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Abstract: The influence of post-growth thermal annealing on GaSbBi Schottky barrier diodes 

has been investigated. The effects of the annealing temperature and time on the material 

quality and electrical characteristics of the diodes have been studied. The I-V characteristics 

indicated a better ideality factor and less leakage current at the reverse bias, as the annealing 

temperature increased up to 500 ºC for a duration of 30 minutes. X-ray diffraction (XRD) and 

scanning transmission electron microscope (STEM) measurements were performed to verify 

that the bismuth composition was unaffected during the annealing process. Energy dispersive 

x-ray (EDX) analysis indicated Sb clustering occurs at high annealing temperatures, resulting 

in a concomitant degradation in the electrical performance. The optimum electrical 

characteristics of the diode were obtained with an annealing temperature of 500 ºC for 30 

minutes, resulting in an ideality factor of 1.3 being achieved. 
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1. Introduction 

Group III-V bismuth alloys have shown great promise in the past decade as being able to 

extend the operational wavelength of optoelectronic devices 1-4 due to a large bandgap 

reduction with only small concentrations of bismuth. This makes dilute bismuth Sb-based 

semiconductor materials attractive for optoelectronic device applications operating across the 

near- and mid-infrared spectral ranges5. GaSb is typically used in optoelectronic devices 

working in the near-infrared, such as gas and chemical sensing 6-8. However, standard type-1 

GaSb based laser diodes, comprising of GaInAsSb Quantum Wells with AlGaAsSb barriers 

suffer from a low valence band offset at the interface, resulting in high hole leakage, this 

problem becomes more significant as the composition of the alloys are adjusted for longer 

wavelength emission, due to the quantum well valance level reducing as the As fraction is 

increased 9,10.  

Introducing small amounts of Bi into GaSb can significantly reduce the band gap and thus 

potentially extend the emission wavelength to beyond 3 µm, opening up new applications in 

biological and chemical sensing. While the reduction in the bandgap is primarily due to a 

downward shift in the conduction band there is also a concomitant raising of the valence band 

11-15, which may help to supress hole leakage in GaSb-based laser devices16. 

However, successful incorporation of Bi into the GaSb matrix requires non-standard growth 

parameters such as very low growth temperatures, potentially reducing the quality of the 

material. As such, obtaining high Bi incorporation while still retaining a high crystal quality 

remains a challenge that has not been fully addressed and optimised.  

Despite significant research over recent years focused on introducing Bi into GaAs 17-19, 

primarily driven to achieve more efficient laser diodes for telecommunications operation, 

there has been little attention paid to GaSb based alloys. GaAsBi alloys also require a non-

standard growth parameter space and as such a number of refinements and advances to the 
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growth and subsequent fabrication have had to be realized to enable functioning laser diodes 

to be obtained. For example, Marko et al.18 studied the optical gain spectra of 

GaAsBi/(Al)GaAs quantum wells to obtain optimal internal optical losses of 10-15 cm-1 and 

modal gain of 24 cm-1 . While Feng et al.20 have investigated the influence of annealing on 

the optical properties of GaAs . Bi .  by photoluminescence intensity and HR-XRD 

measurements which were performed to characterize the structural changes during annealing, 

this showed the PL peak intensities remain stable for annealing temperatures of up to 700 ºC, 

and then severely deteriorate at 800 ºC.  

Comparatively, there are only a few articles reported on Bi incorporation in GaSb 5,15,21-24, 

especially the electrical properties of GaSbBi. Rajpalke et al. 25 have realized GaSb Bi  

material by molecular beam epitaxy with 9.6% Bi incorporation, with droplet-free smooth 

surfaces and high crystalline quality, resulting in a band gap of  410 meV. More recently, even 

higher Bi contents in the range 11-14.5% have been demonstrated by Delorme et al. 5, Yue et 

al. 26 and Hilska et al. 27. To try and achieve better electrical performance Dier et al. 28 and 

Rotelli at al. 29 have investigated various passivation processes to reduce oxide layers on the 

surface of GaSb. Recently a GaSbBi-based laser diode has been demonstrated 30; this had an 

extended emission wavelength of 2.5 μm at 80 K and 2.7 μm at room-temperature but at a 

high threshold current density of 431 	⁄ and 4.22  ⁄ , respectively, indicating a 

high level of defects and leakage mechanisms originating from the introduction of Bi to the 

GaSb matrix. As such, while lasing devices have been demonstrated, there is still significant 

work needed to optimize and improve the material quality to realize efficient laser sources for 

device applications. 

