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Abstract

This paper describes a robust and computationally feasible method
to train and quantify the uncertainty of Neural Networks. Specifically,
we propose a back propagation algorithm for Neural Networks with in-
terval predictions. In order to maintain numerical stability we propose
minimising the maximum of the batch of errors at each step. Our ap-
proach can accommodate incertitude in the training data, and therefore
adversarial examples from a commonly used attack model can be triv-
ially accounted for. We present results on a test function example, and
a more realistic engineering test case. The reliability of the predictions
of these networks are guaranteed by the non-convex Scenario approach
to chance constrained optimisation, which takes place following training,
and is hence robust to the performance of the optimiser. A key result
is that, by using minibatches of size M , the complexity of the proposed
approach scales as O(M · Niter), and does not depend upon the number
of training data points as with other Interval Predictor Model methods.
In addition, troublesome penalty function methods are avoided. To the
authors’ knowledge this contribution presents the first computationally
feasible approach for dealing with convex set based epistemic uncertainty
in huge data sets.

1 Introduction

In recent years deep learning using Artificial Neural Networks has emerged as a
generalised Machine Learning tool which has revolutionised supervised learning,
reinforcement learning, as well as finding many applications in the field of engi-
neering, most often as efficient surrogates for large models [43]. In all fields, but
particularly in safety critical engineering applications, it is essential to quan-
tify the uncertainty of the Neural Network. The simplest approaches attempt
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to quantify this uncertainty by analysing the mean squared error or explained
variance (r2) of the Neural Network on a test set. However, these approaches
do not robustly bound the predictions of the Neural Network. In general, Un-
certainty Quantification can be achieved by probabilistic or non-probabilistic
methods, although some hybrid techniques exist. Probabilistic models provide
a richer model of uncertainty, however interval or hybrid techniques usually
require fewer assumptions and provide theoretical guarantees on the reliability
and robustness of the results. Bayesian Neural Networks (assisted by variational
inference), where the weights are modelled probabilistically as random variables,
have emerged as the most popular tool for giving a prediction of the uncertainty
of the Neural Network which is acceptable to statisticians [35]. However, many
assumptions are necessary in order to apply this approach. For example, the
weights are commonly assumed to have a Gaussian prior (or mixture of Gaus-
sians) and the likelihood function is also assumed to be Gaussian. In addition,
Variational Inference is more complex to implement than the maximum likeli-
hood loss functions which are used by most machine learning engineers, and it
is not explained in the literature how robust guarantees on the reliability of the
results can be obtained [5]. In other words, if the optimiser performs poorly the
predicted probability density may not accurately represent the training data .

In this paper we propose a back propagation algorithm for Neural Networks
with interval predictions, and show how this can be efficiently used to create
Interval Neural Networks. The proposed constant width interval predictions
can be seen as a robust homoscedastic bound on the uncertainty of the trained
network, though we also propose a method for obtaining non-constant width
predictions. In order to maintain numerical stability we avoid using the penalty
method proposed by Ishibuchi et al. [28], and instead propose minimising the
maximum absolute error of the whole batch of gradients at each step. This is
advantageous as the number of difficult-to-tune hyper-parameters is reduced.
We present results for a test function example, and an engineering problem. On
modern architectures using larger batches is desirable as this allows the step size
to be increased, whilst maintaining a constant computation time for each step
by making use of parallelisation. We explain how convex set training data can
be accommodated in this paradigm, in the spirit of Lacerda and Crespo [32].

2 Related Work

Osband [37] and Kendall and Gal [29] discuss epistemic and aleatory uncertainty
in Deep Neural Networks from a Bayesian perspective. Aleatory or irreducible
uncertainty describes the natural stochastic behaviour contained within a model.
Epistemic uncertainty or incertitude is uncertainty relating to a lack of knowl-
edge, which can in principle be reduced by collecting more data. Interestingly,
Hsu et al. [26] suggests that the brain processes incertitude in a different way to
variability (i.e. aleatory uncertainty). Bayesian Neural Networks are becoming
widely used due to popular implementations in PyMC3 and Edward, amongst
others, which have made this approach viable in an industrial context [41].
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However, several other probabilistic approaches to quantifying the uncer-
tainty in Neural Networks exist. Subsampling techniques like bootstrapping
can be applied to the training data to create multiple Neural Networks which
improve the uncertainty quantification compared to mean squared error ap-
proaches, but the results are in general still unsatisfactory [22]. Such approaches
require ensembles of Neural Networks to be trained, which is inefficient in space
and time. Similarly, Robust Neural Networks apply Bayesian model selection
and model averaging to sets of Neural Networks (without subsampling the train-
ing data), and whilst a prior is not required explicitly for the weights, other
assumptions are made regarding the probabilistic distribution of the output of
the model [36].

Probabilistic techniques are not the only method of modelling epistemic un-
certainty [20]. In fact Balch et al. [3] claim that modelling epistemic uncertainty
with probability distributions may cause risk to be underestimated, and lead
to bizarre conclusions regarding when engineers try to reduce epistemic uncer-
tainty in measurements. Interval Predictor Models are a recently developed
machine learning technique for supervised learning which make interval predic-
tions with guaranteed accuracy [12]. In other words, for every input example,
x(i) an Interval Predictor Model would predict bounds on the output, ȳ(x(i))
and y(x(i)), instead of just y(x(i)). The first published software implementation
of Interval Predictor Models was made available in the open source OpenCos-
san software [38]. The technique relies upon the solution of chance constrained
convex optimisation programs by the scenario technique [6, 40].

The scenario technique is a method of approximately solving optimisation
problems with probabilistic constraints by considering a random sample of the
constraints. Scenario Optimisation is easier to use in practice than similar meth-
ods in statistical learning theory, since no knowledge of the Vapnik-Chervonenkis
dimension (a measure of the capacity of the model, which is difficult to determine
exactly) is required. Carè et al. [15] apply the scenario technique to supervised
classification machine learning problems. A key advantage over other machine
learning techniques is that interval training data (i.e. where the training data
inputs are given in the form x(i) ∈ [x(i), x̄(i)] due to epistemic uncertainty or
some other reason) fits into the scenario optimisation framework coherently [32].
This can be seen as equivalent to defending against the attack model of adver-
sarial examples considered by Madry et al. [33], where the network is trained
to produce the same outputs for small perturbations of the input data. The
framework also permits robustness against uncertainty in training outputs, i.e.
y(i) ∈ [y(i), ȳ(i)], where y(i) is a single training example output.

