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We consider the field theories on multiple stacks of D5-branes wrapped on four cycles of resolved/
deformed conifold geometries fibered over a two-torus. The central charges of the D5-branes are slightly
misaligned when the branes are wrapped on various rigid holomorphic two-cycles or when they have
different charges with respect to a magnetic flux turned on the two-torus. The wrapped D5-branes preserve
(0, 2) supersymmetry in two dimensions if the Kahler moduli and the magnetic flux are related. Our
geometries are T-dual to the brane configurations considered by Kutasov-Lin, and we provide a geometric
interpretation for their equality between the field theory D-terms and the magnetic fluxes. We also consider
the geometric transitions for rigid holomorphic two-cycles fibered over a two-torus with magnetic flux and
discuss the partial breaking of supersymmetry after the geometric transition.
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I. INTRODUCTION

The supersymmetric field theories enjoy some elegant
descriptions in string theory compactifications. One
successful direction of research studies geometric tran-
sitions which map wrapped brane setups into flux
configurations, as proposed in [1] and extended in [2].
The transition can also be understood by studying matrix
models which allow perturbative insights into nonpertur-
bative physics [3]. A configuration with wrapped anti-
branes can also provide supersymmetric configurations
before and after the transition [4]. A natural generaliza-
tion to hybrid system of branes and antibranes was
considered in [5] to tackle the problem of D-term
supersymmetry breaking.

Soon after the geometric transition was described by
studying D5-branes wrapped on two-cycles, a T-dual
picture was proposed where the wrapped D-branes are
mapped into D-branes suspended between various types of
NS branes [6]. The brane picture allows a lift to M theory
and the use of the MQCD approach to obtain details about
the geometric transitions. The configuration of D4 and NS
branes is lifted as a unique M5 brane which splits into a
collection of simpler M5 branes after the geometric
transition [6].

Recently there has been an increasing interest in using
branes and geometry to study two-dimensional field
theories. A class of interesting theories are the chiral
(0,2) SUSY theories in two dimensions. The first brane
construction was proposed some time ago and involved
three sets of orthogonal NS branes [7]. More recently,
two-dimensional (0,2) theories emerged from compacti-
fications of six-dimensional theories on four-manifolds
with a partial topological twist [8]. This led to the
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realization of some interesting two-dimensional triality
as an IR equivalence between three different theories [9].
Other developments include twisted compactifications
of the four-dimensional Leigh-Strassler fixed point on
closed hyperbolic Riemann surfaces [10] and a Pfaffian
description [11].

An alternative approach was proposed in [12,13] utiliz-
ing brane configurations with color D4-branes and flavor
D6-branes suspended between orthogonal NS branes. The
corresponding four-dimensional A =1 supersymmetric
field theories were further compactified on a two-torus
to yield (2,2) SUSY two-dimensional theories. A D-term
for the field theory on the D4-branes (either color or flavor
groups) and a magnetic flux on the two-torus were added
as extra ingredients representing rotations and displace-
ments of various D4-branes and NS branes. This leads
generically to SUSY breaking but a fine tuning for the
D-term and the magnetic flux can conspire to partially
preserve some supersymmetry, in particular (0,2) SUSY in
two dimensions.

In this work, our goal is to study the geometric picture
arising from T-dualizing the brane configuration of [12].
The T-duality leads to multiple stacks of DS5-branes
wrapped on P! cycles or noncompact holomorphic cycles.
To obtain a two-dimensional theory, we fiber the resolved
conifold geometries over a two-torus and reinterpret the
setup as wrapped D5-branes on P! fibers over the T2. After
turning on a D-term on the P! fiber (making P' cycle rigid),
the central charges of the branes become misaligned [5]
which potentially leads to supersymmetry breaking. On the
other hand, turning on a magnetic flux through the two-
torus could also break supersymmetry. We discuss how
these two types of SUSY breaking can compensate each
other and partially preserve the SUSY for branes wrapped
on four-cycles inside SU(4) structure manifolds (when an
extra NS flux is present). We consider the SUSY condition

© 2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.92.045006
http://dx.doi.org/10.1103/PhysRevD.92.045006
http://dx.doi.org/10.1103/PhysRevD.92.045006
http://dx.doi.org/10.1103/PhysRevD.92.045006

RADU TATAR

for wrapped DS5-branes on two-cycles and four-cycles of
SU(3) and SU(4) holonomy manifolds derived in [14] and
replace the Kahler two-form J with its complexified
version. The SUSY condition becomes an equality between
the Kahler form and the magnetic flux through the two-
torus base, which represents a geometric interpretation of
the equality between the D-term and the magnetic flux
proposed in [12,13].

