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We consider the field theories on multiple stacks of D5-branes wrapped on four cycles of resolved/
deformed conifold geometries fibered over a two-torus. The central charges of the D5-branes are slightly
misaligned when the branes are wrapped on various rigid holomorphic two-cycles or when they have
different charges with respect to a magnetic flux turned on the two-torus. The wrapped D5-branes preserve
(0, 2) supersymmetry in two dimensions if the Kahler moduli and the magnetic flux are related. Our
geometries are T-dual to the brane configurations considered by Kutasov-Lin, and we provide a geometric
interpretation for their equality between the field theory D-terms and the magnetic fluxes. We also consider
the geometric transitions for rigid holomorphic two-cycles fibered over a two-torus with magnetic flux and
discuss the partial breaking of supersymmetry after the geometric transition.
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I. INTRODUCTION

The supersymmetric field theories enjoy some elegant
descriptions in string theory compactifications. One
successful direction of research studies geometric tran-
sitions which map wrapped brane setups into flux
configurations, as proposed in [1] and extended in [2].
The transition can also be understood by studying matrix
models which allow perturbative insights into nonpertur-
bative physics [3]. A configuration with wrapped anti-
branes can also provide supersymmetric configurations
before and after the transition [4]. A natural generaliza-
tion to hybrid system of branes and antibranes was
considered in [5] to tackle the problem of D-term
supersymmetry breaking.
Soon after the geometric transition was described by

studying D5-branes wrapped on two-cycles, a T-dual
picture was proposed where the wrapped D-branes are
mapped into D-branes suspended between various types of
NS branes [6]. The brane picture allows a lift to M theory
and the use of the MQCD approach to obtain details about
the geometric transitions. The configuration of D4 and NS
branes is lifted as a unique M5 brane which splits into a
collection of simpler M5 branes after the geometric
transition [6].
Recently there has been an increasing interest in using

branes and geometry to study two-dimensional field
theories. A class of interesting theories are the chiral
(0,2) SUSY theories in two dimensions. The first brane
construction was proposed some time ago and involved
three sets of orthogonal NS branes [7]. More recently,
two-dimensional (0,2) theories emerged from compacti-
fications of six-dimensional theories on four-manifolds
with a partial topological twist [8]. This led to the

realization of some interesting two-dimensional triality
as an IR equivalence between three different theories [9].
Other developments include twisted compactifications
of the four-dimensional Leigh-Strassler fixed point on
closed hyperbolic Riemann surfaces [10] and a Pfaffian
description [11].
An alternative approach was proposed in [12,13] utiliz-

ing brane configurations with color D4-branes and flavor
D6-branes suspended between orthogonal NS branes. The
corresponding four-dimensional N ¼ 1 supersymmetric
field theories were further compactified on a two-torus
to yield (2,2) SUSY two-dimensional theories. A D-term
for the field theory on the D4-branes (either color or flavor
groups) and a magnetic flux on the two-torus were added
as extra ingredients representing rotations and displace-
ments of various D4-branes and NS branes. This leads
generically to SUSY breaking but a fine tuning for the
D-term and the magnetic flux can conspire to partially
preserve some supersymmetry, in particular (0,2) SUSY in
two dimensions.
In this work, our goal is to study the geometric picture

arising from T-dualizing the brane configuration of [12].
The T-duality leads to multiple stacks of D5-branes
wrapped on P1 cycles or noncompact holomorphic cycles.
To obtain a two-dimensional theory, we fiber the resolved
conifold geometries over a two-torus and reinterpret the
setup as wrapped D5-branes on P1 fibers over the T2. After
turning on a D-term on the P1 fiber (making P1 cycle rigid),
the central charges of the branes become misaligned [5]
which potentially leads to supersymmetry breaking. On the
other hand, turning on a magnetic flux through the two-
torus could also break supersymmetry. We discuss how
these two types of SUSY breaking can compensate each
other and partially preserve the SUSY for branes wrapped
on four-cycles inside SUð4Þ structure manifolds (when an
extra NS flux is present). We consider the SUSY condition*rtatar@liverpool.ac.uk
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for wrapped D5-branes on two-cycles and four-cycles of
SUð3Þ and SUð4Þ holonomy manifolds derived in [14] and
replace the Kahler two-form J with its complexified
version. The SUSY condition becomes an equality between
the Kahler form and the magnetic flux through the two-
torus base, which represents a geometric interpretation of
the equality between the D-term and the magnetic flux
proposed in [12,13].
In Sec. II, we start by reviewing the geometric D-term

