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Wei Yia,∗, Lingzhi Fua, Ángel F. Garcı́a-Fernándezb,c, Luxiao Xua, Lingjiang Konga

aSchool of Information and Communication Engineering, the University of Electronic Science and Technology of China
bDepartment of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, United Kingdom

cARIES Research Center, Universidad Antonio de Nebrija, C\ Pirineos 55, Madrid 28015, Spain

Abstract

This work considers the underwater tracking of an unknown and time-varying number of targets, i.e., acoustic emitters, using
passive array sonar systems. This problem becomes more challenging if the signal-to-noise ratio (SNR) of the acoustic emitter
is low. To address this problem, a complete particle filter track-before-detect (PF-TBD) signal processing procedure is especially
developed for the passive array sonar systems. Specifically, in order to enhance the detection performance of the low SNR targets,
the unthresholded spectrum measurements after the beamforming of the acoustic signals are directly used as the inputs of the
PF-TBD method. To better model the statistical characteristics of the spectrum measurements, a data fitting based parameter
estimation algorithm is proposed to build accurate likelihood functions. Then the joint multi-target probability density (JMPD) can
be recursively propagated forward by particle filtering to estimate the multi-target states. To accommodate the time-varying number
of targets, the trajectory initiation and termination strategies are also integrated into the filtering process by adaptively adjusting the
state dimensions of the JMPD at each measurement time. Finally, the efficacy of the proposed PF-TBD method is demonstrated
both in simulation and on collected real-world data.
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1. Introduction

Passive sonar array systems have attracted much attention
in underwater detection and tracking due to their remarkable
covertness, anti-jamming capability [1, 2], and also the par-
ticularity of propagation medium in the marine environmen-
t [2, 3]. In general, acoustic sensors are hull-mounted arrays
and the common examples are towed linear arrays [4, 5] as is
shown in Fig. 1. In the past years, acoustic source tracking
with hydrophone array has been widely studied and applied in
many important scenarios, such as underwater vehicle naviga-
tion, military defense and ocean biological signal analysis [2].

Since common passive array sonar systems can only provide
bearing measurements, the underwater target tracking based on
passive array sonar is usually formulated as bearing-only track-
ing (BOT) [6–9] problems. Correspondingly, a number of ap-
proaches have been proposed [10–14]. Such classical track-
ing methods adopt thresholded bearing measurements after de-
tection process, which is known as detect-before-track (DBT)
method. Exciting developments with DBT based underwa-
ter tracking have been advocated by various studies [15–21].
Specifically, a joint probabilistic data association filter (JPDAF)
is implemented in sonar application, which updates each track
with points weighted by the corresponding association proba-
bilities [15]. In [16], the generalized Kalman filtering method
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is applied to underwater target tracking successfully. To re-
duce the tracking errors in BOT problem, a novel estimator
is proposed through pre-processing the obtained bearings [17].
Moreover, because of the nonlinear relationship between bear-
ing measurements and states of targets, particle filters (PFs)
have also been applied in BOT problems [18, 19], especially
for underwater acoustic target tracking [20–22], for its remark-
able performance in nonlinear and non-Gaussian systems.

However, with the development of acoustic concealment
technology [23], detecting and tracking targets with low signal-
to-noise ratio (SNR) has become an urgent problem. The a-
coustic signals of interest are distorted by ambient noise and
are more likely to be undetected using the conventional DBT
method because much of the information contained in the mea-
surements is irreversibly discarded after the thresholding pro-
cess.

To address the target tracking problem in low SNR situation-
s, track-before-detect (TBD) methods can be employed [24].
The main feature is that the tracker processes the entire raw
measurements with intensities rather than just thresholded ex-
ceedances [25–27]. Recently, particle filter based track-before-
detect (PF-TBD) for underwater multi-target tracking (MTT)
has been studied [28–30]. Specifically, a Bayesian approach
for multi-target tracking is implemented using bearing measure-
ments [28], assuming both the number of targets and the form of
likelihood distribution are known. To adapt the multi-path en-
vironments, an auxiliary PF-TBD method is proposed in [29],
in which a robust multivariate Laplace distribution for likeli-
hood is considered. More recently the investigations of PF-
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TBD methods also includes other applications, such as speech
source tracking [31] and passive bistatic radars (PBR) [32].

Due to the special characteristics and complexity of the un-
derwater environment, the acoustic target tracking using pas-
sive array sonar is still a challenging task, especially when the
target SNR is low. This work also considers the underwater
acoustic target tracking problem and proposes a complete PF-
TBD signal processing procedure. To enhance the tracking per-
formance in low SNR environment, the unthresholded spectrum
measurements after the beamforming of the acoustic signals
are directly used as the inputs of the PF-TBD method. The
important modules include frequency domain processing, the
generation of bearing measurements, the particle filtering based
propagation of the joint multi-target posterior density (JMPD)
[33, 34], the data fitting based likelihood construction, and the
trajectory initiation and termination modules. To the best of our
knowledge, such a complete PF-TBD procedure especially de-
veloped for passive array sonar systems has not been seen in the
existing relevant studies [25–29].

In order to better model the statistical characteristics of spec-
trum measurements, we propose a data fitting based estimation
algorithm to build accurate likelihood functions. Existing PF-
TBD methods applied in passive underwater tracking usually
assume that the measurement likelihood function is known with
a fixed form [28–30]. However, the practical underwater en-
vironment is complicated and changeable, simply assuming a
specific likelihood model may not ensure an acceptable per-
formance due to model mismatch between the actual statisti-
cal characteristics of real data and the assumed likelihood func-
tions. We also remark that the random finite set (RFS) methods
available in the literature with unknown likelihood [35–38] deal
with MTT based on detections measurements, not the unthresh-
olded raw measurements in TBD problem. In this paper, we use
JMPD to perform target state estimation with multiple targets
but the proposed approach could be used with RFS theory 2.

With the formulated likelihood function, then the JMPD can
be propagated forward to recursively estimate the target states.
Since the system models is highly non-linear and non-Gaussian,
particle filtering is used to approximate the JMPD. Further, to
accommodate the time-varying number of targets, the trajectory
initiation and termination strategies are also integrated in the
filtering process by adaptively updating the state dimensions of
the JMPD at each measurement time.

In the simulation examples, we provide extensive perfor-
mance studies of the proposed method, including the effect
of three different beamforming methods and the performance
comparison with the Kalman based DBT method [6, 8] and the
Gaussian mixture probability hypothesis (PHD) filter [41]. Fi-
nally, the efficacy of the proposed method is tested on experi-
mental data.

This work is an extension of a previous conference paper [30]
with a more complete algorithm development and enhanced
performance studies. The rest of the paper is organized in the
following manner. The system models are given in Section 2.

2Note that, as [39], the JMPD could have written with RFS notation follow-
ing the equivalences in [40].

In Section 3, we develop a complete PF-TBD signal processing
framework for passive array sonar systems, including frequency
domain processing, generating of bearing measurements, parti-
cle filtering based propagation of JMPD, the data fitting based
likelihood construction, and the trajectory initiation and ter-
mination modules. In Section 4, the efficacy of the proposed
method is illustrated both in simulation and on collected real-
world data. Finally, we draw the conclusions in Section 5.

