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Abstract. We study the infinite-dimensional log-Sobolev inequality for spin systems
on Zd with interactions of power higher than quadratic. We assume that the one
site measure without a boundary e−ϕ(x)dx/Z satisfies a log-Sobolev inequality and
we determine conditions so that the infinite-dimensional Gibbs measure also satisfies
the inequality. As a concrete application, we prove that a certain class of nontrivial
Gibbs measures with non-quadratic interaction potentials on an infinite product of
Heisenberg groups satisfy the log-Sobolev inequality.
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1. Introduction

Coercive inequalities, like the logarithmic Sobolev, play an important role in the study
of ergodic properties of stochastic systems. The inequality is associated with strong
properties about the type and speed of convergence of Markov semigroups to invariant
measures. In particular, in the field of infinite dimensional interacting spin systems, they
provide a powerful tool in the examination of the infinite volume Gibbs measures. In the
current paper we give a first explicit description of spin systems with interactions that
are higher than quadratic that satisfy the log-sobolev inequality, and thus provide a first
example in the bibliography of spin systems with high order interactions that converge
exponentially fast to equilibrium.

Our focus is on the typical logarithmic Sobolev (abbreviated as log-Sobolev or LS)
inequality for probability measures governing systems of unbounded spins on the d-
dimensional lattice Zd with nearest neighbour interactions of order higher than 2. The
aim of this paper is to investigate conditions on the local specification function so that the
inequality can be extended from the single-site interaction free measure to the infinite-
dimensional Gibbs measure, assuming that the latter exists. One crucial assumption is
that the single-site without interactions (consisting only of the phase) measure satisfies a
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log-Sobolev inequality. In addition, we assume that the power of the interaction is dom-
inated by that of the phase. As an application, we show that the log-Sobolev inequality
holds for the infinite Gibbs measure on spin systems with values in the Heisenberg group
H1.

The single-site space will be denoted by S (colloquially, “spins take values in S”) and

Ω := SZ
d
. For Λ a finite subset of Zd, denote by PΛ,ω a probability measure on SΛ

that depends on the boundary conditions ω ∈ S∂Λ. These probability measures (known
as local specifications) satisfy the usual spatial Markov property which imposes sever
restrictions on them, namely, they must, under natural assumptions, be of Gibbs type
with a Hamiltonian that can be split into two parts: the phases (depending on single
sites) and the interaction (depending on neighboring sites). Denote by EΛ,ω integration
with respect to PΛ,ω; and use the convention that the former symbol be used in place of
the latter; see, e.g., Guionnet and Zegarlinski [G-Z, §4.3]. The extent to which a local
specification with quadratic interaction satisfy a log-Sobolev inequality uniformly has
been investigated by Zegarlinski [Z2], Bakry and Emery [B-E], Yoshida [Y], Ané et al.
[A-B-C], Bodineau and Helfer [B-H], Ledoux [Led] and Helfer [H]. Furthermore, in Gentil
and Roberto [G-R] the spectral gap inequality is proved. For the single-site measure on
the real line with or without boundary conditions necessary and sufficient conditions in
order that the log-Sobolev inequality be satisfied uniformly over the boundary conditions
ω are presented in Bobkov and Götze [B-G], Bobkov and Zegarlinski [B-Z] and Roberto
and Zegarlinski [R-Z].

The log-Sobolev inequality for the infinite-dimensional Gibbs measure on the lattice is
examined in Guionnet and Zegarlinski [G-Z], and Zegarlinski [Z1], [Z2]. The problem of
passing from single-site to infinite-dimensional measure, in presence of quadratic inter-
actions, is addressed by Marton [M1], Inglis and Papageorgiou [I-P], Otto and Reznikoff
[O-R] and Papageorgiou [Pa3].

Working beyond the case of quadratic interactions is the scope of this paper. Non-
quadratic interactions have been considered in [Pa2], but for the case of the one-dimensional
lattice and the stronger log-Sobolev q-inequality. In that paper, the inequality for the
infinite-dimensional Gibbs measure was related to the inequality for the finite projection
of the Gibbs measure. In [I-P1] conditions have been investigated so that the infinite
dimensional Gibbs measure satisfies the inequality under the main assumption that the
single-site measure satisfies a log-Sobolev inequality uniformly on the boundary condi-
tions.

The scope of the current paper is to prove the log-Sobolev inequality for the Gibbs
measure without setting conditions neither on the local specification {EΛ,ω} nor on the

one site measure E{i},ω. What we actually show is that under appropriate conditions
on the interactions, the Gibbs measure satisfies a log-Sobolev inequality whenever the
boundary free one site measure µ(dx) = e−ϕ(x)dx/(

∫
e−ϕ(x)dx) satisfies a log-Sobolev

inequality. In that way we improve the previous results since the log-Sobolev inequality
is determined alone by the phase ϕ of the simple without interactions measure µ on M ,
for which a plethora of criteria and examples of good measure that satisfy the inequality
exist.
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To explain the applicability of our general infinite-dimensional framework the specific
case of the Heisenberg group is presented. This will serve as a specific example (see
Theorem 2.5) derived from the more general result of Theorem 2.1.

1.1. General framework. Consider the d-dimensional integer lattice Zd equipped with
the standard neighborhood structure: two lattice points (sites) i, j ∈ Zd are neighbors
(write i ∼ j) if

∑
1≤k≤d |ik − jk| = 1. We shall be working with the configuration space

Ω = SZ
d

where S is an appropriate “spin space”. We consider the spin space S to be a
group, and we denote · the group operation and x−1 the inverse of x ∈ S in respect to
the group operation. The coordinate ωi of a configuration ω ∈ Ω is referred to as the
spin at site i; ωi takes values in Si ≡ S. When Λ ⊂ Zd we identify SΛ with the Cartesian
product of the Si when i ranges over Λ. We assume that S comes with a natural measure;
for example, when S is a group then the measure is one which is invariant under the
group operation; we write dxi for this measure on the copy Si of S corresponding to site
i ∈ Zd; and we use the symbol dxΛ for a product measure, that is, the product of the
dxi, i ∈ Λ. It is assumed that E{i},ω is absolutely continuous with respect to dxi. The
Markov property implies then that, for finite subsets Λ of Zd, the probability measures
EΛ,ω should be of a very special form (see [Pr]):

EΛ,ω(dxΛ) =
1

ZΛ,ω
e−H

Λ,ω(xΛ) dxΛ,

where ZΛ,ω is a normalization constant and where the function HΛ,ω (the Hamiltonian)
is of the form

HΛ,ω(xΛ) :=
∑
i∈Λ

ϕ(xi) +
∑

i,j∈Λ, j∼i
JijV (xi, xj) +

∑
i∈Λ,j∈∂Λ, j∼i

JijV (xi, ωj),

the sum of the phase and the interactions.
It is implicitly assumed that the normalization constants are finite. Several conven-

tions are tacitly used in this business. When f is a function from SZ
d

into R, we let

EΛ,ωf for the function on SZ
d

obtained by integrating f with respect to dxΛ and by
substituting x∂Λ by ω, while leaving all other coordinates the same. When we simply
write EΛf we shall understand this as above with ω = x∂Λ. Thus, EΛ can be thought

of as a linear operator that takes functions on the whole of SZ
d

to functions that do not
depend on the variables xi, i ∈ Λ. Similarly, we will write HΛ for the Hamiltonian HΛ,ω.
If Λ is an infinite subset of Zd with the property that any two points in Λ are at lattice
distance strictly greater than 1 from one another then EΛ,ω is the product of E{i},ω∂{i} .
Using these conventions, the spatial Markov property can then be expressed as

EΛEK = EΛ, K ⊂ Λ.

The Markov property written in this way, following the conventions above, carries a lot
of weight: in particular, it entails that the law of xK given x∂Λ is the law of xK given
x∂K integrated over x∂K when the later has the law obtained from PΛ. This Markov
property can, naturally, be seen to be equivalent to the usual Markov property for
Markov processes indexed by the one-dimensional lattice Z (which is often interpreted
as “time” in view of the natural total order of Z.)



4 TAKIS KONSTANTOPOULOS∗ AND IOANNIS PAPAGEORGIOU∗∗

We say that the probability measure ν on Ω = SZ
d

is an infinite volume Gibbs mea-
sure for the local specifications {EΛ,ω} if the Dobrushin-Lanford-Ruelle equations are
satisfied:

νEΛ,• = ν, Λ b Zd,
that is, if ν is an invariant measure for the Markov random field. We refer to Preston
[Pr], Dobrushin [D] and Bellisard and Hoegn-Krohn [B-HK] for details. Throughout the
paper we shall assume that we are in the case where ν exists and is unique (although
uniqueness can be deduced from our main results).