Prior to the development of Scenario Optimisation, Neural Networks with
interval outputs were proposed by Ishibuchi et al. [28], and further described
by Huang et al. [27]. In these papers the learning takes place by identifying the
weights W , which solve the following program:

arg min
W̄ ,W

[Ex(ȳ(x)− y(x)) : ȳ(x(i)) > y(i) > y(x(i)) ∀ i], (1)

where ȳ(x) and y(x) are obtained from two independent Neural Networks, such
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that ȳ(x) and y(x) are the output layers of networks, where layer i is given by
fi

fi = tanh (Wifi−1), (2)

where fi is a vector (which is the input vector when i = 0) and Wi is the ith
weight matrix. In practice this problem is solved by using a mean squared er-
ror loss function with a simple penalty function to model the constraints. This
approach is somewhat similar to quantile regression [18]. In general penalty
methods require careful choice of hyper-parameters to guarantee convergence.
These Neural Networks act in a similar way to Interval Predictor Models, how-
ever the Interval Neural Networks do not include a robust assessment of the
prediction accuracy from the training data set. Freitag et al. [21] define similar
networks with fuzzy parameters to describe fuzzy data, which is closely related
to interval data since operations in fuzzy arithmetic can be decomposed into
repeated interval arithmetic operations. The fuzzy Neural Networks are trained
by minimising a least square loss function (a set inclusion constraint is not used),
which can also be applied to time series data sets.

Campi et al. [13] extended the Scenario Approach to non-convex optimisation
programs, and hence applied the approach to a single layer Neural Network, with
a constant width interval prediction, which was trained using the interior-point
algorithm in Matlab. In other words the following program is solved:

arg min
W,h

[h : |y(i) − ŷ(x(i))| < h ∀ i], (3)

where h is a real number, and ŷ represents the central line of the prediction
obtained from the same network specified by Eqn. 2. Grammatico et al. [25]
extend the non-convex scenario approach to problems solved with the sampling
and discarding technique where the most restrictive constraints are optimally
removed [10].

All of the discussed techniques are summarised in Table 1. The aim of this
paper is closest to the model proposed in Campi et al. [13]. However, in this
paper we concentrate on efficient methods to solve Eqn. 3, and interpretations
of the inferred uncertainty.

2.1 Comparison with other methods

Interval Neural Networks offer a principled framework for dealing with impre-
cision in training data. This paper describes a novel framework for train-
ing Neural Networks which output a specific type of convex set prediction:
super-ellipsoids, which are mathematically parameterised as ellipsoids in a space
equipped with an `p norm (this acts essentially as a transformation enabling
continuous deformation between hyper-spheres and hyper-cubes). The hyper-
ellipsoidal case, representing correlated uncertainty between outputs, and hyper-
rectangular case, representing no correlation between outputs, are discussed in
detail in Section 3.4. Bayesian techniques, and other probabilistic techniques
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Uncertainty Model Typical Application

Traditional Neural Network with Back-
propagation

• Input and output: crisp data
• Abundant data (ideally)

Traditional Interval Neural Network
[28]

• Input: crisp Output: crisp, fuzzy
or interval data (`∞ ball)

• Abundant data (ideally)

Fuzzy Recurrent Neural Network [21]
• Input and output: fuzzy data,

possibly time dependant
• Abundant data (ideally)

Dropout as a Bayesian Approximation
[29] with Adversarial Training [33]

• `2 ball input, precise output
• Can quantify epistemic uncer-

tainty, but in practice works best
with huge data sets

• Deterministic or stochastic ‘true’
model

Approach proposed in this paper
• Input and output: interval data,
`2 ball, other convex sets.

• Abundant data (ideally), but also
possible to quantify confidence
with small data sets.

Table 1: A summary of the models of uncertainty in Neural Networks described
in Section 1 and their typical applications.

for Neural Networks are not capable of handing the set inclusion constraints
required for the neural network output, since the output is a point value or
probability distribution rather than a set. The Interval Neural Networks in this
paper have several advantages over those proposed in previous literature. The
main advantage is that the training algorithms allow more complex network
architectures to be trained. Specifically, the gradient descent algorithm can be
used and no penalty or barrier functions are required in the loss function. In
addition, `2 ball training data is considered while other papers (e.g. [32]) only
consider `∞ training data.

Like other set-based and interval uncertainty models, the networks do not
indicate the relative likelihood of different outputs within the prescribed output
interval, because an interval communicates less information than a fuzzy number

5



or probability distribution; it indicates complete uncertainty within the defined
range. Although the interval output could be seen as a disadvantage because
it is less expressive than a probability distribution, it enables simple guarantees
to be made on the performance of the network (e.g. Section 4.3). Furthermore,
the loss functions proposed in this paper currently only apply to regression
problems; no attempt has been made to generalise typical classification loss
functions, e.g. the logistic loss function or cross entropy loss function.

3 Interval Neural Network Training

3.1 Overview

Firstly, note that one can solve Eqn. 3 by finding the Neural Network weights
which minimise the loss:

Lmax-error = max
i
|y(i) − ŷ(x(i))|, (4)

where h is the minimum value of the loss. It is trivial to show this is true,
since the set inclusion constraint in Eqn. 3 requires that h is larger than the
absolute error for each data point in the training set. Eqn. 4 will be referred to
as the maximum absolute error loss (as opposed to the mean absolute error loss,
which is most commonly used in machine learning). For the avoidance of doubt,
Eqn. 4 takes the maximum over each point in the training data set, rather than
each component of a multi-output Neural Network (though this is discussed in
Section 3.4). In order to minimise the loss in Eqn. 4 stochastic gradient descent
is used. To obtain an accurate estimate of h (the minimum value of the loss),
the loss function

Lactual = Lmax-error + (h− Lmax-error)
2 (5)

is minimised with respect to the weights and h, which is beneficial as the esti-
mate for h is effectively averaged by the gradient descent algorithm and is hence
more accurate than simply setting h to the value of the loss at any iteration
in particular, whilst the minimum of the loss for W remains unchanged. This
technique can be trivially applied for every subsequent loss function described
in this paper, and is used in all of our numberical experiments. Our algorithm
is described in further detail in Algorithm 1. Note that Algorithm 1 could also
be initialized with the weights obtained by training the network with a mean
squared error loss function, if these were already available.

Algorithm 1 is more costly than the standard back propagation method,
since the proposed method costs O(N ·Niter), compared to a standard stochas-
tic gradient descent cost of O(Niter). The algorithm is amenable to paralleli-
sation, since at each step the N evaluations of the absolute error can be made
simultaneously. However, the largest GPU architectures have several thousand
cores, so for data sets with millions of data points Algorithm 1 would not be
tractable. Note also that the Niter required for convergence in both algorithms
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Algorithm 1 Maximum error backpropagation method

Input: Training data pairs (x(i), y(i) for i = 1, ..., N)
Randomly initialise weight tensor and h.
for i = 1, .., Niter do

Set k = arg maxj∈[1,...,N ] |y(j) − ŷ(x(j))|
Use gradient of loss function to update W and h (W ← W + η∇W |y(k) −
ŷ(x(k))|+ (h− |y(k) − ŷ(x(k))|)2 h← h+ η ∂

∂h (h− |y(k) − ŷ(x(k))|)2)
end for

Output: Weight tensor and h

is not necessarily the same, as this depends on the variance of the gradient at
each step.

3.2 Scalability Improvement

We propose the use of minibatch stochastic gradient descent to reduce the com-
putational cost of the algorithm [19], whereby a randomly selected subset of
size M of the training data is selected at each step and used to evaluate the
maximum absolute error loss, Eqn. 4. This procedure is described in further
detail in Algorithm 2.

