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Abstract

Many bacterial species produce toxins that inhibit their competitors. We model this phenomenon by
extending classic two-species Lotka-Volterra competition in one spatial dimension to incorporate toxin pro-
duction by one species. Considering solutions comprising two adjacent single-species colonies, we show how
the toxin inhibits the susceptible species near the interface between the two colonies. Moreover, a sufficiently
effective toxin inhibits the susceptible species to such a degree that an ‘inhibition zone’ is formed separat-
ing the two colonies. In the special case of truly non-motile bacteria, i.e. with zero bacterial diffusivity,
we derive analytical expressions describing the bacterial distributions and size of the inhibition zone. In
the more general case of weakly motile bacteria, i.e. small bacterial diffusivity, these two-colony solutions
become travelling waves. We employ numerical methods to show that the wavespeed is dependent upon
both interspecific competition and toxin strength; precisely which colony expands at the expense of the
other depends upon the choice of parameter values. In particular, a sufficiently effective toxin allows the
producer to expand at the expense of the susceptible, with a wavespeed magnitude that is bounded above
as the toxin strength increases. This asymptotic wavespeed is independent of interspecific competition and
due to the formation of the inhibition zone; when the colonies are thus separated, there is no longer direct
competition between the two species and the producer can invade effectively unimpeded by its competitor.
We note that the minimum toxin strength required to produce an inhibition zone increases rapidly with
increasing bacterial diffusivity, suggesting that even moderately motile bacteria must produce very strong
toxins if they are to benefit in this way.

1. Introduction

Bacteria perform many functions beneficial to
life. For example, they are a key part of the diges-
tive process in humans [1, 2, 3, 4] and other higher
animals [5, 6, 7], form vital symbiotic relationships
with plants [8, 9], including many food crops [10],
and decompose waste organic matter [11, 12]. On
the other hand, bacterial infections are also respon-
sible for all manner of diseases in plants and ani-
mals, and therefore much effort is expended in con-
trolling such pathogens. In the modern era, this
has principally taken the form of antimicrobial sub-
stances such as antibiotics or disinfectants [13, 14].
However, with the advent of widespread antimicro-
bial resistance, this approach is becoming less and
less viable [15, 16, 17, 18]. Moreover, broad and
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narrow spectrum antibiotics do not discriminate be-
tween helpful and harmful species, and so have the
negative consequence of wiping out populations of
beneficial species also [19]. It is therefore desirable
to develop new methods of pathogen control which
are capable of inhibiting harmful species while pre-
serving the extant, beneficial, bacterial ecosystem
[19]. For example, patients recently treated with
antibiotics are vulnerable to potentially deadly in-
fection by resistant Clostridium difficile as the de-
struction of the resident microflora clears the way
for invasion. However, such infections have been
successfully treated by re-establishing the micro-
biome via a faecal transplant from a healthy donor
[20, 21, 22].

The microbiome plays a key role in preventing
invasion of its host by other species, most perti-
nently pathogens [23]. A flourishing resident popu-
lation that has filled the available ecological niches
will, in theory, leave no room for an invader to es-
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tablish within the community [24]. However, as
well as competing indirectly via requisition of re-
sources, many bacteria also compete directly by
producing toxins which inhibit the growth of their
rivals [25, 26]. If this inhibition is sufficiently ef-
fective at suppressing the target species, a toxin-
producing invader may then be able to occupy the
vacated niche in its stead [27, 28]. Conversely, a
toxin-producing resident may be able to prevent
an invader establishing merely by ensuring the en-
vironment is sufficiently unfavourable [23, 28, 29].
Thus a complete understanding of bacterial inva-
sion and competition must take into account both
the competition for resources familiar to ecological
theory, and also the production of toxins. Under-
standing how these two competitive effects interact
is the focus of the present work.

Mathematical modelling of such toxin-mediated
bacterial competition has to date focused almost
exclusively on growth in chemostats, as pioneered
by Lenski and Hattingh [30]; a good introduction is
provided in the review by Hsu and Waltmann [31].
Although the earliest work modelled toxin produc-
tion via inhibitory pairwise reactions [30] (which is
in fact simply classic Lotka-Volterra competition),
later studies included a new dependent variable rep-
resenting toxin concentration [32]. Many of the sur-
veyed works concern the existence and stability of
constant solutions to ordinary differential equation
models, although limit cycles have been observed
in the chemostat [33], and in a three-strain model
comprising interactions between a toxin producer
and both resistant and susceptible competitors, al-
though that work did not include toxin concentra-
tion explicitly [34]. Further studies have included
the analysis of rare mutations [35] and a rather de-
tailed model introduced by Levin [36] which incor-
porates bacteria in different phases of growth and
the recycling of organic material from dead bacte-
ria being recycled, although in this case the toxin
is externally applied rather than produced by bac-
teria.

A key feature missing from the current body
of mathematical research in this area is the effect
of spatial structure [37, 38]. It has been exper-
imentally observed that spatial structure can al-
ter the ability of a species to successfully invade
an established population [28] and to establish a
viable colony in the presence of competitors [39],
when compared to the well-mixed case. This is be-
cause, when populations are well-mixed, competi-
tion is global and the weaker species cannot find a

foothold. In contrast, when spatial structure is pre-
served, colonies grown from a random initial seed-
ing of the domain may have time to establish them-
selves and are therefore potentially mature enough
to resist invasion when rival colonies come into con-
tact [39, 37]. Although one study [40] has looked at
a reaction-diffusion model of a chemostat, they fo-
cused only on the stability of spatially homogeneous
solutions and did not consider those exhibiting spa-
tial structure. The present work will remedy this
by considering competition in a spatially extended
system; furthermore, rather than a chemostat we
shall consider a closed system, it being representa-
tive of many bacterial ecosystems found in nature
and the laboratory.

Microbial ecosystems are amazingly complex, in-
corporating not only bacteria but also protists,
viruses, archea and fungi, and exhibiting all manner
of antagonistic and mutualistic phenomena [41, 42].
When this ecosystem is located on or within a mul-
ticellular organism such as a human, then interac-
tions between microbes and host add a further level
of detail. Various microbes promote different host
responses, promoting certain species and inhibiting
others [43, 44, 23, 45, 46]. To understand these
communities, we shall begin as simply as possible
by considering a two-species ecosystem in a one-
dimensional domain, with one species producing a
toxin and the other susceptible to its effects.

After investigating the existence and stability of
spatially homogeneous solutions corresponding to a
well-mixed community, we allow the bacterial popu-
lations to vary spatially by adding one-dimensional
diffusion. Inspired by the skin microbiome [43, 44],
in which most species are nonmotile, we restrict our
attention to weakly diffusing bacteria by consider-
ing the limit in which both bacterial diffusivities
tend to zero. We analytically derive a steady so-
lution to the spatial system in the case when the
bacteria are completely immobile, i.e. when bacte-
rial diffusivity vanishes, and derive conditions under
which the toxin results in an inhibition zone near
the producer within which the susceptible species
cannot grow. Acknowledging that in reality even
nonmotile bacteria exhibit some movement due to
mechanical forces within the cell and in the local
environment, we then solve our system numerically
for small bacterial diffusivities. This enables us
to describe invasion as a travelling wave connect-
ing two single-species colonies, with one expand-
ing its range as that of the other diminishes. We
then interpret competitiveness in terms of the ve-
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locity of the travelling wave, and investigate how
indirect competition for resources and direct inhi-
bition through toxin production together determine
a species ability to invade its competitor.