We next make some assumptions about the nature of the spin space S.
We shall assume that S is a nilpotent Lie group on Rd with Hörmander system

X1, . . . , Xn, n ≤ d, satisfying the following relation: if Xk =
∑d

j=1 akj
∂
∂xj

, k = 1, . . . , n,

then akj is a function of x ∈ Rd not depending on the j-th coordinate xj ; that is, if

x, y ∈ Rd have xj = yj then akj(x) = akj(y). The gradient ∇ with respect to this system
is the vector operator ∇f = (X1f, . . . ,Xnf), whereas ∆ = (X1)2 + · · · + (Xn)2 is the
sublaplacian, where (Xk)2f = Xk(Xkf). We let ‖∇f‖2 := (X1f)2+· · ·+(Xnf)2. When
these operators act on functions on the spin space Si at site i ∈ Zd they will be denoted
by ∇i and ∆i, respectively. If Λ is a finite subset of Zd we shall let ∇Λ := (∇i, i ∈ Λ) and
‖∇Λf‖2 :=

∑
i∈Λ ‖∇if‖2. We shall assume that S comes equipped with a metric-like

function d(x, y), x, y ∈ S. For example, if S is a Euclidean space then d is the Euclidean
metric. If S is the Heisenberg group, then d is the Carnot-Carathéodory metric. More
generally, the role of d only appears through the assumptions we make.

In each and every case, the notation d(x), for x ∈ S, stands for d(x, 0), where 0 is a
special point of S, for example the origin if S is Rm or the identity element if S is a Lie
group.

The main assumption of the paper is that the single site measure without interactions
(consisting only of the phase)

µ(dx) =
e−ϕ(x)dx∫
e−ϕ(x)dx

satisfies the log-Sobolev inequality, that is, that there exists c > 0 such that

µ

(
f2 log

f2

µf2

)
≤ c µ‖∇f‖2

for any smooth function f : S→R such that both sides make sense.
When the last inequality holds for EΛ,ω in the place of µ for the constant c uniformly

on the boundary conditions ω, we say that the log-Sobolev inequality holds for EΛ,ω

uniformly (in ω.)
We point out that when two measures satisfy the log-Sobolev inequality then their

product also satisfies the inequality. Similar thing is also true for spectral gap inequalities
(a measure µ satisfies spectral gap inequality with constant C if µ|f−µf |2 ≤ C µ|∇f |2).

Proofs of these assertions can be found in Gross [G], Guionnet and Zegarlinski [G-Z]

and Bobkov and Zegarlinski [B-Z]. In that way, if for every i ∈ Λ, E{i},ω satisfies the
log-Sobolev (similarly the Spectral gap) inequality uniformly and Λ is a subset (finite or
infinite) of Zd such that any two points of Λ are at lattice distance strictly greater than
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one from one another, then the log-Sobolev (similarly spectral gap) inequality holds for
EΛ,ω, with the same constant c, uniformly in ω ∈ ∂Λ.

1.2. The Heisenberg group. The Heisenberg group H1 can be identified with R3

equipped with the group operation

x · x̃ =
(
x1 + x̃1, x2 + x̃2, x3 + x̃3 +

1

2
(x1x̃2 − x2x̃1)

)
.

It is a Lie group with Lie algebra which can be identified with the space of left-invariant
vector fields on H1 in the standard way. See, e.g., [B-L-U]. By direct computation, the
vector fields

X1 = ∂x1 −
1

2
x2∂x3

X2 = ∂x2 +
1

2
x1∂x3

X3 = ∂x3 = [X1, X2],

where ∂xi denoted derivation with respect to xi, form a Jacobian basis. From this it is
clear that X1, X2 satisfy the Hörmander condition (i.e., X1, X2 and their commutator
[X1, X2] span the tangent space at every point of H1). It is also easy to check that the
left-invariant Haar measure (being also right-invariant measure owing to the fact that
the group is nilpotent) is the Lebesgue measure on R3.

The gradient is given by ∇ := (X1, X2), and the sub-Laplacian by ∆ := X2
1 +X2

2 . A
probability measure µ on H1 satisfies a log-Sobolev inequality if there exists a positive
constant c such that

µ

(
f2 log

f2

µf2

)
≤ c µ‖∇f‖2 = cµ

(
(X1f)2 + (X2f)2

)
,

for all smooth functions f : H1 → R. Here, µ(g), or, simply, µg stands for
∫
H1
g dµ. The

quantity on the left-hand side is the µ-entropy of the function f2 or, equivalently, the
Kullback-Leibler divergence between the measure f2dµ and µ. For example, the family
of measures

µp(dx) :=
e−βd(x,e)p∫

H1
e−βd(x,e)pdx

dx,(1.1)

where p ≥ 2, β > 0, and d(x, e) is the Carnot-Carathéodory distance of the point x ∈ H1

from the identity element e of H1, all satisfy a log-Sobolev inequality; this was shown
by Hebisch and Zegarlinski in [H-Z].

We briefly recall the notion of the Carnot-Carathéodory metric on H.
A Lipschitz curve γ : [0, 1] → H is said to be admissible if γ′(s) = a1(s)X1(γ(s)) +

a2(s)X2(γ(s)), a.e., for given measurable functions a1(s), a2(s), and has length l(γ) =∫ 1
0

(
a2

1(s) + a2
2(s)

)1/2
ds. The Carnot-Carathéodory metric is then defined by

d(x, y) := inf{l(γ) : γ is an admissible path joining x and y}.

We also have that x = (x1, x2, x3) 7→ d(x, e) is smooth for (x1, x2) 6= 0, but has
singularities at points of the form (0, 0, x3). Thus, the unit ball in the metric above has
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singularities on the x3-axis. In our analysis, we will use the following result about the
Carnot-Carathéodory distance (see, for example, [H-Z], [Mo]).

Proposition 1.1. Let ∇ be the gradient and ∆ be the sub-Laplacian on H1. Then
‖∇d(x, e)‖ = 1 for all x = (x1, x2, x3) ∈ H such that (x1, x2) 6= 0. Also there exists a
positive constant K such that ∆d(x, e) < K/d(x, e) in the sense of distributions.

2. Assumptions and main results

In this section we present the hypothesis and the statement of the main result. With-
out loss of generality, assume the single-site space to be the origin 0 ∈ Zd. Let S be the
corresponding spin space. To ease the notation, we denote the Hamiltonian by

H(x) = ϕ(x) +

d∑
j=−d

JjVj(x), x ∈ S,

where ej ∈ Zd is the vector with components ej,i = 1i=j and V±j(x) := V (x, ω±ej ),
j = 1, . . . , d. In other words, we freeze the boundary conditions ω−ed , . . . , ωed at the
2d neighbors ±e1, . . . ,±ed of the origin. Of course, we need to assume that the func-
tions ϕ and Vj are such that

∫
S exp(−H(x))dx < ∞ so that the measure with density

exp(−H(x)) be normalizable to a probability measure which (again suppressing the ω)
we simply denote as E:

E(dx) = Z−1e−H(x)dx.

Before stating the main results, we introduce a number of natural hypotheses.

The main assumption.
The single site measure without interactions (consisting only of the phase)

µ(dx) =
e−ϕ(x)dx∫
e−ϕ(x)dx

satisfies the log-Sobolev inequality with a constant c.

Assumptions on the phase and the interaction potential.
We also assume that Jj > 0 and that ϕ and the Vj are non negative twice continuously

differentiable satisfying the following “geometric” conditions: there exists a nonnegative
C2 function ϕ1 such that

(2.1) ∇ϕ = ϕ1∇d.

Similarly, for each Vj :

(2.2) ∇Vj = Uj∇d,

where Uj are nonnegative C2 functions. The gradient vector ∇d is uniformly bounded
in magnitude from above and below: there exist constants τ and ξ such that, for all
x ∈ S,

(2.3) ξ ≤ ‖∇d‖ ≤ τ.
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Instead of speaking of a metric d, we shall, for the purposes of this section, speak of
positive functions d, such that there exists a constant θ with

(2.4) |∆d| ≤ θ

d
,

for all j and all x. Moreover, we require that there exists k0 > 0 and p ≥ 2 such that

(2.5) k0ϕ ≤ dϕ1 and dp ≤ ϕ
and

(2.6) k0Vj ≤ dUj ,

for all j and x. Furthermore, we assume

(2.7) Vj → +∞ as d(ωej )→ +∞
and that ∃ s ≤ p and k > 0 such that

(2.8) ‖∇Vj‖2 ≤ k + kds + kds(ωej ),

(2.9) Vj ≤ k + kds + kds(ωej ),

Three last assumptions follow. These, as shown in section 8, are natural assumptions
that are easily verified for Hamiltonians that are given as functions of d. For any x, y ∈ S
we assume that there exists a λ > 1 such that

(2.10) H(x · y) ≤ λH(x) + λH(y)

where · the group operation, while for x−1 the inverse of x in respect to the group
operation,

(2.11) H(x−1) = H(x).

If we consider γ : [0, t]→ S a geodesic from 0 to x ∈ S then

(2.12) H(γ(s)) ≤ H(x)

for every s ∈ [0, t].
We can now state the main theorem related to the general framework.

Theorem 2.1. Let f : SZ
d → R. If assumptions (2.1)-(2.12) hold, if the single-site

measure µ satisfies a log-Sobolev inequality, then the Gibbs measure ν satisfies a log-
Sobolev inequality:

νf2 log
f2

νf2
≤ C ν ‖∇f‖2 ,

for some positive constant C.

