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Abstract—The recent ongoing development of electrical ve-

hicles (EVs) offers vast benefits not only in environmental
protection and economics, but also in demand response (DR)
management on consumer side. Adopting EVs in DR enables
householders to alleviate the load burden while reducing electric
bill simultaneously. In this paper, we utilize EVs as temporary
energy storage facilities to assist the power transaction, which
ensures the flexibility and economic benefit. An innovative EVs
assisted DR strategy including a neighbor energy sharing (NES)
model is proposed, to jointly optimize the load distribution via
vehicle to home (V2H) and vehicle to neighbor (V2N) connections,
and economic cost for a residential network with multi-household.
The effectiveness of the proposed DR strategy is verified by
numerical results in terms of load balancing and cost reduction.
It also significantly outperforms the previous DR approaches.

I. INTRODUCTION

Electric vehicles (EVs) are becoming a trend in next gen-
eration of transportation due to their economic and environ-
mental benefits, and the rapid advance of rechargeable battery
technology [1]. Along with the worldwide application of
dynamic pricing, an increasing adoption of EVs in residences
brings about both opportunities and challenges for smart grid.
Residences with EVs consume more electricity and react more
elastically to electricity price [2]. According to the report pro-
vided by the U.S. Energy Information Association [3], the fast
charging of an EV is equivalent to about 120 houses coming
on line for half an hour, which is a severe issue to the power
grid. On the other hand, the usage of EVs as energy storage
units via vehicle-to-home (V2H) offers an effective solution to
load shaping at demand side. In addition to this, the surplus
energy of EVs can be delivered to neighbor via vehicle-to-
neighbor (V2N) if it is enabled. Hence, householders are able
to participate in load scheduling and may have multiple options
in energy allocation.

Compared with the conventional energy storage system
(ESS) and other energy production facilities, using EV as a
temporary power source has advantages in employing flexi-
bility and economic efficiency [4]. It does not expect extra
investment besides the daily used EVs. Meanwhile, the power
sharing is enabled from the V2N. The surplus energy of EVs
can be shared to neighbor during peak price time and benefit
for both sides. Therefore, the DR strategy with EVs holds wide
prospects in practice not only for an individual household, but
also for the multi-household network.

Much research has been conducted on demand response
and there are many popular DR strategies being presented
in literature, such as [5]–[7]. However, a shared limitation of
the above DR programs is that the impacts of including EVs
which is a significant component in residences recently have
not been considered. In addition, a DR strategy with an EV
auxiliary power supply (EV-APS) model was proposed in [4]
and comprehensive factors were considered. In [8], authors
focused on EVs’ charging behaviors based on the collected
data from EV charging session and different types of charging
behaviors were derived. To analyze the potential usage of
EVs in power grid, the optimal time of EVs’ charging and
discharging was explored in [9]. In addition to these, [10]–
[12] also described a number of interesting DR programs
coordinating with EVs. However, all the mentioned studies
above are limited to the operation of an individual user and fail
to attempt the EVs scheduling among a group of households
in DR program.

In this paper, we propose an EVs assisted DR framework
including a neighbor energy sharing (NES) model for a multi-
household residential network. Compared with the previous
research, the main contributions of this work can be summa-
rized as follows:

(1) We utilize EVs as temporary energy storage facilities to
assist the power transaction, which ensures the flexibility
and economic benefit. Comprehensive affecting factors
(e.g., EVs behaviors, user preferences, load scheduling
priorities, etc.) are considered in scheduling.

(2) Our DR framework is valid and effective not only for
an independent household but also for a multi-household
residential network, which can satisfy broader require-
ments compared with the conventional DR programs [4],
[8], [10]–[12] in literature. The energy trading contract in
neighborhood is also briefly declared in this work.

(3) The effectiveness of the proposed framework is verified
by numerical results, which demonstrate that our approach
significantly outperforms the methods [4] in literature in
both load balancing and electricity cost reduction.

The rest of this paper is organized as follows. Section
II presents the overall description of the DR framework for
multiple households. In Section III, the mathematical modeling
of system components is thoroughly discussed. Afterwards,
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a case study is carried out to evaluate the feasibility of the
proposed approach. Finally, we briefly conclude the paper in
Section VI.