In Sec. II, we start by reviewing the geometric D-term
SUSY breaking considered in [2,5]. For a single stack of
D5-branes, a SUSY configuration can be obtained even in
the presence of D-terms/rigid cycles but this is not true for
D5-branes wrapped on arbitrary rigid P! cycles or non-
compact two-cycles. We also consider the boost super-
gravity solution described in [15] and discuss the gauge
coupling constant on wrapped D5-branes. In Sec. III, we
review the proposal of [16] to build Calabi-Yau fourfolds as
resolved/deformed conifolds fibered over a genus g base
and we restrict to the case g = 1.

In Sec. IV, we consider the unbroken supersymmetry
condition for D5-branes wrapped on rigid P! cycles fibered
over T? with magnetic flux. Our main claim is that the
condition of SUSY preservation is satisfied when
D5-branes wrap Kahler calibrations and the Kahler moduli
and the magnetic field are related, reproducing the con-
dition derived in [12]. In Sec. V we consider the geometric
transition inside the SU(4) structure manifolds, in the
presence of nonzero D-terms and magnetic fluxes. After
the transition, the color D5-branes are replaced by fluxes
through various S® x S cycles and the gluino condensates
are equal to the integrals of the holomorphic four-form
on such cycles. The flavor degrees of freedom lie on
D5-branes wrapped on noncompact two-cycles, which
remain unchanged during the geometric transition. The
cancellation between the global symmetry D-term and the
magnetic field remains valid during the transition and
assures SUSY preservation.

II. D-TERMS FOR WRAPPED D5-BRANES
A. The geometry of D-terms

We start by reviewing the geometric interpretation of the
D-terms for N =1,d =4 field theories. Consider a
resolved conifold and wrap some D5-branes on the
nonrigid P! cycle. The gauge coupling is

4m_ Dns

g%M B Js

(1)

where byg is the integral over P! of the NS two-form field
on the D5-branes.

In addition, we can turn a small nonzero Fayet-Iliopoulos
parameter & for the U(1) center of the gauge group which
contributes to the Lagrangian with a term /2&TrD. Its
geometric interpretation was provided in [5], where it was
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associated to turning on the real part j of the complexified
Kahler class of the P' cycle. The central charge for
wrapped D5-branes is the integral of the complexified
Kahler form

Z:/SZ(J+iBNS):j+ibNSa (2)

where j is related to & by

J

$= tna (3)
For j # 0, the phase of the central charge is modified and
the supersymmetry appears to be broken due to the
presence of the Fayet-Iliopoulos term. Nevertheless, this
is not necessarily true for any j # 0 [2]. For a single set of
wrapped branes on a P!, the theory has an alternative
SUSY description with a bare coupling constant related to
the quantum volume of the resolution P! cycle as

A _ Vst ] _ (4)

g%M Js

For a product group obtained on several stacks of
D5-branes wrapped on different P! cycles, we have the
freedom to turn different values for j on each of the P!
cycles. For two stacks of branes wrapped on P! cycles with
J1 # jo, the central charges have different phases, they
cannot align and the supersymmetry is broken [5].

B. The supergravity interpolating solution

The variation of the parameters J and Byg for the
wrapped D5-branes was studied in supergravity by many
authors [15,17-19]. [17,18] considered a flow between a
Maldacena-Nunez solution [20] and a Klebanov-Strassler
solution [21]. The Maldacena-Nunez solution corresponds
to large values for J and zero Byg whereas the Klebanov-
Strassler solution is valid for zero J (fractional branes) and
nonzero Byg. The solution involves a reduction of ten-
dimensional spinors €;,i = 1,2 to six-dimensional spinors
', i = 1,2 which are related to the SU(3) invariant spinors
n, as [17]

1 1
ne=slatns =g e (5)
The choice a = 0 (or y = 0) corresponds to the Maldacena-
Nunez solutions and a = 4iy corresponds to the

Klebanov-Strassler solution. The interpolating solution is
parametrized by a phase @ related to y and a as
y = isin(w/2);a = cos(w/2). The relation (5) becomes

n = ien?. (6)
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We now compare (6) with the supersymmetry condition
obtain for D5-branes wrapped on a two-cycle of an SU(3)
structure manifold (when NS flux is present). The corre-
sponding relation between 7', was considered in [14] for
SU(3) holonomy and extended in [22] to SU(3) structure
manifolds as

nk = —e "%, (7)

where p is a geometric parameter. We see that the super-
gravity parameter @ and p are related as w = z/2 — p.
The flow of [17] was reinterpreted in [15] as starting with
D5-branes with no NS flux and performing a boost which
provides some NS flux, after a series of S and T dualities.
This approach was subsequently used by [19,23] to
describe wrapped D5-branes on a resolved conifold. It
was argued that the SUSY preservation implies that the
D5-branes should wrap a cycle inside a non-Kahler
deformation of the resolved conifold. When the dilaton
is constant, the IIB configuration of [15,19] implies the
following form for the RR and NS three-forms:

Hggr = cosh 8 x¢ dJ, Hys = —sinh gdJ,  (8)
where the Hodge star is with respect to the non-Kahler
metric on the resolved conifold. The supersymmetry is
preserved if the Gy = Hyg — ie? Hyg flux is of the (2,1)
form. For a complex internal manifold, the dilaton is
constant ¢p = ¢ and the complex structure is provided by

y = e®ocotanhp, 9)

where y was introduced in [19] in the definition of the
complex forms needed to separate the (2,1) and (1,2) pieces
of the fluxes. We repeat the steps of [15] in the case of two
stacks of D5-branes. We start with two sets of D5-branes
wrapped on two P! cycles and compactify three extra
coordinates of the D5-branes into a three-torus and T-
dualize along them to obtain two sets of D2-branes
wrapped on P! cycles. We lift this configuration to M
theory and get two stacks of M2-branes. The configuration
is compactified on a seven-dimensional manifold whose
base is the resolved geometry with two P! cycles. We now
perform the boost of [15]:

t — cosh fit — sin fx;y, X1; — —sinh ft — cos fxy;.

(10)

After reducing back to type IIA and reversing the three
T-dualities, we reach a type IIB solution with two stacks of
D5-branes wrapped on P! cycles. The calibration condition
becomes

BNS = Sinhﬁ €_2¢J. (11)
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When integrating (11) over the two P! cycles for a constant
dilaton, the supersymmetry condition implies that b; =
Jp1 Bxs and j; = [pi J are related as
by b

6_2(/)0]-1‘ - — =
J1 J2

b, = sinh 8 (12)

On the other hand, the central charges on the two stacks of
D5-branes are j; + ib; so the equality (12) implies that the
phases of the central charges are equal. For generic values
of j;, b;, the condition (12) is not satisfied and the
supersymmetry is broken.

C. Gauge coupling constant on the wrapped D5-branes

The interpolating supergravity solution (5), (6) con-
structed in [17] involves a parameter @ which is related
to the boosting parameter  as

cosw = —tanh 3 e?. (13)

We now consider the gauge coupling constant on
D5-branes wrapped on P! cycles. In [15] this was related
to w by looking at the superpotential after the geometric
transition. Here we discuss the case before the geometric
transition. If we replace J by its complexified version
J + iB, reconsider the compactification manifold as an
SU(3) structure manifold and use (7), we get the second
condition to preserve SUSY for a D5-brane wrapped on the
P! cycle [14]

(J + iBxs)e ™ = volpi. (14)

The angle p is a parameter, as defined in equation (7). In
order to obtain a real left-hand side in equation (14),
J + iByg should have a phase equal to p so we can identify
the parameter as Jtan(p) = Bys.

After integrating over P!, the left-hand side of (14)

becomes
jcosp + bsinp =1/ j> + b, (15)

which is the inverse of the gauge coupling constant for
D5-branes wrapped on a rigid P'.

D. T-dual picture

What happens when we perform a T-duality along the
angular direction of the P! cycle? The singular lines inside
the resolved conifold are replaced by two orthogonal NS
branes and the value of the D-term maps into some extra
separation between the NS branes and a rotation of the
D4-branes. If the NS branes extend in the directions
(012345) and (012389), j = 0 corresponds to NS branes

being separated only in the x° direction. j # 0 adds an extra
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7 and a

displacement of the NS branes in the direction x
rotation of the D4-branes in the (x%,x7) plane.

When starting with two stacks of D5-branes wrapped on
two rigid P! cycles, the T-dual configurations contains
three NS branes separated in the (x°,x”) plane with two
stacks of D4-branes between them. For different values of
J1, J2, the two stacks of D4-branes are rotated by different
angles, which signals SUSY breaking. When one of the P!
cycles is replaced with a noncompact holomorphic two-
cycle, we get a gauge group with flavors. In the T-dual
picture, flavor groups are represented by semi-infinite
D4-branes, rotated in the (x°x’) plane when j# 0.
Turning on a Fayet-Iliopoulos term implies a rotation of
the flavor (semi-infinite) D4-branes with respect to the
color (finite) D4-branes in the (x% x’) plane and the
supersymmetry is generically broken. The configuration
with rotated semi-infinite D4-brane and unrotated finite
D4-branes maps into the D6-brane picture of [12] via a
Hanany-Witten brane creation effect [24].