2. System Models

2.1. Narrow-band Signal Model

The goal of this work is to derive an effective method to de-
tect and track multiple moving acoustic emitters, especially in
low SNR conditions, using a passive array system. At contin-
uous time t, there are Lt ≥ 0 acoustic emitters moving in the
surveillance area, and sensed by a hydrophone array with M
elements. The l-th, l = 1, 2, . . . , Lt, acoustic emitter is located
at bearing θt

l , moving with a bearing velocity θ̇t
l (in rad/s), and

transmitting a narrow-band acoustic signal. Let xt
l = [θt

l θ̇
t
l]
′

denote the state of the l-th target at time t. Then, the multi-
target state is the concatenation of the individual target states,
namely Xt =

[
[xt

1]′, [xt
2]′, . . . , [xk

Lt
]′
]′

with ′ denoting matrix
transpose. We also denote the multi-target bearing vector as
θt =
[
[θt

1], [θt
2], . . . , [θt

Lt
]
]′

.
We assume that the emitters are in the far field of the ar-

ray. As shown in Fig. 1, we consider a uniform linear ar-
ray (ULA) system. Regarding the l-th acoustic emitter, the
narrow-band signal received by the first element is denoted as
ỹ1

l (t) = sl(t)e jwlt + v1(t), where sl(t) is the complex envelope,
ωl denotes the carrier angular frequency of the received signal
from the l-th emitter and v1(t) denotes the inevitable received
additive noise. Then the corresponding signal received by the
m-th, m = 1, 2, . . . ,M, element can be written as

ỹm
l (t) = sl(t − τm(θt

l))e
jωl(t−τm(θt

l)) + vm(t), (1)

where τm(θt
l) denotes the propagation delay between the first

and the m-th element, and vm(t) is the noise received by m-
th element. For the linear array with elements separated by
d, τm(θt

l) = (m − 1)τ(θt
l) = (m − 1)d sin θt

l/c, where c de-
notes the propagation speed of acoustic wave in water area and
τ(θt

l) = d sin θt
l/c represents the propagation time delay between

each element. With respect to the assumption that the acoustic
signal is narrow-band, the complex envelope sl(t) is slowing
time-varying comparing to the carrier e jwlt. According to the
standard narrow-band assumption in the array processing [42],
the array aperture is much less than the inverse relation band-
width. Then we can write

sl(t) ≈ sl(t − τm(θt
l)),m = 1, 2, · · · ,M. (2)

It means that the difference in complex envelope of signals
received by each array element at the same sampling time can
be ignored. Then (1) can be rewritten as

ỹm
l (t) ≈ sl(t)e jωlte− jωlτ

m(θt
l) + vm(t). (3)
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Figure 1: Model of signal received by a uniform linear array in a towed passive
sonar system. The acoustic emitter at bearing θt

l is sensed by a hydrophone
array with M elements separated by d.

Further define spatial phase as φt
l = ωlτ(θt

l), then the array out-
put vector is modeled as

ỹl(t) = a(θt
l)sl(t)e jωlt + v(t), (4)

where ỹl(t) = [ỹ1
l (t) ỹ2

l (t) . . . ỹM
l (t)]′ denotes the received signal

vector, a(θt
l) = [1 e− jφt

l · · · e− j(M−1)φt
l ]′ denotes steering vector

and v(t) = [v1(t) v2(t) · · · vM(t)]′ is the noise vector. In gen-
eral, the complex carrier e jωlt does not carry any useful infor-
mation and only complex baseband signals are considered [42].
Then, the discrete time complex baseband signal of (4) can be
expressed as

yl(k) = a(θk
l )sl(k) + v(k), (5)

where the discrete time variable k means the k-th sample time,
namely time t = k · T with T the time interval between two
consecutive time steps.

Next if we jointly consider the Lk acoustic emitters with in-
cident angles θk

1, θ
k
2, · · · , θ

k
Lk

, the matrix form of (5) can be ex-
pressed as [42],

y(k) = A(θk)s(k) + v(k), (6)

where

A(θk) = [a(θk
1) a(θk

2) · · · a(θk
Lk

)]

=


1 1 · · · 1

e− jφk
1 e− jφk

2 · · · e− jφk
L

...
...

. . .
...

e− j(M−1)φk
1 e− j(M−1)φk

2 · · · e− j(M−1)φk
Lk


(7)

denotes an M × Lk signal steering matrix and s(k) =

[s1(k) s2(k) · · · sLk (k)]′ is the vector of the Lk discrete signals.
Note that v(k) represents the vector of unknown additive noise,
which is independent of the signal and represents the effect of
undesired signals, such as thermal noise or interference from
the underwater environment.

2.2. Sonar Measurement Model

A challenging aspect of underwater MTT using passive sonar
arrays is the creation of a measurement function/pre-processing
suitable for TBD implementation. Beamforming is a classic
technique in array signal processing. A beamformer combines

1V

2V

bV

BV
hydrophone

surveillance area

received signal

target

Figure 2: The surveillance area is divided into B bearing units.

the collected array data y(k) linearly with the beamforming
weights, and enhances the signal from the desired spatial direc-
tion and reduces the signals from other directions. As shown
in Fig. 2, we divide the surveillance area into B bearing cells
denoted as V1,V2, · · · ,VB and the bearing resolution is deter-
mined by the array aperture Md. For the b-th (b = 1, 2, . . . , B)
cell, the corresponding measurement zk

b at time k is the beam-
former output of that bearing direction after processing the re-
ceived array signal y(k). The measurements of all bearing cells
at time k are collected as zk = {zk

b, b = 1, 2, . . . , B}. In addition,
Z1:k represents the received measurements up to time k, i.e.,
Z1:k = {zi, i = 1, 2, · · · , k}. To keep as much as possible use-
ful target information, the raw, unthresholded measurements zk

will be used as the inputs of the subsequent TBD algorithm. In
principle, array data y(k) can also be used as the input of a TBD
algorithm, but we use zk as the input because it has a more di-
rect relation with the target angle and, therefore, simplifies the
processing chain.

Let h(·) denote a certain mapping function between the re-
ceived array signal y(k) and the bearing measurement zk after
beamforming. For the direction cell Vb, its beamformer output
zk

b can be expressed as

zk
b = h(y(k),Vb). (8)

Note that function h(·) directly affects the properties of the gen-
erated bearing measurement zk

b. We propose and analyse three
classical beamforming methods to determine function h(·) in
Sections 3 and 4.

Given the multi-target state vector Xk, measurements in each
cell at this time step are assumed to be independent. For a
multi-target state vector Xk, let Vb(Xk) ≥ 0 denote the num-
ber of emitters transmitting signals in the b-th direction cell.
The likelihood function can then be written as

p(zk |Xk) =

B∏
b=1

`(zk
b; Vb(Xk)), (9)

where `(zk
b; Vb(Xk) denotes the measurement density for the b-

th direction cell occupied by the Vb(Xk) targets. Note that the
multi-target state Xk affects zk by first affecting y(k) through
(6), since the steering matrix A(θk) is the function of emitter
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bearing angular. If Vb(Xk) = 0, `(zk
b; Vb(Xk) = 0) represents

the measurement density of background noise and interference.
If Vb(Xk) > 1, it means there are more than one emitter trans-
mitting signals in the b-th bearing direction. In that case, the
signals from all the Vb(Xk) emitters will contribute to the b-th
bearing measurement zk

b after beamforming through (8). This
will be seen more clearly in Section 3.2 where we will briefly
review three classical beamforming methods.

