2)2. The main steps of the FAS-NMG are as followed:

Smoothing step. Apply the iterative method (4.13) on grid Ωh starting from some

initial guess. This is the pre-smoothing step required to obtain a smooth approximation

ũh = [ũh1 , ũ
h
2 ]T

which has non-linear residual

rh = Gh −N h(ũh).

To improve this smooth approximation, it remains to compute the algebraic error (or

the residual correction)

eh ≡ [eh1 , e
h
2 ]T = uh − ũh

which cannot be computed directly on the �ne grid Ωh.

Restriction. Since only smooth errors can be well approximated on a coarser grid, we

�rst solve the FAS coarse grid residual equation

NH [uH ] ≡NH [ũH + eH ] = rH +NH [ũH ] ≡ GH (4.14)

where

ũH = RHh ũh, rH = RHh rh

and RHh denotes the restriction operator, which we take to be the full-weighted restric-

tion operator, de�ned by the following stencil

RHh =
1

16

1 2 1

2 4 2

1 2 1


H

h

. (4.15)
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Coarse grid solution. For a two-grid method (or in a multigrid setting where ΩH is

the coarsest level and computations are inexpensive), the above coarse grid equation

(4.14) must be solved accurately to obtain the solution uH . Based on this uH , and its

initial guess ũH , we obtain the residual correction via the relation

eH = uH − ũH . (4.16)

Interpolation. Now we wish to use (4.16) to correct the approximations on the �ne

grid Ωh; we do this by interpolating the corrections using bilinear interpolation. In

other words we compute

eh = IhHeH , IhH =
1

4

1 2 1

2 4 2

1 2 1


h

H

.

Once the corrections have been interpolated to the next �ne grid level, we use them to

update the current grid level approximations via

uh = ũh + eh.

After the approximations have been corrected, we use a post-smoothing step to remove

any interpolation errors. This process of interpolation, correction and smoothing is

repeated until the approximations on the original grid level have been corrected and

smoothed, thus resulting in our �nal solution uh.

Remark 4.2.2. According to the work done in [71], there are three conditions which
need to be satis�ed regarding the orders of the restriction and interpolation methods for
a convergent NMG. For a PDE of order M , we require

(i) mR +mI ≥M ; (ii) mI ≥M and mR ≥ 0; (iii) mR ≥M and mI ≥ 0

where mR, mI denote the high frequency orders of the restriction and interpolation
schemes respectively. In our case we have mR = mI = 2, for the full-weighted re-
striction and bilinear interpolation operators respectively, and so all three conditions are
satis�ed.

A summary of the FAS-NMG algorithm, for the case of an arbitrary number of levels,

can be seen in Algorithm 6.

In [33], the coarsest solver adopted was an additive operator splitting (AOS) method

[100,139]. For the di�usion model, the AOS methods takes the following form

u(l+1)
m =

1

2

2∑
s=1

[I − 2ταLxs ]
−1
[
u(l)
m − τFm(u(l)) + τgm

]
where I denotes the identity operator, τ > 0 the time-step which is determined using a

forward di�erence approximation of the time derivative ∂tum, gm the RHS coming from
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Algorithm 6 u
(l+1)
level ← FASNMG(level, µ,u

(l)
level,N level,Flevel, ν1, ν2)

1: Pre-smoothing step by performing ν1 steps

ũ
(l)
level ← Smooth(u

(l)
level,N level,Flevel, ν1)

2: Coarse grid correction

Compute the residual r
(l)
level = Flevel −N level(ũ

(l)
level)

Restrict residual and smooth approximations r(l)
level−1 = Rlevel−1

level r
(l)
level, ũ

(l)
level−1 = Rlevel−1

level ũ
(l)
level

Set level→ level − 1
Compute RHS of coarse grid PDE flevel−1 = r

(l)
level−1 + N level−1ũ

(l)
level−1

Compute an approximation ū
(l)
level−1 to the coarse grid PDE N level−1ũ

(l)
level−1 = r

(l)
level−1

Solve residual equation on coarse grid to obtain approximations ū
(l)
level−1

3: if level = 1 then
Use a direct or fast iterative solver to obtain the high accuracy solutions u

(l)
level−1

4: else level > 1 Repeat the FAS-cycle procedure recursively to the next level using ũ
(l)
level−1 as an

initial approximation i.e.

ū
(l)
level ← FAScycle(level − 1, µ, ũ

(l)
level−1,N level−1,Flevel−1, ν1, ν2)

5: end if
Compute the correction e

(l)
level−1 = u

(l)
level−1 − ũ

(l)
level−1

Interpolate the correction to next �ne grid level e
(l)
level = Ilevellevel−1e

(l)
level−1

Update current grid level approximations using correction û
(l)
level = ũ

(l)
level + e

(l)
level

6: Post-smoothing step by performing ν2 steps

u
(l+1)
level ← Smooth(û

(l)
level,N level,Flevel, ν2)

the NMG framework, Fm(u) the force terms given in (4.7) for m = 1, 2 and

Lxs = ∂xsxs

denote the parts of the discrete Laplace operator in the xs direction for s = 1, 2 respec-

tively. The above equations are updated along the x1, x2 directions separately, thus

leading to the system
[
I − 2ταLx1

]
u

(
k+ 1

2

)
m,p1 =

1

2

[
u(l)
m − τF (l)

m (u) + τgm

]
,

[
I − 2ταLx2

]
u

(
k+ 1

2

)
m,p2 =

1

2

[
u(l)
m − τF (l)

m (u) + τgm

] (4.17)

with the updates

u(l+1)
m =

1

2

(
u

(k+ 1
2

)
m,p1 + u

(k+ 1
2

)
m,p2

)
for m = 1, 2.

H-ellipticity for proposed smoother. The computation of the h-ellipticity for a

given smoother scheme is a very important step in determining whether the smoother

scheme is suitable for use as a pointwise error smoothing scheme within the multigrid
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framework. We now perform this calculation for the proposed smoother described in

�4.2.2.

Let us begin by writing the linearised system of PDEs (4.13) in the following operator

form

LDiffh uh = GDiffh (4.18)

where

LDiffh =

[
−α∆h + σh11 σh12

σh12 −α∆h + σh22

]
, uh =

[
uh1
uh2

]
,

GDiffh =

[
gh1 − F

Diff
1

(
uh
)

gh2 − F
Diff
2

(
uh
)] (4.19)

with

FDiffm

(
uh
)

=
(
∂humT

h
u

)2
uhm −

(
∂humT

h
u

)[
T hu −Rh

]
,

σhpq =
(
∂humT

h
u

)(
∂huqT

h
u

)
, ghm = 0 (4.20)

for m, p, q = 1, 2. Applying the discrete linear operator LDiffh , to the grid functions

Φh
(
x,θ

)
gives

LDiffh Φh
(
x,θ

)
= L̂Diffh

(
θ
)
Φh
(
x,θ

)
(4.21)

with Fourier symbol

L̂Diffh

(
θ
)

=

[
σh11 − αL̂ h

(
θ
)

σh12

σh12 σh22 − αL̂ h
(
θ
)] (4.22)

where L̂ h
(
θ
)
denotes the Fourier symbol of the discrete Laplace operator ∆h. We

compute the h-ellipticity from the following

EDiff
h

(
LDiffh

)
=

min
{∣∣∣det

(
L̂h
(
θ
))∣∣∣ : θ ∈ Θhigh

}
max

{∣∣∣det
(
L̂h
(
θ
))∣∣∣ : θ ∈ Θ

} (4.23)

where

Θ = [−π, π)2, Θhigh = Θ \
[
−π

2
,
π

2

)2
.

It can be shown

det
(
L̂h
(
θ
))

= −α2
(
L̂ h
(
θ
))2

+ αch1
(
L̂ h
(
θ
))

+ ch2 (4.24)
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where

ch1 = σh11 + σh22, c
h
2 = σh11σ

h
22. (4.25)

Using well known results, we can show

−L̂ h
(
θ
)

=
2

h2

[
2−

(
cos θ1 + cos θ2

)]
,

min
θ∈Θhigh

{(
− L̂ h

(
θ
))}

=
2

h2
, max
θ∈Θ

{(
− L̂ h

(
θ
))}

=
8

h2
. (4.26)

Substituting (5.34) and (4.24) back into (6.43), in addition to taking the limit as h→ 0,

we get

lim
h→0

{
EDiff
h

(
LDiffh

)}
= lim

h→0

{
4α2 +O(h)

64α2 +O(h)

}
=

1

16
. (4.27)

Since the h-ellipticity value (4.27) is bounded away from 0, as h → 0, and is therefore

independent of the values of α, h, σhpq for p, q = 1, 2. This means the results do not

depend on the given images R, T , the choice of the weighting parameter α or the mesh

interval h. Thus we conclude the smoother (4.13) is su�cient for use as a pointwise

error smoothing procedure.

4.3 An improved analysis of the NMG algorithm of [33]

As mentioned, Algorithm 6 as implemented by Chumchob and Chen [33] could still

be slow to converge to a solution from new experiments. We found a major part of

this convergence problem was the result of an inaccurate analysis of the smoothing

rate, which resulted in an over-estimation of the rate. Re-evaluating the analysis of

the NMG method, in addition to building in some new components, led to our NMG

algorithm with a vastly improved convergence rate.

In this section we outline our more detailed and accurate analysis of the NMG frame-

work. We do this by analysing two key components of the NMG algorithm (namely the

smoothing rate of the smoother and the coarsest grid solver), which leads to an optimal

NMG method.

4.3.1 Smoother analysis using local Fourier analysis (LFA)

We begin our analysis of the NMG method by showing an improved, and more accurate,

LFA of the smoother scheme which was described in [33]. A discrete error (e.g. residual)

function on a grid can be written as a sum of two terms:

(i) High frequency error components (not visible if the problem is restricted to a

coarser grid);
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(ii) Low frequency error components (can be accurately represented on a coarser grid).

The sole purpose of the smoother, within a MG framework, is to remove any high

frequency error components. LFA is used to measure how e�ective a given smoother

scheme is.

Although LFA was originally designed to analyse discrete linear operator equations, it

was extended by A. Brandt (see [131]) to study non-linear operators via a `freezing' of

localised coe�cients. To start we �rst assume we are working on an in�nite grid, this

allows us to remove any in�uence from the boundary conditions. Next we assume the

discrete form of a non-linear operator, with variable coe�cients, can be replaced locally

by an operator with constant coe�cients and extended to the in�nite grid. We need to

ensure all high frequency error components are removed prior to restriction to a coarse

grid. As a result it is imperative we know how e�ective our relaxation scheme is at

smoothing out the errors so we can adjust the number of sweeps required for the pre-

and post-smoothing steps. Using LFA we obtain a value µ which we de�ne to be the

smoothing factor for a given relaxation scheme.

LFA for pointwise smoother from [33]. While the smoother we described in �4.2.2

is the same as the one used in [33], we found the smoother analysis in [33] contained

an omission which lead to a very over-optimistic smoothing rate (practically to a slow

convergence if using it as a guide). In [33], the discrete system (4.11) was written in

the following way

N h
+u

h
new +N h

0u
h
new +N h

−u
h
old = Gh

where uhnew, u
h
old denote the current and previous approximations of uh respectively,

and

N h
+ =

[
−αL h

+ 0

0 −αL h
+

]
, N h

0 =

[
−αL h

0 + σh11 σh12

σh12 −αL h
0 + σh22

]
,

N h
− =

[
−αL h

− 0

0 −αL h
−

]
, Gh =

[
gh1 − F h1
gh2 − F h2

]
(4.28)

with

σhpq = ∂upT
h
u∂uqT

h
u
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and ghm denoting the RHS coming from the NMG scheme, F hm the discrete force terms

as given in (4.10) and where L h
+, L h

0 , L h
− de�ne the following stencils

L h
+ =

1

h2

0 0 0

1 0 0

0 1 0

 , L h
0 =

1

h2

0 0 0

0 −4 0

0 0 0

 , L h
− =

1

h2

0 1 0

0 0 1

0 0 0

 . (4.29)

for p, q, m = 1, 2. The smoothing rate in [33] was then calculated on a 32×32 grid after

a total of �ve outer and �ve inner iteration loops had been performed, thus resulting

in an average smoothing rate of µavg ≈ 0.5 when taking α = 1
10 . However, in the

analysis of [33] we notice the (um)
(l)
k terms, which result from the linearisation of the

SSD term, where not included in the smoothing rate calculation. This omission meant

the obtained rate of 0.5 was a vast over-estimation of the actual smoothing rate, and

as a result led to an under-estimation of the number of pre-smoothing steps required

before restriction. This means when we restrict the problem to a coarser grid, there are

still high frequency error components remaining on the �ne grid which have not been

removed, and so the coarse grid correction we obtain is much less accurate thus leading

to more NMG cycles being required to reach an accurate solution. This omission, as we

now show, has a noticeable e�ect on the smoothing rate.

Revised LFA for pointwise smoother from �4.2.2. Here we repeat the analysis of

the smoothing rate, with the (um)
(l)
k terms included, in order to illustrate the impact the

addition of these terms have on the smoothing rate. We begin by writing the discrete

equations (4.11) in the following form

N huh +Mhuh = Gh (4.30)

where Gh is as in (4.28), and

N h =

[
−α∆h + σh11 σh12

σh12 −α∆h + σh22

]
,Mh =

[
−σh11 −σh12

−σh12 −σh22

]
.

Using the following representation of the discrete Laplace operator

∆h ≡ L h
+ + L h

0 + L h
−

with L h
+, L h

0 , L h
− as de�ned in (4.29), then we can express (4.30) in the following way

N h
+u

h
new +N h

0u
h
new +N h

−u
h
old +Mhuhold = Gh (4.31)

and subtracting (4.31) from (4.30) yields the local error equation given by[
N h

+ +N h
0

]
ehnew = −

[
N h
− +Mh

]
ehold (4.32)
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where N h
+, N h

0 , N h
− are as de�ned in (4.28) and

eh∗ =
[
eh1 ∗, e

h
2 ∗
]T
. (4.33)

Using Fourier components, we can rewrite (4.32) in the following way

[
N̂ h

+(θ) + N̂ h
0(θ)

]
ψnewθ exp

(
iλ1i+ iλ2j

)
= −

[
N̂ h
−(θ) + M̂h

(θ)
]
ψoldθ exp

(
iλ1i+ iλ2j

)
(4.34)

where

λm =
2θmπ

h
, i =

√
−1, θ ∈ Θ = [−π, π)2

and ψ∗θ are Fourier coe�cients form = 1, 2. From here we determine the local smoothing

rate µloc using the following

µmax = max
loc

µloc, µloc ≡ µloc(θ) = sup
{
ρ
(
Ŝh(θ)

)∣∣θ ∈ Θhigh

}
where

Θhigh = Θ \
[
−π

2
,
π

2

)2

also with ρ(·) denoting the spectral radius, and the ampli�cation matrix Ŝh(θ) given

by

Ŝh(θ) = −
[
N̂ h

+(θ) + N̂ h
0(θ)

]−1[N̂ h
−(θ) + M̂h

(θ)
]

with

N̂ h
+(θ) =

[
− α
h2

(
e−iλ1 + e−iλ2

)
0

0 − α
h2

(
e−iλ1 + e−iλ2

)] ,

N̂ h
−(θ) =

[
− α
h2

(
eiλ1 + eiλ2

)
0

0 − α
h2

(
eiλ1 + eiλ2

)] ,

N̂ h
0(θ) =

[
4α
h2

+ σh11 σh12

σh12
4α
h2

+ σh22

]
, M̂h

(θ) =

[
−σh11 −σh12

−σh12 −σh22

]
. (4.35)

Implementing the revised local smoothing rate formulae, under the same conditions

which were used in [33], we obtained an average and maximum smoothing rate of

µavg ≈ 0.69854, µmax ≈ 0.74762

respectively. By the smoothing rate of 0.5 in [33] within each outer iteration, �ve inner

iterations would result in a reduction of the error by 0.0313 which appeared satisfactory.

However �ve inner iterations would reduce the error by only 0.17 and 0.23 respectively
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using our new smoothing rates µavg and µmax. In order to reduce to the level of error

claimed in [33], we estimate we would require up to twelve inner iterations. So we see

the original analysis in [33] resulted in the estimated number of pre-smoothing steps

being roughly half of the number of steps which would actually be required to reduce

the error to quoted level.

4.3.2 Convergence analysis of two coarsest grid solvers by LFA

Next we give a simple solution to the challenging problem of estimating the convergence

rate of a non-linear iterative method. Here we remark this analysis was not performed

in [33]. Consequently, we can compare methods and guide the number of iterations to

be prescribed on the coarsest grid, similar to how we use the smoothing rate to guide

the number of smoothing steps required. Recall the AOS solver (4.17) was used by

Chumchob and Chen in [33] as the solver on the coarsest grid. Here we propose to use

a �xed point type solver on the coarsest grid instead.

Our coarsest grid solver. From �4.2.2 we have the following lexicographically ordered

discrete system of linear equations

−α
(
∆HuHm

)(l+1)

k
+
(
∂HumT

H
u

)(l)
k

[(
THu
)(l)
k

+
2∑
s=1

(
∂HusT

H
u

)(l)
k

[(
uHs
)(l+1)

k
−
(
uHs
)(l)
k

]
−
(
RH
)
k

]
= 0

for m = 1, 2. After using the FD approximations (4.8), we can express these equations

as matrix equations

AHuH = FH

where

uH , FH ∈ R2(n−2)2×1

are block column vectors and

AH ∈ R2(n−2)2×2(n−2)2

is the block system matrix with the following structure

AH =

[
AH

1 BH

BH AH
2

]
, uH =

[
uH1
uH2

]
, FH =

[
FH

1

FH
2

]

where

uHm, F
H
m ∈ R(n−2)2×1
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are column vectors and

AH
m, B

H ∈ R(n−2)2×(n−2)2

are the block tri-diagonal and diagonal matrices respectively with the following structure

AH
m =


Am2 I1

I1
. . . . . .
. . . . . . I1

I1 Amn−1

 , BH =


Bm2

. . .

Bmn−1



uHm =



(
uHm
)
k2(2)
...(

uHm
)
ki(j)
...(

uHm
)
kn−2(n−2)


, fHm =



(
fHm
)
k2(2)
...(

fHm
)
ki(j)
...(

fHm
)
kn−2(n−2)


with matrices

Amj , Bmj , I1 ∈ R(n−2)×(n−2)

of structure

Amj =


(aHm)k2(j) − α

H2

− α
H2

. . . . . .

. . . . . . − α
H2

− α
H2 (aHm)kn−1(j)

 ,

Bmj =


(
bH
)
k2(j)

. . . (
bH
)
kn−1(j)

 , I1 = − α

H2


1

. . .

1


with

(aHm)ki(j) =
[(
∂HumT

H
u

)2]
ki(j)

+
4α

H2
,
(
bH
)
ki(j)

=
(
∂Hu1T

H
u

)
ki(j)

(
∂Hu2T

H
u

)
ki(j)

and where

ki(j) = (j − 2)(n− 1) + (i− 1)

denotes a general lexicographically ordered discrete point (i, j), as shown in Figure 4.1.

Then our proposed algorithm is as shown in Algorithm 7.

In order to demonstrate the improvement in the convergence rate of our proposed coars-

est grid solver over the AOS scheme used in [33], we �rst need a way to measure the
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Algorithm 7 u
(l+1)
H ← DirectSolve(RH , TH ,u

(l)
H ,G

H , α, IMAX, Tol)

1: Initialise u
(l)
H = u

(l)
H

Construct discrete Laplacian parts of sparse matrices AH
m

2: for l = 1, · · · , IMAX do

Deform template image using u
(l)
H → THu

Compute FD approximations for derivatives of THu → ∂Hu1
THu , ∂

H
u2
THu

Compute RHS fm (matrices) and then convert to column vectors fHm
Add remaining diagonal parts to AH

m

Compute u
(l+1)
mH → u

(l+1)
mH =

[
AH
m

]−1
fHm

Reshape u
(l+1)
mH to matrices u

(l+1)
mH

3: if
∣∣u(l+1)

1H − u
(l)
1H

∣∣2
2
< Tol and

∣∣u(l+1)
2H − u

(l)
2H

∣∣2
2
< Tol then

Exit for loop
4: end if
5: end for

convergence rate. To do this we employ LFA to estimate the convergence rates of both

our proposed solver and the AOS solver. The purpose is to discriminate between these

two estimations. Unfortunately due to the non-linearity of the problem we are unable to

obtain a sharp measure of the convergence rate, and so using LFA to obtain an approxi-

mation is the best option. It should be remarked LFA used for this convergence analysis

is only viable on a coarse grid (e.g. 8× 8 mesh) as the rate is not sharp especially on a

�ne grid (e.g. 128× 128 mesh).

Analysis of the proposed coarsest grid solver. To estimate the convergence rate P
of a given solver, we follow a similar method to the one in the smoother analysis shown

in �4.3.1. In other words we must evaluate the ampli�cation matrix ŜH(θ) at every

discrete interior point (i, j) for i, j = 2, . . . , n− 1 where n denotes the size of the image

dimensions. However, where we restricted θ to only consider the high frequency range

Θhigh in the smoother analysis, now we consider θ over the entire Fourier domain Θ.

Since our proposed direct solver is based upon the pointwise smoother shown in �4.2.2,

the derivation of the ampli�cation matrix ŜH(θ) is very similar to the one shown in

�4.3.1. Then, the convergence rate for our proposed direct solver can be estimated

locally by the following

PD max = max
loc
PD loc, PD loc ≡ PD loc(θ) = sup

{
ρ
(
ŜH(θ)

)∣∣θ ∈ Θ
}

where

Θ ∈ [−π, π)2

also with ρ(·) denoting the spectral radius and ŜH(θ) the ampli�cation matrix given

by

ŜH(θ) = −
[
N̂H

+ (θ) + N̂H
0 (θ) + N̂H

− (θ)
]−1M̂H

(θ)
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with

N̂H
+ (θ), N̂H

0 (θ), N̂H
− (θ), M̂H

(θ)

as in (4.35) and where H denotes the interval width on the coarse grid.

Analysis of the block formulation of our proposed coarsest grid solver. Previ-

ously in order to estimate the convergence rate for the pointwise case, we would have a

single equation of the form shown in (4.34) for each discrete interior point from which we

would determine the ampli�cation matrix, now however we construct the ampli�cation

matrix from a single system of equations with the following structure

BHΨnew
θ = CHΨold

θ

where

BH , CH ∈ R2(n−2)2×2(n−2)2 , Ψ∗θ ∈ R2(n−2)2×1

are block matrices and block column vectors respectively with structure

BH =

[
BH

1 DH

DH BH
2

]
, CH =

[
CH

1 DH

DH CH
2

]
, Ψ∗θ =

[
ψ∗θ
ψ∗θ

]

with

BH
m , C

H
m , D

H ∈ R(n−2)2×(n−2)2 , ψ∗θ ∈ R(n−2)2×1

given by

BH
m =


BH
m2

JH1

JH2
. . . . . .
. . . . . . JH1

JH2 BH
mn−1

 , CH =


CHm2

. . .

CHmn−1

 ,

DH =


DH

2

. . .

DH
n−1

 , ψ∗θ =



(
ψ∗θ
)

1
...(

ψ∗θ
)
k

...(
ψ∗θ
)

(n−2)2


and where

BH
mj , C

H
mj , D

H
j , J

H
m ∈ R(n−2)×(n−2)
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are given by

BH
mj =



(
bHm
)
k2(j)

− α
H2 e

iλ1

− α
H2 e

−iλ1 . . . . . .
. . . . . . − α

H2 e
iλ1

− α
H2 e

−iλ1
(
bHm
)
kn−1(j)

 ,

CHmj =


(
cHm
)
k2(j)

. . . (
cHm
)
kn−1(j)

 , DH
j =


(
dH
)
k2(j)

. . . (
dH
)
kn−1(j)

 ,

JH1 =


− α
H2 e

iλ2

. . .

− α
H2 e

iλ2

 , JH2 =


− α
H2 e

−iλ2

. . .

− α
H2 e

−iλ2



with (
bHm
)
ki(j)

=
[(
∂HumT

H
u

)2]
ki(j)

+
4α

H2
,
(
cHm
)
ki(j)

=
[(
∂HumT

H
u

)2]
ki(j)

,(
dH
)
ki(j)

=
(
∂Hu1T

H
u

)
ki(j)

(
∂Hu2T

H
u

)
ki(j)

, λm =
2θmπ

n

and

ki(j) = (j − 2)(n− 1) + (i− 1)

for m = 1, 2 and i, j = 2, . . . , n − 1. Then the convergence rate PB for the block

formulation of our direct solver is estimated from the following

PB ≡ PB(θ) = sup
{
ρ
(
ŜH(θ)

)∣∣θ ∈ Θ
}

with ampli�cation matrix

ŜH(θ) =
[
BH

]−1
CH .

On this coarsest grid, n is small so estimating PB is feasible.

