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Abstract This paper presents a mass flow model that

includes gravity force, material stresses, drag force and

topography effects solving a set of hyperbolic partial

differential equations by using a so-called depth-averaged

technique. The model is nonlinear and general enough

to tackle various problems of interest for geophysics and

environmental engineering, such as the dynamic evo-

lution of flow-like avalanches, the dam break problem

(involving only water flow), the generation of tsunami

waves by landslides, etc. The model is based on a Eu-

lerian fluid solver, using a second-order central scheme

with a minmod-like limiter, is tested against a number

of typical benchmark cases, including analytical solu-

tions and experimental laboratory data, and also com-

pared with other numerical codes. Through this model

we study a historical tsunamigenic event occurred in
1783 in Scilla, Italy, that resulted to be catastrophic

with a toll exceeding 1500 fatalities. The landslide is

reconstructed by a mixture debris flow and results are

compared with the observational data and other nu-

merical simulations.

Keywords Geophysical flow models · Numerical

algorithm · Cartesian coordinate system · flow-like

landslides

1 Introduction

The mass flows treated in this paper consist of rocks

or poorly sorted sediments and water, rapidly mov-

ing across a steep-slope region and mainly driven by
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gravity force. It is a kind of natural hazard induced

by rainfalls, earthquakes and some other factors. Solid

and fluid forces act in concert and both vitally influ-

ence the motion of these flows, contributing to their

high mobility and unique destructive power (Iverson,

1997). They are one of the most catastrophic types of

natural hazard due to their extremely high velocity and

impact forces. To study and quantify the flow-like be-

haviour of geophysical flows, governing equations are

derived from the principles of mass and momentum

conservation, based on the framework of continuum me-

chanics. Significant advancements have occurred during

the last several decades, with development of more and

more sophisticated models. Single-phase dry granular

avalanches (Savage and Hutter, 1989), single-phase de-

bris flows (Chen, 1988), two-fluid debris flows (Pitman

and Le, 2005), two-layer flows (Fernández-Nieto et al.,

2008; Meng et al., 2017) have given gradually more de-

tailed descriptions of the debris flows complexity.

On the basis of the work by Savage and Hutter

(1989), most of the current mass flow models use a

set of depth-averaged non-linear equations to describe

their evolution including shock wave formation. They

play an increasingly important role in the risk assess-

ment of natural hazards, including floods, landslides,

debris flows and other ’flow’ movements that can be

described by a shallow-water-like model with different

rheology laws (Hungr and McDougall, 2009). To

obtain sufficiently accurate and stable computations

with shock capturing, various numerical schemes have

been developed, including Lagrangian or Eulerian

techniques, mesh-based or mesh-free (e.g., Savage and

Hutter, 1989; Tai et al., 2002; Mangeney et al., 2003;

Pastor et al., 2009).

In this paper we present a mass-flow model based on

a second-order central difference scheme (NT) that was
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originally proposed by Nessyahu and Tadmor (1990)

and we apply it to study a catastrophic historical land-

slide that occurred in Italy in 1783. To test the accuracy

and robustness of the code, numerical results are com-

pared with analytical solutions, that exist only for ideal

cases, and with experimental data. The analytical so-

lutions we use as benchmark cases are the solution of

a typical dam break problem given by Stoker (1957),

and the solution for simplified granular flows provided

by Faccanoni and Mangeney (2013). The results of the

2D dam-break problem we treat numerically are com-

pared with published data obtained by other numeri-

cal models, i.e. with results by Fagherazzi et al. (2004)

and by Ouyang et al. (2013). As for the experimental

data, we use data from a hydraulic laboratory experi-

ment performed by the EU CADAM (European Union

Concerted Action on Dam Break Modelling) where a

dam-break over a triangle hump was reproduced (e.g.,

Brufau et al., 2002; Liang and Marche, 2009; Mao et al.,

2016; Liu et al., 2016). According to the benchmark re-

sults, we can consider our code as totally validated since

it performs very well for all tested cases (including an-

alytical solutions and experiment data).

The catastrophic event that we analyse in this paper

is the tsunamigenic landslide that occurred in 1783 in

Scilla, southern Italy, that is a very important case for

the assessment of risk in the Tyrrhenian Calabria and

northern Sicily. It was already investigated by Mazzanti

and Bozzano (2011) and Zaniboni et al. (2016). It is

simulated here with our code, solving a modified flow-

like model proposed by Xia and Liang (2018) to treat

complicated topographies based on a global Cartesian

coordinate system. Our numerical investigations mainly

focus on the dynamic evolution and on the deposit re-

gion of the landslide. We test the performance of a lin-

ear and a quadratic drag law and conclude that the

latter provides a better description of the deposit dis-

tribution.

