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We consider the optimization variant of the realizability problem for Prompt Linear Temporal Logic,
an extension of Linear Temporal Logic (LTL) by the prompt eventually operator whose scope is
bounded by some parameter. In the realizability optimization problem, one is interested in computing
the minimal such bound that allows to realize a given specification. It is known that this problem is
solvable in triply-exponential time, but not whether it canbe done in doubly-exponential time, i.e.,
whether it is just as hard as solving LTL realizability.

We take a step towards resolving this problem by showing thatthe optimum can be approxi-
mated within a factor of two in doubly-exponential time. Also, we report on a proof-of-concept
implementation of the algorithm based on bounded LTL synthesis, which computes the smallest im-
plementation of a given specification. In our experiments, we observe a tradeoff between the size
of the implementation and the bound it realizes. We investigate this tradeoff in the general case and
prove upper bounds, which reduce the search space for the algorithm, and matching lower bounds.

1 Introduction

The realizability problem for PROMPT–LTL, Linear TemporalLogic (LTL) enriched with an eventually
operator of bounded scope, should be treated as an optimization problem: determine the smallest bound
on the bounded eventually such that the specification is realizable with respect to that bound. The best ex-
act algorithms for this problem have triply-exponential running times, i.e., they are exponentially slower
than algorithms for the decision variant (“does there exista bound?”), which is 2EXPTIME-complete. We
take a step towards resolving the complexity of the optimization problem by presenting an approximation
algorithm with doubly-exponential running time returninga bound that is at most twice the optimum.

In general, the realizability problem asks to determine thewinner in an infinite-duration two-player
game played between an input and an output player in roundsn= 0,1,2, . . .: in each roundn, first the
input player picks a subsetin of a fixed setI of input propositions, then the output player picks a subseton

of a fixed setO of output propositions. The output player wins, if the sequence (i0∪ o0)(i1 ∪ o1)(i2 ∪
o2) · · · of picks satisfies the winning condition, typically a formula ϕ in some logic. A strategy for the
output player is a function mapping sequencesi0 · · · in ∈ (2I )∗ of inputs to an outputon ∈ 2O. Such a
strategy is winning, if every outcome that is consistent with the strategy satisfies the winning condition.
Formally, the realizability problem asks, given a formulaϕ , whether the output player has a winning
strategy for the realizability game with winning conditionϕ . For winning conditions in LTL (and many
extensions), finite-state strategies suffice, i.e., strategies that are implemented by finite automata with
outputs.

LTL [15] is the most prominent logic for specifying reactivesystems and the foundations of the
LTL realizability problem are well-understood [1, 12, 14, 16, 17]. Recently, the first tools solving the
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problem were developed [4, 5, 8, 9, 11], which show promisingperformance despite the prohibitive
worst-case complexity. However, LTL lacks the ability to express time-bounds, e.g., the formulaG(q→
F p) expresses that every requestq has to be responded to by a responsep. However, it doesnot require
a bound on the waiting times between requests and responses,i.e., it is even satisfied if the waiting times
diverge. Several parameterized logics where introduced toovercome this shortcoming [2, 7, 13, 20].
Here, we focus on the smallest such logic: PROMPT–LTL, whichextends LTL by the prompt eventually
operatorFP , whose semantics are defined with respect to a given boundk. For example, the formula
G(q → FP p) is satisfied with respect tok, if every request is responded to within at mostk steps.
In decision problems for this logic the bound is typically quantified existentially, e.g., the realizability
problem asks for a given formulaϕ whether there exists a boundk such that the output player has a
winning strategy for the realizability game where the winning conditionϕ is evaluated with respect tok.

Kupferman et al. showed that PROMPT–LTL has the same desirable algorithmic properties as LTL.
In particular, model checking is PSPACE-complete and realizability is 2EXPTIME-complete [13]. Hence,
one can add the prompt eventually operator to LTL for free. However, as already noticed by Alur et al. in
their work on Parametric LTL [2] (which also contains the dual of the prompt eventually and allows for
multiple bounds), one can view decision problems for parameterized logics as optimization problems:
instead of asking for the existence of some bound, one searches for an optimal one. They showed that the
model checking optimization problem for unipolar PLTL specifications, which includes PROMPT–LTL,
can be solved in polynomial space [2]. Thus, even finding optimal bounds is not harder than solving
the LTL model checking problem. However, for PROMPT–LTL realizability, or equivalently, for infinite
games, the situation is different: while the decision problem is known to be 2EXPTIME-complete [13],
the best algorithm for the optimization problem has triply-exponential running time [19].

1.1 Our Contributions

We show that relaxing the optimality requirement on the bound allows to recover doubly-exponential
running times: an approximately optimal bound can be determined using the alternating color technique,
which was introduced by Kupferman et al. to solve the decision problems for PROMPT–LTL. To this
end, we present an approximation algorithm with doubly-exponential running time with an approxima-
tion ratio of two. The algorithm has to solve at most doubly-exponentially many LTL realizability prob-
lems, each solvable in doubly-exponential time. We presentthe algorithm for PROMPT–LTL, but it is
applicable to stronger parameterized extensions of LTL like parametric LTL [2] and parametric LDL [7].

In many situations, approximating the optimal bound is sufficient, since the exact optimum depends
on the granularity of the realizability problem at hand. This is even more true if the optimization problem
indeed turns out to be harder than the decision variant, e.g., if it is 3EXPTIME-hard. Then, the loss in
quality is made up for by significant savings in running time.On the other hand, if the optimal bound is
at most exponential in the size of the formula, then it can be exactly determined in doubly-exponential
time [19]: the bound can be hardwired into a non-deterministic automaton capturing the specification,
which has to be determinized to solve the realizability problem. This involves an exponential blow-up,
which implies that this approach only yields a doubly-exponential time algorithm, if the bound is at most
exponential.