SUSY breaking considered in [2,5]. For a single stack of
D5-branes, a SUSY configuration can be obtained even in
the presence of D-terms/rigid cycles but this is not true for
D5-branes wrapped on arbitrary rigid P1 cycles or non-
compact two-cycles. We also consider the boost super-
gravity solution described in [15] and discuss the gauge
coupling constant on wrapped D5-branes. In Sec. III, we
review the proposal of [16] to build Calabi-Yau fourfolds as
resolved/deformed conifolds fibered over a genus g base
and we restrict to the case g ¼ 1.
In Sec. IV, we consider the unbroken supersymmetry

condition for D5-branes wrapped on rigid P1 cycles fibered
over T2 with magnetic flux. Our main claim is that the
condition of SUSY preservation is satisfied when
D5-branes wrap Kahler calibrations and the Kahler moduli
and the magnetic field are related, reproducing the con-
dition derived in [12]. In Sec. V we consider the geometric
transition inside the SU(4) structure manifolds, in the
presence of nonzero D-terms and magnetic fluxes. After
the transition, the color D5-branes are replaced by fluxes
through various S3 × S1 cycles and the gluino condensates
are equal to the integrals of the holomorphic four-form
on such cycles. The flavor degrees of freedom lie on
D5-branes wrapped on noncompact two-cycles, which
remain unchanged during the geometric transition. The
cancellation between the global symmetry D-term and the
magnetic field remains valid during the transition and
assures SUSY preservation.

II. D-TERMS FOR WRAPPED D5-BRANES

A. The geometry of D-terms

We start by reviewing the geometric interpretation of the
D-terms for N ¼ 1; d ¼ 4 field theories. Consider a
resolved conifold and wrap some D5-branes on the
nonrigid P1 cycle. The gauge coupling is

4π

g2YM
¼ bNS

gs
ð1Þ

where bNS is the integral over P1 of the NS two-form field
on the D5-branes.
In addition, we can turn a small nonzero Fayet-Iliopoulos

parameter ξ for the Uð1Þ center of the gauge group which
contributes to the Lagrangian with a term

ffiffiffi
2

p
ξTrD. Its

geometric interpretation was provided in [5], where it was

associated to turning on the real part j of the complexified
Kahler class of the P1 cycle. The central charge for
wrapped D5-branes is the integral of the complexified
Kahler form

Z ¼
Z
S2
ðJ þ iBNSÞ ¼ jþ ibNS; ð2Þ

where j is related to ξ by

ξ ¼ j
4πgs

: ð3Þ

For j ≠ 0, the phase of the central charge is modified and
the supersymmetry appears to be broken due to the
presence of the Fayet-Iliopoulos term. Nevertheless, this
is not necessarily true for any j ≠ 0 [2]. For a single set of
wrapped branes on a P1, the theory has an alternative
SUSY description with a bare coupling constant related to
the quantum volume of the resolution P1 cycle as

4π

g2YM
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2NS þ j2

p
gs

: ð4Þ

For a product group obtained on several stacks of
D5-branes wrapped on different P1 cycles, we have the
freedom to turn different values for j on each of the P1

cycles. For two stacks of branes wrapped on P1 cycles with
j1 ≠ j2, the central charges have different phases, they
cannot align and the supersymmetry is broken [5].

B. The supergravity interpolating solution

The variation of the parameters J and BNS for the
wrapped D5-branes was studied in supergravity by many
authors [15,17–19]. [17,18] considered a flow between a
Maldacena-Nunez solution [20] and a Klebanov-Strassler
solution [21]. The Maldacena-Nunez solution corresponds
to large values for J and zero BNS whereas the Klebanov-
Strassler solution is valid for zero J (fractional branes) and
nonzero BNS. The solution involves a reduction of ten-
dimensional spinors ϵi; i ¼ 1; 2 to six-dimensional spinors
ηiþ; i ¼ 1; 2 which are related to the SU(3) invariant spinors
ηþ as [17]

η1þ ¼ 1

2
ðαþ χÞηþ; η2þ ¼ 1

2i
ðα − χÞηþ: ð5Þ

The choice α ¼ 0 (or χ ¼ 0) corresponds to the Maldacena-
Nunez solutions and α ¼ �iχ corresponds to the
Klebanov-Strassler solution. The interpolating solution is
parametrized by a phase ω related to χ and α as
χ ¼ i sinðω=2Þ; α ¼ cosðω=2Þ. The relation (5) becomes

η1þ ¼ ieiωη2þ: ð6Þ
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We now compare (6) with the supersymmetry condition
obtain for D5-branes wrapped on a two-cycle of an SUð3Þ
structure manifold (when NS flux is present). The corre-
sponding relation between ηiþ was considered in [14] for
SUð3Þ holonomy and extended in [22] to SUð3Þ structure
manifolds as

η1þ ¼ −e−iρη2þ; ð7Þ

where ρ is a geometric parameter. We see that the super-
gravity parameter ω and ρ are related as ω ¼ π=2 − ρ.
The flow of [17] was reinterpreted in [15] as starting with

D5-branes with no NS flux and performing a boost which
provides some NS flux, after a series of S and T dualities.
This approach was subsequently used by [19,23] to
describe wrapped D5-branes on a resolved conifold. It
was argued that the SUSY preservation implies that the
D5-branes should wrap a cycle inside a non-Kahler
deformation of the resolved conifold. When the dilaton
is constant, the IIB configuration of [15,19] implies the
following form for the RR and NS three-forms:

HRR ¼ cosh β �6 dJ; HNS ¼ − sinh βdJ; ð8Þ

where the Hodge star is with respect to the non-Kahler
metric on the resolved conifold. The supersymmetry is
preserved if the G3 ¼ HRR − ieϕHNS flux is of the (2,1)
form. For a complex internal manifold, the dilaton is
constant ϕ ¼ ϕ0 and the complex structure is provided by

γ ¼ eϕ0cotanhβ; ð9Þ

where γ was introduced in [19] in the definition of the
complex forms needed to separate the (2,1) and (1,2) pieces
of the fluxes. We repeat the steps of [15] in the case of two
stacks of D5-branes. We start with two sets of D5-branes
wrapped on two P1 cycles and compactify three extra
coordinates of the D5-branes into a three-torus and T-
dualize along them to obtain two sets of D2-branes
wrapped on P1 cycles. We lift this configuration to M
theory and get two stacks of M2-branes. The configuration
is compactified on a seven-dimensional manifold whose
base is the resolved geometry with two P1 cycles. We now
perform the boost of [15]:

t → cosh βt − sin βx11; x11 → − sinh βt − cos βx11:

ð10Þ

After reducing back to type IIA and reversing the three
T-dualities, we reach a type IIB solution with two stacks of
D5-branes wrapped on P1 cycles. The calibration condition
becomes

BNS ¼ sinh β e−2ϕJ: ð11Þ

When integrating (11) over the two P1 cycles for a constant
dilaton, the supersymmetry condition implies that bi ¼R
P1
i
BNS and ji ¼

R
P1
i
J are related as

bi ¼ sinh β e−2ϕ0ji →
b1
j1

¼ b2
j2

: ð12Þ

On the other hand, the central charges on the two stacks of
D5-branes are ji þ ibi so the equality (12) implies that the
phases of the central charges are equal. For generic values
of ji; bi, the condition (12) is not satisfied and the
supersymmetry is broken.

C. Gauge coupling constant on the wrapped D5-branes

The interpolating supergravity solution (5), (6) con-
structed in [17] involves a parameter ω which is related
to the boosting parameter β as

cosω ¼ − tanh β eϕ: ð13Þ

We now consider the gauge coupling constant on
D5-branes wrapped on P1 cycles. In [15] this was related
to ω by looking at the superpotential after the geometric
transition. Here we discuss the case before the geometric
transition. If we replace J by its complexified version
J þ iB, reconsider the compactification manifold as an
SUð3Þ structure manifold and use (7), we get the second
condition to preserve SUSY for a D5-brane wrapped on the
P1 cycle [14]

ðJ þ iBNSÞe−iρ ¼ volP1 : ð14Þ

The angle ρ is a parameter, as defined in equation (7). In
order to obtain a real left-hand side in equation (14),
J þ iBNS should have a phase equal to ρ so we can identify
the parameter as J tanðρÞ ¼ BNS.
After integrating over P1, the left-hand side of (14)

becomes

j cos ρþ b sin ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ b2

q
; ð15Þ

which is the inverse of the gauge coupling constant for
D5-branes wrapped on a rigid P1.

D. T-dual picture

What happens when we perform a T-duality along the
angular direction of the P1 cycle? The singular lines inside
the resolved conifold are replaced by two orthogonal NS
branes and the value of the D-term maps into some extra
separation between the NS branes and a rotation of the
D4-branes. If the NS branes extend in the directions
(012345) and (012389), j ¼ 0 corresponds to NS branes
being separated only in the x6 direction. j ≠ 0 adds an extra
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displacement of the NS branes in the direction x7 and a
rotation of the D4-branes in the ðx6; x7Þ plane.
When starting with two stacks of D5-branes wrapped on

two rigid P1 cycles, the T-dual configurations contains
three NS branes separated in the ðx6; x7Þ plane with two
stacks of D4-branes between them. For different values of
j1; j2, the two stacks of D4-branes are rotated by different
angles, which signals SUSY breaking. When one of the P1

cycles is replaced with a noncompact holomorphic two-
cycle, we get a gauge group with flavors. In the T-dual
picture, flavor groups are represented by semi-infinite
D4-branes, rotated in the ðx6; x7Þ plane when j ≠ 0.
Turning on a Fayet-Iliopoulos term implies a rotation of
the flavor (semi-infinite) D4-branes with respect to the
color (finite) D4-branes in the ðx6; x7Þ plane and the
supersymmetry is generically broken. The configuration
with rotated semi-infinite D4-brane and unrotated finite
D4-branes maps into the D6-brane picture of [12] via a
Hanany-Witten brane creation effect [24].
Supersymmetry is broken when the relation (12) is not

satisfied, as it happens for arbitrary ji; bi. To remove the
requirement (12), we uplift the resolved conifold geometry
to a resolved conifold fibration over a two-torus T2. The
D5-branes wrap a P1 fibration over T2 and we add some
magnetic flux on the T2 base which combines with the
rigidity parameter j to provide a SUSY configuration. Such
constructions (without magnetic flux and D-terms) were
introduced in [16] and we consider these geometries in the
next section.