2. The producer-susceptible model

We consider two competing bacterial populations
in a one-dimensional domain. One species, the ‘pro-
ducer’, produces an antimicrobial toxin which in-
hibits the other, the ‘susceptible’. Denoting the
concentrations of producer, susceptible and toxin
at position X and time T by P (X,T ), S(X,T ) and
A(X,T ), we model this ecosystem via the equations

∂P

∂T
= DP

∂2P

∂X2
+ P (bP − cPPP − cSPS), (1)

∂S

∂T
= DS

∂2S

∂X2
+ S(bS − cSSS − cPSP − kA),

(2)

∂A

∂T
= DA

∂2A

∂X2
+ βP − δA− ηkAS. (3)

Here bi is the cellular division rate of species i and
cij is the inhibitory effect of competition on species
j due to pairwise interactions with species i, for
i, j ∈ {P, S}. The toxin is produced by P at rate β
and degrades at rate δ. k is the inhibitory effect of
the toxin on S, and η the amount of toxin used up
in inhibiting S. We assume that the producer, sus-
ceptible and toxin all move via random diffusion,
with their respective diffusivity coefficients being
DP , DS and DA. By using simple diffusion to rep-
resent bacterial movement, we are implicitly assum-
ing that bacterial density is low enough that they
move independently, as in higher density popula-
tions the ability of a bacterium to move may be-
come restricted by its neighbours. Such a situation
is better represented by biofilm models such as cov-
ered in [47] and is beyond the scope of this article.
All coefficients in (1)-(3) are positive.

We nondimensionalise (1)-(3) by defining the di-
mensionless dependent variables

p =
cPP
bP

P, s =
cSS
bS

S, a =
cPP δA

bPβ
, (4)

dimensionless space and time

x =

√
bP
DA

X, t = bPT, (5)

and dimensionless constants

b =
bS
bP
, cp =

cPS
cPP

, cs =
cSP
cSS

,

κ =
kβ

cPP δ
, ζ =

bscPP η

cSSβ
, µ =

δ

bP
.

ε =
DP

DA
, D =

DS

DP
.

(6)

Hence (1)-(3) is rendered

∂p

∂t
= ε

∂2p

∂x2
+ p(1− p− bcss), (7)

∂s

∂t
= εD

∂2s

∂x2
+ s(b(1− s)− cpp− κa), (8)

∂a

∂t
=
∂2a

∂x2
+ µ(p− a− ζκas). (9)

This is the spatially extended Lotka-Volterra model
[48, 49, 50] of two-species competition in one dimen-
sion, modified to explicitly account for the produc-
tion of toxin by one species to inhibit the other.
Note the somewhat unconventional nondimension-
alisation (6); the more common choice in a Lotka-
Volterra system is to write (ĉp, ĉs) = (cp/b, bcs).
While this would allow us to take b outside the
brackets in (8) if we also wrote κ̂ = κ/b, the divi-
sion rates then become conflated with the interspe-
cific competition parameters. As the present work
is focused primarily on competitive effects, we have
chosen to keep these two processes separate for clar-
ity.

3. Spatially homogeneous populations

We begin our analysis of (7)-(9) by seeking sta-
tionary and spatially homogenous solutions, i.e. by
setting p, s, and a to be constant. It is instruc-
tive to first consider the solution space with toxin
strength κ = 0, representing a completely immune
target species s. In effect, this is equivalent to p not
producing a toxin at all, as a is in this case immate-
rial to the population dynamics, and we can there-
fore neglect (9) and consider (7)-(8) only, without
loss of generality. In the absence of spatial vari-
ation, this is the classic Lotka-Volterra model of
two-species competition [51, 52]. There are up to
four physically relevant (i.e. real and non-negative)
stationary homogeneous solutions (p, s) ≡ (p∗, s∗):

(i) the trivial solution, (p∗, s∗) = (0, 0);

(ii) p excludes s, (p∗, s∗) = (1, 0);

(iii) s excludes p, (p∗, s∗) = (0, 1);
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(iv) p and s coexist, with

p∗ =
1− bcs
1− cpcs

, s∗ =
b− cp

b(1− cpcs)
. (10)

While the first three are always physically relevant,
the coexistence solution requires either

cp < b <
1

cs
, (11)

or

cp > b >
1

cs
. (12)

The spatially homogeneous version of (7)-(8) with
κ = 0 has Jacobian matrix

J0(p, s) =

(
1− 2p− bcss −bcsp

−cps b(1− 2s)− cpp

)
.

(13)
Eigenvalues (p̂, ŝ) and eigenvectors σ for the triv-
ial and single-species solutions are summarised in
Table 1. We can therefore see that the trivial solu-
tion is unstable to perturbations in both p and s; a
population of p only is always stable to perturba-
tions in p only, but is unstable to perturbations in
s provided cp < b; a population of s only is always
stable to perturbations in s only, but is unstable to
perturbations in p provided cs < 1/b.

(p∗, s∗) σ (p̂, ŝ)

(0, 0) 1 (1, 0)
b (0, 1)

(1, 0) −1 (1, 0)

b− cp
(
− bcs

1+b−cp , 1
)

(0, 1) 1− bcs
(

1,− cp
1+b(1−cs)

)
−b (0, 1)

Table 1: Eigenvalues σ and eigenvectors (p̂, ŝ) of the Jaco-
bian matrix (13), evaluated at the trivial and single-species
stationary solutions (p, s) = (p∗, s∗) of the classic Lotka-
Volterra model given by the spatially-independent version of
(7)-(8) with κ = 0.

The eigenvalues for the coexistence solution (10)
are given by

σ = −1

2

(
p∗ + bs∗ ±

√
(p∗ − bs∗)2 + 4bcpcsp∗s∗

)
.

We omit the details of the eigenvectors for the sake
of brevity; the salient detail is that each of the two
eigenvectors has two non-zero components. Thus
we see that σ ∈ R for all physically relevant param-
eter values, with one eigenvalue being positive only

if cpcs > 1. Hence the coexistence solution is sta-
ble if (11) holds, but not if (12) does. Combining
this observation with the results of Table 1, we can
now see that if (11) holds coexistence is the only
stable solution, whereas if (12) holds then coexis-
tence is an unstable manifold separating the two
stable single-species solutions. If neither (11) nor
(12) hold then the only stable stationary solution is
single-species; producer only if cp > b and cs < 1/b,
and susceptible only if cp < b and cs > 1/b. This
is illustrated in Figure 1(a), depicting the solution
space in the (cs, cp)-plane.

With the context of the classic system estab-
lished, we extend the model to include toxin pro-
duction by p by setting κ > 0 in the spatially
independent version of (7)-(9). There now exist
up to five physically relevant stationary solutions
(p, s, a) ≡ (p∗, s∗, a∗):

(i) the trivial solution, (p∗, s∗, a∗) = (0, 0, 0);

(ii) p excludes s, (p∗, s∗, a∗) = (1, 0, 1);

(iii) s excludes p, (p∗, s∗, a∗) = (0, 1, 0);

(iv) two possible branches of coexistence solutions,
(p∗, s∗, a∗) = (p±, s±, a±), where

p± :=
(bcs + ζκ)a±
bcs + ζκa±

,

s± :=
1− a±

bcs + ζκa±
,

a± :=
B ±

√
B2 − 4b(1− bcs)ζκ2

2ζκ2
,

(14)

with

B := b(1− cpcs) + ((b− cp)ζ − bcs)κ.