Existing TBD works for underwater tracking usually assume
that the measurement density `(zk

b; Vb(Xk)) is known with a
specific form [28–30], e.g., Gaussian or Rayleigh distributed.
However, the practical underwater environment is complicated
and changeable. As indicated in (6), v(k) is the combination of
the thermal noise and unknown interference from the underwa-
ter environment. Simply assuming a specific likelihood model
may not ensure an acceptable performance due to model mis-
match between the actual statistical characteristics of real data
and the assumed likelihood functions. In Section 3.4, a data fit-
ting based parameter estimation algorithm will be proposed to
build an accurate form of `(zk

b; Vb(Xk)).

2.3. Emitter Motion Model

The emitters are assumed to move independently. Since the
bearing motion of the underwater emitter is usually slow and
with small maneuver, here we assume that the evolution of the
states p(xk

l |x
k−1
l ) follows the nearly constant velocity (CV) mo-

tion model on the angular space and then the individual target
evolves according to [6]

xk
l = Fxk−1

l + wk
l , (10)

where F is the state-transition matrix given by

F =

[
1 T
0 1

]
, (11)

where T denotes the time interval between two consecutive time
steps and wk

l is the process noise with covariance matrix

Q = κ ×

[
T 3/3 T 2/2
T 2/2 T

]
, (12)

where κ is the process noise intensity.

3. Algorithm Development

Based on the aforementioned models, we propose a complete
PF-TBD signal processing procedure for underwater multi-
target tracking in passive array sonar systems. The flowchart
of this procedure is shown in Fig. 3. It can be seen that the in-
put of the procedure is the wide-band array acoustic signal y(k)
received by the hydrophones, and the output is the estimated
multi-target state. The important steps include frequency do-
main processing, the generation of bearing measurements, the
particle filtering based propagation of JMPD, the data fitting
based likelihood construction, and the trajectory initiation and
termination modules.

3.1. Frequency Domain Processing for the Wide-band Signal
The signal model in Section 2.1 is valid under the assump-

tion that the signal is narrow-band. However, in practical
passive sonar system, the received signals are usually wide-
band [42]. If we consider the Lk wide-band acoustic signals
sw(k) = [sw

1 (k) sw
2 (k) · · · sw

Lk
(k)]′ with corresponding bearing

θk
1, θ

k
2, · · · , θ

k
Lk

. The received discrete time signal vector can be
written as yw(k) = [y1

w(k) y2
w(k) · · · yM

w (k)]′, with signal received
by the m-th, m = 1, 2, . . . ,M, array element expressed as

ym
w(k) =

Lk∑
l=1

sw
l (k − τm(θk

l )) + vm
w(k), (13)

where vm
w(k) denotes the unknown and wide-band additive

noise. Note that approximation sw
l (k) ≈ sw

l (k−τm(θk
l )) no longer

holds for the wide-band model (13) as that for the narrow-band
model in (1). To address this problem, frequency domain pro-
cessing is adopted to split the received signal into several s-
mall frequency bins in frequency domain. The signals in each
of these frequency bins can be treated as narrow-band signals
which implies that the results in Section 2.1 can be applied.

In the following, we briefly introduce the steps for frequen-
cy segmenting. Consider the latest N snapshots of the received
wide-band signal yw(k). Divide the N snapshots into Ñ seg-
ments, each of which contains Q = N/Ñ snapshots. Perform
the Q-point Fast Fourier Transform (FFT) in each segments and
then the wide-band signal is decomposed into Q narrow-band
signals with non-overlapping frequencies.

Based on the narrow-band results in Section 2.1, the frequen-
cy domain expression of the narrow-band signal for the q-th,
q = 1, 2, · · · ,Q, frequency bin of the ñ-th, ñ = 0, 1, . . . , Ñ − 1,
segment is,

ym
w( fq, ñ) =

Lk∑
l=1

am( fq, θk
l )sw

l ( fq, ñ) + vm
w( fq, ñ). (14)

where sw
l ( fq, ñ) and vm

w( fq, ñ) denote, respectively, the signal and
noise frequency intensities, and am( fq, θk

l ) = e− j(M−1)φk
l ( fq) with

φk
l ( fq) = 2π fqd sin θk

l /c. Similar to the results of the narrow-
band model in Section 2.1, the vector form of (14) can be ex-
pressed as

yw( fq, ñ) = A( fq, θk)sw( fq, ñ) + vw( fq, ñ). (15)

where

yw( fq, ñ) = [y1
w( fq, ñ) y2

w( fq, ñ) · · · yM
w ( fq, ñ)]′

sw( fq, ñ) = [sw
1 ( fq, ñ) sw

2 ( fq, ñ) · · · sw
L ( fq, ñ)]′

vw( fq, ñ) = [v1
w( fq, ñ) v2

w( fq, ñ) · · · vM
w ( fq, ñ)]′

A( fq, θk) = [a( fq, θk
1) a( fq, θk

2) · · · a( fq, θk
L)]

a( fq, θk
l ) = [1, a2( fq, θk

l ), · · · , aM( fq, θk
l )]′.

(16)

Further, based on the received signal snapshots, the correla-
tion matrix of the received signal at frequency fq can be approx-
imately estimated by time averaging as [42]

R̂( fq) =
1
Ñ

Ñ∑
ñ=1

yw( fq, ñ)(yw( fq, ñ))H . (17)
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Figure 3: Architecture of the proposed PF-TBD. It consists two block diagrams, i.e., array signal processing for raw bearing measurements generating and PF stage
for state estimation.

The estimated correlation matrix R̂( fq) describes the statistical
characteristics of the underwater environment at frequency fq,
and will be used in the subsequent beamforming process.

Once the wide-band signal is decomposed into Q narrow-
band signals, then the information from different frequency seg-
ments can be combined for further signal processing through
the incoherent signal-subspace method (ISM) [43] or coherent
signal-subspace method (CSM) [44].

3.2. Bearing Measurements Generation

The common approach to carry out space-time processing of
array signals is beamforming [42, 45], in which the signal re-
ceived by the hydrophones is delayed and added together with
proper coefficient. Here, we adopt the ISM method [43] to solve
the beamforming problem for the wide-band signal. Its main
idea is to first perform narrow-band beamforming for each fre-
quency bin separately, then sum up the power spectrums of all
frequency bin incoherently. To study the impact of different
bearforming methods on the subsequent tracking performance,
we give the specific forms of the function h(·,Vb) in (8) for three
classical beamformers.

3.2.1. Conventional beamforming (CBF)
CBF is a common spectral analysis method, which shows

superior performance in isotropic and homogeneous noise [46].
As mentioned in Section 2.2, the unthresholded outputs of CBF
are directly used in the subsequent TBD processing.

Given the received wide-band signal yw(k), the outputted
measurement at bearing Vb is the summation of the overall pow-
er of all Q frequency bins,

zk
b = hCBF(yw(k),Vb) =

Q∑
q=1

PCBF(yw( fq, k),Vb), (18)

where PCBF(yw( fq, k),Vb) the power spectrum of the q-th fre-

quency bins for bearing cell Vb is given by [46],

PCBF(yw( fq, k),Vb) = (a( fq,Vb))H

× E[yw( fq, k)(yw( fq, k))H]a( fq,Vb)

= (a( fq,Vb))HR̂( fq)a( fq,Vb),
(19)

where E(·) denotes the statistical expectation, the superscript
(·)H is the conjugate transpose, and a( fq,Vb) denotes the weight
vector for the bearing Vb.