III. D5-BRANES WRAPPED ON A FOUR-CYCLE
INSIDE CY FOURFOLDS

We briefly review the setup of resolved/deformed
conifold fibrations over T2 proposed in [16]. We consider
D5-branes wrapped on four-cycles inside Calabi-Yau four-
folds described as fibrations over genus g surfaces. We start
with a conifold represented by the equation

x1x2 − x3x4 ¼ 0; ð16Þ
in terms of the complex coordinates xi; i ¼ 1;…; 4. When
the coordinates xi are line bundles Li over a curve C,
the eight-dimensional manifold becomes a Calabi-Yau
fourfold Xs in the five-dimensional complex variety
L1 ⊕ L2 ⊕ L3 ⊕ L4 → C.
The singular Calabi-Yau fourfold Xs can be made

smooth by either a small resolution (a fourfold denoted
Xr) or by a deformation along the curve C (a fourfold
denoted Xd).

A. Resolved conifold side

Consider Xr an Oð−1Þ ⊕ Oð−1Þ → P1 fibration over a
genus g curve. The P1 fibration over C gives rise to a
compact two complex dimensional surface S with Euler

characteristic χðSÞ ¼ 4 − 4g. If the line bundle L1 ⊗ L−1
4

has degree n, the volume of S is

VolðSÞ ¼ n
2
ðJFÞ2 þ JFJC; ð17Þ

where JF and JC measure the volumes of the P1 fiber and of
the curve C. If we wrap D5-branes on S, we get a two-
dimensional field theory with reduced supersymmetry.
There are some other two-cycles in the Oð−1Þ ⊕

Oð−1Þ → P1 fiber. The small resolution is covered by
two copies of C3 with coordinates Z; X; Y and Z0; X0; Y 0
respectively. One can define two types of noncompact
holomorphic cycles ~B1∶Y ¼ 0; X ¼ m or ~B2∶Y 0 ¼ 0;
X0 ¼ M. If we wrap D5-branes on the noncompact hol-
omorphic cycles, they will correspond to massive flavor (if
wrapped on ~B1) or flavor with expectation value (if
wrapped on ~B2). The ~B1 fibration over C is a noncompact
two complex dimensional surface B1 and the ~B2 fibration
over C is a noncompact two complex dimensional surface
B2. If we wrap D5-branes on B1 or B2, we obtain two-
dimensional flavor fields.

B. Deformed conifold side

After a geometric transition on the fiber, a Calabi-Yau
fourfold Xd is obtained by deforming the singular fiber
of Xs into a deformed conifold with a deformation
parameter ϵ:

xy − uv ¼ ϵ: ð18Þ

The singular point is replaced by a three-cycle S3 and its
Poincaré dual P. There are several types of nontrivial four-
cycles inside Xd:

(i) 2g four-cyclesDn; n ¼ 1;…; 2g of topology S1 × S3

generated by transporting the S3 fibers along the
nontrivial 2g cycles of the base.

(ii) 2g − 3 four-cycles of topology S4.

C. Our case: Two-torus (g ¼ 1)

In this work we consider a two-torus base and choose the
value of n is (17) to be zero. This simplifies the problem
because

(i) the volume of the surface S in the resolved conifold
is JFJC

(ii) there is no cycle of topology S4.
For each deformation S3 cycle, we get two S1 × S3

cycles which we denote by D1; D2 and their Poincaré
duals ~D1; ~D2.
The four-cycles B1 and B2 which correspond to massive

flavors or flavors with expectation values also exist in the
deformed geometry.
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IV. SUPERSYMMETRIC CONFIGURATIONS
WITH D-TERMS AND MAGNETIC

FLUXES THROUGH T2

Consider D5-branes wrapped on various P1 or ~Bi
fibrations over a two-torus. We are interested to have a
UðNcÞ ×UðNfÞ theory with UðNcÞ a gauge group and
UðNfÞ a global flavor group. In this work we only consider
the case of a D-term for a Uð1Þ subgroup of UðNfÞ. In the
absence of magnetic flux through the two-torus, the
resulting eight-dimensional manifold inherits the SUð3Þ
holonomy from the resolved conifold. The theory on each
D5-brane is two-dimensional with a (2,2) supersymmetry.
The four-cycle T2 × P1 is holomorphic and the coupling
constant of the two-dimensional field theory obtained on
each D5-branes wrapped on T2 × P1 is

1

gð2;2Þ
¼ bNSAT2

gs
; ð19Þ

where bNS is the integral of BNS through the nonrigid P1

cycle and AT2 is the area of the two-torus. Due to the
presence of the NS flux, the four-cycle P1 × T2 is a
generalized holomorphic cycle embedded in a SUð3Þ
structure manifold.
In the absence of magnetic fluxes and in the limit ω ¼ 0

for the four-dimensional N ¼ 1 SUSY theory, the relation
(6) becomes

η1þ ¼ iη2þ; ð20Þ

which is just the limit θ ¼ 0 of the unbroken supersym-
metry condition for D-branes wrapped on a four-cycle [14].
We conclude that the θ ¼ ω ¼ 0 solution (19) fits the
SUSY condition for D5-branes wrapped on four-cycles
inside SUð3Þ structure manifolds. We now vary θ and ω.
When θ is arbitrary for ω ¼ 0, the supersymmetry is
preserved and remains (2,2) in two dimensions. For
arbitrary θ and ω, the supersymmetry is generically broken.