The main assumption about the phase ϕ is that the single site measure µ satisfies
the log-Sobolev inequality, while the main assumption about the interactions is that the
phase ϕ(x) dominates over the interactions, in the sense that

‖∇V (xi, ωj)‖2 ≤ k + k(ds(xi) + ds(ωj)) ≤ k + k(ϕ(xi) + ϕ(ωj))

for s ≤ p.
We briefly mention some consequences of this result.
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Corollary 2.2. Let ν be as in Theorem 2.1. Then ν satisfies the spectral gap inequality

ν (f − νf)2 ≤ Cν ‖∇f‖2

where C is as in Theorem 2.1.

The proofs of the next two can be found in [B-Z].

Corollary 2.3. Let ν be as in Theorem 2.1 and suppose f : Ω → R is such that
‖∇f‖2∞ < 1. Then

ν
(
eλf
)
≤ exp

{
λν(f) + Cλ2

}
for all λ > 0 where C is as in Theorem 2.1. Moreover, the following ’decay of tails’
estimate holds true

ν

{∣∣∣∣f − ∫ fdν

∣∣∣∣ ≥ h} ≤ 2 exp

{
− 1

C
h2

}
for all h > 0.

Corollary 2.4. Suppose that our configuration space is actually finite dimensional, so
that we replace Zd by some finite graph G, and Ω = (S)G. Then Theorem 2.1 still holds,
and implies that if L is a Dirichlet operator satisfying

ν (fLf) = −ν
(
|∇f |2

)
,

then the associated semigroup Pt = etL is ultracontractive.

Next, we present an example of a measure that satisfies the hypothesis of Theorem
2.1.

2.1. The Case of Heisenberg Group. As an example of a measure Ei,ω that satisfies
the conditions of Theorem 2.1 one can consider the following measure on the Heisenberg
group

EΛ,ω(dXΛ) =
e−H

Λ,ω
dXΛ

ZΛ,ω

where for any Λ b Zd, ω ∈ Ω the Hamiltonian is defined as

(2.13) HΛ,ω(xΛ) =
∑
i∈Λ

dp(xi) + δ
∑

i∈Λ,j∼i
(d(xi) + d(ωj))

r

for δ > 0 and p, r ∈ N s.t. p+2
2 ≥ r > 2, where d the Carnot-Carathéodory distance.

Then the main result related to the infinite volume Gibbs measure associated with this
local specification follows:

Theorem 2.5. Consider H the Heisenberg group and let f : HZd → R. If {EΛ,ω}ΛbZd,ω∈Ω

as in (2.13). Then the infinite-dimensional Gibbs measure ν for the local specification
{EΛ,ω}ΛbZd,ω∈Ω satisfies the log-Sobolev inequality

νf2 log
f2

νf2
≤ C ν |∇f |2

for some positive constant C.
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A few words about the structure of the paper. In section 3 we show a coersive inequal-
ity as well as the Poincare inequality for the one site measure Ei. In the next section we
present the first sweeping out inequalities and show convergence to equilibrium, while in
section 5 a weak logarithmic Sobolev inequality is obtained for the one site measure Ei.
Further sweeping out inequalities are obtained in section 6 together with a log-Sobolev
inequality for the product measure. In the next section 7 we gather all the previous bits
together to prove the main result of Theorem 2.1. Finally, in section 8 we present the
proof of Theorem 2.5.

3. A coercive inequality for the single-site space

In this section we present a single-site coercive inequality that will provide the main
tool in order to control the higher interactions. This coercive inequality is on the line
of the U-bound inequalities presented in [H-Z] in order to prove log-Sobolev inequalities
on a typical analytic framework. Furthermore, as we show in Lemma 3.2 this coercive
inequality will imply the spectral gap inequality for Ei,ω uniformly on ω.

Lemma 3.1. Under assumptions (2.1)-(2.12), there exists C0 > 0 such that, for all
r ≤ p,

Edrf2 ≤ C0E|∇f |2 + C0Ef2,

and
EHf2 ≤ C0E|∇f |2 + C0Ef2

for any smooth function f with compact support.

Proof. It is clear that it suffices to prove the inequality for r = 2(p − 1). Indeed,

if Ed2(p−1)f2 ≤ CE|∇f |2 + CEf2 holds then for all r ≤ 2(p − 1) we have Edrf2 =

E[drf2; d ≤ 1] + E[drf2; d > 1] ≤ Ef2 + Ed2(p−1)f2 ≤ CE|∇f |2 + (C + 1)Ef2. By
homogeneity, in all calculations, we will forget the normalizing constant Z and think of
E(dx) as being equal to e−H(x)dx. In other words, we may, without loss of generality,
assume that Z = 1. Let f be a smooth function with compact support and write

E|∇f |2 =

∫
|∇f |2e−Hdx.

Since
∇(fe−H) = (∇f)e−H − (∇H)e−Hf,

upon taking the inner product with d∇d on both sides we get

d〈∇d,∇H〉e−Hf = d〈∇d,∇f〉e−H − d〈∇d,∇(fe−H)〉,
Hence,

Ed〈∇d,∇H〉f︸ ︷︷ ︸
I1

=Ed〈∇d,∇f〉 −
∫

d〈∇d,∇(fe−H)〉dx

≤Ed|∇d||∇f | −
∫

d〈∇d,∇(fe−H)〉dx

≤τEd|∇f | −
∫

d〈∇d,∇(fe−H)〉dx︸ ︷︷ ︸
I2
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where above we used (2.3). Let X be any of the Hörmander generators of S. Then, by
the structural assumption, we have the integration-by-parts formula∫

F (XG)dx = −
∫

(XF )Gdx

for smooth functions F and G with compact support. As a consequence, the integration-
by-parts formula∫

f〈∇Φ,∇Ψ〉dx = −
∫
〈∇Φ,∇f〉Ψdx−

∫
(∆Φ)Ψfdx,

holds, and so

I2 =

∫
d〈∇d,∇(fe−H)〉dx = −

∫
d|∇d|fe−Hdx−

∫
d(∆d)fe−Hdx ≥ −τEdf − θEf

because of (2.3) and (2.4). Since H = ϕ+
∑

j JjVj , the first term is

I1 = Ed〈∇d,∇H〉f = Ed〈∇d,∇ϕ〉f +
∑
j

JjEd〈∇d,∇Vj〉f =

= Edϕ1|∇d|f +
∑
j

JjEdUj |∇d|f ≥ ξ k0Eϕf + ξk0

∑
j

JjEVjf

where above we used at first (2.1)-(2.2) and in the last inequality (2.3), (2.5) and (2.6).
Combining all that we arrive at

Eϕf +
∑
j

JjEVjf ≤
1

ξ k0
(τEd|∇f |+ τEdf + θEf)

If we replace f by f2 and use Cauchy-Schwarz inequality we obtain

EHf2 ≤ 1

ξ k0
(2τEdf |∇f |+ τEdf2 + θEf2) ≤ 1

ξ k0
(τE|∇f |2 + τEd2f2 + τEdf2 + θEf2)

=
1

ξ k0
{τE|∇f |2 + τE(I{ 4τ

ξ k0
≤dp−2} + I

{ 4τ
ξ k0

>dp−2}
)d2f2+

+ τE(I{ 4τ
ξ k0
≤dp−1} + I{ 4τ

ξ k0
>dp−1})df

2 + θEf2}

≤ 1

ξ k0

{
τE|∇f |2 +

ξ k0

2
Edpf2 +

(
4τ(

4τ

ξ k0
)

2
p−2 + 4τ(

4τ

ξ k0
)

1
p−1 + θ

)
Ef2

}
≤1

2
EHf2 +

1

ξ k0

{
τE|∇f |2 +

(
4τ(

4τ

ξ k0
)

2
p−2 + 4τ(

4τ

ξ k0
)

1
p−1 + θ

)
Ef2

}
since dp ≤ ϕ ≤ H, because of (2.5) and the non negativity of ϕ and Vj . Again, for the
same reason we obtain

Edpf2 ≤ EHf2 ≤ 2

ξ k0

{
τE|∇f |2 +

(
4τ(

4τ

ξ k0
)

2
p−2 + 4τ(

4τ

ξ k0
)

1
p−1 + θ

)
Ef2

}
which proves the inequality. �

We will now prove the Poincare inequality for the one site measure Ei for a constant
uniformly on the boundary conditions. The proof follows closely the proof of the local
Poincaré inequalities from [SC] and [V-SC-C].
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Lemma 3.2. Under assumptions (2.1)-(2.12), Ei,ω satisfies the spectral gap inequality

Ei(f − Eif)2 ≤ cpEi‖∇if‖2

for some constant cp > 0 uniformly on the boundary conditions.

Proof. We denote set V (R) = {xi : H i ≤ R}. Then, if we define a(f) = 1
|VR|

∫
VR
f(xi)dxi,

where |VR| =
∫
VR
dxi, we can compute

Ei(f − a(f))2 = Ei(f − a(f))2IV (R)︸ ︷︷ ︸
II1

+Ei(f − a(f))2IV (R)c︸ ︷︷ ︸
II2

where V (R)c the complement of V (R). Since ϕ, V and Jij are all no negative, H i ≥ 0
and so the first term is

II1 ≤
1

Zi

∫
V (R)

(f(xi)− a(f))2dxi.