Convergence analysis for AOS solver. We again remark an analysis to estimate

the convergence of the coarsest solver in [33] was not performed. From [33], the AOS

scheme for the di�usion model is shown in (4.17) for m = 1, 2. We use a similar method

to the one shown in �4.3.1 to derive the ampli�cation matrix for the AOS method.

However, since the AOS scheme solves along the x1 and x2 directions separately, we

obtain two convergence rates PA1 , PA2 corresponding to each of these directions. We
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start by expressing the discrete versions of (4.17) by the following system

NH
mu

H
pm +MH

mu
H
pm = GHm (4.36)

with

NH
m =

[
1− 2τα∂Hxmxm 0

0 1− 2τα∂Hxmxm

]
,

MH
m =

[
−1 0

0 −1

]
, GHm =

[
τgH1 − τFH1 (u)

τgH2 − τFH2 (u)

]

where gHm are the discrete RHS coming from the NMG method and FHm (u) are the dis-

crete force terms given in (4.10). The x1, x2 directions of the discrete Laplace operator

can be represented by

∂Hxmxm = L H
m+ + L H

m 0 + L H
m−

where L H
m+, L H

m 0, L H
m− de�ne the following stencils

L H
1 + =

1

H2

0 0 0

1 0 0

0 0 0

 , L H
1 0 =

1

H2

0 0 0

0 −2 0

0 0 0

 , L H
1− =

1

H2

0 0 0

0 0 1

0 0 0

 ,

L H
2 + =

1

H2

0 0 0

0 0 0

0 1 0

 , L H
2 0 =

1

H2

0 0 0

0 −2 0

0 0 0

 , L H
2− =

1

H2

0 1 0

0 0 0

0 0 0

 . (4.37)

Then we can write (4.36) in the following way

NH
m+u

H
pm new +NH

m 0u
H
pm new +NH

m−u
H
pm old +MH

mu
H
pm old = GHm (4.38)

where uHpm new, u
H
pm old denote the current and previous approximations of uHpm in the

xm directions respectively, and

NH
m+ =

[
−2ταL H

m+ 0

0 −2ταL H
m+

]
, NH

m− =

[
−2ταL H

m− 0

0 −2ταL H
m−

]
,

NH
m 0 =

[
1− 2ταL H

m 0 0

0 1− 2ταL H
m 0

]
,MH

m =

[
−1 0

0 −1

]

for m = 1, 2. Using a similar process to the one shown in �4.3.1, for computing the

smoothing rate, we estimate the convergence rate from the following

PA max = max
loc
PA loc, PA loc =

1

2

(
PA1 loc + PA2 loc

)
,

PAm loc ≡ PAm loc(θ) = sup
{
ρ
(
ŜHm(θ)

)∣∣θ ∈ Θ
}

88



AOS Solver Direct Solver (Pointwise) Direct Solver (Block)

Grid Size α PA Tol 10−1/10−2/10−3 PD Tol 10−1/10−2/10−3 PB Tol 10−1/10−2/10−3

4× 4

1
10 0.99915 2709/5417/8124 0.40511 3/6/8 0.14573 2/3/4
1
20 0.99957 5355/10708/16062 0.51635 4/7/11 0.26136 2/4/6
1
30 0.99971 7940/15879/23817 0.61297 5/10/15 0.35084 3/5/7

8× 8

1
10 0.99937 3655/7309/10962 0.82924 13/25/37 0.41411 3/6/8
1
20 0.99968 7195/14390/21584 0.90661 24/47/71 0.63061 5/10/15
1
30 0.99979 10965/21928/32892 0.93578 35/70/105 0.76812 9/18/27

16× 16

1
10 0.99947 4344/8688/13031 0.97391 88/175/262 0.99636 632/1262/1894
1
20 0.99973 8528/17055/25582 0.98679 174/647/520 0.99784 1065/2130/3195
1
30 0.99982 12792/25583/38374 0.99116 260/519/778 0.99853 1565/3131/4696

Table 4.1: Comparison 1 of convergence rates (averaged over �ve FAS-NMG cycles)
for the Chumchob-Chen AOS solver and our direct solver. For each solver the
convergence rates and number of iterations required to reach tolerances of

10−1, 10−2, 10−3 are shown for multiple α values on various coarsest grid sizes for the
lung CT example (Example 2 in Figure 4.3).
AOS Solver Direct Solver (Pointwise) Direct Solver (Block)

Grid Size α PA Tol 10−1/10−2/10−3 PD Tol 10−1/10−2/10−3 PB Tol 10−1/10−2/10−3

4× 4

1
10 0.99915 2708/5416/8123 0.65472 6/11/17 0.32791 3/5/7
1
20 0.99957 5355/10708/16061 0.79307 10/20/30 0.51094 4/7/11
1
30 0.99971 7940/15879/23817 0.85177 15/29/44 0.62553 5/10/15

8× 8

1
10 0.99937 3655/7309/10962 0.94157 39/77/115 0.70146 7/13/20
1
20 0.99968 7195/14390/21584 0.96925 74/148/222 0.88868 20/40/59
1
30 0.99979 10965/21928/32892 0.97894 109/217/325 0.97361 87/173/259

16× 16

1
10 0.99947 4344/8688/13031 0.98925 214/427/640 0.99756 943/1886/2828
1
20 0.99973 8528/17055/25582 0.99463 428/856/1283 0.99872 1798/3596/5394
1
30 0.99982 12792/25583/38374 0.99643 644/1288/1932 0.99941 3902/7804/11705

Table 4.2: Comparison 2 of convergence rates (averaged over �ve FAS-NMG cycles)
for the Chumchob-Chen AOS solver and our direct solver. For each solver the
convergence rates and number of iterations required to reach tolerances of

10−1, 10−2, 10−3 are shown for multiple α values on various coarsest grid sizes for the
hand example (Example 3 in Figure 4.3).

where ρ(·) again denotes the spectral radius, and Ŝhm(θ) denote the ampli�cation ma-

trices given by

ŜHm(θ) = −
[
N̂H

m+(θ) + N̂H
m 0(θ)

]−1[N̂H
m−(θ) + M̂H

m(θ)
]

with

N̂H
m+(θ) =

[
−2τα
H2 e

−iλm 0

0 −2τα
H2 e

−iλm

]
, N̂H

m 0(θ) =

[
1 + 4τα

H2 0

0 1 + 4τα
H2

]
,

N̂H
m−(θ) =

[
−2τα
H2 e

iλm 0

0 −2τα
H2 e

iλm

]
, M̂H

m(θ) =

[
−1 0

0 −1

]
.

Comparison of convergence rates for two coarsest grid solvers. Once we have

an estimate of the convergence rate P, we can compute the number of iterations l
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required to reach a desired tolerance 10−k using the following

l = −k ln(10)

ln(P)
.

From Tables 4.1 and 4.2 we see our direct solver converges much faster than the

Chumchob-Chen AOS solver on several di�erent coarsest grid sizes for both Lung CT

and Hand examples (Examples 2 and 3 in Figure 4.3) respectively, especially on the

4 × 4 and 8 × 8 grids. This improvement has a signi�cant impact on the number of

iterations required to reach a desired tolerance, which in turn will have a noticeable

e�ect on the number of FAS-NMG cycles needed to obtain a good registration result in

addition to the time taken. As is also clear from both tables, the rates are too high and

both solvers are not e�ective on the less coarse 16× 16 grid, possibly due to limitation

of the analysis. We conclude the coarsest grid should be kept as 8× 8.

Hence our improved NMG method, to be denoted by unconstrained INMG, is taken

as Algorithm 6 equipped with the coarsest grid solver by Algorithm 7 and the predicted

number of smoothing steps of ν1, ν2 ≥ 8 since

µ8
max = 0.747628 < 0.1

is believed to be su�cient.

4.4 Non-folding constraint model

We now present another model, this time with the aim of delivering di�eomorphic trans-

forms. Folding in the transformation is a problem which can occur in image registration,

unless it is speci�cally controlled. In real applications the presence of folding would sug-

gest an inaccurate registration result as such transformations are non-physical. In this

section we �rst introduce our proposed improved di�usion model, which removes any

folding which may occur in the transformation ϕ, in addition to including a NMG

scheme (Algorithm 6). Next we extend this model further to increase robustness with

respect to the choice of weighting parameter α and folding severity.

4.4.1 Improved di�usion model formulation and optimise-discretise
approach

In the work by Burger et al. [18], it was explained the sign of the determinant det
(
∇ϕ
)

can indicate the presence of any folding in the transformation ϕ. Or more speci�cally

the sign of

det
(
∇ϕ
)

=
(
1 + u1x1

)(
1 + u2x2

)
− u1x2

u2x1
. (4.39)
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If (4.39) ≤ 0 this indicates folding in the transformation is present, while if (4.39)

> 0 no folding occurs in the transformation. In [18] this information was used to

add an additional term into the di�usion energy functional (4.4) which penalises this

determinant in order to produce di�eomorphic image registrations, thus resulting in the

following 2D hyper-elastic energy functional

EHyper(u) =
1

2

∫
Ω

∣∣Tu −R∣∣2 + α

2∑
s=1

∣∣∇us∣∣2 + β

((
det
(
∇ϕ
)
− 1
)2

det
(
∇ϕ
) )2

dΩ (4.40)

where

α ∈ R+, 0 ≤ β ∈ R

are weighting parameters. Although it may be possible to develop an e�ective smoother

for solving (4.40), which has a strong non-linearity, we however propose an extension to

the di�usion model (4.4) as a simpli�cation of the hyper-elastic model (4.40) to control

any folding. We propose to introduce a constraint into the di�usion model which ensures

a positive value of the determinant (4.39). In other words, we aim to solve the following

minimisation problem

min
u

{
EDiff (u)

}
, s.t. det

(
∇ϕ
)
> 0.

Or equivalently, using an optimise-discretise approach, we look to solve the following

EL equations

−α∆um + Fm(u) = 0, s.t. det
(
∇ϕ
)
> 0 (4.41)

with Neumann boundary conditions

∇um · n = 0

and where Fm(u) are as in (4.7) for m = 1, 2.

4.4.2 Estimating the determinant using �nite elements

In order for us to be able to impose the constraint in (4.41), we must �rst obtain an

approximation of the determinant at every discrete interior point of Ωh. In other words

we need to compute

Qh ≡
(
Qhij
)

=
(

det
(
∇hϕh

))
i,j

=
(

1 + (∂hx1u
h
1)i,j

)(
1 + (∂hx2u

h
2)i,j

)
−
(
∂hx2u

h
1

)
i,j

(
∂hx1u

h
2

)
i,j
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where

Qh ∈ R(n−2)×(n−2)

is the matrix consisting of determinant values at each of the discrete interior points

(i, j) for i, j = 2, . . . , n − 1. To compute the entry
(
Qhij
)
, we need to determine the

discrete partial derivatives

(∂hx1u
h
m)i,j , (∂hx2u

h
m)i,j

for m = 1, 2. We do this by splitting our discrete domain Ωh into a mesh of �nite ele-

ments consisting of piecewise linear triangular basis functions as shown in Figure 4.2(a).

In fact for each interior point (i, j), we need to compute the determinant in each of the

four triangles T1, . . . , T4 as shown in Figure 4.2(b). Doing this gives us a clearer picture

of the local geometry surrounding the (i, j) point, thus allowing us to better detect any

mesh folding in the transformation. Once we have determinant values for each of the

triangles, we assign the smallest value to be our
(
Qhij
)
entry, this in essence considers

the worst possible case for each (i, j) allowing us to better correct all potential folding

in the transformation. Now for linear triangular basis functions, we can approximate

uhm(x) by the following linear functions

Lhm(x) = rhum + shumx1 + thumx2 (4.42)

where

rhum , s
h
um , t

h
um ∈ R

are coe�cients to be determined for m = 1, 2. From (4.42) we see the partial derivatives

∂hx1u
h
m, ∂

h
x2u

h
m

are given by the coe�cients

shum , t
h
um

respectively. Then looking at the �rst triangle T1, at a general discrete interior point

(i, j), we have the following system

Triangle T1.

1 xi yj

1 xi+1 yj

1 xi yj+1


r

h
1u1

sh1u1
th1u1

 =


(
uh1
)
i,j(

uh1
)
i+1,j(

uh1
)
i,j+1

 ,
1 xi yj

1 xi+1 yj

1 xi yj+1


r

h
1u2

sh1u2
th1u2

 =


(
uh2
)
i,j(

uh2
)
i+1,j(

uh2
)
i,j+1

 ; (4.43)
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i = 2 i = i i = n− 1

j = 2

j = j

j =n− 1

(a) Global mesh of �nite elements of the full
discrete domain as shown by the purple dashed

lines.

(i, j − 1)

(i− 1, j)

(i, j + 1)

(i+ 1, j)
(i, j)

T1 T2

T3T4

(b) Local mesh of �nite elements at a general discrete
point (i, j).

Figure 4.2: Finite element splitting of the discrete domain Ωh using linear triangle
basis functions.

For the remaining triangles T2, T3 and T4, we can obtain similar systems to (4.43).

Then, to compute the coe�cients

rhl um , s
h
l um , t

h
l um

we solve

ahl =
[
Ch

1 l

]−1
vh1 l, bhl =

[
Ch

2 l

]−1
vh2 l (4.44)

where

Ch
1 l =

[
rhl u1 , s

h
l u1 , t

h
l u1

]T
, Ch

2 l =
[
rhl u2 , s

h
l u2 , t

h
l u2

]T
are the column vectors of coe�cients for

(
uh1
)
i,j
,
(
uh2
)
i,j

respectively,
[
Ch
∗ l
]−1

are the

inverses of the matrices corresponding to the edges of the triangle Tl and

vhm l =
[
uhm 1, u

h
m 2, u

h
m 3

]T
are the values of uhm at each vertex of the triangle Tl for l = 1, . . . , 4, m = 1, 2. Then,

once all elements of Qh have been computed, we take the minimum value of the matrix

Qh to be used to see if the constraint has been satis�ed. This method can be sum-

marised by Algorithm 8. Once we have a value for Qhmin, we use Algorithm 9 to impose

the constraint and determine whether we accept the updated transformation or not.

Supposing the constraint in (4.41) is not satis�ed once the solution u has been found,

then we take a factor ω ∈ (0, 1) of the displacement and recalculate the constraint to
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Algorithm 8 Qhmin ← ComputeQ(uh,n,h)

1: for i = 2, . . . , n− 1 do
2: for j = 2, . . . , n− 1 do
3: for l = 1, . . . , 4 do

Compute the vectors ahl , b
h
l using (4.44)

Compute determinant for triangle Tl → Q̃hl = (1 + shl u1
)(1 + thl u2

)− thl u1
shl u2

4: end for
Assign minimum Q̃h to be entry

(
Qhij
)
→
(
Qhij
)

= min {Q̃h1 , . . . , Q̃h4}
5: end for
6: end for

Take minimum entry in Qh to be minimum determinant value → Qhmin = min {Qh}

Algorithm 9 u
(l+1)
h ← ConstrainU(u

(l)
h ,h, ω, LMAX)

1: for l = 1, · · · , LMAX do
2: Compute minimum value of determinant Qhmin using Algorithm 8
3: if Qhmin > 0 and l ≤ LMAX then

Accept update u
(l+1)
h = u

(l)
h

4: else if Qhmin ≤ 0 and l < LMAX then

Reject update and set u
(l)
h = ωu

(l)
h , ω ∈ (0, 1)

5: else if Qhmin ≤ 0 and l = LMAX then
Error → Constraint failed

6: end if
7: end for

Algorithm 10
[
u

(l+1)
h , c, done_alpha

]
← AdaptiveU(u

(l)
h ,h, ω, LMAX)

1: Save current `good' approximation → û
(l)
h = u

(l)
h , c = 0

2: for l = 1, · · · , LMAX do
3: Compute minimum value of determinant Qhmin using Algorithm 8
4: if Qhmin > 0 and l ≤ LMAX then

Accept update u
(l+1)
h = u

(l)
h , û

(l)
h = u

(l)
h , c = c+ 1, done_alpha = 1, break

5: else if Qhmin ≤ 0 and l < LMAX then

Reject update and set u
(l)
h = ωu

(l)
h , ω ∈ (0, 1), c = c+ 1

6: else if Qhmin ≤ 0 and l = LMAX then

Reset to `good' approximation → c = LMAX, u
(l+1)
h = û

(l)
h , done_alpha = 0

7: end if
8: end for

see if has been satis�ed. This process is performed a small number of times, and if

the constraint still has not been satis�ed then we deem the method to have failed. An

illustration of this process can be seen in Algorithm 9.

In practice, Algorithm 8 can be computationally expensive on larger grid sizes owing

to the fact we must solve eight inverse problems at every discrete interior point in the

discrete domain Ωh, consequently this has a severe impact on the CPU time of the NMG

scheme for our constrained model. In Appendix A, we demonstrate how Algorithm 8

can be optimised to signi�cantly decrease CPU cost for each iteration of the determinant

computation. The method outlined in Algorithm 14 is how we actually compute the

determinant in practice, and the results shown in �4.5.2 are also obtained using this

algorithm.
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Algorithm 11 u
(l+1)
level ← ConstFASNMG(level, µ,u

(l)
level,N level,Flevel, ν1, ν2)

1: Pre-smoothing step by performing ν1 steps

ũ
(l)
level ← Smooth(u

(l)
level,N level,Flevel, ν1)

2: Coarse grid correction

Compute the residual r
(l)
level = Flevel −N level(ũ

(l)
level)

Restrict residual and smooth approximations r(l)
level−1 = Rlevel−1

level r
(l)
level, ũ

(l)
level−1 = Rlevel−1

level ũ
(l)
level

Set level→ level − 1
Compute RHS of coarse grid PDE flevel−1 = r

(l)
level−1 + N level−1ũ

(l)
level−1

Compute an approximation ū
(l)
level−1 to the coarse grid PDE N level−1ũ

(l)
level−1 = r

(l)
level−1

Solve residual equation on coarse grid to obtain approximations ū
(l)
level−1

3: if level = 1 then
Use a direct or fast iterative solver to obtain the high accuracy solutions u

(l)
level−1

4: Use Algorithm 9 to determine whether update is accepted

5: else level > 1 Repeat the FAS-cycle procedure recursively to the next level using ũ
(l)
level−1 as an

initial approximation i.e.

ū
(l)
level ← ConstFASNMG(level − 1, µ, ũ

(l)
level−1,N level−1,Flevel−1, ν1, ν2)

6: end if
Compute the correction e

(l)
level−1 = u

(l)
level−1 − ũ

(l)
level−1

Interpolate the correction to next �ne grid level e
(l)
level = Ilevellevel−1e

(l)
level−1

Update current grid level approximations using correction û
(l)
level = ũ

(l)
level + e

(l)
level

7: Post-smoothing step by performing ν2 steps

u
(l+1)
level ← Smooth(û

(l)
level,N level,Flevel, ν2)

8: Use Algorithm 9 to determine whether update is accepted if on �nest grid level Ωh

4.4.3 Numerical solution and NMG algorithm for a constrained dif-
fusion model

Based on our unconstrained INMG framework, we solve our constrained di�usion

model by NMG. Adding a constraint, the same pointwise smoother as the one shown in

�4.2.2 and the same coarsest grid solver as the one described in �4.3.2 are used. Then

our proposed NMG algorithm is shown in Algorithm 10, which we denote constrained

INMG.

4.4.4 An adaptive α constrained di�usion model

While our constrained INMG does ensure the deformations obtained are non-folding,

in cases where folding is severe the deformation �eld u can be penalised so heavily the

deformed template image Tu may have moved very little when compared with the

original template image T thus leading to a poor registration accuracy. To overcome

this problem we propose an extension to our constrained INMG model, whereby we

re-initialise the NMG method using a larger value of α if the constraint has not been

satis�ed within a small number of iterations. To construct this adaptive α scheme,

we modify the determinant check in Algorithm 9 as shown in Algorithm 10. From
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Algorithm 12 u
(l+1)
h ← Adaptiveα

(
Rh, T h,n,h,u

(l)
h , α, i

α
max

)
1: Set done_NMG = 0, done_alpha = 0
2: while done_NMG 6= 1 do
3: if iα = iαmax then

LMAX = 100

4: end if
5: while done_NMG 6= 1 do

6: Set previous `good' approximation → u
(l)
h = û

(l)
h

7: Perform FAS-NMG

→
[
u

(l+1)
h , c

]
← AdaptFASNMG

(
Rh, Th,n,h, level, û

(l)
h ,G

h, α, ν1, ν2
)

8: if c ≤ LMAX and done_alpha 6= 1 then
break

9: end if
10: if NMG convergence criteria satis�ed then

done_NMG = 1

11: end if
12: end while
13: if c ≤ LMAX and done_alpha 6= 1 then

14: Set α = 2α, iα = iα + 1, u
(l)
h = û

(l)
h

15: end if
16: end while

Algorithm 10 we see if we reach the iteration limit LMAX, we exit out of the FAS-

NMG algorithm and this is when we re-initialise the NMG with a larger weighting

parameter α. This process can be summarised by Algorithm 12, and where the algorithm

AdaptFASNMG is the same as Algorithm 11 except now Algorithm 12 is used to check

the constraint instead of Algorithm 9. Another advantage of the adaptive α scheme

shown in Algorithm 12 is its robustness to the choice of parameter α. Even if the initial

α is set too small such that severe folding would normally occur, because we keep re-

initialising the problem with new values of α, we automatically �nd a pseudo-optimal α

value where folding is avoided while maintaining registration accuracy. This robustness

will be shown in the next section. Using the pointwise smoother from �4.2.2, and the

coarsest grid solver from �4.3.2 along with Algorithm 12, then we denote our adaptive

α model by adaptive INMG.

4.5 Experimental results

Here we present and compare the results of four models:

(i) The Chumchob-Chen NMG method from [33] (Algorithm 6), which we have de-

noted CCNMG;

(ii) Our improved NMG method (Algorithm 6), which is denoted by unconstrained

INMG;
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(iii) Our proposed constrained NMG method (Algorithm 10), which we denoted by

constrained INMG;

(iv) Our adaptive NMG method (Algorithm 12), which we denote adaptive INMG.

First we demonstrate how our more accurate analysis of the smoothing rate, along with

our new coarsest grid solver, impact the number of NMG cycles required for the method

to converge when compared with the CCNMG method. In addition we also show how

the improved convergence of our NMG method our unconstrained INMG method

results in a signi�cant decrease in CPU time, along with an improvement in the accuracy

of the registration, when compared with the CCNMG method.

Second, we show how our constrained INMG method overcomes the issue of trans-

formation folding while still maintaining good accuracy and CPU times compared with

our unconstrained INMG method and the CCNMG method.

Third we show how our adaptive INMG method not only overcomes the problem of

mesh folding while keeping a good level of accuracy and CPU times, but also how it can

maintain these good transforms while being robust to parameter choice when compared

with the other models.

To gain a quantitative measure of the accuracy of the NMG methods, we use structural

similarity (SSIM) [138] in addition to the relative error given by

Err =
|Tu −R|22
|R|22

.

Moreover, in order to highlight the convergence problem of the CCNMG method, and

for fairness, we consider a method to have converged only if one of the following stopping

criteria has been satis�ed:

(i) The average relative residual reaches a tolerance of ε1 = 10−2;

(ii) The maximum relative residual reaches a tolerance of ε2 = 10−2;

(iii) Maximum number of NMG cycles reaches ε3 = 25.

We take 3 pairs of test images (shown in Figure 4.3) to experiment and compare regis-

trations:

(i) Example 1. A pair of CT images from Figure 4.3(a, d);

(ii) Example 2. A second pair of CT images from Figure 4.3(b, e);

(iii) Example 3. A pair of Hand images from Figure 4.3(c, f).

Moreover, in Tables 4.5-4.6 we indicate whether a test has been `successful' (results

highlighted in green) or whether it has `failed' (results highlighted in red). We say a

test has `failed' if the maximum number of NMG cycles ε3 has been reached, or if there
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(a) Reference R of Example 1. (b) Reference R of Example 2. (c) Reference R of Example 3.

(d) Template T of Example 1. (e) Template T of Example 2. (f) Template T of Example 3.

Figure 4.3: Three pairs of test images.

is folding in the result i.e.

Qhmin < 0.

Additionally bold values indicate the results which give the best SSIM and relative error

values for each test.

4.5.1 Comparative results of the CCNMG method and our uncon-
strained INMG method

Here we demonstrate the improvement of our unconstrained INMG method over

the CCNMG method. As mentioned in �4.3, our improvement is to overcome the

convergence problem which was present in the former method.

Test on Example 1. For the �rst lung CT example visual di�erences between the

models are small in Figure 4.4. The �rst two columns of Table 4.3 show several test

results of varying resolutions and parameters α. There, abbreviations `SSIM ', `Err',

`NMG', `CPU ' represent the �nal structural similarity, �nal relative error, number of

multigrid cycles performed and CPU time respectively.

We can see, from Table 4.3, our unconstrained INMG method is successful for all

cases of α but the CCNMG method failed in several cases. On convergence alone, the

CCNMG method is not as fast as our unconstrained INMG method since it takes

a larger number of NMG cycles.

