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Abstract. We continue the investigation of parameterized extensions
of Linear Temporal Logic (LTL) that retain the attractive algorith-
mic properties of LTL: a polynomial space model checking algorithm
and a doubly-exponential time algorithm for solving games. Alur et al.
and Kupferman et al. showed that this is the case for Parametric LTL
(PLTL) and PROMPT-LTL respectively, which have temporal operators
equipped with variables that bound their scope in time. Later, this was
also shown to be true for Parametric LDL (PLDL), which extends PLTL
to be able to express all ω-regular properties.
Here, we generalize PLTL to systems with costs, i.e., we do not bound
the scope of operators in time, but bound the scope in terms of the
cost accumulated during time. Again, we show that model checking and
solving games for specifications in PLTL with costs is not harder than
the corresponding problems for LTL. Finally, we discuss PLDL with costs
and extensions to multiple cost functions.

1 Introduction

Parameterized linear temporal logics address a serious shortcoming of Linear-
temporal Logic (LTL) [26]: LTL is not able to express timing constraints, e.g.,
while G(q → Fp) expresses that every request q is eventually answered by a
response p, the waiting time between requests and responses might diverge. This
is typically not the desired behavior, but cannot be ruled out by LTL.

To overcome this shortcoming, parameterized LTL (PLTL) [1] was introduced
by Alur et al., which extends LTL with parameterized operators of the form F≤x

and G≤y, where x and y are variables. The formula G(q → F≤xp) expresses
that every request q is answered by p within an arbitrary, but fixed number
of steps α(x). Here, α is a variable valuation, a mapping of variables to natural
numbers. Typically, one is interested in whether a PLTL formula is satisfied with
respect to some variable valuation. For example, the model checking problem
asks whether a given transition system satisfies a given PLTL specification ϕ
with respect to some α, i.e., whether every path satisfies ϕ with respect to α.
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Similarly, solving infinite games amounts to determining whether there is an α
such that Player 0 has a strategy such that every play that is consistent with the
strategy satisfies the winning condition with respect to α. Alur et al. showed that
the PLTL model checking problem is PSpace-complete. Kupferman et al. later
considered PROMPT–LTL [23], which can be seen as the fragment of PLTL
without the parameterized always operator, and showed that PROMPT–LTL
model checking is still PSpace-complete and that PROMPT–LTL realizability,
an abstract notion of infinite game, is 2ExpTime-complete. While the results of
Alur et al. relied on involved pumping arguments, the results of Kupferman et
al. where all based on the so-called alternating-color technique, which basically
allows to reduce PROMPT–LTL to LTL. Furthermore, the result on realizability
was extended to infinite games on graphs [38], again using the alternating-color
technique.

Another serious shortcoming of LTL (and its parameterized variants) is their
expressiveness: LTL is equi-expressive to first-order logic with order [22] and
thus not as expressive as ω-regular expressions. This shortcoming was addressed
by a long line of temporal logics [18, 24, 34, 35, 37] with regular expressions, finite
automata, or grammar operators to obtain the full expressivity of the ω-regular
languages. One of these logics is Linear Dynamic Logic (LDL), which has tem-
poral operators 〈r〉 and [r ] , where r is a regular expression. For example, the
formula [r0 ] (q → 〈r1〉 p) holds in a word w, if for every request q at a position n
such that w0 · · ·wn−1 matches r0, there is a position n′ ≥ n such that p holds at
n′ and wn · · ·wn′−1 matches r1. Intuitively, the diamond operator corresponds to
the eventually operator of LTL, but is guarded by a regular expression. Dually,
the box operator is a guarded always. Although LDL is more expressive than
LTL, its algorithmic properties are similar: model checking is PSpace-complete
and solving games is 2ExpTime-complete [34].

There are temporal logics whose expressiveness goes even beyond the ω-
regular languages to capture properties of recursive programs, which are typically
ω-contextfree. The visibly ω-contextfree languages [2] are an important class of
languages located between the ω-regular ones and the ω-contextfree ones that
enjoy desirable closure properties, which make it suitable to be employed in ver-
ification. Temporal logics that capture this class are visibly LTL [10], the fixed-
point logic V P -µTL [9], and visibly LDL (VLDL) [36]. The logic visibly LTL
enhances LTL with visibly rational expressions [11], and V P -µTL extends the
linear-time µ-calculus [33] with non-local modalities. Finally, VLDL has the
same temporal operators as LDL, but allows to use visibly pushdown automata
instead of regular expressions as guards. For all these logics, model checking
is ExpTime-complete, i.e., (under standard complexity theoretic assumptions)
harder than the model checking problem for LTL. Furthermore, solving games
with VLDL winning conditions is 3ExpTime-complete, again harder than solv-
ing LTL games. Thus, going beyond the ω-regular languages does increase the
complexity of these problems at last.

All these logics tackle one shortcoming of LTL, but not both simultaneously.
This was achieved for the first time by adding parameterized operators to LDL.



The logic, called parameterized LDL (PLDL), has additional operators 〈r〉≤x

and [r ]≤y with the expected semantics: the variables bound the scope of the
operator. And even for this logic, which has parameters and is more expres-
sive than LTL, model checking is still PSpace-complete and solving games is
2ExpTime-complete [19]. Again, these problems were solved by an application
of the alternating-color technique. One has to overcome some technicalities, but
the general proof technique is the same as for PROMPT–LTL.

The decision problems for the parameterized logics mentioned above are
boundedness problems, e.g., one asks for an upper bound on the waiting times
between requests and responses in case of the formula G(q → F≤xp). Recently,
more general boundedness problems in logics and automata received a lot of
attention to obtain decidable quantitative extensions of monadic second-order
logic and better synthesis algorithms. In general, boundedness problems are un-
decidable for automata with counters, but become decidable if the acceptance
conditions can refer to boundedness properties of the counters, but the transi-
tion relation has no access to counter values. Recent advances include logics and
automata with bounds [4, 7], satisfiability algorithms for these logics [5, 6, 8, 32],
and regular cost-functions [17]. However, these formalisms, while very expres-
sive, are intractable and thus not suitable for verification and synthesis. Thus,
less expressive formalisms were studied that appear more suitable for practical
applications, e.g., finitary parity [15], parity with costs [21], energy-parity [14],
mean-payoff-parity [16], consumption games [12], and the use of weighted au-
tomata for specifying quantitative properties [3, 13]. In particular, the parity
condition with cost is defined in graphs whose edges are weighted by natural
numbers (interpreted as costs) and requires the existence of a bound b such that
almost every occurrence of an odd color is followed by an occurrence of a larger
even color such that the cost between these positions is at most b. Although
strictly stronger than the classical parity condition, solving parity games with
costs is as hard as solving parity games [21, 25].

We investigate parameterized temporal logics in a weighted setting similar
to the one of parity conditions with costs: our graphs are equipped with cost
functions that label the edges with natural numbers and parameterized operators
are now evaluated with respect to cost instead of time, i.e., the parameters bound
the accumulated cost instead of the elapsed time. Thus, the formula G(q →
F≤xp) requires that every request q is answered with cost at most α(x). We
show the following results about PLTL with costs (cPLTL):

First, we refine the alternating-color technique to the cost-setting, which
requires to tackle some technical problems induced by the fact that accumulated
cost, unlike time, does not increase in every step, e.g., if an edge with cost zero
is traversed. In particular, infinite paths with finite cost have to be taken care
of appropriately.

Second, we show that Kupferman et al.’s proofs based on the alternating-
color technique can be adapted to the cost-setting as well. For model checking,
we again obtain PSpace-completeness while solving games is still 2ExpTime-
complete.



Third, we consider PLDL with costs (cPLDL), which is defined as expected:
the diamond and the box operator may be equipped with parameters bounding
their scope. Again, the complexity does not increase: model checking is PSpace-
complete while solving games is 2ExpTime-complete.

Fourth, we generalize both logics to a setting with multiple cost functions.
Now, the parameterized temporal operators have another parameter that deter-
mines the cost function under which they are evaluated. Even these extensions
do not increase complexity: model checking is again PSpace-complete while
solving games is still 2ExpTime-complete.

Fifth, we also study the optimization variant of the model checking and the
game problem for these logics: here, one is interested in finding the optimal
variable valuation for which a given transition system satisfies the specification.
For example, for the request-response condition one is interested in minimizing
the waiting times between requests and responses. For cPLTL and cPLDL, we
show that the model checking optimization problem can be solved in polynomial
space while the optimization problem for infinite games can be solved in triply-
exponential time. These results are similar to the ones obtained for PLTL [1,
38]. In particular, the exponential gap between the decision and the optimization
variant of solving infinite games exists already for PLTL. Whether this gap can
be closed is an open problem. A first step towards this direction was made by
giving an approximation algorithm for this problem with doubly-exponential
running time [31].

The paper is structured as follows: in Section 2, we introduce cPLTL and
discuss basic properties. Then, in Section 3, we extend the alternating-color
technique to the setting with costs, which we apply in Section 4 to the model
checking problem and in Section 5 to solve infinite games. In Section 6, we extend
these results to cPLDL and, in Section 7, to multiple cost functions. Finally,
in Section 8, we investigate model checking and game-solving as optimization
problems.