Furthermore, we report on a proof-of-concept implementation of our algorithm. To handle the so-
lution of the LTL realizability problems, we rely on the framework of bounded synthesis [9], which
searches for a minimal-size finite-state winning strategy for a given specification. The evaluation of this
implementation shows that, while it suffers from a significant increase in running time compared to LTL
realizability, synthesis of prompt arbiters for a small number of clients is feasible.
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In our experiments, a tradeoff between size and quality (measured in the bound on the prompt even-
tually operators) of winning strategies becomes apparent:one can trade size of the strategy for quality
and vice versa. We conclude by studying this tradeoff in depth. First, we show that fixing the size of
the strategy ton (as it is done during bounded synthesis) implies an exponential upper bound (inn) on
the sufficient boundk on the prompt eventually operators. This upper bound reduces the search space of
our algorithm. The upper bound is then matched by a tight lower bound. Secondly, we present a family
of formulas exhibiting a continuous tradeoff between size and quality with exponential extremal values,
i.e., the specifications are realizable with exponential size and a linear bound or with constant size and
an exponential bound and the tradeoff between these two points is continuous. Thirdly, by giving up the
continuity, one can show even stronger tradeoffs: there is afamily of specifications that is realizable with
doubly-exponential size and bound zero or with size one and an exponential bound.

2 Definitions

Throughout this work, fix a finite setPof atomic propositions and denote the non-negative integers byN.

2.1 Prompt-LTL

The formulas of PROMPT–LTL are given by the grammar

ϕ ::= p | ¬p | ϕ ∧ϕ | ϕ ∨ϕ | X ϕ | ϕ Uϕ | ϕ Rϕ | FP ϕ ,

wherep∈ P represents an atomic proposition. Also, we use the standardshorthandsFϕ = ttU ϕ and
Gϕ = ffR ϕ with tt = p∨¬p andff = p∧¬p, wherep is a fixed atomic proposition. Furthermore, we
useϕ → ψ as shorthand for¬ϕ ∨ψ , if the antecedentϕ is a (negated) atomic proposition (where we
identify ¬¬a with a). We define the size|ϕ | of ϕ to be the number of subformulas ofϕ .

In order to evaluate PROMPT–LTL formulas, we need to fix a bound k ∈ N to evaluate the prompt
eventually operator. Hence, the satisfaction relation is defined for anω-word w∈

(

2P
)ω

, a positionn of
w, a boundk, and a PROMPT–LTL formula. The definition is standard for theclassical operators and
defined as follows for the prompt eventually:

• (w,n,k) |= FPϕ if and only if there exists aj in the range 0≤ j ≤ k such that(w,n+ j,k) |= ϕ .

For the sake of brevity, we write(w,k) |= ϕ instead of(w,0,k) |= ϕ and say thatw is a model ofϕ with
respect tok. If (w,k) |= ϕ , we say thatw modelsϕ with respect tok. Note thatϕ is an LTL formula [15],
if it does not contain the prompt eventually. In this case, wewrite w |= ϕ .

2.2 Prompt-LTL Realizability

Throughout this subsection, we fix a partition(I ,O) of P. An instance of the PROMPT–LTL realizability
problem over(I ,O) consists of an PROMPT–LTL formulaϕ overP= I ∪O and asks to determine the
winner in the following game, played between PlayerI and PlayerO in roundsn= 0,1,2, . . .: in roundn,
PlayerI picks in ⊆ I and afterwards PlayerO pickson ⊆ O. The resulting play is(i0∪o0)(i1∪o1)(i2∪
o2) · · · ∈ (2P)ω .

A strategy for PlayerO is a mappingσ : (2I )+ → 2O. A play as above is consistent withσ , if
on = σ(i0 · · · in) for everyn. We say thatσ realizesϕ with respect tok∈N, if every play that is consistent
with σ satisfiesϕ with respect tok. Formally, the PROMPT–LTL realizability problem asks, given a
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PROMPT–LTL formulaϕ , whether there is a strategyσ and ak such thatσ realizesϕ with respect tok.
In this case, we sayϕ is realizable.

A memory structureM = (M,m0,upd) consists of a finite set of statesM, an initial statem0 ∈ M,
and an update function upd :M × 2I → M. We extend the update function to finite input sequences as
usual, i.e., we define upd∗ : (2I )∗ → M inductively as upd∗(ε) = m0 and upd∗(wi) = upd(upd∗(w), i)
for w ∈ (2I )∗ and i ∈ 2I . A memory structureM together with a next-move function nxt :M × 2I →
2O induces a strategyσ defined asσ(i0 · · · in) = nxt(upd∗(i0 · · · in−1), in). We say that such a memory
structure implements the strategyσ . We call any strategyσ that can be implemented by some memory
structure a finite-state strategy. The size of a finite-statestrategy is the size of the smallest memory
structure implementing it.

The LTL realizability problem is defined by restricting the specificationsϕ to LTL formulas and is
2EXPTIME-complete [17]. Kupferman et al. showed that PROMPT–LTL realizability is not harder.

Theorem 1 ([13]). ThePROMPT–LTL realizability problem is2EXPTIME-complete. Furthermore, if
ϕ is realizable with respect to some k, then also with respect to some k∈ O(22|ϕ|) by some finite-state
strategy of sizeO(22|ϕ|).