Test on Example 2. In the second lung CT example, although visual di�erences be-
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tween the models are again small in Figure 4.5, in Table 4.4 we see our unconstrained

INMG method is better than the CCNMG method in all indicators SSIM , Err,

NMG, CPU for the �rst α value, but for the other two cases of α both models failed

to give di�eomorphic maps due to

det
(
∇hϕh

)
< 0.

Test on Example 3. From Figure 4.6, we see our unconstrained INMG method

produces visually similar deformed template images T hu and �nal error images
∣∣T hu −Rh∣∣

when compared with those obtained from the CCNMG method. When we look at

Table 4.5 we see our unconstrained INMG method requires consistently fewer NMG

cycles to produce these accurate results. In fact, the CCNMG method method almost

always fails to converge within the allowed number ε3 of NMG cycles to the required

tolerances. This con�rms our statements earlier on the convergence problem of the

CCNMG method. Moreover, this also leads to a drastic improvement in CPU time,

especially in the 5122 and 10242 cases where the CCNMG method requires a much

larger number of NMG cycles.

4.5.2 Comparative results of our unconstrained INMG method and
our constrained INMG method

In �4.4 we introduced our constrained INMG method in order to prevent any folding

from occurring in the transformation. This was achieved by ensuring

det
(
∇hϕh

)
> 0

for every discrete interior point in Ωh. Here we present results comparing our un-

constrained INMG method and our constrained INMG method to show how this

constraint does indeed prevent folding while still maintaining good accuracy and CPU

time using the same three examples from �4.5.1. The abbreviation `Qmin' represents

the minimum determinant value det
(
∇hϕh

)
. Here small `Err' means a small �tting

error while Qhmin > 0 implies a correct registration transformation.

Test on Example 1. From columns 2 and 3 of Table 4.3 we see our unconstrained

INMG method always produces positive Qmin values; as a result we obtain the exact

same results with our constrained INMG method with very small increases in CPU

times owing to the constraint checking. This also translates to Figure 4.4 where we see

all images look very similar visually.

Test on Example 2. From Table 4.4 we see our constrained INMG method has

overcome the mesh folding problems of our unconstrained INMG method by pos-

itive Qmin values in all cases. In achieving this convergent non-folding result, the

number of NMG cycles taken by our constrained INMG method is more than our

99



unconstrained INMG method. Although the CPU times in these cases also increase

noticeably, we do however still see a reduction and consistency in the number of NMG

cycles when compared with the CCNMG method. The CPU time increase could be

reduced further by a more computationally e�cient implementation of our algorithm

to penalise the transformation only in regions where folding is present.

Test on Example 3. Here we see the exact same pattern as in Example 1 since our

unconstrained INMG method produces positive determinant values in all cases and

identical results to our constrained INMG method with small increases in CPU times

as shown in Table 4.5, with improvements in all categories over the CCNMG method

especially in convergence and CPU times.

4.5.3 Comparative results of our constrained INMG method and our
adaptive INMG method

In addition to our constrained INMG method, in �4.4 we also introduced an exten-

sion to our constrained INMG method with the goal of being robust to parameter

choice while maintaining a non-folding transformation. Here we consider a case where

severe folding would occur and our constrained INMG method, while producing

a non-folding deformation, performs poorly in terms of registration accuracy whereas

our adaptive INMG method produces good registration accuracy while also avoiding

folding.

From Table 4.6 we see although we obtain very good accuracy from our unconstrained

INMG method, we also have severe folding in the transformations for all tests as indi-

cated by the negative Qmin values. Looking at the results for our constrained INMG

method we see the folding problem has been overcome and all Qmin values are now

positive, however we also see we have lost the accuracy of the result with regard to er-

ror when compared with our unconstrained INMG method results, especially on the

1282 and 2562 images. Our adaptive INMG method on the other hand not only pro-

duces non-folding results like with our constrained INMGmethod, but also maintains

a similar level of accuracy when compared with the results from our unconstrained

INMG method. In addition we also see our adaptive INMG method achieves this

with only a slight increase in CPU time when compared with those from our uncon-

strained INMG method, whilst being over twice as fast as our constrained INMG

method. From Figure 4.7 we see visually there is a noticeable di�erence between the

deformed template from our constrained INMG method compared with those from

our unconstrained INMG method and our adaptive INMG method, especially in

the error images.
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4.5.4 Test on NMG e�ciency and parameter robustness

NMG e�ciency. In this work, we are concerned with transformation quality and

fast solution by a NMG. For the latter, we expect the optimal e�ciency of O(N logN)

complexity in achieving a �xed accuracy (with N = n2 for n × n images). Then for

an optimal NMG, we expect the CPU increase to be of ratio ≈ 4.5. In Table 5.11,

we show test results of all four NMG methods for varying resolutions, where in the

CCNMG method we use the original analysis of [33] to set the number of smoothing

steps. Clearly our unconstrained INMG method, our constrained INMG method

and our adaptive INMGmethod exhibit nearly optimal complexity but theCCNMG

method shows irregular patterns, which justi�es our re-analysis for Algorithm 6.

Finally to give an indication of the convergence history of the CCNMG method and

our unconstrained INMG method, we plot in Figure 4.8 the residuals for more NMG

cycles. Evidently our unconstrained INMG method has faster convergence plot than

the CCNMG method.

Parameter robustness. In the di�usion model, the weighting parameter α indicates

how strongly we wish to enforce smoothness on the deformation from the regularisation

term. Speci�cally, a larger value of α will impose a strong penalisation on non-smooth

deformations leading to no folding, however this also leads to a less accurate registration

with regards to error. On the other hand, a smaller value of α leads to a more accurate

registration in terms of error, but also increase the likelihood of folding occurring.

Moreover, selecting a `good' value for α can be very time consuming as in general a

pre-multigrid routine is usually required to �nd this `best' α (for example the cooling

process in [33]), which can noticeably increase the computational work and CPU time.

For this reason, having a model which is robust to the choice of weighting parameter

is very useful as the need for �nding the `best' value for α is less important. Here we

compare how the value of α impacts the relative error (denoted `Err') and minimum

determinant value (denoted `Qmin') for our unconstrained INMG method and our

adaptive INMG method. From Figure 4.9(a) we see as α gets smaller the error also

decreases (as expected), however looking at Figure 4.9(b) we see the value of Qmin is

also decreasing to a point where it is always negative (also as expected) as highlighted

by the dotted line. This suggests our unconstrained INMG method has a limit

where it maintains physically accurate non-folding deformations, and once past this

point folding always occurs. Looking at Figure 4.10(a) we see our adaptive INMG

method follows a similar pattern with regard to a decreasing error as α decreases like

with our unconstrained INMG method, however from Figure 4.10(b) we see our

adaptive INMG method always maintains the physical integrity of the deformation

with Qmin > 0 for all tested values of α. From this we can conclude our adaptive

INMG method is very robust to the initial value of α, even for small values, while

maintaining a consistently good registration accuracy in terms of error.
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4.6 Summary

In this chapter we have �rst presented an improved NMG method, with regard to con-

vergence and accuracy, over the one proposed by Chumchob and Chen through a more

detailed and accurate analysis of the multigrid method, in addition to a di�erent coars-

est grid solver. Second we proposed an extension to our NMG method with the aim

of producing non-folding transformations, which was achieved by imposing an addi-

tional constraint into our improved NMG method. Next we extended our constrained

INMG to be more robust to parameter choice while keeping non-folding deformations

and good registration accuracy. We then used three examples to demonstrate the im-

provement in accuracy and NMG cycles required for convergence over the Chumchob-

Chen NMG, along with how our constrained INMG and adaptive INMG methods

overcame folding by ensuring det
(
∇hϕh

)
> 0.
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(a) Reference image R. (b) CCNMG Tu

α = 1
10
.

(c) Our unconstrained
INMG Tu α = 1

10
.

(d) Our constrained
INMG Tu α = 1

10
.

(e) Initial |T −R|
Err = 0.60%.

(f) CCNMG |Tu −R|
Err = 0.43%.

(g) Our unconstrained
INMG|Tu −R|
Err = 0.41%.

(h) Our constrained
INMG |Tu −R|
Err = 0.41%.

Figure 4.4: Example 1: Registration of 4.3(a) and 4.3(d) of size 512× 512 by three
methods with initial error shown by image (e). Images (b), (c) and (d) show the

deformed template images obtained using the CCNMG model, our unconstrained
INMG model and our constrained INMG model respectively, while images (f), (g)

and (h) show the respective �nal errors.

(a) Reference image R. (b) CCNMG Tu

α = 1
10
.

(c) Our unconstrained
INMG Tu α = 1

10
.

(d) Our constrained
INMG Tu α = 1

10
.

(e) Initial |T −R|
Err = 1.99%.

(f) CCNMG |Tu −R|
Err = 1.07%.

(g) Our unconstrained
INMG |Tu −R|
Err = 0.95%.

(h) Our constrained
INMG |Tu −R|
Err = 0.95%.

Figure 4.5: Example 2: Registration of 4.3(b) and 4.3(e) of size 512× 512 by three
methods with initial error shown by image (e). Images (b), (c) and (d) show the

deformed template images obtained using the CCNMG model, our unconstrained
INMG model and our constrained INMG model respectively, while images (f), (g)

and (h) show the respective �nal errors.
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(a) Reference image R. (b) CCNMG Tu

α = 1
10
.

(c) Our unconstrained
INMG Tu α = 1

10
.

(d) Our constrained
INMG Tu α = 1

10
.

(e) Initial |T −R|
Err = 13.25%.

(f) CCNMG |Tu −R|
Err = 2.02%.

(g) Our unconstrained
INMG |Tu −R|
Err = 1.86%.

(h) Our constrained
INMG |Tu −R|
Err = 1.86%.

Figure 4.6: Example 3: Registration of 4.3(c) and 4.3(f) of size 512× 512 by three
methods with initial error shown by image (e). Images (b), (c) and (d) show the

deformed template images obtained using the CCNMG model, our unconstrained
INMG model and our constrained INMG model respectively, while images (f), (g)

and (h) show the respective �nal errors.

(a) Reference image R. (b) Our unconstrained
INMG Tu α = 1

40
.

(c) Our constrained
INMG Tu α = 1

40
.

(d) Our adaptive
INMG Tu α = 1

40
.

(e) Initial |T −R|
Err = 13.25%.

(f) Our unconstrained
INMG |Tu −R|
Err = 0.82%.

(g) Our constrained
INMG |Tu −R|
Err = 1.10%.

(h) Our adaptive
INMG |Tu −R|
Err = 0.74%.

Figure 4.7: Example 3: Registration of 4.3(c) and 4.3(f) of size 512× 512 by three
methods with initial error shown by image (e). Images (b), (c) and (d) show the
deformed template images obtained using our unconstrained INMG model, our
constrained INMG model and our adaptive INMG model respectively, while
images (f), (g) and (h) show the respective �nal errors for the bad parameter value

α = 1
40 where severe folding occurs in the deformation.
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Figure 4.8: Comparison of the number of NMG cycles required for the maximum
relative residual to reach a tolerance of 10−10 between our unconstrained INMG

method and the CCNMG method.
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(a) Plot of relative error vs parameter α of our unconstrained INMG method for Example

3.

Alpha
0.020.0250.03330.050.11

Q
m

in

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8 1282

2562

5122

10242

(b) Plot of minimum determinant value vs parameter α of our unconstrained INMG

method for Example 3.

Figure 4.9: Test of the robustness of our unconstrained INMG method with
respect to the choice of parameter α, for 50 parameter values.
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(a) Plot of relative error vs parameter α of our adaptive INMG method for Example 3.
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(b) Plot of minimum determinant value vs parameter α of our adaptive INMG method for

Example 3.

Figure 4.10: Test of the robustness of our adaptive INMG method with respect to
the choice of parameter α, for 50 parameter values.
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Chapter 5

An e�ective di�eomorphic model

and its fast multigrid algorithm for

the registration of lung CT images

A challenge which frequently arises in many real world applications, and especially

in medical imaging, is image registration. An image registration technique works by

�xing one image in a pair or set of similar images to be the `reference' image and

then applying geometric transformations to the remaining image/s called the `template'

image/s, with the goal of aligning the template image/s to the reference image. The

important role which registration plays in many aspects of medical imaging problems

can be seen in recent works of [2, 29, 60, 63, 76]. More speci�cally image registration is

an important technique in diagnostics of lung problems [20, 30, 62, 65, 107, 119] where

tasks such as motion correction and feature tracking are routinely carried out and any

increase in accuracy is highly desirable in improving patient care. Since transformations

within lung images are in general highly non-uniform, non-parametric models such

as [12,13,15,16,18] are typically favoured over parametric models such as [6,31,82,94].

Our main concern is this former type.

5.1 Introduction

Denoting by

R, T ∈ Ω ⊂ Rd

respectively a reference and template image function, we are looking to determine the

transformation

ϕ(x) = x+ u(x)
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such that

T
(
ϕ(x)

)
≡ T

(
x+ u

)
≡ Tu ≈ R ≡ R(x) for x =

[
x1, . . . , xd

]T ∈ Ω ⊂ Rd

where

u ≡ u(x) =
[
u1(x), . . . , ud(x)

]T
denotes the displacement �eld. Throughout the remainder of this chapter we only

consider the two-dimensional case d = 2, however the ideas presented are extendible to

the three-dimensional case d = 3. In addition, we also assume the image domain Ω is

given by the unit square Ω = [0, 1]2.

We can formulate the variational image registration problem mathematically in the

following way. Rather than searching for the transformation ϕ, we can equivalently

determine the displacement �eld u, which we achieve by solving a minimisation problem

of the following form

min
u

{
E(u) = D

(
R, T,u

)
+ αR

(
u
)}

(5.1)

where E(u) denotes some general energy functional, D is some dissimilarity measure

between R and T , R is a regularisation term required to constrain u and overcome

the ill-posedness of the problem and α ∈ R+ is some weighting parameter. In addition

let us assume R, T are mono-modal images, then the common choice of dissimilarity

measure is the sum of squared distances (SSD) (although this is not the only possible

choice [101]) which is given by the following

D
(
R, T,u

)
=

1

2

∫
Ω
|Tu −R|2 dΩ (5.2)

where | · | denotes the Euclidean norm and

Tu ≡ T (x+ u).

Moreover, there are a large choice of regularisation terms which we can choose from

[4,11,35,51,100], however we mainly consider the di�usion regulariser given by

R(u) =
1

2

∫
Ω

2∑
s=1

∣∣us∣∣2 dΩ

in order to focus on the idea of di�eomorphism of ϕ. Unfortunately energy functionals

of the form shown in (5.1), in general, do not avoid the potential problem of mesh folding

in the transformation ϕ. Since we are considering real life medical imaging problems, a

transformation with folding would suggest the transformation is physically inaccurate

and therefore incorrect. One mathematical solution to overcome this problem is to
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impose the non-linear constraint

Qmin = min
{

det(∇ϕ)
}
> 0

as done in recent works of [18,89,92,153] and in particular the term

min


((

det(∇ϕ)− 1
)2

det(∇ϕ)

)2


added in [18].

We intend however, to consider another solution to this folding problem by extend-

ing the model (5.1) to include an additional term which explicitly links the forward

transformation ϕ between T and R, and the backwards transformation ψ between R

and T . Doing this enforces the transformation ϕ to be inverse consistent and therefore

non-folding. A simple way to ensure di�eomorphism is for the transformation ϕ and

the backwards transformation ψ to satisfy the relation

ϕ = ψ−1

since (
ϕ ◦ϕ−1

)
x =

(
ψ ◦ψ−1

)
x = Ix = x

where I denotes the identity mapping. The �rst variant including an inverse consistency

constraint on ϕ only, leads to a minimisation problem of the form

min
u

{
E(I)(u) = D

(
R, T,u

)
+ αR

(
u
)

+ βI
(
ϕ(x),ϕ−1(x)

)}
(5.3)

where I denotes the inverse consistency constraint, ϕ−1, ũ denote the inverses of ϕ, u

respectively and 0 ≤ β ∈ R is a second weighting parameter. There are di�erent choices

for the inverse consistency constraint which can be seen in the works [26, 28, 30, 82].

However we consider the second variant of an inverse consistent model, which uses both

ϕ and ψ, and has the following form

min
u,v

{
E(II)

(
u,v

)
=

1

2

∫
Ω

D
(
R, T,u

)
+ D

(
T,R,v

)
+ α

[
R
(
u
)

+ R
(
v
)]

+β
[
I
(
ϕ(x),ψ−1(x)

)
+ I

(
ψ(x),ϕ−1(x)

)]
dΩ

}
. (5.4)

where

D
(
T,R,v

)
, R
(
v
)
, I

(
ψ(x),ϕ−1(x)

)
denote the similarity measure, regularisation term and inverse consistency constraint

respectively for the backward problem R → T . In addition v, ψ denote the backward
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displacement and transformation respectively with ṽ, ψ−1 denoting their inverses. We

aim to simplify this second variant and propose an e�cient multigrid numerical scheme.

The remainder of this chapter will be set out as followed. In �5.2 we introduce the

Christensen-Johnson model [28] based on (5.4), in addition to our proposed simpli�-

cation to avoid additional non-linearities when compared with general di�usion type

models, in addition to our proposed numerical approach. Next in �5.3 we introduce

our fast NMG scheme to overcome the increased computational cost resulting from the

additional work required by the model, before showing some experimental results on

real medical CT images in �5.4. Finally in �5.5 we present a summary of this chapter.

5.2 A simpli�ed inverse consistent model and its algorithm

Several authors have discussed similar registration models for two images to symmetri-

cally deform toward one another in multiple passes [26, 66, 113,147]. The realisation of

a di�eomorphic transform is achieved by working with four deformation �elds instead

of one. Here we follow the work by Christensen and Johnson [28] who proposed a model

to overcome the problem of non-inverse consistent transformations by using only two

deformation �elds which is therefore computationally less complex. The model satis�es

our requirement of having a more physically accurate transformation robust to folding,

and was achieved through a combination of two things:

(i) A term was added into the standard form of the energy functional shown in (5.1)

to impose inverse consistency and take on the form show in (5.4);

(ii) The forward (T → R) and backward (R → T ) registration problems were com-

puted simultaneously.

These things, combined with a SSD dissimilarity term (5.2) and di�usion regularisation

term, led to the formation of their inverse consistent model which is given by the

following

min
u,v

{
EIC

(
u,v

)
=

1

2

∫
Ω
|Tu −R|2 + |Rv − T |2 + α

[
|∇u|2 + |∇v|2

]
+ β

[∣∣ϕ(x)−ψ−1(x)
∣∣2 +

∣∣ψ(x)−ϕ−1(x)
∣∣2] dΩ

}
(5.5)

where | · | denotes the Frobenius norm for matrices and reduces to modulus for scalar

quantities, ϕ, ψ denote the forward and backward transformations, ϕ−1, ψ−1 denote

the inverse transformations, u, v denote the forward and backward displacements and

ũ, ṽ denote the inverse displacements respectively. An illustration of the various trans-

formations can be seen in Figure 5.1 The full minimisation problem was then split into

two sub-problems corresponding to the forward and backward registration problems
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Figure 5.1: Illustration of the four transformations as seen in (5.5).

(a) Bad mesh of the transformation ϕ obtained
from the standard di�usion model:

Qmin = −0.245.

(b) Good mesh obtained from the new inverse
consistent model: Qmin = 0.114.

Figure 5.2: Comparison of two registration meshes for Example 2 as shown in
Figure 5.3 for the same parameters α = 1

25 and β = 104 (See �5.4).

respectively. This resulted in (5.5) being written in the following way
min
u

{
EIC1 (u,v) =

1

2

∫
Ω
|Tu −R|2 + α |∇u|2 + β |u− ṽ|2 dΩ

}
, ṽ(x) = ψ−1(x)− x,

min
v

{
EIC2 (u,v) =

1

2

∫
Ω
|Rv − T |2 + α |∇v|2 + β |v − ũ|2 dΩ

}
, ũ(x) = ϕ−1(x)− x.

(5.6)

We remark the explicit computation of the inverse displacements in (5.6) is a di�cult

and computationally expensive task owing to their non-linear nature. However, this

kind of model is e�ective at preventing mesh folding as is illustrated in Figure 5.2

where the mesh problem in Figure 5.2(a) is �xed by the model in Figure 5.2(b). We

are motivated to overcome the di�culty of computing the inverse displacements ũ and

ṽ directly, to do this we propose to replace these terms with linear approximations.

115



This simpli�cation allows us to remove the additional non-linearities from the inverse

consistent terms, leaving only the non-linearities seen in di�usion type models, while still

retaining the advantages of the inverse consistent model. We know the transformations

ϕ, ψ, and their inverses ϕ−1, ψ−1, should satisfy the following relations

ϕ−1
(
ϕ(x)

)
= x, ψ−1

(
ψ(x)

)
= x.

Expanding out leads to the following equalitiesϕ−1
(
ϕ(x)

)
= ϕ(x) + ũ

(
ϕ(x)

)
= x+ u(x) + ũ

(
x+ u(x)

)
= x,

ψ−1
(
ψ(x)

)
= ψ(x) + ṽ

(
ψ(x)

)
= x+ v(x) + ṽ

(
x+ v(x)

)
= x

which can be reduced to u(x) + ũ
(
x+ u(x)

)
= 0,

v(x) + ṽ
(
x+ v(x)

)
= 0.

(5.7)

By using a Taylor expansion on the arguments of ũ, ṽ in (5.7), we can obtain the

approximations ũ
(
x+ u(x)

)
≈ ũ(x),

ṽ
(
x+ v(x)

)
≈ ṽ(x).

(5.8)

Substituting (5.8) into (5.7), we getu(x) ≈ −ũ(x),

v(x) ≈ −ṽ(x)
(5.9)

and using (5.9) in (5.5), we have

min
u,v

{
EIC

(
u,v

)
=

1

2

∫
Ω
|Tu −R|2 + |Rv − T |2 + α

[
|∇u|2 + |∇v|2

]
+ β

[
|u+ v|2 + |v + u|2

]
dΩ

≡ gIC
(
x,u,v,∇u,∇v

)}
(5.10)

which results in the following split formulation by alternating minimisation
min
u

{
EIC1 (u,v) =

1

2

∫
Ω
|Tu −R|2 + α |∇u|2 + β |u+ v|2 dΩ

}
,

min
v

{
EIC2 (u,v) =

1

2

∫
Ω
|Rv − T |2 + α |∇v|2 + β |v + u|2 dΩ

}
.

(5.11)
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Comparing this model with (5.5), we see the inverse displacements ũ and ṽ no longer

need to be computed directly, instead we need only use the displacements u and v.

To solve the minimisation problem (5.11), a discretise-optimise approach (for details

see [100, 101]) was used originally. However we instead propose to use an optimise-

discretise approach in addition to a fast NMG framework. This approach involves

solving the Euler-Lagrange (EL) equations corresponding to (5.11), and can be shown

to be given by −α∆um + Fm
(
u,v

)
= 0,

−α∆vm +Gm
(
u,v

)
= 0

(5.12)

with respective Neumann boundary conditions

∇um · n = 0, ∇vm · n = 0

where n denotes the outward unit normal, and

Fm
(
u,v

)
= β

[
um + vm

]
+ ∂umTu

[
Tu −R

]
,

Gm
(
u,v

)
= β

[
vm + um

]
+ ∂vmRv

[
Rv − T

]
(5.13)

denote respectively the force terms for component m = 1, 2.

We remark the models in [26, 66, 113, 147], though involving more unknown �elds to

compute, can also be advantageous when the underlying deformation between T and R

is large (and by design the four �elds can be small or could be said to be half sized). In

this case, it will be of interest to develop fast multigrid methods for them.

5.2.1 Existence of a solution for model (5.10)

Now we prove the existence of solutions for the model (5.10) following the idea of [18] for

a similar proof in a related but di�erent model. Given the energy functional EIC(u,v)

de�ned in (5.10), we wish to show the solutions u∗, v∗ exist such that EIC
(
u∗,v∗

)
becomes minimal. To do this we use the direct method [40] as in [18], consisting of the

following steps:

(i) Take the minimising sequences {uk,vk} for EIC ;

(ii) Show the sequences {uk,vk} admit subsequences {ukm ,vkm} which converge to a

solution
(
u∗,v∗

)
∈ χ in the weak topology, where χ denotes some function space;

(iii) Show the energy functional EIC is lower semi-continuous.

Before outlining the proof, we �rst review some necessary theory we use shortly. We

begin by introducing three assumptions which will be used throughout the remainder

of this proof:
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(i) A1. Assume α = β = 2 for simplicity;

(ii) A2. Assume the image domain Ω has a C1 boundary which is denoted by ∂Ω;

(iii) A3. Assume R, T ∈ C.

Remark 5.2.1. Assumptions A2 and A3 are important in order for us to implement
the necessary theory for the existence proof. However in practice, images R and T are
usually de�ned in a square domain (with corners) and may not be smooth as functions.
We can still deal with this situation. For A2, we may either smooth the corners of a
square domain or consider an enlarged domain which embeds the given square domain.
For A3, if the images R and T are non-smooth, then we would typically use a convo-
lution to produce smooth versions of the original non-smooth images; thus assumption
A3 would then be reasonable.