The first three solutions are always physically rel-
evant, but the coexistence solutions (14) require
a± ∈ R and 0 < a± < 1. Defining

Q =
(
√
b(1− bcs)− κ

√
ζ)2

bcs + ζκ
,

and omitting the details for brevity, we find that
a+ is physically relevant provided

cp > b− κ,

cs >
1

b
,

or
b− κ < cp < b− κ+Q,

1

b

(
1− ζκ2

b

)
< cs ≤

1

b
,
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Figure 1: Existence of stable, homogeneous solutions to (7)-
(9), plotted in the (cs, cp)-plane for different values of toxin
strength κ and inefficiency ζ. Pertinent regions of parameter
space are differentiated by colour: light blue indicates a re-
gion in which there exists precisely one stable solution, and
that a single-species population; dark blue indicates bistabil-
ity between the two single-species solutions; red indicates a
region in which only a coexistence solution is stable; and yel-
low indicates bistability between a coexisting population and
one comprising p only. Labels indicate which stable homo-
geneous solutions exist in each region. If a region is labelled
with a ‘P’ or ‘S’, the p- or s-only population is stable there;
if it is labelled with ‘Co’, the coexistence solution given by
the negative root in (14) is stable there. Bistable regions
are labelled with both stable solutions. We omit the label
from the yellow region in panel (b) for clarity. The dashed
straight lines mark the lines of bifurcation across which a
single-species population gains or loses stability. The solid
curve indicates the line on which the two coexistence solution
branches meet, i.e. where the square root in (14) vanishes.
Panel (a) represents classic Lotka-Volterra competition by
setting κ = 0 (and hence the value of ζ is immaterial as (9)
decouples). κ = 0.5, ζ = 4 in panel (b), κ = 1.5, ζ = 4 in
panel (c) and κ = 0.5, ζ = 50 in panel (d). b = 1 and µ = 0.1
in all panels.

or

cp = b− κ+Q,

1

b

(
1− ζκ2

b

)
< cs <

1

b
,

and a− is physically relevant for either

cp < b− κ,

cs <
1

b
,

or
b− κ ≤ cp ≤ b− κ+Q,

1

b

(
1− ζκ2

b

)
≤ cs <

1

b
.

Hence both solutions are physically relevant only
for

b− κ < cp ≤ b− κ+Q,

1

b

(
1− ζκ2

b

)
< cs <

1

b
.

(15)

Note that the upper limit on cp in (15) increases
monotonically from b − κ to b − κ/(1 + ζκ) as cs
increases across the given interval. Figure 1 illus-
trates these existence regions in the (cs, cp)-plane.

We can now analyse the stability of these solu-
tions as for κ = 0. The spatially homogeneous ver-
sion of (7)-(9) has Jacobian matrix

J(p, s, a) =(
1− 2p− bcss −bcsp 0
−cps b(1− 2s)− cpp− κa −κs
µ −µζκa −µ(1 + ζκs)

)
.

(16)

The eigenvalues σ and eigenvectors (p̂, ŝ) of (16)
evaluated at the trivial and single-species solutions
of (7)-(9) are summarised in Table 2. Hence we see
that the trivial solution is always unstable to per-
turbations in p and s, but not to perturbations in
a only; a population of p only is unstable to per-
turbations in s provided cp < b − κ, but is stable
to perturbations in p and a only; a population in
s only is unstable to perturbations in p provided
cs < 1/b, but is stable to perturbations in s and a.
The trivial and single-species solutions of (7)-(9)
therefore have similar existence and stability prop-
erties as when κ = 0, the only difference being the
shifting of the bifurcation line at which the p-only
solution becomes stable to cp = b− κ. Of course, if
κ > b then the p-only solution is stable for all pos-
itive values of cp and cs, and there exists no region
in the (cp, cs)-plane in which the s-only solution is
the only stable solution; for this to occur in Lotka-
Volterra dynamics, s would require a negative birth
rate.

There is a more striking qualitative difference be-
tween the solution space of (7)-(9) with κ = 0 and
that with κ > 0, in that there is now a region (15)
in which there are two possible coexistence solu-
tions (14). While the stability properties of these
solutions are analytically intractable, we can intuit
them through consideration of the stability of the
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(p∗, s∗, a∗) σ (p̂, ŝ, â)

1 (1, 0, µ
1+µ )

(0, 0, 0) b (0, 1, 0)
−µ (0, 0, 1)
−1 (1, 0,− µ

1−µ )

(1, 0, 1) b− cp − κ
(
− bcs

1+b−cp−κ , 1,−
µ

b−cp−κ+µ

(
ζκ+ bcs

1+b−cp−κ

))
−µ (0, 0, 1)

1− bcs
(

1,− 1
1+b(1−cs)

(
cp + µκ

1−bcs+µ(1+ζκ)

)
, µ
1−bcs+µ(1+ζκ)

)
(0, 1, 0) −b (0, 1, 0)

−µ(1 + ζκ)
(
0, 1, 1κ (µ(1 + ζκ)− b)

)
Table 2: Eigenvalues σ and eigenvectors (p̂, ŝ, â) of the Jacobian matrix (16), evaluated at the trivial and single-species stationary
solutions (p, s, a) = (p∗, s∗, a∗) of the spatially homogeneous version of (7)-(9).

other solutions. For cp < b − κ and cs < 1/b, nei-
ther single-species population is stable; hence we
expect the solution branch (p−, s−, a−) to be sta-
ble here, as (p+, s+, a+) is not physically relevant
in this range. For cp > b − κ and cs > 1/b, it is
(p+, s+, a+) which is physically relevant, but not
(p−, s−, a−); here both single-species solutions are
stable, so we expect (p+, s+, a+) to be unstable,
thus separating the two stable solutions. Finally,
within the range (15) in which both coexistence
branches are physically relevant, a population of p
is stable whereas a population of s is not; we would
therefore expect (p+, s+, a+) to be unstable and
(p−, s−, a−) to be stable in this region also, with
a saddle bifurcation along the line cp = b− κ + Q,
(1−ζκ2/b)/b < cs < 1/b, on which the two solution
branches intersect. This intuitive picture has been
confirmed by numerical simulations for various pa-
rameter values in Matlab, the details of which we
omit for brevity.

We can now see how the introduction of a toxin
affects the classic picture of competition in the two-
species Lotka-Volterra system. First, the bifurca-
tion line at which a population of p becomes stable,
defined by cp = b−κ, is moved closer to the cs axis
as κ increases from zero. In particular, for κ > b,
the region of parameter space in which a population
of s is the only stable solution vanishes (see Figure
(1)). Through production of a toxin, p has enlarged
the region of parameter space in which it can out-
compete s. This effect is ameliorated somewhat by
the level of inefficiency ζ of the toxin, where an in-
creased value of ζ indicates a higher usage rate of
the toxin. As ζ increases, the region of parame-
ter space in which only a population of p is stable
decreases, being replaced by an expansion of the

bistable region (15) in which both a population of
p and a coexisting population (p−, s−, a−) are sta-
ble. In fact, as ζ →∞, (15) becomes

b− κ < cp ≤ b−
2
√
b(1− bcs)√

ζ
+ O

(
ζ−1

)
,

0 < cs <
1

b
,

i.e. the region in which a population of p is the
only stable solution approaches cp > b, cs < 1/b,
coinciding with the equivalent region for κ = 0.
Note, however, the bifurcation line cp = b − κ is
independent of ζ. Therefore, production of a toxin
always results in a solution space which is more
favourable to p, as a larger region of the (cs, cp)-
plane contains a stable population of p.

4. A two-colony solution with immotile bac-
teria

Now we have described the solution space of ho-
mogeneous solutions to (7)-(9), we turn our atten-
tion to solutions exhibiting spatial variation. As
many bacteria are of low motility, for example those
typically colonising human skin [43, 44] or other-
wise adhering to host cells [53], we shall focus on
the case when bacterial diffusivities are small and
set 0 ≤ ε � 1. In the current section we shall al-
low the toxin to diffuse but set ε = 0. In this case
we can find an exact stationary solution, which will
aid our interpretation of travelling wave solutions
to (7)-(9) with 0 < ε� 1 in Section 5.

We choose to study solutions connecting a pop-
ulation of p to a population of s by imposing the
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boundary conditions

lim
x→−∞

(p, s, a) = (1, 0, 1),

lim
x→∞

(p, s, a) = (0, 1, 0).
(17)

Note that it does not matter at which end of the
real line we choose to set the two different popula-
tions, as (7)-(9) are invariant under x → −x. We
shall see in Section 5 that, when ε > 0 and the bac-
teria are able to move, such boundary conditions
allow us to cast an invasion process as a travelling
wave connecting the two colonies. For now, with
ε = 0, we can investigate how the production of a
diffusing toxin by p affects the growth of s beyond
the immediate vicinity of p, possibly resulting in
an inhibition zone around the edge of the p-colony,
within which s is unable to grow.