Algorithm 2 Maximum error backpropagation method, using minibatches

Input: Training data pairs (x(i), y(i) for i = 1, ..., N)
Randomly initialise weight tensor and h.
for i = 1, .., Niter do

Generate set, B, of M random numbers, sampled without replacement
between 1 and N
Set k = arg maxj∈B |y(j) − ŷ(x(j))|
Use gradient of loss function to update W and h (W ← W + η∇W |y(k) −
ŷ(x(k))|+ (h− |y(k) − ŷ(x(k))|)2 h← h+ η ∂

∂h (h− |y(k) − ŷ(x(k))|)2)
end for

Output: Weight tensor and h

Using minibatches reduces the cost of the proposed algorithm toO(M ·Niter),
which is a potentially vast improvement when N >> M > 1. However, we are
now only minimising an approximation of Eqn. 4. Fortunately, in A we show that
the true loss function can be approximated well for reasonably small minibatch
sizes. For large N we find that using a minibatch of size M is equivalent to
minimising the 1

M -th percentile of the empirical cumulative distribution function
of the error for the whole training data set. In addition, by minimising the k-th
largest error in a minibatch of size M , one is actually minimising the k

M -th
percentile of the empirical cumulative distribution function of the error for the
whole training data set. If desired this can be checked after training by passing
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the entire dataset through the model once and checking the identified value of
h against the data (this check will not be too costly if NiterM >> N).

Minimising the empirical percentiles of the error on the training set, with
the minibatch approximation of Eqn. 4, allows us to control the training of
the Neural Network but does not by itself provide a statistical guarantee on
performance on the test set. To statistically guarantee performance of the model
it is therefore necessary to use the techniques in Section 4, and in particular
Section 4.3.

3.3 Incertitude in Training Data

Algorithm 1 and Algorithm 2 are described for use with crisp training data.
However one of the main advantages of the Interval Predictor Model framework
is that training data with incertitude (i.e. interval training data or fuzzy data)
fits coherently into the paradigm [32]. An example of incertitude in training
data is a common defence against the adversarial attack model from Madry
et al. [33]. The proposed attack model places each training data point in an
uncertain hyper-sphere (`2 ball). Typically, in the context of uncertainty quan-
tification, incertitude is characterised with intervals (`∞ ball). However, both
cases are convex sets and therefore the conceptual challenge of accommodating
this training data is similar. Since the neural network model is more complex
than that proposed in Lacerda and Crespo [32] the computations required to
accommodate interval data are also more complex.

For the case of interval imprecision in the output variables (i.e. pairs x(i)

and [y(i), ȳ(i)] are observed) Eqn. 3 can be modified as follows:

arg min
W,h

[h : max (|ȳ(i) − ŷ(x(i))|, |y(i) − ŷ(x(i))|) < h ∀ i], (6)

which can be written in simplified form if the width of interval [y(i), ȳ(i)] is
constant for all data points. The optimisation program in Eqn. 6 can be solved
by minimising the loss

Loutput incertitude = max
i

max (|ȳ(i) − ŷ(x(i))|, |y(i) − ŷ(x(i))|), (7)

with respect to the weights, W , where h becomes the value of the loss at the
minimum.

For interval incertitude in the input training data the situation is more com-
plex, and since the sum of squares approach used in [32] is not directly appli-
cable, and hence the algorithm with neural networks will be more costly. If the
pairs [x(i), x̄(i)] and [y(i), ȳ(i)] are observed then one must solve

arg min
W,h

[h : max
x∈[x(i),x̄(i)]

(|ȳ(i) − ŷ(x)|, |y(i) − ŷ(x)|) < h ∀ i], (8)

where the nested optimisation in the constraints significantly increases the com-
plexity of the algorithm. One approach to solving this problem would be to
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attempt to brute force the nested optimisation (i.e. discretise along the upper
‘edge’ of the incertitude box). However if the incertitude is large or the dimen-
sionality of the training data is high, then this becomes impractical. Another
possibility is assuming the prediction of the Neural Network is approximately
linear locally, and using the gradient of the Neural Network with respect to
the inputs (which is known analytically) to find an approximate solution to the
nested optimisation problem. This is similar to the approaches proposed in [31]
and [24], where the gradient is used to search within a set close to the original
training data for points which maximise the loss function of the Neural Network.
The crucial difference is that in the formulation proposed in this paper only the
surface of the set must be searched, since the aim is to enclose the whole set in
the Interval Neural Network. Therefore we propose that Eqn. 8 is best solved
by minimising

Linput incertitude = max
i

max (|ȳ(i) − (ŷ(
x̄(i) + x(i)

2
)− ε(i))|, |y(i) − (ŷ(

x̄(i) + x(i)

2
) + ε(i))|),

(9)

with respect to the parameters W , where ε(i) = | x̄
(i)−x(i)

2 ·(sign(∇xŷ( x̄
(i)+x(i)

2 ))◦
∇xŷ( x̄

(i)+x(i)

2 ))| (◦ denotes component-wise multiplication of vectors), and h
becomes the value of the loss at the minimum. This loss will provide an accurate
solution to Eqn. 8 when the output of the neural network (ŷ(x)) is locally
linear for a Taylor series expansion in the training data intervals, such that
|ŷ(x+ δx)− (ŷ(x) + δx · ∇xŷ(x))| < ω, where ω is an arbitrarily small constant
representing the accuracy of the solution and δx is a constant at the length scale
of the interval width. Of course, higher order Taylor expansions can be used to
construct more complex loss functions, or the assumption of monotonicity can

be made (maxx∈[x(i),x̄(i)] ŷ(x) = ŷ( x̄
(i)+x(i)

2 + x̄(i)−x(i)

2 ◦ sign(∇xŷ( x̄
(i)+x(i)

2 )))).
This approach provides a computationally feasible approximate solution to

many practical problems involving the `∞ ball and `2 ball uncertainty models.
However, the authors believe there is certainly progress to be made in finding
exact solutions to these problems, as well as generalisations to more complex
uncertainty models, e.g. hyper ellipsoid models and super ellipsoid models.

3.4 Multi-output Neural Networks

A key advantage of Neural Networks over other machine learning techniques
is the ease with which correlation between model outputs can be expressed.
For example, this is applicable when the output layer is a one hot encoder for
classification tasks, or an image for computer vision tasks. It is also of use
for multi-task learning [2, 46]. So far Algorithm 1 and Algorithm 2 have been
described in the context of supervised learning from data with only one output
dimension. We generalise the algorithms in the previous sections to multi-output
Neural Networks by predicting an `p ball, with radius h, around the output of
the Neural Network in the output space. The `p norm is defined as ‖z‖p =
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(|z1|p + |z2|p + · · ·+ |zn|p)1/p
(with z representing a vector with components z1,

z2, etc.). An `p ball is simply a shape with `p norm equal to 1 on the surface.
For readers unfamiliar with convex set models of uncertainty, it may be useful
to note that p = ∞ corresponds to no correlation between outputs (intervals,
or hypercubes), and p → 0 corresponds to the case of completely correlated
outputs. p becomes a hyper-parameter which can be optimised to express the
dependence between outputs in the proposed model. A weighted norm can be
used to form more complex shapes like super-ellipsoids, or hyper-rectangles (as
opposed to hyper-cubes).