A. SUSY and magnetic fluxes

We first consider the case of a constant ω ¼ 0 and an
arbitrary θ. This correspond to having J ¼ 0 (infinite boost)
and a vector potential A2 ¼ Mx1 on the two-torus. If the
D5-branes are only wrapped on a two-torus with magnetic
flux, the SUSY conditions imply a relation between the
spinors ηiþ containing a parameter θ: η1þ ¼ −e−iθη2þ and
one involving two-forms,

volT2 þ iM ¼ eiθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgþMjp

ffiffiffiffiffijgjp vol2; ð21Þ

where volT2 is the volume form of the two-torus andM is a
two-form.

We now consider wrapping the D5-branes on a trivial P1

fiber over T2, with BNS on P1. The trivial P1 fiber over T2 is
a four-cycle. For ω ¼ 0 (infinite boost), we have
J ¼ 0; BNS ≠ 0. The right-hand side of (21) becomes the
volume of a four-cycle, whereas the left-hand side of (21) is
multiplied by iBNS. We insert the factor i in the relation
between the ηiþ, which becomes η1þ ¼ ie−iθη2þ. This is
exactly the unbroken supersymmetry condition for
D-branes wrapped on four-cycles of SU(3) holonomy
manifolds [14] (modified to SU(3) structure in the presence
of BNS). The supersymmetry condition (21) becomes

BNS∧ðvolT2 þ iMÞ ¼ eiθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgþMjp

ffiffiffiffiffijgjp vol4; ð22Þ

where vol4 is the volume form of the P1 fibration over T2.
We introduce a phase σ as a function of the magnetic

flux M:

M ¼ tanðσÞvolT2 : ð23Þ

We integrate (22) over the P1 fibration over the T2 and
denote

bNS ¼
Z
P1

BNS; I4 ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgþMjp

ffiffiffiffiffijgjp vol4;

AT2 ¼
Z
T2

volT2 : ð24Þ

As M is a constant flux on the two-torus,
R
T2 M ¼ MAT2 ,

where M is now a number. The result of integrating
(22) is then

bNSAT2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
eiσ ¼ eiθI4: ð25Þ

This relation is satisfied if σ ¼ θ and

bNSAT2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
¼ I4: ð26Þ

This enables us to identify the SUSY parameter θ with σ of
(23) and the gauge coupling constant with the inverse of
bNSAT2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
. An argument for this value of the

coupling constant was provided in [25] where the coupling
constant for the gauge theory on a D-brane wrapped
on a torus with area AT2 and in the presence of a magnetic
flux M was shown to be AT2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
. This is exactly the

interpretation of (26) after a further compactification
on a nonrigid P1. (26) therefore provides the (2,2) two-
dimensional coupling constant on D5-branes wrapped on
the direct product T2 × P1, with magnetic flux M:

1

gð2;2Þ
¼ bNSAT2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p

gs
: ð27Þ
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The change in the coupling constant determined by the
magnetic flux can also be understood in a T-dual picture
with D-branes, after the T-duality is taken along one of the
directions of T2. The D4-branes are replaced by D3-branes
with a tilting in the (1,2) plane due to the magnetic field.
The two-dimensional coupling constant is inverse
proportional to the length of D3-brane i.e. proportional
to 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
.

B. SUSY configurations with magnetic flux
and rigid cycles

We consider the general solution for arbitrary θ and an
arbitrary boosting parameter ω. This corresponds to
allowing some arbitrary J and M. When starting with a
group UðNcÞ ×UðNfÞ, the magnetic flux is chosen such
that the gauge group is broken to UðNcÞ × SUðNf=2Þ2 ×
Uð1Þ. We want zero entries for the Nc × Nc block as the
UðNcÞ fields are not charged under the magnetic flux.
The resolved conifold is now nontrivially fibered over T2

and we deal with a Calabi-Yau fourfold. We have various
types of stable four-cycles inside Calabi-Yau fourfolds.
One type of stable four-cycles are the Kahler calibrations
which are calibrated by J2 and are complex submanifolds.
The second type of four-cycles are the Lagrangian sub-
manifolds L which are calibrated by αψ ¼ ReðeiψΩÞ where
Ω is the holomorphic (4,0) form and ψ is a phase. The most
general calibration is the Cayley calibration when the four-
cycles are calibrated by J2 þ ReðeiψΩÞ. The Cayley cal-
ibrations for wrapped D-branes were first used in [26,27].
In this work we consider S is a nontrivial P1 or ~B

fibration over T2. It is a compact complex submanifold, as
introduced in [16]. This implies that we deal with Kahler
calibrations on which Reðf�ðeiψΩ̄ÞÞ is zero. The conditions
for unbroken SUSY on D5-branes wrapped on Kahler
calibrations are [14]