With ε = 0, the steady versions of (7)-(8) become
simple algebraic equations. We shall not consider
coexistence solutions and instead focus on single-
species populations; hence we have three possible
solutions (p, s) ∈ {(0, 0), (1, 0), (0, 1 − κa/b)}. We
can therefore construct a solution by setting the
bacterial concentrations to take one of these three
options in successive regions of the real line, and
then solving (9) to find the resultant toxin distri-
bution. In order to satisfy the boundary conditions
(17), we require a colony of p, (p, s) = (1, 0), in the
leftmost region of the domain, and a colony of s,
(p, s) = (0, 1 − κa/b), in the rightmost. The task
at hand is therefore to find an appropriate solu-
tion connecting the two extrema which is consistent
with equation (9). Although we can arbitrarily di-
vide up the real line, for the sake of simplicity we
shall assume that either the two colonies are in con-
tact with one another, or are separated by a region
in which both species vanish. We therefore have a
colony of p, given by

p =

{
1, x ≤ 0,
0, x > 0,

(18)

and a colony of s, given by

s =

{
0, x ≤ x0,
1− κa/b, x > x0,

(19)

for some x0 ≥ 0. Note that we have exploited the
translational symmetry of (7)-(9) to fix the edge of
the p-colony, at which p jumps from one to zero, to
be at x = 0. The edge of the s-colony, at which s
becomes non-zero, is located at x = x0, where x0 is
an unknown to be found; if x0 = 0, the colonies are

in contact, whereas if x0 > 0, they are separated by
a region devoid of bacteria. We can therefore define
the inhibition zone, in which s cannot grow due to
the inhibitory effect of the toxin, as the minimum
possible value of x0. Note that the inhibitory pres-
ence of the toxin diffusing from the p-colony results
in s being below its carrying capacity s = 1 at the
leftmost edge of the colony. Rather, s tends to one
as x approaches infinity, as a tends to zero in the
same limit.

We now seek to determine a by substituting (18)
and (19) into (9), yielding

0 =
d2a

dx2
+ µ(1− a), x ≤ 0, (20)

0 =
d2a

dx2
− µa, 0 < x ≤ x0,

(21)

0 =
d2a

dx2
− µa

(
1 + ζκ− ζκ2

b
a

)
, x > x0. (22)

This has solution

a =


1− aLe

√
µx, x ≤ 0,

aCe
√
µx +ACe

−√µx, 0 < x ≤ x0,
α sech2(m(x− x0)− xR), x > x0,

(23)
where

α =
3b(1 + ζκ)

2ζκ2
, m =

1

2

√
µ(1 + ζκ), (24)

and we have exploited the requirement a → 0 as
x→∞ as per the boundary conditions (17) in order
to derive the solution (23) in x > x0. We choose
the peak of the sech2-pulse in (23) to be at x = x0+
xR/m in order to simplify subsequent calculations.

It remains to determine the constants of integra-
tion aL, aC , AC , xR appearing in (23), and the loca-
tion x0 of the edge of the s-colony. This we achieve
by requiring continuity of a and its first derivative
at x = 0 and x0, providing four equations in five un-
knowns. Thus one of the constants is arbitrary, al-
beit possibly subject to certain as yet undetermined
constraints. This is a consequence of the immotile
nature of the bacteria, as we shall see presently. De-
ferring the details to Appendix A for brevity, we
choose xR to be our free parameter and hence ar-
rive at the following expressions for the other four
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constants:

aL =
1

2

[
1 + α2 sech4 xR

(
(1 + ζκ) tanh2 xR − 1

)]
,

aC =
1

2
− aL,

AC =
1

2
,

x0 = − 1
√
µ

ln
[
α sech2 xR

(
1−

√
1 + ζκ tanhxR

)]
.

(25)

Requiring that the solution is physically relevant,
i.e. each of p, s and a are real and non-negative,
then yields the upper bound on xR

xR ≤ x∗R :=

 − arctanh
(√

3+ζκ
3(1+ζκ)

)
, κ ≥ κ∗,

− arctanh
(√

3+ζκ
3(1+ζκ) + ŵ

)
, κ < κ∗,

(26)
where

κ∗ := b(2 + bζ/3), (27)

and ŵ is the positive, real root of the cubic poly-
nomial (A.11), arising from the requirement that
x0 ≥ 0. ŵ is unique but exists only for toxin
strength κ < κ∗, vanishing when κ = κ∗, and hence
x∗R is piecewise continuous.

Now we have an upper bound on xR, we can find
the inhibition zone, i.e. the minimal value of the
colony separation x0, by minimising (25) subject
to (26). As xR < 0, we find that (25) is always
real, and has a minimum with respect to xR at

xR = − arctanh

(√
4 + 3ζκ− 1

3
√

1 + ζκ

)
. (28)

But (28) is greater than the upper bound (26) on
xR, and so this minimum lies outside the physically
relevant range of xR. Hence x0 is a monotonically
decreasing function of xR for xR ≤ x∗R. Therefore
the inhibition zone is (25) evaluated at xR = x∗R,
i.e.

I = max

{
0,

1
√
µ

ln

(√
3

bζ

(√
3 + ζκ−

√
3
))}

,

(29)
with the inhibition zone I vanishing only if the toxin
strength κ ≤ κ∗, as defined in (27). Note that if
κ ≤ 2b then I = 0 for all ζ.

Examples of two-colony solutions can be seen in
Figure 2. In Figure 2(a) we see the colonies in con-
tact, as the toxin strength is below the critical value
κ = κ∗ and we have set xR = x∗R, its maximum. In

Figure 2: Plots of stationary solutions to (7)-(9) with ε = 0.
In panels (a)-(b), we have κ = κ∗/2 (see (27)), in which case
the inhibition zone vanishes; the choice of xR determines the
distance x0 between colonies, with xR < x∗R (see (26)) yield-
ing a non-zero separation, as demonstrated in panel (b). In
contrast, in panel (c) we illustrate a solution with a non-
vanishing inhibition zone by setting κ = 5κ∗. In all three
panels, ζ = 4, µ = 0.1 and b = 1; the stationary solutions
calculated in Section 4 are independent of all other parame-
ters.

Figure 2(b), we allow xR < x∗R, creating a gap be-
tween the two colonies. However, this is simply a
consequence of our choice of the free parameter xR
and is not in fact an inhibition zone. Because κ is
below the threshold, s is capable of establishing it-
self closer to the producing colony, as in Figure 2(a),
but is non-motile so cannot by itself move into the
gap. A true inhibition zone is depicted in Figure
2(c), where the toxin strength has been increased
past κ∗; here xR has again been set to its maximum,
and therefore x0 takes its minimum value, i.e. the
size of the inhibition zone (29).

In Figure 3 we plot the inhibition zone I against
toxin strength κ for various values of toxin ineffi-
ciency ζ. Just above the threshold (27), we have

I ∼ 3(κ− κ∗)
2b
√
µ(3 + bζ)

, 0 < κ− κ∗ � 1,

so the inhibition zone at first grows linearly as κ
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increases past κ∗, whereas for large κ

I ∼ 1

2
√
µ

ln

(
3κ

b2ζ

)
, κ→∞,

increasing sublinearly. Hence the producer ex-
periences diminishing returns for increasing toxin
strength. Furthermore, an increase in either rel-
ative birth rate b or toxin inefficiency ζ both in-
creases the threshold (27) at which the inhibition
zone becomes non-zero, and reduces the gradient
dI/ dκ of the inhibition zone.