Second, de�ne the function space χ by the following

χ := W 1,2
(
Ω,R2

)
×W 1,2

(
Ω,R2

)
equipped with the norm∣∣(u,v)∣∣

χ
= |u|

W 1,2
(

Ω,R2
) × |v|

W 1,2
(

Ω,R2
) .

Remark 5.2.2. Here we remark the function space χ is re�exive, this means there exist
subsequences which converge in the weak topology. Or, in other words, given the bounded
sequences (

xk, yk
)
∈ χ

then there exist subsequences xkm , ykm such that

Φ
(
xkm , ykm

)
→ Φ

(
xk, yk

)
∀Φ ∈ χ.

Third, de�ne the following admissible sets

A =

{
u ∈ A0 :

∣∣∣∣∫
Ω
u(x) dΩ

∣∣∣∣ ≤ vol(Ω)
(
M + diam(Ω)

)}
,

B =

{
v ∈ B0 :

∣∣∣∣∫
Ω
v(x) dΩ

∣∣∣∣ ≤ vol(Ω)
(
N + diam(Ω)

)}
(5.14)

where

A0 =
{
u ∈W 1,2

(
Ω,R2

)}
, B0 =

{
v ∈W 1,2

(
Ω,R2

)}
and M, N ∈ R are some constants.

De�nition 5.2.3 (Generalised Poincaré Inequality). Let 1 ≤ p ≤ ∞ and Ω be a bounded
connected open subset of Rn with a Lipschitz boundary, then there exists some constant
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C ∈ R which depends only on p and Ω so for every function u ∈W 1,2
(
Ω
)

|∇u|Lp(Ω) ≥ C |u− uΩ|Lp(Ω)

where

uΩ =
1

|Ω|

∫
Ω
u dΩ.

Lemma 5.2.4 (General Lower Semi-Continuity). In the image domain Ω ∈ R2, suppose

f : Ω→ R2 × Rn → [0,∞)

is a continuously di�erentiable function and f
(
·,y, ξ

)
is measurable for every(

y, ξ
)
∈ R2 × Rn.

Also suppose f
(
x,y, ·

)
is convex and

yk → y in Lp
(
Ω,R2

)
and ξk → ξ in Lp

(
Ω,Rn

)
for p ≥ 1.

Then the following result holds

lim
k→∞

{
inf

{∫
Ω
f
(
x,yk(x), ξk(x)

)
dΩ

}}
≥
∫

Ω
f
(
x,y(x), ξ(x)

)
dΩ

Lemma 5.2.5 (Coercity Condition). Let the assumptions A1 and A2 from earlier hold,
then the inverse consistent model (5.10) satis�es the coercity condition. In other words,
there exist constants 0 < C, K ∈ R such that ∀u ∈ A, v ∈ B the following inequality
holds

EIC(u,v) ≥ K + C

[
|u|2

W 1,2
(

Ω,R2
) + |v|2

W 1,2
(

Ω,R2
)]

where A, B are the admissible sets de�ned in (5.14).

Proof. Suppose we have some arbitrary transformations u ∈ A, v ∈ B, then we have

EIC(u,v) =

∫
Ω

1

2

[
|Tu −R|2 + |Rv − T |2

]
+ |∇u|2 + |∇v|2

+ |u+ v|2 + |v + u|2 dΩ

≥
∫

Ω
|∇u|2 + |∇v|2 dΩ (5.15)

since

|Tu −R|2 ≥ 0, |Rv − T |2 ≥ 0, |u+ v|2 ≥ 0, |v + u|2 ≥ 0.

Then, as a result of assumption A2, we can use the generalised Poincaré inequality
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(De�nition 5.2.3) to get

|∇u|2L2 ≥ C1 |u|2L2 − C1 |Ω|
[

1

|Ω|

∣∣∣∣∫
Ω
u dΩ

∣∣∣∣]2

where C1 ∈ R is some constant. Since we know u ∈ A and∣∣∣∣∫
Ω
u dΩ

∣∣∣∣ ≤ vol(Ω)
(
M + diam(Ω)

)
then we also know there exists some K1 ∈ R such that

|∇u|2L2 ≥ K1 + C1 |u|2L2 .

Using an analogous argument, and the fact v ∈ B with∣∣∣∣∫
Ω
v dΩ

∣∣∣∣ ≤ vol(Ω)
(
N + diam(Ω)

)
we can show there exist C2,K2 ∈ R such that the following inequality holds

|∇v|2L2 ≥ K2 + C2 |v|2L2 . (5.16)

Then introducing the new constants C, K ∈ R, and combining (5.15)-(5.16), we get

EIC(u,v) ≥ K + C

[
|u|2

W 1,2
(

Ω,R2
) + |v|2

W 1,2
(

Ω,R2
)]

and so the coercity condition holds.

Finally, in order for a solution to the inverse consistent model (5.10) to exist, the

following existence theorem must hold

Theorem 5.2.6. Given the assumptions A1-A3 hold, then the model (5.10) with energy
functional EIC(u,v) possesses at least one minimiser

(
u∗,v∗

)
, u∗ ∈ A, v∗ ∈ B.

Proof. We begin by constructing the minimising sequences {uk,vk} such that

lim
k→∞

{
EIC

(
uk,vk

)}
= inf
u∈A,v∈B

{
EIC(u,v)

}
given the energy functional EIC is positive and has a lower bound 0. Moreover, the
energy functional EIC

(
x,x

)
is �nite. Then, using Lemma 5.2.5, for each n we have

M ≥ EIC
(
uk,vk

)
≥ K + C

[
|u|2

W 1,2
(

Ω,R2
) + |v|2

W 1,2
(

Ω,R2
)]

and so the sequences {uk,vk} are bounded in the function space χ. Since we know
the function space χ is re�exive (Remark 5.2.2), then this implies there exist some
subsequences {ukm ,vkm} which converge to

(
u∗,v∗

)
in the weak topology. Now we see(

ukm ,vkm
)
→
(
u∗,v∗

)
(5.17)
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in the space W 1,2 implies (5.17) also holds in the L2 space owing to the fact W 1,2 is
compactly embedded in the L2 space i.e. W 1,2 ⊂⊂ L2 [45]. From assumption A2
we know the function gIC , de�ned in (5.10), is convex for �xed x, u, v, continuously
di�erentiable and measurable in x for �xed(

u,v,∇u,∇v
)
∈ R2 × R2 × R2×2 × R2×2.

Therefore, using Lemma 5.2.4, we can say the functional EIC is weakly lower semi-
continuous. In other words we have

lim
k→∞

{
inf

{∫
Ω
gIC
(
x,ukm ,vkm ,∇ukm ,∇vkm

)
dΩ

}}
≥
∫

Ω
gIC
(
x,u,v,∇u,∇v

)
dΩ.

Thus we have

inf
u∈A,v∈B

{
EIC(u,v)

}
= lim

k→∞

{
EIC

(
ukm ,vkm

)}
≥ EIC

(
u∗,v∗

)
≥ inf
u∈A,v∈B

{
EIC(u,v)

}
.

Therefore, the solution
(
u∗,v∗

)
is a minimiser of the energy functional EIC .

Remark 5.2.7. Here we note this proof can also be used to show the existence of
solutions for the original Christensen-Johnson model (5.5) using a slight modi�cation
in (5.15).

5.2.2 Discretisation of the inverse consistent model (5.12)

To solve the system of EL equations (5.12), we look to obtain a numerical approximation.

We do this by discretising the image domain Ωh into a uniform n×n mesh, with interval

width

h =
1

n− 1

and then using a �nite di�erence (FD) method.

Remark 5.2.8. In general we need not discretise Ωh using a square mesh, and can
instead be discretised using a n × m mesh where n 6= m. However it is common for
lung CT slices to be square, and for this reason we work with a square mesh (by taking
m = n).

Doing this, in addition to using a lexicographic ordering of the discrete grid points (i, j),

we obtain the following discrete versions of (5.12)−α
(
∆huhm

)
k

+
(
Fm(uh,vh)

)
k

= 0,

−α
(
∆hvhm

)
k

+
(
Gm(uh,vh)

)
k

= 0
(5.18)
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where (
∆huhm

)
k
≈ 1

h2

[(
uhm
)
k−n +

(
uhm
)
k−1
− 4
(
uhm
)
k

+
(
uhm
)
k+1

+
(
uhm
)
k+n

]
and similar for

(
∆hvhm

)
k
, also with the following discrete force terms(

Fm(uh,vh)
)
k

= β
[(
uhm
)
k

+
(
vhm
)
k

]
+
(
∂humT

h
u

)
k

[(
T hu
)
k
−
(
Rh
)
k

]
,(

Gm(uh,vh)
)
k

= β
[(
vhm
)
k

+
(
uhm
)
k

]
+
(
∂hvmR

h
v

)
k

[(
Rhv
)
k
−
(
T h
)
k

]
(5.19)

where (
∂hu1T

h
u

)
k
≈ 1

2h

[(
T hu
)
k+1
−
(
T hu
)
k−1

]
,
(
∂hu2T

h
u

)
k
≈ 1

2h

[(
T hu
)
k+n
−
(
T hu
)
k−n

]
,(

∂hv1R
h
v

)
k
≈ 1

2h

[(
Rhv
)
k+1
−
(
Rhv
)
k−1

]
,
(
∂hv2R

h
v

)
k
≈ 1

2h

[(
Rhv
)
k+n
−
(
Rhv
)
k−n

]
for

k = (j − 2)(n− 1) + (i− 1)

for m = 1, 2 and i, j = 2, . . . , n− 1. There exits a wide selection of potential methods

which we could use to solve the discrete system of equations (5.18). Some examples

include the Newton method [19], the time-marching method [47�49, 72, 74, 90, 100] and

the additive operator splitting (AOS) method [100,139]. However for highly non-linear

equations, like the ones in (5.18), it can be di�cult to ensure these methods converge

to a solution. Moreover, for large images, using such methods to solve (5.18) on a

single level is extremely expensive computationally. Furthermore owing to the inverse

consistent model requiring the simultaneous computation of the forward and backward

problems, this expense is doubled. This problem is very common within variational

models however, and as such there has been a lot of research into the development of

NMG methods with the purpose of greatly reducing CPU cost in solving such problems

[33,52,68,72,73,117]. In particular we note the work done by Chumchob and Chen in [33]

where they developed a robust NMG framework for di�usion type models (although

their model cannot avoid mesh folding).

Now we propose to use a similar NMG framework applied to our inverse consistent

model. In addition we also perform a more accurate analysis of the NMG scheme

compared with the one presented in [33], in order to obtain a better measure of what is

required to achieve optimal convergence for the NMG scheme.

5.2.3 A non-linear multigrid framework

In this subsection we present our NMG framework based upon [33]. Multigrid methods

stem from two key observations:
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Algorithm 13
[
u
(k+1)
h ,v

(k+1)
h

]
← ICFASNMG(Rh, Th,n,h,u

(k)
h ,v

(k)
h ,Gh

1 ,G
h
2 , α, β, ν1, ν2)

1: Pre-smoothing step by performing ν1 steps to update uh, vh

ũ
(k)
h ← Smooth(Rh, Th,u

(k)
h ,Gh1 , α, β, ν1), ṽ

(k)
h ← Smooth(Rh, Th,v

(k)
h ,Gh2 , α, β, ν1)

2: Coarse grid correction

Compute the residuals r
(k)
1h = Gh1 −Nh

1 [u
(k)
h , ṽ

(k)
h ], r

(k)
2h = Gh2 −Nh

2 [v
(k)
h , ũ

(k)
h ]

Restrict residuals and smooth approximations r
(k)
mH = RHh r

(k)
mh, ũ

(k)
H = RHh ũ

(k)
h , ṽ

(k)
H = RHh ṽ

(k)
h

Set H = 2h
Form RHS of coarse grid PDEs GH1 = rH1 +NH

1 [ũ
(k)
H , ṽ

(k)
H ], GH2 = rH2 +NH

2 [ũ
(k)
H , ṽ

(k)
H ]

3: Solve to obtain high accuracy solutions u
(k)
H , v

(k)
H using a coarsest grid solver.

Compute the corrections e
(k)
1H = u

(k)
H − ũ(k)

H , e
(k)
2H = v

(k)
H − ṽ(k)H

Interpolate the corrections to the original �ne grid level e
(k)
1h = IhHe

(k)
1H , e

(k)
2h = IhHe

(k)
2H

Update current grid level approximations using correction û
(k)
h = ũ

(k)
h + e

(k)
1h , v̂

(k)
h = ṽ

(k)
h + e

(k)
2h

4: Post-smoothing step by performing ν2 steps

u
(k+1)
h ← Smooth(Rh, Th, û

(k)
h ,Gh1 , α, β, ν2), v

(k+1)
h ← Smooth(Rh, Th, v̂

(k)
h ,Gh2 , α, β, ν2)

(i) Iterative solvers, such as the Gauss-Seidel method, are e�ective at removing (smooth-

ing) high frequency error components within a small number of iterations. Low

frequency error components dominate convergence rates;

(ii) Smooth errors (low frequency) are well approximated on coarser grids. Coarser

grids have fewer unknowns making it feasible to do a larger number of iterations

without increasing the overall cost.

Using these observations, we can restrict our problem on a �ne grid to a much coarser

grid, by alternating both smoothing and coarsening steps. On this very coarse grid, we

are able to obtain a much more accurate approximation in signi�cantly less time, and

from this accurate approximation we can interpolate back up to our original �ne grid to

obtain an approximation to the original problem. Now we brie�y outline our proposed

`full approximation scheme' NMG (FAS-NMG) algorithm (see [9] for details) within the

two-grid setting. We begin by denoting the original �ne grid by Ωh and the coarse grid

by ΩH with intervals

h =
(
h1, h1

)
=

(
1

n− 1
,

1

n− 1

)
, H = 2h

respectively. Next we write the PDEs from (5.18) using the following operator notationN h
1 [uh,vh] = Gh1 ,

N h
2 [uh,vh] = Gh2

where N h
m and Ghm (m = 1, 2) are sized 2 vectors consisting of the non-linear LHS

and initial zero RHS of the discrete EL equations (5.18) for uh, vh respectively. Then

the FAS-NMG framework, in the two-grid setting, is shown in Algorithm 13. This

Algorithm 13 can be re�ned on its coarse grid to recursively interact with increasingly
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coarser grids until a desired level is reached (e.g. 8× 8), thus leading to the full V-cycle

scheme.

Of the three main steps in the NMG framework (smoothing, coarse grid solution, cor-

rection), the smoothing step is the most crucial to the convergence of the scheme. As

was highlighted by O2, only `smooth' errors can be approximated on a coarser grid,

thus any remaining high frequency error components can no longer be removed once the

problem has been restricted to a coarser grid (where high frequency error components

from the �ne grid are not present or visible). This in turn means the NMG will take

longer to converge in addition to being less accurate.

5.2.4 Three collective pointwise smoothers for (5.18)

Here we present three di�erent smoother schemes to be used in our NMG scheme.

First pointwise smoother (S1). For our �rst smoother we consider the simplest

type of smoother scheme to solve the system (5.18), namely we use each equation to

update each displacement independently. We do this by using the following �xed point

iteration scheme −α
(
∆huhm

)(l+1)

k
+
(
Fm(uh,vh)

)(l+1)

k
= 0,

−α
(
∆hvhm

)(l+1)

k
+
(
Gm(uh,vh)

)(l+1)

k
= 0

(5.20)

where (
F1(uh,vh)

)(l+1)

k
= β

[(
uh1
)(l+1)

k
+
(
vh1
)(l)
k

]
−
(
∂hu1T

h
u

)(l)
k

[(
T h(x1 + u

(l+1)
1 , x2 + u

(l)
2 )
)
k
−
(
Rh
)
k

]
,

(
F2(uh,vh)

)(l+1)

k
= β

[(
uh2
)(l+1)

k
+
(
vh2
)(l)
k

]
−
(
∂hu2T

h
u

)(l)
k

[(
T h(x1 + u

(l)
1 , x2 + u

(l+1)
2 )

)
k
−
(
Rh
)
k

]
,

big(G1(uh,vh)
)(l+1)

k
= β

[(
vh1
)(l+1)

k
+
(
uh1
)(l)
k

]
−
(
∂hv1R

h
v

)(l)
k

[(
Rh(x1 + v

(l+1)
1 , x2 + v

(l)
2 )
)
k
−
(
T h
)
k

]
,

(
G2(uh,vh)

)(l+1)

k
= β

[(
vh2
)(l+1)

k
+
(
uh2
)(l)
k

]
−
(
∂hv2R

h
v

)(l)
k

[(
Rh(x1 + v

(l)
1 , x2 + v

(l+1)
2 )

)
k
−
(
T h
)
k

]
. (5.21)

Now in order to deal with the non-linearities in the force terms of (5.20), we use the

same treatment which was used in [33], namely we linearise the force terms using �rst

124



order Taylor expansions. Replacing the non-linear force terms in (5.20), with their �rst

order approximations, leads to the following smoother scheme at step (l) to update the

(l + 1) terms

−α
(
∆huhm

)(l+1)

k
+ β

[(
uhm
)(l+1)

k
+
(
vhm
)(l)
k

]
+
(
∂humT

h
u

)(l)
k

[(
T hu
)(l)
k

+
(
∂humT

h
u

)(l)
k

[(
uhm
)(l+1)

k
−
(
uhm
)(l)
k

]
−
(
Rh
)
k

]
= 0,

−α
(
∆hvhm

)(l+1)

k
β
[(
vhm
)(l+1)

k
+
(
uhm
)(l)
k

]
+
(
∂hvmR

h
v

)(l)
k

[(
Rhv
)(l)
k

+
(
∂hvmR

h
v

)(l)
k

[(
vhm
)(l+1)

k
−
(
vhm
)(l)
k

]
−
(
T h
)
k

]
= 0

(5.22)

where (
T hu
)(l)
k
≡
(
T h(x1 + u

(l)
1 , x2 + u

(l)
2 )
)
k

etc. for m = 1, 2. In order to compute the (l+1) terms in (5.22), we use a lexicographic

Gauss-Seidel (GSLEX) based method.

Second pointwise smoother (S2). Following the smoother scheme proposed by

Chumchob and Chen [33], for our second proposed smoother we fully couple all four

PDEs together by using a similar scheme to (5.20) and new �xed point linearisations

as followed(
F1(uh,vh)

)(l+1)

k
= β

[(
uh1
)(l+1)

k
+
(
vh1
)(l+1)

k

]
−
(
∂hu1T

h
u

)(l)
k

[(
T hu
)(l+1)

k
−
(
Rh
)
k

]
,(

F2(uh,vh)
)(l+1)

k
= β

[(
uh2
)(l+1)

k
+
(
vh2
)(l+1)

k

]
−
(
∂hu2T

h
u

)(l)
k

[(
T hu
)(l+1)

k
−
(
Rh
)
k

]
,

(
G1(uh,vh)

)(l+1)

k
= β

[(
vh1
)(l+1)

k
+
(
uh1
)(l+1)

k

]
−
(
∂hv1R

h
v

)(l)
k

[(
Rhv
)(l+1)

k
−
(
T h
)
k

]
,(

G2(uh,vh)
)(l+1)

k
= β

[(
vh2
)(l+1)

k
+
(
uh2
)(l+1)

k

]
−
(
∂hv2R

h
v

)(l)
k

[(
Rhv
)(l+1)

k
−
(
T h
)
k

]
. (5.23)

Next we linearise the force terms (5.23) by applying Taylor approximations to the

discrete force terms (5.23), this results in the following smoother scheme to update the

(l + 1) terms at step (l)

−α
(
∆huhm

)(l+1)

k
+ β

[(
uhm
)(l+1)

k
+
(
vhm
)(l+1)

k

]
+
(
∂humT

h
u

)(l)
k

[(
T hu
)(l)
k

+

2∑
s=1

(
∂husT

h
u

)(l)
k

[(
uhs
)(l+1)

k
−
(
uhs
)(l)
k

] (
Rh
)
k

]
= 0,

−α
(
∆hvhm

)(l+1)

k
+ β

[(
vhm
)(l+1)

k
+
(
uhm
)(l+1)

k

]
+
(
∂hvmR

h
v

)(l)
k

[(
Rhv
)(l)
k

+

2∑
s=1

(
∂hvsR

h
v

)(l)
k

[(
vhs
)(l+1)

k
−
(
vhs
)(l)
k

] (
T h
)
k

]
= 0

(5.24)
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for m = 1, 2. Similar to S1, we use a GSLEX based method on (5.24) to update the

(l + 1) terms.

Third pointwise smoother (S3). The above 4 × 4 (5.24) system, which must be

solved at every discrete interior point in (5.24), is computationally expensive especially

in the case of large images. For this reason we propose an alternate, simpli�ed version

of S2 whch still maintains some coupling within the equations. We propose to use a

similar scheme to (5.20), except now we have the following force terms with �xed points

speci�ed di�erently(
F1(uh,vh)

)(l+1)

k
= β

[(
uh1
)(l+1)

k
+
(
vh1
)(l+1)

k

]
−
(
∂hu1T

h
u

)(l)
k

[(
T h(x1 + u

(l+1)
1 , x2 + u

(l)
2 )
)
k
−
(
Rh
)
k

]
,

(
F2(uh,vh)

)(l+1)

k
= β

[(
uh2
)(l+1)

k
+
(
vh2
)(l+1)

k

]
−
(
∂hu2T

h
u

)(l)
k

[(
T h(x1 + u

(l)
1 , x2 + u

(l+1)
2 )

)
k
−
(
Rh
)
k

]
,

(
G1(uh,vh)

)(l+1)

k
= β

[(
vh1
)(l+1)

k
+
(
uh1
)(l+1)

k

]
−
(
∂hv1R

h
v

)(l)
k

[(
Rh(x1 + v

(l+1)
1 , x2 + v

(l)
2 )
)
k
−
(
T h
)
k

]
,

(
G2(uh,vh)

)(l+1)

k
= β

[(
vh2
)(l+1)

k
+
(
uh2
)(l+1)

k

]
−
(
∂hv2R

h
v

)(l)
k

[(
Rh(x1 + v

(l)
1 , x2 + v

(l+1)
2 )

)
k
−
(
T h
)
k

]
. (5.25)

Again, after using Taylor approximations to linearise (5.25), at iteration step (l) we

have the following smoother scheme which we use to compute the (l + 1) updates

−α
(
∆huhm

)(l+1)

k
+ β

[(
uhm
)(l+1)

k
+
(
vhm
)(l+1)

k

]
+
(
∂humT

h
u

)(l)
k

[(
T hu
)(l)
k

+
[(
uhm
)(l+1)

k
−
(
uhm
)(l)
k

](
∂humT

h
u

)(l)
k
−
(
Rh
)
k

]
= 0,

−α
(
∆hvhm

)(l+1)

k
β
[(
vhm
)(l+1)

k
+
(
uhm
)(l+1)

k

]
+
(
∂hvmR

h
v

)(l)
k

[(
Rhv
)(l)
k

+
[(
vhm
)(l+1)

k
−
(
vhm
)(l)
k

](
∂hvmR

h
v

)(l)
k
−
(
T h
)
k

]
= 0

(5.26)

for m = 1, 2. As we did for S1 and S2, we use a scheme based upon a GSLEX method

to compute the (l + 1) updates in (5.26).
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5.3 Analysis for the NMG algorithm

As we mentioned at the end of �5.2.3, the e�ectiveness of the smoother scheme has

a severe impact on the convergence of the NMG scheme. In order to determine how

e�ective a given smoother scheme is within the NMG framework, we look to compute the

so called `smoothing rate' of the scheme which gives us an insight into how e�ectively

the chosen smoother removes high frequency error components. However, before we

look at computing the smoothing rates of our three proposed smoothers from �5.2.4,

we must �rst determine whether each of the proposed smoothers are suitable for use

as pointwise error smoothing procedures. To do this we must compute the h-ellipticity

for each of the proposed smoothers. For both calculations (i.e. smoothing rates and

h-ellipticity values) we can use local Fourier analysis or LFA.

5.3.1 Local Fourier analysis (LFA)

In order to analyse the h-ellipticity and smoothing rate of a given smoother scheme,

we can use a technique called LFA. Originally LFA was designed to only analyse the

smoothing properties of discrete linear operators, however the work done by A. Brandt

[9] proposed to locally `freeze' the coe�cients of non-linear operators thus enabling the

use of LFA for non-linear operators such as those in (5.20). In LFA [25, 33], we begin

by considering our problem over an in�nite grid (thus removing any in�uence from the

boundary conditions), and then assuming the discrete form of a variable non-linear

operator can be replaced locally by a constant linear operator and extended to this

in�nite grid, which we de�ne as followed

Ω∞h :=
{
x ∈ Ω: x =

(
x1, x2

)T
=
(
ih, jh

)T for i, j ∈ Z+
}

(5.27)

with grid interval h de�ned by

h = (h, h) =

(
1

n− 1
,

1

n− 1

)
.