Furthermore, the doubly-exponential upper bounds on the necessaryk and on the memory require-
ments are tight. Also, ifϕ is realizable with respect to somek, then also with respect to everyk′ > k.

2.3 The Alternating Color Technique

Our algorithm presented in the next section is based on an application of Kupferman et al.’s alternating
color technique [13] to PROMPT–LTL realizability. We recall the technique in this subsection.

Let p /∈ P be a fixed fresh proposition. Anω-word w′ ∈
(

2P∪{p}
)ω

is a p-coloring ofw∈
(

2P
)ω

if
w′

n∩P= wn, i.e.,wn andw′
n coincide on all propositions inP. We say that a position is a change point,

if n= 0 or if the truth value ofp at positionsn−1 andn differs. A p-block is an infixw′
m· · ·w

′
n of w′

such thatmandn+1 are adjacent change points. Letk≥ 1: we say thatw′ is k-spaced, if the truth value
of p changes infinitely often and eachp-block has length at leastk; we say thatw′ is k-bounded, if each
p-block has length at mostk (which implies that the truth value ofp changes infinitely often).

Given a PROMPT–LTL formulaϕ , rel(ϕ) denotes the formula obtained by inductively replacing
every subformulaFPψ by

(p→ (pU(¬pU rel(ψ))))∧ (¬p→ (¬pU(pU rel(ψ)))).

Intuitively, instead of requiringψ to be satisfied within a bounded number of steps, rel(ϕ) requires it to
be satisfied within at most one change point. The relativization rel(ϕ) is an LTL formula of sizeO(|ϕ |).
Kupferman et al. showed thatϕ and rel(ϕ) are “equivalent” onω-words which are bounded and spaced.

Lemma 1 ([13]). Let ϕ be aPROMPT–LTL formula.

1. If (w,k) |= ϕ , then w′ |= rel(ϕ) for every k-spaced p-coloring w′ of w.

2. Let k∈N. If w′ is a k-bounded p-coloring of w such that w′ |= rel(ϕ), then(w,2k) |= ϕ .

3 Approximating Optimal Bounds in Doubly-Exponential Time

Determining whether a PROMPT–LTL formulaϕ is realizable with respect to somek induces a natural
optimization problem: determine the smallest suchk. The optimum (and a strategy realizingϕ with
respect to the optimum) can be computed in triply-exponential time [19].
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However, it is an open problem whether the optimization problem can be solved in doubly-exponential
time, i.e., whether optimal PROMPT–LTL realizability is noharder than LTL realizability. We take a
step towards resolving the problem by showing that the optimum can be approximated within a factor of
two in doubly-exponential time.

The alternating color technique is applied to the PROMPT–LTL realizability problem by replacingϕ
by its relativization rel(ϕ) and by letting PlayerO determine the truth value of the distinguished proposi-
tion p for every position by adding it to the output propositionsO. The full details are explained in [13],
where the following statements are shown to prove the application of the alternating color technique to
be correct. Here,ψk is an LTL formula of linear size ink that characterizesk-boundedness, i.e.,w′ |= ψk

if, and only if, w′ is ak-boundedp-coloring.

Lemma 2 ([13]). Let ϕ be aPROMPT–LTL formula and let k∈ N.

1. A strategy realizingϕ with respect to k can be turned into a strategy realizingrel(ϕ)∧ψk.

2. A strategy realizingrel(ϕ)∧ψk can be turned into a strategy realizingϕ with respect to2k.

Also, if k is not too large, we can check the realizability of rel(ϕ)∧ψk in doubly-exponential time.

Lemma 3. The following problem is in2EXPTIME: Given aPROMPT–LTL formula ϕ and a natural
number k that is at most doubly-exponential in|ϕ |, is rel(ϕ)∧ψk realizable? Furthermore, one can
compute a strategy realizing the formula (if one exists) in doubly-exponential time.

Proof. As usual, we reduce the problem to a parity game (see [10] for background). First, we construct
a deterministic parity automaton recognizing the language{ρ ∈ (2P∪{p})ω | ρ |= rel(ϕ)} and intersect
it with a deterministic safety automaton that recognizes{ρ ∈ (2P∪{p})ω | ρ |= ψk}. It is known that the
first automaton is of doubly-exponential size and has exponentially many colors (both in|ϕ |) while the
second one is of linear size ink. Thus, the deterministic parity automatonA recognizing the intersection
is of doubly-exponential size in|ϕ | and linear size ink and has exponentially many colors in|ϕ |.

Next, we split a transition ofA labeled byA⊆ P∪{p} into two, the first one labeled byA∩ I and the
second one byA\ I . By declaring the original states ofA to be PlayerI states and the new intermediate
states obtained by splitting the transitions to be PlayerO states, we obtain a parity game that is won by
PlayerO from the initial state ofA if, and only if, rel(ϕ)∧ψk is realizable. Additionally, a winning
strategy for PlayerO in the parity game can be turned into a strategy realizing rel(ϕ)∧ψk. This parity
game is of doubly-exponential size with exponentially manycolors, both in|ϕ |. The winner and a
winning strategy for her in such a game can be computed in doubly-exponential time [18].

Now, we are able to present the algorithm for approximating optimal bounds for PROMPT–LTL
realizability. Given an inputϕ , the algorithm first checks whetherϕ is realizable with respect to somek.
If not, then the optimum is∞ by convention. Otherwise, Theorem 1 yields a doubly-exponential upper
boundu on the optimum. Now, the algorithm determines the smallest 1≤ k ≤ u such that rel(ϕ)∧ψk

is realizable and returns 2k. The emptiness test and determining the realizability of rel(ϕ)∧ψk can be
executed in doubly-exponential time as shown in Theorem 1 and Lemma 3. As the latter problem has to
be solved at most doubly-exponentially often1, the overall running time is doubly-exponential as well.
Furthermore, due to Lemma 3 and Lemma 2.2, we even obtain a strategy realizingϕ with respect to 2k.