2 Governing equations

Based on the conservation law of mass and momen-

tum, different numerical models have been developed

over years (e.g., Savage and Hutter, 1989; Iverson and

Denlinger, 2001; George and Iverson, 2011; Pudasaini,

2012; Meng and Wang, 2016), that can be given the

form of the classical SWEs (Shallow Water Equations)

and can be expressed in vector notation as follows:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= S (1)

In the LHS of Eq. (1), U is the vector of the conserva-

tive variables and F and G represent down-slope and

cross-slope momentum flux respectively. Further, t, x,

y denote time, down-slope direction and cross-slope di-

rection respectively. As for the RHS, S is the vector of

the source terms. For a traditional shallow water model,

the conservative vector U includes the depth-averaged

height h and the fluxes along x and y directions. The

momentum flux vectors F and G contain fluxes and

gravity effects. Basal topography and friction terms are

included in the source term S. More details are ex-

plained by formulas in the next sections.

3 Numerical scheme

Combining a first-order Lax-Friedrichs scheme (Lax,

1954) with a piecewise linear reconstruction, the central

Nessyahu-Tadmor (NT) scheme (Nessyahu and Tad-

mor, 1990) we adopt here, computes the staggered cell

averages at the interfacing break-points and has the ad-

vantage of the simplicity of a Riemann-solver-free ap-

proach. In this section we explain the cell average and

the linear reconstruction techniques of the NT scheme

that is written in a conservative form to automatically

satisfy the conservation properties of the original equa-

tions. Integrating the conservation law of Eq. (1) on

a cell in both space and time provides the full set of

discrete equations for the numerical code. A staggered

grid algorithm is adopted since it provides an auto-

matic mechanism to control spurious oscillations, which

are further reduced by means of a suitable flux lim-

iter method. The scheme is a so-called shock capturing

scheme, solving the Eq.(1) on a fixed Cartesian grid

(Eulerian approach) and identifying the shocks by the

regions with large gradients. For more details one can

refer to Tai et al. (2002).

3.1 Cell average

In order to explain our numerical scheme better we use

a 1D case first, where the governing equations take the

form:

ut(x, t) + fx(u(x, t)) = s(u(x, t)) (2)

Here u is the conservative variable, f is the momen-

tum flux along x direction and s is the source term.

Hereafter, the subscripts t, x represent derivatives with

respect to the time and x directions. To solve this prob-

lem, the idea of cell average is applied on a staggered

grid.

Uni =
1

∆x

∫ x
i+1

2

x
i− 1

2

u(x, tn)dx,

Uni+ 1
2

=
1

∆x

∫ xi+1

xi

u(x, tn)dx

(3)
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Here, U denotes cell-average values. The subscript i

and the superscript n represent at the ith node and

at the current state respectively. The center of the in-

terval (xi−1/2, xi+1/2) is xi, and the interval is named

as cell Ii. Thus, the interval of (xi, xi+1) is naturally

denoted as cell Ii+1/2. Taking the cell Ii as an example

and integrating the hyperbolic equations in time over

the interval (tn, tn+1) and in space over the interval

(xi− 1
2
, xi+ 1

2
), one obtains:∫ x

i+1
2

x
i− 1

2

∫ tn+1

tn
ut(x, t)dxdt =

−
∫ x

i+1
2

x
i− 1

2

∫ tn+1

tn
fx(u(x, t))dxdt

+

∫ x
i+1

2

x
i− 1

2

∫ tn+1

tn
s(u(x, t))dxdt

(4)

that can be easily written as:∫ x
i+1

2

x
i− 1

2

u(x, tn+1)dx =

∫ x
i+1

2

x
i− 1

2

u(x, tn)dx

−
∫ tn+1

tn

(
f(u(xi+ 1

2
, t))− f(u(xi− 1

2
, t))dt

)
+

∫ x
i+1

2

x
i− 1

2

∫ tn+1

tn
s(u(x, t))dxdt

(5)

The LHS and the first term of the RHS of the above

equation can be further manipulated by the cell average

technique:∫ x
i+1

2

x
i− 1

2

u(x, tn+1)dx = ∆xUn+1
i∫ x

i+1
2

x
i− 1

2

u(x, tn)dx =
∆x

2
uni− 1

4
+
∆x

2
uni+ 1

4

(6)