To train the Interval Neural Network the optimisation program

arg min
W,h

[h :

(∑
j

∣∣∣y(i)
j − ŷj(x(i))

σ̂j

∣∣∣p) 1
p

< h ∀ i] (10)

should be solved, where the weights σ̂ are normalised such that ‖σ̂‖2 = 1, which
is ensured by setting σ̂i = σi√∑

j σ
2
j

, where σi are parameters to be found during

training.
In practice, training takes place by replacing the absolute error in Algo-

rithm 2 with the appropriate `p distance in the output space, i.e.

Lmulti-output = max
i

(∑
j

∣∣∣y(i)
j − ŷj(x(i))

σ̂j

∣∣∣p) 1
p

, (11)

which reduces to the case of a `p ball when σi = 1 ∀ i.
For example, if the analyst believes there is no dependency between outputs

they might minimise Eqn. 11 with p =∞ for minibatches of training data. The
network would then predict intervals (hyper-rectangles) with radius h. Explic-
itly the training loss for neural networks predicting hyper-rectangles is given by:

Lhyper-rectangle = max
i

max
j

∣∣∣y(i)
j − ŷj(x(i))

σ̂j

∣∣∣. (12)

3.5 Heteroscedastic Interval Uncertainty

So far the Interval Neural Networks discussed (i.e. from solving Eqn. 3) have
made predictions with constant interval width, or constant convex set width
in the case of multi-output models. There may be some situations where a
richer description of uncertainty is desired. Therefore in this section we describe
how to generalise the results from the previous sections to the case of non-
constant width interval prediction. Rather than solving the original Interval
Neural Network optimisation program (Eqn. 1), we propose a modified model:

arg min
W,h

[h :
|y(i) − ŷ(x(i))|

σ̂(x(i))
< h ∀ i], (13)
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where the Neural Network provides ŷ(x(i)) (the central line prediction of the
interval), and σ̂(x(i)) (the interval half-width), and the other symbols have the
same meanings as in Eqn. 3. In order for the optimisation program to yield a
plausible Interval Neural Network it is required that σ̂(x(i)) > 0 and Ex(σ̂(x)) =

1. These constraints can be enforced by setting σ̂(x(i)) = σ(x(i))
Ex(σ(x)) , where σ(x(i))

is output from a neural network layer with positive only activation function
(e.g. ReLU or Softplus, or in the case of a multi-output neural network, as in
the previous section, Softmax). Then the Neural Network can be trained by
minimising the loss given by

Lheteroscedastic = max
i

|y(i) − ŷ(x(i))|Ex(σ(x))

σ(x(i))
, (14)

again h is obtained from the minimum value of the loss function. The loss is
evaluated on minibatches, and therefore Ex(σ(x)) is computed using the Monte
Carlo estimator of the expectation on the minibatch. The trained network
makes interval predictions with centre ŷ and half-width hσ̂(x) (the normalising
factor Ex(σ(x)) should be precomputed and stored).

4 Interval Neural Network Reliability Assess-
ment

4.1 Convex case

For the benefit of readers not familiar with the scenario approach to chance con-
strained optimisation we will first present an overview of the theory of scenario
optimisation in the convex case.

A chance constrained optimisation program is an optimisation program of
the following form

arg min cT z : P{f(z, δ) > 0} ≤ ε, (15)

where δ is a random variable, z is the design variable, c is a constant, and ε is
a parameter which constrains how often the constraints may be violated. This
program can be approximately solved using the scenario approach: the problem
is solved for a random sample of the constraints, i.e. one solves

arg min cT z : f(z, δ(i)) ≤ 0, i = 1, ..., N, (16)

where δ(i) represents the i-th sampled value of the constraints [6].
Intuition indicates that the solution will be most accurate when the dimen-

sionality of the design variable is low and one takes as many samples of the
constraints as possible (in fact, an infinite number of sampled constraints would
allow us to reliably estimate P{f(z, δ) > 0}, and hence solve the program
exactly). However, in practice obtaining these samples is often an expensive
process. Luckily the theory of scenario optimisation provides robust bounds on
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the robustness of the obtained solution. The bounds generally take the following
form:

PN (V (ẑN ) > ε) < β. (17)

This equation states that the probability of observing a bad set of data (i.e. a
bad set of constraints) in future, such that the solution violates a proportion

greater than ε of the constraints (i.e. V (ẑN ) > ε where V (ẑN ) = 1
N

∑N
i V

(i)

and V (i) = 1 only if f(z, δi) > 0), is no greater than β. The scenario approach
gives a simple analytic form for the connection between ε and β in the case that
the optimisation program is convex:

β =
1

ε

n

N + 1
, (18)

where N is the number of constraint samples in the training data set used to
solve the scenario program, and n is the dimensionality of the design variable,
z. A plot is shown in Fig. 1 for a fixed N and n . The plot demonstrates that
by decreasing ε slightly, 1 − β can be made to be insignificantly small. Other
tighter bounds exist in the more recent Scenario Optimisation literature, e.g.
[7, 9, 1], for example

β =

n−1∑
i=0

(
N

i

)
εi(1− ε)N−i. (19)

Crucially the assessment of V (ẑN ) is possible a-priori, although other techniques
exist [4]. Care et al. [16] analyse the reliability of solutions of the maximum
error loss from Eqn. 4 in the scenario framework when ŷ(x(i)) is convex in x(i)

and the function weights.
In the convex case the a-priori assessment is made possible by the fact that

the number of support constraints (the number of constraints which if removed
result in a more optimal solution) for a convex program is always less than
the dimensionality of the design variable. Campi and Garatti [11] explore this
connection for convex programs in further detail, by analysing the number of
support constraints after a solution is obtained. This idea has a deep connection
with the concept of regularisation in machine learning [8]. For a non-convex
program, the number of support constraints is not necessarily less than the
dimensionality of the design variable, and therefore a new approach is required,
which we describe in the following section.

4.2 Non-convex case

Campi et al. [14] provides the following bound for the non-convex case:

PN (V (ẑN ) > ε(s)) < β, (20)

where

ε(s) =

1, for s = N,

1− N−s

√
β

N(N
s )
, otherwise,

(21)
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Figure 1: Plot of Eqn. 18 for N = 100 and n = 2.

and s is the cardinality of the support set (in other words, the number of support
constraints). The behaviour of this bound is similar to the convex case since in
general increasing n should increase the size of the support set.

Finding the cardinality of the support set is in general a computationally
expensive task, since the scenario program must be solved N times. Campi
et al. [13] presents an efficient algorithm which only requires that the scenario
problem is solved s times.