It remains to argue that the algorithm approximates the optimumkopt ≤ u within a factor of two: let
2k be the output of the approximation algorithm, i.e.,k is minimal such that rel(ϕ)∧ψk is realizable.

1With binary search, this can be improved to exponentially often. However, the running time of the realizability check
depends onk, which is typically small. Thus, traversing the search space 0,1, . . . ,u in the natural order is more beneficial. We
discuss the search strategy in more detail in Section 4.
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Thus, Lemma 2.2 implieskopt ≤ 2k. Conversely,ϕ being realizable with respect tokopt implies that
rel(ϕ)∧ψkopt is realizable due to Lemma 2.1, i.e.,k≤ kopt due to minimality ofk.

Altogether, we obtaink ≤ kopt ≤ 2k. Recall that the algorithm returns 2k, i.e., ϕ is realizable with
respect to the returned value due to monotonicity. Also, theapproximation ratio2k/2k−kopt is bounded by
2k/2k−kopt ≤ 2k/2k−k = 2, i.e., the bound found by our algorithm is at most twice the optimal bound.

Theorem 2. The optimization problem forPROMPT–LTL realizability can be approximated within a
factor of two in doubly-exponential time. As a byproduct, one obtains a strategy witnessing the approxi-
matively optimal bound.

4 Empirical Evaluation

In the previous section we have described an algorithm that,given some PROMPT–LTL specification
ϕ , approximates the optimal boundk for which the formula can be realized. The algorithm uses LTL
realizability checking as a black-box to determine the realizability of the formulas rel(ϕ)∧ψk, wherek
is a parameter from a doubly-exponential set. The search strategy heavily influences the running time of
the algorithm (but not the worst-case complexity). Towardsan implementation, we rely on bounded LTL
synthesis [9] for checking the realizability of rel(ϕ)∧ψk. In addition to computing the smallest strategy
that realizes rel(ϕ)∧ψk, bounded synthesis also allows us to search for strategies of some fixed size
n. Thus, we obtain a sub-procedure that takes as input some PROMPT–LTL formula, as well as some
valuesn andk, which checks whether or not there exists a finite-state strategy of sizen that realizesϕ
with respect to 2k.

To this end, it first constructs the LTL formulaϕ ′ = rel(ϕ)∧ψk from ϕ , which is then given to the
tool BoSy [6] together with the desired sizen of the strategy.BoSy then checksϕ ′ for realizability and
returns a strategy of sizen, if there exists one. In order to do so, it first translatesϕ ′ to a universal co-
Büchi automaton that accepts the language ofϕ ′. Based on this automaton, it constructs a QBF query
that is satisfiable if, and only if, there exists a strategy ofsizen which is then solved by a combination of
a QBF preprocessor and a solver. Due to Lemma 2, we know that the strategy returned byBoSy realizes
ϕ with respect to 2k when restricted toP.

We evaluate our implementation on a family of arbiters. Eacharbiter manages some numberr of
resources. PlayerI poses requestsqi for some resource 1≤ i ≤ r, while PlayerO has to grant them by
playing pi for 1≤ i ≤ r. Moreover, PlayerO can only grant a single resource at a time. In addition to
the usual requirement that each request has to be answered eventually, we require that a request for one
of the firstrp resources is answered promptly, for 0≤ rp ≤ r. Thus, for some parametersr andrp, we
construct the PROMPT–LTL specification

ϕr,rp :=
∧

1≤i≤rp

G(qi → FP pi)∧
∧

rp<i≤r

G(qi → F pi)∧
∧

i 6= j

G(¬pi ∨¬p j).

Note that, for eachr ∈ N, the specificationϕr,0 is an LTL formula.
For our experiments we used machines equipped with Intel Xeon-Haswell processors running at

3.6 GHz with 32 GB of memory. The complete dataset we report onin this evaluation is available at
https://arxiv.org/abs/1511.09450.

We first compare the running time of LTL synthesis with the running time of our implementation on
the PROMPT–LTL formulas in order to quantify the slowdown incurred by performing PROMPT–LTL
synthesis instead of LTL synthesis. Since, as previously explained, a naive search strategy that simply
performs bounded synthesis on rel(ϕ)∧ψk for increasingk is infeasible, we instead search for a realizing

https://arxiv.org/abs/1511.09450
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Figure 1: The search strategy for some realizing implementation on the left-hand side and the slowdown
of PROMPT–LTL synthesis on the right-hand side.

implementation along the diagonals of the search space, as shown in the left-hand side of Figure 1. We
run our implementation with this search strategy onϕr,rp for eachr ∈ [1;10] and eachrp ∈ [0;r] and
compared the running time to that ofBoSy on ϕr,0.2

The results are shown in the right-hand side of Figure 1. For each comparison, the number of re-
sourcesr is denoted by the line-color, while the number of prioritized resources is displayed on the
x-axis. The slowdown is shown on the y-axis, which is logarithmically scaled. Note that there does not
exist a data point for each pair(r, rp) with 1≤ r ≤ 10 and 0≤ rp ≤ r, since, forr ≥ 9, BoSy timed out
after 100 minutes and, for all other values not shown, our implementation timed out after 100 minutes.