If we now use the invariance of the measure dxi with respect to the group operation we
can write a(f) = 1

|V (R)|
∫
f(xizi)IV (R)(xizi)dzi. If we substitute this expression on the

last inequality and use Cauchy-Schwarz inequality we obtain

II1 ≤
1

Zi
1

|V (R)|

∫
(f(xi)− f(xizi))

2IV (R)(xizi)IV (R)(xi)dzidxi

where above we also considered R large enough so that |V (R)| > 1, i.e. 1
|V (R)|2 ≤

1
|V (R)| .

Consider a geodesic γ : [0, t]→ H from 0 to zi, such that |γ̇(t)| ≤ 1. Then we can write

(f(xi)− f(xizi))
2 =

(∫ d(zi)

0

d

ds
f(xiγ(s))ds

)2

=

(∫ d(zi)

0
∇i f(xiγ(s)) · γ̇(s)ds

)2

≤d(zi)

∫ d(zi)

0
‖∇i f(xiγ(s))‖2ds.

From the last inequality, we can bound

II1 ≤
1

Zi
1

|V (R)|

∫
d(zi)

∫ d(zi)

0
‖∇i f(xiγ(s))‖2dsIV (R)(xizi)IV (R)(xi)dzidxi.

We observe that for any xi ∈ V (R) and xizi ∈ V (R) we obtain

H i(zi) = H i(x−1
i xizi) ≤ λH i(x−1

i ) + λH i(xizi) ≤ λ+ λH i(xi) +H i(xizi) ≤ 2Rλ︸︷︷︸
:=r1

because of (2.10) and (2.11). Furthermore, using (2.10) and (2.12) we can calculate

H i(xiγ(s)) ≤ λH i(xi) + λH i(γ(s)) ≤ λH i(xi) + λH i(zi) < (2λ2 + λ)R︸ ︷︷ ︸
:=r2

.

From (2.5), since d(zi) ≤ ϕ(zi)
1
p we can also bound

d(zi) ≤ ϕ(zi)
1
p ≤ H i(zi)

1
p ≤ r1/p

1 .
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So, we get

II1 ≤
r

1/p
1

Zi|V (R)|

∫ ∫ ∫ d(zi)

0
‖∇i f(xiγ(s))‖2IV (r2)(xiγ(s))IV (r1)(zi)dsdzidxi.

Using again the invariance of the measure we can write

II1 ≤
r

1/p
1

Zi|V (R)|

∫ ∫ ∫ d(zi)

0
‖∇i f(xi)‖2IV (r2)(xi)IV (r1)(zi)dsdxidzi

=
r

1/p
1

Zi|V (R)|

∫ ∫
d(zi)‖∇i f(xi)‖2IV (r2)(xi)IV (r1)(zi)dxidzi.

Notice that for zi ∈ V (r1) one can bound as before d(zi) ≤ ϕ(zi)
1
p ≤ H i(zi)

1
p ≤ r

1/p
1 ,

and so

II1 ≤
r

2/p
1

Zi|V (R)|

∫ ∫ (
‖∇i f(xi)‖2IV (r2)(xi)

)
dxiIV (r1)(zi)dzi

≤ r
2/p
1 |V (r1)|
|V (R)|Zi,ω

∫
‖∇i f(xi)‖2IV (r2)(xi)dxi.

Since, for xi ∈ V (r2), we have e−H
i,ω ≥ e−r2 , the last quantity can be bounded by

II1 ≤
er2r

2/p
1 |V (r1)|
|V (R)|

Ei‖∇i f‖2.

If now we take under account that |V (r1)|
|V (R)| = |V (2Rλ)|

|V (R)| ≥ 1, as well as that because of (2.7),

the limit |V (2λR)|
|V (R)| → 1 as

∑
j∼i d(ωj)→∞, we then observe that |V (r1)|

|V (R)| is bounded from

above uniformly on ω from a constant. Thus, we finally obtain that

II1 ≤ C(R)Ei‖∇i f(xi)‖2

for some positive constant C(R).
We will now compute II2. We have

II2 ≤ Ei(f − a(f))2H
i

R
≤ C0

R
Ei|∇f |2 +

C0

R
Ei(f − a(f))2

where above we used Lemma 3.1. Combining all the above we obtain

Ei(f − a(f))2 ≤ (C(R) +
C0

R
)Ei‖∇f‖2 +

C0

R
Ei(f − a(f))2

For R large enough so that C0
R < 1 we get

Ei(f − a(f))2 ≤
C(R) + C0

R

1− C0
R

Ei‖∇f‖2.

Since Ei(f − Ei(f))2 ≤ 4Ei(f − k)2 for any real number k, the result follows. �
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4. Sweeping out inequalities and convergence to the Gibbs measure

Recall the definition of the operator EΛ and the definition of ∇jf as being the gradient

of a function f : SZ
d → R with respect to the coordinate ωj ∈ S{j}. Also, recall the

assumption that there is a unique Gibbs measure ν. By our notational conventions, for
i ∈ Zd, the quantity Eif is a function on Zd that depends only on the 2d variables xj , with

j ∈ Zd ranging over the neighbors of i and the xj ’s that comprise the input of f excluding
xi. Fixing a neighbor j, the gradient∇jEif is then gradient with respect to xj . Denoting

by X1
j , . . . , X

n
j the Hörmander system for S{j}, we have∇j(f) = (X1

j f, . . . ,X
n
j f), so that

‖∇j(Eif)‖2 =
∑n

α=1(Xα
j Ei)2. We have

Lemma 4.1. Suppose that (2.1)-(2.12) hold. Let i, j ∈ Zd be neighbors. Then there are
constants D1 > 0 and 0 < D2 < 1 such that

ν‖∇j(Eif)‖2 ≤ D1ν‖∇jf‖2 +D2ν‖∇if‖2.

Proof. Fix i ∈ Zd and let j be one of its neighbors. We compute (Xα
j (Eif))2. Letting

ρi be the density of Ei with respect to dxi, we have, using Leibniz’ rule and (a+ b)2 ≤
2a2 + 2b2,

(Xα
j (Eif))2 =

(∫
ρi(X

α
j f)dxi +

∫
(Xα

j ρi)fdxi

)2

≤ 2Ei(Xα
j f)2 + 2

(∫
(Xα

j ρi)fdxi

)2

,

(4.1)

where we used Jensen’s inequality to pass in the square inside the expectation in the
first term. If we sum over α and integrate over ν, the first term on the right becomes
ν‖∇jf‖2, which is what we need. For the second term, we need to take into account the

specific form of the density ρi = e−H
i
/Zi. Note that H i depends on xi and the variables

x`, where ` ranges over the neighbors of i, including j, but Zi does not depend on xi.
Taking this into account and using Leibniz’ rule again, we easily arrive at1

(4.2)

∫
(Xα

j ρi)fdxi = −Ei[f(Xα
j H

i − Ei(Xα
j H

i))] = −Ei[(f − Eif) (Xα
j H

i)]

At this point, we use Jensen’s inequality again,

(4.3)

(∫
(Xα

j ρi)fdxi

)2

≤ Ei[(f − Eif)2 (Xα
j H

i)2],

and then take into account the specific form of H i. Since the differential operator Xα
j

acts on xj , only the one of the interactions terms survives, giving

(4.4) Xα
j H

i = JijX
α
j V (xi, xj).

1 The computation is as follows: Xjρi = (Xje
−Hi

)/Zi − e−H
i

(XjZ
i)/(Zi)2. But Xje

−Hi

=

−e−H
i

(XjH
i), and XjZ

i = Xj
∫
e−H

i

dxi = −
∫
e−H

i

(XjH
i)dxi. So Xjρi = −(e−H

i

/Zi)(XjH
i) +

(e−H
i

/Zi)
∫

(e−H
i

/Zi)(XjH
i)dxi = −ρi(XjHi) + ρi

∫
ρi(XjH

i)dxi.
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Therefore, using (2.8)
n∑

α=1

(∫
(Xα

j ρi)fdxi

)2

≤ J2
ij Ei

[
(f − Eif)2‖∇jV (xi, xj)‖2

]
≤ kJ2

ijEi(f − Eif)2 + kJ2
ijEi(f − Eif)2d(xi)

s + kJ2
ijEi(f − Eif)2d(xj)

s.

Summing up the first display of this proof over α and integrating over ν we obtain

(4.5) ν‖∇j(Eif)‖2 ≤ 2ν‖∇jf‖2 + 2kJ2
ijν[(f − Eif)2]

+ 2kJ2
ijν[(f − Eif)2d(xi)

s] + 2kJ2
ijν[(f − Eif)2d(xj)

s].

From the single-site coercive inequality of Lemma 3.1,

(4.6) ν[(f − Eif)2d(xi)
s] = νEi[(f − Eif)2d(xi)

s] ≤ C0 ν‖∇if‖2 + C0 ν[(f − Eif)2],

and

(4.7)

ν[(f −Eif)2d(xj)
s] = νEj [(f −Eif)2d(xj)

s] ≤ C0 ν‖∇j(f −Eif)‖2 +C0 ν[(f −Eif)2],

≤ 2C0 ν‖∇jf‖2 + 2C0 ν‖∇j(Eif)‖2 + C0 ν[(f − Eif)2].