Supersymmetry is broken when the relation (12) is not
satisfied, as it happens for arbitrary j;, b;. To remove the
requirement (12), we uplift the resolved conifold geometry
to a resolved conifold fibration over a two-torus T2. The
D5-branes wrap a P! fibration over 72 and we add some
magnetic flux on the 72 base which combines with the
rigidity parameter j to provide a SUSY configuration. Such
constructions (without magnetic flux and D-terms) were
introduced in [16] and we consider these geometries in the
next section.

III. DS-BRANES WRAPPED ON A FOUR-CYCLE
INSIDE CY FOURFOLDS

We briefly review the setup of resolved/deformed
conifold fibrations over T? proposed in [16]. We consider
D5-branes wrapped on four-cycles inside Calabi-Yau four-
folds described as fibrations over genus g surfaces. We start
with a conifold represented by the equation

XXy — X3Xy :0, (16)

in terms of the complex coordinates x;,i = 1, ...,4. When
the coordinates x; are line bundles £; over a curve C,
the eight-dimensional manifold becomes a Calabi-Yau
fourfold X, in the five-dimensional complex variety
[:1 ®£2®£3®£4—>C

The singular Calabi-Yau fourfold X; can be made
smooth by either a small resolution (a fourfold denoted
X,) or by a deformation along the curve C (a fourfold
denoted X ).

A. Resolved conifold side

Consider X, an O(—1) & O(—1) — P! fibration over a
genus g curve. The P! fibration over C gives rise to a
compact two complex dimensional surface S with Euler
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characteristic y(S) = 4 — 4g. If the line bundle £; ® £;!
has degree n, the volume of S is

Vol(S) = = (JF)2 + JFJC, (17)

n
2
where J¥ and J€ measure the volumes of the P! fiber and of
the curve C. If we wrap DS5-branes on S, we get a two-
dimensional field theory with reduced supersymmetry.

There are some other two-cycles in the O(-1) @
O(—1) = P! fiber. The small resolution is covered by
two copies of C? with coordinates Z,X,Y and Z', X', Y’
respectively. One can define two types of noncompact
holomorphic cycles l§l Y=0.X=m or BQ:Y/ =0,
X' = M. If we wrap D5-branes on the noncompact hol-
omorphic cycles, they will correspond to massive flavor (if
wrapped on El) or flavor with expectation value (if
wrapped on B,). The B, fibration over C is a noncompact
two complex dimensional surface B; and the Bz fibration
over C is a noncompact two complex dimensional surface
B,. If we wrap D5-branes on B; or B,, we obtain two-
dimensional flavor fields.

B. Deformed conifold side

After a geometric transition on the fiber, a Calabi-Yau
fourfold X, is obtained by deforming the singular fiber
of X, into a deformed conifold with a deformation
parameter e:

Xy —uv =e. (18)

The singular point is replaced by a three-cycle S3 and its
Poincaré dual P. There are several types of nontrivial four-
cycles inside X,:

(i) 2gfour-cycles D,,n =1, ...,2g of topology S' x §3
generated by transporting the S* fibers along the
nontrivial 2g cycles of the base.

(i) 2g — 3 four-cycles of topology S*.

C. Our case: Two-torus (g = 1)

In this work we consider a two-torus base and choose the
value of n is (17) to be zero. This simplifies the problem
because

(i) the volume of the surface S in the resolved conifold

is JFJC

(i) there is no cycle of topology S*.

For each deformation S$3 cycle, we get two S' x §3
cycles which we denote by D, D, and their Poincaré
duals Dl, Dz.

The four-cycles By and B, which correspond to massive
flavors or flavors with expectation values also exist in the
deformed geometry.
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IV. SUPERSYMMETRIC CONFIGURATIONS
WITH D-TERMS AND MAGNETIC
FLUXES THROUGH T?