We see that, when given an LTL formulaϕr,0, in general our implementation is slower thanBoSy by
a factor on the order of magnitude of 101. This results from our tool callingBoSy multiple times even for
LTL formulas, as, in order to find a strategy of sizen that realizesϕ , our implementation first searches
for strategies of sizesn′−b that realizeϕr,0 with respect to 1+b for n′ < n and 0≤ b< n′ (cf. the search
strategy shown in Figure 1). Forϕ8,0, however, our implementation finds a realizing strategy after 1 299
seconds, whileBoSy takes 1 914 seconds for the same task. This discrepancy is likely due to differences
in the generated automaton that lead to different QBF formulas and result in different solving times.

When asked to realizeϕr,rp with rp > 0, however, prioritizing around half of the available resources
incurs the greatest penalty in terms of running time. Recallthat eachFPψ in ϕr,rp is first rewritten to(p→
(pU (¬pU rel(ψ))))∧ (¬p→ (¬pU(pU rel(ψ)))) before being given toBoSy, while the traditionalFψ
operator is a shorthand for the significantly smaller formula ttU ψ . Thus, for increasingrp, the automaton
and consequently the formula given to the QBF solver becomeslarger. We noticed that determining that
no realization ofϕr,rp with some parametersn andk exists was faster for increasingrp, in particular for
r = 5 andr = 6. Hence, the search terminates earlier despite an increased number of solved QBF queries,
resulting in an overall smaller slowdown.

After having evaluated the running time of our tool against that of that of the underlying bounded
synthesis tool, we now evaluate the feasibility of our approach for the search for a strategy of a given size
realizing a formula with respect to some given bound. In other words, we are given someϕr,rp, some size

2Note that it is not possible to runBoSy onϕr,rp for rp > 0, asBoSy performs LTL synthesis, whileϕr,rp is a PROMPT–LTL
formula forrp > 0.
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Figure 2: Running times and results forϕ4,1 on the left-hand side andϕ6,2 on the right-hand side. Green
circles denote realizable parameters, while red squares denote unrealizable parameters. Yellow triangles
denote that the tool encountered a time-out after 20 minutes.

n and a boundk and want to decide whether or not a strategy of size at mostn exists that realizesϕr,rp

with respect to 2k.

In order to satisfy the requirement that every request is eventually granted, at leastr − 1 states are
required. Also, the smallest possible strategy is a round-robin strategy, which simply grants each resource
in order. This strategy realizes the formula with respect tothe boundr. These two propositions yield
upper bounds onn andk for a givenr. Hence, for eachr ∈ [1,10] and eachrp ∈ [1, r] we search for
implementations ofϕr,rp of sizen∈ [r −1,2r] and with respect to the boundk∈ [1, r] on the block-size.

We show the results forϕ4,1 andϕ6,2 in Figure 2. Green circles, red squares, and yellow triangles
denote realizable parameter combinations, unrealizable ones, and those for which our implementation
timed out after 20 minutes, respectively. Note that in the benchmark ofϕ6,2 there are four invocations
that ran longer than 20 seconds and are thus not shown in the diagram. The searches for strategies of
size 7 that realizeϕ6,2 with respect to the bounds 2 and 4, respectively, as well as the search for a strategy
of size 8 that realizesϕ6,2 with respect to the bound 2 were eventually unsuccessful after 23 seconds, 833
seconds, and 1 009 seconds, respectively. There exists, however, a strategy of size 12 that realizesϕ6,2

with respect to 2, which was found after 72 seconds.

Note that both evaluations shown in Figure 2 exhibit a tradeoff. There exist strategies that realize
ϕ6,2 with respect to the bounds 6, 4, and 2. These strategies have size 6, 8, and 12, respectively. We show
the minimal strategiesσ6,3 andσ12,1 realizingϕ6,2 with respect to the bounds 6 and 2, respectively, in
Figure 3. The strategyσ6,3 proceeds in a round-robin fashion using only 6 states whileσ12,1 grantsp1

every second step using 12 states to ensure that all requestsare eventually granted.

We also see that, in general, unsuccessful searches for a strategy with given size and bound take
longer than successful searches for larger strategies or for strategies with a larger bound. Intuitively, this
is due to the fact that the resulting QBF formula is satisfiable if, and only if, there exists a strategy with
the given parameters and that refuting all possible strategies of sizen is, in general, harder than showing
that such a strategy exists. Hence, it is of interest to to investigate the border between the realizable and
the unrealizable parameters. We do so in the next section.
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Figure 3: Two strategiesσ6,3 andσ12,1 realizingϕ6,2 with respect to the bounds 6 and 2, respectively. A

transition of the formm
i/o
−→ m′ denotes that upon readingi ∈ 2I in statem, PlayerO outputso∈ 2O and

updates her memory tom′ (cf. Subsection 2.2).

5 Trading Memory for Quality and Vice Versa

We have seen in the previous section that there exist PROMPT–LTL formulas ϕ that exhibit a tradeoff,
i.e., for somek< k′, the minimal strategy realizingϕ with respect to 2k may be larger than the minimal
strategy realizingϕ with respect to 2k′. In this section, we investigate the Pareto frontier of thistradeoff,
i.e., those positions in the search space shown in the previous section, at which it is not possible to
decrease either the size of the strategy or the bound it realizes without increasing the other value. To this
end, we define the set of realizable parametersR(ϕ)⊆N×N of ϕ such that(n,k) ∈R(ϕ) if and only if
there exists a strategyσ with |σ |= n that satisfiesϕ with respect tok. Note thatR(ϕ) is upwards-closed,
i.e., if (n,k) ∈ R(ϕ), then also(n+1,k) ∈ R(ϕ) and(n,k+1) ∈ R(ϕ).

n

k

× × × × ×

× × × ×

× × ×

× × ×

×
Pareto

positions

R(ϕ)

Figure 4: The geometrical interpretation
of R(ϕ) and the Pareto positions ofϕ .