Substituting these last two into (4.5) gives

ν‖∇j(Eif)‖2 ≤ (2+4kJ2
ijC0)ν‖∇jf‖2 +2kJ2

ij(1+2C0)ν[(f−Eif)2]+2kJ2
ijC0 ν‖∇if‖2

+ 4kJ2
ijC0 ν‖∇j(Eif)‖2.

We can now use the Poincare inequality from Lemma 3.2 to bound the variance

ν‖∇j(Eif)‖2 ≤ (2 + 4kJ2
ijC0)ν‖∇jf‖2 + 2kJ2

ij(cp + C0 + 2cpC0)ν‖∇if‖2+

+ 4kJ2
ijC0 ν‖∇j(Eif)‖2.

Equivalently, we can write

(1−4kC0J
2
ij) ν‖∇j(Eif)‖2 ≤ (2+4kJ2

ijC0)ν‖∇jf‖2+2kJ2
ij(cp+C0+2cpC0)ν‖∇if‖2.

We now need to make sure that 1 − 4kC0J
2 > 0, i.e., that J < (4kC0)−1/2 and that

2kJ2
ij(c+C0+2cC0)/(1−4kC0J

2) < 1, that is, 2kJ2
ij(cp+C0+2cpC0)+4kC0J

2 < 1, or J <

(2kcp+4kcpC0+6kC0)−1/2. But the latter inequality implies the former. So it is only the
latter that we need. Therefore the inequality holds with D1 := (2+4kC0J

2)/(1−4kC0J
2)

and D2 := 2kJ2
ij(cp + C0 + 2cpC0), provided that J < (2kcp + 4kcpC0 + 6kC0)−1/2. �

Corollary 4.2. Assume (2.1)-(2.12). For some D3 > 0, if i, j are neighbors in Zd, then

ν[(f − Eif)2d(xj)
s] ≤ D3ν‖∇jf‖2 +D3ν‖∇if‖2.

and
ν[(f − Eif)2d(xi)

s] ≤ D3ν‖∇if‖2.

Proof. For the first assertion, replace ν‖∇j(Eif)‖2 in the right-hand side of (4.7) by its
upper bound from the inequality in the statement of Lemma 4.1, and bound the last
term from the spectral gap inequality from Lemma 3.2. Similarly, the second assertion
of the corollary follows from (4.6) and Lemma 3.2, for a constant D3 := 2C0(4 + cp) �



THE LOG-SOBOLEV INEQUALITY WITH HIGHER ORDER INTERACTIONS. 15

Next, let, for r = 0, 1, . . . , d− 1, the set Γr be defined by

Γr := {i ∈ Zd : i1 + · · ·+ id ≡ r mod d}.
Note that the sets Γr, r = 0, 1, . . . , d− 1, form a partition of Zd and inf{max1≤k≤d |ik −
jk| : i ∈ Γr, j ∈ Γs} = 1 if r 6= s.

From now on, we shall work with the case d = 2, for simplicity of notation. The
general case is analogous.

Lemma 4.3. Assume (2.1)-(2.12). There are constants R1 > 0 and 0 < R2 < 1 such
that

ν‖∇Γ0(EΓ1f)‖2 ≤ R1ν‖∇Γ0f‖2 +R2ν‖∇Γ1f‖2

and

ν‖∇Γ1(EΓ0f)‖2 ≤ R1ν‖∇Γ1f‖2 +R2ν‖∇Γ0f‖2.

Proof. Fix i ∈ Γ1. Denote by ∂{i} the set {i ± e1, i ± e2} of the 2d = 4 neighbors

of i. Since ∂{i} ⊂ Γ0, we can write EΓ0f = EΓ0\∂{i}E∂{i}f . Hence if Xα
i is one

of the Hörmander generators of S{i}, we have Xα
i EΓ0f = EΓ0\∂{i}Xα

i (E∂{i}f). By

Jensen’s inequality, (Xα
i EΓ0f)2 ≤ EΓ0\∂{i}[(Xα

i (E∂{i}f))2]. Summing over all α, we

get ‖∇iEΓ0f‖2 ≤ EΓ0\∂{i}‖∇i(E∂{i}f)‖2. Integrating over ν and using νEΓ0\∂{i} = ν, we

get ν‖∇iEΓ0f‖2 ≤ ν‖∇i(E∂{i}f)‖2. Summing this over i ∈ Γ1 we have

ν‖∇Γ1(EΓ0f)‖2 ≤
∑
i∈Γ1

ν‖∇i(E∂{i}f)‖2.

We estimate the term inside the sum using Lemma 4.1 as follows. First let ∂{i} =

{i+ e1, i+ e2, i− e1, i− e2} = {j1, j2, j3, j4}. Then ∇i(E∂{i}f) = ∇iE{j1}E{j2,j3,j4}f . So

ν‖∇i(E∂{i}f)‖2 = ν‖∇iE{j1}E{j2,j3,j4}f‖2 ≤ D1ν‖∇iE{j2,j3,j4}f‖2+D2ν‖∇j1E{j2,j3,j4}f‖2

For the second term we have ∇j1E{j2,j3,j4}f = E{j2,j3,j4}∇j1f and so, by Jensen’s in-
equality,

ν‖∇j1E{j2,j3,j4}f‖2 ≤ νE{j2,j3,j4}‖∇j1f‖2 = ν‖∇j1f‖2.
The first term is estimated using Lemma 4.1 once more:

ν‖∇iE{j2,j3,j4}f‖2 = ν‖∇iEj2E{j3,j4}f‖2 ≤ D1ν‖∇iE{j3,j4}f‖2 +D2ν‖∇j2E{j3,j4}f‖2.
Continuing in this manner, we obtain (observe that D1 > 1)

ν‖∇i(E∂{i}f)‖2

≤ D4
1ν‖∇if‖2 +D3

1D2ν‖∇j4f‖2 +D2
1D2ν‖∇j3f‖2 +D1D2ν‖∇j2f‖2 +D2ν‖∇j1f‖2

≤ D4
1ν‖∇if‖2 +D3

1D2

∑
j∈∂{i}

‖∇jf‖2.

Summing up over all i ∈ Γ1,

ν‖∇Γ1(EΓ0f)‖2 ≤ D4
1ν‖∇Γ0f‖2 + 4D3

1D2ν‖∇Γ1f‖2.
We need to make sure that 4D3

1D2 < 1. Substituting the actual expressions for these
constants we can see that this inequality is satisfied for all sufficiently small positive J .
In particular, the inequality is true for all J < (80k(c + 2cC0 + 2C0))−1/2. We have
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thus proved the second inequality with R1 := D4
1 and R2 := 4D3

1D2, provided that

J < (192(k2 + k)(c+ 2cC0 + 2C0 + C3
0 ))−1/2. �

Define now the symbol Qn to be Q0f = f and Qn := EΓ0Qn−1 when n is odd and
Qn := EΓ1Qn−1 when n is even, with the understanding that Qn when n is even takes

a functional g on SZ
d
, integrates with respect to PΓ1,x∂Γ0 (dxΓ1) = PΓ1,xΓ0 (dxΓ1) so that

Qng is a functional not depending on xΓ1 . Analogously, Qng for n odd is a functional
not depending on xΓ0 . We used the fact that ∂Γ0 = Γ1 and ∂Γ1 = Γ0.

Lemma 4.4. Under hypotheses (2.1)-(2.12), we have that limn→∞Qnf = νf , ν-a.e.

Proof. We will estimate the L2(ν) norm of the differences of Qnf . From the spectral
gap inequality for EΓk , k = 0, 1 (which follows from the product property of the spectral
gap and the spectral gap for the one node from Lemma 3.2) we have

EΓk(Qnf −Qn+1f)2 = EΓk(Qnf − EΓkQnf)2 ≤ cp EΓ0‖∇ΓkQ
nf‖2.

Integrating with respect to ν we have

ν(Qnf − EΓkQnf)2 ≤ cp ν‖∇ΓkQ
nf‖2.

The last term is estimated from Lemma 4.3, for n ≥ 2,

ν[(Qnf −Qn+1f)2] ≤ cp(R1 +R2)Rn−1
2 ν‖∇f‖2 ≤ Rn,

for some R (depending on f), with 0 < R < 1. Let ε > 0 be so small so that R(1+ε) < 1.
Then

ν{x ∈ Ω : |Qnf−Qn+1f | > (R(1+ε))n/2} ≤ ν[(Qnf−Qn+1f)2]/(R(1+ε))n ≤ (1+ε)−n.

Hence

ν{x ∈ Ω : |Qnf −Qn+1f | ≤ (R(1 + ε))n/2 for almost all n} = 1.

By the triangle inequality,

ν{x ∈ Ω : |Qnf −Qmf | ≤ (R(1 + ε))n/2/(R(1 + ε))1/2 for all large n and m} = 1.

Hence Qnf converges ν-a.e. say to, ξ(f). At first we will show that ξ(f) is a constant
that does not depend on variables neither on Γ0 nor on Γ1. We first observe that Qn(f)
is a function on Γ1 or Γ0 when n is odd or even respectively. As a consequence the
limits of the subsequences limn odd,n→∞Qnf and limn even,n→∞Qnf do not depend on
variables on Γ0 and Γ1 respectively. However, since the two subsequences {Qnf}n even

and {Qnf}n odd converge to the same limit ξ(f) ν−a.e. we conclude that

lim
n odd,n→∞

Qnf = ξ(f) = lim
n even,n→∞

Qnf

from which we derive that ξ(f) is a constant. Furthermore, this implies that

ν (ξ (f)) = ξ(f)

To finish the proof, it remains to show that ξ(f) = ν(f). One notices that since the
sequence {Qnf}n∈N converges ν−a.e, the same holds for the sequence {Qnf−νQnf}n∈N.