In this work, thin films of GaSbBi films were grown by molecular beam epitaxy and 

subsequently fabricated into Schottky diodes. The effect of post-growth annealing on the 

physical properties of the material and subsequent electrical properties of the devices was 
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investigated as a potential method to improve the material quality and hence its electrical 

performance.  

 

2. Experimental 

A series of thin GaSbBi films were grown using molecular beam epitaxy (MBE) on GaSb 

substrates. The samples were grown using a Mod Gen II using a cracker cell to provide the 

Sb flux and Vecco Sumo cells to provide the Bi and Ga fluxes, It is assumed that the Sb fluxes 

comprises Sb2 for the valve temperature of 800°C. The samples consisted of 400 nm thick 

nominally undoped GaSbBi layers grown on 100 nm-thick GaSb buffer layers grown directly 

onto the substrate. Samples with Bi concentrations of 3.5% and 4% were grown at a 

temperature of 325 and 250 ºC, respectively, with growth rates of 0.75 µm/h and 0.5 µm/h. 

The Bi content of the GaSbBi films was determined using x-ray diffraction (XRD) using the 

fact that we have previously quantified the dependence of lattice parameter on Bi content by 

combining XRD and Rutherford backscattering.25 The XRD measurements in this work used 

a Rigaku Smartlab x-ray diffractometer, with a rotating copper anode and Ge (220) four 

bounce monochromator, under ambient conditions. The Cu K1 line was used with a 

wavelength of 1.5406 Å. The 004 Bragg reflections were measured. A series of reference 

GaSb samples was grown where a nominally undoped 400nm layer of GaSb was grown at 

temperatures of 250, 300, 325 and 400 ºC.  

Epitaxial wafers were initially cleaved and then cleaned with acetone and isopropyl alcohol 

for 10 mins each. The samples were annealed with different temperatures and time, under a 

nitrogen rich background in an annealing furnace. The samples were sandwiched between 

two dummy GaSb wafers and placed in a sealed ampoule during the annealing process to 

prevent out-diffusion of Sb. The Ohmic contact of the backside was made by evaporating Au-

Zn-Au, before patterning of the top contact via photolithography. The top Schottky contact 



5 

 

consisted of Ti-Au and was deposited via thermal evaporation. Electrical, current-voltage (I-

V) measurements were performed with an Agilent Technology B1500A Semiconductor 

Device Analyser.  

To investigate this more closely, we have performed transmission electron microscopy (TEM) 

on the samples to look for changes in the material as the anneal temperature is increased.  

For Transmission Electron Microscopy (TEM) measurements, electron transparent thin 

lamella specimens were prepared from wafer sections, using the focussed ion beam (FIB) lift-

out method31, using a dual beam FEI Helios 600i FIB instrument. Trenching and thinning 

were performed using a 30kV Ga ion beam before damaged surface layers were removed with 

a 5kV beam.  

Bright field (BF) and high angle annular dark field (HAADF) images were recorded using a 

probe side aberration corrected JEOL 2100FCs scanning transmission electron microscope 

(STEM) operating at 200keV. HAADF z-contrast images were formed using electrons 

collected over a semi-angle range from 70 to 190 mrad. Energy dispersive x-ray spectroscopy 

was performed, in the TEM, using an EDAX windowless x-ray detector.   

3. Results and discussion 

As GaSbBi films have to be grown at low temperatures in order to incorporate Bi, we initially 

measured a series of Schottky diodes fabricated from GaSb thin films grown at different 

temperatures. This series of samples was grown on p-type GaSb substrates and consisted of 

400 nm thick nominally undoped GaSb layers. The I-V characteristics of the resultant diodes 

are shown in Fig. 1. As the growth temperature decreases there is a significant decrease in the 

diode rectification, with non-diode like I-Vs being observed at growth temperatures below 

400 ºC. Similar results have been obtained previously 32 and were attributed to the low surface 
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mobility of elemental antimony at these growth temperatures, resulting in Sb having an 

increased probability of being incorporated at antisites.  