2 Parametric LTL with Costs

Let V be an infinite set of variables and let P be a set of atomic propositions.
The formulas of cPLTL are given by the grammar

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | F≤zϕ | G≤zϕ,

where p ∈ P and z ∈ V. We use the derived operators tt := p∨¬p and ff := p∧¬p
for some fixed p ∈ P , Fϕ := ttUϕ, andGϕ := ffRϕ. Furthermore, we use p → ϕ
and ¬p → ϕ as shorthand for ¬p∨ϕ and p∨ϕ, respectively. Additional derived
operators are introduced on page 6.

The set of subformulas of a cPLTL formula ϕ is denoted by cl(ϕ) and we
define the size of ϕ to be the cardinality of cl(ϕ). Furthermore, we define

varF(ϕ) = {z ∈ V | F≤zψ ∈ cl(ϕ)}



to be the set of variables parameterizing eventually operators in ϕ, and

varG(ϕ) = {z ∈ V | G≤zψ ∈ cl(ϕ)}

to be the set of variables parameterizing always operators in ϕ. Finally, var(ϕ) =
varF(ϕ) ∪ varG(ϕ) denotes the set of all variables appearing in ϕ.

cPLTL is evaluated on so-called cost-traces (traces for short) of the form

w = w0 c0 w1 c1 w2 c2 · · · ∈

2P · N

ω
,

which encode the evolution of the system in terms of the atomic propositions
that hold true in each time instance, and in terms of the cost of changing the
system state. The cost of the trace w is defined as cst(w) =


j≥0 cj , which might

be infinite. A finite cost-trace is required to begin and end with an element of
2P . The cost cst(w) of a finite cost-trace w = w0c0w1c1 · · · cn−1wn is defined as

cst(w) =
n−1

j=0 cj .
Furthermore, we require the existence of a distinguished atomic proposition κ

such that all cost-traces satisfy cj > 0 if, and only if,κ ∈ wj+1, i.e., κ indicates
that the last step had non-zero cost. We use the proposition κ to reason about
costs: for example, we are able to express whether a trace has cost zero and
whether a trace has cost ∞. In the following, we will ensure that all our systems
only allow traces that satisfy this assumption.

Also, to evaluate formulas we need to instantiate the variables parameterizing
the temporal operators. To this end, we define a variable valuation to be a
mapping α : V → N. Now, we can define the model relation between a cost-
trace w = w0 c0 w1 c1 w2 c2 · · · , a position n of w, a variable valuation α, and
a cPLTL formula as follows:

– (w, n,α) |= p if, and only if, p ∈ wn,
– (w, n,α) |= ¬p if, and only if, p /∈ wn,
– (w, n,α) |= ϕ ∧ ψ if and only if (w, n,α) |= ϕ and (w, n,α) |= ψ,
– (w, n,α) |= ϕ ∨ ψ if and only if (w, n,α) |= ϕ or (w, n,α) |= ψ,
– (w, n,α) |= Xϕ if, and only if, (w, n+ 1,α) |= ϕ,
– (w, n,α) |= ϕUψ if, and only if,there exists a j ≥ 0 such that (w, n+j,α) |= ψ

and (w, n+ k,α) |= ϕ for every k in the range 0 ≤ k < j,
– (w, n,α) |= ϕRψ if, and only if, for every j ≥ 0: either (w, n+ j,α) |= ψ or

there exists a k in the range 0 ≤ k < j such that (w, n+ k,α) |= ϕ,
– (w, n,α) |= F≤zϕ if, and only if,there exists a j ≥ 0 with

cst(wncn · · · cn+j−1wn+j) ≤ α(z) such that (w, n+ j,α) |= ϕ, and
– (w, n,α) |= G≤zϕ if, and only if,for every j ≥ 0 with

cst(wncn · · · cn+j−1wn+j) ≤ α(z): (w, n+ j,α) |= ϕ.

Note that we recover the semantics of PLTL as the special case where every cn
is equal to one.

For the sake of brevity, we write (w,α) |= ϕ instead of (w, 0,α) |= ϕ and say
that w is a model of ϕ with respect to α. For variable-free formulas, we even
drop the α and write w |= ϕ.



As usual for parameterized temporal logics, the use of variables has to be
restricted: bounding eventually and always operators by the same variable leads
to an undecidable satisfiability problem [1].

Definition 1. A cPLTL formula ϕ is well-formed, if varF(ϕ) ∩ varG(ϕ) = ∅.

In the following, we only consider well-formed formulas and omit the quali-
fier “well-formed”. Also, we will denote variables in varF(ϕ) by x and variables
in varG(ϕ) by y, if the formula ϕ is clear from context.

We consider the following fragments of cPLTL. Let ϕ be a cPLTL formula:

– ϕ is an LTL formula, if var(ϕ) = ∅.
– ϕ is a cPLTLF formula, if varG(ϕ) = ∅.
– ϕ is a cPLTLG formula, if varF(ϕ) = ∅.

Every LTL, cPLTLF, and every cPLTLG formula is well-formed by definition.

Example 1.

1. The formula G(q → F≤xp) is satisfied with respect to α, if every request (a
position where q holds) is followed by a response (a position where p holds)
such that the cost of the infix between the request and the response is at
most α(x).

2. The (max-) parity condition with costs [21] can be expressed1 in cPLTL via

FG


c∈{1,3,...,d−1}


c → F≤x


c′∈{c+1,c+3,...,d}

c′


,

where d is the maximal color, which we assume w.l.o.g. to be even.
However, the Streett condition with costs [21] cannot be expressed in cPLTL,
as it is defined with respect to multiple cost functions, one for each Streett
pair. We extend cPLTL to multiple cost functions in Section 7.

As for PLTL, one can also parameterize the until and the release operator and
consider bounds of the form “>z”. However, this does not increase expressiveness
of the logic. Formally, we define

– (w, n,α) |= ϕU≤zψ if, and only if,there exists a j ≥ 0 with
cst(wncn · · · cn+j−1wn+j) ≤ α(z) such that (w, n + j,α) |= ψ and (w, n +
k,α) |= ϕ for every k in the range 0 ≤ k < j,

– (w, n,α) |= ϕR≤zψ if, and only if,for every j ≥ 0 with
cst(wncn · · · cn+j−1wn+j) ≤ α(z): (w, n+ j,α) |= ψ or there exists a k in the
range 0 ≤ k < j such that (w, n+ k,α) |= ϕ,

– (w, n,α) |= F>zϕ if, and only if,there exists a j ≥ 0 with
cst(wncn · · · cn+j−1wn+j) > α(z) such that (w, n+ j,α) |= ϕ, and

1 Note that the bound in the parity condition with costs may depend on the trace while
one typically uses global bounds for cPLTL (see, e.g., Section 4 and Section 5).
However, for games in finite arenas (and thus also for model checking) these two
variants coincide [21].



– (w, n,α) |= G>zϕ if, and only if,for every j ≥ 0 with
cst(wncn · · · cn+j−1wn+j) > α(z) satisfies (w, n+ j,α) |= ϕ.

– (w, n,α) |= ϕU>zψ if, and only if,there exists a j ≥ 0 with
cst(wncn · · · cn+j−1wn+j) > α(z) such that (w, n + j,α) |= ψ and (w, n +
k,α) |= ϕ for every k in the range 0 ≤ k < j, and

– (w, n,α) |= ϕR>zψ if, and only if,for every j ≥ 0 with
cst(wncn · · · cn+j−1wn+j) > α(z): (w, n+ j,α) |= ψ or there exists a k in the
range 0 ≤ k < j such that (w, n+ k,α) |= ϕ.

Let ϕ ≡ ψ denote equivalence of the formulas ϕ and ψ, i.e., for every w, every n,
and every α, we have (w, n,α) |= ϕ if, and only if,(w, n,α) |= ψ. Then, we have
the following equivalences (which also restrict the use of variables as defined in
Definition 1):

– ϕU≤xψ ≡ ϕUψ ∧ F≤xψ
– ϕR≤yψ ≡ ϕRψ ∨G≤yψ
– F>yϕ ≡ G≤yFX(κ ∧ Fϕ)

– G>xϕ ≡ F≤xGX(¬κ ∨Gϕ)
– ϕU>yψ ≡ G≤y(ϕ ∧ FX(κ ∧ ϕUψ))
– ϕR>xψ ≡ F≤x(ϕ∨GX(¬κ∨ϕRψ))

Before we begin proving some useful lemmas about cPLTL we first show
that the new logic is indeed more expressive than PLTL. Here, we use |=PLTL

to denote the model relation for PLTL, which is obtained by assigning cost one
to every edge, i.e., the scope of the parameterized operators is bounded in the
length of infixes. To simplify notion, let π(w0 c0 w1 c1 w2 c2 · · · ) = w0w1w2 · · ·
denote the projection of a cost-trace to a trace in (2P )ω.

Lemma 1. Let ϕ = F≤xp. There is no PLTL formula ϕ′ such that for every
variable valuation α there is an α′ such that the following holds for every cost-
trace w and every position n: (w, n,α) |= ϕ if, and only if, (π(w), n,α′) |=PLTL

ϕ′.

Proof. We exploit the fact that ϕ′ has no access to the magnitude of the costs cn,
only to their signs via the proposition κ.