A Pareto position of a formulaϕ is a pair of realizable
parameters(n,k) ∈ R(ϕ) such that it is not possible to real-
ize the boundk with a strategy of sizen−1, and no strategy
of sizen realizes a smaller bound thank. Formally, a pair
of realizable parameters(n,k) ∈R(ϕ) is a Pareto position if
both(n−1,k) /∈R(ϕ) and(n,k−1) /∈R(ϕ). When consid-
ering the setR(ϕ) geometrically, the Pareto positions ofϕ
are the corner points of the area defined byR(ϕ), as shown
in Figure 4.

By a simple geometrical argument over the spaceN×N

that combines Theorem 1 with the upwards-closure ofR(ϕ)
we obtain a doubly-exponential bound in|ϕ | on the number
of Pareto positions ofϕ .

Lemma 4. Let ϕ be aPROMPT–LTL formula. There exist
at mostO(22|ϕ|) Pareto positions ofϕ .

Proof. If ϕ is not realizable with respect to any boundk,
then we haveR(ϕ) = /0 and thus, the statement holds true.
Thus, assumeϕ is realizable with respect to somek. Due
to Theorem 1, we obtain thatϕ is realizable with respect to
somek′ ∈ O(22|ϕ|), which is witnessed by a strategy of sizen′ ∈ O(22|ϕ|), i.e.,(n′,k′) ∈ R(ϕ).

Clearly, there are at mostk′ Pareto positions(n,k) with k≤ k′, since otherwise, upwards-closure of
R(ϕ) would be violated. For the same reason, there are at mostn′ Pareto positions(n,k) with n ≤ n′.
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Finally, there can exist no Pareto positions(n,k) with eithern≥ n′ or k≥ k′, again due to upwards-closure
of R(ϕ). Thus, there exist at mostn′+k′ ∈ O(22|ϕ|) Pareto positions ofϕ .

Having shown that the number of Pareto positions has an upperbound, we now investigate the Pareto
frontier in general. We show that fixing one parameter yieldsexponential and doubly-exponential upper
bounds on the other parameter, respectively. For a fixedn, this upper bound onk is obtained by a
reduction to the model checking problem for PROMPT–LTL. Fora fixedk, however, we obtain the
upper bound onn by turningϕ into a parity game of doubly-exponential size and solving this game.

Lemma 5. Letϕ be aPROMPT–LTL formula.

1. Letσ be a strategy that realizesϕ with |σ |= n. Then(n,k) ∈ R(ϕ) for some k∈ O(n·2|ϕ |).

2. Letϕ be realizable w.r.t. k. Then(n,k) ∈ R(ϕ) for some n∈ O(2|ϕ |2·(2(k+1))2|ϕ|
)

Proof. 1.) Fixing a strategyσ of sizen simplifies the realizability problem to the problem of model
checking PROMPT–LTL. The upper bound ofk in the model checking problem for PLTL, which in-
cludes PROMPT–LTL, is known to be linear inn and exponential in|ϕ | [2].

2.) Given a boundk, we can translateϕ to a parity gameP of sizeO(2|ϕ |2·(2(k+1))2|ϕ|
) that is winning

for player 0 if, and only if,ϕ is realizable with boundk [19]. As a positional winning strategy for player
0 in P can be translated into a realizing strategyσ for ϕ with respect tok, with |σ | ∈ O(|P|). This
proves our upper bound on the size of a realizing strategy.

The previous two lemmas each presented upper bounds on the number of Pareto positions. These
bounds permit us to restrict the search space when looking for a realizing strategy: Instead of fixing some
n or k and checking doubly-exponentially many possibilities forthe respective other parameter, we only
need to consider exponentially many possible values for it.

We now turn our attention to the respective lower bounds, i.e., we provide a family of formulasϕb

that exhibit such a Pareto frontier. More precisely, for each ϕb, there exists a family of strategiesσb, j

such thatσb, j is of size exponential inj and realizesϕb with respect to somek that is exponential in
b− j. Each of theseσb, j is minimal for its respective bound.

Intuitively, ϕb describes a game in which PlayerO decides at the beginning how much memory she
wants to use by playing some numberj. PlayerI then plays some number in[0;2j), which PlayerO has
to repeat afterwards, thus requiring her to use exponentialmemory in j. Afterwards, PlayerI implements
a binary counter usingb− j bits. The game ends once PlayerI has counted up to 2b− j −1. Moreover,ϕb

requires that this end is reached promptly, i.e., the boundk is in O(2b− j), while every strategy realizing
ϕb with respect to that boundk has at least size 2j .

Theorem 3. For each b∈ N there exists aPROMPT–LTL formula ϕb with |ϕb| ∈ O(b) such that for
each0≤ j ≤ b, there exists an n∈ O(2 j) and a k∈ O(2b− j), such that(n,k) is a Pareto position.

Proof. We construct an LTL formulaϕb that specifies the following gameGb for a givenb with P= I ∪O,
whereI = {i,#i} andO= {o,#o}.