η1þ ¼ ie−iðθþϕÞη2þ ð28Þ

and

ðJ þ iBNSÞðvolT2 þ iMÞ ¼ eiðθþϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgþMjp

ffiffiffiffiffijgjp vol4: ð29Þ

The conditions (28) and (29) for D5-branes wrapped on a
four-cycle of an SUð4Þ structure manifold have two angular
parameters θ and ϕ which we want to relate to the
parameters

BNS ¼ tanðρÞJ; M ¼ tanðσÞvolT2 : ð30Þ
To do this, we start with D5-branes wrapped on a two-torus
with magnetic flux which requires η1þ ¼ −e−iθη2þ and fix
the θ parameter to be equal to σ such thatM ¼ tanðθÞvolT2 .
We then wrap the D5-branes on an extra P1 cycle such that

the P1 fiber over the two-torus is a Kahler calibration inside
an SUð4Þ holonomy manifold, as in [16].
In case of extra wrapping on a rigid four-cycle, we

multiply volT2 þ iM by J þ iBNS and the relation between
ηiþ; i ¼ 1; 2 changes from η1þ ¼ −e−iθη2þ (D5-branes on
two-cycle) to eiρη1þ ¼ −e−iθη2þ (D5-branes on four-cycle).
The factor eiρ is the phase of J þ iBNS and is extracted once
we consider that the quantum volume of the P1 cycle isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ b2

p
. The relation between ηiþ can be rewritten as

η1þ ¼ ie−iðθþρÞþiπ=2η2þ: ð31Þ

When comparing (28) and (31) we see that, besides θ ¼ σ,
we can also identify ϕ ¼ ρ − π=2. The reality condition
θ þ ϕ ¼ 0 becomes σ ¼ π=2 − ρ, which implies

tan ρ ¼ cotanσ → BNS∧M ¼ J∧volT2 ; ð32Þ
which is the geometric version of the equality between the
D-term and the magnetic flux considered in [12].
The supersymmetric condition also requires

AT2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ b2NS

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
¼ I4; ð33Þ

which implies that the two-dimensional gauge coupling for
the (0,2) gauge theory is

1

gð0;2Þ
¼ AT2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ b2NS

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p

gs
: ð34Þ

In the above discussion, we have considered that the four-
cycle wrapped by the D5-branes is a P1 fiber over T2. We
can also take the limit when the cycle P1 is replaced by a
noncompact holomorphic cycle. In this case we get flavor
D5-branes wrapped on noncompact cycles. The SUSY
compatibility between wrapped D5-branes remains the
same as in (32).

V. GEOMETRIC TRANSITION WITH D-TERMS
AND MAGNETIC FLUXES

We now consider the geometric transition [1] in the
presence of rigid two-cycles and magnetic fluxes. The
geometric transition between resolved and deformed geom-
etries for pure gauge theories starts with Nc D5-branes
wrapped on a resolved conifold, continues with shrinking
the P1 cycle and replacing it with an S3 cycle with a size
equal to the field theory gluino condensate,

S ¼
Z
S3
Ω3; ð35Þ

where Ω3 is the holomorphic three-form on the deformed
conifold. The color D5-branes disappear and are replaced
by N units of Ramond-Ramond flux through the S3 cycle,
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Z
S3
HRR ¼ N: ð36Þ

There are others quantities which map from the resolved
conifold side to the deformed conifold side, involving P,
the Poincaré dual to S3. The bare gauge coupling map is

Z
P1

BNS ↔
Z
P
HNS; ð37Þ

and the Fayet-Iliopoulos D-term map is [5]

Z
P1

J ↔
Z
P
dJ: ð38Þ

A nonzero value of dJ in the deformed geometry implies
the existence of some nonzero torsion classes, a setup
studied in detail in [28]. On the other hand, if fundamental
flavors are present, they live on D5-branes wrapped on
noncompact holomorphic two-cycles which survive the
geometric transition. In this case J ≠ 0 on the noncompact
two-cycle before the geometric transition maps into J ≠ 0
on the noncompact two-cycle after the geometric transition.
There is no dJ ≠ 0 contribution from the surviving non-
compact holomorphic two-cycles.