In addition let us also de�ne the grid functions

Φh
(
x,θ

)
= exp

(
iθ · x
h

)
where

θ =
(
θ1, θ2

)T ∈ Θ = [−π, π)2 , x ∈ Ω∞h , i =
√
−1.
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Moreover, when we apply a discrete linear operator Lh to the grid functions Φh
(
x,θ

)
,

we get the following

LhΦh
(
x,θ

)
= L̂h

(
θ
)
Φh
(
x,θ

)
where L̂h

(
θ
)
denotes the Fourier symbol of the linear operator Lh (see [131,141]).

5.3.2 H-ellipticity measure for the proposed smoothers

For e�ective smoother schemes, the measure of the h-ellipticity is a key component

which must be considered. This measure is used to ascertain whether a given smoother

scheme, such as those we outlined in �5.2.4, are su�cient for use as pointwise error

smoothing procedures for the given discrete operator within a multigrid framework. If

not, one must consider line or block smoothers or a reformulation of the problem.

We now demonstrate our proposed smoothers from �5.2.4 can be constructed for the

given discrete operator, and can therefore be used in our proposed NMG scheme. To

do this we use a similar calculation to those shown in [33,68,86,131,141] applied to the

smoother schemes (5.22), (5.24) and (5.26) at some given outer iteration step.

H-ellipticity for smoother S1. We begin by writing (5.22) in the following operator

form

Lh1wh = Gh (5.28)

with

Lh1 =


−α∆h + σh11 + β 0 0 0

0 −α∆h + σh22 + β 0 0

0 0 −α∆h + τh11 + β 0

0 0 0 −α∆h + τh22 + β

,

Gh =


gh1 − F1

(
uh,vh

)
gh2 − F2

(
uh,vh

)
gh3 −G1

(
uh,vh

)
gh4 −G2

(
uh,vh

)

 , wh =


uh1
uh2
vh1
vh2

 (5.29)

and where

Fm
(
uh,vh

)
=
(
∂humT

h
u

)2
uhm − βvhm −

(
∂humT

h
u

)[
T hu −Rh

]
,

Gm
(
uh,vh

)
=
(
∂hvmR

h
v

)2
vhm − βuhm −

(
∂hvmR

h
v

)[
Rhv − T h

]
,

σhpq =
(
∂hupT

h
u

)(
∂huqT

h
u

)
, τhpq =

(
∂hvpR

h
v

)(
∂hvqR

h
v

)
(5.30)

for m, p, q = 1, 2. Since LFA is a local method for a non-linear problem, we apply the

analysis separately to each individual grid point. This then leads to a local discrete
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system which is only de�ned within a small neighbourhood of the discrete grid point

(i, j). Applying our discrete linear operator Lh1 to the grid functions Φh
(
x,θ

)
yields

the following

Lh1Φh
(
x,θ

)
= L̂h1

(
θ
)
Φh
(
x,θ

)
where L̂h1

(
θ
)
denotes the Fourier symbol of the operator Lh1 , and is given by

L̂h1
(
θ
)

=


σh11 + ah 0 0 0

0 σh22 + ah 0 0

0 0 τh11 + ah 0

0 0 0 τh22 + ah


with

ah = β − αL̂ h
(
θ
)

(5.31)

and L̂ h
(
θ
)
denoting the Fourier symbol of the discrete Laplace operator ∆h. Then,

the h-ellipticity measure is calculated from the following

E h
1

(
Lh1
)

=
min

{∣∣∣det
(
L̂h1
(
θ
))∣∣∣ : θ ∈ Θhigh

}
max

{∣∣∣det
(
L̂h1
(
θ
))∣∣∣ : θ ∈ Θ

} (5.32)

where

Θ = [−π, π)2 , Θhigh = Θ\
[
−π

2
,
π

2

)2
.

It can be shown

det
(
L̂h
(
θ
))

= α4
(
L̂ h
(
θ
))4 − α3

(
d1 + c1

)(
L̂ h
(
θ
))3

+α2
(
d2 + c1d1 + c2

)(
L̂ h
(
θ
))2 − α(c1d2 + c2d1

)(
L̂ h
(
θ
))

+ c2d2

where

c1 = σh11 + σh22 + 2β, c2 = σh11σ
h
22 + β

(
σh11 + σh22

)
+ β2,

d1 = τh11 + τh22 + 2β, d2 = τh11τ
h
22 + β

(
τh11 + τh22

)
+ β2. (5.33)

From [33], it was shown

−L̂ h
(
θ
)

=
2

h2

[
2−

(
cos θ1 + cos θ2

)]
,

min
θ∈Θhigh

{(
− L̂ h

(
θ
))}

=
2

h2
, max
θ∈Θ

{(
− L̂ h

(
θ
))}

=
8

h2
. (5.34)
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Thus (5.32) becomes

E h
1

(
Lh1
)

=

[
16α4

h8
+

8α3
(
d1+c1

)
h6

+
4α2
(
d+c1d1+c2

)
h4

+
2α
(
c1d2+c2d1

)
h2

+ c2d2

]
[

4096α4

h8
+

512α3
(
d1+c1

)
h6

+
64α2

(
d+c1d1+c2

)
h4

+
8α
(
c1d2+c2d1

)
h2

+ c2d2

]

=

[
16α4 + 8α3

(
d1 + c1

)
h2 + 4α2

(
d+c1d1 + c2

)
h4

+ 2α
(
c1d2 + c2d1

)
h6 + c2d2h

8

]
[

4096α4 + 512α3
(
d1 + c1

)
h2 + 64α2

(
d+c1d1 + c2

)
h4

+ 8α
(
c1d2 + c2d1

)
h6 +

(
c2d2

)
h8

]
and so, taking the limit as h→ 0, we get

lim
h→0

{
E h

1

(
Lh1
)}

=
1

256
. (5.35)

From this result, we can conclude the h-ellipticity measure is always bounded away

from 0 regardless of the values of α, β, h, σhpq, τ
h
pq for p, q = 1, 2. Or in other words, the

results do not depend on the given images R, T , the choice of parameters α, β or the

mesh interval h. Therefore we conclude smoother S1 is su�cient for use as a pointwise

error smoothing procedure.

H-ellipticity for smoother S2. Now we repeat the h-ellipticity calculation procedure

for smoother S2.

Similar to smoother S1, we get the following Fourier symbol for the operator Lh2

L̂h2
(
θ
)

=


σh11 + ah σh12 β 0

σh12 σh22 + ah 0 β

β 0 τh11 + ah τh12

0 β τh12 τh22 + ah


where ah is as de�ned in (5.31), L h

(
θ
)
again denotes the Fourier symbol of ∆h and

σhpq, τ
h
pq are as in (5.30). Then we compute the h-ellipticity for Lh2 using

E h
2

(
Lh2
)

=
min

{∣∣∣det
(
L̂h2
(
θ
))∣∣∣ : θ ∈ Θhigh

}
max

{∣∣∣det
(
L̂h2
(
θ
))∣∣∣ : θ ∈ Θ

} . (5.36)
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Simplifying the determinant we get

det
(
L̂h2
(
θ
))

=
(
σh11 + a

)(
σh22 + a

)(
τh11 + a

)(
τh22 + a

)
−
(
σh11 + a

)(
σh22 + a

)(
τh12

)2 − (τh11 + a
)(
τh22 + a

)(
σh12

)2
−
(
σh11 + a

)(
τh22 + a

)
β2 −

(
σh22 + a

)(
τh22 + a

)
β2

+
(
σh12

)2(
τh12

)2 − 2σh12τ
h
12β

2 + β4

= α4
(
L̂ h
(
θ
))4 − α3

(
d1 + c1

)(
L̂ h
(
θ
))3

+ α2
(
d2 + c1d1 + c2 − c5 − d5 + 2β2

)(
L̂ h
(
θ
))2

− α
(
c1d2 + c2d1 + c3 + d3 + c1d5 + d1c5

)(
L̂ h
(
θ
))

+ c2d2 + c4 + d5 − d2c5 − c2d5 + c5d5 + 2β4

where c1, c2, d1, d2 are as in (5.33), and

c3 = β2
[
σh11 + τh11 + 2β

]
, c4 = β2

[
β2 + β

(
σh11 + τh11

)
+ σh11 + τh11

]
, c5 =

(
σh12

)2
,

d3 = β2
[
σh22 + τh22 + 2β

]
, d4 = β2

[
β2 + β

(
σh22 + τh22

)
+ σh22 + τh22

]
, d5 =

(
τh12

)2
. (5.37)

From the h-ellipticity calculation of smoother S1, we see the value of the limit (5.35)

as h→ 0 depends only on the coe�cient of the α4 term. Using this fact we obtain the

following

lim
h→0

{
E h

2

(
Lh2
)}

=
1

256

and so smoother S2 is also suitable for use as a pointwise error smoothing procedure.

H-ellipticity for smoother S3: Finally we once again repeat the h-ellipticity calcu-

lation, this time for our simpli�ed smoother S3. Doing so gives the following Fourier

symbol corresponding to the operator Lh3

L̂h3
(
θ
)

=


σh11 + ah 0 β 0

0 σh22 + ah 0 β

β 0 τh11 + ah 0

0 β 0 τh22 + ah


where ah is as de�ned in (5.31), L̂ h

(
θ
)
again denotes the Fourier symbol of the discrete

Laplace operator ∆h and σhpq, τ
h
pq are as de�ned in (5.30) for p, q = 1, 2. We compute

the h-ellipticity using the following

E h
3

(
Lh3
)

=
min

{∣∣∣det
(
L̂h3
(
θ
))∣∣∣ : θ ∈ Θhigh

}
max

{∣∣∣det
(
L̂h3
(
θ
))∣∣∣ : θ ∈ Θ

} . (5.38)
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Again we can simplify the determinant in the following way

det
(
L̂h3
(
θ
))

=
(
σh11 + a

)(
σh22 + a

)(
τh11 + a

)(
τh22 + a

)
−
(
σh11 + a

)(
τh11 + a

)
β2 −

(
σh22 + a

)(
τh22 + a

)
β2 + β4

= α4
(
L̂ h
(
θ
))4 − α3

(
d1 + c1

)(
L̂ h
(
θ
))3

+ α2
(
d2 + c1d1 + c2 + 2β2

)(
L̂ h
(
θ
))2

− α
(
c1d2 + c2d1 + c3 + d3

)(
L̂ h
(
θ
))

+ c2d2 + c4 + d4 + β4

where c1, c2, d1, d2 are as given in (5.33) and c3, c4, 3, d4 are as given in (5.37). Then

again after taking the limit as h→ 0 of (5.38), we get the following

lim
h→0

{
E h

3

(
Lh3
)}

=
1

256
.

Thus we reach the same conclusion we did for the previous smoothers, namely the h-

ellipticity is always bounded away from 0, and so smoother S3 is su�cient for use as a

pointwise error smoothing procedure.

5.3.3 Smoother analysis of the proposed smoothers

We now consider how e�ective our smoother schemes from �5.2.4 are at removing high

frequency error components. The discrete residual error, as shown in �5.2.3, can be split

into the sum of low frequency error components (which can be well approximated on

a coarser grid) and high frequency error components (which disappear on coarser grids

due to aliasing). For this reason, one key aspect of the NMG framework is the removal

of all high frequency error components before we restrict to a coarser grid. We use LFA

to approximate the smoothing rate of a given smoother scheme, and from this we can

obtain an estimate of how many smoothing steps we need to remove the high frequency

components if we aim to reduce the error by 10−1 (typical in a NMG context).

LFA for smoother S1. We begin our calculation of the smoothing rate by writing

the discrete system (5.22) in the following way

Lh1wh +Mh
1w

h = Gh (5.39)

where Lh1 , wh, Gh are as de�ned in (5.29), and

Mh
1 =


−σh11 0 β 0

0 −σh22 0 β

β 0 −τh11 0

0 β 0 −τh22

 (5.40)
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with σhpq, τ
h
pq as in (5.30) for p, q = 1, 2. In addition we can re-write the discrete Laplace

operator as

∆h = L h
+ + L h

−

where L h
+, L h

− de�ne the following stencils

L h
+ =

1

h2

0 0 0

1 −4 0

0 1 0

 , L h
− =

1

h2

0 1 0

0 0 1

0 0 0

 (5.41)

and so, we can write (5.39) in the following way

Lh1 +u
h
new +Lh1−uhold +Mh

1u
h
old = Gh (5.42)

where we have denoted the current and previous approximations of uh, vh by uhnew, v
h
new

and uhold, v
h
old respectively, also with

Lh1 + =


ah + σh11 0 0 0

0 ah + σh22 0 0

0 0 ah + τh11 0

0 0 0 ah + τh22

 ,

Lh1− =


−αL h

− 0 0 0

0 −αL h
− 0 0

0 0 −αL h
− 0

0 0 0 −αL h
−

 (5.43)

also

ah = β − αL h
+

and whereMh
1 is as given in (5.40). Now subtracting (5.42) from (5.39) we can obtain

the local error equations given by[
Lh1 +

]
ehnew = −

[
Lh1− +Mh

1

]
ehold (5.44)

where

eh∗ =
[
eh1 ∗, e

h
2 ∗, e

h
3 ∗, e

h
4 ∗
]T
.

Then we expand the local errors in (5.44) using Fourier components to give

eh∗ =
∑
θ∈Θ

ψ∗θ exp
(
iλ1i+ iλ2j

)
(5.45)
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where ψ∗θ are Fourier coe�cients and

i =
√
−1, Θ = [−π, π)2 , λm =

2θmπ

h

for m = 1, 2. Using the Fourier component form of the errors in (5.45), we can re-write

the local error equation (5.44) in terms of these Fourier components. Doing so gives us

the following[
L̂h1 +

(
θ
)]
ψnewθ exp

(
iλ1i+ iλ2j

)
= −

[
L̂h1−

(
θ
)

+ M̂h
1

(
θ
)]
ψoldθ exp

(
iλ1i+ iλ2j

)
where

L̂h1 +

(
θ
)

=


ãh+ + σh11 0 0 0

0 ãh+ + σh22 0 0

0 0 ãh+ + τh11 0

0 0 0 ãh+ + τh22



L̂h1−
(
θ
)

=


ãh− 0 0 0

0 ãh− 0 0

0 0 ãh− 0

0 0 0 ãh−

 , M̂h
1

(
θ
)

=


−σh11 0 β 0

0 −σh22 0 β

β 0 −τh11 0

0 β 0 −τh22

 (5.46)

with

ãh+ = β +
4α

h2
− α

h2

(
e−iλ2 + e−iλ1

)
, ãh− = β +

4α

h2
− α

h2

(
eiλ2 + eiλ1

)
, λm =

2πθm
h

for m = 1, 2. Finally, we compute the local smoothing rate using the following

µloc ≡ µloc
(
θ
)

= sup
{
ρ
(
Ŝh1
(
θ
))

: θ ∈ Θhigh

}
(5.47)

where

Θhigh = Θ\
[
−π

2
,
π

2

)2

denotes the high frequency range, ρ
(
·
)
the spectral radius and Ŝh1

(
θ
)
the ampli�cation

matrix given by the following

Ŝh1
(
θ
)

= −
[
L̂h1 +

(
θ
)]−1 [

L̂h1−
(
θ
)

+ M̂h
1

(
θ
)]
.

LFA for smoother S2. Now we repeat the smoothing rate calculation we used for

smoother S1, but this time for smoother S2. Doing so we compute the local smoothing

rate from

µloc ≡ µloc
(
θ
)

= sup
{
ρ
(
Ŝh2
(
θ
))

: θ ∈ Θhigh

}
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with ampli�cation matrix

Ŝh2
(
θ
)

= −
[
L̂h2 +

(
θ
)]−1 [

L̂h2−
(
θ
)

+ M̂h
2

(
θ
)]

where L̂h2−
(
θ
)
is the same as L̂h1−

(
θ
)
from (5.46), and

L̂h2 +

(
θ
)

=


ãh+ + σh11 σh12 β 0

σh12 ãh+ + σh22 0 β

β 0 ãh+ + τh11 τh12

0 β τh12 ãh+ + τh22

 ,

M̂h
2

(
θ
)

=


−σh11 −σh12 0 0

−σh12 −σh22 0 0

0 0 −τh11 −τh12

0 0 −τh12 −τh22



Remark 5.3.1. We remark if we set β = 0, then the smoother analysis becomes similar
to the one shown in [33]. However the analysis in [33] led to an over-estimation of

the smoothing rate due to omitting the lagged displacements (as shown by the M̂h
2

(
θ
)

matrix), which resulted in an under-estimation of the number of smoother steps required
and thus a less e�ective NMG scheme.

LFA for smoother S3. Finally we repeat the smoothing rate calculation, this time

for smoother S3. We compute the local smoothing rate using the following

µloc ≡ µloc
(
θ
)

= sup
{
ρ
(
Ŝh3
(
θ
))

: θ ∈ Θhigh

}
with ampli�cation matrix

Ŝh3
(
θ
)

= −
[
L̂h3 +

(
θ
)]−1 [

L̂h3−
(
θ
)

+ M̂h
3

(
θ
)]

where L̂h3−
(
θ
)
is the same as L̂h1−

(
θ
)
from (5.46), and

L̂h3 +

(
θ
)

=


ãh+ + σh11 0 β 0

0 ãh+ + σh22 0 β

β 0 ãh+ + τh11 0

0 β 0 ãh+ + τh22

 ,

M̂h
3

(
θ
)

=


−σh11 0 0 0

0 −σh22 0 0

0 0 −τh11 0

0 0 0 −τh22

 .
Smoothing rate calculations. From Table 5.1 we see as the value of β increases, the

smoothing rate for smoother S1 gets closer to 1. For this reason we conclude smoother
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S1 S2 S3

α β µavg Tol 10−1 µavg Tol 10−1 µavg Tol 10−1

1
15 0 0.72942 8 0.73352 8 0.72942 8
1
15 102 0.79205 10 0.72972 8 0.72526 8
1
15 104 0.93335 34 0.73178 8 0.72545 8

Table 5.1: Comparison of the smoothing rates of the proposed smoothers S1�S3 for
parameters α = 1

15 and β = 0, 102, 104 after �ve inner and outer iterations on a
32× 32 grid for Example 2 as shown in Figure 5.3. For each smoother, the smoothing
rates and number of inner iterations required to reach an error reduction of 10−1 are

shown.

S1 is not suitable for use in the NMG framework, since this increase in smoothing rate

would require an unreasonable number of smoother steps for practical applications as

shown by the number of iterations required to reduce the error to a tolerance of 10−1

from Table 5.1. We also see the rates for smoothers S2 and S3 remain stable even

as the value of β increases, and owing to this stability, we see for both smoothers S2

and S3 8 smoother steps are su�cient to reduce the error to a reasonable level before

restriction.

5.3.4 Coarsest grid solvers

By using a NMG framework we are able to restrict our original problem on a large

grid to a very coarse grid (e.g. 8 × 8). On this coarsest grid our aim is to solve the

problem as accurately as possible, owing to the low computational cost, and so we need

a designated solver for use solely on this coarsest grid. Here we present two coarsest

grid solvers, based upon smoothers S2 and S3 from �5.2.4.

First proposed coarsest level solver C1. From �5.2.4, we know on the coarsest

grid we are looking to solve the system of equations shown in (5.24) with coarse grid

interval width H instead of the �ne grid interval width h. Equivalently we can express

the system (5.24) in the following matrix form

ĀHwH = F̄H (5.48)

where

ĀH ∈ R4(n−2)2×4(n−2)2 , wH , F̄H ∈ R4(n−2)2×1
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are given by

ĀH =


AH

1 ÃH
1 I2 0

ÃH
2 AH

2 0 I2

I2 0 BH
1 B̃H

1

0 I2 B̃H
2 BH

2

 , w =


uH1
uH2
vH1
vH2

 , F̄ =


F̄H

1

F̄H
2

ḠH
1

ḠH
2

 (5.49)

where

AH
m, B

H
m ∈ R(n−2)2×(n−2)2

are the block tri-diagonal system matrices re�ecting the coe�cients of the(
uHm
)(l+1)

∗ ,
(
vHm
)(l+1)

∗

terms at the various neighbouring pixels for each discrete interior point k respectively,

ÃH
m, B̃

H
m ∈ R(n−2)2×(n−2)2

are the diagonal matrices corresponding to the(
uHt
)(l+1)

∗ ,
(
vHt
)(l+1)

∗

terms in the (
uHm
)(l+1)

k
,
(
vHm
)(l+1)

k

equations respectively,

I2 = βI

where I denotes the (n− 2)2 × (n− 2)2 identity matrix and

uHm, v
H
m , F̄

H
m , Ḡ

H
m ∈ R(n−2)2×1

are the column vectors consisting of the displacements(
uHm
)(l+1)

k
,
(
vHm
)(l+1)

k

and RHS terms (
F̄Hm
)(l+1)

k
,
(
ḠHm
)(l+1)

k
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given by

(
F̄Hm
)
k

=
2∑
s=1

(
∂HumT

H
u

)
k

(
∂HusT

H
u

)
k

(
uHs
)
k
−
(
∂HumT

H
u

)
k

[(
THu
)
k
−
(
RH
)
k

]
(
ḠHm
)
k

=

2∑
s=1

(
∂HvmR

H
v

)
k

(
∂HvsR

H
v

)
k

(
vHs
)
k
−
(
∂HvmR

H
v

)
k

[(
RHv
)
k
−
(
TH
)
k

]
where

k = (j − 2)(n− 1) + (i− 1)

for m = 1, 2 and i, j = 2, . . . , n− 1. We then solve the matrix equation (5.48) using a

direct method. In other words we solve

wH =
[
ĀH

]−1
F̄H . (5.50)

Second proposed coarsest level solver C2. Similar to what we did for C1, we can

express the system (5.26) on the coarsest grid in the following matrix form

ÂHwH = F̄H (5.51)

where wH , F̄H are as in (5.49) and

ÂH ∈ R4(n−2)2×4(n−2)2

has the following structure

ÂH =


AH

1 0 I2 0

0 AH
2 0 I2

I2 0 BH
1 0

0 I2 0 BH
2


where

AH
m, B

H
m ∈ R(n−2)2×(n−2)2 , uHm, v

H
m , F̄

H
m , Ḡ

H
m ∈ R(n−2)2×1

have the same structure as shown in C1, with RHS terms(
F̄Hm
)(l+1)

k
,
(
ḠHm
)(l+1)

k

given by (
F̄Hm
)
k

=
[(
∂HumT

H
u

)2]
k

(
uHm
)
k
−
(
∂HumT

H
u

)
k

[(
THu
)
k
−
(
RH
)
k

]
,(

ḠHm
)
k

=
[(
∂HvmR

H
v

)2]
k

(
vHm
)
k
−
(
∂HvmR

H
v

)
k

[(
RHv
)
k
−
(
TH
)
k

]
.

Again we solve the matrix equation (5.51) using a direct method similar to (5.50).
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(a) Reference R of
Example 1.

(b) Reference R of
Example 2.

(c) Reference R of
Example 3.

(d) Reference R of
Example 4.

(e) Template T of
Example 1.

(f) Template T of
Example 2.

(g) Template T of
Example 3.

(h) Template T of
Example 4.

Figure 5.3: Four pairs of test images.

Remark 5.3.2. Our presented algorithms start from a �ne grid for the registration
process with the initial guess u = 0. For small deformation (i.e. |u| is relatively small),
such an initial guess is su�cient. However, for large deformation, a much better ini-
tialisation would be required. One way is to solve the registration model on the coarsest
grid and work towards the �nest grid in the so-called full multigrid framework. In many
papers using a discretise-optimise approach, the similar use of a coarsest level to start
the solution process to provide the initial guess on the �nest level is called the multi-
resolution scheme.

5.4 Numerical results

Now we present some experimental results comparing three models, these are:

(i) A NMG scheme, similar to our proposed scheme, applied to a standard uni-

directional di�usion model which we denote by DNMG;

(ii) Our proposed NMG (Algorithm 13) applied to our inverse consistent model equipped

with smoother S2 and solver C1, which we denote by ICNMG1;

(iii) Our proposed NMG (Algorithm 13) applied to our inverse consistent model equipped

with smoother S3 and solver C2, which we denote by ICNMG2.

Using these results we demonstrate how our new ICNMG models produce comparable

results, both visually and numerically, to the DNMG model while maintaining non-

folding results even in the case of a `bad' parameter choice. In addition we also show

how our simpli�ed smoother S3 in ICNMG2 improves upon the CPU time, while
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maintaining the same level of accuracy, compared with ICNMG1 which uses the fully

coupled smoother S2.

In order to gain a qualitative measure in the accuracy between the two models, we

choose to use the structural similarity (SSIM) [108] and relative errors

ErrF =
|Tu −R|22
|R|22

, ErrB =
|Rv − T |22
|T |22

corresponding to the forward and backward transformations respectively. Additionally

in [18] it was shown the quantity

Qmin = det
(
∇ϕ
)

(5.52)

can be used to indicate the presence of folding if (5.52) ≤ 0, likewise if (5.52) > 0

this indicates no folding is present and the transformation is therefore di�eomorphic.