As for the other terms in the RHS, they similarly can

be transformed to:∫ tn+1

tn

(
f(u(xi+ 1

2
, t))− f(u(xi− 1

2
, t))
)
dt

= ∆t(f(u
n+ 1

2

i+ 1
2

)− f(u
n+ 1

2

i− 1
2

))

(7)

∫ x
i+1

2

x
i− 1

2

∫ tn+1

tn
s(u(x, t))dxdt

=
∆t∆x

2

(
s(u

n+ 1
2

i+ 1
4

) + s(u
n+ 1

2

i− 1
4

)
) (8)

where uni is used to denote u(xi, t
n).

By a piecewise linear approximation, we can assume

that:

uni± 1
4

= uni± 1
2
∓ ∆x

4
(ux)ni± 1

2
(9)

Further, the values at half-time step can be similarly

predicted by Taylor’s expansion and the original equa-

tion Eq. (2):

u
n+ 1

2

i± 1
2

= uni± 1
2

+
∆t

2
(ut)

n
i± 1

2

= uni± 1
2
− ∆t

2
(fx)ni± 1

2
+
∆t

2
(s)ni± 1

2

(10)

u
n+ 1

2

i± 1
4

= u
n+ 1

2

i± 1
2

∓ ∆x

4
(ux)

n+ 1
2

i± 1
2

(11)

Therefore the cell average values Un+1
i can be obtained

from the original values at the previous time step at the

nodes xi− 1
2
, xi+ 1

2
denoted as un

i∓ 1
2

. Based on the present

scheme, on integrating values in the intervals Ii+1/2 and

Ii, the values of the original nodes can be updated after

two time steps. Figure 1 explains the procedure of the

time advance process.

Fig. 1: Stencil for 1D cases. Assume that the initial

computational domain includes three values uni−1, uni
and uni+1, denoted as black-filled circles. With the in-
formation at a ghost node uni+2 shown as a black-filled

rectangle, the values of middle points un+1
i−1/2, un+1

i+1/2

and un+1
i+3/2, marked as unfilled circles can be obtained

by the mentioned strategy. Moreover, with the values at

another ghost node un+1
i−3/2 marked as an unfilled rect-

angle, the values at original domain are obtained at the

next time step, which are denoted as un+2
i−1 , un+2

i and

un+2
i+1 . Therefore, the time advance process of the con-

servative variable is achieved.

3.2 Flux limiter

To attenuate possible spurious oscillations in the nu-

merical solution, a flux limiter method is applied to con-

duct the second-order piecewise linear reconstructions.

To satisfy the non-oscillatory property, the cell average

derivative is determined by a generalized minmod-like

limiter involving a parameter θ (Kurganov and Tadmor,
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2000).

(ux)ni = MM
(
θ
uni − uni−1

∆x
,
uni+1 − uni−1

2∆x
, θ
uni+1 − uni

∆x

)
(12)

where θ is a predefined parameter and 1 ≤ θ ≤ 2. MM

denotes the function of the minmond limiter expression.

For the present flux limiter involving three values, i.e.

MM(z1, z2, z3):

minmod(z1, z2, z3) =


min{z1, z2, z3}, if z1,2,3 > 0

max{z1, z2, z3}, if z1,2,3 < 0

0, otherwise.

3.3 Stability condition

The CFL (Courant-Friedrichs-Lewy) stability condition

is used to ensure that the maximum phase velocity cmax
is always smaller than the speed associated with the

grid, i.e. ∆x/∆t, and gives the expression of the adap-

tive time step for solving the governing equations:

∆t ≤ k ∆x

cmax
(13)

cmax = max
∀i

(|λ(min)i |, |λ(max)i |) (14)

where λ
(min)
i and λ

(max)
i are the minimum and max-

imum eigenvalues of the Jacobian matrix (∂F/∂U)ni .

The parameter k is usually taken less than 1/0.5 for

the NT scheme applied to 1D/2D cases, and k = 0.475

for 2D simulations is suggested by the numerical exper-

iments conducted by Jiang and Tadmor (1998).

3.4 Extension to two-dimensional cases

With a 2D cell, the formulas given in the previous sec-

tion have to be adapted to cover both space directions.

Each loop of calculation is divided into two time steps.