3.2.2. Minimum variance distortionless response (MVDR)
MVDR is a high resolution beamforming algorithm [47].

It keeps the signal of observation direction without distortion,
while minimizes the average power of output signal. Thus, the
direction observation of other signals is inhibited and the signal-
to-noise ratio of the array output is maximized.

The outputted measurement of MVDR at bearing Vb is also
the summation of the overall power of all Q frequency bins,

zk
b = hMVDR(yw(k),Vb) =

Q∑
q=1

PMVDR(yw( fq, k),Vb), (20)

with PMVDR(yw( fq, k),Vb) the power spectrum output of the q-th
frequency bins for bearing cell Vb, and can be calculated as,

PMVDR(yw( fq, k),Vb) =
1

(a( fq,Vb))HR̂( fq)−1a( fq,Vb)
. (21)

3.2.3. Multiple signal classification (MUSIC)
The above two algorithms are based on the power of the out-

put signal. The core of MUSIC is to decompose the covariance
matrix of input data, and construct the signal subspace and the
noise subspace with the eigenvectors [48]. Then, the spectrum
can be constructed according to the orthogonality of these two
subspaces.

The outputted measurement of MUSIC at bearing Vb is the
summation of the outputs of all Q frequency bins,

zk
b = hMUSIC(yw(k),Vb) =

Q∑
q=1

PMUSIC(yw( fq, k),Vb), (22)
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with PMUSIC(yw( fq, k),Vb) the output of the q-th frequency bins
for bearing cell Vb, and is constructed as

PMUSIC(yw( fq, k),Vb)

=
1

(a( fq,Vb))HĜ( fq)(Ĝ( fq))Ha( fq,Vb)
(23)

where Ĝ( fq) denotes the noise subspace obtained by calculating
the eigenvalue decomposition of R̂( fq) [48]. Note that the out-
putted result by MUSIC is not a true spectrum, and is usually
called a pseudo spectrum.

Overall, the mapping function h(·,Vb) mentioned in (8) is im-
plemented by array signal processing and the bearing measure-
ment at the cell Vb is generated. Calculate the bearing measure-
ments of all units V1 ∼ VB, the spectrum measurement frame
of time k are generated, i.e., zk = [zk

1, . . . , z
k
B]. Then sort the s-

patial spectrum in chronological order, the bearing-time record
(BTR), i.e., Z1:k, is generated which is the standard method to
display sonar data.

3.3. Particle Filter based Multi-target Tracking

The aim of this section is to estimate the multi-target state
Xk =

[
[xk

1]′, [xk
2]′, . . . , [xk

Lk
]′
]′

, which implicitly includes an es-
timate of the number Lk of targets, based on the unthresholded
beamformer outputs Z1:k. From a Bayesian perspective, this can
be done by recursively calculating the posterior density function
p(Xk |Z1:k), i.e., the joint multiple probability density (JMPD)
[33, 34]. In principle, the JMPD can be obtained in two stages:
prediction and update.

Suppose that the JMPD p(Xk−1|Z1:k−1) at time k − 1 is avail-
able. The prediction stage involves with the motion model (10)
and the Chapman-Kolmogorov equation

p(Xk |Z1:k−1) =

∫
p(Xk |Xk−1)p(Xk−1|Z1:k−1)dXk−1, (24)

where p(Xk |Xk−1) =
∏Lk

l=1 p(xk
i |x

k−1
i ) is the evolution of the

multi-target state defined by the motion model (10). Then, the
update equation can be obtained via Bayes’ rule

p(Xk |Z1:k) =
p(zk |Xk)p(Xk |Z1:k−1)

p(zk |Z1:k−1)
, (25)

where p(zk |Xk) is the likelihood function defined in (9), and
p(zk |Z1:k−1) is the normalized constant.

Since the system models are non-linear and non-Gaussian,
particle filter [49] is adopted to approximately estimate the JM-
PD. The key idea is to approximate the required JMPD by a
set of weighted samples drawn sequentially from an impor-
tance density. Assume the availability of evenly weighted sam-
ples {Xk

j}
Np

j=1, where integer Np denotes the sample size, rep-
resenting the posterior at time k − 1. In MTT context, the
multi-target particles are partitioned into multiple partitions as
Xk

j =
[
[xk

1, j]
′, [xk

2, j]
′, . . . , [xk

Lk , j
]′
]′

, and the l-th partition {xk
l, j}

Np

j=1
holds the corresponding sub-particles for the l-th target.

Following [50], assume posterior independence between
each target at time k − 1 and applying Bayes rule, the JMPD
at time k can be approximately expressed as

p(Xk |Z1:k) ∝ p(zk |Xk)
Lk∏
l=1

Np∑
j=1

p(xk
l |x

k−1
l, j ). (26)

The analysis in [50] shows that assuming the above posterior
independence can provide a better Monte Carlo approximation
of the prior distribution at the next time, and therefore the pos-
terior at the next time, independently of the sampling method is
performed.

By employing the idea of the auxiliary particle filter [51],
drawing samples from (26) can be equally achieved by sam-
pling from the higher dimensional joint density

p(Xk,u|Z1:k) ∝ p(zk |Xk)
Lk∏
l=1

p(xk
l |x

k−1
l,ul

). (27)

where the vector u = [u1, . . . , uLk ] of auxiliary variables are
indices on the samples at the previous time [34, 50, 51]. To be
specific, ul is the index of the sample from which the lth target
will be propagated. The auxiliary variables aid in the sampling
of suitable values of the multi-target state Xk, and are discarded
after the sampling procedure is completed.

Multi-target state Xk
j and vector u j are drawn, for j =

1, . . . ,Np, from an importance density q(·) and weighted as

ωk
j ∝

p(zk |Xk
j)
∏Lk

l=1 p(xk
l, j|x

k−1
l,ul, j

)

q(Xk
j,u j|Z1:k)

, (28)

Finally, normalization is applied to ensure the summation of
weights is one. By designing different importance densities q(·),
various particle filters for MTT have been proposed [33, 34, 39,
50]. Here we adopt the parallel partition particle filter method
[39], since it is computationally efficient and can provide good
tracking performance when targets are in close proximity. In
this case, the importance density has the following expression,

q(Xk,u|Z1:k) ∝
Lk∏
l=1

p(zk |X̂k
{1,...,Lk}/l, x

k
l )p(xk

l |x
k−1,ul
l ) (29)

where X̂k
{1,...,Lk}/l

denotes the estimated target states of all ex-
cept the lth target, and is obtained by averaging the predict-
ed states over all the particles. The multi-target likelihood
p(zk |X̂k

{1,...,Lk}/l
, xk

l ) is named as the first-stage weight. By em-
ploying this joint likelihood, parallel partition PF is able to
account for the presence of nearby targets in a computation-
ally efficient and generally applicable manner. Recall (9),
p(zk |X̂k

{1,...,Lk}/l
, xk

l ) can be calculated as

p(zk |X̂k
{1,...,Lk}/l, x

k
l ) =

B∏
b=1

`(zk
b; Vb(X̂k

{1,...,Lk}/l, x
k
l )), (30)

Substitution of (29) and (30) into (28), the unnormalized par-
ticle weights, which are also referred to as second-stage weight-
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s, are computed as

ωk
j ∝

p(zk |Xk
j)∏Lk

l=1
∏B

b=1 `(z
k
b; Vb(X̂k

{1,...,Lk}/l
, xk

l ))
. (31)

After normalizing the second-stage weights to sum to one over
j = 1, . . . ,Np, the JMPD can be approximated by

p(Xk |Z1:k) ≈
Np∑
j=1

ω̃k
jδ(X

k − Xk
j), (32)

with

ω̃k
j =

ωk
j∑Np

j=1 ω
k
j

(33)

where δ(·) is the Dirac delta. Overall, the JMPD can be obtained
by recursively implementing (26)-(33). However, the following
two problems still need to be addressed:

• Specific form of likelihood function: The form of measure-
ment density `(zk

b; Vb(Xk)) need to be specified when com-
puting JMPD. In the existing literature, the densities are
usually assumed to be Gaussian or Rayleigh distributed.
However, due to the complexity of the practical underwa-
ter environment, such statistic models may not be accurate
and possibly lead to performance degradation.