4.3 A Posteriori Frequentist Analysis

When data is available in abundance, as is typically the case in most machine
learning tasks where a Neural Network is currently used, V (ẑN ) can be evaluated
more easily by using a test set to collect samples from V (ẑN ). Estimating V (ẑN )
is similar to estimating a probability of failure in the well known reliability
theory. Therefore one can construct a Monte Carlo estimator of V (ẑN ), or use
more advanced techniques from reliability analysis if it is possible to interact
with the data generating mechanism. For example if the number of test data
points is large one can use the normal approximation Monte Carlo estimator

of V (ẑN ) with V (ẑN ) ≈ Nv

Nt
and standard deviation

√
Nv
Nt

(1−Nv
Nt

)

Nt
, on a test set

of size Nt, where Nv data points fall outside the interval bounds of the neural
network.

A particularly robust method of estimating the probability of a binary out-
come involves using the binomial confidence bounds. In this case specifically,
one can bound V (ẑN ) with the desired confidence using the binomial confidence

13



bounds:

Nt−Nv∑
i=0

(
Nt
i

)
(1− p)ipNt−i =

β

2
(22)

and

Nt∑
i=Nt−Nv

(
Nt
i

)
(1− p̄)ip̄Nt−i =

β

2
, (23)

where P (V (ẑN ) < p̄ ∩ V (ẑN ) > p) = β. Estimating V (ẑN ) using a test set
also offers the advantage that when the Neural Network is used for predictions
on a different data set V (ẑN ) can be evaluated easily. If the value of V (ẑN )
obtained on the test set is higher than that on the training dataset then one can
apply regularisation in order to implicitly reduce the size of the support set and
increase V (ẑN ) on the test set (e.g. dropout regularisation, or `2 regularisation
on the weights).

This methodology is ideal for models with a complex training scheme, where
determining the support set would be prohibitively expensive. Note that the
probabilistic assessment of the reliability of the model takes place separately
from the training of the Neural Network, such that it is still robust, even if
there is a problem with the Neural Network training. This is an important
advantage over Variational Inference methods which are often used with Neural
Networks.

5 Numerical Experiments

All experiments were timed on TensorFlow on a Google Colaboratory ses-
sion equipped with an NVIDIA Tesla T4. In all experiments TensorFlow’s
ADAM optimiser was used with exponential gradient decay, i.e. learning rate =

initial learning rate ∗ decay rate
global step
decay steps [30].

5.1 Simple Numerical Example

5.1.1 Description

In order to illustrate the developed techniques we will demonstrate the Interval
Neural Network on a modified version of a simple problem from Campi et al.
[13]. We train a Neural Network in TensorFlow with 1 hidden layer containing 10
neurons with hyperbolic tangent activation on 1250 samples from the following
test function:

y = 0.3 ∗ (15 ∗ x ∗ exp(−3 ∗ x) + w ∗ x) (24)

where w is a normal distributed random variable with zero mean and standard
deviation σ = 0.025. The data is generated by sampling from the input variable
x uniformly between 0 and 1. We perform the following experiments:

14



Experiment 1 2 3 4
Const. Width Const. Width Heteroscedastic MSE

Minibatch Size, M 200 20 200 200
Initial Learning Rate 0.1 0.1 0.1 0.1
Learning Rate Decay Rate 0.96 0.96 0.96 0.96
Number of Training Epochs 6000 6000 6000 6000
Decay Steps 100 100 100 100

Table 2: Hyper-parameters used in the numerical experiments for the simple
analytical function.

1. We train a constant width Neural Network using the loss from Eqn. 4,
using a minibatch size of M = 200;

2. We repeat the previous experiment with a minibatch size of M = 20 to
demonstrate the effect of using a smaller minibatch size;

3. We train a Neural Network with heteroscedastic uncertainty using the loss
from Eqn. 14;

4. We train a Neural Network using the mean squared error (MSE) loss as a
comparison.

For clarity, the algorithm used is described in Algorithm 2. The hyper-
parameters used are shown in Table 2. Note that an epoch is defined as one pass
of the whole dataset through the model, so training runs with smaller batch sizes
require more iterations to complete the same number of training epochs, and
hence will require more training time. These optimiser hyper-parameters were
tuned manually by inspecting the loss curves, and the Minibatch size was chosen
to be large enough to benefit from the properties discussed in A. The weights
were initialised using the TensorFlow defaults (Glorot Uniform Initializer [23]
for the kernel and Zeros for the bias), and h was initialised at zero.

5.1.2 Results

The training loss curves for Experiments 1, 2, 3 and 4 are shown in Figs. 2, 4,
6 and 8 respectively. The trained Neural Networks for Experiments 1, 2, 3 and
4 are shown in Figs. 3, 5, 7, and 9 respectively.

Using a train-test split ratio of 0.2, and the approach from Section 4.3 we
calculate bounds on the violation probability, v̄ and v, from

P (V (ẑN ) < v̄ ∩ V (ẑN ) > v) = 10−3 (25)

for each trained Interval Neural Network (with the test set size, Nt = 250). In
this case the solution ẑN is the obtained weights and model width of the Interval
Neural Network. The results are summarised in Table 3, which also displays the
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Experiment 1 2 3 4
Const. Width Const. Width Heteroscedastic MSE

Test Points, Nt 250 250 250 250
Bound Violating Test
Points, Nv

1 5 2 N/A

v̄ 3.6× 10−2 6.4× 10−2 4.4× 10−2 N/A
v 4.0× 10−6 3.0× 10−3 1.8× 10−4 N/A
Model Half-width, h 1.5× 10−2 1.0× 10−2 9.7× 10−3 N/A
Root Mean Squared
Error

N/A N/A N/A 4.3× 10−3

Runtime (seconds) 66 525 75 68

Table 3: Results from the numerical experiments with the simple analytical
function.

model half-width h for each trained network and the number of bound violating
test points, Nv.

Note that as expected, the number of violating test points, Nv, and hence
the bounds on the violation probability, V (ẑN ), are higher in Experiment 2 than
Experiment 1, as the minibatch size, M , is lower. In addition we observe that
as expected, the model half-width, h, is much lower in Experiment 3 than in
Experiment 1. This indicates that the model in Experiment 1 is far too simple
for the dataset, which we know to be true because in reality the training data
contains heteroscedastic additive noise. For comparison we observe that the
Neural Network trained with the mean squared error loss function (Experiment
4), has a root mean squared error on the test set of 4.3 × 10−3, and a fitted
model which is comparable to those in the Interval Model experiments (since
if the strong assumption is made of a fitted Gaussian probability density then
99.7% data points would fall within 3 standard deviations of the mean).