We conclude this section by considering the case
ζ = 0, in which case the toxin concentration is de-
pleted through natural degradation only, and not
through interaction with s. In this case (20) still
holds for x ≤ 0, as the distribution of p is un-
changed, but (21) and (22) are identical equations.
Therefore we have a = ACe

−√µx for all x > 0; we
no longer have the sech2 profile in (23) because it
arises due to the nonlinearity in (22) provided by
ζ > 0, and we set aC = 0 to prevent an unbounded
solution as x → ∞. Note that, since there is no
longer a region in which a is given by a sech2 pro-
file, the solution family is in this case parameterised
directly by x0, rather than xR. Imposing continuity
of a at x = 0, and requiring non-negative solutions
as above, we therefore obtain aL = AC = 1/2, and

x0 ≥ max

{
0,

1
√
µ

ln
( κ

2b

})
, (30)

and so the inhibition zone with ζ = 0 is given by
the lower bound of (30), which is simply the limit
of (29) as ζ → 0.

5. Travelling waves of weakly motile bacteria

The results of Section 4 hold for ε = 0, that
is, bacteria which remain stationary for all time.
This is of course an idealisation. In reality, pro-
cesses such as cellular growth or interactions with
the environment produce small forces which result
in gradual movement even for those bacteria lack-
ing specialised motility appendages such as flagella.
Although it can be argued that the solution with
ε = 0 is valid over short timescales, in order to gain
a greater understanding of the bacterial dynamics
we shall now consider 0 < ε � 1, thereby allow-
ing the bacteria to diffuse slowly throughout their
environment. Motivated by the form of solution
derived in Section 4 and illustrated in Figure 2, we

0 2 4 6 8 10
0

1

2

3

4

5

6

Figure 3: Plot of the inhibition zone I, as given by (29) for
(7)-(9) with immotile bacteria, i.e. ε = 0. I is plotted against
κ for various values of ζ, with µ = 0.1 and b = 1; the size
of the inhibition zone is independent of all other parameters
when ε = 0.

shall continue to impose the boundary conditions
(17). However, we now look for travelling wave so-
lutions connecting a colony of p at x = −∞ to a
colony of s at x = ∞. Such a solution represents
one possible invasion dynamic, in that we have an
established population of each species, with both
seeking to increase its colony size. A successful in-
vader is thus one which outcompetes the other in
the region where the two colonies meet, thus en-
croaching upon its rivals territory via diffusion; a
useful background to such problems can be found
in [54].

As is usual for a travelling wave analysis, we de-
fine the moving frame of reference z = x − vt, for
some wavespeed v, and look for solutions to (7)-(9)
which vary in z only, yielding

0 = ε
d2p

dz2
+ v

dp

dz
+ p(1− p− bcss), (31)

0 = εD
d2s

dz2
+ v

ds

dz
+ s(b(1− s)− cpp− κa), (32)

0 =
d2a

dz2
+ v

da

dz
+ µ(p− a− ζκas). (33)

The boundary conditions (17) become

lim
z→−∞

(p, s, a) = (1, 0, 1),

lim
z→∞

(p, s, a) = (0, 1, 0).
(34)

9



Therefore, p invading s is represented by a wave-
front moving to the right (with velocity v > 0),
and s invading p is represented by a wavefront mov-
ing to the left (with velocity v < 0). By setting
the boundary conditions (34) we have implicitly as-
sumed that at least one of the single-species popu-
lations must be a stable solution of (7)-(9). Oth-
erwise, the evolving dynamics will instead select
the coexistence state (p−, s−, a−) defined in (14),
rather than a single species. Therefore we assume
forthwith that at least one single-species solution
is stable, i.e. that the competition parameters of
(31)-(33) satisfy cp > b − κ or cs > 1/b (see Table
2, the discussion around (16) and Figure 1). If there
exists only one stable single-species solution, then
clearly it is this which will invade the unstable pop-
ulation; we demonstrate this fact more rigorously
in Appendix B by linearising the solution in the
far-fields z → ±∞ and showing that the velocity
is bounded away from zero if precisely one single-
species solution is stable, as per standard travelling
wave theory [49, 55]. However, it is less clear what
happens if both species exhibit stable populations,
as in this case small perturbations in either far-field
decay, and the velocity is therefore determined by
fully nonlinear effects [56]. Indeed, this remains an
active area of current research [57, 58], with recent
progress made in the case of competitors with sig-
nificantly differing diffusivities [59, 60, 61, 62]. This
is in contrast to the current work in which we as-
sume the bacteria have comparable motility. In or-
der to make further progress, we shall now employ
numerical methods to find travelling wave solutions
to (7)-(9) with ε > 0.

We approximate the real line with far-field con-
ditions (17) by a finite interval x ∈ [0, d], for some
d > 0, with boundary conditions

∂

∂x
(p, s, a)

∣∣∣∣
x=0

=
∂

∂x
(p, s, a)

∣∣∣∣
x=d

= 0.

This approximation holds provided d is sufficiently
large that each dependent variable is exponentially
close to constant-valued at the boundaries. We use
second-order finite difference approximations to dis-
cretise the spatial derivatives in (7)-(9); the pres-
ence of the small parameter ε results in a stiff sys-
tem, and so we integrate in time using the MAT-
LAB function ode15s, optimised for such problems.
Throughout we shall fix b = D = 1, i.e. the two
species have equal doubling times and diffusivities;
we have carried out simulations with different val-
ues of b and D, but we omit such cases as they

do not significantly change the outcomes presented
below. Instead, we focus our attention on vary-
ing the competition parameters cp and cs, and the
toxin parameters κ and ζ, in order to elucidate the
relationship between classic Lotka-Volterra compe-
tition via pairwise interactions and direct inhibition
through toxin production.

In each run of the simulation, we start from the
initial conditions

p(x, 0) = a(x, 0) = Θ(x1 − x),

s(x, 0) = Θ(x− x1),

where Θ(x) is the Heaviside step function

Θ(x) =

{
1, x > 0,
0, x ≤ 0,

and x1 ∈ [0, d]. Most often x1 = d/2. The model
is then integrated in time until a travelling wave
solution is achieved; note this requires that d is
large enough that boundary effects are negligible
throughout the simulation.

We plot examples of travelling wave behaviour for
different values of ε and κ in Figure 4, with the cor-
responding distribution profiles plotted in Figure 5.
All four instances show the producer invading the
susceptible even though cs > cp, with increases in
ε or κ corresponding to an increase in the speed
of invasion; we see in Figure 4 the toxin diffusing
ahead of the leading edge of its producer, clearing
the way for expansion of the producing colony into
space formerly occupied by the susceptible species.
Of course, under different conditions the susceptible
species may invade the producer. In Figure 5, we
also plot the solution derived in Section 4 for ε = 0,
taking the origin for this analytical solution to be
the point where the simulated p equals one half, in
order to compare the profiles of bacteria with ε = 0
and ε > 0. In Figures 4(a)-(b) and 5(a)-(b), we see
that there is no inhibition zone for ε = 0 (see (29))
and the solutions for ε = 0 and ε > 0 are quali-
tatively similar, with bacterial diffusion serving to
smooth out the discontinuities exhibited when the
bacteria are non-motile (see Section 4 and Figure
2). In contrast, in Figures 4(c)-(d) and 5(c)-(d), κ
is large enough that there does exist an inhibition
zone for ε = 0. However, the size of this zone is
greatly decreased even for ε = 0.001 (Figure 5(c)),
and vanishes altogether for ε = 0.01 (Figure 5(d)).