• Unknown and time varying number of targets: Note that
in (26)-(33), the dimension of the multi-target state Xk in
JMPD is always fixed. That means the number of targets
is invariant during the filtering process. However, in real-
world problems targets may appear or disappear at any
time in surveillance area, which means the dimensions of
Xk should also be time-varying rather than fixed.

The above problems will be discussed in the subsequent Sec-
tions 3.4 and 3.5, respectively.

3.4. Data Fitting based Likelihood Function Construction

In order to obtain proper forms of the likelihood functions, a
data fitting based parameter estimation algorithm is proposed.
By comparing the fitness between the empirical distribution of
the measured data and candidate distributions with adjustable
parameters, the best fitting distribution model with optimized
distribution parameters is employed as the specific form of the
likelihood function.

3.4.1. Data fitting criteria
Let zb,[i], i = 1, 2, · · · ,Ns denote a set of measurement sam-

ples after beamforming for bearing cell Vb. It should be noted
that the statistical characteristics of `(zk

b; Vb(Xk)) are affected
by the number Vb(Xk) of targets in direction cell Vb. Neverthe-
less, we only need specific models for the two most common
cases, namely noise/interference only case (Vb(Xk) = 0) and
single target case (Vb(Xk) = 1), since the main challenge of
underwater tracking is to accurately differentiate no-target case
and target case especially when signal SNR is low. If there are

more than one target in bearing cell Vb, we use the model that
`(zk

b; Vb(Xk) > 1) = `(zk
b; Vb(Xk) = 1). Given Ns independen-

t measurement samples under a specific hypothesis of Vb(Xk),
the empirical cumulative distribution function (ECDF) can be
expressed as

F̂(z) =
1
Ns

Ns∑
i=1

1z(zb,[i]), (34)

where 1z(zb,[i]) denotes an indicator function

1z(zb,[i]) =

{
1, zb,[i] ≤ z
0, zb,[i] > z . (35)

To quantify the discrepancy between the ECDF F̂(z) and a
certain probability model F(z), the Cramer-von (CV) distance
[52] is employed, which describes the fitness between F(z) and
the empirical distribution of samples. It is defined as

d2
cv = Ns

∫ ∞
0
|F(z) − F̂(z)|2dF(z). (36)

According to [53], the d2
cv can be simplified as

d2
cv =

1
12Ns

+

Ns∑
i=1

|F(zb,(i)) −
2i − 1
2Ns

|2, (37)

where zb,(i) is the i-th sample of the ascending sorted samples,
i.e., zb,(1) ≤ · · · zb,(i) ≤ · · · ≤ zb,(Ns). Given different distribution
functions, the CV distances calculated by (37) are obtained re-
spectively. Hence, the best fitted distribution model and the cor-
responding distribution parameters can be determined by min-
imizing the CV distance, i.e., the specific form of likelihood
function will be obtained.

Consider n candidates of PDF models Fi(z, χi), i = 1, 2, ..., n,
where χi denotes the parameters of the i-th model. Then the
problem of finding a suitable likelihood function becomes the
following optimization problem

(î, χ̂î) = arg min
(i,χi)

(d2
cv(F̂(z), Fi(z, χi))), (38)

The optimization of (38) leads to the best fitting PDF from
all n candidate PDFs. To solve (38), we first optimize the pa-
rameters of each PDF model by minimizing the error defined as
indicated above, i.e., minimizes d2

cv as follows:

χ̂i = arg min
χi∈Ωi

(d2
cv(F̂(z), Fi(z, χi)). (39)

where Ωi is the parameter space of the i-th model and χ̂i denotes
the estimated model parameters.

Then, based on the estimated parameters of n models, the op-
timal likelihood function model will be obtained by minimizing
CV distance

î = arg min
i∈{1,2,··· ,n}

(d2
cv(F̂(z), Fi(z, χ̂i))). (40)
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Table 1: CV distances of each models and beamforming methods.

Noise case
samples Rayleigh Weibull Gamma Lognormal

CBF 747.1729 38.0758 0.9786 1.5843
MVDR 917.2526 45.4666 2.5264 3.2504
MUSIC 974.2690 112.3380 13.3290 25.7140

Target case
samples Rayleigh Weibull Gamma Lognormal

CBF 775.8749 33.0082 4.7781 0.8692
MVDR 884.4308 45.8479 2.1380 3.0683
MUSIC 924.6080 42.2134 6.9893 2.8408

3.4.2. Numerical example

Assume 40 hydrophones are placed in ULA system, and the
distance between each hydrophone is set to d = 0.5m. The pa-
rameters of frequency segmenting are set as: N = 2000 and
Ñ = 100. The sampling frequency is 4000Hz. The working
frequency is 100 ∼ 1000Hz. Here we consider two sets of
measurements samples under two common cases, namely noise
(interference) only case (Vb(Xk) = 0) and single target case
(Vb(Xk) = 1). For Vb(Xk) = 1, the SNR of the received sig-
nal before beamforming is set as −20dB. For Vb(Xk) = 0, only
white Gaussian noise is considered. The measurements samples
are simulated by first generating signals in multiple frequency
segments (100 ∼ 1000Hz) as represented in (15), and then per-
forming wide-band signal beamforming according to Section
3.2. Then Ns = 1000 samples are generated through Monte
Carlo (MC) trials. In addition, we consider four classic likeli-
hood distribution models [54]: Rayleigh distribution, Weibull
distribution, Gamma distribution and Lognormal distribution.

Based on the above-mentioned two sets of samples and four
distribution models, the optimized parameters for each mod-
el can be found by solving (38) and (39). To visualize the
fitting results, the best fitting CDF curves for all distributions
are shown in Fig. 4. It can be seen from the results in Table
1 that the dual-parameter distribution models, such as Gamma
and Lognormal distributions, can better describe the statistical
characteristics of the spatial spectrum measurements than the
usually assumed Rayleigh distribution in terms of much low-
er CV distances, regardless of the beamforming methods used.
This will be seen more clearly in the real-data modeling results
in Section 4.2.

Different from the presumed and fixed likelihood models in
existing PF-TBD works [25–29], the proposed likelihood con-
struction method learns the underwater environment from real
data. In principle, using the proposed method, one can update
the distribution model and optimize the model parameters us-
ing the latest data, at regular intervals, to ensure that they do
not mismatch with the statistical characteristics of actual mea-
surements. It is worth mentioning that although the proposed
method is discussed in the context of array sonar tracking, it is
a general methodology, and can be applied to other scenarios to
address the similar model mismatch problem as well.
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Figure 4: The CDF curves for target and noise cases: (a) and (b) are based on
CBF; (c) and (d) are based on MVDR; (e) and (f) are based on MUSIC.