The game begins with PlayerO playing some number 0≤ j ≤ b in unary encoding, i.e., she playsj
times her propositiono and ends this encoding by playing #o. After this first #o, PlayerI plays the
binary encoding of some number 0≤ n < 2 j using j positions, and finishes with a #i . After PlayerI
has issued his #i , PlayerO must repeat his sequence and finish with #o. When PlayerO has finished
repeating PlayerI ’s sequence, PlayerI must implement a binary counter withb− j bits, starting with the
binary encoding of 0. Two consecutive values of the counter must be delimited by #i , and after encoding
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PlayerI

PlayerO o · · · o #o

j times

i /0 · · · i /0 #i

j positions

o /0 · · · o /0 #o

j positions

/0 · · · /0 #i

b− j positions

· · · #i i · · · i #i #i

b− j positions

/0 #o

(b− j +1) · (2b− j) positions

· · ·

· · ·

Figure 5: A play of the gameGb. Sequences of /0 are denoted by black lines for readability.

2b− j −1, PlayerI must play #i#i . During the respective other player’s turn, both players always have to
play the empty set. If either player does not conform to the rules of this game, she loses. A play of this
game is illustrated in Figure 5.

Towards a formal definition ofϕb, fix some j with 0 ≤ j ≤ b. We construct formulasϕPick
b, j , ϕ I

b, j

andϕO
b, j that encode the fact that PlayerO starts by announcing the numberj in unary encoding, and

assumptions about the behavior of both players inGb, respectively, if PlayerO starts by announcingj.
The formulaϕPick

b, j is trivial to construct in linear size inj using nestedX -operators, as it just argues

about a prefix of lengthj +1 of the resulting play. The formulaϕ I
b, j encodes the following assumptions

about the behavior of PlayerI :

1. At any time, PlayerI picks eitheri or #i , or neither, but never both,

2. PlayerI plays /0 until PlayerO plays #o for the first time,

3. immediately after the first position where PlayerO plays #o, PlayerI does not pick #i for j posi-
tions, but does pick it afterj turns,

4. after PlayerI has played #i for the first time, he plays /0 until PlayerO has played #o again,

5. immediately after PlayerO has played #o for the second time, PlayerI plays /0 forb− j turns,
followed by #i ,

6. whenever PlayerI plays #i after the first time he has done so, if theb− j positions preceding that
#i encode someℓ ∈ [0,2b− j −1) in binary using the propositioni, theb− j positions succeeding
that #i encodeℓ+1 and are followed directly by another #i , and

7. if and when PlayerI encodes 2b− j −1 at some point after he has played his first #i , this encoding
is directly followed by #i#i .

These properties can be specified using polynomial-length LTL formulas in bothb and j. In particular,
the correct behavior of the(b− j)-bit counter can be specified using a formula of polynomial size in
(b− j) using standard constructions. Thus, we obtain the formulaϕ I

b, j of polynomial size inb and j.

Similarly, the formulaϕO
b, j encodes the following guarantees that PlayerO has to ensure, if the

assumptions regarding the play of PlayerI are met:

1. At any time, PlayerO plays eithero or #o, or neither, but never both,

2. after playing #o for the first time, PlayerO only plays /0, until PlayerI plays a #i ,

3. if PlayerI has played some wordw∈ ({i}+ /0) j directly preceding his first #i , then PlayerO must
play w with everyi replaced by ano immediately after PlayerI has played his first #i , and

4. after her second #o, PlayerO exclusively plays /0.
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Again, all these properties only argue about infixes of linear size in j and can all be specified using for-
mulas of polynomial size inb and j. Hence, we obtain a formulaϕO

b, j that specifies all these guarantees,
which is again of size polynomial inb and j.

Using the formulasϕPick
b, j , ϕ I

b, j , andϕO
b, j we then defineϕb =

∨

0≤ j≤bϕPick
b, j ∧ (ϕ I

b, j → ϕO
b, j ∧FP(#i ∧

X #i)), which formally denotes the requirement that PlayerO starts by playing somej in unary encoding,
and, if PlayerI satisfies the assumptions about his behavior in this situation, then PlayerO fulfills the
requirements to her part of the play, and that PlayerI promptly plays #i#i , i.e., promptly finishes counting.

We now show that for eachj in [0;b], there exist ann ∈ O(2 j) and ak ∈ O(2b− j) such that(n,k)
is a Pareto position. To this end, fix somej with 0≤ j ≤ b. Clearly, PlayerO has a strategyσb, j with
|σb, j | ∈ O(2 j) that realizesϕ with respect to somek ∈ O(2b− j). Intuitively, PlayerO first usesj + 1
memory states as a unary counter up toj. She playso until this counter reachesj, which happens
afterO( j) steps. Once the counter has reachedj, PlayerO plays #o and stores the number encoded by
PlayerI usingO(2 j ) memory states, which again takesO( j) steps. After PlayerI has played #i , PlayerO
repeats the encoding of the number played by PlayerI , again usingO(2 j) memory states andO( j) steps.
Afterwards, PlayerO plays a single #o followed by /0 ad infinitum. PlayerI then implements a binary
counter withb− j bits and has to play #i#i after that counter has reached its maximal value. This occurs
after O((b− j) ·2b− j) steps. Hence, this strategy requiresO( j + 2 j + 2 j) = O(2 j) memory states and
realizesϕb with respect to somek∈ O(3 j +(b− j) ·2b− j) = O(2b− j).