 

Fig. 1 I-V characteristic of Au/GaSb Schottky diodes for different GaSb growth temperatures and also after 

post-growth annealing. 

We then performed post-growth annealing on samples grown at low temperatures to see if 

improved electrical performance could be obtained. The I-V characteristic for the diode grown 

at 325 ºC and then subsequently annealed at 400 ºC for 20 mins is also shown in figure 1 

(dashed line). This confirms that the electrical properties of low growth temperature GaSb 

can be dramatically improved by a subsequent annealing process. The results shown in figure 

1, indicate that the annealed low growth temperature sample actually has better diode 

characteristics than the corresponding high growth temperature sample. Similar annealing 

results have been reported previously on different materials, such as GaN 33 and more recently 

GaAsBi20.  

The annealing process was then repeated to see if similar annealing could improve the 

performance of GaSbBi devices grown, for initial measurements the samples with a Bi 

composition of 3.5% (corresponding to a growth temperature of 325 oC) were utilized. 



7 

 

Samples were annealed at temperatures of between 400 and 500 ºC for durations between 5 

and 30 minutes. To initially verify that the annealing process has not altered the Bi 

concentration, x-ray diffraction (XRD) measurements were performed on each of the GaSbBi 

samples. 

The XRD patterns of the GaSbBi for the as-grown reference layer and layers annealed at 400 

and 500 ºC for 30 mins are shown in Fig. 2 (symbols), along with corresponding simulations 

(lines). It can be seen that the peak corresponding to the GaSbBi film is at a lower angle than 

the substrate GaSb. This corresponds to the expansion of the lattice of the GaSbBi epilayers 

with respect to the substrate 14.  Good simulation were obtained for each of the samples using 

the film thickness and Bi content parameters given in Table I. It is clear from the XRD that 

the main epilayer peak does not shift significantly during the annealing process, the simulation 

result indicates the bismuth incorporation is unaffected by the annealing procedures. To 

within the accuracy of the modelling of the XRD data, the film thickness is constant for all 

annealing treatments apart from 500C for 30 minutes. For that one annealing treatment, the 

deduced change may be a real change of GaSbBi layer thickness due to out diffusion of Bi, 

but the apparent change in film thickness may instead be a manifestation in the XRD 

modelling, we will revisit this result at the end of the paper to discuss it further. 
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Fig. 2 XRD patterns of the 004 reflections of GaSbBi films containing 3.5% Bi with different annealing 

temperatures. The experimental data are shown as open circles and the simulations are shown as lines.  

Table I. The parameters used to model the XRD patterns after different annealing treatments. 

Annealing 
temperature (C) 

Annealing time 
(minutes) 

Film thickness (nm) 
± 10 nm 

Bi content (% of 
anion sublattice) 

± 0.10 
As - grown 

400 
500 
500 
500 

As - grown 
30 
5 
15 
30 

308 
290 
290 
290 
245 

3.45 
3.45 
3.15 
3.70 
3.70 

 

To investigate potential improvements in the electrical performance, the same samples were 

fabricated into Schottky diodes and room temperature I-V measurements were performed, 

with the results shown in figure 3. It can be seen that the diode characteristics are improved 

upon annealing, with lower dark currents being observed as a function of both increasing 

annealing temperature and time, resulting in the device annealed at 500 ºC for 30 mins 

showing good diode-like behaviour. We have fitted the experimental data with the diode 

equation to enable us to extract the ideality factor and saturation current for the diodes as a 

function of annealing the condition. Figure 4a gives the values obtained for devices annealed 

for 15 mins while figure 4b, gives the values for those annealed for 30 mins. For the samples 

annealed for 15 minutes, the values of saturation current decreased from 2.64×10-4 A (as-
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grown) to 1.68×10-5 A (at 500 ºC), and the ideality factor decreased from 2.57 (as-grown) to 