3.5. Target Initiation and Termination

Generally the number of targets in track is time-varying due
to the birth of new targets, the death of existing targets and
the evolution of surviving targets. The common way to han-
dle time-varying number of targets in particle filtering is to de-
fine an updated version of dynamic model [39], which assumes
that, in addition to the motion model of target states, the evolu-
tion of target number also follows a specific probabilistic mod-
el, e.g., the M/M/∞ birth-death model. In essence, this kind of
probabilistic model characterises the evolution of target num-
ber by assuming several prior probabilistic parameters, such as
the prior arrival rate of new targets, the expected life time of an
existing target. However, in practice it is hard to model the ran-
dom arrivals and disappearances of targets accurately by several
probabilistic parameters.

Here we attempt to circumvent the modeling of the proba-
bilistic characteristics of target number, and propose a simple
and intuitive strategy for the initiation and termination of PF-
TBD by judging the quality of particle partition for a single
target, i.e., {xk

l, j}
Np

j=1. We use identification (ID) variable [39]
Ik = {Ik

1, . . . , I
k
Lk } to label the Lk targets of the multi-target state

Xk =
[
[xk

1]′, [xk
2]′, . . . , [xk

Lk
]′
]′

. Note that all the target IDs are
distinct. Since we have defined the ID variable, in the rest of
the paper, we denote the state of the l-th target as xk

Ik
l
.

The ID variable Ik−1 can be expressed as the union of the
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dying targets with ID variable Dk and the surviving targets with
ID variable Sk,

Ik−1 = Sk ∪ Dk. (41)

Let Bk denote the ID variable of new born targets at time k, the
ID variable Ik at time k can be written as

Ik = Sk ∪ Bk. (42)

The basic idea of the proposed strategy is to remove the particle
partition of the targets with ID belongs to set Dk from the multi-
target particles {Xk

j}
Np

j=1, and add the particle partition of the new
born targets with ID variable Bk. Then the key is to accurately
find out Dk, and build the new particle partition for targets Bk at
each update time.

3.5.1. Target termination strategy
We propose to terminate the trajectory of a certain existing

target, say the target with ID Ik
l , by judging the quality of it-

s particle partition i.e., {xk
Ik
l , j
}
Np

j=1. As stated in Section 2.2, the
likelihood value for target case and noise case are subtly dif-
ferent and the first-stage particles weights in (30) are directly
related to the likelihood functions. Thus, our idea is to judge
the death of a certain existing target by evaluating the quality
of its first-stage particle weights, i.e., a higher value first-stage
particle weight is more likely to indicate the existence of this
target. Additionally, to improve the robustness of this judge-
ment, the particle quality for multiple consecutive frames are
jointly taken into consideration. This is a common idea adopt-
ed in multi-frame detection and tracking method [39, 55]. The
MTT particle filter proposed in [39] also adopted similar judge-
ment strategy, while the difference is that the particle filter in
[39] uses an updated version of dynamic model with the evolu-
tion model of target number.

Let ΛIk
l
, l = 1, . . . , Lk, denote the sum of multiple frame first-

stage particle weights of the target partition with ID Ik
l , and it

can be computed as

ΛIk
l

=

Nt∑
f =1

Np∑
j=1

p(zk− f +1|X̂k− f +1
Ik/Ik

l
, xk− f +1

Ik
l , j

), (43)

where Np is the number of particles, Nt is the number of consec-
utive frames considered and p(zk |X̂k

Ik/Ik
l
, xk

Ik
l , j

) denotes the first-
stage weight of the j-th particle at time k, see (30). If this target
disappears at time k, the value of ΛIk

l
should be quite low. Thus

the ID variable for the dying targets at time k can be obtained
as

Dk = {I ∈ Ik−1 : ΛI < ηd} (44)

where ηd is a pre-define threshold for dying targets. Then the
ID variable of the surviving targets is Sk = Ik−1/Dk.

3.5.2. Target initiation strategy
Since the intensities of generated bearing measurements can

provide information on the presence of targets, we adopt a back-
ground normalization algorithm [56] to select a number of mea-
surements, whose intensities exceed a certain adaptive thresh-
old, to start the tentative tracks. If the detected measurements

are around the existing target tracks or tentative tracks, they are
deleted since they are more likely to be generated by the targets
in track. The rest of the measurements at time k are collected as
ϑk = {ϑk

a, a = 1, 2, . . . , Ak}, where ϑk
a denotes the bearing value

of the a-th measurement and Ak is the number of kept measure-
ments after background normalization. The measurements ϑk

are labeled with ID variable Bk
ten = {Ik

ten,1, . . . , I
k
ten,Ak } and used

to build the prior density of new tentative tracks as

pk
ten(Xk

Bk
ten

) =

Ak∏
a=1

Uϑk
a
(θk

Ik
ten,a

)V0(θ̇k
Ik
ten,a

) (45)

where Uϑk
a
(·) is a uniform distribution round the bearing val-

ue indicated by ϑk
a, and V0(·) is the distribution of the initial

bearing velocities. Then we can draw multi-target particles
{Xk

Bk
ten, j
}
Np

j=1 from (45) and propagate forward to compute the JM-
PD of these tentative tracks using (26)-(33).

Next, we build the new particle partition for newborn targets
using the multi-target particles of existing tentative tracks. To
ensure the robustness of the initiation strategy, we also adopt
the multi-frame judgement similar to that in the termination s-
trategy. Let N f denote the number of consecutive frames, and
{Xk

B
k−N f +1
ten , j

}
Np

j=1 denote the multi-target particles of the tentative

tracks born at time k − N f + 1. We also propose to select new
born tracks by judging the qualities of their particle partitions.

Let Υ
I

k−N f +1
ten,a

, a = 1, . . . , Ak−N f +1, denote the sum of multiple

frame first-stage particle weights of the target partition with ID
Ik−N f +1
ten,a , and it can be computed as

Υ
I

k−N f +1
ten,a

=

N f∑
f =1

Np∑
j=1

p(zk− f +1|X̂k− f +1

B
k−N f +1
ten /I

k−N f +1
ten,a

, xk− f +1

I
k−N f +1
ten,a , j

). (46)

If this tentative track is deemed to be a new born track at time k,
the value of Υ

I
k−N f +1
ten,a

should be quite high. Thus the ID variable

for the newborn targets at time k can be obtained as

Bk = {I ∈ Bk−N f +1
ten : ΥI > ηb} (47)

where ηb is a pre-defined threshold for new target birth. The
tentative track would be removed if its particle quality fails to
pass the threshold test. The particle partition for the newborn
targets are extracted from the multi-target particles of tentative
tracks, and denoted as {Xk

Bk , j}
Np

j=1.

3.5.3. Update of the JMPD
According to the aforementioned target initiation and termi-

nation strategy, the JMPD is updated by removing the particle
partitions with IDs belong to Dk and adding the particle parti-
tions of new born tracks {Xk

Bk , j}
Np

j=1. Accordingly, the ID variable
is updated as Ik = Sk ∪ Bk. So far, the PF-TBD method for the
passive array sonar system is introduced. A summary of the
PF-TBD method is given in Algorithm 1.
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Algorithm 1: Summary of the PF-TBD Algorithm

1 for each time k do
2 - Initiate new tentative tracks by background

normalization algorithm.
3 for each track do
4 - Sample all the multi-target particles assuming all

the tracks survive using (29).
5 - Calculate the first-stage weights using (30).
6 for each track of Ik−1 do
7 - Calculate the sum of weights using (43).
8 - Evaluate (44) and terminate the

corresponding tracks.
9 - Keep the particles of surviving tracks.