In order to calculate the velocity of the moving
frame of reference, we exploit the travelling wave
framework (31)-(33). Integrating each of (31)-(33)
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Figure 4: Numerical solutions to (7)-(9), showing a p invad-
ing s for different values of the diffusivity ratio ε and toxin
strength κ. The left hand column shows p in blue and s in
red, with the opacity proportional to p + s, so that a pure
white region represents p = s = 0. The right-hand col-
umn shows the toxin in yellow, with opacity proportional to
a. Profiles of the travelling waves can be seen in Figure 5.
The upper two panel pairs have κ = κ∗/2 (see (27)), with
ε = 0.001 in (a) and ε = 0.01 in (b). The lower two panel
pairs have κ = 5κ∗, with ε = 0.001 in (c) and ε = 0.01 in
(d). The other parameters are D = 1, b = 1, cp = 1, cs = 2,
µ = 0.1 and ζ = 4 in all four simulations.

across the real line, applying the boundary condi-
tions (34) and changing the variable of integration
from z back to x yields

vp(t) =

∫ ∞
−∞

p(1− p− bcss) dx, (35)

vs(t) = −
∫ ∞
−∞

s(b(1− s)− cpp− κa) dx, (36)

va(t) = µ

∫ ∞
−∞

(p− a− ζκas) dx. (37)

Starting from a particular choice of initial condi-
tions, if the dynamics select a travelling wave solu-
tion we therefore have

v = lim
t→∞

vp = lim
t→∞

vs = lim
t→∞

va.

Figure 5: Profiles of the travelling wave solutions to (7)-(9)
shown in Figure 4, with corresponding labels. Solid lines
represent the solution profiles at the end of the simulation
t = 100. Dashed lines represent analytical solutions to (7)-
(9) with ε = 0 (see Section 4), with the point at which the
simulated p is equal to one half taken to be the origin of
the analytical solution. Parameter values are given in the
caption for Figure 4.

In the context of our numerical simulations, if d
is sufficiently large that p, s and a are asymptot-
ically constant at the boundaries x = 0, d, then
(35)-(37) are good approximations of the velocity
of the travelling wave. In practice, this requires in-
tegrating the system until each of the three expres-
sions (35)-(37) are approximately equal and con-
stant, checking that boundary effects remain negli-
gible. We plot (35)-(37) for the parameter values of
Figure 4(a) in Figure 6, showing each of the three
expressions rapidly approaching an asymptote, the
wavespeed.

To further elucidate the dependence of the veloc-
ity and inhibition zone on different parameters, we
ran simulations of (7)-(9) over a range of values of
the toxin strength κ, for nine different pairs of val-
ues of the competition parameters cp and cs. The
results can be seen for ε = 0.001 in Figure 7, and for
ε = 0.01 in Figure 8. The presence of bacterial dif-
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Figure 6: The velocity formulae (35)-(37), corresponding to
the simulation shown in Figure 4(a), each approaching the
true wavespeed v of the travelling wave as t→ ∞.

fusion prevents us from defining the inhibition zone
in the same way as in Section 4, as the bacterial
distributions will now decay exponentially rather
than vanish discontinuously. We instead define an
effective inhibition zone as

Iθ = max(xθ)−min(xθ), (38)

where xθ is the region of space in which both p and
s fall below the threshold θ, i.e.

xθ := {x ∈ R|p < θ} ∩ {x ∈ R|s < θ}

We shall use θ = 0.05 throughout the present work.
In all cases shown in Figures 7 and 8, we see the

velocity approaching an asymptote from below as κ
increases. Starting from κ = 0, the inhibition zone
is initially zero, but as κ increases there comes a
point at which it begins to grow. This point coin-
cides with the magnitude of the velocity nearing its
upper limit, with the inhibition zone thereafter in-
creasing in size sublinearly as κ increases. Thus we
see that the velocity achieves its maximum value as
the toxin becomes sufficiently inhibitory of s near
the leading colony edge of p that an inhibition zone
is formed. Once this has happened, p is no longer
actively competing with s for access to resources,
meaning that colony expansion depends only on the
birth rate and diffusivity of p, rather than being im-
peded by the presence of s. In fact, if the inhibition
zone is such that s is exponentially small near the
leading edge of the producing colony, p is effectively
governed by the Fisher-Kolmogorov equation [49]

0 = ε
d2p

dz2
+ v

dp

dz
+ p(1− p), (39)

the leading-order approximation of (31) with s ∼
0. It is well known [49, 55] that the minimum
wavespeed of (39) is v = 2

√
ε, and that the dynam-

ics will always select the travelling wave profile asso-
ciated with this value of v for a wide range of physi-
cally relevant initial conditions. This formula gives
2
√

0.001 = 0.063 (2 s.f.) and 2
√

0.01 = 0.2, agree-
ing closely with the asymptotic values of v plotted
in Figures 7 and 8 as κ → ∞. Thus we conclude
that, once an inhibition zone has formed, the dy-
namics of p are determined by the classic travelling-
wave theory of (39). In contrast, although s is also
not directly competing with p due to the inhibition
zone, the toxin diffuses ahead of p and impedes s,
resulting in an effective growth rate of b−κa in (32)
and allowing the producing colony to expand. Note
the differing axes between Figures 7 and 8; this phe-
nomenon requires much higher toxin strength as ε
increases, due to the increased flux of susceptible
bacteria towards the colony of producers.

For most data points in Figures 7 and 8, the ve-
locity is positive, i.e. p invades s. However, there
are some exceptions in which toxin strength κ is
sufficiently low and s-competitiveness cs sufficiently
high that s is the invader. None of these instances
correspond to cs = 0.5, as in this case the s pop-
ulation is always unstable and so a travelling wave
always moves so as to decrease its colony size. How-
ever, for cs > 1/b, where b is the relative birth
rate, the s population is stable and so may be able
to invade, provided it can outcompete p and over-
come the toxin. Note that this does not necessarily
require instability of the p population; in Figure
7(a) it can be seen that when cs = 2.5 there ex-
ists κ > b − cp = 0.5 such that v < 0, i.e. both
single-species solutions are stable but s invades p.
Of course, the majority of data points plotted over
Figures 7 and 8 correspond to the bistable case with
both single-species solutions being stable, but show
p invading s due to the advantage of toxin produc-
tion provided by our choice of κ values. Note that
there is no data point for cp = cs = 0.5 and κ = 0
in Figures 7(a) and 8(a), as in this instance both
single-species solutions are unstable and the dy-
namics select the coexistence solution (p−, s−, a−)
defined in (14).

6. Discussion

Many bacterial species produce toxins as a means
of increasing their fitness in highly competitive en-
vironments [25, 26]. By thus inhibiting its competi-
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Figure 7: Velocity v and inhibition zone I0.05, calculated
from numerical solutions to (7)-(9) with ε = 0.001. cp differs
between each pair of panels (a), (b) and (c), while the colours
of the data points indicate different values of cs. The other
parameters are D = 1, b = 1, µ = 0.1 and ζ = 4. Note the
axes differ to those in Figure 8.

tors, a toxin producer is afforded greater opportu-
nity to exploit locally available resources. In or-
der to understand this phenomenon in more detail,
we have developed a model (1)-(3) of two species
in competition. Note that, although the preced-
ing analysis was carried out in terms of the nondi-
mensional quantities (4)-(6), we shall in the present
section discuss our results in terms of the original,
dimensional quantities, in order to more effectively
consider the biological reality.