In the first time step, the values of cell average, denoted

as Un+1
i+1/2,j+1/2 are updated from the original nodal val-

ues, denoted as uni,j . In the second time step, the val-

ues of cell average Un+2
i,j are updated from the values

un+1
i+1/2,j+1/2 obtained from the first time step. Thus,

the values at the original nodes are updated every two

time-steps calculations. Figure 2 illustrates this proce-

dure. The operation is carried out on a matrix with the

same size, which is friendly for programming.

4 Benchmarks

4.1 Classical ’dam-break’ problem

The dam-break problem is a classical benchmark for

shock-capturing numerical schemes, and has been

widely used for mass flow models validation. The ana-

lytical solution of this kind of Saint-Venant equations

is reviewed in Faccanoni and Mangeney (2013). The

governing equations can be given the following form:

U =

[
h

hu

]
; F =

[
hu

hu2 + 1
2gh

2;

]
; G = 0; S = 0

(15)

where h is the height of water, g=9.81 m/s2 is the grav-

ity acceleration, u is the x direction velocity. The ini-

tial condition is that the water is still and its level has

an abrupt jump from the higher constant value h1 to

the lower constant value h2. We ran very many experi-

ments that all gave very satisfactory results. What we

show here refers to the same configuration treated by

Louaked and Hanich (1998), i.e. the initial upstream

depth is set to h1 = 1.0 m and the downstream depth

is set as h2 = 10−6m. The adopted fixed space step is

∆x = 0.01 m. The numerical and analytical solutions

for a specific time t = 0.1 s are compared in Figure 3

to show that the shock wave is well captured by the

present method.

Another typical benchmark for mass flows is the de-

bris mixture flowing over a rough slope inclined at an

angle α, described by the following equations:

U =

[
h

hu

]
; F =

[
hu

hu2 + 1
2βxh

2;

]
;

G = 0; S =

[
0

hgcosα(tanα− tanδ)

] (16)

where βx = gcosα and δ is the basal friction angle.

If lateral earth pressure is taken into consideration, we

have βx = Kxgcosα, where Kx is the lateral earth pres-

sure coefficient (Savage and Hutter, 1989) along the x

direction. The model adopted hereafter assumes that

lateral earth pressure coefficient is equal to 1. Here

we use the initial configuration of the ’dry bed’ test

case (the downstream water level h2 = 0.0 m) provided

by Faccanoni and Mangeney (2013), where α = 22◦,

δ = 21◦ and the upstream water level is h1 = 0.1446 m.

The mesh density of ∆x = 0.01 m is used. The results

obtained from this numerical scheme at t = 0.5 s can

be seen in Figure 4.
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Fig. 2: Stencil for 2D cases. The values at the original nodes uni,j are shown as orange points, and the region

defined by orange solid lines is the computational domain. By means of the mentioned numerical scheme, cell

average values at Un+1
i+1/2,j+1/2 (green nodes) can be obtained with the help of ghost nodes for the first time step.

Let values at the nodes be equal to the obtained cell average values, that is un+1
i+1/2,j+1/2 = Un+1

i+1/2,j+1/2. By one

more time step, all the values at original nodes un+2
i,j can be successfully updated (shown as blue nodes). Naturally

the information of the displayed ghost nodes are used.

Fig. 3: Comparison between numerical simulation and analytical solution of the dam break problem for t = 0.1 s.

4.2 Two-dimensional ’dam-break’ problem

The geometry of this problem is first used by Fennema

and Chaudhry (1990), and has been widely adopted

for testing numerical codes or new approaches, such

as by Fagherazzi et al. (2004), Ouyang et al. (2013)

and La Rocca et al. (2015). The computational do-

main is a 200-m-long and 200-m-wide channel with a

thin dam that is located at the position of (x, y) =

(100 m, 0 − 200 m) along the y direction. Water depth

of the upstream and downstream region in the reservoir

are 10 m and 5 m respectively. Assuming that a part of

the dam, that is (x, y) = (100 m, 95 − 170 m), breaks

instantaneously, the water upstream crashes into the

reservoir with lower water depth. The wall condition is

enforced at the boundary of the channel and at the non-

breaking sector of the dam, where the velocities normal

to the wall are set to zero. Contour and height profiles

of water are given at t = 7.2 s in Figures 5 and 6. Using

coarse grids with a resolution of 2.5 m, the results ob-

tained with the presenting scheme agree well with the
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Fig. 4: Comparisons between numerical simulation and analytical solution for a mixture flow over a rough inclined

slope for t = 0.5 s.

Fig. 5: Contour plot of the break at t = 7.2 s. Resolution for the simulation is set to 2.5 m for both x and y

directions.

published results that can be found in Fagherazzi et al.