A. Breaking SUSY with fluxes and noncompact cycles

We saw in the resolved conifold geometry that the
supersymmetry is broken if D5-branes wrap two-cycles
with different values for j. In particular, the SUSY is broken
when the Nc color D5-branes wrap a nonrigid P1 cycle and
the Nf D5-branes wrap a rigid noncompact holomorphic
two-cycle. How do we translate this statement into the
deformed conifold side?
Consider the deformed conifold configuration with Nc

units of RR flux through the S3 cycle (coming from the Nc

D5-branes wrapping a P1 cycle) and a noncompact two-
cycle with Nf D5-branes wrapped on it. This represents the
strong coupling limit of the SUðNcÞ field theory with Nf

fundamental flavors. To discuss the SUSY breaking, we
consider this configuration as a limit of a geometry
describing the strongly coupled SUðNcÞ × SUðNfÞ gauge
theories when the gauge coupling of SUðNfÞ goes to zero.
If S1; S2 are the gluino condensates for SUðNcÞ × SUðNfÞ,
this limit implies that S2 → 0. For two S3 cycles with sizes
S1; S2, the prepotential is

2πiF0 ¼
1

2
S21 log

�
S1
Λ2
0

−
3

2

�
þ 1

2
S22 log

�
S2
Λ2
0

−
3

2

�

− S1S2 log
a
Λ0

; ð39Þ

whose derivatives are the two B-periods Π1;Π2 of the
geometry. In the limit S2 → 0, the contribution of Π1 to the

effective superpotential is the usual one for a decoupled
SUðNcÞ gauge theory,

Ncð3S1 logΛ0 þ Sð1 − log S1ÞÞ; ð40Þ
whereas the contribution of Π2 becomes

S2 log

�
a
Λ0

�
: ð41Þ

We recognize the quantity (41) as the additional super-
potential coming from the contribution of the D5-branes
wrapped on noncompact two-cycles in the deformed
geometry [2,6]. a is either the mass of the flavors [2] or
their expectation value [6]. The geometry with nonzero
S1; S2 continuously deforms into its S2 → 0 limit with one
S3 cycle and a noncompact two-cycle.
We can take a similar S2 → 0 limit when we start with a

geometry with two S3 cycles of nonvanishing sizes with
dJ ≠ 0 on their Poincaré duals. As considered in [5], in this
case the critical points of the tree-level effective super-
potential correspond to values for S1; S2 containing the
factors

�
a
Λ

�
Ni cosðθ12Þ

; i ¼ 1; 2; ð42Þ

where θ12 is the relative phase between the central charges
Zi; i ¼ 1; 2 of the SU groups. The relative phase originates
from the terms

Z
Pi

dJ=gs ¼ ji=gs; j1 ≠ j2: ð43Þ

In the limit S2 → 0, the cycle S32 is replaced by a
holomorphic noncompact two-cycle and a nonzero value
of dJ on P2 maps into a nonzero value of J on the
noncompact two-cycle ~B2. θ12 remains the relative phase
between the central charges but now originates from the
terms

Z
P1

dJ=gs ¼ j1=gs;
Z
~B2

J=gs ¼ j2=gs: ð44Þ

The three-cycle P1 is the Poincaré dual to S31 and should not
be confused with the two-cycle P1. If j1 ≠ j2 in (44), the
supersymmetry is broken. The particular case we are
interested is when j1 ¼ 0 and j2 ≠ 0 which occurs when
a D-term is turned only for the flavor group. We see that
SUSY is broken in this particular case.

B. Reduction on a two-torus and partial
supersymmetry restoration

We saw in the previous subsection that the deformed
geometry with a noncompact rigid two-cycle generically
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breaks SUSY when j1 ≠ j2 in (44). We now argue that
the procedure employed in the resolved conifold geom-
etry (extra compactification on T2 with a magnetic flux
on the torus) to preserve SUSY can also be applied after
the geometric transition. The geometry becomes a
deformed conifold with an extra noncompact two-cycle,
fibered over a two-torus. The deformation cycle S3, its
Poincaré dual P and the noncompact two-cycle are all
uplifted to four-cycles.
In the fourfold language, the identification (35) becomes

S ¼
Z
D1

Ω4; ð45Þ

where Ω4 is the holomorphic four-form on the Calabi-
Yau fourfold and D1 is a four-cycle S3 × S1i where
S1i ; i ¼ 1; 2 are the one-cycles of the two-torus. The
flavor degrees of freedom live on a noncompact four-
cycle Bi which is an holomorphic noncompact two-cycle
fibered over T2.
To get the flux contribution to the effective super-

potential, we use the results of [29] for the superpotential
in case of a compactification on a Calabi-Yau fourfold with
a nonzero four-form flux:

W ¼
Z
Y
Ω∧G; ð46Þ

where Ω is a holomorphic four-form on Y and G is an
integral four-form. This can be reduced to Calabi-Yau
threefolds by considering the Calabi-Yau fourfold as an
elliptic fiber over a base B and expanding G as in [29]

G ¼ qþ p∧χ þX
i

Hi∧θi; ð47Þ

where q; p and Hi are forms of degree 4, 2 and 3 on the
base B, θi; i ¼ 1; 2 form a basis of integral one-forms on
the fiber and χ is an integral two-form generating the two-
dimensional cohomology of the elliptic fiber.
In our case, the Calabi-Yau fourfold is a deformed

conifold fibered over a two-torus. How do we incorporate
the FI terms into the effective superpotential on the
fourfolds? When compactifying on a Calabi-Yau three-
fold, [5] has argued that the FI terms transform as a
vector ðE1; E2; E3Þ under an SUð2ÞR R-symmetry and,
when considered as entries of a 2 × 2 matrix, the action
appears as