Consider D5-branes wrapped on various P! or B;
fibrations over a two-torus. We are interested to have a
U(N.) x U(N;) theory with U(N,) a gauge group and
U(N/) a global flavor group. In this work we only consider
the case of a D-term for a U(1) subgroup of U(N). In the
absence of magnetic flux through the two-torus, the
resulting eight-dimensional manifold inherits the SU(3)
holonomy from the resolved conifold. The theory on each
D5-brane is two-dimensional with a (2,2) supersymmetry.
The four-cycle T? x P! is holomorphic and the coupling
constant of the two-dimensional field theory obtained on
each D5-branes wrapped on T2 x P! is

I busAp

92,2 9s (19)
where byg is the integral of Byg through the nonrigid P!
cycle and A;2 is the area of the two-torus. Due to the
presence of the NS flux, the four-cycle P' x 72 is a
generalized holomorphic cycle embedded in a SU(3)
structure manifold.
In the absence of magnetic fluxes and in the limit @ = 0
for the four-dimensional N = 1 SUSY theory, the relation
(6) becomes

n = in’, (20)

which is just the limit & = 0 of the unbroken supersym-
metry condition for D-branes wrapped on a four-cycle [14].
We conclude that the § = w = 0 solution (19) fits the
SUSY condition for D5-branes wrapped on four-cycles
inside SU(3) structure manifolds. We now vary 0 and w.
When 6 is arbitrary for @ =0, the supersymmetry is
preserved and remains (2,2) in two dimensions. For
arbitrary 6 and w, the supersymmetry is generically broken.

A. SUSY and magnetic fluxes

We first consider the case of a constant @ = 0 and an
arbitrary 6. This correspond to having J = 0 (infinite boost)
and a vector potential A, = Mx' on the two-torus. If the
D5-branes are only wrapped on a two-torus with magnetic
flux, the SUSY conditions imply a relation between the
spinors 1. containing a parameter 0: n}. = —e~¥y% and
one involving two-forms,

Vg + M|
Vgl

where volz is the volume form of the two-torus and M is a
two-form.

voly +iM = €% vol,, (21)
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We now consider wrapping the D5-branes on a trivial P!
fiber over T2, with Byg on P!. The trivial P! fiber over 77 is
a four-cycle. For @ =0 (infinite boost), we have
J =0, Bys # 0. The right-hand side of (21) becomes the
volume of a four-cycle, whereas the left-hand side of (21) is
multiplied by iBys. We insert the factor i in the relation
between the 7', which becomes 5! = ie~®y3. This is
exactly the wunbroken supersymmetry cond1t10n for
D-branes wrapped on four-cycles of SU(3) holonomy
manifolds [14] (modified to SU(3) structure in the presence
of Bys). The supersymmetry condition (21) becomes

V0g+ M|
Vgl

where vol, is the volume form of the P! fibration over 72,
We introduce a phase ¢ as a function of the magnetic
flux M:

BysA(voly + iM) = e voly, (22)

M = tan(o)vol;2. (23)

We integrate (22) over the P! fibration over the 72 and
denote

vV g+M
sz_/DIBNs, 14/ |

014 s

ATZ _/ VOITZ. (24)
TZ

As M is a constant flux on the two-torus, [, M = M A2,

where M is now a number. The result of integrating
(22) is then

bnsAp V' 1+ M?e'® = ], (25)

This relation is satisfied if ¢ = @ and

szATZ V 1 1‘42 - 14. (26)

This enables us to identify the SUSY parameter € with ¢ of
(23) and the gauge coupling constant with the inverse of
bxsAp2V' 1+ M?. An argument for this value of the
coupling constant was provided in [25] where the coupling
constant for the gauge theory on a D-brane wrapped
on a torus with area A2 and in the presence of a magnetic
flux M was shown to be A;2v/1 + M?. This is exactly the
interpretation of (26) after a further compactification
on a nonrigid P'. (26) therefore provides the (2,2) two-
dimensional coupling constant on DS5-branes wrapped on
the direct product 72 x P!, with magnetic flux M:

1 bysApV1+ M

92.2) Ys

(27)
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The change in the coupling constant determined by the
magnetic flux can also be understood in a T-dual picture
with D-branes, after the T-duality is taken along one of the
directions of T?. The D4-branes are replaced by D3-branes
with a tilting in the (1,2) plane due to the magnetic field.
The two-dimensional coupling constant is inverse
proportional to the length of D3-brane i.e. proportional

o0 1/v1+ M>.

B. SUSY configurations with magnetic flux
and rigid cycles

We consider the general solution for arbitrary € and an
arbitrary boosting parameter ®. This corresponds to
allowing some arbitrary J and M. When starting with a
group U(N,) x U(Ny), the magnetic flux is chosen such
that the gauge group is broken to U(N,) x SU(N;/2)* x
U(1). We want zero entries for the N. x N, block as the
U(N,) fields are not charged under the magnetic flux.

The resolved conifold is now nontrivially fibered over 72
and we deal with a Calabi-Yau fourfold. We have various
types of stable four-cycles inside Calabi-Yau fourfolds.
One type of stable four-cycles are the Kahler calibrations
which are calibrated by J? and are complex submanifolds.
The second type of four-cycles are the Lagrangian sub-
manifolds L which are calibrated by a,, = Re(e”Q) where
Q is the holomorphic (4,0) form and y is a phase. The most
general calibration is the Cayley calibration when the four-
cycles are calibrated by J? + Re(e”Q). The Cayley cal-
ibrations for wrapped D-branes were first used in [26,27].