Our model extends the classic Lotka-Volterra
model in one dimension [48, 49] to explicitly in-
clude the production of a toxin by one of the two
species. Indirect inhibition is modelled via the
pairwise interaction terms −cijij in (1)-(2), where
i, j ∈ {P, S}; if i = j the term represents intraspe-
cific competition, if i 6= j it represents interspecific
competition. Each competition constant cij repre-
sents the inhibitory effect that the species i has on
the species j. Such effects depend not only upon
species-specific traits such as rate of resource up-
take, but also environmental factors such as pre-
cisely which resources are available, and how ac-

Figure 8: Velocity v and inhibition zone I0.05, calculated
from numerical solutions to (7)-(9) with ε = 0.01. cp differs
between each pair of panels (a), (b) and (c), while the colours
of the data points indicate different values of cs. The other
parameters are D = 1, b = 1, µ = 0.1 and ζ = 4. Note the
axes differ to those in Figure 7.

cessible they are. For example, if the two species
depend primarily on different resources, then we
would expect intraspecific competition to be greater
than interspecific, and hence both cii < cij . On
the other hand, a significant overlap of resource re-
quirements with both species having approximately
equal rates of uptake would result in each cij to be
approximately equal. If instead P , for example, had
a greater rate of uptake than S, then we would have
cPS > cPP and cSP < cSS . Similarly, the birth
rates bi will vary according to both species-specific
and environmental factors. Therefore the location
of any two-species system in parameter space de-
pends not only on the choice of species, but also on
the choice of environment. With this observation
in mind, we shall now discuss our results in more
detail.

Considering first spatially homogeneous solutions
(i.e. a well mixed system), we showed in Section 3
that toxin production increases the region of pa-
rameter space in which a population of P is stable.
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Moreover, if the inequality

bP
cPP

β

δ
>
bS
k

(40)

holds, then a population of P is stable everywhere.
Therefore toxin production increases the range of
environmental conditions in which a species can
dominate over its competitor, an especially useful
trait when in a highly variable environment such
as the skin or gut of a host animal. If the toxin
strength k = 0, then (40) can never hold, but even
a very weak toxin opens up the possibility of the
producer being stable in the whole of the physically
relevant (cs, cp)-plane. Moreover, the inequality is
independent of the interspecific competitiveness of
S, meaning toxin production is effective against
even highly competitive species, as the only means
by which the susceptible species can negate (40)
are increasing its birth rate bS or developing resis-
tance to the toxin via decreasing its strength k. We
note, however, that if (40) holds then there do exist
bistable regions in which either the coexisting or S-
only populations are also stable (see Figure 1(c)),
and so the producer is not necessarily guaranteed to
outcompete the susceptible even though it is stable
solution.

The analysis of Section 3 provided a basis for
the study of spatially varying solutions in Section
4, in which both the bacteria and the toxin diffuse
across the domain. Motivated by skin bacteria such
as Staphylococcus spp., we restricted our attention
to weakly motile bacteria. In the special case of
truly stationary bacteria, in which only the toxin
diffuses, we derived an analytical, stationary solu-
tion describing adjacent colonies of the two species
(see Figure 2). The producing colony acts as a toxin
source, which diffuses into the susceptible colony,
inhibiting its growth. Once the toxin strength in-
creases above a certain threshold (27), this inhibi-
tion is total; an inhibition zone forms separating the
two colonies. In dimensional form, (27) becomes

k∗ := bS
cPP
bP

δ

β

(
2 +

bS
3

cPP
bP

bS
cSS

η

β

)
, (41)

i.e. the inhibition zone exists for k > k∗. Again,
(41) is independent of interspecific competition.
Note that (41) is quadratic in bScPP /bP ; this non-
linearity arises from the depletion of the toxin as
it interacts with the susceptible species, and is not
present if the depletion coefficient η = 0. Thus by
decreasing the efficiency of the toxin, the suscepti-
ble species can increase the threshold at which the

inhibition zone forms. This could be done either by
increasing resistance, in that more toxin is required
for the same inhibitory effect, or actively degrad-
ing the toxin molecules in the environment through
secretion of some compound.

Upon allowing the bacteria to diffuse slowly in
Section 5, we saw that two-colony solutions form
travelling waves. Although the wave profiles are
qualitatively similar to the discontinuous, station-
ary solutions of completely stationary bacteria—
indeed, the stationary solution can be thought of
as the singular limit of the travelling wave solutions
as bacterial diffusivity ε → 0—two key differences
were found. The first is that diffusion smooths out
the discontinuities, so that bacteria distributions
profiles decay exponentially rather than dropping
to zero. The second, and more consequential, dif-
ference is that the threshold value of dimension-
less toxin strength κ required for an inhibition zone
to form increases rapidly with bacterial diffusivity.
Therefore, a more motile species must either invest
much more in its toxin if it is to gain the benefits of
an inhibition zone, or reserve expression of a toxin
until it enters an immotile phase, such as pathogens
adhering to host cells [53].

However, it is clear that there are substantial
benefits to producing a toxin effective enough to
form an inhibition zone. We saw in Figures 7 and
8 that the velocity asymptotes to a value indepen-
dent of competition, and that the formation of the
inhibition zone coincides with the velocity nearing
its maximum magnitude. Thus the inhibition zone
frees the producer from having to compete for the
resources available at the leading edge of the colony;
rather, the spreading speed is determined only by
how effectively the producer can exploit those re-
sources, and how motile it is. In such a scenario,
the producer is then no longer under evolutionary
pressure to compete with the inhibited species for
resources, potentially allowing it to evolve increased
competitiveness against other species in the com-
munity, or to become more efficient at exploiting
secondary resources.

We note that we have not explored the possibil-
ity of travelling waves incorporating the coexistence
solutions (14), in favour of focussing on the more
tractable case of competing single-species colonies,
the latter case being the more amenable to analysis.
We defer study of the former to further work.

The present study provides insights that under-
pin our understanding of bacterial competition and
presents a model of toxin-mediated inhibition to de-
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velop future investigations of species interactions,
with potential implications for the therapeutic use
of commensal bacteria [20, 21, 22, 63, 64].
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Appendix A. Calculation of the constants
appearing in the two-colony
solution of Section 4

In this appendix, we detail the derivation of the
constants of integration aL, aC , AC and xR appear-
ing in (23), and the location x0 of the leftmost edge
of the susceptible colony as defined in (19). This we
do by imposing continuity of a and its first deriva-
tive at the colony boundaries x = 0, x0. Requiring
continuity of a and its first derivative at x = 0 yields

1− aL = aC +AC ,

−aL = aC −AC ,

with solution

aC =
1

2
− aL, AC =

1

2
. (A.1)

Then, requiring continuity of a and its first deriva-
tive at x = x0 yields(

1

2
− aL

)
e
√
µx0 +

1

2
e−
√
µx0 = α sech2 xR (A.2)(

1

2
− aL

)
e
√
µx0 − 1

2
e−
√
µx0 =

2mα
√
µ

sech2 xR tanhxR.

(A.3)

We solve (A.2)-(A.3) for aL and x0 in terms of xR,
obtaining

aL =
1

2

[
1 + α2 sech4 xR

(
(1 + ζκ) tanh2 xR − 1

)]
,

(A.4)
and

x0 = − 1
√
µ

ln
[
α sech2 xR

(
1−

√
1 + ζκ tanhxR

)]
.

(A.5)

Thus (18)-(23) describe a family of stationary so-
lutions to (7)-(9) with ε = 0, parameterised by xR.
We can now define the inhibition zone I as the min-
imum value of x0 with respect to xR, i.e.

I = min
xR

(x0).

It remains to find the range of values over which we
can choose xR, and then to determine the minimum
of (A.5) within that range.