1

4π
ReðTrXĒÞ: ð48Þ

X is a 2 × 2 matrix depending on j, and bNS and Ei are
integrals over the P cycle:

E1 ¼
Z
P

HNS

gs
; E2 ¼

Z
P
HRR; E3 ¼

Z
P
dJ=gs:

ð49Þ
We know from [5] that the relevant supersymmetry
variations of the SUð2ÞR doublets of fermions ðψ ; λÞ
are given by

δΨi ¼ Xijϵj i; j ¼ 1; 2: ð50Þ

In case of several gauge groups with different values for
j, there are several matrices Xa with zero eigenvalues but
the supersymmetry is broken for a configuration with
arbitrary values for ja.
To partially preserve supersymmetry, we consider the

deformed conifold fibered over the two-torus. We want to
uplift the quantities Ei to the Calabi-Yau fourfold. The term
Hi∧θi in (47) contains θi, the basis for one-forms on the
torus

dz ¼ dx1 þ τdx2; dz̄ ¼ dx1 þ τ̄dx2: ð51Þ

We consider a vector potential A2 ¼ Mx1. The noncompact
three-cycle P becomes a collection of two S1i × P; i ¼ 1; 2
four-cycles denoted as ~D1; ~D2. The uplift to the fourfold is

gauge coupling constant∶
Z
B
HNS ↔

Z
~D1

HNS∧dx1;
ð52Þ

E1 ¼
Z
B

HNS

gs
↔ ~E1 ¼

Z
~D1

HNS∧dx1; ð53Þ

E2 ¼
Z
B
HRR ↔ ~E2 ¼

Z
~D1

HRR∧dx1; ð54Þ

E3 ¼
Z
B
dJ=gs ↔ ~E3 ¼

Z
~D1

dJ=gs∧dx1: ð55Þ

On the other hand, we also have contributions from ~D2 as

Z
~D2

HNS∧A2dx2;
Z

~D2

dJ∧A2dx2;
Z

~D2

HRR∧A2dx2:

ð56Þ

More involved is the calculation of the matrices Xa for
the deformed conifold fibration over the two-torus. To do
this, we need to split the four-dimensional fermions into
right (left) moving fermions on R1;1. The definition of X
would contain both j and the magnetic flux M. As
mentioned before, in this work we restrict to the case
when only flavor branes are charged under the magnetic
flux and there is no dJ ≠ 0 on the ~Di cycles. All the
information about the magnetic flux and nonzero D-terms
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is encoded in the noncompact two-cycle. We plan to
develop a general discussion for arbitrary X and E in a
future publication.
We now return to our concrete example in this work and

deal with the mismatch between j1 ¼ 0 and j2 ≠ 0 in (44).
When lifted to the SUð4Þ structure manifold, the phase
introduced by the integral of J over ~B2 is matched by the
phase introduced byM on T2. When integrated over the B2,
the ~B2 fiber over T2, the two phases cancel each other if the
relation (32) is valid. For flavor branes, the geometric
transition provides a set of cycles Di; ~Di; B2. The integral
of dJ over ~Di is zero when no D-term is considered for the
gauge group. For magnetic flux on the two-torus that only
the flavors are charged under, the SUSY condition for
D5-branes wrapped on a noncompact four-cycle in the
deformed conifold side is identical to the one in the
resolved conifold side and requires the condition (32) to
be true. We conclude that the condition (32) ensures that the
SUSY is preserved during the geometric transition.
As the geometries discussed here have SUð4Þ structure

in the presence of NS flux on Calabi-Yau fourfolds, it
would be interesting to consider the approach of [30]
involving manifolds with SU(4) structure. This would
allow us to consider more involved assignments of flavor
and colour charges under the magnetic flux.

VI. CONCLUSIONS

In this work, our goal was to provide a geometric
picture for a partial supersymmetry breaking yielding
(0,2) two-dimensional theories. Our setup is T-dual to

the brane configurations of [12]. We start with D5-branes
wrapped on various compact or noncompact two-cycles of
resolved conifold geometries which are further fibered
over a two-torus. Consequently, the D5-branes wrap
four-cycles S which are (compact or noncompact) two-
cycles fibered over the two-torus. The supersymmetry is
partially preserved for rigid two-cycles and when a mag-
netic flux is considered on the two-torus, if the magnetic
flux and the rigidity parameter j are related as in (32). This
reproduces the equality between the D-terms and the
magnetic fluxes proposed in [12]. We also consider the
supersymmetry preservation after a geometric transition.
For the case discussed in this paper, the supersymmetry
condition involves noncompact two-cycles wrapped by
flavor branes which are fibered over the two-torus with
magnetic flux. The relative phase between the central
charges of various stacks of branes is zero when the
relation (32) is obeyed.
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Note added.—Recently a paper [31] appeared which
considers 2d (0,2) quiver gauge theories on the world
volume of D1-branes probing singular toric Calabi-Yau
fourfolds. Our approach uses D5-branes wrapped on four-
cycles inside Calabi-Yau fourfolds and SUð4Þ structure
manifolds.
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