(2004) and in the other aforementioned papers.

4.3 Dam break over a triangle hump

The European project EU CADAM (European Union

Concerted Action on Dam Break Modelling) provides

a laboratory experiment for testing the capability

of numerical schemes applied to a practical case.

The set-up is a 38 m long horizontal domain with

a dam located at x = 15.5 m. Seven gauges named

G2, G4, G8, G10, G11, G13 and G20, located at

x = 17.5, 19.5, 23.5, 25.5, 26.5, 28.5, and 35.5 m, were

set to measure the time history of the water depth.

The configuration is illustrated in Figure 7.

In the numerical simulation, the node separation

is set to ∆x = 0.05 m and the Manning coefficient

n = 0.0125 s/m1/3 is adopted throughout the entire

domain. On the left end a rigid wall condition is im-

posed, while on the right end the condition is a free

flow. The duration of computed time record is 90 s, ac-

cording to the experiment data handed over by Prof.

Lanhao Zhao of the Hohai University in China. After

the sudden opening of the gate, the water in the reser-

voir rushes out and inundates the downstream domain.

The water wave propagates along the domain over the

basal topography. Due to gravity and friction, the direc-

tion of water motion changes with time, causing several

surges observed at gauges. In Figure 8 it can be seen

that the laboratory test is reproduced by the current
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Fig. 6: Height profile of the water break t = 7.2 s.

numerical scheme with high accuracy and resolution.

The prediction of arriving time and water depth of the

various water pulses nearly coincide, which is a quite

remarkable result.

Fig. 7: Sketch of the set-up of the dam break experiment

over a triangular hump.

5 Investigation of the 1783 Scilla landslide

The narrow Messina Strait, between the eastern tip

of Scilly and the southern end of Calabria, connect-

ing the Tyrrhenian Sea to the north with the Ionian

Sea to the south, as shown in Figure 9A, is one of the

most seismically active areas of southern Italy. Tectoni-

cally, it is dominated by the development of the Siculo-

Calabrian Rift Zone and is the northernmost sector of

the high level seismic belt including the largest earth-

quakes that have occurred in southern Italy in the last

four centuries, such as the 1693 SE Sicily earthquakes,

the 1783 Calabrian seismic sequence, the 1905 Mon-

teleone earthquake and the Messina earthquake of 1908

(Catalano et al., 2008). The 1783 seismic crisis started

with a sequence of strong earthquakes from February

to March, exceeding magnitude Mw 7 (Rovida et al.,

2011) and lasted for at least three years (1783-1785).

It caused more than 30,000 casualties, destroyed 200

localities (Porfido et al., 2011), and triggered a further

series of secondary disasters including numerous mass

failures, river dams with temporary lake formation and

tsunamis. The most catastrophic episode of this crisis

in terms of death toll was the Scilla tsunami event, that

was generated by an earthquake-induced landslide and

that killed more than 1500 people on February 6, 1783.

The landslide occurred south of the coastal village of

Scilla. The earthquake regarded as the trigger of the

landslide happened offshore in the Messina Strait and

was a Mw = 5.9 aftershock of a strong shock occurred

the day before. The mass failure took place about 30

minutes later, and a huge tsunami generated by the

landslide crashing into the sea was observed soon after

the mass collapse (Minasi, 1785). Available historical

reports and studies provide the tsunami run-up heights

and inundation distances, as summarized in Graziani

et al. (2006). On the basis of recent field surveys of sub-

aerial and submarine scars, the total volume involved in

the failure was postulated to be 8 Mm3 and the deposit

was estimated as 5-6 Mm3 (Bozzano et al., 2006, 2011).
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Fig. 8: Time histories of the water elevation at the seven gauges.

Previous studies of the Scilla event were carried

out by Avolio et al. (2009); Mazzanti and Bozzano

(2011) and Zaniboni et al. (2016). The Scilla landslide

in the first two papers was simulated by the cellular

automata technique and by the DAN3D code (Hungr

and McDougall, 2009). The last paper used a 1D

Lagrangian block model (Tinti et al., 1997). The

reconstruction by Avolio et al. (2009) merely provides

the area of deposits. DAN3D is the developed code

that uses a Lagrangian numerical method to solve the

aforementioned depth-averaged governing equations

and where a variety of basal rheological relationships,

material entrainment and other features can be in-

cluded. The DAN3D simulations, where underwater

drag and friction were accounted through a turbulence

coefficient, revealed that the Scilla landslide acceler-

ated to 45 m/s after 20 s and decelerated to rest after

80 s. The DAN3D computed deposits agree acceptably

with the observed data, but the dynamic evolution of

the mass was not provided in the published papers. As

for the 1D Lagrangian block model, the total mass is

discretized into blocks that interact with each other.