1.62 (at 500 ºC). A similar trend can be observed (fig. 4b) for devices annealed for 30 minutes 

with the saturation current and the ideality factor decreased to 3.72×10-5 A and 1.3, 

respectively, after annealing at a temperature of 500 ºC. The extracted values of the ideality 

factor are relatively high, particularly for the as-grown sample. This suggests that the 

dominant recombination process in these diodes is not thermionic emission 34,35, but rather 

other current processes are actively contributing to the diode performance. These additional 

current paths could come from a range of potential sources including, but not limited to, 

surface roughness, tunnelling due to high background doping, impurities or the presence of 

native oxide layers. The improvement in the I-V curves observed in figure 3, suggest that 

dislocations or point defects which are subsequently repaired upon annealing 36,37 may well 

be contributing to these additional current paths. The full analysis of these possible current 

mechanisms is beyond the scope of this current paper, however, this does not take away from 

the key result obtained here that post-growth annealing can significantly improve the diode 

performance and its extracted ideality factor. These results also indicate longer annealing 

times, at least up to 30 minutes results in an improved electrical performance compared to 

shorter times. Of course the optimum annealing conditions will be determined by the thermal 

dose induced in the sample, which will be a function of temperature and time. These results 

show that post-growth annealing can result in dramatically improved electrical performance 

of GaSbBi alloys. 
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Fig. 3 I-V characteristics of Au/GaSbBi containing 3.5% Bi Schottky diode after different annealing condition 

                

Fig. 4 Temperature dependent ideality factor and saturation current of Au/GaSbBi containing 3.5% Bi 

Schottky diode under different annealing conditions (a) 15 min and (b) 30 min 

To investigate the repeatability of this result as well as the influence of higher annealing 

temperatures, an additional sample with a Bi composition of 4%, was also annealed and the 

measurements were repeated.  The resultant I-V characteristics of the Schottky diodes are 

presented in Fig. 5. As before, a clear improvement is observed in the diode characteristics as 

the annealing temperature increased to 500 ºC. However, when the annealing temperature 

increases further to 550 ºC, a resultant deterioration in the electrical performance is noted. 

From fitting the experimental data, similar reductions in the ideality factor and saturation 

current (presented in figure 5b), are interesting to note that electrical properties initially 
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degrade (higher saturation current and ideality factors) as the sample is annealed up to a 

temperature of 450 ºC, which is in contrast to the results noted on the previous sample. The 

most likely explanation for this is non-uniformity across the wafer, potentially leading to a 

higher number of defects in the sample annealed at 450 ºC. This seems particularly likely as 

this piece of the wafer originated much closer to the wafer edge than the other pieces that 

were annealed.  

 

 

Fig. 5 (a) I-V characteristics of Schottky diode sample with 4% Bi at differing annealing temperatures and (b) 

extracted ideality factor and saturation currents 

While this result confirms the previous result and indicates that annealing can help improve 

the electrical performance, it also suggests that a secondary process is also occurring during 

the annealing process. Initially upon annealing the material quality is improved, leading to 

improved electrical performance. However, as the temperature is increased, a second change 

in the material occurs which has a detrimental effect on the electrical performance. To 

investigate this more closely, we have performed transmission electron microscopy (TEM) 

on the samples with a Bi content of 4% to look for changes in the material as the anneal 

temperature is increased. 
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Fig. 6 TEM image of Au/GaSbBi Schottky diode under different annealing conditions (a) as-grown sample, (b) 

zoomed in image of as-grown sample with atom scale image of crystal matrix in the inset, (c) annealed at 450 

ºC, (d) annealed at 500 ºC, with inset showing FFT intensity and (e) sample annealed at 550 ºC. 
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Figure 6 shows TEM images from the various samples. From the as-grown sample (figure 6a), 

a large number of diagonal dislocations can be observed at the interface between the substrate 

and the epitaxial layer. Figure 6b shows an increased magnification image around the defects 

with an ultrahigh atomic scale resolution image in the inset. Unidentified features, which 

appear as crystallographic faults lying parallel to the {111}planes can be observed in the Bi 

alloyed epilayer. These larger stacking faults range in size between 100 and 200 nm. 