10 end
11 for each tentative track of Bk−N f +1

ten do
12 - Calculate the sum of weights using (46).
13 - Initiate the newborn tracks by evaluating (47)

and keep the new particles partitions.
14 end
15 end
16 - Update the multi-target particles of JMPD.
17 - Resample all the particles.
18 - Output the estimated target states X̂k.
19 end

3.6. Computational Complexity

According to the previous discussion of the proposed PF-
TBD algorithm, the computational complexity mainly consists
the following five parts: particle sampling, the first-stage weight
calculation, target termination, target initiation and the second-
stage weight calculation. Specifically, assuming that all the
tracks survive, the complexity for sampling all the multi-target
particles is bounded by O(NpLtotal), where Ltotal = maxk |Ik−1 ∪

Bk−N f +1
ten ∪ · · · ∪ Bk

ten| with | · | denoting the number of elements
in this set. After sampling, we calculate the first-stage weight-
s. The complexity of this operation is O(NpLtotalB) determined
by (28), where B denotes the number of bearing cells. For ter-
mination operation of certain existing targets, the complexity
is contributed by the calculation of (42) and is bounded by
O(NpLexiNt), where Lexi = maxk |Ik−1| denotes the maximum
number of existing tracks. Similar with the analysis of target
termination, the complexity load of target initiation is bounded
by O(NpLtenN f ) according to (45), where Lten = maxk |B

k−N f +1
ten |

denotes the maximum number of existing tentative tracks. Af-
ter target termination and initiation, for confirmed tracks, the
upper bound of complexity in second-stage weight updating is
O(NpLcon), where Lcon = maxk |Sk ∪ Bk |. Note that Lcon track-
s consist the surviving tracks after target termination and the
newborn tracks after target initiation. In all, the total compu-
tation complexity of PF-TBD is O(NpLtotal) + O(NpLtotalB) +

O(NpLexiNt) + O(NpLtenN f ) + O(NpLcon).

4. Numerical Results

In this section, both the simulated data and real-world record-
ed data are used to evaluate the performance of the proposed
PF-TBD algorithm in comparison with the Kalman based DBT
(KF-DBT). Please note that the KF-DBT is the most widely
adopted method in practical underwater acoustic tracking ap-
plications, and it is the most relevant reference benchmark for
the presented work. For completeness, we also provide results
for the Gaussian mixture PHD filter [41]. To guarantee the fair-
ness of the performance comparison, we keep a similar level
of false tracks for all three algorithms in the track management
strategies and parameter setting.

4.1. Simulation Experiments
Consider a typical underwater bearing-only tracking scenari-

o. The array parameters are set as: M = 40, d = λ
2 with working

frequency 100 ∼ 1000Hz. The propagation speed of acoustic
wave is c = 1531m/s. The duration of this simulation is K = 50
frames. The parameters of frequency segmenting are N = 2000
and Ñ = 100. The sampling frequency is 4000Hz. Note that
the simulation raw measurements are generated similar to that
in the numerical example of Section 3.4. The number of par-
ticles used is 400. All the simulation results are averaged over
100 MC runs.

4.1.1. Performance comparison for three different beamform-
ing methods

As is shown in Fig. 5, we first consider a simple scenario
where a single emitter is moving in the surveillance area from
−90◦ to 90◦. For each of the three beamforming methods de-
scribed in Section III, the BTRs after beamforming are shown
in Fig. 6. It can be seen that the outputted power spectrums of
CBF and MVDR are more robust than that of MUSIC when tar-
get SNR is low, while MUSIC can provide higher quality power
spectrum when SNR is high. Note that the mentioned SNR in
Fig. 6 is the SNR of received signal before beamforming.

Next, these generated BTR measurements are directly used
as the inputs of the proposed PF-TBD algorithm. Both the root
mean square error (RMSE) and the probability of detection (Pd)
are employed as the performance evaluation metrics, and a tar-
get is deemed to be successfully tracked if the estimated direc-
tion error is less than 4◦. As shown in Fig. 7, both metrics
demonstrate that the CBF and MVDR are better beamforming
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Figure 5: (a) The schematic diagram of simulation scene. (b) The real target
trajectory in direction.
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CBF: bearing-time record of -23dB
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CBF: bearing-time record of -15dB
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MVDR: bearing-time record of -23dB
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MVDR: bearing-time record of -15dB
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MUSIC: bearing-time record of -23dB
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MUSIC: bearing-time record of -15dB
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Figure 6: The bearing-time record of three beamforming method. The SNR of
the received array signal is -23dB in (a) (c) (e), and -15dB in (b) (d) (f).
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Figure 7: The RMSE and Pd curves of the proposed PF-TBD algorithm are
plotted against SNR for the three beamforming methods. (a) RMSE. (b) Prob-
ability of detection.

choices than MUSIC due to their robust performance in low S-
NR conditions. In addition, the performance of CBF slightly
outperforms MVDR despite its lower computational complex-
ity. Thus, we adopt CBF as the beamforming choice in the
subsequent simulation studies.

4.1.2. MTT performance
Here we consider a complex scenario with five moving emit-

ters and cross tracks. To examine the capability of tracking
targets with time-varying existence, two targets are set to born
at the 15-th frame and one target disappears at 36-th frame. The
parameter setting for target initiation and termination modules
are: N f = 3 and Nt = 3. The process noise intensity in the

-90 -60 -30 0 30 60 90

direction(°)

0

10

20

30

40

50

fr
am

e

true states
tracks
initial mark

(a)

-90 -60 -30 0 30 60 90

direction(°)

0

10

20

30

40

50

fr
am

e

true states
PHD
KF-DBT
initial mark

(b)

Figure 8: The tracking results of a single MC run where the SNR of the received
array signal is −23dB: (a) PF-TBD, (b) KF-DBT vs PHD.

dynamic model (12) is set as κ = 1◦/s2. The comparison result-
s with the KF-DBT method and the PHD filter are also given.
The inputs of the KF-DBT and PHD filter are the thresholded
angular detections, and the corresponding observation model
is assumed to be linear and Gaussian with standard deviation
of the measurement noise σ = 1◦. Besides, the target sur-
vival probability is set as PS = 0.98 in PHD filter. The de-
tection probabilities are set to be PD = 0.98 for SNR=−19 dB,
PD = 0.90 for SNR=-21 dB, and PD = 0.80 for SNR= −23
dB. For target birth, similar with [61], the birth information is
assumed to be known as a prior. The pruning parameters for
PHD is Tp = 1× 10−5 and the maximum number of targets that
the PHD filter handles at one time is Nmax = 100.
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Figure 9: The number of successfully tracked targets are plotted against frame
time for three methods: (a) PF-TBD, (b) KF-DBT vs PHD.

The tracking results of a single MC run under SNR= −23 dB
are first shown in Fig. 8. We can observe that the trajectories
returned by the KF-DBT and PHD filter are quite incomplete
compared with that of PF-TBD in low SNR condition. The
curves of the successfully tracked targets are plotted against
frame time in Fig. 9. It can be seen that the proposed PF-
TBD can deliver better detection performance compared to the
KF-DBT and PHD methods especially when SNR is low.