Forces including gravity, friction, drag and block-block

interaction act on blocks, which are allowed to change

shape, but not volume. The numerical investigations

by Zaniboni et al. (2016) provide reasonable results

in both landslide dynamics and tsunami generation.

However, it is worth noting that for the 1D block

model the mass motion path has to be predefined,

which implies that the topography effects have to be

studied before applying the model.

In this section, the landslide is represented as a mix-

ture flow, and the motion is calculated by means of the

present numerical approach. We remark that we adopt

a flow model that is capable of fully handling topogra-

phy and of computing the mass motion path. Two drag

models, obeying a linear and a quadratic law, are im-

plemented to investigate the time evolution of the mass.

Consequently, two kinds of landslide dynamics are ob-

tained from the simulation. We anticipate that the time

history obtained by means of the linear drag assump-

tion provides a motion mechanism similar to that from

the 1D block model (Zaniboni et al., 2016). A sketch

of the Scilla landslide body and of the deposit area is

given in Figure 9B.

5.1 Mixture model with topography modifications

To investigate the dynamic evolution of the Scilla

landslide, a grain-water mixture model with topog-

raphy modification is used here. As shown in section

4.1, the mixture model can be simply regarded as

the extension of the shallow water equations, with

additional lateral pressure coefficient and friction

terms. For more technical details, such as the as-

sumptions, simplification and depth-average theory,

one can refer to Savage and Hutter (1989), Iverson

and Denlinger (2001), Gray et al. (1999), Pudasaini
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Fig. 9: A Geographical location of Scilla (red rectangle). Solid blue circles represent the 1783 seismic sequence

with size increasing with earthquake magnitude. B Area of the Scilla landslide (Modified from Zaniboni et al.

2016).

(2012) and Meng and Wang (2016). Topography,

that is the driving factor for geophysical mass flows,

can be treated in a Cartesian coordinate system but

also in a curvilinear coordinate system (Gray et al.,

1999). For the numerical application of shallow water

models to real cases, an additional topography-linked

coordinate system (i.e. Kelfoun and Druitt 2005)

or more complicated Boussinessq-like models (e.g.,

Denlinger and Iverson, 2004; Castro-Orgaz et al.,

2015) are required for ensuring the accuracy and the

stability of numerical schemes. Here we use a global

Cartesian coordinate system, using a model (Xia and

Liang, 2018) that, considering vertical acceleration and

curvature effects, has been proven to be successful in

both theoretical studies and applications. The vector

form of the equations is given as follows:

U =

 hhu
hv

 ; F =

 hu

hu2 + 1
2gφ

−2h2

huv

 ;

G =

 hv

huv

hv2 + 1
2gφ

−2h2

 ; S = Sb + Sf

(17)

Sb =

 0

−ahbx + 1
2gh

2 ∂(φ
−2)
∂x

−ahby + 1
2gh

2 ∂(φ
−2)
∂y

 ;

Sf =


0

− µahuφ√
u2+v2+(ubx+vby)2

− µahvφ√
u2+v2+(ubx+vby)2


(18)

a = φ−2(g + vTHv), v = (u, v)T ;

H =

[
bxx bxy
bxy byy

]
; φ = (b2x + b2y + 1)1/2

(19)

where Sb is the basal topography term and Sf is the

friction term. The factor φ−2 merely related to basal

topography is theoretically important for the governing

equations considering complex topography in a Carte-

sian coordinate system. The term vTHv accounts for

the effect of the centrifugal force. v is the velocity vector

including velocity components along x and y directions.

µ is the basal friction coefficient, and b(x, y) is the basal

surface of the landslide. bx(y) and bxx, bxy, byy represent

the first-order and the second-order derivatives. In this

case we have assumed that the lateral earth pressure

coefficients Kx and Ky are equal to 1.

5.2 Buoyancy and drag force terms

In the study conducted by Mazzanti and Bozzano

(2011), using the DAN3D model, the motion of the

mass underwater is computed by applying a turbulence

coefficient, which is rarely used in mass flow models.