Moreover, we consider the NMG method to have converged only if one of the following

criteria have been met:

(i) Average relative residual reaches ε1 = 10−2;

(ii) Maximum relative residual reaches ε2 = 10−2;

(iii) Number of NMG cycles reaches ε3 = 15.

It should also be noted for our proposed ICNMG models, we only consider the NMG

to have converged it both the forward and backward problems have converged according

to the above stopping criteria. For all models we select the weighting parameter α = 1
15 ,

and in our ICNMG models we set the second parameter to be β = 104. We performed

our experiments on 3 sets of real lung CT images in addition to a synthetic hand X-

ray image as shown in Figure 5.3. We also note in Tables 5.2-5.8 green Qmin values

indicate no folding in the transformation, while red values indicate folding is present in

the transformation.

Example 1 results. From Figure 5.4 we see the DNMG model, in addition to our

ICNMG models, produce visually very similar results. This trend is backed up fur-

ther by the results shown in Table 5.2, where we see near identical SSIM and relative

error values. In addition we see our ICNMG models produce larger CPU times when

compared with the DNMG model, however this increase is to be expected since our

ICNMG models must solve additional equations. Moreover we also see our simpli�ed

smoother S3, which is used in our ICNMG2 model, produces noticeably smaller CPU

times when compared with our ICNMG1 model (which uses the fully couple smoother

S2) while maintaining the same level of accuracy. Also since our ICNMG models re-

quire both forward and backward problems to converge, we see a slight increase in the

number of NMG cycles required when compared with the DNMG model. This pattern

of results is also seen in Table 5.3 where again all 3 models produce similar results with
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our ICNMG models requiring an additional NMG cycle to converge plus larger CPU

times, with our ICNMG2 model being signi�cantly faster than our ICNMG1 model.

In all cases we see each of the 3 models produce positive Qmin values which indicates

no folding is present in the transformations.

Example 2 results. In Example 2, wee see the same pattern of results which we saw

in Example 1. Namely near identical results both visually (Figure 5.5) and numerically

(Tables 5.4 and 5.5) with larger CPU times for our ICNMGmodels, and our ICNMG2

model much faster than our ICNMG1 model. In addition all 3 models produce non-

folding results in all cases. However when considering the `bad' parameter case α = 1
25

in Table 5.6, we see the DNMG model produces negative Qmin values in 3 out of the

4 cases whereas both of our ICNMG models maintain the physical integrity of the

transformation while achieving the same level of accuracy in all 4 cases. An example of

how the mesh plots of the transformations from the DNMG model and our ICNMG2

model for the 1282 example from Table 5.6 can be seen in Figure 5.2. Here we see the

mesh from our ICNMG2 model is much smoother than that from the DNMG model.

Example 3 results. From Figure 5.6 and Tables 5.7 and 5.8 we see the same trend

in results which was present in Examples 1 and 2, while we again see all cases produce

non-folding transformations. Example 4 Results. Looking at Figure 5.7 we see that

visually all models produce very similar results. However if we look at Tables 5.9 and

5.10 we see our ICNMG models produce slightly larger error values when compared

with the DNMG, although these di�erences do no show visually. With regard to CPU

time we see exactly the same patterns which we saw in Examples 1-3.

Testing of parameter sensitivity for ICNMG2 model. Here we perform a test

on how robust our ICNMG2 model is to the choice of parameters α and β. To do this

we tracked the SSIM and Qmin values across a total of 25 di�erent sets of parameter

values, in other words we tested all combinations resulting from the parameters

α =
1

10
,

1

15
,

1

20
,

1

25
,

1

30
, β = 0, 103, 104, 105, 106.

the results of which can be seen in Figures 5.8 and 5.9 respectively. In addition we

remark we have included a simulation for the DNMG model in our tests by considering

the parameter β = 0. From Figure 5.8 we see our ICNMG2 model maintains very

similar SSIM values when compared with the DNMG model (β = 0 column), and

there is little variation in the values as the parameter β is varied in our ICNMG2model.

However the advantage of our ICNMG2 model is shown more clearly in Figure 5.9

where we have tracked the Qmin values across the di�erent parameter tests, here red

indicates Qmin < 0 while green indicates Qmin > 0. From this �gure we see our

ICNMG2 is robust to folding for a much larger range of α values when compared with

the di�usion model which has a much more limited range of viable α choices.
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Test on NMG E�ciency. In addition to the physicality of the transformation ob-

tained from the image registration process, we are also concerned with the fast solution

via a NMG framework. For this reason it is important to achieve optimal e�ciency for

the NMG scheme, which should be of order O(N log(N)) where N = n2. This means

for an optimal NMG scheme, we would expect to see an increase in CPU time by a

factor of approximately 4.5 when increasing both image dimensions by a factor of 2.

From Table 5.11 we see all three discussed NMG schemes (i.e. DNMG, ICNMG1

and ICNMG2) all exhibit near optimal e�ciency.

5.5 Summary

In this chapter we �rst explained how many standard variational registration models

do no place any emphasis on maintaining the physical accuracy of the transformations,

thus potentially leading to physically inaccurate transformations with folding. Next

we explained how inverse consistent models, such as the Christensen-Johnson model

proposed in [28], can help improve robustness to folding. We also mentioned how

the model in [28] is impractical for real medical image problems owing to the extensive

computational cost resulting from solving the associated minimisation problem. In order

to help avoid this problem, we �rst proposed a linearisation of the inverse consistency

constraint from the Christensen-Johnson model to remove the additional non-linearities

arising from this term when compared with typical di�usion type models, in addition

to alleviating the computational cost of directly computing the inverse displacements.

Next we proposed the use of a fast NMG framework, based upon the scheme proposed by

Chumchob and Chen in [33], along with 3 potential smoother schemes to further reduce

the computational workload of the proposed inverse consistent model. In addition we

also performed an analysis of the 3 proposed smoothers to determine their suitability

for use in the NMG scheme, and how they can impact the convergence of the NMG.

Next we showed, using 3 sets of real lung CT images and 1 set of synthetic hand X-ray

images, how our proposed inverse consistent model maintains the same level of accuracy

as a uni-directional di�usion model using a similar NMG scheme, while being robust

to parameter choice and folding even in the case of a `bad' weighting parameter value

which causes folding in the transformation obtained from the di�usion model.

142



(a) Reference image R. (b) DNMG Tu. (c) ICNMG1 Tu. (d) ICNMG2 Tu.

(e) |Tu −R|,
Err = 0.38 %.

(f) DNMG |Tu −R|,
Err = 0.27 %.

(g) ICNMG1 |Tu −R|,
Err = 0.28 %.

(h) ICNMG1 |Tu −R|,
Err = 0.28 %.

Figure 5.4: Example 1: Registration of Figure 5.3 (a) and Figures 5.3 (e) of size
256× 256 by three methods with initial error shown by image (e). Images (b), (c) and
(d) show the deformed template images obtained using the DNMG, ICNMG1 and
ICNMG2 models respectively, while images (f), (g) and (h) show the respective �nal

errors.

(a) Reference image R. (b) DNMG Tu. (c) ICNMG1 Tu. (d) ICNMG2 Tu.

(e) |Tu −R|,
Err = 1.07 %.

(f) DNMG |Tu −R|,
Err = 0.40 %.

(g) ICNMG1 |Tu −R|,
Err = 0.42 %.

(h) ICNMG1 |Tu −R|,
Err = 0.42 %.

Figure 5.5: Example 2: Registration of Figure 5.3 (b) and Figures 5.3 (f) of size
256× 256 by three methods with initial error shown by image (e). Images (b), (c) and
(d) show the deformed template images obtained using the DNMG, ICNMG1 and
ICNMG2 models respectively, while images (f), (g) and (h) show the respective �nal

errors.
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(a) Reference image R. (b) DNMG Tu. (c) ICNMG1 Tu. (d) ICNMG2 Tu.

(e) |Tu −R|,
Err = 1.05 %.

(f) DNMG |Tu −R|,
Err = 0.31 %.

(g) ICNMG1 |Tu −R|,
Err = 0.32 %.

(h) ICNMG2 |Tu −R|,
Err = 0.32 %.

Figure 5.6: Example 3: Registration of Figure 5.3 (c) and Figures 5.3 (g) of size
256× 256 by three methods with initial error shown by image (e). Images (b), (c) and
(d) show the deformed template images obtained using the DNMG, ICNMG1 and
ICNMG2 models respectively, while images (f), (g) and (h) show the respective �nal

errors.

(a) Reference image R. (b) DNMG Tu. (c) ICNMG1 Tu. (d) ICNMG2 Tu.

(e) |Tu −R|,
Err = 13.24 %.

(f) DNMG |Tu −R|,
Err = 1.30 %.

(g) ICNMG1 |Tu −R|,
Err = 1.62 %.

(h) ICNMG2 |Tu −R|,
Err = 1.62 %.

Figure 5.7: Example 4: Registration of Figure 5.3 (d) and Figures 5.3 (h) of size
256× 256 by three methods with initial error shown by image (e). Images (b), (c) and
(d) show the deformed template images obtained using the DNMG, ICNMG1 and
ICNMG2 models respectively, while images (f), (g) and (h) show the respective �nal

errors.
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(a) Heat map of SSIM values over a range of parameter choices α, β for the forward problem.

(b) Heat map of SSIM values over a range of parameter choices α, β for the backward problem.

Figure 5.8: Comparison of how the SSIM values vary with di�erent choices of the
parameters α and β for Example 2.
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(a) Heat map of Qmin values over a range of parameter choices α, β for the forward problem.

(b) Heat map of Qmin values over a range of parameter choices α, β for the backward problem.

Figure 5.9: Comparison of how the Qmin values vary with di�erent choices of the
parameters α and β for Example 2.
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Chapter 6

Preliminary validation of two

non-folding 3D registration models

for use in oncology

In the previous chapters we have, so far, only formulated the registration problem in 2D.

However, since most medical applications require the registration of 3D (or even 4D)

images, we must extend the previously discussed models to the 3D case. In this chapter

we begin with a review of how the registration problem is constructed in the 3D case,

before showing how the models discussed in the previous chapters can be extended to

3D. After this we describe how these 3D models are solved in addition to introducing,

and analysing, a fast NMG framework to reduce the CPU cost of solving these models in

3D. Next we present some preliminary results measuring how accurately our proposed

models deform and match contoured features of lung CT images when compared with

the commercial Eclipse software.

6.1 Introduction

Suppose we are given a 3D reference and template image, which we denote by R, T

respectively, de�ned on a subspace of R3 which is denoted by Ω, i.e.

R, T ∈ Ω ⊂ R3.

Moreover, let us assume the image domain Ω is de�ned by the unit cube, i.e.

Ω = [0, 1]3.
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Then we formulate the 3D variational registration problem as the minimisation of the

following joint energy functional

min
u

{
E(u) = D

(
R, T,u

)
+ αR

(
u
)}

(6.1)

where D
(
R, T,u

)
denotes the similarity measure between R and T , R

(
u
)
denotes the

regularisation of u required to overcome the ill-posedness of the minimisation problem

(6.1), α ∈ R+ is a weighting parameter between D and R and

u ≡ u(x) =
[
u1(x), u2(x), u3(x)

]T ∈ Ω, x =
[
x1, x2, x3

]T ∈ Ω

denotes the 3D displacement �eld. Furthermore, let us also assume the images R and

T are mono-modal, then we select the SSD measure to be the distance term given by

DSSD
(
R, T,u

)
=

1

2

∫
Ω
|Tu −R|2 dΩ (6.2)

where

Tu ≡ T
(
x+ u

)
, R ≡ R(x)

and | · | denotes the Euclidean norm.

In oncology image registration plays a vital role in the e�ective planning and treatment

of lung cancer, thus improvements in the accuracy of registration models is a neces-

sity. Typically there are four main applications of image registration in radiotherapy

applications, these are:

(i) Multi-modal image registration;

(ii) 4D dose accumulation [1, 42, 58,93,114,115,134,137,154];

(iii) Lung ventilation imaging [83,135];

(iv) Anatomic image segmentation [23,53,70,110].

Multi-modal image registration. When treating lung cancer, it is common for

multi-modal imaging to be used for treatment. For example we can overlay functional

imaging data (e.g. CT or PET), which provides information regarding the activity of

biological processes, onto high quality anatomical imaging data (e.g. X-ray CT) which

reveals individual structures. For this reason multi-modal image registration models

are required to ensure an accurate evaluation of the irradiated dose of the tumour and

organs which are at risk.

4D dose accumulation. As a result of the patient breathing during a CT scan of the

lungs, both rigid body and non-rigid deformation of organs takes place. This means

it is not possible to compare dose maps from one phase to another because of voxel

movement. However this problem can be overcome by using image registration to match
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all phases to a single reference phase and applying the found deformations to the dose

maps so they are all aligned to the reference phase. From this all of the deformed dose

maps can be combined to produce a 4D dose accumulation map which indicates the

total dose applied to each region of the lungs.

Lung ventilation imaging. Another useful piece of information which can be ex-

tracted from lung CT images after registration has been performed is how air content

changes in the lungs due to ventilation. This information allows us to see areas of the

lungs which are no longer functioning, or functioning poorly. To obtain these ventilation

maps we use the deformation �elds obtained from the registration step, and then either

compute the Jacobian or Houns�eld unit change metric. Given the deformation �eld

u ≡
[
u1(x), u2(x), u3(x)

]T ∈ Ω ⊂ R3, x =
[
x1, x2, x3

]T ∈ Ω

the Jacobian is given by

uJ(x) =

∣∣∣∣∣∣∣
1 + ∂x1u1(x) ∂x2u1(x) ∂x3u1(x)

∂x1u2(x) 1 + ∂x2u2(x) ∂x3u2(x)

∂x1u3(x) ∂x2u3(x) 1 + ∂x3u3(x)

∣∣∣∣∣∣∣ . (6.3)

Alternatively we can compute the Houns�eld unit change metric, using the following

uHU (x) =
HUex(x)−HUin(x+ u)

HUin(x+ u) + 1000
(6.4)

where HUex(x) denotes the Houns�eld unit value at voxel x of the peak exhale image

and HUin(x + u) denotes the corresponding Houns�eld unit value of the peak inhale

image. Both metrics (6.3) and (6.4) give information about regional volume change.

Anatomic image segmentation. During radiotherapy treatments contours are drawn,

typically by hand, directly onto the CT scans to highlight important regions such as the

gross tumour volume (GTV) and planning target volume (PTV). However throughout

the treatment process, the patients' anatomy will change in response to the treatment,

thus the contours will need to be re-drawn onto the new set of scans. Since the contour-

ing process is a very di�cult and time consuming process for the physician (possibly

requiring several hours to complete a single CT set), it would therefore be bene�cial

to have an automatic method which can be used to update the original contours when

needed. Indeed this task can be achieved by using image registration. Given the con-

tours from the original CT scan, we use registration to deform the original images to

the new images. Then, using the corresponding deformation �elds, we can deform the

original contours to obtain contours on the new images.

One of the biggest challenges when developing image registration models for use in

the treatment of lung cancer is the lack of ground truth data available to validate the

models. In this chapter we propose two 3D registration models whose main goal is to
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produce physically accurate deformations with no folding, in addition to introducing a

standard 3D di�usion model for comparison.

The remainder of this chapter will be set out as followed. In �6.2 we introduce the

3D extensions of the models discussed in the previous chapters 4 and 5, in addition to

outlining how we solve these models numerically in �6.3. Next in �6.4 we introduce the

fast NMG framework which will be implemented for each model, alongside performing an

analysis on each of the key components of the NMG framework. Then in �6.5 we present

some preliminary results, performed on eight examples taken from the Hugo dataset [80],

comparing the proposed 3D models with the state of the art Eclipse software. Finally

we present a chapter summary in �6.6

6.2 Review of 3D registration models and numerical im-
plementation

We now brie�y discuss how the models discussed in Chapters 4 and 5 are formulated

in the 3D case. After this we describe how to solve these 3D models numerically.

6.2.1 3D di�usion model

Our �rst proposed model (as seen in �4.3), is based upon the di�usion model [13, 15,

16,27,30,33,43,46,47,105]. In this model we use the SSD similarity measure (6.2) and

combine it with the following 3D di�usion regulariser

R
(
u
)

=
1

2

∫
Ω

3∑
s=1

|∇3us|2 dΩ (6.5)

where

∇3 ≡
(
∂x1 , ∂x2 , ∂x3

)T
denotes the 3D spatial gradient operator. Combining the regulariser (6.5) with the

similarity measure (6.2) in the minimisation problem (6.1) leads to the 3D di�usion

model, which is given by the following

min
u

{
EDiff

(
u
)

=
1

2

∫
Ω
|Tu −R|2 + α

3∑
s=1

|∇3us|2 dΩ

}
. (6.6)

To solve the minimisation problem (6.6), we use an optimise-discretise approach which

involves deriving and solving the EL equations of the energy functional in (6.6). It can

be shown the EL equations, corresponding to the 3D di�usion model (6.6), are given by

−α∆3um + FDiffm

(
u
)

= 0 (6.7)
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with Neumann boundary conditions

∇3um · n = 0

where n denotes the outward unit normal,

∆3 ≡ ∂x1x1 + ∂x2x2 + ∂x3x3

denotes the 3D Laplace operator and

FDiffm

(
u
)

= ∂umTu
[
Tu −R

]
(6.8)

denote the force terms for m = 1, 2, 3.

6.2.2 3D constrained di�usion model

For any real life medical applications, a necessity for any deformation �eld obtained

using image registration is it must be physical. In others words it is crucial the defor-

mation obtained contains no folding. In �4.4 we introduced a constrained version of

the di�usion model to enforce a positive value of the determinant of the gradient of the

transformation

ϕ ≡ ϕ(x) = x+ u

which is computed using

det
(
∇3ϕ

)
> 0.

We can also apply a similar constraint to the EL equations of the 3D di�usion model

shown in (6.7), this then gives the following

−α∆3um + FDiffm

(
u
)

= 0, s.t. det
(
∇3ϕ

)
> 0 (6.9)
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with Neumann boundary conditions, where FDiffm

(
u
)
are the force terms from (6.8)

and

det
(
∇3ϕ

)
=

∣∣∣∣∣∣∣
∂x1ϕ1 ∂x2ϕ1 ∂x3ϕ1

∂x1ϕ2 ∂x2ϕ2 ∂x3ϕ2

∂x1ϕ3 ∂x2ϕ3 ∂x3ϕ3

∣∣∣∣∣∣∣
= ∂x1ϕ1∂x2ϕ2∂x3ϕ3 − ∂x1ϕ1∂x3ϕ2∂x2ϕ3 − ∂x3ϕ1∂x1ϕ2∂x3ϕ3

+ ∂x2ϕ1∂x3ϕ2∂x3ϕ1 + ∂x3ϕ1∂x1ϕ2∂x2ϕ3 − ∂x3ϕ1∂x2ϕ2∂x1ϕ3

=
(
1 + ∂x1u1

)(
1 + ∂x2u2

)(
1 + ∂x3u3

)
−
(
1 + ∂x1u1

)
∂x3u2∂x2u3

− ∂x2u1∂x1u2

(
1 + ∂x3u3

)
+ ∂x2u1∂x3u2∂x1u3 + ∂x3u1∂x1u2∂x2u3

− ∂x3u1

(
1 + ∂x2u2

)
∂x1u3. (6.10)

Subsequently we proposed an extension to our constrained di�usion model in �4.4.4 to

improve accuracy and robustness to the weighting parameter α. Again, this treatment

can also be applied to the 3D model (6.9), which we demonstrate in �6.4.

6.2.3 3D inverse consistent model

In Chapter 5 we proposed an alternate model with the aim of achieving di�eomorphic

(i.e. non-folding) deformations, we did this through the use of an inverse consistent

model [26, 28, 66, 113, 147]. For the 3D case, the proposed inverse consistent model

(based upon the Christensen-Johnson inverse consistent model [28]) is given by

min
u,v

{
EIC

(
u,v

)
=

1

2

∫
Ω
|Tu −R|2 + |Rv − T |2 + α

[
|∇3u|2 + |∇3v|2

]
+ β

[
|u+ v|2 + |v + u|2

]
dΩ

}
(6.11)

where u, v denote the forward and backward displacements,

R ≡ R(x), T ≡ T (x)

denote the reference images for the forward (T → R) and backward (R→ T ) problems,

Tu ≡ T
(
x+ u

)
, Rv ≡ R

(
x+ v

)
denote the deformed template images for the forward and backward problems respec-

tively and

0 ≤ β ∈ R, α ∈ R+
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are weighting parameters. Equivalently we can split the joint minimisation problem

(6.11) into two sub-problems corresponding to the forward and backward problems

respectively. This split formulation is given by the following
min
u
EIC1

(
u
)

=

{∫
Ω
|Tu −R|2 + α |∇3u|2 + β |u+ v|2 dΩ

}
,

min
v
EIC2

(
v
)

=

{∫
Ω
|Rv − T |2 + α |∇3v|2 + β |v + u|2 dΩ

}
.

(6.12)

It can be shown the split minimisation problem (6.12) yields the following EL equations−α∆3um + F ICm
(
u,v

)
= 0,

−α∆3vm +GICm
(
u,v

)
= 0

(6.13)

with respective Neumann boundary conditions

∇3um · n = 0, ∇3vm · n = 0

and with the force terms

F ICm
(
u,v

)
= β

[
um + vm

]
+ ∂umTu

[
Tu −R

]
,

GICm
(
u,v

)
= β

[
vm + um

]
+ ∂vmRv

[
Rv − T

]
(6.14)

for m = 1, 2, 3.

6.3 Discretisation and numerical methods for the proposed
3D models

Within the optimise-discretise approach for solving the minimisation problems (6.6) and

(6.12), we seek to �nd numerical approximations to the EL equations (6.7) and (6.13)

respectively. In order for us to do this we �rst discretise the 3D image domain Ωh into

a n1 × n1 × n3 mesh, with respective intervals

h =
(
h1, h1, h3

)
=

(
1

n1 − 1
,

1

n1 − 1
,

1

n3 − 1

)
and then apply a FDM.

Remark 6.3.1. Similar to the 2D cases in �4.2.1 and �5.2.2 where we used a square
n×n mesh due to the fact medical image slices in general being square, this is also why
we use a n1×n1×n3 mesh in the 3D case. While each individual slice of the 3D image
is typically square, the number of slices which make up the 3D image does not usually
coincide with the dimension of the slices, and so we do not consider a cube mesh.

Using this approach, in addition to a 3D lexicographic ordering system linking the
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discrete point (i, j, k) to the global index

K = (k − 2)(n1 − 2)2 + (j − 2)(n1 − 2) + (i− 1)

for i, j = 2, . . . , n1 − 1 and k = 2, . . . , n3 − 1, results in the following discrete EL

equations for the di�usion model

−α
(
∆h

3u
h
m

)
K

+
(
FDiffm

(
uh
))
K

= 0 (6.15)

and inverse consistent model−α
(
∆h

3u
h
m

)
K

+
(
F ICm

(
uh,vh

))
K

= 0,

−α
(
∆h

3v
h
m

)
K

+
(
GICm

(
uh,vh

))
K

= 0
(6.16)

with discrete force terms(
FDiffm

(
uh
))
K

=
(
∂humT

h
u

)
K

[(
T hu
)
K
−
(
Rh
)
K

]
,(

F ICm
(
uh,vh

))
K

= β
[(
uhm
)
K

+
(
vhm
)
K

]
+
(
∂humT

h
u

)
K

[(
T hu
)
K
−
(
Rh
)
K

]
,(

GICm
(
uh,vh

))
K

= β
[(
vhm
)
K

+
(
uhm
)
K

]
+
(
∂hvmR

h
v

)
K

[(
Rhv
)
K
−
(
T h
)
K

]
(6.17)

respectively for m = 1, 2, 3 and K = 1, . . . , (n1 − 2)2(n3 − 2). In addition we use the

following central FD approximations to estimate any derivatives(
∆h

3u
h
m

)
K
≈ 1

h2
1

[(
uhm
)
K−n1

+
(
uhm
)
K−1
− 4
(
uhm
)
K

+
(
uhm
)
K+1

+
(
uhm
)
K+n1

]
+

1

h2
3

[(
uhm
)
K−n3

− 2
(
uhm
)
K

+
(
uhm
)
K+n3

]
,

(
∂hu1T

h
u

)
K
≈ 1

2h1

[(
T hu
)
K+1
−
(
T hu
)
K−1

]
,(

∂hu2T
h
u

)
K
≈ 1

2h1

[(
T hu
)
K+n1

−
(
T hu
)
K−n1

]
,(

∂hu3T
h
u

)
K
≈ 1

2h3

[(
T hu
)
K+n3

−
(
T hu
)
K−n3

]
(6.18)

with similar approximations for the
(
∆h

3v
h
m

)
K
and

(
∂hvmR

h
v

)
K
derivatives form = 1, 2, 3.

6.3.1 Two pointwise smoothers for the 3D di�usion model

Now we present two smoother schemes for solving the discrete EL equations (6.15)

associated with the 3D di�usion model.