It remains to show thatO(2 j) is a lower bound on the size of any strategy that realizes somebound
k∈ O(2b− j) and thatO(2b− j) is a lower bound on the parameterk with respect to which a strategy with
size inO(2 j) can realizeϕb. First, assume that there exists a strategyσ ′

b, j with |σ ′
b, j | ∈ o(2 j) that realizes

ϕb with respect to somek∈ O(2b− j). Then, there must exist two numbers 0≤ ℓ < ℓ′ < 2 j such thatσ ′
b, j

ends up in the same state after the two playso j#oBIN j(ℓ)#i ando j#oBIN j(ℓ
′)#i , whereBIN j(ℓ) denotes

the encoding ofℓ in binary usingj bits (encoded byi). Hence, PlayerO cannot differentiate betweenℓ
andℓ′ and does not ensure her guarantees in one of the two cases. Thus,σ ′

b, j does not realizeϕb.
Moreover, it is clear that, due to the strict structure of thegame, PlayerO cannot force the occurrence

of #i#i in o(2b− j) steps using a memory structure of sizeO(2 j ). The only way for her to force PlayerI
to play #i#i after less thanO(2b− j) steps is to play some numberj ′ > j at the beginning of the game.
Doing so, however, would give PlayerI j ′ bits to encode some number at the beginning of the second
part of the game, which in turn would require PlayerO to useO(2 j ′) memory states to store and repeat
this number, as argued before.

We observe that eachϕb has linearly many Pareto positions inb, where the extremal values inR(ϕb)
are(n,k) for n∈ O(1), k ∈ O(2b) and(n′,k′) for n′ ∈ O(2b) andk′ ∈ O(b). In order to show that the
distance betweenn andk may even become doubly-exponential, we move from the continuous tradeoff
exhibited by the previous theorem to a discrete tradeoff, i.e., for eachb we provide a formulaϕb such
that there are two ways to realizeϕb; Either, PlayerO realizes this formula with respect to some con-
stant bound, but requires doubly-exponential memory to do so, or she realizes it with respect to some
exponential bound, but can do so by using only constant memory.

These bounds are obtained by letting PlayerO choose between one of two games, in which PlayerI
has to implement either a doubly- or singly-exponentially bounded counter. In the former case, this
realization is formalized by an LTL formula, hence the specification is trivially realized with respect
to k = 0. PlayerO does, however, require doubly-exponential memory to denote errors in PlayerI ’s
implementation of the counter [16]. In the latter case, Player O does not require any memory, but the
specification requires that PlayerI finishes counting promptly. Hence, the specification is onlyfulfilled
with respect to an exponential bound.
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Theorem 4. For each b∈ N there exists aPROMPT–LTL formulaϕb with |ϕb| ∈ O(b) such that there
exist n∈ O(22b

), n′ ∈ O(1), and k′ ∈ O(2b), such that both(n,0) and(n′,k′) are Pareto positions ofϕb.

Proof. Let b∈ N. We give a realizable PROMPT–LTL formulaϕb that exhibits the stated tradeoff. Let
ψ be a realizable LTL formula with|ψ | ∈ O(b) where each strategy realizingψ has at least doubly-
exponentially many states inb. Let ψ ′ be a PROMPT–LTL formula with|ψ ′| ∈ O(b) that is realizable
with respect tok ∈ O(2|ψ

′|) and constant strategy size. We constructϕ to be(o→ X ψ)∧ (¬o→ X ψ ′)
whereo is a fresh atomic proposition controlled by PlayerO. PlayerO decides in the first step whether
she wants to satisfy the LTL formulaψ or the PROMPT–LTL formulaψ ′. Givenψ andψ ′, it is trivial
to verify that the stated properties hold.

It remains to show that such formulasψ and ψ ′ exist. It is known that a LTL formulaψ with
the required properties exists [16]. Intuitively,ψ requires PlayerI to implement a binary counter with
exponentially many bits inb, which counts up to 22

b
. The task of PlayerO is to mark errors in PlayerI ’s

implementation of the counter, for which she requires doubly-exponential memory inb.

The PROMPT–LTL formulaψ ′ requires PlayerI to implement a binary counter, similarly to the
latter phase of the gameGb constructed in the proof of Theorem 3. After PlayerI has counted up to 2b,
he plays some delimiter #. Then the formulaψ ′ is of the formψcount→ FP#, whereψcount specifies the
assumption that PlayerI implements the binary counter correctly and finishes with a #. Clearly, PlayerO
can realize this formula with a strategy of size one, but she cannot enforce a realization with respect to
some boundk∈ o(2b).

6 Conclusion

In this work, we presented an approximation algorithm for the PROMPT–LTL realizability problem
with doubly-exponential running time with an approximation factor of two. This is an exponential im-
provement over the fastest known exact algorithms. The algorithm relies on repeated calls to an LTL
realizability solver. We have implemented the algorithm using BoSy as LTL realizability solver, which
implements the bounded synthesis approach. In our proof-of-concept experiments, a tradeoff between
the size and the quality of a strategy becomes apparent, which we investigated: we proved upper bounds
on the tradeoff, which reduces the search space of our algorithm, and proved matching lower bounds.

Although we presented our results only for PROMPT–LTL, theyalso hold for the more expressive
logics PLTL [2] and PLDL [7], as they can be compiled into Büchi automata of exponential size and as
the alternating color technique is applicable to them as well.

There are several open problems to consider in future work. Most importantly, the computational
complexity of the exact optimization problem is still open.Similarly, the exact memory requirements of
optimal strategies are open: triply-exponential memory isalways sufficient [19], but it is open whether
doubly-exponential memory suffices as well, as it does for LTL specifications. Other open problems
relate to the tradeoffs: we have studied the tradeoff between size and quality of strategies. One can also
consider tradeoffs between different parameters in PLTL and PLDL formulas or take the running time
into account as well. The former problem is tightly related to the study of the solution space, i.e., the
space of the realizable parameter valuations (see [2] for results on the model checking).
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