II. DEMAND RESPONSE FRAMEWORK FOR
MULTI-HOUSEHOLD RESIDENTIAL NETWORK

The block diagram of the proposed DR framework with
the EVs assisted NES model is showed in Fig. 1. In this
study, it is assumed that each household in the residential
community is registered in the network and controlled by
the corresponding automatic control unit (ACU) which plays
the role as an instructor of each household. ACU regulates
the power supplying and the operating time of the household
appliances (HAs, e.g., shiftable appliances and nonshiftable
appliance [13]) based on the dynamic load information which
is received from the smart meter, and other request signals
(e.g., EV status, scheduling priority, DP, etc.). In addition, the
centralized control unit (CCU) that is the highest controller
in the network globally monitors the status of the ACUs and
optimally manages the EVs assisted NES model through the
information flows.

In the proposed DR framework, customers in the network
are registered for two types of connections: V2H connection
and V2N connection. Specifically, the householders buy elec-
tricity from the power grid for the daily consumption including
HAs supplying and EVs charging, under the DP tariff. On
the one hand, the domestic appliances are directly powered
by the public power grid in general. However, the household
which is outfitted with EV is able to provide power from EV
battery for their HAs on appropriate occasions, such as peak
demand periods or power grid outage, via V2H connection.
On the other hand, since limited number of the households are
equipped with EV at their premises, the households without
energy storage unit may need power assistance from NES
model via V2N connection, particularly in peak demand time.

When there is surplus energy available being detected in
EVs, the CCU determines when and how to allocate the
surplus energy to the personal house or the neighbor’s houses
who have the energy assistance requirements. In general, the
EV energy will satisfy the demand of the EV owner in priority.
The energy transaction in neighborhood happens when the
power grid is not able to fulfill the demand or the serving
load at high charges in peak demand periods. Thus, a customer
can receive the power from a neighbor at comparatively lower
prices. The trading contract between end-user customers will
be explained in Section III.

III. SYSTEM MODELS

The EVs are utilized as the flexible energy storage units
to ensure the energy trading in neighborhood. The following
subsections present the mathematical modeling of the system
components in details.

A. Global Energy Balance Model

In order to precisely present the energy transactions between
each component in the network with K households, W grid
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Fig. 1. Block diagram of the proposed DR framework for a multi-household
network.

and W grid
k,t are assumed as the total energy consumption of the

entire network and the kth household, respectively, in a time
period [tin, tterm]. Afterwards, the global energy model can be
proposed as:

W grid
t =

K∑
k=1

W grid
k,t (1)

where

W grid
k,t =

∫ tterm

tin

P grid
k,t · d(t) (2)

where P grid
k,t is the power rate of the kth household at time

t. Moreover, considering the specific power including non-
shiftable appliance (PNS

k,t ), shiftable appliance (P S
k,t), EV char-

ing (P EV,c
k,t ) and EV discharging (P EV,d

k,t ) into the network, P grid
k,t

can be extended as in Equations (3) - (4).

P grid
k,t = PHA

k,t + α ·
(
β · P EV,c

k,t − (1− β) · P EV,d
k,t

)
(3)

PHA
k,t =

m∑
j=1

PNS
k,t,j + εi ·

n∑
i=1

P S
k,t,i (4)

Subject to:
∀t, P grid

k,t 6 P grid
k,max (5)

∀t,
K∑

k=1

P grid
k,t 6 P grid

max (6)

where PHA
k,t in Equation (4) denotes the load of electrical

appliances consisting of the nonshiftable load PNS
k,t,j and the

shiftable load P S
k,t,i at time t, where j and i are the indexes

of the appliances. The parameter εi which indicates the
scheduling priority of the shiftable appliances equals to small
positive values (e.g., 1+e−8, 1+2e−8 and 1+3e−8) and it is
determined by the householders according to their scheduling
preferences. Besides, the maximum power rate of an individual
household P grid

k,max and the maximum power rate of the network



P grid
max are proposed in Equation (5) and (6), respectively, to

limit the real-time load for the safety consideration. Binary
parameters α and β in Equation (3) are both used to indicate
the EV status that is given as:

EV Status =

 Disabled, if α = 0, β = ∀
Charging, if α = 1, β = 1
Discharging, if α = 1, β = 0

 (7)

B. EVs Assisted NES Model

In a residential community, different classes of customers
exist. It is not possible for every household to purchase an
EV. Thus, it is assumed that only a part of houses are installed
with EV and indexed as k̂, and the rest houses without EV are
indexed as k̃. Afterwards, we define W EV,(1)

k̂
and W EV,(2)

k̂
as the

initial energy within EV battery when EV leaves home of the
1st day and the 2nd day, respectively. W EV,rem

k̂
represents the

remaining energy within an EV. The energy cost on the daily
trip is proposed as W EV,trip

k̂
. Additionally, Dtrip

k̂
and Dmax

k̂
are

proposed to indicate the actual travel distance of the vehicle
and the maximum travel distance with a fully charged EV.
Moreover, the energy charging to the EV and discharging
from the EV are assumed as W EV,c

k̂
and W EV,d

k̂
, respectively.

Afterwards, the EV balance model with the relevant constrains
for a single house can be proposed as:

W EV,rem
k̂

= W EV,(1)
k̂

−W EV,trip
k̂

(8)

W EV,trip
k̂

=
Dtrip

k̂

Dmax
k̂

·W EV,max
k̂

(9)

W EV,(2)
k̂

= W EV,rem
k̂

+W EV,c
k̂

−W EV,d
k̂

(10)

Subject to:

∀t, W EV,min
k̂

6 W EV,rem
k̂

6 W EV,max
k̂

(11)

τ ·W EV,max
k̂

6 W EV,(2)
k̂

6 W EV,max
k̂

(12)

where W EV,min
k̂

and W EV,max
k̂

in (11) represent the minimum
and the maximum allowed EV battery capacity, respectively.
However, constraint (12) is proposed to ensure the EV leave
home with an appropriate energy storage level, where τ is a
threshold parameter (e.g., τ = 0.95).

Moreover, considering the power impacts on the grid, P EV,c
k̂,t

,

P EV,d,v2h
k̂,t

and P EV,d,v2n
k̂,t

are utilized to describe the power rates
of EV charging, EV discharging via V2H and EV discharging
via V2N at time t, respectively. Therefore, W EV,c

k̂
and W EV,d

k̂
can be extended as:

W EV,c
k̂

= ηc
k̂
·

{
L∑

l=1

∫ T c,2
k̂,l

T c,1
k̂,l

P EV,c
k̂,t

· d(t)

}
(13)

W EV,d
k̂

=
1

ηd,v2h
k̂

·

{
M∑

m=1

∫ T d,2
k̂,m

T d,1
k̂,m

P EV,d,v2h
k̂,t

· d(t)

}

+
1

ηd,v2n
k̂

·

{
N∑

n=1

∫ T d,2
k̂,n

T d,1
k̂,n

P EV,d,v2n
k̂,t

· d(t)

}
(14)

Subject to:

ηc
k̂
, ηd,v2h

k̂
and ηd,v2n

k̂
∈ (0, 1) (15)

∀t ∈ [T d,1
k̂,m

, T d,2
k̂,m

], P EV,d,v2h
k̂,t

6 P EV,rated
k̂

, P EV,d,v2h
k̂,t

6 P act
k̂,t

(16)
∀t ∈ [T d,n

k̂,n
, T d,2

k̂,n
], P EV,d,v2n

k̂,t
6 P EV,rated

k̂
, P EV,d,v2n

k̂,t
6 P act

k̃,t

(17)
∀[T c,1

k̂,l
, T c,2

k̂,l
] ∩ ∀

{
[T d,1

k̂,m
, T d,2

k̂,m
] ∪ [T d,1

k̂,n
, T d,2

k̂,n
]
}
= ∅ (18)

where ηc
k̂
, ηd,v2h

k̂
and ηd,v2n

k̂
denote the efficiencies of the

corresponding EV behaviors. Since the EV behaviors are
discontinuous and may execute at different periods, different
time labels are proposed. For example, time parameters T c,1

k̂,l

and T c,2
k̂,l

in Equation (13) represent the start time and the end
time of the lth charging period. Meanwhile, the definitions of
the time parameters in EV discharging periods are similar to
Equation (13).