Pointwise smoother 1
(
SDiff1

)
. For the �rst pointwise smoother we consider a

simple uncoupled smoother which uses each PDE in (6.15) to update each displacement

158



individually. Consider the following �xed point iteration scheme

−α
(
∆h

3u
h
m

)(l+1)

K
+
(
FDiffm

(
uh
))(l+1)

K
= 0 (6.19)

where

(
FDiff1

(
uh
))(l+1)

K
=
(
∂hu1T

h
u

)(l)
K

[(
T h
(
x1 + u

(l+1)
1 , x2 + u

(l)
2 , x3 + u

(l)
3

))
K
−
(
Rh
)
K

]
,(

FDiff2

(
uh
))(l+1)

K
=
(
∂hu2T

h
u

)(l)
K

[(
T h
(
x1 + u

(l)
1 , x2 + u

(l+1)
2 , x3 + u

(l)
3

))
K
−
(
Rh
)
K

]
,(

FDiff3

(
uh
))(l+1)

K
=
(
∂hu3T

h
u

)(l)
K

[(
T h
(
x1 + u

(l)
1 , x2 + u

(l)
2 , x3 + u

(l+1)
3

))
K
−
(
Rh
)
K

]
. (6.20)

Next we linearise the non-linear arguments of the T h terms using the same treatment

which was used in [33], in other words we use �rst order Taylor expansions. After the

linearisation, we are left with the following

−α
(
∆h

3u
h
m

)(l+1)

K
+
(
∂humT

h
u

)(l)
K

[(
T hu
)(l)
K

+
(
∂humT

h
u

)(l)
K

[(
uhm
)(l+1)

K
−
(
uhm
)(l)
K

]
−
(
Rh
)
K

]
= 0 (6.21)

for m = 1, 2, 3. Then to compute the (l + 1) updates in (6.21), we use a lexicographic

SOR based method, in other words we compute(
uhm
)(l+1)

K
=
(
1− ω

)(
uhm
)(l)
K

+ ω
(
ūhm
)(l)
K

(6.22)

where the update
(
ūhm
)(l)
K

is obtained using a GSLEX step and 0 < ω < 2 is a weighting

parameter to be determined.

Pointwise smoother 2
(
SDiff2

)
. For the second pointwise smoother we consider a fully

coupled scheme similar to the one shown in [33]. Now rather than using each PDE in

(6.15) to update each displacement independently, we instead update all displacements

simultaneously within each PDE. To do this we use the �xed point iteration scheme

(6.19) with (
FDiffm

(
uh
))(l+1)

K
=
(
∂humT

h
u

)(l)
K

[(
T hu
)(l+1)

K
−
(
Rh
)
K

]
(6.23)

where (
T hu
)(l+1)

K
≡
(
T h
(
x1 + u

(l+1)
1 , x2 + u

(l+1)
2 , x3 + u

(l+1)
3

))
K
.

Again we use �rst order Taylor expansions to linearise the force terms in (6.23), which

then results in the following

−α
(
∆h

3u
h
m

)(l+1)

K
+
(
∂humT

h
u

)(l)
K

[(
T hu
)(l)
K

+

3∑
s=1

(
∂husT

h
u

)(l)
K

[(
uhs
)(l+1)

K
−
(
uhs
)(l)
K

]
−
(
Rh
)
K

]
= 0 (6.24)
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for which we also use a SOR method to compute the (l + 1) updates in (6.24).

6.3.2 Two pointwise smoother for the 3D inverse consistent model

Now we present two smoother schemes for solving the discrete EL equations (6.16)

associated with the 3D inverse consistent model.

Pointwise smoother 1
(
SIC1

)
. The �rst smoother we propose to use for the inverse

consistent model is based upon the full coupling idea seen in smoother SDiff2 for the

di�usion model. For this we use the following �xed point iteration scheme−α
(
∆h

3u
h
m

)(l+1)

K
+
(
F ICm

(
uh,vh

))(l+1)

K
= 0,

−α
(
∆h

3v
h
m

)(l+1)

K
+
(
GICm

(
uh,vh

))(l+1)

K
= 0

(6.25)

where we have the following force terms(
F ICm

(
uh,vh

))(l+1)

K
= β

[(
uhm
)(l+1)

K
+
(
vhm
)(l+1)

K

]
+
(
∂humT

h
u

)(l)
K

[(
T hu
)(l)
K
−
(
Rh
)
K

]
(
GICm

(
uh,vh

))(l+1)

K
= β

[(
vhm
)(l+1)

K
+
(
uhm
)(l+1)

K

]
+
(
∂hvmR

h
v

)(l)
K

[(
Rhv
)(l)
K
−
(
T h
)
K

]
. (6.26)

After linearising the force terms (6.26) using Taylor expansions, and substituting back

into the �xed point schemes (6.25), we get

−α
(
∆h

3u
h
m

)(l+1)

K
+ β

[(
uhm
)(l+1)

K
+
(
vhm
)(l+1)

K

]
+
(
∂humT

h
u

)(l)
K

[(
T hu
)(l)
K

+
3∑
s=1

(
∂husT

h
u

)(l)
K

[(
uhs
)(l+1)

K
−
(
uhs
)(l)
K

]
−
(
Rh
)
K

]
= 0

−α
(
∆h

3v
h
m

)(l+1)

K
+ β

[(
vhm
)(l+1)

K
+
(
uhm
)(l+1)

K

]
+
(
∂hvmR

h
v

)(l)
K

[(
Rhv
)(l)
K

+

3∑
s=1

(
∂hvsR

h
v

)(l)
K

[(
vhs
)(l+1)

K
−
(
vhs
)(l)
K

]
−
(
T h
)
K

]
= 0

(6.27)

and we compute the (l + 1) updates in (6.27) using an SOR method of the form(
wh
)(l+1)

K
=
(
1− ω

)(
wh
)(l)
K

+ ω
(
w̄h
)(l)
K

(6.28)

where

wh =
[
uh,vh

]T
.

Pointwise smoother 2 (SIC2 ). Now in order to compute the
(
wh
)(l+1)

K
terms in (6.28),

we must solve a 6 × 6 matrix equation for every discrete point K. Since the system

matrix does not possess many zero entries, the inversion of this matrix (necessary for

solving the system) can potentially be quite expensive computationally since there is

no clear structure we can exploit. For this reason we propose a simpli�ed version of
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smoother SIC1 which is based on the partially coupled smoother proposed in �5.2.4. To

implement the partially coupled smoother, we use the �xed point scheme (6.25) with

force terms now given by(
F IC1

(
uh,vh

))(l+1)

K
= β

[(
uh1
)(l+1)

K
+
(
vh1
)(l+1)

K

]
+
(
∂hu1T

h
u

)(l)
K

[(
T h
(
x1 + u

(l+1)
1 , x2 + u

(l)
2 , x3 + u

(l)
3

))
K
−
(
Rh
)
K

]
(
F IC2

(
uh,vh

))(l+1)

K
= β

[(
uh2
)(l+1)

K
+
(
vh2
)(l+1)

K

]
+
(
∂hu2T

h
u

)(l)
K

[(
T h
(
x1 + u

(l)
1 , x2 + u

(l+1)
2 , x3 + u

(l)
3

))
K
−
(
Rh
)
K

]
(
F IC3

(
uh,vh

))(l+1)

K
= β

[(
uh3
)(l+1)

K
+
(
vh3
)(l+1)

K

]
+
(
∂hu3T

h
u

)(l)
K

[(
T h
(
x1 + u

(l)
1 , x2 + u

(l)
2 , x3 + u

(l+1)
3

))
K
−
(
Rh
)
K

]
(
GIC1

(
uh,vh

))(l+1)

K
= β

[(
vh1
)(l+1)

K
+
(
uh1
)(l+1)

K

]
+
(
∂hv1R

h
v

)(l)
K

[(
Rh
(
x1 + v

(l+1)
1 , x2 + v

(l)
2 , x3 + v

(l)
3

))
K
−
(
T h
)
K

]
(
GIC2

(
uh,vh

))(l+1)

K
= β

[(
vh2
)(l+1)

K
+
(
uh2
)(l+1)

K

]
+
(
∂hv2R

h
v

)(l)
K

[(
Rh
(
x1 + v

(l)
1 , x2 + v

(l+1)
2 , x3 + v

(l)
3

))
K
−
(
T h
)
K

]
(
GIC3

(
uh,vh

))(l+1)

K
= β

[(
vh3
)(l+1)

K
+
(
uh3
)(l+1)

K

]
+
(
∂hv3R

h
v

)(l)
K

[(
Rh
(
x1 + v

(l)
1 , x2 + v

(l)
2 , x3 + v

(l+1)
3

))
K
−
(
T h
)
K

]
(6.29)

which, after using Taylor approximations and substituting back into (6.25), gives

−α
(
∆h

3u
h
m

)(l+1)

K
+ β

[(
uhm
)(l+1)

K
+
(
vhm
)(l+1)

K

]
+
(
∂humT

h
u

)(l)
K

[(
T hu
)(l)
K

+
(
∂humT

h
u

)(l)
K

[(
uhm
)(l+1)

K
−
(
uhm
)(l)
K

]
−
(
Rh
)
K

]
= 0

−α
(
∆h

3v
h
m

)(l+1)

K
+ β

[(
vhm
)(l+1)

K
+
(
uhm
)(l+1)

K

]
+
(
∂hvmR

h
v

)(l)
K

[(
Rhv
)(l)
K

+
(
∂hvmR

h
v

)(l)
K

[(
vhm
)(l+1)

K
−
(
vhm
)(l)
K

]
−
(
T h
)
K

]
= 0.

(6.30)

Again we use a SOR based method to determine the (l + 1) updates in (6.30).

6.4 3D non-linear multigrid and analysis for proposed mod-
els

As we mentioned in Chapters 4 and 5, the discrete EL equations can be very expen-

sive computationally to solve, and for this reason we sought to implement a fast NMG

framework to reduce the computational cost. In the 3D case this problem with compu-

tational cost is even more severe, and so the implementation of a fast NMG becomes a

necessity. We now introduce our proposed NMG method, based upon those presented
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in �4.2.3, �4.4.4 and �5.2.3, before performing the necessary analysis to obtain optimal

convergence.

6.4.1 The 3D NMG framework

From previous chapters we stated MG methods result from two important ideas, i.e.

iterative methods like the Gauss-Seidel method perform well as smoother schemes re-

moving high frequency error components and smooth errors can be well approximated on

coarse grids. To begin, let us denote the �ne grid by Ωh (with spacing h =
(
h1, h1, h3

)
)

and the coarse grid by ΩH (with spacing H = 2h) in the two-grid setting. Also let us

write the discrete PDEs (6.15) and (6.16) using the following operator notation

NDiff
h

[
uh
]

= GDiffh (6.31)

and N̄
IC
h

[
uh,vh

]
= ḠICh ,

Ñ IC
h

[
uh,vh

]
= G̃ICh

(6.32)

respectively with

NDiff
h

[
uh
]

=


(
NDiff

1h

)
K(

NDiff
2h

)
K(

NDiff
3h

)
K

 ,

N̄ IC
h

[
uh,vh

]
=


(
N̄ IC

1h

)
K(

N̄ IC
2h

)
K(

N̄ IC
3h

)
K

 , Ñ IC
h

[
uh,vh

]
=


(
Ñ IC

1h

)
K(

Ñ IC
2h

)
K(

Ñ IC
3h

)
K

 ,

GDiffh =


(
GDiff1h

)
K(

GDiff2h

)
K(

GDiff3h

)
K

 , ḠICh =


(
ḠIC1h

)
K(

ḠIC2h

)
K(

ḠIC3h

)
K

 , G̃ICh =


(
G̃IC1h

)
K(

G̃IC2h

)
K(

G̃IC3h

)
K

 (6.33)

and (
NDiff
mh

)
K

= −α
(
∆h

3u
h
m

)
K

+
(
FDiffm

(
uh
))
K
,

(
N̄ IC
mh

)
K

= −α
(
∆h

3u
h
m

)
K

+
(
F ICm

(
uh,vh

))
K

= 0,(
Ñ IC
mh

)
K

= −α
(
∆h

3v
h
m

)
K

+
(
GICm

(
uh,vh

))
K

= 0,

(
ḠICmh

)
K

=
(
ḠICmh

)
K

=
(
G̃ICmh

)
K

= 0
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for m = 1, 2, 3 and K = 1, . . . , (n1 − 2)2(n3 − 2). Then the proposed 3D FAS-NMG

framework, in the two grid setting, for the di�usion, constrained di�usion and inverse

consistent models can be seen in Algorithm 6, Algorithm 12 and Algorithm 13 respec-

tively.

Before we can use the proposed smoothers we outlined in �6.3, we must �rst determine

whether they are suitable for use in the NMG framework, in addition to how e�ective

they are at smoothing errors. To determine these properties we use LFA to compute

the h-ellipticity and smoothing rates for each of the proposed smoothers.

6.4.2 H-ellipticity for the proposed smoothers

By computing the h-ellipticity of a given smoother scheme, we can determine whether

the scheme can be used as a pointwise error smoothing procedure within a NMG frame-

work. We now demonstrate the proposed smoothers from �6.3.1 and �6.3.2 are suitable

to be used as error smoothing procedures in our proposed NMG framework.

H-ellipticity for smoother SDiff1 . Let us begin by writing the linearised system of

PDEs in the following operator form

LDiff1h uh = GDiff1h (6.34)

where

LDiff1h =

−α∆h
3 + σh11 0 0

0 −α∆h
3 + σh22 0

0 0 −α∆h
3 + σh33

 , uh =

u
h
1

uh2
uh3

 ,

GDiff1h =

g
h
1 − F

Diff
1

(
uh
)

gh2 − F
Diff
2

(
uh
)

gh3 − F
Diff
3

(
uh
)
 (6.35)

with

FDiffm

(
uh
)

=
(
∂humT

h
u

)2
uhm −

(
∂humT

h
u

)[
T hu −Rh

]
,

σhpq =
(
∂humT

h
u

)(
∂huqT

h
u

)
, ghm = 0 (6.36)

for m, p, q = 1, 2, 3. Applying the discrete linear operator LDiff1h , to the grid functions

Φh
(
x,θ

)
gives

LDiff1h Φh
(
x,θ

)
= L̂Diff1h

(
θ
)
Φh
(
x,θ

)
(6.37)
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with Fourier symbol

L̂Diff1h

(
θ
)

=

σ
h
11 − αL̂ h

3

(
θ
)

0 0

0 σh22 − αL̂ h
3

(
θ
)

0

0 0 σh33 − αL̂ h
3

(
θ
)
 (6.38)

where L̂ h
3

(
θ
)
denotes the Fourier symbol of the 3D discrete Laplace operator ∆h

3 . We

compute the h-ellipticity from the following

EDiff
1h

(
LDiff1h

)
=

min
{∣∣∣det

(
L̂h1
(
θ
))∣∣∣ : θ ∈ Θhigh

}
max

{∣∣∣det
(
L̂h1
(
θ
))∣∣∣ : θ ∈ Θ

} (6.39)

where

Θ = [−π, π)3, Θhigh = Θ \
[
−π

2
,
π

2

)3
.

It can be shown

det
(
L̂h1
(
θ
))

= −α3
(
L̂ h

3

(
θ
))3

+ α2ch1
(
L̂ h

3

(
θ
))2 − αch2(L̂ h

3

(
θ
))

+ ch3 (6.40)

where

ch1 = σh11 + σh22 + σh33, c
h
2 = σh11σ

h
22 + σh11σ

h
33 + σh22σ

h
33. (6.41)

Using well known results, we can show

−L̂ h
3

(
θ
)

=
2

h2

[
3−

(
cos θ1 + cos θ2 + cos θ3

)]
,

min
θ∈Θhigh

{(
− L̂ h

3

(
θ
))}

=
2

h2
, max
θ∈Θ

{(
− L̂ h

3

(
θ
))}

=
12

h2
. (6.42)

Substituting (6.42) and (6.40) back into (6.39), in addition to taking the limit as h→ 0,

we get

lim
h→0

{
EDiff

1h

(
LDiff1h

)}
= lim

h→0

{
8α3 +O(h)

1728α3 +O(h)

}
=

1

216
. (6.43)

Since the h-ellipticity value (6.43) is bounded away from 0, as h→ 0, we conclude the

smoother SDiff1 is suitable for use as a pointwise error smoothing procedure.

H-ellipticity for smoother SDiff2 . Using a similar procedure to the one we �rst

showed for smoother SDiff1 , we can obtain the following Fourier symbol for the discrete

operator LDiff2h

L̂Diff2h

(
θ
)

=

σ
h
11 − αL̂ h

3

(
θ
)

σh12 σh13

σh12 σh22 − αL̂ h
3

(
θ
)

σh23

σh13 σh23 σh33 − αL̂ h
3

(
θ
)
 (6.44)
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and we compute the h-ellipticity using (6.39) with the Fourier symbol (6.44). Computing

the h-ellipticity, and again taking the limit h→ 0, gives

lim
h→0

{
EDiff

2h

(
LDiff2h

)}
= lim

h→0

{
8α3 +O(h)

1728α3 +O(h)

}
=

1

216
. (6.45)

and so we see the smoother SDiff2 is also suitable as a pointwise error smoothing pro-

cedure.

H-ellipticity for smoother SIC1 . Now we repeat the h-ellipticity calculation for the

fully coupled smoother SIC1 for the inverse consistent model. We begin in a similar

way to the SDiff1 smoother for the di�usion model, in other words we write the system

(6.25) using the following operator form

LIC1hwh = GIC1h (6.46)

where

LIC1h =



ah11 − α∆h
3 σh12 σh13 β 0 0

σh12 ah22 − α∆h
3 σh23 0 β 0

σh13 σh23 ah33 − α∆h
3 0 0 β

β 0 0 bh11 − α∆h
3 τh12 τh13

0 β 0 τh12 bh22 − α∆h
3 τh23

0 0 β τh13 τh23 bh33 − α∆h
3


,

wh =



uh1
uh2
uh3
vh1
vh2
vh3


, GIC1h =



gh1 − F IC1h

(
uh,vh

)
gh2 − F IC2h

(
uh,vh

)
gh3 − F IC3h

(
uh,vh

)
gh4 −GIC1h

(
uh,vh

)
gh5 −GIC2h

(
uh,vh

)
gh6 −GIC3h

(
uh,vh

)


(6.47)

also where

F ICm
(
uh,vh

)
=

3∑
s=1

(
∂humT

h
u

)(
∂husT

h
u

)
uhs −

(
∂humT

h
u

)[
T hu −Rh

]
,

GICm
(
uh,vh

)
=

3∑
s=1

(
∂hvmR

h
v

)(
∂hvsR

h
v

)
vhs −

(
∂hvmR

h
v

)[
Rhv − T h

]
,

σhpq =
(
∂hupT

h
u

)(
∂huqT

h
u

)
, τhpq =

(
∂hvpR

h
v

)(
∂hvqR

h
v

)
,

ahpp = σhpp + β, bhpp = τhpp + β (6.48)

for m, p, q = 1, 2, 3. Following the same step as for the di�usion model smoothers, we

apply the discrete operator LIC1h to the grid functions Φh
(
x,θ

)
to get

LIC1hΦ
(
x,θ

)
= L̂IC1h

(
θ
)
Φh
(
x,θ

)
(6.49)
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with Fourier symbol

L̂IC1h
(
θ
)

=



ãh11 σh11 σh13 β 0 0

σh12 ãh22 σh23 0 β 0

σh13 σh23 ãh33 0 0 β

β 0 0 b̃h11 τh12 τh13

0 β 0 τh12 b̃h22 τh13

0 0 β τh13 τh23 b̃h33


(6.50)

where

ãhmm = ahmm − αL̂ h
3

(
θ
)
, b̃hmm = bhmm − αL̂ h

3

(
θ
)

(6.51)

and L̂ h
3

(
θ
)
denotes the Fourier symbol of the 3D discrete Laplace operator for m =

1, 2, 3. Again we compute the h-ellipticity using (6.39), except now with the Fourier

symbol (6.50), along with the results (6.42). Then it can be shown the h-ellipticity for

smoother SIC1 , after taking the limit as h→ 0, is given by

lim
h→0

{
E IC

1h

(
LIC1h

)}
= lim

h→0

{
64α6 +O(h)

2985984α6 +O(h)

}
=

1

46656
. (6.52)

Thus we reach the same conclusion we did for the di�usion model smoothers, namely the

smoother SIC1 is suitable as a pointwise error smoothing procedure since the h-ellipticity

is always bounded away from 0.

H-ellipticity for smoother SIC2 . Finally we perform the h-ellipticity calculation for

smoother SIC2 . It can be shown we obtain the following Fourier symbol for the discrete

operator LIC2h

L̂IC2h
(
θ
)

=



ãh11 0 0 β 0 0

0 ãh22 0 0 β 0

0 0 ãh33 0 0 β

β 0 0 b̃h11 0 0

0 β 0 0 b̃h22 0

0 0 β 0 0 b̃h33


. (6.53)

again where ãhmm, b̃
h
mm are as shown in (6.51) and L̂ h

3

(
θ
)
denotes the Fourier symbol

of the 3D discrete Laplace operator for m = 1, 2, 3. Then using (6.39), along with

(6.42) and (6.53), we obtain the same h-ellipticity value as seen in (6.52). Therefore our

partially coupled smoother SIC2 is also suitable for use as a pointwise error smoothing

procedure.

6.4.3 Smoothing rate analysis of the proposed smoothers

Now we consider how e�ective the proposed smoother schemes are at smoothing the

high frequency error components. Using this analysis we obtain a guide for the number
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of smoothing steps which will be required to smooth the error to a tolerance of 10−1

(typical for multigrid schemes). Moreover, we also use this analysis to see how the value

of the parameter ω in the SOR scheme e�ects the smoothing rate, thus allowing us to

select an optimal value for each smoother to achieve the best smoothing rates. In order

to estimate the smoothing rates we again use LFA.

Smoothing rate analysis for smoother SDiff1 . To begin let us write the discrete

system (6.19) in the following way

LDiff1h uh +MDiff
1h uh = GDiff1h (6.54)

where LDiff1h , uh, GDiff1h are as in (6.35), and

MDiff
1h =

−σ
h
11 0 0

0 −σh22 0

0 0 −σh33

 (6.55)

with σhpq as in (6.36) for p, q = 1, 2. Moreover, let us use the splitting

∆h
3 = L h

3 + + L h
3−

where L h
3 +, L h

3− are given by the following 3D stencils

L h
3 + =

1

h2


0 0 0

0 1 0

0 0 0


0 0 0

1 − 6
ω 0

0 1 0


0 0 0

0 0 0

0 0 0


 ,

L h
3 + =

1

h2


0 0 0

0 0 0

0 0 0


0 1 0

0 −6
(
1− 1

ω

)
1

0 0 0


0 0 0

0 1 0

0 0 0


 . (6.56)

Using the stencils (6.56), we can write (6.54) in the following way

LDiff1 +hu
h
new +LDiff1−hu

h
old +MDiff

1h uhold = GDiff1h (6.57)

where uhold, u
h
new denote the previous and current approximations of uh respectively,

and also where

LDiff1 +h =

σ
h
11 −L h

3 + 0 0

0 σh22 −L h
3 + 0

0 0 σh33 −L h
3 +

 ,

LDiff1−h =

−L h
3− 0 0

0 −L h
3− 0

0 0 −L h
3−

 (6.58)
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withMDiff
1h as de�ned in (6.55). After subtracting (6.57) from (6.54), we obtain the

local error equations given by the following[
LDiff1 +h

]
ehnew = −

[
LDiff1−h +MDiff

1h

]
ehold (6.59)

where

eh∗ =
[
eh1 ∗, e

h
2 ∗, e

h
3 ∗
]T
.

Expanding the errors in (6.59) using Fourier components, we get the following

eh∗ =
∑
θ∈Θ

ψ∗θ exp
(
iλ1i+ iλ2j + iλ3k

)
(6.60)

where

i =
√
−1, Θ = [−π, π)3 , λm =

2θmπ

h

and ψ∗θ are Fourier coe�cients for m = 1, 2, 3. Substituting (6.60) into (6.59) gives[
L̂Diff1 +h

(
θ
)]
ψnewθ exp

(
iλ · x

)
= −

[
L̂Diff1−h

(
θ
)

+ M̂Diff
1h

(
θ
)]
ψoldθ exp

(
iλ · x

)
where

λ =
(
λ1, λ2, λ3

)
, x =

(
i, j, k

)
and

L̂Diff1 +h

(
θ
)

=

a
h
+ + σh11 0 0

0 ah+ + σh22 0

0 0 ah+ + σh33

 , L̂Diff1−h
(
θ
)

=

a
h
− 0 0

0 ah− 0

0 0 ah−

 (6.61)

where M̂Diff
1h

(
θ
)
is the same as MDiff

1h from (6.58), and

ah+ =
α

h2

[
6

ω
−
(
e−iλ3 + e−iλ2 + e−iλ1

)]
,

ah− =
α

h2

[
6

(
1− 1

ω

)
−
(
eiλ3 + eiλ2 + eiλ1

)]
.