5.2 Simple Numerical Example with Uncertain Training
Data

5.2.1 Description

In order to demonstrate the developments in Section 3.3, we train an Inter-
val Neural Network on a modified version of the previous example, where
the training data consists of `∞ balls (intervals). The centre of the intervals

(x(i), y(i)) = ( x̄
(i)+x(i)

2 ,
ȳ(i)+y(i)

2 ) is generated by Eqn. 24. The incertitude in
both the inputs and outputs will be given by the interval radius,

ȳ − y
2

=
x̄− x

2
=

1

160 ∗ (|x− 0.5|+ 0.1)
. (26)

In order to allow for heteroscedasticity we train the network with the loss
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Figure 2: Plot of convergence of the Neural Network for Experiment 1.
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Figure 3: Plot of trained Interval Neural Network for Experiment 1. Training
set shown in red, test set shown in yellow.
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Figure 4: Plot of convergence of the Neural Network for Experiment 2.
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Figure 5: Plot of trained Interval Neural Network for Experiment 2. Training
set shown in red, test set shown in yellow.
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Figure 6: Plot of convergence of the Neural Network for Experiment 3.
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Figure 7: Plot of trained Interval Neural Network for Experiment 3. Training
set shown in red, test set shown in yellow.
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Figure 8: Plot of convergence of the Neural Network for Experiment 4 (Mean
Squared Error Loss).
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Figure 9: Plot of trained Interval Neural Network for Experiment 4 (Mean
Squared Error Loss). Training set shown in red, test set shown in yellow.
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Experiment 1 2
Const. Width MSE

Minibatch Size, M 200 200
Initial Learning Rate 0.1 0.1
Learning Rate Decay Rate 0.96 0.96
Number of Training Epochs 6000 6000
Decay Steps 100 100

Table 4: Hyper-parameters used in the numerical experiments with interval
training data.

from Section 3.3 with the scaling in Section 3.5, i.e.

Lexperiment = Lheteroscedastic +
x̄(i) − x(i)

2
· |∇xLheteroscedastic| (27)

where σ and ε take the same meanings as in previous chapters, and the gra-
dient of the loss, |∇xLheteroscedastic|, is evaluated at the centre of the intervals

( x̄
(i)+x(i)

2 ). The same Neural Network architecture was used as in the previous
example (10 neurons in hidden layer). In order to make a comparison, another
network with two hidden layers with 10 and 20 neurons was used. This is
summarised in Table 4.

In this case the Interval Network could not be compared with a traditional
neural network, as a traditional neural network would not be able to represent
the set inclusion constraint required to train with interval data.

5.2.2 Results

The training loss curves and trained single Interval Neural Network are shown
in Fig. 10 and Fig. 11. The corresponding plots of the Neural Network with two
hidden layers are shown in Fig. 12 and Fig. 13. Using a train-test split ratio
of 0.2, and the approach from Section 4.3 we calculate bounds on V (ẑN ) with
confidence 0.999. Although the single layer Interval Neural Network encloses the
expected proportion of data based on the minibatch size, the interval appears
overly large in places. This indicates that the chosen Neural Network may be
too simple and hence the complexity (number of neurons) of the model could
be increased, as in the neural network with two hidden layers. The results are
summarised in Table 5.

5.3 Multi-output Test Function

5.3.1 Description

In order to test the multi-output loss function proposed in Section 3.4, we train
an Interval Neural Network with the loss function Eqn. 12 on a test function
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Experiment 1 2
Single Layer Two Layers

Test Points, Nt 250 250
Bound Violating Test
Points, Nv

1 2

v̄ 3.6× 10−2 4.4× 10−2

v 4.0× 10−6 1.8× 10−4

Model Half-width, h 0.066 0.058
Runtime (seconds) 182 191

Table 5: Results from the numerical experiments with interval training data.
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Figure 10: Plot of convergence of single hidden layer Interval Neural Network
trained on uncertain data.
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Figure 11: Plot of trained single hidden layer Interval Neural Network trained
on uncertain data. Training set shown in as red squares, test set shown as yellow
crosses.
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Figure 12: Plot of convergence of the Interval Neural Network with two hidden
layers trained on uncertain data.
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Figure 13: Plot of trained Interval Neural Network with two hidden layers
trained on uncertain data. Training set shown in as red squares, test set shown
as yellow crosses.

from [42], which was used to test multi-output emulators. The test function is
given by

y1 = 3x3
1 + exp(cos(10x2) cos2(5x1)) + exp(sin(7.5x3)) + w1 (28)

and

y2 = 2x2
1 + exp(cos(10x1) cos2(5x2)) + exp(sin(7.5x2

3)) + 1.5w2, (29)

where w1 and w2 are uniformly distributed random numbers between 0 and 1.
The model is trained on 1000 samples from the test function, made by sampling
each component of x uniformly between 0 and 1, with a 0.2 train test split
ratio. The Neural Network has 1 hidden layer with ReLU activation and 100
neurons. The hyper-parameters are summarised in Table 6. The TensorFlow
default initialisers are used, except for σ which is initialised to ones.

5.3.2 Results

The plots of residuals for the network outputs are shown in Figs. 15 and 16. The
training loss curve is shown in 14. Using a train-test split ratio of 0.2, and the
approach from Section 4.3 we calculate bounds on V (ẑN ) with confidence 0.999
for the trained Interval Neural Network. The model half-widths were hσ̂1 = 0.64
and hσ̂2 = 0.83. Encouragingly, the model has identified a noise in each output
similar to the true value from the test function. This is comparable with the
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Experiment 1 2
Const. Width MSE

Minibatch Size, M 200 200
Initial Learning Rate 0.01 0.01
Learning Rate Decay Rate 0.99 0.99
Number of Training Epochs 10000 10000
Decay Steps 200 200
`2 regularisation scale 1.5× 10−3 1.5× 10−3

Table 6: Hyper-parameters used in the numerical experiments for the multi-
output test function.
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Figure 14: Plot of convergence of the multi-output Neural Network.

result obtained by training the same network with the MSE loss. The results
are summarised in Table 7.

5.4 Realistic Engineering Test Case

5.4.1 Description

The compressive strength of concrete is a nonlinear function of age and ingre-
dients. Yeh [45] provides a database with 1030 experimental measurements of
the compressive strength of concrete as a function of age and composition in
kg/m3 (cement, blast furnace slag, fly ash, water, superplasticizer, coarse ag-
gregate, fine aggregate)1. No information is provided about incertitude in the
measurements, and therefore we are forced to process the data as it is given.

We wish to obtain robust bounds for the compressive strength of the con-
crete. This can be used for a worst case structural reliability analysis calculation.
We replicate the architecture from Yeh [45] with our proposed algorithm and
train a Neural Network with 1 hidden layer containing 8 neurons with hyper-
bolic tangent activation functions on the normalised data set (transformed to
have mean zero and unit variance).

1Copyright Prof. I-Cheng Yeh
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Figure 15: Plot of Residuals for output 1 of multi-output Interval Neural Net-
work. Training set shown in as blue, test set shown in yellow.
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Figure 16: Plot of Residuals for output 2 of multi-output Interval Neural Net-
work. Training set shown in as blue, test set shown in yellow.
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Experiment 1 2
Const. Width MSE

Test Points, Nt 200 200
Bound Violating Test
Points, Nv

8 N/A

v̄ 1.0× 10−1 N/A
v 1.0× 10−2 N/A
Model Half-width Out-
put 1, hσ̂1

0.66 N/A

Model Half-width Out-
put 1, hσ̂2

0.85 N/A

Root Mean Squared
Error Output 1

N/A 0.34

Root Mean Squared
Error Output 1

N/A 0.50

Runtime (seconds) 115 88

Table 7: Results from the numerical experiments with the multi-output test
function.