Towards a contradiction, assume there is such a ϕ′, let α be a variable valu-
ation and let α′ be the corresponding valuation such that (w, n,α) |= ϕ if, and
only if, (π(w), n,α′) |=PLTL ϕ′ for every cost-trace w and every n. Let

w0 = ∅ (α(x) + 1) {p} 0 ( ∅ 0 )ω,

i.e., p holds with cost α(x) + 1 for the first time, and let

w1 = ∅α(x) {p} 0 ( ∅ 0 )ω,

i.e., p holds with cost α(x) for the first time. Thus, (w0, 0,α) ∕|= ϕ and (w1, 0,α) |=
ϕ. However, we have π(w0) = π(w1), i.e., either both of the projections satisfy
ϕ′ with respect to α′ or both do not. This yields the desired contradiction. ⊓⊔

Note that ϕ′ in Lemma 1 may not depend on α. If it could, then we could
hardcode α into ϕ, provided there are propositions reflecting the exact costs



incurred along an edge. Thus, the current statement of Lemma 1 is the most
general variant.

Note that we defined cPLTL formulas to be in negation normal form. Nev-
ertheless, a negation can be pushed to the atomic propositions using the duality
of the operators. Thus, we can define the negation of a cPLTL formula.

Lemma 2. For every cPLTL formula ϕ there exists an efficiently constructible
cPLTL formula ¬ϕ s.t.

1. (w, n,α) |= ϕ if, and only if,(w, n,α) ∕|= ¬ϕ for every w, every n, and every
α,

2. |¬ϕ| = |ϕ|.
3. If ϕ is well-formed, then so is ¬ϕ.
4. If ϕ is an LTL formula, then so is ¬ϕ.
5. If ϕ is a cPLTLF formula, then ¬ϕ is a cPLTLG formula and vice versa.

Proof. We construct ¬ϕ by induction over the construction of ϕ using the dual-
ities of the operators:

– ¬(p) = ¬p
– ¬(ϕ ∧ ψ) = (¬ϕ) ∨ (¬ψ)
– ¬(ϕUψ) = ¬ϕR¬ψ
– ¬(F≤xϕ) = G≤x¬ϕ

– ¬(¬p) = p
– ¬(ϕ ∨ ψ) = (¬ϕ) ∧ (¬ψ)
– ¬(ϕRψ) = ¬ϕU¬ψ
– ¬(G≤yϕ) = F≤y¬ϕ

The latter four claims of Lemma 2 follow from the definition of ¬ϕ while the
first one can be shown by a straightforward induction over ϕ’s construction. ⊓⊔

Another important property of parameterized logics is monotonicity: increas-
ing (decreasing) the values for parameterized eventually operators (parameter-
ized always operators) preserves satisfaction.

Lemma 3. Let ϕ be a cPLTL formula and let α and β be variable valuations
satisfying α(x) ≤ β(x) for every x ∈ varF(ϕ) and α(y) ≥ β(y) for every y ∈
varG(ϕ). If (w,α) |= ϕ, then (w,β) |= ϕ.

Especially, if we are interested in checking whether a formula is satisfied with
respect to some α, we can always recursively replace every subformula G≤yψ
by ψ ∨ X(¬κU(¬κ ∧ ψ)), as this is equivalent to G≤yψ with respect to every
variable valuation mapping y to zero, which is the smallest possible value for y.
Note that we have to ignore the current truth value of κ, as it indicates the cost
of the last transition, not the cost of the next one.

3 The Alternating-Color Technique for Costs

In the following, we investigate model checking and infinite games for cPLTL
and present algorithms solving these problems. The tool of choice to solve these
problems for parameterized temporal logics is the so-called alternating-color



technique. It was originally introduced for PROMPT–LTL by Kupferman et
al. [23], but has been shown to be applicable to extensions as well [19, 38].

In this section, we introduce the alternating-color technique and extend it
again, this time to a setting with costs. To apply the technique, one introduces a
fresh proposition and interprets its truth values as colors. Then, a changepoint is
a position where the color differs from the one at the previous position. Now, one
replaces every parameterized eventually operator F≤xψ by an LTL formula ϕ
requiring ψ to be satisfied within at most one changepoint. Thus, if the dis-
tance between changepoints is bounded by k ∈ N and ϕ is satisfied, then the
parameterized eventually is satisfied with respect to α(x) = 2k, as every longer
infix contains at least two changepoints. Conversely, if F≤xψ is satisfied with
respect to α(x) and if the distance between changepoints is always at least α(x),
then ϕ is satisfied as well, as there is at most one changepoint in every infix of
length α(x).

Thus, one can inductively replace parameterized eventually operators by LTL
formulas that are equivalent on all traces where the distance between change-
points is bounded from above and from below. These bounds arise from proper-
ties of the problem we consider. In particular, in model-checking one always has
an ultimately periodic error trace, if an LTL formula does not hold. By requiring
that the color changes infinitely often (an LTL-definable property) one obtains
an ultimately periodic error trace with the desired bounds on the distance. A
similar argument works for infinite games, too. Here, one relies on the exis-
tence of finite-state winning strategies, which again bound the distance between
changepoints.

Here, we extend the alternating-color technique to the setting with costs.
The main technical difficulty we have to overcome are cost-traces of finite cost,
i.e., those that have a suffix of cost zero. On these, the parameterized eventually
operator degenerates to a classical eventually operator.

Fix a fresh atomic proposition p /∈ P . We say that a cost-trace

w′ = w′
0c

′
0w

′
1c

′
1w

′
2c

′
2 · · · ∈


2P∪{p} · N

ω

is a coloring of a cost trace

w = w0c0w1c1w2c2 · · · ∈

2P · N

ω
,

if w′
n ∩ P = wn and c′n = cn for every n, i.e., w′ and w only differ in the truth

values of the new proposition p. A position n is a changepoint of w′, if n = 0 or if
the truth value of p in w′

n−1 and w′
n differs. A block of w′ is an infix w′

nc
′
n · · ·w′

n+j

of w′ such that n and n + j + 1 are successive changepoints. If a coloring has
only finitely many changepoints, then we refer to its suffix starting at the last
changepoint as its tail, i.e., the coloring is the concatenation of a finite number
of blocks and its tail.

Let k ∈ N. We say that w′ is k-bounded if every block and its tail (if it has
one) has cost at most k. Dually, we say that w′ is k-spaced, if every block has
cost at least k. Note that we do not have a requirement on the cost of the tail
in this case.



Given a cPLTLF formula ϕ, let rel(ϕ) denote the LTL formula obtained from
ϕ by recursively replacing every subformula F≤xψ by

(p → pU(¬pUrel(ψ))) ∧ (¬p → ¬pU(pUrel(ψ))).

Intuitively, the relativized formula requires rel(ψ) to be satisfied within at most
one changepoint. On bounded and spaced colorings, ϕ and rel(ϕ) are “equiva-
lent”.

Lemma 4 (cp. Lemma 2.1 of [23]). Let w be a cost-trace and let ϕ be a
cPLTLF formula.

1. Let (w,α) |= ϕ for some variable valuation α. Then, w′ |= rel(ϕ) for every
(k + 1)-spaced coloring w′ of w, where k = maxx∈var(ϕ) α(x).

2. Let w′ |= rel(ϕ) for some k-bounded coloring w′ of w. Then, (w,α) |= ϕ,
where α(x) = 2k for every x.

Proof. Note that w and its colorings coincide on their cost. Hence, when speaking
about the cost of an infix or suffix, we do not have to specify whether we refer
to w or to a coloring of w.

1.) Fix a (k + 1)-spaced coloring w′ of w, where k = maxx∈var(ϕ) α(x). We
show that (w, n,α) |= ϕ implies (w′, n) |= rel(ϕ) by induction over the construc-
tion of ϕ.

The only non-trivial case is the one of a parameterized eventually: thus,
assume (w, n,α) |= F≤xψ, i.e., there is a j with cst(wncn · · · cn+j−1wn+j) ≤ α(x)
and (w, n + j,α) |= ψ. By induction hypothesis, we have (w′, n + j) |= rel(ψ).
As w′ is (k + 1)-spaced, i.e., the cost of each block is at least k + 1, there is at
most one changepoint between (and including) the positions n and n+ j − 1 in
w′. Hence, (w′, n) |= pU(¬pUrel(ψ))), if p ∈ w′

n, and (w′, n) |= ¬pU(pUrel(ψ)))
otherwise. Thus, (w′, n) |= rel(F≤xψ).

2.) Dually, fix a k-bounded coloring w′ of w and define the variable valu-
ation α with α(x) = 2k for every x. We show that (w′, n) |= rel(ϕ) implies
(w, n,α) |= ϕ by induction over the construction of ϕ.

Again, the only non-trivial case is the one of a parameterized eventually:
thus, let (w′, n) |= rel(F≤xψ). We assume (w′, n) |= p (the other case is dual).
Then, we have (w′, n) |= pU(¬pUrel(ψ)), i.e., rel(ψ) is satisfied at some posi-
tion n+j such that there is at most one changepoint between (and including) the
positions n and n+ j− 1 in w′. As w′ is k-bounded, this implies that the cost of
the infix wncn · · ·wn+j is bounded by 2k. Furthermore, applying the induction
hypothesis yields (w, n+ j,α) |= ψ. Hence, (w, n,α) |= F≤xψ. ⊓⊔

4 Model Checking

In this section, we solve the model checking problem for cPLTL via an appli-
cation of the alternating-color technique. Our approach is similar to the one of
Kupferman et al. for PROMPT–LTL model checking [23], but we have to over-
come some technical difficulties arising from cost-traces of cost zero. To this end,



we ensure that the parameterized eventually operators are treated as classical
eventually operators on tails of cost-traces of cost zero.