At first assume positive bounded functions f . In this case we have

lim
n→∞

(Qnf − νQnf) = ξ(f)− ν (ξ(f)) = ξ(f)− ξ(f) = 0
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by the dominated convergence theorem and the fact that ξ(f) is constant. On the other
hand, we also have

lim
n→∞

(Qnf − νQnf) = lim
n→∞

(Qnf − νf) = ξ (f)− ν(f)

by the definition of the Gibbs measure ν. From the last two we obtain ξ(f) = ν(f) for
bounded positive functions f . We will extend this to no bounded positive functions f .
For this we consider fk(x) := max{f(x), k} for any k ∈ N. Then

ξ(fk) = lim
n→∞

Qnfk = νfk

ν a.e, since fk(x) is bounded by k. But since fk is increasing on k, by the monotone
convergence theorem we get

ξ(f) = lim
k→∞

ξ(fk) = lim
k→∞

ν(fk) = ν( lim
k→∞

fk) = ν(f) ν a.e.

The assertions can be extended to no positive functions f just by writing f = max{f, 0}−
min{f, 0}. �

5. log-Sobolev inequality for one site measure.

In this section we show a weak version of the log-Sobolev type inequality for the one
site measure Ei,ω.

Proposition 5.1. Assume (2.1)-(2.12) and that the measure µ satisfies the log-Sobolev
inequality with a constant c. Then, for J sufficiently small, the one site measure Ei,ω
satisfies the following weak version of a log-Sobolev inequality

νEi,ω
(
f2 log

f2

Ei,ωf2

)
≤ c1ν‖∇if‖2 + c2

∑
j∼i

ν‖∇jf‖2

for some positive constants c1 and c2 < 1.

Proof. We begin with the main assumption about the measure µ(dxi) = eϕ(xi)dxi∫
ϕ(xi)dxi

, that

it satisfies a log-Sobolev inequality with a constant c

µ(f2 log
f2

µf2
) ≤ cµ‖∇if‖2

We will interpolate the phase ϕ by the interactions W i :=
∑

j∼i JijV (xi, ωj) in order to

form the Hamiltonian of the one site measure Ei,ω. To achieve this, replace f by e
−Wi

2 f ,∫
e−H

i
f2 log

e−W
i
f2∫

(e−Hif2)dxi/
∫
e−ϕ(xi)dxi

)dxi ≤ c
∫
e−ϕ(xi)‖∇i(e

−Wi

2 f)‖2dxi.(5.1)

We denote by Dl and Dr the left and right hand side of (5.1) respectively. Use the Leib-

nitz rule for the gradient onDr, to bound ‖∇i(e
−Wi

2 f)‖2 ≤ 2e−W
i‖∇if‖2+1

2e
−W i

f2‖∇iW i‖2,
so that

Dr ≤
(∫

e−H
i
dxi

)(
2cEi,ω‖∇if‖2 +

c

2
Ei,ω(f2‖∇iW i‖2)

)
.(5.2)
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On the left hand side of (5.1) we form the Hamiltonian H i = ϕ(xi) +W i to obtain the
entropy for the measure Ei,ω

Dl =

∫
e−H

i
f2log

f2∫
e−Hif2dxi/

∫
e−Hidxi

dxi +

∫
e−H

i
f2 log

(∫
e−ϕ(xi)dxi

)
e−W

i∫
e−Hidxi

dxi

=

(∫
e−H

i
dxi

)(
Ei,ω(f2log

f2

Ei,ωf2
)− Ei,ω(f2W i)

)
+

∫
e−H

i
f2 log

∫
e−ϕ(xi)dxi∫
e−Hidxi

dxi.

Since W i is no negative, the last gives

Dl ≥
(∫

e−H
i
dxi

)(
Ei,ω(f2log

f2

Ei,ωf2
)− Ei,ω(f2W i)

)
.(5.3)

Combining (5.1) together with (5.2) and (5.3) we obtain

Ei,ω(f2log
f2

Ei,ωf2
) ≤2cEi,ω‖∇if‖2 + Ei,ω

(
f2(

c

2
‖∇iW i‖2 +W i)

)
.(5.4)

We now consider the following bound for the entropy, shown in [B-Z] and [R]

Ei,ω(f2log
f2

Ei,ωf2
) ≤ AEi,ω(f − Ei,ωf)2 + Ei,ω

(
(f − Ei,ωf)2log

(f − Ei,ωf)2

Ei,ω(f − Ei,ωf)2

)
for some positive constant A. Use (5.4) to bound the entropy appearing on the second
term on the right hand side,

Ei,ω(f2log
f2

Ei,ωf2
) ≤AEi,ω(f − Ei,ωf)2 + 2cEi,ω‖∇if‖2+

+ Ei,ω
(

(f − Ei,ωf)2(
c

2
‖∇iW i‖2 +W i)

)
.

If we take expectations with respect to the Gibbs measure we have

ν(f2log
f2

Ei,ωf2
) ≤Aν(f − Ei,ωf)2 + 2cν‖∇if‖2+

+ J
∑
j∼i

ν
(
(f − Ei,ωf)2{2c‖∇iV (xi, ωj)‖2 + V (xi, ωj)}

)
where above we use that J2

i,j ≤ Ji,j ≤ J . And so, from the bounds (2.8) and (2.9)

ν(f2log
f2

Ei,ωf2
) ≤ (A+ 4Jk(1 + 2c))ν(f − Ei,ωf)2 + 2cν‖∇if‖2+

4(2c+ 1)kJν((f − Ei,ωf)2ds(xi)) + (2c+ 1)kJ
∑
j∼i

ν((f − Ei,ωf)2ds(ωj)).

We bound the variance in the first term by the spectral gap of Lemma 3.2 and the third
and the fourth term by Corollary 4.2

ν(f2 log
f2

Ei,ωf2
) ≤ ((A+ 4Jk(1 + 2c))cp + 2c+ (16c+ 8)kJD3) ν‖∇if‖2+

+ (2c+ 1)kJD3

∑
j∼i

ν‖∇jf‖2
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which finishes the proof of the proposition for c1 = (A+4Jk(1+2c))cp+2c+(16c+8)kJD3

and c2 = (2c+ 1)kJ2C0(4 + cp) < 1 for J < ((2c0 + 1)k2C0(4 + cp))
−1. �

6. Further sweeping-out inequalities

In this section we prove the second set of sweeping-out inequalities.

Lemma 6.1. Assume (2.1)-(2.12) and the log-Sobolev inequality for µ. If i ∼ j then
for some G1 > 0 and 0 < G2 < 1,

ν‖∇i
√

Ejf2‖2 ≤ G1ν‖∇if‖2 +G2ν‖∇jf‖2

Proof. Fix neighboring sites i, j. Start with the left-hand side,

ν‖∇i
√

Ejf2‖2 =
n∑

α=1

(Xα
i

√
Ejf2)2,

where

(6.1) (Xα
i

√
Ejf2)2 =

(Xα
i Ejf2)2

4Ejf2
,

estimate the numerator as in (4.1):

(Xα
i Ejf2)2 ≤ 2(Ej(Xif

2))2 + 2(

∫
(Xα

i ρj)f
2dxj)

2.

Use Leibnitz’ rule, Cauchy-Schwarz and Jensen for the first summand and estimate the
second using (4.2) and (4.4):

(Xα
i Ejf2)2 ≤ 4(Ejf2)Ej(Xα

i f)2 + 2J2
ji covEj [f

2, Xα
i V (xj , xi)]

2,

where covµ(f, g) = µ(fg) − µ(f)µ(g) = µ(f(g − µg)), for a probability measure µ.
Substituting into (6.1) and summing over α, we get

‖∇i
√
Ejf2‖2 ≤ Ej‖∇if‖2 +

J2

2

∑
α

covEj [f
2, Xα

i V (xj , xi)]
2

Ejf2
.

Instead of using Jensen, as we did in (4.3), we use the following inequality (see [Pa1]):

Lemma 6.2. For a probability measure µ

(covµ(f2, g))2 ≤ 8 (µf2)µ[(f − µf)2(g2 + µg2)].

We get

‖∇i
√
Ejf2‖2 ≤ Ej‖∇if‖2 + 4J2Ej

{
(f − Ejf)2(‖∇iV (xj , xi)‖2 + Ej‖∇iV (xj , xi)‖2)

}
.

If we now use condition (2.8) to bound the interactions, and then take expectations with
respect to ν we obtain

ν‖∇i
√

Ejf2‖2 ≤ν‖∇if‖2 + 8kJ2ν[Ej(f − Ejf)2] + 4kJ2ν[Ej [(f − Ejf)2Ejd(xj)
s]]+

+ 8kJ2ν[(f − Ejf)2d(xi)
s] + 4kJ2ν[(f − Ejf)2d(xj)

s].(6.2)

At first notice that from Lemma 3.1 we can bound Ej [d(xj)
r] ≤ C0. So the sum of the

second and third term can be bounded from the variance with respect to the one site
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measure Ei. Then the variance can be bounded by the spectral gap inequality obtained
in Lemma 3.2.