Furthermore, the discharging power via V2H connection
(P EV,d,v2h

k̂,t
) cannot exceed the rated power (P EV,rated

k̂
) nor the

actual power required of the household (P act
k̂,t

) as it is shown in
constrain (16). Constraint (17) is similar to (16). However, P act

k̃,t
represents the actual load demand of the neighbor household
which receives the power assistance from the EV household
via V2N connection. Besides, as shown in constraint (18),
the EV charging and discharging are not allow to operate
simultaneously for the purpose of protecting the EV battery
from damage.

C. Energy Trading Model in Neighborhood

The proposed EVs assisted NES model ensures the energy
trading in neighborhood via V2H and V2N connections.
However, it is necessary to declare key points of the trad-
ing contract in neighborhood which is shown as follows in
advance.
(1) The EV energy will be provided to satisfy the power

demand of the household which owns the EV in priority .
(2) After (1), the surplus EV energy will be used to supply

the households which are not equipped with any energy
storage units (e.g., EVs.) in priority .

(3) If multiple EVs have surplus energy, the EV with the most
energy reserve will be adopted to assist neighbors’ power
demand in priority .

(4) The allocation of the EV energy will follow the principle
of maximizing the benefits of the EV provider.

In addition to these, BNES
k̂

and BNES
k̃

are proposed to
describe the obtained benefits of the households who sold EV



energy and received energy assistance, respectively, via NES
model. Hence, BNES

k̂
and BNES

k̃
can be formulated as follows.

BNES
k̂

= θ% · (Cdmd
k̃

− CEV,c
k̂

) (19)

BNES
k̃

= (1− θ%) · (Cdmd
k̃

− CEV,c
k̂

) (20)

subject to:
Cdmd

k̃
− CEV,c

k̂
> 0 (21)

where Cdmd
k̃

is the cost for electricity demand without EV
sharing within a none EV household and CEV,c

k̂
is the cost

for EV charging of the energy sharing part. θ is a profit
distribution parameter and normally θ% = 0.5, which means
the participants in energy trading share the profits equally.
The energy transaction via NES model occurs only when it is
profitable as shown in Equation (21). Obviously, this type of
EVs based energy sharing model is beneficial for the trading
participants in both sides.

The objective of this work as shown in Equation (22) is to
minimize the total daily cost for energy usage of the residential
network as well as shaping the load to a proper level in peak
demand time. The mixed-integer linear programming (MILP)
which is the most appropriate technique has been used to
obtain the optimal solution.

Minimize TC =

∫ Tterm

Tin

Wgrid · Ptariff · d(t) (22)

where Wgrid represents the total energy bought from the power
grid in time period [Tin, Tterm] and Ptariff is the real-time
electricity prices.

IV. CASE STUDY

This section proposes a case study to evaluate the feasibility
of the proposed approach in terms of saving electric bills and
alleviating the load burden in peak demand time simultane-
ously.

A. Simulation Setup

In the case study, the selected time interval for the opti-
mization is set as 3 minutes. The adopted multi-household
network is assumed to comprise 5 households for convenience.
For each household, over 15 types of common used domestic
appliances covering both shiftable and nonshiftable scenarios
are accounted. However, it has been proved that the proposed
approach is also valid for a larger scale of households.

In addition to these, the ε parameter which is used to
indicate the scheduling priority of the shiftable appliances
(e.g., hot water tank, dish-washing machine, washer, etc.),
is randomly selected to simulate various circumstances. The
objective scheduling time for the shiftable appliances is set
between 5 p.m. to 12 p.m. according to users’ preferences.

Moreover, as not all the users are able to purchase an
electrical vehicle, only 3/5 of the households are assumed to
be equipped with EVs to support the neighbor energy sharing.
For each EV device, a battery capacity of 35 kWh is employed.
The charging and discharging (via V2H and V2G) efficiencies

are all considered to be 0.95 for convenience. The minimum
remaining energy in EV is restricted to 10% of the battery
capacity to avoid the deep discharging. Besides, the parameters
about the EV status, time of arriving (ToA), time of leaving
(ToL), charging rate (CR), discharging rate (DCR) and energy
remaining of arriving home (ERoA) of the specific EV within
each household, are given in Table I.