Then, the local smoothing rate is computed from the following

µloc ≡ µloc
(
θ
)

= sup
{
ρ
(
ŜDiff1h

(
θ
))

: θ ∈ Θhigh

}
(6.62)

where

Θhigh = Θ \
[
−π

2
,
π

2

)3
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denotes the high frequency range, ρ(·) denotes the spectral radius and ŜDiff1h

(
θ
)
is the

ampli�cation matrix given by

ŜDiff1h

(
θ
)

= −
[
L̂Diff1 +h

(
θ
)]−1 [

L̂Diff1−h
(
θ
)

+ M̂Diff
1h

(
θ
)]
. (6.63)

Smoothing rate analysis for smoother SDiff2 . Repeating the smoothing rate cal-

culation for smoother SDiff2 , we compute the smoothing rate using (6.62) with ampli-

�cation matrix

ŜDiff2h

(
θ
)

= −
[
L̂Diff2 +h

(
θ
)]−1 [

L̂Diff2−h
(
θ
)

+ M̂Diff
2h

(
θ
)]
. (6.64)

where L̂Diff2−h
(
θ
)

= L̂Diff1−h
(
θ
)
from (6.61), and

L̂Diff2 +h

(
θ
)

=

a
h
+ + σh11 σh12 σh13

σh12 ah+ + σh22 σh23

σh13 σh23 ah+ + σh33

 ,

M̂Diff
2h

(
θ
)

=

−σ
h
11 −σh12 −σh13

−σh12 −σh22 −σh23

−σh13 −σh23 −σh33

 .
Smoothing rate analysis for smoother SIC1 . Similar to the smoothing analysis we

performed for smoother SDiff1 , we begin by writing the discrete system (6.25) in the

following way

LIC1hwh +MIC
1hw

h = GIC1h (6.65)

where LIC1h, wh and GIC1h are de�ned in (6.47), also with

MIC
1h =



−σh11 −σh12 −σh13 0 0 0

−σh12 −σh22 −σh23 0 0 0

−σh13 −σh23 −σh33 0 0 0

0 0 0 −τh11 −τh12 −τh13

0 0 0 −τh12 −τh22 −τh23

0 0 0 −τh13 −τh23 −τh33


. (6.66)

Then following the same method shown for smoother SDiff1 , we compute the local

smoothing rate for smoother SIC1 using (6.62) with the following ampli�cation matrix

ŜIC1h
(
θ
)

= −
[
L̂IC1 +h

(
θ
)]−1 [

L̂IC1−h
(
θ
)

+ M̂IC
1h

(
θ
)]

(6.67)
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where

L̂IC1 +h

(
θ
)

=



ãh+ + σh11 σh12 σh13 β 0 0

σh12 ãh+ + σh22 σh23 0 β 0

σh13 σh23 ãh+ + σh33 0 0 β

β 0 0 ãh+ + τh11 τh12 τh13

0 β 0 τh12 ãh+ + τh22 τh13

0 0 β τh13 τh23 ãh+ + τh33


L̂IC1−h

(
θ
)

= diag
(
ãh−, ã

h
−, ã

h
−, ã

h
−, ã

h
−, ã

h
−
)
,

M̂IC
1h

(
θ
)

=



−σh11 −σh12 −σh13 0 0 0

−σh12 −σh22 −σh23 0 0 0

−σh13 −σh23 −σh33 0 0 0

0 0 0 −τh11 −τh12 −τh13

0 0 0 −τh12 −τh22 −τh23

0 0 0 −τh13 −τh23 −τh33


(6.68)

and

ãh+ = β +
α

h2

[
6

ω
−
(
e−iλ3 + e−iλ2 + e−iλ1

)]
,

ãh− = β +
α

h2

[
6

(
1− 1

ω

)
−
(
eiλ3 + eiλ2 + eiλ1

)]
(6.69)

Smoothing rate analysis for smoother SIC2 . Finally we perform the smoothing

rate calculation for the smoother SIC2 . We do this again using (6.62) with the following

ampli�cation matrix

ŜIC2h
(
θ
)

= −
[
L̂IC2 +h

(
θ
)]−1 [

L̂IC2−h
(
θ
)

+ M̂IC
2h

(
θ
)]

(6.70)

where L̂IC2−h
(
θ
)
is the same as L̂IC1−h

(
θ
)
from (6.68), and

L̂IC2 +h

(
θ
)

=



ãh+ + σh11 0 0 β 0 0

0 ãh+ + σh22 0 0 β 0

0 0 ãh+ + σh33 0 0 β

β 0 0 ãh+ + τh11 0 0

0 β 0 0 ãh+ + τh22 0

0 0 β 0 0 ãh+ + τh33


M̂IC

2h

(
θ
)

= diag
[
−σh11,−σh22,−σh33,−τh11,−τh22,−τh33

]
with ãh+ as de�ned in (6.69).

Smoothing rate examples. In Figure 6.1 we have plotted the smoothing rates of
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(a) Plot of the smoothing rate for the smoothers
SDiff1 and SDiff2 for varying values of the

parameter ω. Here the light blue line corresponds
to the rates for smoother SDiff1 while the dark
blue line corresponds to the rates for smoother

SDiff2 .

(b) Plot of the smoothing rate for the smoothers
SIC1 and SIC2 for varying values of the parameter
ω. Here the dark blue line corresponds to the rates

for smoother SIC1 while the light blue line
corresponds to the rates for smoother SIC2 .

Figure 6.1: Illustrations of how the parameter ω a�ects the smoothing rates of the
proposed smoothers for the di�usion and inverse consistent models.

SDiff1 SDiff2 SIC1 SIC2

µavg Tol 10−1 µavg Tol 10−1 µavg Tol 10−1 µavg Tol 10−1

0.76118 9 0.73735 8 0.71424 7 0.72660 8

Table 6.1: Comparison of the smoothing rates of the proposed smoothers SDiff1 ,
SDiff2 , SIC1 and SIC2 for parameters α = 1

20 and β = 104 after �ve inner and outer
iterations on a 32× 32× 32 grid. For each smoother, the smoothing rates and number
of inner iterations required to reach an error reduction of 10−1 are shown for rates

corresponding to the optimal parameter ω according to Figure 6.1.

the four proposed smoothers SDiff1 , SDiff2 , SIC1 and SIC2 corresponding to forty values

of the parameter ω in the range (0, 2]. Using these plots we can select the parameter ω

which gives the best smoothing rate, and using this rate we can estimate the number

of smoothing steps required to reach a tolerance in error reduction of 10−1 which is

deemed to be su�cient for a NMG scheme. In all four cases we see the optimal values

of ω are close to, but less than, 1. For smoothers SDiff1 , SIC1 and SIC1 the parameter

ω = 0.95 is selected while for smoother SDiff2 we use the parameter ω = 0.9. Using

these parameter values, we compute the number of smoothing steps l, for a smoother

with smoothing rate P, required to reach a tolerance of 10−1 according to

l = − ln(10)

ln(P)
. (6.71)
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The results of the calculation of (6.71) for each of the four smoothers can be seen in

Table 6.1. For the smoothers SDiff1 and SDiff2 associated with the di�usion models,

we see the smoothing rate for smoother SDiff2 is noticeably smaller than the rate for

smoother SDiff1 . Therefore for the di�usion and constrained di�usion models (as shown

in �6.2.1 and �6.2.2 respectively), we use the NMG method as shown in Algorithm 6 and

Algorithm 12 with smoother SDiff2 and ν1 = ν2 = 8 which we denote by DNMG3D

and CDNMG3D respectively.

Now for the smoothers SIC1 and SIC2 associated with the proposed inverse consistent

model, from Table 6.1 we see the smoothing rate of smoother SIC1 is marginally better

than the rate for smoother SIC2 . While this would normally imply smoother SIC1 should

be used in the NMG method instead of smoother SIC2 , due to the fully coupled nature

of the discrete PDEs shown in (6.27) we are required to solve a 6 × 6 inverse problem

at every discrete voxel involving a dense system matrix which possesses no exploitable

properties which allows us to reduce the cost of directly inverting the matrix. As a result

the smoother SIC1 is very expensive computationally, a problem which is compounded

further when working in 3D. For smoother SIC2 however, the semi-coupled equations

shown in (6.30) allow us to reduce the inverse problem to simple scalar multiplication

owing to the sparse structure of the system matrix thus greatly reducing the compu-

tational cost when compared with smoother SIC1 . Hence for our proposed 3D inverse

consistent model, we use the NMG method given by Algorithm 13 with smoother SIC2

and ν1 = ν2 = 8 which we denote by ICNMG3D.

6.5 Preliminary numerical results

In this section we present some preliminary experimental results comparing registration

accuracy of four di�erent algorithms, these are:

(i) A standard 3D di�usion model, combined with the NMG scheme outlined in Al-

gorithm 6, which we have denoted DNMG3D;

(ii) Our proposed 3D constrained di�usion model, with the NMG scheme outlined in

Algorithm 12, which is denoted by CDNMG3D;

(iii) Our proposed 3D inverse consistent model, equipped with the NMG scheme out-

lined in Algorithm 13, denoted by ICNMG3D;

(iv) A state of the art commercial software which we denote by Eclipse.

From these results we aim to show how our proposed 3D models perform in terms

of accuracy when compared with a commercial software used in hospitals. Moreover,

we include a comparison of our proposed models with a standard di�usion model to

highlight the fact our proposed models always produce physical transformations even
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when the di�usion models fails to do so while maintaining a similar level of accuracy.

We therefore propose to split the comparisons into two parts. First we compare the

accuracy of the proposed CDNMG3D and ICNMG3D models with the results ob-

tained from the DNMG3D model. The aim of this comparison is to demonstrate

how our proposed models produce similarly accurate results to the DNMG3D model

with regard to error, while also delivering physically accurate transformations which the

DNMG3D model does not emphasise. To quantify the accuracy of the registrations

we measure four quantities, these are;

(i) Structural similarity (SSIM) [138];

(ii) Relative error de�ned by

Err =
|Tu −R|22
|R|22

;

(iii) Mean squared error de�ned by

MSE =
1

N
|Tu −R|22

where N de�nes the total number of voxels in the 3D image;

(iv) Minimum determinant of the gradient of the transformation de�ned by

Qmin = det (∇3ϕ) .

From these four measures, we use the SSIM, Err and MSE to measure the accu-

racy of the registration while the Qmin value is used to measure the physicality of the

transformation. If Qmin > 0 this implies there is no folding in the transformation (and

is therefore physically accurate), while Qmin ≤ 0 implies the transformation contains

folding (and is therefore non-physical).

For the second set of comparisons, we compare the DNMG3D, CDNMG3D and

ICNMG3D models with the commercial Eclipse software. As we mentioned at the

beginning of this chapter, validating image registration methods on real lung CT meth-

ods is very challenging due to a lack of ground truth data. In order for us to be able

to compare the accuracy of the four methods, we look to use the deformation �elds to

match clinically drawn contours of various features within the lungs. To quantify the

accuracy of the contour matching, we use the following three measures;

(i) DICE metric de�ned by

DICE =
2 |A ∩B|
|A|+ |B|

where A, B denote two sets of points;
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(ii) Hausdor� distance (HD) de�ned by

HD = max {(d(A,B), d(B,A))}

where

d(A,B) = max
a∈A
{d(a,B)} , d(B,A) = max

b∈B
{d(b, A)}

denote the distance of an element a from set A to any point in set B, and an

element b from set B to any point in set A respectively;

(iii) Modi�ed Hausdor� distance (MHD) de�ned by

MHD =
Nad(A,B) +Nbd(B,A)

Na +Nb

where Na, Nb denote the total number of elements within set A, B respectively

and where d(A,B), d(B, a) are the same distances de�ned in the HD.

Each of these values are computed for contours outlining the following nine features of

the lungs;

(i) Body;

(ii) Gross tumour volume (GTV);

(iii) Right lung (RLung);

(iv) Left lung (LLung);

(v) Trachea;

(vi) Carina;

(vii) Oesophagus;

(viii) Heart;

(ix) Spinal column.

For both sets of comparisons we perform all tests on a set of eight 4DCT scans taken

from the Hugo database [80], and for each image set we register the image corresponding

to peak-exhalation with the image corresponding to peak-inhalation. We also remark

in Tables 6.4-6.19. DICE values are within the range [0, 1] with 1 indicating perfect

overlap and 0 no overlap. In addition, since the HD and MHD values are distance

measures, values closer to zero imply better matching of the contours, also where theHD

andMHD values are measured in millimetres (mm). Moreover, due to how the Eclipse

software functions we are unable to obtain results corresponding to the body contours.

In addition, we remark the average values shown in Tables 6.4-6.19 are obtained using
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all contours except for the body contour in order for comparisons with the Eclipse

model to be fair.

6.5.1 Accuracy and physicality of the proposed models versus the
di�usion model

Here we demonstrate how our two proposed 3D models can achieve a comparable level

of accuracy with regard to registration error when compared with a 3D di�usion model,

while also maintaining the physical integrity of the transformation, something which

the di�usion model is unable to do.

From Table 6.2, we see in the majority of the eight tests our CDNMG3D model pro-

duces identical results to the DNMG3D model, with the results from our ICNMG3D

model also being similar. For all three models we see for the parameters α = 1
20 , β = 104,

the Qmin values are positive in all eight tests implying physically accurate results.

When looking at the results in Table 6.3 where we used the parameters α = 1
100 , β = 104

however, we notice the advantage of our proposed models over the DNMG3D model,

especially our ICNMG3D model. In seven of the eight cases, our ICNMG3D model

achieved the best results in all three error categories (SSIM/Err/MSE), although the

corresponding values for our CDNMG3D model are only marginally worse. However,

it is when we look at the Qmin columns where the di�erence between our two proposed

models and the DNMG3D model becomes most apparent. Here we see in four of the

eight tests the DNMG3D model failed to produce physically accurate deformations as

indicated by the red values in Table 6.3, thus highlighting the problem of models which

do not speci�cally avoid folding. On the other hand, we see both our CDNMG3D and

ICNMG3D models produce physically accurate non-folding deformations in all eight

tests.

6.5.2 Comparison of three registration models with the commercial
Eclipse model

Now we demonstrate how the DNMG3D, CDNMG3D and ICNMG3D models

can produce competitive registrations when compare with the state of the are Eclipse

model. Here we remark values highlighted in bold within Tables 6.4-6.19 indicate in-

stances where our proposed models achieved the best result of all four tested models.

When we look at the results shown in Tables 6.4-6.19, we see the Eclipse software

produces the best results for the majority of cases, however we also see our proposed

models and di�usion model produce competitive results in all but a small number of

cases. Moreover, when looking at the averages of each measured value, we see our pro-

posed models perform very well in reducing the HD and MHD values when compared

with the Eclipse model, especially in the examples with parameter α = 1
100 . Although
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the Eclipse model performs better than our proposed models when comparing the

DICE values.

However, we remark the Eclipse model uses a pre-a�ne registration step in order to

align the images and obtain an initial guess for the deformable registration step, whereas

for our proposed models and di�usion model we use a zero initialisation. Therefore, it

would be of interest to develop full multigrid schemes for each of the proposed models

to ensure we obtain a good initial guess for the NMG scheme, which consequently will

lead to a more accurate registration result.

6.6 Summary

In this chapter we began by formulating the image registration problem in 3D, followed

by extending the 2D models discussed in Chapters 4 and 5 into 3D. Next we introduced

the FAS-NMG schemes to be implemented for each model along with several potential

smoother schemes to be used within the NMG method, before performing a detailed

analysis of the key components of the NMGmethods. Following this analysis, we showed

some preliminary results comparing the three proposed models with a commercial soft-

ware using eight examples from the Hugo image database [80]. Here we showed how

the results from the proposed models where competitive with the commercial Eclipse

software, in addition to describing how we could potentially improve our models.
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Chapter 7

Conclusions & future research

This thesis has demonstrated the author's work of three image registration models,

each with their own fast non-linear multigrid solver, for use in the registration of lung

CT images. Of the three proposed models, two of these models addressed the prob-

lem of physically accurate registrations by ensuring the resulting deformations where

di�eomorphic. Each of the discussed models where then extended to register sets of

3D images, in addition to demonstrating how they can be used in applications within

oncology.

7.1 Conclusion

First in Chapter 4, we proposed an improved non-linear multigrid method over the one

originally proposed by Chumchob and Chen in [33]. This was achieved by performing a

more accurate analysis of the Chumchob-Chen multigrid scheme, along with proposing

an alternative solver for use on the coarsest grid level. In addition, we proposed an

extension to the Chumchob-Chen model to prevent any folding within the deformation,

thus ensuring we obtained image registration results which were physically accurate, by

incorporating an additional constraint into the model. We then further extended this

new constrained model to improve the accuracy of the registrations, even in the case

of severe folding, along with robustness to the choice of weighting parameter. Through

experimental results, we demonstrated how our modi�cations to the Chumchob-Chen

model, resulted in vast improvements to the convergence of the multigrid scheme, ac-

curacy of registration and CPU time in addition to the physicality of the deformations.

Second in Chapter 5, we considered an alternate method of achieving di�eomorphic

image registration results by looking at inverse consistent registration models. In par-

ticular, we focused on the inverse consistent model proposed by Christensen and John-

son in [28], and proposed a solution to the problem of CPU cost resulting from the

direct inversion of the non-linear inverse consistency constraint. Our solution was to
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approximate this constraint using a linear expression, we then further reduced the CPU

cost by implementing a fast non-linear multigrid scheme with three potential smoother

schemes. Next we demonstrated the e�ectiveness of the proposed inverse consistent

model using three real lung CT images and a set of synthetic hand X-ray images. From

these tests we showed how our proposed model can achieve accurate registrations, with

regard to both error and physical transformations, in addition to demonstrating how

the multigrid scheme resulted in fast CPU times.

Finally in Chapter 6, we extended the three proposed models from Chapters 4 and

5, along with the corresponding non-linear multigrid schemes, into 3D. Using these 3D

models we presented some preliminary results comparing the proposed models to a state

of the art commercial software, which is currently used in hospitals. To do this we took

eight sets of 3D images from the Hugo database [80], and used three di�erent metrics to

measure the accuracy of matching contours deformed from the template image, using

the deformation obtained from the registration, to the reference image. For these tests

we used contours of nine di�erent features from the scans, which were drawn by a

radiologist. From these results we say the proposed models showed promise for use in

oncology applications by producing results comparable to the commercial software.

7.2 Future research

The work which has been presented in this thesis has several di�erent directions we can

pursue in the future. We now discuss some of these potential avenues of research:

Multi-modal image registration. As we mentioned in the beginning of Chapter 6,

it is common practice in oncology to use information from scans taken using di�erent

imaging modalities for patient treatment. It would therefore be of interest to develop

multi-modal registration models which incorporate the di�eomorphic properties of the

models proposed in this thesis, in addition to the proposed fast non-linear multigrid

methods.

High order image registration models. The commercial Eclipse software we dis-

cussed in Chapter 6 requires an a�ne registration step to align the images, before the

deformable registration can be performed. Moreover, the three proposed models dis-

cussed within this thesis all used a di�usion regularisation term, which is �rst order

and therefore penalises a�ne transformations. Thus, it would be of interest to replace

the �rst order di�usion regulariser with a second order regulariser, such as the linear

curvature regulariser, in order to avoid requiring a pre-a�ne registration step.

Full multigrid method. The multigrid methods which we described for each of the

proposed models, were all based upon the V-cycle multigrid scheme which starts on

the full discrete image with zero initial guess before coarsening. It would therefore be
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bene�cial to implement a full multigrid method for the proposed models, which works

from the coarse grid to provide a very good initial guess before starting the V-cycle

scheme. As a result such a method would lead to a more accurate registration model.
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Appendix A

Optimised version of Algorithm 8
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In our constrained NMG, we check to see whether the constraint in (4.41) has been sat-

is�ed after the �nal post-smoothing step and solver step. While checking the constraint

after the coarsest solver step is inexpensive computationally owing to the very small grid

size, this is not the case when checking after the post-smoothing step. For each interior

point Algorithm 8 needs to solve eight inverse problems which, even though we are only

using 3×3 matrices, become very expensive on larger grids thus leading to a signi�cant

increase in CPU time. We now look to exploit the structure and commonality between

di�erent interior points, of the matrices Al, to create an optimised version of Algorithm

8. First we look at the relation of the matrices Al at the �rst interior point (2, 2) and

a general interior point (i, j). Looking at the matrix A1, we see

At (2, 2). A1 =

1 h h

1 2h h

1 h 2h

 , At (i, j). Ã1 =

1 (i− 1)h (j − 1)h

1 ih (j − 1)h

1 (i− 1)h jh


since (

(x1)2, (x2)2

)
= (h, h),

(
(x1)i, (x2)j

)
=
(
(i− 1)h, (j − 1)h

)
.

Then Ã1 can be written in the following way

Ã1 =

1 (x1)2 + (i− 2)h (x2)2 + (j − 2)h

1 (x1)3 + (i− 2)h (x2)2 + (j − 2)h

1 (x1)2 + (i− 2)h (x2)3 + (j − 2)h



= A1 +

1

1

1

 [0, (i− 2)h, (j − 2)h
]

= A1 + pqT (A.1)

with

p =
[
1, 1, 1

]T
, q =

[
0, (i− 2)h, (j − 2)h

]T
.

The matrices Ãl for the remaining triangles can be written in similar ways to (A.1),

thus we can write

Ãl = Al + pqT

with p, q as before. Therefore the inverse

Ã−1
l =

[
Al + pqT

]−1
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Algorithm 14 Qmin = OptFEM(uh, n, h)

1: for l = 1, . . . , 4 do
Compute matrices Al corresponding to �rst interior point (2, 2)
Compute inverse matrices A−1

l

Compute second and third components of A−1
l p→ ωp l(2), ωp l(3)

2: end for
3: for i = 2, . . . , n− 1 do
4: for j = 2, . . . , n− 1 do

Compute second and third components of qT → q2 = (i− 1)h, q3 = (j − 1)h
5: for l = 1, . . . , 4 do

Compute µl
Compute second and third components of ωu1 l, ωu2 l → ωu1 l(2), ωu1 l(3), ωu2 l(2), ωu2 l(3)

Determine coe�cients sl u1 , tl u1 , sl u2 , tl u2 using (A.3)
Compute determinant for triangle Tl → Q̃l = (1 + sl u1)(1 + tl u2)− tl u1sl u2

6: end for
Assign minimum Q̃ to be entry (Qij)→ (Qij) = min {Q̃1, . . . , Q̃4}

7: end for
8: end for

Take minimum entry in Q to be minimum determinant value → Qmin = min {Q}

at a general discrete interior point, can be computed using the Sherman-Morrison for-

mula [5] given by the following theorem:

Theorem A.0.1. (Sherman-Morrison) Suppose A ∈ Rn×n is an invertible matrix, and
p, q ∈ Rn×1 are column vectors. Then

[
A+ pqT

]
is invertible

⇐⇒ 1 + qTA−1p 6= 0.

If
[
A+ pqT

]
is invertible, then its inverse is given by

[
A+ pqT

]−1
= A−1 − A−1pqTA−1

1 + qTA−1p
(A.2)

where pqT denotes the outer product of the vectors p, q.

It can be shown

qTA−1
l p = 0 ∀ l = 1, . . . , 4

therefore the invertibility condition from Theorem A.0.1 holds for every interior (i, j) for

i, j = 2, . . . , n−1 and thus the matrices
[
Al + pqT

]−1
are invertible for each l = 1, . . . , 4.

Then we can use Theorem A.0.1 to re-write the inverses Ã−1
l as

Ã−1
l =

[
Al + pqT

]−1
= A−1

l −
A−1
l pq

TA−1
l

1 + qTA−1
l p

.

Next we use the fact we need only determine the sl um , tl um coe�cients where m = 1, 2,

and so our original inverse problem (4.44) reduces to the following scalar equations

sl u1 = ωu1 l(2)− µlωu1 l(2), tl u1 = ωu1 l(3)− µlωu1 l(3),

sl u2 = ωu2 l(2)− µlωu2 l(2), tl u2 = ωu2 l(3)− µlωu2 l(3), (A.3)
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Image Size (n2) Unoptimised Time (s) Optimised Time (s)

2562 4.46 0.17
5122 17.87 0.61
10242 71.53 2.40
20482 306.23 9.90

Table A.1: Table showing the comparison of CPU times per iteration between old
unoptimised FEM code and new optimised FEM code.

where

µl =
(ωp l(2)q2 + ωp l(3)q3)

1 + (ωp l(2)q2 + ωp l(3)q3)

and ωp l(2), ωp l(3), q2, q3, ωum l(2), ωum l(3) denote the second and third components of

ωp l = A−1
l pq

T , ωum l = A−1
l vml

respectively.

Finally we show in Table A.1 how much speed up can be achieved for a simple example.

Clearly Algorithm 14 uses up to 30 times less CPU when compared with Algorithm 8.

Therefore the key message is that per checking step across the entire grid only simple

matrix-vector products are needed, if we invert matrices A−1
l at the �rst pixel and then

re-use them. Hence our optimised version of Algorithm 8 can be expressed by Algorithm

14.
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