Requiring that p, s and a are all physically rele-
vant imposes certain constraints that must be sat-
isfied by our family of solutions. We note first that
our solution (18) for p is always physically relevant.
Turning our attention next to a, requiring that (23)
is physically relevant in x ≤ 0 gives the condition

aL ≤ 1. (A.6)

For (23) to hold in 0 < x ≤ x0, with the constants
of integration given by (A.1), we need

e−2
√
µx ≥ 2aL − 1;

as the left-hand side is minimal at x = x0, we there-
fore require

aL ≤
1

2

(
e−2
√
µx0 + 1

)
. (A.7)

After rearrangement and comparison with (A.2), we
see that (A.7) is always satisfied. Furthermore, if
(A.7) holds then so does (A.6). Thus, because (23)
is always real and non-negative in x > x0, our so-
lution for a is physically relevant on the whole real
line. However, from (19) we see that in order for s
to also be physically relevant we must have

α sech2(m(x− x0)− xR) ≤ b

κ
, (A.8)

in x > x0. The left-hand side of (A.8) is maximal
at x = x0 + xR/m, but the inequality fails at that
point because α > b/κ (see (24)). Therefore the
maximum of the left-hand side of (A.8) must be to
the left of x0, where s ≡ 0 and (A.8) does not apply.
Hence we must have xR < 0, and the left-hand
side of (A.8) decreases monotonically as x increases
from x = x0. (A.8) is thus satisfied only if

xR ≤ − arctanh

(√
3 + ζκ

3(1 + ζκ)

)
. (A.9)
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Finally, requiring x0 as derived in (A.5) to be
non-negative provides the condition

0 ≥ 1− 1

α
−
√

1 + ζκ tanhxR

− tanh2 xR +
√

1 + ζκ tanh3 xR. (A.10)

Defining

w = −

√
3 + ζκ

3(1 + ζκ)
− tanh(xR),

(A.9) indicates we must have w ≥ 0; substituting
for tanhxR in (A.10) then gives

0 ≤ 1

α
− 2ζκ(

√
3 + ζκ+

√
3)

3
√

3(1 + ζκ)
+

2(
√

3 + ζκ+
√

3)√
3(1 + ζκ)

w

+
(√

3(3 + ζκ) + 1
)
w2 +

√
1 + ζκw3.

(A.11)

By Descartes’ rule of signs, if the constant term in
(A.11) is negative then the polynomial has precisely
one positive root, which we denote by ŵ; otherwise
it has no positive roots. As the inequality holds
for large enough w, continuity requires that it also
holds for w ≥ max(0, ŵ). Using (24) to determine
conditions for negativity of the constant term in
(A.11), for x0 to be non-negative we must therefore
have

xR ≤ x∗R :=

 − arctanh
(√

3+ζκ
3(1+ζκ)

)
, κ ≥ κ∗,

− arctanh
(√

3+ζκ
3(1+ζκ) + ŵ

)
, κ < κ∗,

(A.12)
where

κ∗ := b(2 + bζ/3),

and ŵ is the positive, real root of (A.11), existing
only for κ < κ∗ and vanishing when κ = κ∗.

Appendix B. Some analytical results on
the velocities of the travelling
waves of Section 5

By recasting the system (7)-(9) in the moving
frame of reference z, we have arrived at a system
of ordinary differential equations, albeit with the
unknown velocity v. We can make some analytical
progress by linearising around the far-field solutions
(34), following the method of Murray [49]. Consid-
ering first the right-hand limit z →∞, we write

(p, s, a) ∼ (0, 1, 0) + (p̂R, ŝR, âR)e−λRz, λR > 0,

substitute into (31)-(33) and linearise in e−λRz.
Note that we fix λR > 0 in order to ensure ex-
ponential decay as z →∞. After some minor rear-
rangement, this provides

v

p̂RŝR
âR

 = MR

p̂RŝR
âR

 ,

where

MR =


ελR +

1− bcs
λR

0 0

− cp
λR

εDλR − b

λR
− κ

λR
µ

λR
0 λR − µ(1 + ζκ)

λR

 .

(B.1)
Thus v can be found in terms of λR as an eigen-
value of (B.1), yielding three possible solutions for v
and the associated eigenvector (p̂R, ŝR, âR) for each
choice of λR, namely

v = ελR +
1− bcs
λR

,

p̂RŝR
âR

 =

 1
ŝR,1
âR,1

 , (B.2)

v = εDλR −
b

λR
,

p̂RŝR
âR

 =

0
1
0

 , (B.3)

v = λR −
µ(1 + ζκ)

λR
,

p̂RŝR
âR

 =

 0
ŝR,3

1

 , (B.4)

where

ŝR,1 =
cp + κâR,1

ε(D − 1)λ2R − 1− b(1− cs)
,

âR,1 =
µ

(ε− 1)λ2R + 1− bcs + µ(1 + ζκ)
,

ŝR,3 =
κ

(εD − 1)λ2R − b+ µ(1 + ζκ)
.

If the s colony in the right-hand far-field is to con-
nect smoothly to a non-zero value of p, it must be
perturbed by a mode containing a non-zero p com-
ponent. The only eigenvector of (B.1) satisfying
this requirement is (B.2), thus determining the ve-
locity in terms of the perturbation growth rate λR.
Although λR is strictly positive by definition, its
precise value depends on the choice of initial con-
ditions. However, we note that if cs < 1/b, i.e. if a
population of s is unstable (see Section 3), then v
is positive for all positive values of λR. Therefore if
a population of s is unstable, a travelling wave so-
lution satisfying (31)-(33) with far-field conditions
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(34) will always travel to the right, i.e. the pro-
ducer will invade the susceptible. Furthermore, we
can obtain a lower bound on the speed of the wave
by minimising v with respect to λR, namely

v ≥ 2
√
ε(1− bcs), cs < 1/b. (B.5)

We note this is equivalent to the linear spreading
speed of van Sarloos [55].

A similar analysis can be performed for the p
colony in the left far-field. Letting z → −∞, we
now write

(p, s, a) ∼ (1, 0, 1) + (p̂L, ŝL, âL)eλLz, λL > 0,

and linearise (31)-(33) as before. Thus we obtain

v

p̂LŝL
âL

 = ML

p̂LŝL
âL

 ,

where

ML =


−ελL +

1

λL

bcs
λL

0

0 −εDλL − b− cp − κ

λL
0

− µ

λL

µζκ

λL
−λL +

µ

λL

 ,

(B.6)
which we can solve to give the three possibilities

v = −ελL +
1

λL
,

p̂LŝL
âL

 =

 1
0
âL,1

 ,

(B.7)

v = −εDλL −
b− cp − κ

λL
,

p̂LŝL
âL

 =

p̂L,21
âL,2

 ,

(B.8)

v = −λL +
µ

λL
,

p̂LŝL
âL

 =

0
0
1

 ,

(B.9)

where

âL,1 =
µ

(ε− 1)λ2L − 1 + µ
,

p̂L,2 =
bcs

ε(1−D)λ2L − 1− b+ cp + κ
,

âL,2 =
µ(ζκ− p̂L,2)

(1− εD)λ2L − b+ cp + κ− µ
.

For the p colony to connect to the s colony, we now
require a mode with non-zero s component, the only

candidate being (B.8). Hence we see that if cp < b−
κ then v is negative for all positive values of λL. In
other words, if a population of p is unstable then a
travelling wave solution to (31)-(33) satisfying (34)
will always travel to the left. Minimising v with
respect to λL then gives an upper bound to the
wavespeed of

v ≤ −2
√
εD(b− cp − κ), cp < b− κ. (B.10)

We therefore know that, whenever precisely one
single-species solution is stable, a travelling wave
connecting the two colonies must move so that
the stable population invades the unstable one.
Thus the strongly competitive species displaces the
weakly competitive one. Note that (B.10) indicates
that increasing κ decreases the speed at which a
weakly competitive producer is invaded; moreover,
we saw in Section 3 that the region in which only
the susceptible species is strongly competitive de-
creases in size as κ increases, vanishing altogether
when κ = b. With boundary conditions (34), we
have a travelling wave moving to the right when
only the producer is strongly competitive, and mov-
ing to the left when only the susceptible is strongly
competitive; the question remains as to which di-
rection the travelling moves when both species are
strongly competitive. Comparing (B.2) and (B.8),
we can again apply the logic of requiring all three
components of both far-field perturbations to be
non-zero to see that the velocity can only vanish
when both single-species solutions are stable. Un-
fortunately, the above analysis is unable to eluci-
date any more than this simple fact, as the method
requires the far-field solution to be unstable in order
to derive a bound on the velocity.
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