We apply Algorithm 2 with the constant width loss from Eqn. 4 and M =
200. The weights are again initialised with the TensorFlow defaults. The hyper-
parameters are summarised in Table 8

5.4.2 Results

Annotated plots of the convergence for the upper and lower bounds (i.e. the
maximum error at each step) are shown in Fig. 17. The absolute error for
the upper and lower bound (i.e. the ‘residuals’) is plotted in Fig. 18, and
corresponds to an error width of h = 14.6 MPa, so the bounds had width 29.2
MPa. Using a train-test split ratio of 0.2, and the approach from Section 4.3

Experiment 1 2
Const. Width MSE

Minibatch Size, M 200 200
Initial Learning Rate 0.01 0.01
Learning Rate Decay Rate 0.9 0.9
Number of Training Epochs 15000 15000
Decay Steps 1000 1000
`2 regularisation scale N/A N/A

Table 8: Hyper-parameters used in the numerical experiments for the concrete
test dataset.
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Experiment 1 2
Const. Width MSE

Test Points, Nt 206 206
Bound Violating Test
Points, Nv

8 N/A

v̄ 1.0× 10−1 N/A
v 9.7× 10−3 N/A
Model Half-width, h
/MPa

14.6 N/A

Root Mean Squared
Error /MPa

N/A 5.85

Runtime (seconds) 145 146

Table 9: Results from the numerical experiments for the concrete test dataset.

we calculate bounds on V (ẑN ) with confidence 0.999 for the trained Interval
Neural Network. The results compare favourably with other machine learning
techniques [44]. The results are summarised in Table 9.

5.5 Outaouais Benchmark Dataset

5.5.1 Description

The Outaouais dataset was introduced in the Evaluating Predictive Uncertainty
Challenge [39]. The dataset is for a regression problem with 37 features and 1
target variable. The dataset consists of 20000 training examples and 9000 test
examples.

To predict the target a Heteroscedastic Interval Neural Network was trained
with Eqn. 14. The network architecture had two hidden layers with 150 and 20
neurons with ReLU activation functions. The weights were initialised with the
TensorFlow defaults.

This was compared to a heteroscedastic maximum likelihood perceptron net-
work (heteroscedastic MLP) [17], trained with the same network architecture
and hyper-parameters. The hyper-parameters for both models are summarised
in Table 10

5.5.2 Results

Using the test data set with the approach from Section 4.3 we calculate bounds
on V (ẑN ) with confidence 0.999 for the trained Interval Neural Network. The
results are summarised in Table 11. The confidence bound on V (ẑN ) of the
Heteroscedastic Interval Network is superior to that of the Heteroscedastic MLP
when Chebyshev’s inequality is used to produce a confidence bound from the
Mean Squared Error of the MLP.
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Figure 17: Plot of convergence of the Interval Neural Network to predict Con-
crete Compressive Strength.

Experiment 1 2
Heteroscedastic Interval Network Heteroscedastic MLP

Minibatch Size, M 200 200
Initial Learning Rate 0.001 0.01
Learning Rate Decay Rate 0.995 0.995
Number of Training Epochs 2000 2000
Decay Steps 200 200
`2 regularisation scale N/A N/A
Dropout Rate 0.01 N/A

Table 10: Hyper-parameters used in the numerical experiments for the
Outaouais dataset.
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Figure 18: Plot of residuals (difference of predictions and targets) for Interval
Neural Network to predict Concrete Compressive Strength. Model central line
shown in green, and bounds shown in black. Training set shown in blue, test
set shown in yellow.

Experiment 1 2
Heteroscedastic Interval Network Heteroscedastic MLP

Test Points, Nt 9000 9000
Bound Violating Test
Points, Nv

671 N/A

v̄ 6.6× 10−2 N/A
v 8.3× 10−2 N/A
Model Half-width, h 0.29 N/A
Normalised Mean
Squared Error, nMSE

N/A 0.038

Runtime (seconds) 691 705

Table 11: Results from the numerical experiments for the Outaouais dataset.
The data variance used to compute the nMSE metric was 0.55.
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6 Conclusions

In this paper, we have demonstrated how to create Neural Networks which quan-
tify their uncertainty with interval predictions. In order to achieve scalability
the proposed technique relies upon techniques developed for modern deep learn-
ing applications, such as minibatch gradient descent. The proposed approach
converges reliably and is not restricted to a specific architecture. Crucially we
avoid using explicit set inclusion relationships in the training process, which
usually cause computational difficulties for practitioners of interval methods.

Since the model is not Bayesian it is unnecessary to specify prior distri-
butions, or to use complex variational inference implementations. Instead the
uncertainty is modelled using a interval which contains at least a specific pro-
portion of the true output with near certainty.

The main contribution of this paper is to provide a computationally feasible
alternative to Bayesian models of uncertainty in Neural Networks, by allowing
the Neural Network to be trained from data specified by `2 or `∞ balls, which the
network is forced to include in its prediction interval. The theoretical contribu-
tions of this paper could be applied to many convex models of uncertainty, and
hence useful domain specific models could be derived from the work presented
in this paper. In future, the work presented in this paper could be extended
to consider more general uncertainty models, such as fuzzy neural networks or
imprecise probabilistic network models.
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A Proof of statements in Section 3.2

We will solve the Optimisation Problem in Eqn. 3 approximately using Algo-
rithm 1. Explicitly we wish to minimise the loss function

L = max
j∈[1,...,N ]

|y(j) − ŷ(x(j))|. (30)

Consider that the probability of selecting the true maximum of the abso-
lute error in a minibatch by random sampling without replacement is M

N . The
probability that the maximum error point selected in the minibatch is the i-th
largest error in the training set is

P (i) =

(
N−i
M−1

)(
N
M

) . (31)

32

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/L015390/1
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/R006768/1


Then to find the expectation of i we calculate

E(i) =

i=N−M+1∑
i=1

i

(
N−i
M−1

)(
N
M

) =
N + 1

M + 1
. (32)

In the case that N
M >> 1 we find that the expression for the expected percentile

reduces to

E(i)

N
≈ 1

M
(33)

as promised. The variance of the percentile is

Var (
i

N
) =

M(N −M)(1 +N)

N2(1 +M)2(2 +M)
, (34)

which becomes

Var (
i

N
) ≈ 1

M2
(35)

in the large N limit. Therefore we see that the minibatch technique performs
best when the size of the training set is large, but it is also necessary to increase
the minibatch size to avoid the gradient having a large variance.

Now, let us consider the case when the k − 1 data points in the minibatch
with the largest error are ignored, i.e. we minimise the k-th largest error in
the minibatch. The probability that the k-th largest error point selected in the
minibatch is the i-th largest error in the training set is

P (i) =

(
N−i
M−k

)(
i−1
k−1

)(
N
M

) . (36)

In [34] the order statistics are given for uniform distributions sampled with-
out replacement. This allows us to find the expectation of i, which is given by

E(i) =
k(1 +N)− 1−M

(1 +M)
, (37)

which reduces to Eqn. 32, when k = 1 and N
M >> 1 as expected. The variance

of i is

Var (i) =
k(M − k + 1)(N + 1)(N −M)

(M + 1)2(M + 2)
, (38)

which reduces to Eqn. 35 when the appropriate limits are taken. This provides
valuable insight - when k > 1 is minimised it is necessary to increase M slightly
to maintain constant variance in the gradient.