For the sample annealed at 450 ºC (figure 6c), a dramatic reduction can be seen in the density 

of these dislocations, with them only being apparent at length scales less than 10nm. The 

dislocations appear to have been completely removed by an annealing temperature of 500 ºC 

(figure 6d). FFT intensities (shown in the inset of figure 6d) are consistent with 011 zone axis 

orientation of the cubic GaSb F-43m structure 38, indicating high quality crystallographic 

structure has been obtained.   It seems likely these dislocations are one of the key sources of 

high leakage currents in the devices and that annealing has allowed them to be repaired giving 

rise to an improved electrical performance. For the sample annealed at 550 ºC (figure 6e) 

while again there is no evidence of dislocations there does appear to be a further change in 

the material with some material clustering being observed. Indeed, the lattice parameter 

obtained from the FFT intensity plot of 6.1180 Å corresponds to a local Bi content of 6.6%, 

once the elastic constants of GaSb are applied to account for the increased lattice expansion 

in the growth direction due to pseudomorphic growth.  While the XRD of the material 

annealed at 500C indicates negligible change in the average Bi content upon annealing, the 

TEM suggests there are regions locally with much higher Bi content of up to 6.6% Bi. 

Energy Dispersive X-ray (EDX) analysis of this (figure 7) suggests that the clustering is due 

to Sb segregation within the epitaxial layer at these higher annealing temperatures. While less 

apparent at 500 ºC some small areas of Sb segregation are also observed at this temperature. 

While the mechanism responsible for this apparent movement of Sb within the sample is not 
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clear, one possible explanation could be the movement of Sb atoms via vacancies, through 

the lattice. This change in material composition is likely to account for the subsequent 

degradation in the electrical performance of the diodes observed in figure 5, at the highest 

annealing temperatures. We have also utilized the EDX data to further investigate the previous 

anomaly noted in the XRD (figure 2) data which suggested a potential reduction in the Bi 

layer thickness upon annealing. Within the accuracy of the TEM and EDX measurements the 

epitaxial layer thickness does not change after annealing, additionally the Bi composition 

appears to be uniform in each sample, indicating that Bi out diffusion has not occurred. The 

movement of the Sb atoms observed in figure 7, and the previously discussed Bi clustering 

noted from the FFT intensity, are likely to be influencing the observed XRD result in figure 

2, as after annealing at the highest temperatures compositional non-uniformity has been 

introduced to the sample which will influence the experimental data and has invalidated some 

of the assumptions used in the modelling.   

 

 

 

 

 

Fig. 7 EDX map of sample annealed at 550 ºC 

 

From the TEM and EDX analysis, it appears that upon annealing the stacking faults are 

repaired within the sample. However, at higher temperatures, subsequent Sb clustering is 

observed, indicating that the optimum annealing temperature for GaSbBi is between 450 and 

500 ºC. 
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In our previous work24 we have performed capacitance voltage measurements to extract the 

doping density in GaSbBi Schottky Diodes, observing a relatively high p-type doping which 

was in part attributed to acceptor type defects. Utilizing the same approach here we obtain 

hole densities for the as-grown samples of 3.7 ± 1.5 x1018 cm-2 (for the 3.5% Bi sample) and 

7.6 ± 2.4 x1018 cm-2 (for the 4% Bi sample), which are in broad agreement the previous work. 

After annealing we do not observe any significant change in these values within the 

uncertainty of the measurement. This appears to suggest that the annealing process has not 

significantly altered the number of acceptor type defects present, however this result should 

be treated with some caution for two reasons. Firstly the relatively large uncertainty in the 

extracted values may be hiding a small change in the doping density, while secondly there 

may be more than one process taking place during the annealing process with each having a 

different effect on the overall doping density. For example some of the acceptor based defects 

may be repaired during the annealing process, leading to a lowering of the doping density, 

while the annealing temperature may provide sufficient thermal energy to enable other 

dopants to become active and hence increasing the effective density. A more detailed analysis 

of the doping density and the influence on annealing is beyond the scope of this current work. 