Next, the generalized optimal subpattern assignmen-
t (GOSPA) [57, 58] metric is employed to further study the
tracking performance of the three algorithms. As an exten-
sion of the OSPA [57] metric, the GOSPA metric can penal-
ize localization errors for detected targets and the errors due to
missed and false targets. The the GOSPA results with param-
eters α = 2, p = 1, c = 4 are shown in Fig. 10, including
the total tracking error, the localisation error, the missed detec-
tion error and the false detection error. It can be seen in Fig.
10 that PF-TBD also provides better tracking performance es-
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Figure 10: The GOSPA curves are plotted against frame time for both methods.
(a) the total error, (b) the localisation error, (c) the missed detection error, (d)
the false detection error.

Table 2: Optimal parameters and CV distance of each model for the real data
set.

Models Rayleigh Weibull Gamma Lognormal
Target 5.3451 5.9714,6.6013 53.1921,0.1213 1.8550,0.1898

CV 15.1238 2.4868 1.9541 0.0621

Model Rayleigh Weibull Gamma Lognormal
Noise 1.0619 9.0999,1.1614 53.7485,0.0215 0.1529,0.1898
CV 101.8652 69.7351 31.1284 18.4450

pecially when target SNR is low. Besides, the tracking perfor-
mance of the PHD filter is roughly similar to the KF-DBT. In
contrast to the PHD filter, PF-TBD and KF-DBT require sev-
eral frames to confirm new born and disappeared targets. This
is because the standard PHD filter [41] is a multi-target state
estimator which only reports the multi-target state estimation
results at each frame time.

4.2. Real-world Recorded Data

In this part, the proposed PF-TBD algorithm is further veri-
fied using a set of real experimental data recorded from a towed
passive uniform linear array. The data set was collected in a
shallow sea and the received acoustic signals were the noises
generated by the moving ships. The received raw array signals
are processed according to Sections 3.1 and 3.2. The gener-
ated BTR of this data set for the considered time span is de-
picted in Fig. 11 (a) and constitutes the input to the filter. It
can be seen that six targets are moving in the surveillance area
and the two targets around 40◦ ∼ 60◦ are very weak. Also,
it is worth mentioning that the measurements in the directions
between −90◦ ∼ −60◦ are not taken into account, since these
measurements are generated by the towed ship itself. As shown
in Fig. 11 (b), these noise measurements generated by towed
ship are eliminated after background normalization.
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Figure 11: (a) The raw BTR map of the recorded real data. (b) The BTR map
after background normalization processing.
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Figure 12: The CDF fitting results of the real data. (a) noise only samples, (b)
target related samples.
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Figure 13: The tracking results of the real data. (a) PF-TBD, (b) KF-DBT vs
PHD.

To obtain an accurate likelihood function, the data fitting
based parameters estimation algorithm is first employed. The
fitting results are shown in Fig. 12 and Table 2. It can be seen
clearly that Lognormal model is the best fitting one. Then, the
tracking results, depicted in Fig. 13, show that the proposed
PF-TBD algorithm can track the two weak targets (targets in
40◦ ∼ 60◦) much more accurately than KF-TBD and PHD fil-
ter.

5. Conclusion

This work considers the underwater tracking of an unknown
and time-varying number of moving acoustic emitters using
passive array sonar systems. To enhance the tracking perfor-
mance of low SNR targets, we proposed a complete particle
filter track-before-detect (PF-TBD) procedure especially de-
veloped for passive array sonar systems. The received wide-
band array acoustic signals were directly used as the inputs of
the proposed PF-TBD to avoid the information loss during the
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thresholding process. To better model the statistical character-
istics of the spectrum measurements after the beamforming of
the acoustic signals, a data fitting based parameter estimation
algorithm was proposed to obtain a suitable likelihood func-
tion. Particle filter was employed to propagate forward the
joint multi-target probability density. The trajectory initiation
and termination strategies were also integrated into the filtering
process to accommodate the time-varying number of targets.
The efficacy of the proposed PF-TBD method was demonstrat-
ed both in simulation and on collected real-world data. In the
future, we will extend the proposed method with RFS theory
based TBD methods [59, 60] and also consider the information
fusion among multiple passive array sonar systems [61–63].
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[40] Á. F. Garcı́a-Fernández and M. R. Morelande, “Explicit filtering equa-
tions for labelled random finite sets,” 2015 International Conference on
Control, Automation and Information Sciences (ICCAIS), Changshu,
2015, pp. 349-354.

[41] B.-T. Vo and M. Wing-Kin, “The Gaussian Mixture Probability Hypothe-
sis Density Filter,” IEEE Transactions on Signal Processing, vol. 54, pp.
4091-4104, 2006.

[42] H. Krim and M. Viberg, “Two decades of array signal processing re-
search: the parametric approach,” IEEE Signal Processing Maganize,
vol. 13, no. 4, pp. 67–94, 1996.

[43] G. Su and M. Morf, “The signal subspace approach for multiple wide-
band emitter location,” IEEE Transactions on Acoustics, Speech and Sig-

13



nal Processing, vol. 31, no. 6, pp. 1502–1522, 1983.
[44] H. Wang and M. Kaveh, “Coherent signal-subspace processing for the de-

tection and estimation of angles of arrival of multiple wide-band sources,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 33,
no. 4, pp. 823–831, 1985.

[45] A. El-Keyi and T. Kirubarajan, “Adaptive beamspace focusing for direc-
tion of arrival estimation of wideband signals,” Signal Processing, vol.
88, no. 8, pp. 2063–2077, 2008.

[46] M. S. Bartlett, “Smoothing periodograms from time-series with continu-
ous spectra,” Nature, vol. 161, pp. 686–687, 1948.

[47] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,”
Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[48] R. O. Schmidt, “Multiple emitter location and signal parameters estima-
tion,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3,
pp. 276–280, 1986.

[49] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[50] W. Yi, M. R. Morelande, L. J. Kong, and J. Y. Yang, “A computational-
ly efficient particle filter for multitarget tracking using an independence
approximation,” IEEE Transactions on Signal Processing, vol. 61, no. 4,
pp. 843–856, 2013.

[51] M. K. Pitt and N. Shephard, “Filtering via simulation: auxiliary particle
filters,” Publications of the American Statistical Association, vol. 94, pp.
590–599, Jun. 1999.

[52] T. W. Anderson, “On the distribution of the two-sample cramr-von mises
criterion,” Annals of Mathematical Statistics, vol. 34, no. 1,pp. 1148–
1159, 1962.

[53] F. Laio, “Cramer-von Mises and Anderson-darling goodness of fit tests for
extreme value distributions with unknown parameters,” Water Resources
Research, vol. 40, no. 9, pp. 333–341, 2004.

[54] M. I. Skolnik, Introduction to Radar System, 3d ed., McGraw-Hill, New
York, 2001.

[55] W. Yi, M. Morelande, L. Kong, and J. Yang, “An efficient multi-frame
track-before-detect algorithm for multi-target tracking,” IEEE Journal of
Selected Topics in Signal Processing, vol. 7, no. 3, pp. 421–434, 2013.

[56] Q. Li, X. Pan, and Y. Li, “A new algorithm of background equalization,”
Acta Acustica, 2000.

[57] D. Schuhmacher, B. T. Vo and B. N. Vo, “A consistent metric for per-
formance evaluation of multi-object filters,” IEEE Transactions on Signal
Processing, vol. 56, no. 8, pp. 3447–3457, 2008.
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