A transition system S is a tuple S = (S, sI , E, ℓ, cst) consisting of a finite
directed graph (S,E), an initial state sI ∈ S, a labeling function ℓ : S → 2P ,
and a cost function cst : E → N. We encode the weights in binary, although
the algorithms we present in this section and their running times and space
requirements are oblivious to the exact weights. Furthermore, we assume that
every state has at least one successor to spare us from dealing with finite paths.
Recall our requirement on cost-traces having a distinguished atomic property κ
indicating the sign of the cost of the previous transition. Thus, we require S
to satisfy the following property: if κ ∈ ℓ(v′), then cst(v, v′) > 0 for every
edge (v, v′) ∈ E leading to v′. Dually, if κ /∈ ℓ(v′), then cst(v, v′) = 0 for every
edge (v, v′) ∈ E.

A path through S is a sequence π = s0s1s2 · · · with s0 = sI and (sn, sn+1) ∈
E for every n. Its cost-trace tr(π) is defined as

tr(π) = ℓ(s0)cst(s0, s1)ℓ(s1)cst(s1, s2)ℓ(s2)cst(s2, s3) · · · ,

which satisfies our assumption on the proposition κ.
The transition system S satisfies a cPLTL formula ϕ with respect to a variable

valuation α, if the trace of every path through S satisfies ϕ with respect to α.
The cPLTL model checking problem asks, given a transition system S and a
cPLTL formula ϕ, whether S satisfies ϕ with respect to some α.

Theorem 1. The cPLTL model checking problem is PSpace-complete.

We begin by showing PSpace-membership. First note that we can restrict
ourselves to cPLTLF formulas: given a cPLTL formula ϕ, let ϕ′ denote the for-
mula obtained by recursively replacing every subformulaG≤yψ by ψ∨X(¬κU(¬κ∧
ψ)). Due to Lemma 3 and the discussion below it, every transition system S sat-
isfies ϕ with respect to some α if, and only if,S satisfies ϕ′ with respect to
some α′.

Next, we show how to apply the alternating-color: recall that the classical
algorithm for LTL model checking searches for a fair path, i.e., one that visits
infinitely many accepting states, in the product of S with a Büchi automaton
recognizing the models of the negated specification. If such a path exists, then S
does not satisfy the specification, as the fair path contains a path π through S
and an accepting run of the automaton on its trace, i.e., the trace does not satisfy
the specification. If there is no such fair path, then S satisfies the specification.

For cPLTL we have to find such a path for every α in order to show that
S does not satisfy the specification with respect to any α. To this end, one
relativizes the cPLTLF specification as described in Section 3 and builds an
automaton for the negation of the relativized formula in conjunction with a
formula that ensures that every ultimately periodic model is both k-bounded
and k′-spaced for some appropriate k and k′. Then, we search for a pumpable
fair path in the product of the system and the Büchi automaton recognizing the
models of the negated specification, which is non-deterministically labeled by p.



Applying Lemma 4 and pumping a fair path through the product appropriately
yields a counterexample for every α. Thus, model checking is reduced to finding
a pumpable fair path. Let us stress again that this algorithm is similar to the one
for PROMPT–LTL, we just have to pay attention to some intricacies stemming
from the fact that we want to bound the cost, not the waiting time: there might
be paths with finite cost, which have to be dealt with appropriately.

Recall that p is the distinguished atomic proposition used to relativize cPLTL
formulas. A colored Büchi graph with costs (V, vI , E, ℓ, cst, F ) consists of a finite
direct graph (V,E), an initial vertex vI , a labeling function ℓ : V → 2{p}, a cost
function cst : E → N, and a set F ⊆ V of accepting vertices. A path v0v1v2 · · ·
is pumpable, if each of its blocks induced by p contains a vertex repetition such
that the cycle formed by the repetition has non-zero cost2. Note that we do not
have a requirement on the cost of the tail, if the path has one. The path is fair,
if it visits F infinitely often. The pumpable non-emptiness problem asks, given
a colored Büchi graph with costs, whether it has an initial pumpable fair path.

Lemma 5. If a colored Büchi graph with costs has an initial pumpable fair path,
then also one of the form π0π

ω
1 with |π0π1| ∈ O(n2), where n is the number of

vertices of the graph.

Proof. Let π be an arbitrary initial pumpable fair path. First, assume it has
only finitely many changepoints. If there are two blocks that start with the same
vertex, then we can remove all blocks in between and obtain another initial
pumpable fair path. Thus, we can assume that π has at most n blocks. Fur-
thermore, the length of each block can be bounded by O(n) by removing cycles
while retaining the state repetition with non-zero cost and at least one accepting
vertex (provided the block has one). Now, consider the tail: by removing infixes
one can find a cycle of length at most n containing an accepting vertex and a
path of length at most n leading from the last changepoint to a vertex on the
cycle. Hence, we define π0 to be the prefix containing all blocks and the path
leading to the cycle and define π1 to be the cycle. Then, we have |π0π1| ∈ O(n2)
and π0π

ω
1 is an initial pumpable fair path.

On the other hand, if π contains infinitely many changepoints, then we can
remove blocks and shorten other blocks as described above until we have con-
structed a prefix π0π1 such that π0π

ω
1 has the desired properties. In this case,

we can assume that the first position of π1 is a changepoint by “rotating” π1

appropriately and appending a suitable prefix of it to π0. ⊓⊔

Let S = (S, sI , E, ℓ, cst) be a transition system and let ϕ be a cPLTLF

formula. Furthermore, consider the LTL formula

χ = (GFp ∧GF¬p) ↔ GFκ,

which is satisfied by a cost-trace, if the trace has infinitely many changepoints
if, and only if,3 it has cost ∞. Now, let A = (Q, 2P∪{p}, qI , δ, F ) be a non-

2 Note that our definition is more involved than the one of Kupferman et al., since we
require a cycle with non-zero cost instead of any circle.

3 Here, we use our assumption on κ indicating the sign of the costs.



deterministic Büchi automaton recognizing the models of the LTL formula ¬rel(ϕ)∧
χ, which we can pick such that its number of states is bounded exponentially in
|ϕ|. Now, define the colored Büchi graph with costs

S × A = (S ×Q× 2{p}, (sI , qI , ∅), E′, ℓ′, cst′, F ′)

where

– ((s, q, C), (s′, q′, C ′)) ∈ E′ if, and only if,(s, s′) ∈ E and q′ ∈ δ(q, ℓ(s) ∪ C),
– ℓ(s, q, C) = C,
– cst′((s, q, C), (s′, q′, C ′)) = cst(s, s′), and
– F ′ = S × F × 2{p}.

Lemma 6. [cp. Lemma 4.2 of [23]] S does not satisfy ϕ with respect to any α
if, and only if,S × A has an initial pumpable fair path.

Proof. Let S not satisfy ϕ with respect to any variable valuation. Fix k =
(|S| · |Q|+ 3) ·W , where W is the largest cost in S, and define the valuation α
by α(x) = 2k for every x. As S does not satisfy ϕ with respect to α, there is a
path π through S with (tr(π),α) ∕|= ϕ. Thus, due to Lemma 4.2, every k-bounded
coloring of w does not satisfy rel(ϕ).

Now, let w′ be a k-bounded and (k−W )-spaced coloring of tr(π) which starts
with p not holding true. Such a coloring can always be constructed, as W is the
largest cost appearing in S. Note that w′ satisfies χ by construction. Thus, we
have w′ |= ¬rel(ϕ) ∧ χ, i.e., there is an accepting run q0q1q2 · · · of A on w′.
Consider the path

(s0, q0, w
′
0 ∩ {p})(s1, q1, w′

1 ∩ {p})(s2, q2, w′
2 ∩ {p}) · · ·

where s0s1s2 · · · = π, which is fair by construction. We claim that it is pumpable:
consider a block, which is (k−W )-spaced. Thus, it contains at least |S| · |Q|+2
many edges with non-zero cost, enough to enforce a vertex repetition with non-
zero cost in between. To this end, one takes the sets Vj of vertices visited between
the j-th and the (j + 1)-th edge with non-zero cost (including the j-th edge).
This yields |S| · |Q|+1 non-empty sets of vertices of S ×A that coincide in their
third component, as we are within one block. However, there are only |S| · |Q|
many such vertices, which yields the desired repetition.

Now, consider the converse implication and let α′ be an arbitrary variable
valuation. We show that S does not satisfy ϕ with respect to α′. Due to Lemma 3,
it is sufficient to show that S does not satisfy ϕ with respect to the valuation α
mapping every variable to k = minx∈var(ϕ) α

′(x).
Fix an initial pumpable fair path of S×A. It has a vertex repetition in every

block such that the induced cycle has non-zero cost. We pump each such cycle
k + 1 times to obtain the path

(s0, q0, C0)(s1, q1, C1)(s2, q2, C2) · · · .

By construction, π = s0s1s2 · · · is a path through S and

w′ = (ℓ(s0) ∪ C0)(ℓ(s1) ∪ C1)(ℓ(s2) ∪ C2) · · ·



is a coloring of its trace tr(π). Also, q0q1q2 · · · is an accepting run of A on w′,
i.e., w′ |= ¬rel(ϕ) ∧ χ. Lastly, w′ is (k + 1)-spaced by construction, as the cost
function of S × A is induced by the one of S.