8λJ2ν[Ej(f − Ejf)2] + 4kJ2ν[Ej [(f − Ejf)2Ejd(xj)
s]] ≤4kJ2(2 + C0)ν[Ej(f − Ejf)2]

≤4kJ2(2 + C0)cpν‖∇jf‖2.

For the remaining two last terms in the right hand side of (6.2), we can use the two
bounds presented in Corollary 4.2. If we put all these bounds together we get

ν‖∇i
√
Ejf2‖2 ≤(1 + 8kJ2D3)ν‖∇if‖2 + 4kJ2(3D3 + (2 + C0)cp)ν‖∇jf‖2+

This proves the lemma with constants G1 = 1 + 8kJ2D3 and G2 = 4kJ2(3D3 + (2 +

C0)cp) < 1, provided that J < (4k(3D3 + (2 + C0)cp))
− 1

2 . �

Lemma 6.3. Assume (2.1)-(2.12) and the log-Sobolev inequality for Ei,ω. There are
constants C1 > 0 and 0 < C2 < 1 such that

ν‖∇Γ0

√
EΓ1h2‖2 ≤ C1 ν‖∇Γ0h‖2 + C2 ν‖∇Γ1h‖2

and

ν‖∇Γ1

√
EΓ0h2‖2 ≤ C1 ν‖∇Γ1h‖2 + C2 ν‖∇Γ0h‖2

Proof. We will make frequent use of the following inequality. Let A,B be subsets of Z2

at lattice distance at least 2 and i ∈ Z2 such that ∂{i} ∩A = ∅. Then

ν‖∇i
√

EA∪Bf2‖2 ≤ ν‖∇i
√
EBf2‖2.

To see this, let ∇i = (Xα
i , α = 1, . . . , n) and write

Xα
i

√
EA∪Bf =

Xα
i EA∪Bf

2
√

EA∪Bf
=

EAXα
i EBf

2
√

EA∪Bf
=

2EA[
√

EBfXα
i

√
EBf ]

2
√

EA∪Bf
,

where the first and last inequalities are due to Leibnitz’ rule, while the middle one follows

from the assumptions on A, B and i. By Cauchy-Schwarz, (EA[
√

EBfXα
i

√
EBf ])2 ≤

(EAEBf)EA(Xα
i

√
EBf)2. Squaring the last display and replacing by this inequality

we obtain (Xα
i

√
EA∪Bf)2 ≤ EA(Xα

i

√
EBf)2. Summing over α and integrating over ν

proves the claim.

To save some space below, for F : SZ
d → Rn we shall write |||F |||2 instead of

∫
‖F (x)‖2dν(x).

We shall also write Êf instead of
√
Ef . Thus the inequality we showed is written as

(QS)
∣∣∣∣∣∣∣∣∣∇iÊA∪Bf2

∣∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣∣∇iÊBf2
∣∣∣∣∣∣∣∣∣2

Using this we upper bound ν‖∇Γ1

√
EΓ0f2‖2:

(6.3)
∣∣∣∣∣∣∣∣∣∇Γ1ÊΓ0f2

∣∣∣∣∣∣∣∣∣2 =
∑
i∈Γ1

∣∣∣∣∣∣∣∣∣∇iÊΓ0f2
∣∣∣∣∣∣∣∣∣2 ≤∑

i∈Γ1

∣∣∣∣∣∣∣∣∣∇iÊ∂{i}f2
∣∣∣∣∣∣∣∣∣2︸ ︷︷ ︸

:=T1(i)

,
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Fix i ∈ Γ1 and denote its neighbors by i1, i2, i3, i4. Let also I := {i2, i3, i4} = ∂{i}\{i1}.
Using Lemma 6.1 we write

T1(i) =
∣∣∣∣∣∣∣∣∣∇iÊi1EIf2

∣∣∣∣∣∣∣∣∣2 ≤ G1

∣∣∣∣∣∣∣∣∣∇iÊIf2
∣∣∣∣∣∣∣∣∣2︸ ︷︷ ︸

:=T2(i)

+G2

∣∣∣∣∣∣∣∣∣∇i1ÊIf2
∣∣∣∣∣∣∣∣∣2.

Using (QS) three times in the second term, we obtain∣∣∣∣∣∣∣∣∣∇i1ÊIf2
∣∣∣∣∣∣∣∣∣2 ≤ |||∇i1f |||2.

And so,

T1(i) ≤ G1T2(i) +G2

∑
`∼i
|||∇`f |||2.(6.4)

Now we sum over i ∈ Γ1. Note that
∑

i∈Γ1

∑
`∼i |||∇`f |||

2 = 4
∑

j∈Γ0
|||∇jf |||2.∑

i∈Γ1

T1(i) ≤ G1

∑
i∈Γ1

T2(i) + 4G2|||∇Γ0f |||
2.

We proceed in the same manner to estimate T2(i). Let J = {i3, i4},

(6.5) T2(i) :=
∣∣∣∣∣∣∣∣∣∇iÊi2EJf2

∣∣∣∣∣∣∣∣∣2 ≤ G1

∣∣∣∣∣∣∣∣∣∇iÊJf2
∣∣∣∣∣∣∣∣∣2︸ ︷︷ ︸

:=T3(i)

+G2

∣∣∣∣∣∣∣∣∣∇i2ÊJf2
∣∣∣∣∣∣∣∣∣2.

Use (QS) for the second term, ∣∣∣∣∣∣∣∣∣∇i2ÊJf2
∣∣∣∣∣∣∣∣∣2 ≤ |||∇i2f |||2.

Substituting into (6.5)

(6.6) T2(i) ≤ G1T3(i) +G2

∑
`∼i
|||∇`f |||2

and summing up over i ∈ Γ1,∑
i∈Γ1

T2(i) ≤ G1

∑
i∈Γ1

T3(i) + 4G2|||∇Γ0f |||
2

The next term is similar:

T3(i) =
∣∣∣∣∣∣∣∣∣∇iÊi3Ei4f2

∣∣∣∣∣∣∣∣∣2 ≤ G1

∣∣∣∣∣∣∣∣∣∇iÊi4f2
∣∣∣∣∣∣∣∣∣2 +G2

∣∣∣∣∣∣∣∣∣∇i3Êi4f2
∣∣∣∣∣∣∣∣∣2,

with the terms estimated as∣∣∣∣∣∣∣∣∣∇iÊi4f2
∣∣∣∣∣∣∣∣∣2 ≤ G1|||∇if |||2 +G2|||∇i4f |||

2∣∣∣∣∣∣∣∣∣∇i3Êi4f2
∣∣∣∣∣∣∣∣∣2 ≤ |||∇i3f |||2,

so that

T3(i) ≤ G2
1|||∇if |||

2 + (1 +G1)G2

∑
`∼i
|||∇`f |||2(6.7)
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and summing over i ∈ Γ1∑
i∈Γ1

T3(i) ≤ G2
1|||∇Γ1f |||

2 + 4(1 +G1)G2|||∇Γ0f |||
2

Substituting the terms involving the sums to one another and then back to (6.3) yields
the second inequality in the statement with C1 = G4

1 and C2 = 4G2(1+4G1+G2
1++G3

1).
Since G2 = 4kJ2(3D3 + (2 +C0)cp) < 1 we can choose J sufficiently small such that G2

is small enough so that C2 < 1. �

In the next proposition we prove a weak log-Sobolev inequality for the product mea-
sures EΓi , i = 0, 1.

Proposition 6.4. Assume (2.1)-(2.12) and the log-Sobolev inequality for µ. Then the
following log-Sobolev type inequality for the measure Ei,ω holds

νEΓk(f2 log
f2

EΓkf2
) ≤ C̃ν |∇Γ0f |

2 + C̃ν |∇Γ1f |
2

for k = 0, 1, and some positive constant C̃.