In this work we consider S is a nontrivial P! or B
fibration over 77. It is a compact complex submanifold, as
introduced in [16]. This implies that we deal with Kahler
calibrations on which Re(f* (e Q)) is zero. The conditions
for unbroken SUSY on D5-branes wrapped on Kahler
calibrations are [14]

w = ie 0O (28)

and

j M
(J + iBys)(voly2 + iM) = /019 bvol

Vid

The conditions (28) and (29) for D5-branes wrapped on a
four-cycle of an SU(4) structure manifold have two angular
parameters ¢ and ¢ which we want to relate to the
parameters

(29)

Bys = tan(p)J, M = tan(o)vol;. (30)
To do this, we start with D5-branes wrapped on a two-torus
with magnetic flux which requires !, = —e~y% and fix
the 6 parameter to be equal to o such that M = tan(6)vol.
We then wrap the D5-branes on an extra P! cycle such that
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the P! fiber over the two-torus is a Kahler calibration inside
an SU(4) holonomy manifold, as in [16].

In case of extra wrapping on a rigid four-cycle, we
multiply vol;2 + iM by J + iByg and the relation between
n.,i=1,2 changes from 5! = —e 7% (D5-branes on
two-cycle) to e’n' = —e~y% (D5-branes on four-cycle).
The factor e”” is the phase of J + iByg and is extracted once
we consider that the quantum volume of the P' cycle is

V/j* + b*. The relation between 7', can be rewritten as
nL — ie‘i(€+/’)+i”/2ni. (31)
When comparing (28) and (31) we see that, besides 8 = o,
we can also identify ¢ = p — z/2. The reality condition
6 + ¢ = 0 becomes ¢ = n/2 — p, which implies
tan p = cotanc — BysAM = JAvol;2, (32)
which is the geometric version of the equality between the

D-term and the magnetic flux considered in [12].
The supersymmetric condition also requires

Ap/ 2+ b3V 1+ M?> =1, (33)

which implies that the two-dimensional gauge coupling for
the (0,2) gauge theory is

717 2
L_ATZ ViF+ bRV + M ' (34)
9(0,2) Gs

In the above discussion, we have considered that the four-
cycle wrapped by the D5-branes is a P! fiber over 72. We
can also take the limit when the cycle P! is replaced by a
noncompact holomorphic cycle. In this case we get flavor
D5-branes wrapped on noncompact cycles. The SUSY
compatibility between wrapped DS5-branes remains the
same as in (32).

V. GEOMETRIC TRANSITION WITH D-TERMS
AND MAGNETIC FLUXES

We now consider the geometric transition [1] in the
presence of rigid two-cycles and magnetic fluxes. The
geometric transition between resolved and deformed geom-
etries for pure gauge theories starts with N, D5-branes
wrapped on a resolved conifold, continues with shrinking
the P! cycle and replacing it with an S* cycle with a size
equal to the field theory gluino condensate,

S = A Qs (35)

where Q5 is the holomorphic three-form on the deformed
conifold. The color D5-branes disappear and are replaced
by N units of Ramond-Ramond flux through the S° cycle,
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HRR = N, (36)
S3

There are others quantities which map from the resolved
conifold side to the deformed conifold side, involving P,
the Poincaré dual to S°. The bare gauge coupling map is

/ Bys <—>/HNS, (37)
p! P

and the Fayet-Iliopoulos D-term map is [5]

A]Je[)dj. (38)

A nonzero value of dJ in the deformed geometry implies
the existence of some nonzero torsion classes, a setup
studied in detail in [28]. On the other hand, if fundamental
flavors are present, they live on D5-branes wrapped on
noncompact holomorphic two-cycles which survive the
geometric transition. In this case J # 0 on the noncompact
two-cycle before the geometric transition maps into J # 0
on the noncompact two-cycle after the geometric transition.
There is no dJ # 0 contribution from the surviving non-
compact holomorphic two-cycles.

A. Breaking SUSY with fluxes and noncompact cycles

We saw in the resolved conifold geometry that the
supersymmetry is broken if DS5-branes wrap two-cycles
with different values for j. In particular, the SUSY is broken
when the N, color D5-branes wrap a nonrigid P! cycle and
the Ny D5-branes wrap a rigid noncompact holomorphic
two-cycle. How do we translate this statement into the
deformed conifold side?