Assume towards a contradiction that S satisfies ϕ with respect to α, which
implies (tr(π),α) |= ϕ. Applying Lemma 4.1 yields that every (k + 1)-spaced
coloring of tr(π) satisfies rel(ϕ). However, w′ is a (k + 1)-spaced coloring which
satisfies ¬rel(ϕ), i.e., we have derived the desired contradiction. ⊓⊔

Now, we are ready to prove Theorem 1.

Proof. PSpace-hardness holds already for LTL model checking [30], which is a
special case of cPLTL model checking. Membership is witnessed by the following
algorithm: check whether the colored Büchi graph S×A has an initial pumpable
fair path, which is correct due to Lemma 6. But as the graph is of exponential
size, it has to be constructed and tested for non-emptiness on-the-fly.

Due to Lemma 5, it suffices to check for the existence of an ultimately periodic
path π0π

ω
1 such that |π0π1| ≤ n ∈ O(|S × A|2), i.e., n is exponential in the size

of ϕ and quadratic in the size of S. To this end, one guesses a vertex v (the first
vertex of π1) and checks the following reachability properties:

1. Is v reachable from vI via a path where each block contains a cycle with
non-zero cost?

2. Is v reachable from v via a non-empty path that visits an accepting vertex
and which either has no changepoint or where each block contains a cycle
with non-zero cost? In this case, we also require that v and the last vertex
on the path from vI to v guessed in item 1.) differ on their third component
in order to make v a changepoint. This spares us from having a block that
spans π0 and π1.

All these reachability problems can be solved in non-deterministic polynomial
space, as a successor of a vertex of S×A can be guessed and verified in polymonial
time and the length of the paths to be guessed is bounded by n, which can be
represented with polynomially many bits. ⊓⊔

Furthermore, by applying both directions of the proof of Lemma 6, we obtain
an exponential upper bound on the values of a satisfying variable valuation, if
one exists. This is asymptotically tight, as one can already show exponential
lower bounds for PROMPT–LTL [23].

Corollary 1. Fix a transition system S and a cPLTL-formula ϕ such that S
satisfies ϕ with respect to some α. Then, S satisfies ϕ with respect to a valuation
that is bounded exponentially in the size of ϕ and linearly in the number of states
of S and in the maximal cost in S.

Dually, one can show the existence of an exponential variable valuation that
witnesses whether a given cPLTLG specification is satisfied with respect to every
variable valuation. The following lemma states the contrapositive of this state-
ment, which we prove using pumping arguments that are similar to the ones for
the analogous results for PLTLG and PLDLG [20].



Lemma 7. Fix a transition system S and a cPLTLG-formula ϕ such that S does
not satisfy ϕ with respect to every α. Then, S does not satisfy ϕ with respect
to a valuation that is bounded exponentially in the size of ϕ and linearly in the
number of states of S and in the maximal cost in S.

Proof. Let A be a Büchi automaton recognizing the models of rel(¬ϕ)∧χ, which
is of exponential size in |ϕ|. Define k∗ = (4 · |A| · |S| + 2) · W , where W is the
largest cost in S, and let α∗ be the variable valuation mapping every variable to
k∗. We consider the contrapositive and show: if there is an α such that S does
not satisfy ϕ with respect to α, then S does not satisfy ϕ with respect to α∗.

Thus, assume there is an α and a path π such that (tr(π),α) |= ¬ϕ. Due to
upwards-monotonicity we can assume w.l.o.g. that α maps all variables to the
same value, call it k.

Let tr(π)′ be a (k∗+W +1)-bounded and (k∗+1)-spaced p-coloring of tr(π)
that starts with p not holding true in the first position, which can always be
constructed as W is the largest cost. Applying Lemma 4.1 shows that tr(π)′

satisfies rel(¬ϕ). Furthermore, it satisfies χ by construction. Fix some accepting
run of A on tr(π)′ and consider an arbitrary block of tr(π)′: if the run does not
visit an accepting state during the block, we can remove (if necessary) infixes of
the block where the run reaches the same state before and after the infix and
where the state of S at the beginning and the end of the infix are the same, until
the block has length at most |A| · |S| and thus cost at most |A| · |S| ·W .

On the other hand, assume the run visits at least one accepting state during
the block. Fix one such position. Then, we can remove infixes as above between
the beginning of the block and the position before the accepting state is visited
and between the position after the accepting state is reached and before the end
of the block. What remains is a block whose length is at most 2 · |A| · |S|+1, at
it has most |A| · |S| many positions before the designated position, this position
itself, and at most |A| · |S| many after the designated position. Hence, the block
has cost at most (2 · |A| · |S|+ 1) ·W .

Thus, we have constructed a (2 · |A| · |S|+ 1) ·W -bounded p-coloring tr(π̂)′

of a trace tr(π̂) for some path π̂ of S, as well as an accepting run of A on tr(π̂)′.
Hence, tr(π̂)′ is a model of rel(¬ϕ) and applying Lemma 4.2 shows that tr(π̂)
is a model of ¬ϕ with respect to the variable valuation mapping every variable
to 2 · (2 · |A| · |S|+ 1) ·W = k∗. Therefore, S does not satisfy ϕ with respect to
α∗. ⊓⊔

5 Infinite Games

After having solved the model checking problem for cPLTL, we now turn our
attention to solving infinite games with winning conditions in cPLTL. Our ap-
proach follows the one for the case of PLTL winning conditions [38], which in
turn generalized the proof for PROMPT–LTL realizability [23]. Again, we have
to deal with the existence of cost-traces with finite costs, which is done as in the
case of model checking.



An arenaA = (V, V0, V1, vI , E, ℓ, cst) consists of a finite directed graph (V,E),
a partition (V0, V1) of V , an initial vertex vI ∈ V , a labeling ℓ : V → 2P , and
a cost function cst : E → N. Again, we encode the weights in binary, although
the algorithms we present here and their running times and space requirements
are oblivious to the exact weights. Also, we again assume that every vertex has
at least one successor to avoid dealing with finite paths. Finally, we ensure our
requirement on the proposition κ to indicate the sign of the costs in a cost-trace:
if κ ∈ ℓ(v′), then we require cst(v, v′) > 0 for every edge (v, v′) ∈ E leading to
v′. Dually, if κ /∈ ℓ(v′), then cst(v, v′) = 0 for every edge (v, v′) ∈ E.

A play ρ = ρ0ρ1ρ2 · · · is a path through A starting in vI and its cost-
trace tr(ρ) is defined as

tr(ρ) = ℓ(ρ0) cst(ρ0, ρ1) ℓ(ρ1) cst(ρ1, ρ2) ℓ(ρ2) cst(ρ2, ρ3) · · · .

A strategy for Player i ∈ {0, 1} is a mapping σ : V ∗Vi → V with (v,σ(wv)) ∈
E for every w ∈ V ∗ and v ∈ Vi. A play ρ is consistent with σ if ρn+1 =
σ(ρ0 · · · ρn) for every n with ρn ∈ Vi.

A cPLTL game G = (A,ϕ) consists of an arena A and a winning condition ϕ,
which is a cPLTL formula. A strategy σ for Player 0 is winning with respect to
some variable valuation α, if the trace of every play that is consistent with σ
satisfies the winning condition ϕ with respect to α.

We are interested in determining whether Player 0 has a winning strategy
for a given cPLTL game, and in determining a winning strategy for her if this
is the case, which we refer to as solving the game.

Theorem 2. Determining whether Player 0 has a winning strategy in a given
cPLTL game is 2ExpTime-complete. Furthermore, a winning strategy (if one
exists) can be computed in doubly-exponential time.

First, we note that it is again sufficient to consider cPLTLF formulas, as we
are interested in the existence of a variable valuation (see the discussion below
Lemma 3). Next, we apply the alternating-color technique: to this end, we modify
the arena to allow Player 0 to produce colorings of plays of the original arena
and use the relativized winning condition, i.e., we reduce the problem to a game
with LTL winning condition. The winner (and a winning strategy) of such a
game can be computed in doubly-exponential time [27, 28].

To allow for the coloring, we double the vertices of the arena, additionally
label one copy with p and the other not, and split every move into two: first, the
player whose turn it is picks an outgoing edge, then Player 0 decides in which
copy she wants to visit the target, thereby picking the truth value of p.

Formally, given an arena A = (V, V0, V1, vI , E, ℓ, cst), the extended arena
A′ = (V ′, V ′

0 , V
′
1 , v

′
I , E

′, ℓ′, cst′) consists of

– V ′ = V × {0, 1} ∪ E,
– V ′

0 = V0 × {0, 1} ∪ E and V ′
1 = V1 × {0, 1},

– v′I = (vI , 0),
– E′ = {((v, 0), e), ((v, 1), e), (e, (v′, 0)), (e, (v′, 1)) | e = (v, v′) ∈ E},



– ℓ′(e) = ∅ for every e ∈ E and ℓ′(v, b) =


ℓ(v) if b = 0,

ℓ(v) ∪ {p} if b = 1,
and

– cst′((v, b), (v, v′)) = cst(v, v′) and cst′((v, v′), (v′, b′)) = 0.

A path through the new arena A′ has the form (ρ0, b0)e0(ρ1, b1)e1(ρ2, b2) · · ·
for some path ρ0ρ1ρ2 · · · through A, where en = (ρn, ρn+1) and bn ∈ {0, 1}.
Also, we have |A′| ∈ O(|A|2). Note that we use the costs in A′ only to argue
the correctness of our construction, not to define the winning condition for the
game in A′.