All the above results assume the minibatch is constructed by sampling with-
out replacement. If the minibatch is constructed by sampling with replacement
then the order statistics for sampling with replacement should be used instead.
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[15] A. Carè, F. A. Ramponi, and M. C. Campi. A new classification algorithm
with guaranteed sensitivity and specificity for medical applications. IEEE
Control Systems Letters, 2(3):393–398, 2018.

[16] A. Care, S. Garatti, and M. C. Campi. Scenario min-max optimization
and the risk of empirical costs. SIAM Journal on Optimization, 25(4):
2061–2080, 2015.

[17] G. C. Cawley, N. L. Talbot, and O. Chapelle. Estimating predictive vari-
ances with kernel ridge regression. In Machine Learning Challenges Work-
shop, pages 56–77. Springer, 2005.

[18] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. Distributional
reinforcement learning with quantile regression. The Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI-18), 2017.

[19] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed
online prediction. In Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 713–720, 2011.

[20] S. Ferson, C. A. Joslyn, J. C. Helton, W. L. Oberkampf, and K. Sentz. Sum-
mary from the epistemic uncertainty workshop: consensus amid diversity.
Reliability Engineering & System Safety, 85(1-3):355–369, 2004.

[21] S. Freitag, W. Graf, and M. Kaliske. Recurrent neural networks for fuzzy
data. Integrated Computer-Aided Engineering, 18(3):265–280, 2011.

[22] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics New York, 2001.

[23] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Y. W. Teh and M. Titterington, editors,
Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, volume 9 of Proceedings of Machine Learning Research,
pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.
PMLR. URL http://proceedings.mlr.press/v9/glorot10a.html.

[24] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. ICLR 2015, 2014.

[25] S. Grammatico, X. Zhang, K. Margellos, P. Goulart, and J. Lygeros. A
scenario approach for non-convex control design. IEEE Transactions on
Automatic Control, 61(2):334–345, 2016.

[26] M. Hsu, M. Bhatt, R. Adolphs, D. Tranel, and C. F. Camerer. Neural
systems responding to degrees of uncertainty in human decision-making.
Science, 310(5754):1680–1683, 2005.

[27] L. Huang, B.-L. Zhang, and Q. Huang. Robust interval regression analysis
using neural networks. Fuzzy sets and systems, 97(3):337–347, 1998.

35

http://proceedings.mlr.press/v9/glorot10a.html


[28] H. Ishibuchi, H. Tanaka, and H. Okada. An architecture of neural networks
with interval weights and its application to fuzzy regression analysis. Fuzzy
Sets and Systems, 57(1):27–39, 1993.

[29] A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep
learning for computer vision? In Advances in neural information processing
systems, pages 5574–5584, 2017.

[30] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[31] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial machine learning at
scale. ICLR 2017.

[32] M. J. Lacerda and L. G. Crespo. Interval predictor models for data with
measurement uncertainty. In American Control Conference (ACC), 2017,
pages 1487–1492. IEEE, 2017.

[33] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards
deep learning models resistant to adversarial attacks. ICML 2017 Workshop
on Principled Approaches to Deep Learning, 2017.

[34] H. Nagaraja. Order statistics from discrete distributions. Statistics: a
journal of theoretical and applied statistics, 23(3):189–216, 1992.

[35] R. M. Neal. Bayesian learning for neural networks, volume 118. Springer
Science & Business Media, 2012.

[36] U. Oparaji, R.-J. Sheu, M. Bankhead, J. Austin, and E. Patelli. Robust
artificial neural network for reliability and sensitivity analysis of complex
non-linear systems. Neural Networks, 2017.

[37] I. Osband. Risk versus uncertainty in deep learning: Bayes, bootstrap and
the dangers of dropout. In Proceedings of the NIPS* 2016 Workshop on
Bayesian Deep Learning, 2016.

[38] E. Patelli, M. Broggi, S. Tolo, and J. Sadeghi. Cossan software: A multidis-
ciplinary and collaborative software for uncertainty quantification. In Pro-
ceedings of the 2nd ECCOMAS thematic conference on uncertainty quan-
tification in computational sciences and engineering, UNCECOMP, 2017.

[39] J. Quinonero-Candela, C. E. Rasmussen, F. Sinz, O. Bousquet, and
B. Schölkopf. Evaluating predictive uncertainty challenge. In Machine
Learning Challenges Workshop, pages 1–27. Springer, 2005.

[40] J. Sadeghi, M. de Angelis, and E. Patelli. Frequentist history matching
with interval predictor models. Applied Mathematical Modelling, 61:29–48,
2018.

[41] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming
in python using pymc3. PeerJ Computer Science, 2:e55, 2016.

36



[42] samcoveney. samcoveney gp emu uqsa: First official release, Dec. 2016.
URL https://doi.org/10.5281/zenodo.215521.

[43] S. Tolo, T. V. Santhosh, G. Vinod, U. Oparaji, and E. Patelli. Uncertainty
quantification methods for neural networks pattern recognition. In 2017
IEEE Symposium Series on Computational Intelligence (SSCI), 2017.

[44] S. Wenkel. Revisiting machine learning datasets - concrete
compressive strength // simonwenkel.com, 2019. URL https:

//www.simonwenkel.com/2018/08/08/revisiting_ml_datasets_

concrete_compressive_strength.html.

[45] I.-C. Yeh. Modeling of strength of high-performance concrete using artificial
neural networks. Cement and Concrete research, 28(12):1797–1808, 1998.

[46] C. Zhang and Z. Zhang. Improving multiview face detection with multi-
task deep convolutional neural networks. In IEEE Winter Conference on
Applications of Computer Vision, pages 1036–1041. IEEE, 2014.

37

https://doi.org/10.5281/zenodo.215521
https://www.simonwenkel.com/2018/08/08/revisiting_ml_datasets_concrete_compressive_strength.html
https://www.simonwenkel.com/2018/08/08/revisiting_ml_datasets_concrete_compressive_strength.html
https://www.simonwenkel.com/2018/08/08/revisiting_ml_datasets_concrete_compressive_strength.html

	Introduction
	Related Work
	Comparison with other methods

	Interval Neural Network Training
	Overview
	Scalability Improvement
	Incertitude in Training Data
	Multi-output Neural Networks
	Heteroscedastic Interval Uncertainty

	Interval Neural Network Reliability Assessment
	Convex case
	Non-convex case
	A Posteriori Frequentist Analysis

	Numerical Experiments
	Simple Numerical Example
	Description
	Results

	Simple Numerical Example with Uncertain Training Data
	Description
	Results

	Multi-output Test Function
	Description
	Results

	Realistic Engineering Test Case
	Description
	Results

	Outaouais Benchmark Dataset
	Description
	Results


	Conclusions
	Proof of statements in Section 3.2