Consider the deformed conifold configuration with N,
units of RR flux through the $* cycle (coming from the N,
D5-branes wrapping a P! cycle) and a noncompact two-
cycle with Ny D5-branes wrapped on it. This represents the
strong coupling limit of the SU(N,) field theory with N
fundamental flavors. To discuss the SUSY breaking, we
consider this configuration as a limit of a geometry
describing the strongly coupled SU(N,) x SU(N) gauge
theories when the gauge coupling of SU(N) goes to zero.
If Sy, S, are the gluino condensates for SU(N,) x SU(Ny),
this limit implies that S, — 0. For two S° cycles with sizes
S1,S,, the prepotential is

1 S 3\ 1 S, 3
ani = yt1oe(35-3) + 33 1oe (3 -3)
0 0
=515, 10gAi0, (39)

whose derivatives are the two B-periods IT;,II, of the
geometry. In the limit S, — 0, the contribution of I, to the
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effective superpotential is the usual one for a decoupled
SU(N,.) gauge theory,

N (3S;log Ay + S(1 —logS,)), (40)

whereas the contribution of Il, becomes

S, log (Ai> : (41)

We recognize the quantity (41) as the additional super-
potential coming from the contribution of the D5-branes
wrapped on noncompact two-cycles in the deformed
geometry [2,6]. a is either the mass of the flavors [2] or
their expectation value [6]. The geometry with nonzero
S1, S, continuously deforms into its S, — 0 limit with one
$3 cycle and a noncompact two-cycle.

We can take a similar S, — 0 limit when we start with a
geometry with two S cycles of nonvanishing sizes with
dJ # 0 on their Poincaré duals. As considered in [5], in this
case the critical points of the tree-level effective super-
potential correspond to values for S;,S, containing the

factors
a\ Nicos(012)
(K) , i=1,2, (42)

where 6, is the relative phase between the central charges
Z;,i = 1,2 of the SU groups. The relative phase originates
from the terms

/dJ/gs—ji/gs; Jj1 # Ja- (43)

i

In the limit S, — 0, the cycle S% is replaced by a
holomorphic noncompact two-cycle and a nonzero value
of dJ on P, maps into a nonzero value of J on the
noncompact two-cycle I~32. 01, remains the relative phase
between the central charges but now originates from the
terms

/ d‘,/gfzjl/gs’ ﬁ J/gs:JZ/gs (44)
P, By

The three-cycle P is the Poincaré dual to S3 and should not
be confused with the two-cycle P'. If j, # j, in (44), the
supersymmetry is broken. The particular case we are
interested is when j; = 0 and j, # 0 which occurs when
a D-term is turned only for the flavor group. We see that
SUSY is broken in this particular case.

B. Reduction on a two-torus and partial
supersymmetry restoration

We saw in the previous subsection that the deformed
geometry with a noncompact rigid two-cycle generically
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breaks SUSY when j; # j, in (44). We now argue that
the procedure employed in the resolved conifold geom-
etry (extra compactification on 72 with a magnetic flux
on the torus) to preserve SUSY can also be applied after
the geometric transition. The geometry becomes a
deformed conifold with an extra noncompact two-cycle,
fibered over a two-torus. The deformation cycle S°, its
Poincaré dual P and the noncompact two-cycle are all
uplifted to four-cycles.

In the fourfold language, the identification (35) becomes

S = L o (45)

where €, is the holomorphic four-form on the Calabi-
Yau fourfold and D, is a four-cycle S® x S! where
S},i: 1,2 are the one-cycles of the two-torus. The
flavor degrees of freedom live on a noncompact four-
cycle B; which is an holomorphic noncompact two-cycle
fibered over T2

To get the flux contribution to the effective super-
potential, we use the results of [29] for the superpotential
in case of a compactification on a Calabi-Yau fourfold with
a nonzero four-form flux:

W= /Y QAG, (46)

where Q is a holomorphic four-form on Y and G is an
integral four-form. This can be reduced to Calabi-Yau
threefolds by considering the Calabi-Yau fourfold as an
elliptic fiber over a base B and expanding G as in [29]

G=q+pAr+ Y HAD, (47)

where ¢, p and H; are forms of degree 4, 2 and 3 on the
base B, §',i = 1,2 form a basis of integral one-forms on
the fiber and y is an integral two-form generating the two-
dimensional cohomology of the elliptic fiber.