Also, note that the additional choice vertices of the form e ∈ E have to be
ignored when it comes to evaluating the winning condition on the trace of a play.
Thus, we consider games with LTL winning conditions under so-called blinking
semantics: Player 0 wins a play ρ = ρ0ρ1ρ2 · · · under blinking semantics, if
ℓ(ρ0)ℓ(ρ2)ℓ(ρ4) · · · satisfies the winning condition ϕ; otherwise, Player 1 wins.
Winning strategies under blinking semantics are defined as expected. Determin-
ing whether Player 0 has a winning strategy for a given game with LTL winning
condition under blinking semantics is 2ExpTime-complete, which can be shown
by a slight variation of the proof for LTL games under classical semantics [27,
28]. Furthermore, if Player 0 has a winning strategy for such a game, then also
a finite-state one of at most doubly-exponential size in |ϕ|.

Such a strategy for an arena (V, V0, V1, vI , E, ℓ, cst) is given by a memory
structure M = (M,mI , upd) with a finite set M of memory states, an initial
memory state mI ∈ M , and an update function upd: M × V → M , and by a
next-move function nxt : V0 × M → V satisfying (v, nxt(v,m)) ∈ E for every
m and every v. The function upd∗ : V + → M is defined via upd∗(v) = mI and
upd∗(wv) = upd(upd∗(w), v). Then, the strategy σ implemented by M and nxt
is defined by σ(wv) = nxt(v, upd∗(wv)). The size of σ is (slightly abusively)
defined as |M |.

Given a game (A,ϕ) with cPLTLF winning condition ϕ, define A′ as above
and let ϕ′ = rel(ϕ) ∧ χ, where χ = (GFp ∧ GF¬p) ↔ GFκ. Recall that χ is
satisfied by a cost-trace, if the trace has infinitely many changepoints if, and
only if,it has cost ∞.

Lemma 8. [cp. Lemma 3.1 of [23]] Player 0 has a winning strategy for (A,ϕ)
with respect to some α if, and only if,she has a winning strategy for (A′,ϕ′)
under blinking semantics.

Proof. Let σ be a winning strategy for Player 0 in (A,ϕ) with respect to some
fixed α and define k = maxx∈var(ϕ) α(x). We define a strategy σ′ forA′ as follows:

σ′((ρ0, b0)(ρ0, ρ1) · · · (ρn−1, ρn)(ρn, bn)) = (ρn,σ(ρ0 · · · ρn))

if (ρn, bn) ∈ V ′
0 , which implies ρn ∈ V0. Thus, at a non-choice vertex, Player 0

mimics the behavior of σ. At choice vertices, she alternates between the two
copies of the arena every time the cost has exceeded k + 1: let

w = (ρ0, b0)(ρ0, ρ1) · · · (ρn, bn)(ρn, ρn+1)



be a play prefix ending in a choice vertex and let n′ ≤ n be the last changepoint
in ℓ′(ρ0, b0) · · · ℓ′(ρn, bn). Now, we define

σ′(w) =






(ρn+1, 0) if (cst(ρn′ · · · ρn) < k + 1 and bn = 0) or

(cst(ρn′ · · · ρn) ≥ k + 1 and bn = 1),

(ρn+1, 1) if (cst(ρn′ · · · ρn) < k + 1 and bn = 1) or

(cst(ρn′ · · · ρn) ≥ k + 1 and bn = 0).

Let ρ = ρ0ρ1ρ2 · · · be a play in A′ that is consistent with σ′ and let

ρ′ = ρ0ρ2ρ4 · · · = (v0, b0)(v1, b1)(v2, b2) · · · .

By definition of σ′, the sequence v0v1v2 · · · is a play in A that is consistent with
σ and thus winning for Player 0 with respect to α, i.e., (tr(v0v1v2 · · · ),α) |= ϕ.
Also, w′ = ℓ′(v0, b0)ℓ

′(v1, b1)ℓ
′(v2, b2) · · · is a (k+1)-spaced coloring of the trace

tr(v0v1v2 · · · ). Hence, w′ |= ϕ′ due to Lemma 4.1. Finally, w′ satisfies χ by
construction. Thus, σ′ is a winning strategy for (A′,ϕ′) under blinking semantics.

Now, let σ′ be a winning strategy for Player 0 in (A′,ϕ′) which we can
assume (w.l.o.g.) to be implemented by M′ = (M ′,m′

I , upd
′) and some next-

move function nxt′ such that |M ′| is doubly-exponential in |ϕ|. We define a
strategy σ for A by simulating a play in A′ that is consistent with σ′.

To this end, define the memory structure M = (M,mI , upd) for A with
M = (V × {0, 1})×M ′, mI = ((v, 0),m′

I), and

upd(((v, b),m), v′) = (nxt′(e,m′), upd′(m′, nxt′(e,m′)))

where e = (v, v′) and m′ = upd′(m, e). Intuitively, the update-function mimics
two moves in A′: first, the one from (v, b) to e = (v, v′) and then the move from
this choice vertex determined by the strategy σ′, which is given by nxt′(e,m′),
where m′ is the updated memory state.

Let w be a play prefix of a play in A. The memory state upd∗(w) = ((v, b),m)
encodes the following information: the simulated play w′ in A′ ends in (v, b),
where v is the last vertex of w, and we have upd′∗(w′) = m. Hence, it contains
all information necessary to apply the next-move function nxt′ to mimic σ′.
Thus, we define the next-move function nxt : V0 ×M → V for Player 0 in A by

nxt(v, ((v′, b),m)) =


v′′ if v = v′ and nxt′((v′, b),m) = (v′, v′′),

v otherwise, for some v ∈ V with (v, v) ∈ E.

By definition of M, the second case of the definition is never invoked, since
upd∗(wv) = ((v′, b),m) always satisfies v = v′.

It remains to show that the strategy σ implemented by M and nxt is indeed
a winning strategy for Player 0 for (A,ϕ) with respect to some α. To this end,
let k = (|V | · |M | + 3) · W and define α(x) = 2k for every x, where W is the
largest weight in A.



Let ρ0ρ1ρ2 · · · be a play in A that is consistent with σ. A straightforward
induction shows that there exist bits b0, b1, b2, · · · such that the play

(ρ0, b0)(ρ0, ρ1)(ρ1, b1)(ρ1, ρ2)(ρ2, b2) · · ·

in A′ is consistent with σ′. Hence, w′′ = ℓ′(ρ0, b0)ℓ
′(ρ1, b1)ℓ

′(ρ2, b2) · · · satisfies
ϕ′. We show that w′′ is k-bounded. This suffices to finish the proof as we can
apply Lemma 4.2 and obtain (tr(ρ),α) |= ϕ, as w′′ is a k-bounded coloring of
tr(ρ). Thus, σ is a winning strategy for Player 0 for (A,ϕ) with respect to α.

Towards a contradiction assume that w′′ is not k-bounded. Then, there exist
positions i < j such that

– ρi = ρj ,
– upd′∗((ρ0, b0) · · · (ρi, bi)) = upd′∗((ρ0, b0) · · · (ρj , bj)),
– the bits bi, . . . , bj are all equal, and
– cst(ρi · · · ρj) > 0.

To show this, one defines the sets Vj of vertices visited between the j-th and
the (j + 1)-th edge with non-zero cost (including the j-th edge). This yields
|V | · |M |+1 non-empty sets of vertices of (V × {0, 1})×M that coincide on the
bit stored in their second component. Hence, we have derived the desired vertex
repetition, as there are only |V | · |M | such vertices.

Thus, the play

ρ∗ = (ρ0, b0)(ρ0, ρ1) · · · (ρi−1, ρi)(ρi, bi)

(ρi, ρi+1)(ρi+1, bi+1) · · · (ρj−1, ρj)(ρj , bj)

ω
,

obtained by traversing the cycle between (ρi, bi) and (ρj , bj) infinitely often, is
consistent with σ′, since the memory states reached at the beginning and the
end of the loop are the same. Remember that the bits do not change between
i and j. Thus, tr(ρ∗) has only finitely many change points, but infinitely many
occurrences of κ and does therefore not satisfy χ under blinking semantics. This
contradicts the fact that σ′ is a winning strategy for (A′, rel(ϕ) ∧ χ) under
blinking semantics. ⊓⊔

Now, we are able to prove Theorem 2.

Proof. Hardness follows immediately from the 2ExpTime-hardness of determin-
ing the winner of an LTL game [27, 28], which is a special case.

Membership in 2ExpTime follows from the reductions described above: first,
we turn the winning condition into a cPLTLF formula and construct the LTL
game under blinking semantics obtained from expanding the arena and rela-
tivizing the winning condition. This game is only polynomially larger than the
original one and its winner (and a winning strategy) is computable in doubly-
exponential time. ⊓⊔

By applying both directions of the proof of Lemma 8, we obtain a doubly-
exponential upper bound on the values of a satisfying variable valuation, if one
exists. This is asymptotically tight, as one can already show doubly-exponential
lower bounds for PROMPT–LTL [38].



Corollary 2. Fix a cPLTL game G = (A,ϕ) such that Player 0 has a winning
strategy for G with respect to some α. Then, Player 0 has a winning strategy for
G with respect to a valuation that is bounded doubly-exponentially in the size of
ϕ and linearly in the number of vertices of A and in the maximal cost in A.