TABLE I
ELECTRICAL VEHICLE PARAMETERS SPECIFICATION

Parameters House #1 House #2 House #3 house #4 House #5

EV Status Active Active Active Disable Disable

ToA (1st day) 5 p.m. 6 p.m. 7 p.m. - -

ToL (2nd day) 8 a.m. 9 a.m. 10 a.m. - -

CR (kW) 7.5 6.5 5.5 - -

DCR (kW) 3.5 3 2.5 - -

ERoA (kWh) 26 24 22 - -

In this case, the basic household load data is provided by
[4] and the UK dynamic pricing data of a typical day can be
found in [14]. The simulation results are also compared with
the literature DR programs [4], [13].

B. Results

Fig. 2 presents the overall load shaping results by using
different DR programs. We assume that the threshold of the
overall load demand is 25 kW. Specifically, it can be seen
that the LSC DR program can slightly alleviate the load
burden, particularly around 9 p.m., since limited appliances
are scheduled and none of EVs are adopted in the LSC DR
program. However, the load shaping performances of using
EVs without and with NES in (c) and (d), respectively, are
better than the results in (a) and (b). The load demand of
the entire network in both (c) and (d) has remained below the
threshold apparently due to the EVs discharging contributions.

In addition, compared with the load distribution in (c), the
load demand in (d) approaches to a lower level in peak time
around 7 p.m. to 9 p.m. This is because the households without
EVs received the energy assistance from neighbors via V2N
so that the overall load demand on the grid decreases. As
a consequence, it is obvious to see that the EVs take more
time to charge the batteries in off-peak time for the usage
of the 2nd day. Moreover, since the EVs plays a great role
in power transaction within the network, the real-time energy
remaining variations of EVs (#1, #2 and #3) at parking station
are illustrated in Fig. 3.

In terms of the daily electricity cost, the proposed approach
has more benefits compared with the literature DR programs as
shown in Table II. Apparently, the proposed DR with an EVs
assisted NES model performs the best with the lowest cost in
the comparison for all cases. Specifically, as the house #1 does
not participate in the energy trading in neighborhood due to
the lower distributing priority, there is not any cost difference
between using EVs with and without NES. Nonetheless, as
the energy providers in the transaction, the costs of house #2
and house #3 are reduced by 47.3% and 46.1%, respectively,
by adopting the EVs assisted NES model compared with



the original cost. Additionally, about 10.5% and 7.4% cost
reduction can be achieved compared with the method of using
EVs without NES. On the other side of the trading, house
#4 and house #5 that are not equipped with EVs also obtain
the benefits from the energy sharing. About £0.24 and £0.32
which are equivalent to 10.4% and 13.7% cost saving can
be gained during the transaction for house #4 and house #5,
respectively.
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Fig. 2. Overall load shaping results by using different DR programs. The
load profiles of (a) without DR; (b) by LSC DR; (c) by EV without NES DR;
(d) by EV assisted NES DR.
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TABLE II
DAILY COST (£) COMPARISON BY ADOPTING DIFFERENT DR PROGRAMS .

Methods House #1 House #2 House #3 House #4 House #5

Original 3.15 3.55 3.88 2.31 2.34

LSC 3.09 3.49 3.73 2.24 2.26

EVs without NES 1.83 2.09 2.30 - -

EVs assisted NES 1.83 1.87 2.13 2.07 2.02

In an overview, for this selected residential community
including 5 individual households, the total payment saving
is about £5.31 which is equivalent to 34.9% in this case.
Obviously, the adopted EVs based NES model is benefit for
the energy trading participants on both sides and significant
improvements can be achieved comparing with the literature
DR programs.

V. CONCLUSION

In this work, a DR strategy considering an EVs assisted NES
model has been studied. The effectiveness of the proposed
methodology has been verified by numerical results, which
demonstrates that the load can be significantly shaped to an
appropriate level and the daily electric cost of the entire
network can be reduced by 34.9%. On the basis of the achieved
results, we can conclude that the proposed DR strategy is an
energy-efficient tool and can fulfill the tasks of load balancing
and saving bills for the multi-household network.
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