Proof. Consider a node i ∈ Z2 with four neighbours denoted as {∼ i} = i1, i2, i3, i4 . We
start by considering the following two quantities:

Φ(i) :=ν‖∇i(E{i1,i2,i3,i4}f2)
1
2 ‖2 + ν‖∇i(E{i2,i3,i4}f2)

1
2 ‖2 + ν‖∇i(E{i3,i4}f2)

1
2 ‖2+

+ ν‖∇i(E{i4}f2)
1
2 ‖2

and

Θ(i) := ν‖∇if‖2 +
∑
s∼i

ν‖∇sf‖2

From the estimates (6.4), (6.6) and (6.7) about the components of the sum of Φ(i) in the
proof of Lemma 6.3 together with Lemma 6.1 we surmise that there exists a constant
R3 > 0 such that

Φ(i) ≤ R3Θ(i)(6.8)

Starting from the neighbourhood of (0, 0) we form a spiral enumeration of all nodes in
Γ1 as described below (see also depiction in figure 1). We start by denoting a1, a2, a3, a4

the neighbours of (0, 0). Obviously, since (0, 0) ∈ Γ0, the nodes ai ∈ Γ1 for i = 1, ..., 4.
After choosing a1 from any of the four neighbours, the rest are named clockwise. Then,
we choose a5 to be any of the nodes in Γ1 of distance two from a4 and distance three
from (0, 0). We continue in the same manner clockwise the enumeration of the rest of the
nodes in Γ1 that have distance three from (0, 0), then distance four, and so on. In this
way we construct a spiral comprising of the nodes in Γ1 always moving clockwise while
we move away from (0, 0). We can then write EΓ1 = u+∞

i=1 Eai . Since we have obtain in
Proposition 5.1 a log-Sobolev inequality for the one node measure, we will express the
entropy of the product measure EΓ1 in terms of the individual entropies as seen below

νEΓ1(f2 log
f2

EΓ1f2
) =

+∞∑
k=1

νEak(Eak−1 ...Ea1f2 log
Eak−1 ...Ea1f2

Eak ...Ea1f2
)(6.9)



THE LOG-SOBOLEV INEQUALITY WITH HIGHER ORDER INTERACTIONS. 23

Figure 1. ◦ = Γ0, • = Γ1

so that we can upper bound the one site entropies from the log-Sobolev inequalities,

νEak(Eak−1 ...Ea1f2 log
Eak−1 ...Ea1f2

Eak ...Ea1f2
) ≤ c1ν‖∇ak f‖

2 + c2

∑
j∼ak

ν‖∇j(Eak−1 ...Ea1f2)
1
2 ‖2

(6.10)

where above in the computation of the first term we used that ai’s have distance bigger

than one from each other, and so ν‖∇ak(Eak−1 ...Ea1f2)
1
2 ‖2 ≤ ν‖∇akf‖2. For the sec-

ond summand in (6.10) notice that the neighbours of ak can be distinguished into two
categories. Those that have distance bigger than one from ak−1, ak−2, ..., a1 and those
that neighbour with at least one of ak−1, ak−2, ..., a1. For j ∼ ak that belong to the first
category, since they do not neighbour any of the nodes ak−1, ak−2, ..., a1 we clearly get

ν‖∇j(Eak−1 ...Ea1f2)
1
2 ‖2 ≤ ν‖∇jf‖2(6.11)

For those neighbours of ak, that neighbour with at least one of the ak−1, ak−2, ..., a1 we
can write

ν‖∇j(Eak−1 ...Ea1f2)
1
2 ‖2 ≤ Φ(j)

If we bound this by (6.8)

ν‖∇j(Eak−1 ...Ea1f2)
1
2 ‖2 ≤ R3Θ(j)(6.12)

Gathering together (6.12), (6.11) and (6.10) we have

νEak(Eak−1 ...Ea1f2 log
Eak−1 ...Ea1f2

Eak ...Ea1f2
) ≤c1ν‖∇akf‖

2 + c2

∑
j∼ak

ν‖∇jf‖2+

+ c2R3

∑
j∼ak

Θ(j)
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Then, if we combine this bound together with (6.9) we obtain

νEΓ1(f2 log
f2

EΓ1f2
) ≤c1

+∞∑
k=1

ν‖∇akf‖
2 + c2

+∞∑
k=1

∑
j∼ak

ν‖∇jf‖2+

+ c2R3

+∞∑
k=1

∑
j∼ak

2∑
n=0

∑
r:dist(s,j)=n

ν‖∇sf‖2

If we notice that for every node there are four nodes at distance one and eight at distance
two, after rearranging the sums above we finally obtain

νEΓ1(f2 log
f2

EΓ1f2
) ≤ (c1 + 13R3c2)ν‖∇Γ1f‖2 + (4c2 + 13R3c2)ν‖∇Γ0f‖2

�

7. The log-Sobolev inequality for the Gibbs measure

In this section we prove the main result stated in Theorem 2.1. We recall that Qn is
defined as Q0f = f and Qn := EΓ0Qn−1 when n is odd and Qn := EΓ1Qn−1 when n is
even.

Proof. If Λ is a subset of Zd, we write EntEΛ for the entropy of the probability measure
PΛ,ω on SΛ, that is, EntEΛ(g) = EΛ

[
g log g

EΛg

]
. From this, with λ(x) := x log x, we have

(7.1) EΛ[λ(g)] = EntEΛ(g) + λ(EΛg),

where we used the fact that EΛg does not depend on xΛ.
We claim that, for all n ≥ 1,

Qn[λ(g)] =
n−1∑

m=0, m odd

Qn−m−1EΓ1 [EntEΓ0 (Qmg)] +
n−1∑

m=0, m even

Qn−m−1[EntEΓ1 (Qmg)]+

+ λ(Qng).(7.2)

To see this, notice first that the statement is trivial for n = 1. Assuming it true for some
n ≥ 1, we prove the same thing with n+ 1 in place of n. Apply (7.1) with Λ = Γ0 and
Qng for n odd in place of g:

EΓ0 [λ(Qng)] = EntEΓ0 (Qng) + λ(EΓ0Qng),

and, again from (7.1) with Λ = Γ1 and Qng for n even in place of g,

EΓ1 [λ(Qng)] = EntEΓ1 (Qng) + λ(EΓ1Qng).

From the last two displays, for odd n we get

EΓ1 [λ(Qng)] = EΓ1 [EntEΓ0 (Qng)] + EntEΓ1 (EΓ0Qng) + λ(Qn+1g)

while for n even

EΓ0 [λ(Qng)] = EΓ0 [EntEΓ1 (Qng)] + EntEΓ0 (EΓ1Qng) + λ(Qn+1g)

Using these, and applying EΓ0 or EΓ1 to (7.2) when n is even or odd respectively, we
readily obtain (7.2) with n + 1 in place of n. This shows the veracity of (7.2). Using
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Lemma 4.4, we have Qn[λ(g)] → ν[λ(g)] and λn(Qng) → ν[g], ν-a.e. From this and
Fatou’s lemma, (7.2) gives

Entν(g) ≤ lim
n→∞

{
ν

[ n−1∑
m=0, m odd

Qn−m−1[EntEΓ0 (Qmg)] +
n−1∑

m=0, m even

Qn−m−1[EntEΓ1 (EΓ0Qmg)]

]}
,

= lim
n→∞

{ n−1∑
m=0, m odd

ν[EntEΓ0 (Qmg)] +
n−1∑

m=0, m even

ν[EntEΓ1 (EΓ0Qmg)]

}(7.3)

where we used the fact that ν is a Gibbs measure to obtain the last equality. Let g = f2

and apply Proposition 6.4 to bound the entropy

ν[EntEΓ0 (Qmf2)] ≤ C̃ν‖∇Γ0

√
Qmf2‖2 ≤ C̃[C1C

m−1
2 ν‖∇Γ1f‖2 + C̃Cm2 ν‖∇Γ0f‖2]

ν[EntEΓ1 (EΓ0Qmf2)] ≤ C̃ν‖∇Γ1

√
EΓ0Qmf2‖2 ≤ C̃[C1C

m−1
2 ν‖∇Γ0f‖2 + C̃Cm2 ν‖∇Γ1f‖2],

for m odd and even respectively, where, for the last inequalities we used Lemma 6.3 and
induction. Substituting in (7.3), we obtain (recall that 0 < C2 < 1)

Entν(f2) ≤ C̃(C1C
−1
2 + C2)

1− C2
ν‖∇Γ1f‖2 +

C̃(C1C
−1
2 + C2)

1− C2
ν‖∇Γ0f‖2 ≤ C ν‖∇f‖2,

where C is the largest of the two coefficients. This is the log-Sobolev inequality for ν. �

8. Example

We consider the Hamiltonian for a measure on the Heisenberg group defined as in
(2.13). Theorem 2.5 follows from the main result presented in Theorem 2.1. Thus, we
need to verify that the conditions of Theorem 2.1 are satisfied for a local specification
with a Hamiltonian as in (2.13).

At first, we need to verify that the main hypothesis, that the single site measure

without interactions (consisting only of the phase) µ(dx) = e−ϕ(x)dx∫
e−ϕ(x)dx

satisfies the log-

Sobolev inequality. In our example where ϕ(x) = d(x)p, p > 2, as explained in the
introduction in section 1.2, this is true, since the family of measures (1.1) satisfies the
log-Sobolev inequality, a result that has been proven in [H-Z]. Furthermore, hypothesis
(2.3) and (2.4) about the Carnot-Carathéodory distance on the Heisenberg group H1 are
true (see [Mo] and [H-Z]).

At first one notices, that for convenience the interaction potential can be written in
the following equivalent form:

(8.1) V (x, ω) = δdr(x) +

r−1∑
k=1

akd
r−k(x)dk(ω)

where ak =

(
r
k

)
the binomial coefficients.

For conditions (2.10) - (2.12), the first one easily follows from dr(xz) ≤ 2r−1d(x) +
2r−1d(z) for every r ∈ N and the specific form of ϕ and V . The second and third
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plausibly from d(x−1) = d(x) and d(γ(s)) ≤ d(z) for any geodesic from 0 to z, both by
the definition of the Carnot-Carathéodory distance.

Finally, conditions (2.1)-(2.2) and (2.5)-(2.9) can easily be verified for any s = 2p− 2

and r ≤ p+2
2 , if one writes the interaction potential in the form (8.1).
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