6 Parametric LDL with Costs

Recall the two main shortcomings of LTL, the lack of expressiveness and impos-
sibility to impose time- and cost-bounds. Here, we have dealt with the second
shortcoming by introducing cPLTL. However, we have not dealt with the first
shortcoming. In this section, we address both simultaneously by extending PLDL
to a cost-setting.

Linear Dynamic logic (LDL) [18, 34] extends LTL by temporal operators
that are guarded by regular expressions, e.g., 〈r〉ϕ holds at position n, if there
is a j such that ϕ holds at position n + j and the infix between positions n
and n+ j− 1 matches r. The resulting logic has the full expressiveness of the ω-
regular languages while retaining many of LTL’s desirable properties like a simple
syntax, intuitive semantics, a polynomial space algorithm for model checking,
and a doubly-exponential time algorithm for solving games. Parametric LDL
(PLDL) [19] allows to parameterize such operators, i.e., 〈r〉≤x ϕ holds at posi-
tion n with respect to a variable valuation α, if there is a j ≤ α(x) such that ϕ
holds at position n+j and the infix between positions n and n+j−1 matches r.
Model checking and solving games with PLDL specifications is not harder than
for LTL, although PLDL is more expressive and has parameterized operators.
In this section, we consider cPLDL where the parameters bound the cost of the
infix instead of the length. This logic has the full expressiveness of the ω-regular
languages and parameterized operators whose scope is bounded by costs instead
of by time. Thus, it can express modulo-counting properties not expressible in
LTL, PLTL, and cPLTL, as well as cost-bounds, which are not expressible in
PLTL and PLDL.

Formally, formulas of cPLDL are given by the grammar

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈r〉ϕ | [r ]ϕ | 〈r〉≤z ϕ | [r ]≤z ϕ

r ::=φ | ϕ? | r + r | r ; r | r∗

where p ∈ P , z ∈ V, and where φ ranges over propositional formulas over P . As
for cPLTL, cPLDL formulas are evaluated on cost-traces with respect to variable
valuations. Satisfaction of atomic formulas and of conjunctions and disjunctions
is defined as usual, and for the four temporal operators, we define

– (w, n,α) |= 〈r〉ϕ if there exists j ≥ 0 such that (n, n + j) ∈ R(r, w,α) and
(w, n+ j,α) |= ϕ,

– (w, n,α) |= [r ]ϕ if for all j ≥ 0 with (n, n+ j) ∈ R(r, w,α) we have (w, n+
j,α) |= ϕ,

– (w, n,α) |= 〈r〉≤z ϕ if there exists j ≥ 0 with cst(wncn · · · cn+j−1wn+j) ≤
α(z) such that (n, n+ j) ∈ R(r, w,α) and (w, n+ j,α) |= ϕ, and



– (w, n,α) |= [r ]≤z ϕ if for all j ≥ 0 with cst(wncn · · · cn+j−1wn+j) ≤ α(z)
and with (n, n+ j) ∈ R(r, w,α) we have (w, n+ j,α) |= ϕ.

Here, the relation R(r, w,α) ⊆ N×N contains all pairs (m,n) ∈ N×N such that
wm · · ·wn−1 matches r and is defined inductively by

– R(φ, w,α) = {(n, n+ 1) | wn |= φ} for propositional ϕ,
– R(ψ?, w,α) = {(n, n) | (w, n,α) |= ψ},
– R(r0 + r1, w,α) = R(r0, w,α) ∪R(r1, w,α),
– R(r0 ; r1, w,α) = {(n0, n2) | ∃n1 s.t. (n0, n1) ∈ R(r0, w,α) and

(n1, n2) ∈ R(r1, w,α)}, and
– R(r∗, w,α) = {(n, n) | n ∈ N} ∪ {(n0, nk+1) | ∃n1, . . . , nk s.t.

(nj , nj+1) ∈ R(r, w,α) for all j ≤ k}.

Again, we restrict ourselves to well-formed formulas, i.e., those whose set of
variables parameterizing diamond operators and whose set of variables parame-
terizing box operators are disjoint.

Using the duality of the operators 〈r〉≤z and [r ]≤z (note that r is left un-
changed), one can prove an analogue of Lemma 2.

Lemma 9. For every cPLDL formula ϕ there exists an efficiently constructible
cPLDL formula ¬ϕ s.t.

1. (w, n,α) |= ϕ if, and only if,(w, n,α) ∕|= ¬ϕ for every w, every n, and every
α, and

2. |¬ϕ| = |ϕ|.

Note that we do not claim that negation preserves well-formedness and that
we have not (yet) defined unipolar fragments of cPLDL. This is because this
statement is wrong: the negation of the well-formed cPLDL-formula [([p ]≤x p)?]≤x

p

is 〈([p ]≤x p)?〉≤x
¬p, which is not well-formed. The issue is that negation does

not flip parameterized operators in tests, i.e., formulas of the form φ? in regu-
lar expressions, which also requires us to be careful when defining the unipolar
fragments of cPLDL: let ϕ be a cPLDL formula.

– ϕ is a cPLDL♦ formula, if it does not contain a parameterized box operator.
– ϕ is a cPLDL□ formula, if it does not contain a parameterized diamond

operator and if its negation is a cPLDL♦ formula.

For cPLTLG formulas, the second conjunct in the second item above is trivial,
but, as we have seen in the example above, this is no longer true for cPLDL□.
The second conjunct is necessary to be able to solve problems for cPLDL□ by
dualizing the formula into an cPLDL♦ formula. This becomes crucial when we
consider the optimization problems in Setion 8, the only place where we deal
with cPLDL□ formulas.

Finally, Lemma 3 holds for cPLDL, too.

Lemma 10. Let ϕ be a cPLDL formula and let α and β be variable valuations
satisfying α(x) ≤ β(x) for every x ∈ varF(ϕ) and α(y) ≥ β(y) for every y ∈
varG(ϕ). If (w,α) |= ϕ, then (w,β) |= ϕ.



The alternating-color technique is applicable to PLDL [19]: to this end, one
introduces changepoint-bounded variants of the unparameterized diamond op-
erator and of the unparameterized box operator whose semantics only quantify
over infixes with at most one changepoint. LDL formulas with changepoint-
bounded operators can be translated into Büchi automata of exponential size.
As usual, the parameterized box operators can again be disregard due to mono-
tonicity. Thus, given a PLDL♦ formula, one replaces every diamond operator by
a changepoint-bounded one and can then show that both formulas are equiva-
lent, provided the distance between color-changes is appropriately bounded and
spaced. This allows to extend the algorithms for model checking and realizability
based on the alternating-color technique to PLDL. The detailed construction is
described in [19].

In the setting with costs investigated here, the approach is similar: one has
to replace the parameterized diamond operators by changepoint-bounded ones.
Furthermore, the formula χ = (GFp ∧GF¬p) ↔ GFκ used in the applications
of the alternating-color technique in Sections 4 and 5 is replaced by an equivalent
LDL formula, which is possible as LDL subsumes LTL. The resulting formula is
again translatable into a Büchi automaton of exponential size. Thus, the con-
structions presented in the previous two sections solving the model checking and
the game problem are again applicable.

Theorem 3. The cPLDL model checking problem is PSpace-complete and solv-
ing infinite games with cPLDL winning conditions is 2ExpTime-complete.

7 Multiple Cost Functions

In this section, we consider parameterized temporal logics with multiple cost
functions. These extensions allow to express, e.g., the Streett condition with
costs, which is not expressible in the logics we considered thus far. For the sake
of simplicity, we restrict our attention to cPLTL, although all results hold for
cPLDL, too.

Fix some dimension d ∈ N. The syntax of mult-cPLTL is obtained by equip-
ping the parameterized temporal operators by a coordinate i ∈ {1, . . . , d}, de-
noted by F≤ix and G≤iy. Here, a cost-trace is of the form w0 c0 w1 c1 w2 c2 · · ·
with wn ∈ 2P and cn ∈ Nd. Thus, for every i ∈ {1, . . . , d}, we can define

csti(w0c0 · · · cn−1wn) =

n−1

j=0

(cj)i

for every finite cost-trace w0c0 · · · cn−1wn, where (cj)i denotes the i-th entry of
the vector cj . Furthermore, we require for every coordinate i a proposition κi

such that κi ∈ wn+1 if, and only if,(cn)i > 0.

The semantics of atomic formulas, boolean connectives, and unparameterized
temporal operators are unchanged and for the parameterized operators, we define



– (w, n,α) |= F≤izϕ if, and only if,there exists a j ≥ 0 with
csti(wncn · · · cn+j−1wn+j) ≤ α(z) such that (w, n+ j,α) |= ϕ, and

– (w, n,α) |= G≤izϕ if, and only if,for every j ≥ 0 with
csti(wncn · · · cn+j−1wn+j) ≤ α(z): (w, n+ j,α) |= ϕ.

In this setting, we consider the model checking problem for transition systems
with d cost functions and want to solve games in arenas with d cost functions.

Example 2. A Streett condition with costs (Qi, Pi)i∈{1,...,d} [21] can be expressed4

in mult-cPLTL via

FG


i∈{1,...,d}

(Qi → F≤ix Pi)


.

This property is not expressible in the logics with a single cost function, which
can again be shown by a pumping argument.

Again, we restrict ourselves to formulas where no variable parameterizes an
eventually- and an always operator, but we allow a variable to parameterize
operators with different coordinates. Furthermore, the fragments mult-cPLTLF

and mult-cPLTLG are defined as for cPLTL, i.e., a formula is a mult-cPLTLF

formula (a mult-cPLTLG formula), if it does not contain parameterized always
operators (parameterized eventually operators).