In our simulation, the whole event is restricted to the

motion of the slide, and the complicated interactions

between mass and water are simplified as buoyancy

and drag forces acting on the mass itself. The effective

gravity acceleration for the submarine motion of the

slide is reduced to (1 − γ)g, where γ is the ratio

between the fluid and debris densities, i.e. γ = ρf/ρs,

with ρf = 1000kg/m3 and ρs = 1700kg/m3 adopted

for the simulations. The drag force is the effect of a

rather complicated process difficult to describe. In
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mass flow modeling it can be expressed as a linear or

quadratic function of the relative mass-water velocity

(Pudasaini, 2012; Meng and Wang, 2016). However,

the quantification of the drag force coefficient is

not easy and it is usually determined by empirical

formulas based on experiments data. Additionally,

some proposed models (i.e. Pudasaini 2012) involving

several parameters that are hard to evaluate, are

scarcely adequate for practical applications. Here, we

focus on the performance of two different drag force

relationships. In our model the drag force is given as

an additional source term:

S = Sb + Sf + Sdrag;

Sldrag =

 0

−Cdhu
−Cdhv

 ; Sqdrag =

 0

−Cdhu
√
u2 + v2

−Cdhv
√
u2 + v2


(20)

where Cd is the drag force coefficient that has dimen-

sions of inverse time for linear model and dimensions

of inverse length for quadratic model. The drag force

term is denoted as Sdrag, which is implemented as lin-

ear drag forces Sldrag or quadratic drag forces Sqdrag
into the model.A constant drag coefficient is used in the

simulations, choosing Cd = 0.05 s−1 for linear drag and

the Cd = 0.015 m−1 for quadratic drag forces.

5.3 Dynamic evolution of the Scilla landslide

After the triggering, the falling mass moves over the

basal topography acted by driving and resisting forces,

and finally deposits at a certain distance. The trigger-
ing mechanism of the landslide is not contained in the

model, and the mass is released without initial veloc-

ity. To account for the dynamic evolution of the land-

slide, the average velocity, calculated by the total mo-

mentum and total height, is used to capture the over-

all dynamic state of the landslide. At each time step,

the code detects the boundary of the region that con-

tains the mass material, so determining the computa-

tional domain. The choice of friction coefficients de-

pends on the back analysis, according to the observed

data (Zaniboni et al., 2016) and differentiates between

subaerial and submarine sliding. The notations of µSA
and µSM are used to represent the basal friction co-

efficient for subaerial sliding and submarine sliding re-

spectively. For the simulation adopting the linear drag

model, µSA = 0.25 and µSM = 0.05, while µSA = 0.25

and µSM = 0.03 are chosen for the quadratic drag

model.

The average velocity time histories shown in Fig-

ure 10 clearly provide two distinct dynamics obtained

from two adopted different drag functions. As for the

linear-law case, one may observe that the curve we ob-

tain here is similar to the one computed by Zaniboni

et al. (2016) with their 1D block model, where they

used however a quadratic law for the drag. Indeed, in

both cases the landslide experiences a rapid accelera-

tion stage followed by a slightly less rapid deceleration

stage. The only difference is that the velocity peak ap-

pears at slightly different times. The curve we obtain

for the quadratic law model however is quite different.

The acceleration phase is shorter, the peak velocity is

much less (24 m/s vs. circa 32 m/s) and the deceleration

phase lasts several minutes, much longer than for the

linear drag case.

Fig. 10: Time evolution of the mean velocity of the

landslide. The dynamics obtained from the linear drag

model is quite similar to the motion depicted by

the 1D quadratic-drag block model (Zaniboni et al.,

2016), with slightly different accelerations. The land-

slide accelerates, reaching a peak value at 32 m/s and

then starts slowing down. Instead, the curve from the

quadratic law provides a much longer duration of the

landslide motion. The landslide is strongly decelerated

by the water when it crashes into the sea with high ve-

locity and then moves slowly to the final still position.

The peak velocity of the present simulations is smaller

than the value exceeding 40 m/s obtained by Mazzanti

and Bozzano (2011), but the deposit region is success-

fully reproduced by the model.