In our case, the Calabi-Yau fourfold is a deformed
conifold fibered over a two-torus. How do we incorporate
the FI terms into the effective superpotential on the
fourfolds? When compactifying on a Calabi-Yau three-
fold, [5] has argued that the FI terms transform as a
vector (Ey, E,, E;) under an SU(2); R-symmetry and,
when considered as entries of a 2 x 2 matrix, the action
appears as

ﬁ Re(TrXE). (48)

X is a 2 x 2 matrix depending on j, and byg and E; are
integrals over the P cycle:
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H
B = s g L Hew  Ey= L difg,.

P Ys
(49)

We know from [5] that the relevant supersymmetry
variations of the SU(2), doublets of fermions (y,4)
are given by

SV = Xie; i,j=12. (50)

In case of several gauge groups with different values for
J, there are several matrices X, with zero eigenvalues but
the supersymmetry is broken for a configuration with
arbitrary values for j,.

To partially preserve supersymmetry, we consider the
deformed conifold fibered over the two-torus. We want to
uplift the quantities E; to the Calabi-Yau fourfold. The term
H;AO" in (47) contains &', the basis for one-forms on the
torus

dz = dx, + tdx,, dz = dx, + 7dx;. (51)

We consider a vector potential A, = Mx'. The noncompact
three-cycle P becomes a collection of two S} xP,i=1,2
four-cycles denoted as Dy, D,. The uplift to the fourfold is

gauge coupling constant: / Hys < | HysAdx!,
B D,

(52)
H ~
E] = NS <> E] = HNs/\dxl, (53)
B Ys D]
Ez = / HRR <> Ez = [ HRR/\d)Cl, (54)
B D,
E; = [ng/gS < E _/l_) dJ /g ndx". (55)

On the other hand, we also have contributions from Dz as

[ HNS /\Azd)(f2 y /: dJ/\Azdxz, [ HRR/\Azdxz.
D, D, b,
(56)

More involved is the calculation of the matrices X, for
the deformed conifold fibration over the two-torus. To do
this, we need to split the four-dimensional fermions into
right (left) moving fermions on R'!. The definition of X
would contain both j and the magnetic flux M. As
mentioned before, in this work we restrict to the case
when only flavor branes are charged under the magnetic
flux and there is no dJ #0 on the D; cycles. All the
information about the magnetic flux and nonzero D-terms
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is encoded in the noncompact two-cycle. We plan to
develop a general discussion for arbitrary X and E in a
future publication.

We now return to our concrete example in this work and
deal with the mismatch between j; = 0 and j, # 0 in (44).
When lifted to the SU(4) structure manifold, the phase
introduced by the integral of J over B, is matched by the
phase introduced by M on T?. When integrated over the B,,
the Ez fiber over T2, the two phases cancel each other if the
relation (32) is valid. For flavor branes, the geometric
transition provides a set of cycles D;, D,», B,. The integral
of dJ over D ; 1s zero when no D-term is considered for the
gauge group. For magnetic flux on the two-torus that only
the flavors are charged under, the SUSY condition for
D5-branes wrapped on a noncompact four-cycle in the
deformed conifold side is identical to the one in the
resolved conifold side and requires the condition (32) to
be true. We conclude that the condition (32) ensures that the
SUSY is preserved during the geometric transition.

As the geometries discussed here have SU(4) structure
in the presence of NS flux on Calabi-Yau fourfolds, it
would be interesting to consider the approach of [30]
involving manifolds with SU(4) structure. This would
allow us to consider more involved assignments of flavor
and colour charges under the magnetic flux.

VI. CONCLUSIONS

In this work, our goal was to provide a geometric
picture for a partial supersymmetry breaking yielding
(0,2) two-dimensional theories. Our setup is T-dual to
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the brane configurations of [12]. We start with D5-branes
wrapped on various compact or noncompact two-cycles of
resolved conifold geometries which are further fibered
over a two-torus. Consequently, the D5-branes wrap
four-cycles S which are (compact or noncompact) two-
cycles fibered over the two-torus. The supersymmetry is
partially preserved for rigid two-cycles and when a mag-
netic flux is considered on the two-torus, if the magnetic
flux and the rigidity parameter j are related as in (32). This
reproduces the equality between the D-terms and the
magnetic fluxes proposed in [12]. We also consider the
supersymmetry preservation after a geometric transition.
For the case discussed in this paper, the supersymmetry
condition involves noncompact two-cycles wrapped by
flavor branes which are fibered over the two-torus with
magnetic flux. The relative phase between the central
charges of various stacks of branes is zero when the
relation (32) is obeyed.
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Note added.—Recently a paper [31] appeared which
considers 2d (0,2) quiver gauge theories on the world
volume of DI-branes probing singular toric Calabi-Yau
fourfolds. Our approach uses D5-branes wrapped on four-
cycles inside Calabi-Yau fourfolds and SU(4) structure
manifolds.
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