Lemma 2 can be extended to mult-cPLTL by adding the rules ¬(F≤ixϕ) =
G≤ix¬ϕ and ¬(G≤iyϕ) = F≤iy¬ϕ to the proof.

Lemma 11. For every mult-cPLTL formula ϕ there exists an efficiently con-
structible mult-cPLTL formula ¬ϕ s.t.

1. (w, n,α) |= ϕ if, and only if,(w, n,α) ∕|= ¬ϕ for every w, every n, and every
α,

2. |¬ϕ| = |ϕ|.
3. If ϕ is well-formed, then so is ¬ϕ.
4. If ϕ is an LTL formula, then so is ¬ϕ.
5. If ϕ is a mult-cPLTLF formula, then ¬ϕ is a mult-cPLTLG formula and

vice versa.

Furthermore, Lemma 3 holds for mult-cPLTL as well.

Lemma 12. Let ϕ be a mult-cPLTL formula and let α and β be variable valu-
ations satisfying α(x) ≤ β(x) for every x ∈ varF(ϕ) and α(y) ≥ β(y) for every
y ∈ varG(ϕ). If (w,α) |= ϕ, then (w,β) |= ϕ.

The alternating-color technique is straightforwardly extendable to the new
logic mult-cPLTL: one introduces a fresh proposition pi for each coordinate i
and defines χ =

d
i=1((GFpi ∧GF¬pi) ↔ GFκi). Furthermore, the notions of

4 The same disclaimer as for the parity condition with costs applies here. See Foot-
note 1.



i-blocks, k-boundedness in coordinate i, and k-spacedness in coordinate i are
defined as expected. Then, the proofs presented in Section 4 and Section 5 can
be extended to the setting with multiple cost functions.

In the model checking case, the third component of the set of states of the
colored Büchi graph S ×A has the form 2{p1,...,pd}, i.e., it is of exponential size.
However, this is no problem, as the automaton A is already of exponential size.
Similarly, in the case of infinite games, each vertex of the original arena has 2d

copies in A′, one for each element in 2{p1,...,pd} allowing Player 0 to produce
appropriate colorings with the propositions pi. The resulting game has an arena
of exponential size (in the size of the original arena and of the original win-
ning condition) and an LTL winning condition under blinking semantics. Such a
game can still be solved in doubly-exponential time. To this end, one turns the
winning condition into a deterministic parity automaton of doubly-exponential
size with exponentially many colors, constructs the product of the arena and the
parity automaton, which yields a parity game of doubly-exponential size with
exponentially many colors. Such a game can be solved in doubly-exponential
time [29].

Theorem 4. The mult-cPLTL model checking problem is PSpace-complete and
solving infinite games with mult-cPLTL winning conditions is 2ExpTime-com-
plete.

Again, the same results hold for mult-cPLDL, which is defined as expected.

8 Optimization Problems

It is natural to treat model checking and solving games with specifications in
parameterized linear temporal logics as an optimization problem: determine the
optimal variable valuation such that the system satisfies the specification with
respect to it. For parameterized eventually operators, we are interested in min-
imizing the waiting times while for parameterized always’, we are interested in
maximizing the waiting times. Due to the undecidability results for not well-
defined formulas one considers the optimization problems for the unipolar frag-
ments, i.e., for formulas having either no parameterized eventuallies or no pa-
rameterized always’. In this section, we present algorithms for such optimization
problems given by cPLTL specifications. In the following, we encode the weights
of the transition system or arena under consideration in unary to obtain our
results. Whether these results can also be shown for a binary encoding is an
open question.

For model checking, we are interested in the following four problems: given
a transition system S and a cPLTLF formula ϕF and a cPLTLG formula ϕG,
respectively, determine

1. min{α|S satisfies ϕF w.r.t. α} minx∈varF(ϕF) α(x),
2. min{α|S satisfies ϕF w.r.t. α} maxx∈varF(ϕF) α(x),
3. max{α|S satisfies ϕG w.r.t. α} maxy∈varG(ϕG) α(y), and



4. max{α|S satisfies ϕG w.r.t. α} miny∈varG(ϕG) α(y).

Applying the monotonicity of the parameterized operators and (in the first
case) the alternating-color technique to all but one variable reduces the four op-
timization problems to ones where the specification has a single variable (cp. [1]).
Furthermore, the upper bounds presented in Corollary 1 and in Lemma 7 yield
an exponential search space for an optimal valuation: if this space is empty, then
there is no α such that S satisfies ϕF with respect to α in the first two cases.
On the other hand, if the search space contains every such α, then S satisfies
ϕG with respect to every α in the latter two cases.

Thus, it remains the check whether the specification is satisfied with re-
spect to some valuation that is bounded exponentially. In this setting, one can
construct an exponentially sized non-deterministic Büchi automaton recogniz-
ing the models of the specification with respect to the given valuation (using
a slight adaption of the construction presented in [38] accounting for the fact
that we keep track of cost instead of time). This automaton can be checked for
non-emptiness in polynomial space using an on-the-fly construction. Thus, an
optimal α can be found in polynomial space by binary search.

Theorem 5. The cPLTL model checking optimization problems can be solved
in polynomial space, if the weights are encoded in unary.

A similar approach works for infinite games as well. Here, we are interested
in computing

1. min{α|Pl. 0 has winning strategy for GF w.r.t. α} minx∈varF(ϕF) α(x),
2. min{α|Pl. 0 has winning strategy for GF w.r.t. α} maxx∈varF(ϕF) α(x),
3. min{α|Pl. 0 has winning strategy for GG w.r.t. α} minx∈varG(ϕG) α(x), and
4. min{α|Pl. 0 has winning strategy for GG w.r.t. α} maxx∈varG(ϕG) α(x).

and witnessing winning strategies for given cPLTL games GF with cPLTLF win-
ning condition ϕF and GG with cPLTLG winning condition ϕG.

Again, one can reduce these problems to the case of winning conditions with
a single variable and by applying determinacy of games with respect to a fixed
valuation. It even suffices to consider the case of cPLTLF winning conditions
with a single variable, due to duality of games: swapping the players and negat-
ing the winning condition in a game with cPLTLG winning condition yields an
equivalent -game with cPLTLF winning condition. Corollary 2 gives a doubly-
exponential upper bound on an optimal variable valuation. Hence, one can con-
struct a deterministic parity automaton of triply-exponential size with exponen-
tially many colors recognizing the models of the specification with respect to
a fixed variable valuation α that is below the upper bound (again, see [38] for
the detailed construction). Player 0 wins the parity game played in the original
arena but using the language of the automaton as winning condition if, and only
if,she has a winning strategy for the cPLTLF game with respect to α. Such a
parity game can be solved in triply-exponential time [29].

Theorem 6. The cPLTL optimization problems for infinite games can be solved
in triply-exponential time, if the weights are encoded in unary.



Furthermore, the same results hold for cPLDL using appropriate adaptions
of the automata constructions presented in [19, 20]. Here, we apply the require-
ment on negations of cPLDL□ formulas being cPLDL♦ formulas when dualizing
a game with cPLDL□ winning condition into a game with cPLDL♦ winning
condition by swapping the players and negating the winning condition. With-
out this requirement, we would not necessarily end up with a cPLDL♦ winning
condition, but possibly with a non-wellformed winning condition.

Theorem 7. The cPLDL model checking optimization problems can be solved
in polynomial space and the cPLDL optimization problems for infinite games can
be solved in triply-exponential time, if the weights are encoded in unary.

However, for parameterized logics with multiple cost functions, these results
do not remain valid, as it does not suffice to reduce the optimization problems
to ones with a single variable, as a variable may bound operators in different
dimensions. Thus, one has to keep track multiple costs, which incurs an addi-
tional exponential blow-up when done naively. Whether this can be improved is
an open question.

9 Conclusion

LTL

LDL PLTL

PLDL

cPLDL

cPLTL

mult-cPLDL

mult-cPLTL

Fig. 1. Overview over the logics
considered in this work.

We introduced parameterized temporal logics
whose operators bound the accumulated cost
instead of time as usual: cPLTL and cPLDL
extend PLTL and PLDL to the cost-setting
while mult-cPLTL and mult-cPLDL extend
them to the multi-dimensional cost-setting.
The logics we considered here and their in-
clusions are depicted in Figure 1: the upper
four logics were introduced in this work.

All four new logics retain the attractive al-
gorithmic properties of LTL like a polynomial
space model checking algorithm and a doubly-
exponential time algorithm for solving infinite
games. For cPLTL and cPLDL, even the op-
timization variants of these problems are not
harder than for PLTL: polynomial space for
model checking and triply-exponential time for solving games, if the weights are
encoded in unary.

However, it is open whether these problems are strictly harder for logics with
multiple cost functions or if the weights are encoded in binary. Another open
question concerns the complexity of the optimization problem for infinite games:
can these problems be solved in doubly-exponential time, i.e., is finding optimal
variable valuations as hard as solving games? Note that this question is already
open for PLTL. Recently, a step towards this direction was made by giving
an approximation algorithm for this problem with doubly-exponential running



time [31]. Finally, one could consider weights from some arbitrary semiring and
corresponding weighted parameterized temporal logics.
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7. Bojańczyk, M., Colcombet, T.: Bounds in ω-regularity. In: LICS 2006. pp. 285–296.
IEEE Computer Society (2006)
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