5.4 Propagation and Deposition

The field surveys of subaerial and submarine scars re-

veal the initial and final position of the landslide, while

the heights of the offshore deposits are not known from

the literature. We present the snapshots of the landslide

height at different times in Figure 11 and Figure 12. The

snapshots are shown at 10 s time intervals for the linear

drag model simulation, whereas different time intervals
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Fig. 11: Snapshots of the landslide mass taken at 10 s intervals (from t=10 s to t=90 s) obtained through the linear

drag model. The observed landslide subaerial scar area is bounded by a solid blue line, and the observed landslide

deposit area is bounded by a dashed red line. The coastline is denoted by the black line. The movement can

be separated into two stages: the acceleration stage (t=0-30 s) and the following deceleration stage. Easting and

Northing are implemented as x and y directions in the simulation.

are used for the quadratic drag model. As shown by

the snapshots, the mass moves along a reasonable di-

rection, which validates the goodness of the mixture-

flow model with topographical modifications (Xia and

Liang, 2018).

Figure 11 is the set of snapshots regarding the linear

drag model. After the landslide front crashes into wa-

ter, the rest of the mass enters the sea and is affected by

a relatively low resistance that does not heavily impede

the motion of the landslide. This dynamic is depicted

by the behaviour of the front body. In the first 30 s, the

main body concentrates on the middle and the rear of

the landslide. Later, mainly as the effect of the drag

force, the main mass moves to the front and the mid-

dle, as can be seen in the snapshot at t=40 s. During

the deceleration stage, most mass deposits within the

observed region (delimited by the dashed red line, see

the t=70 s snapshot), and the motion is practically over

after 90 s.

Figure 12 displays the simulations concerning the

quadratic drag case. Impacted by a very large drag

when the mass front crashes into water, the landslide
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Fig. 12: Snapshots of the landslide mass (from t=10 s to t=300 s) obtained through the quadratic drag model. The

blue line depicts the boundary of the initial region of the landslide. The observed landslide deposit is bounded by

a dashed red line with the black line denoting the coastline. The movement can be separated into three stages:

an acceleration stage and two deceleration phases. The mass is mainly driven by gravity forces in the first 15 s

and then experiences a strong deceleration until 30 s and then a gradual slow down until the rest. Easting and

Northing are implemented as x and y directions in the simulation.

moves slowly and tightly during the underwater prop-

agation. In contrast to what is shown in Figure 11, the

main mass concentrates on the front and the middle

of the body during the acceleration stage. The lateral

spreading behaviour shown in Figure 11 is restricted in

Figure 12. After 160 s, the main body arrives at the ob-

served deposit region and then slowly decelerates until

it stops. Note that the deposit shapes resulting from the

two laws are similar, though reached at quite different

times (see the t=90 s image of Figure 11).

We observe that the deposits from our simulations

are located inside the region defined by the observed

data and therefore we can state that both kinds of simu-

lations successfully reconstruct the landslide event from

the run-out perspective. The main difference between

the two simulations is that the landslide moves more

slowly and remains more concentrated at least during

most of the motion when the quadratic drag model is

implemented, while a linear drag accounts for a larger

spreading.
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6 Conclusions

A second-order central scheme with a general minmod-

like limiter has been proposed to solve the system of

hyperbolic partial differential equations that represent

geophysical-flow like problems. Several typical bench-

marks used in mass flow simulations have been carried

out and compared against analytical solutions and ex-

perimental data to validate the model. As regards both

accuracy and resolution the scheme has been proven to

perform very adequately, which enabled us to apply it

to cases of practical geophysical and societal interest.

In this paper we have selected as an application

the historical catastrophic landslide occurred in Scilla,

Calabria (South Italy) in 1783, already investigated

through field surveys and other numerical approaches.

A mixture flow model, considering topography mod-

ifications based on a global Cartesian coordinates

(Xia and Liang, 2018), has been solved, providing

a reasonable motion pattern for the landslide. For

the underwater motion buoyancy forces and drag

forces have been taken into account, and the landslide

dynamics has been numerically investigated by two

different drag models. For the linear drag law, the

computed landslide dynamic is similar to the 1D

block-model simulation carried out by Zaniboni et al.

(2016), describing a landslide that experiences a

30 s long acceleration and a 60 s long deceleration

stage, reaching a peak velocity slightly larger than

30 m/s. Instead, by using a quadratic drag model, the

simulated two-stage landslide dynamics is different

since the landslide rapidly decelerates when it crashes

into the sea and then moves slowly until it stops. The

deposits of both numerical simulations locate at a

reasonable region, compared with the observed data.

We remark that the accurate reconstruction of his-

torical landslide events is a tough task, depending on

factors including physical parameters, model assump-

tions, numerical methods, field surveys, etc. We showed

that our mass flow model provides reasonable results in

good agreement with available observations. However,

more complicated mechanisms considering erosion, soil-

water interaction, various material-behaviour need to

be figured out in the future.
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