 

3 Conclusion 

In this paper, we presented the electrical performance of Schottky diodes realized from 

GaSbBi thin films. Improved electrical performance, resulting in an improvement of the 

ideality factor from 2.6 to 1.3 has been observed after utilizing post-growth annealing at 500 

ºC for 30 min. TEM analysis indicates that this improvement is due to the repair of crystalline  

dislocations when the sample is annealed. TEM and EDX has also indicated a secondary 

material change associated with Sb movement/clustering that occurs at higher annealing 

temperatures, causing a degradation in the electrical performance. This work indicates that 
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the optimum annealing temperature for GaSbBi alloys is in the range of 450 to 500 ºC. These 

results provide a route for improving the electrical performance of GaSbBi epitaxial layers, 

which has potential benefits in realizing high performance optoelectronic devices.  

References 

1  Y. Tominaga, Y. Kinoshita, K. Oe, and M. Yoshimoto, Applied Physics Letters 93, 131915 
(2008). 

2  X. Lu, D. Beaton, R. Lewis, T. Tiedje, and Y. Zhang, Applied physics letters 95, 041903 
(2009). 

3  M. Ferhat and A. Zaoui, Physical Review B 73, 115107 (2006). 
4  S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, 

Applied physics letters 82, 2245 (2003). 
5  O. Delorme, L. Cerutti, E. Tournie, and J. B. Rodriguez, Journal of Crystal Growth 477, 144 

(2017). 
6  F. M. Mohammedy and M. J. Deen, Journal of Materials Science: Materials in Electronics 

20, 1039 (2009). 
7  M. Motyka, G. Sęk, K. Ryczko, J. Misiewicz, T. Lehnhardt, S. Höfling, and A. Forchel, Applied 

Physics Letters 94, 251901 (2009). 
8  L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, and X. Wang, Nano 

letters 14, 694 (2014). 
9  S. D. Sifferman, H. P. Nair, R. Salas, N. T. Sheehan, S. J. Maddox, A. M. Crook, and S. R. Bank, 

IEEE Journal of Selected Topics in Quantum Electronics 21, 1 (2015). 
10  R. Kudrawiec, J. Kopaczek, O. Delorme, M. Polak, M. Gladysiewicz, E. Luna, L. Cerutti, E. 

Tournié, and J. Rodriguez, Journal of Applied Physics 125, 205706 (2019). 
11  H. Li and Z. M. Wang, Bismuth‐containing compounds (Springer, 2016). 
12  D. Cooke, F. Hegmann, E. Young, and T. Tiedje, Applied physics letters 89, 122103 (2006). 
13  M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. K. Rajpalke, 

K. Yu, T. Jones, and M. Ashwin, Journal of Physics D: Applied Physics 47, 355107 (2014). 
14  M. K. Rajpalke, W. Linhart, K. Yu, T. S. Jones, M. Ashwin, and T. D. Veal, Journal of Crystal 

Growth 425, 241 (2015). 
15  M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. 

Ashwin, and T. D. Veal, Applied Physics Letters 103, 142106 (2013). 
16  L. Shterengas, G. Belenky, J. Kim, and R. Martinelli, Semiconductor science and technology 

19, 655 (2004). 
17  H. Kim, Y. Guan, S. E. Babcock, T. F. Kuech, and L. J. Mawst, Journal of Applied Physics 123, 

113102 (2018). 
18  I. P. Marko, C. A. Broderick, S. Jin, P. Ludewig, W. Stolz, K. Volz, J. M. Rorison, E. P. O’Reilly, 

and S. J. Sweeney, Scientific reports 6, 28863 (2016). 
19  R. D. Richards, C. J. Hunter, F. Bastiman, A. R. Mohmad, and J. P. R. David, IET 

Optoelectronics 10, 34 (2016). 
20  G. Feng, K. Oe, and M. Yoshimoto, Japanese Journal of Applied Physics 46, L764 (2007). 
21  Y. Song, S. Wang, I. Saha Roy, P. Shi, and A. Hallen, Journal of Vacuum Science & 

Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, 
and Phenomena 30, 02B114 (2012). 

22  S. Das, T. Das, and S. Dhar, Semiconductor Science and Technology 29, 015003 (2013). 
23  C. R. Tait and J. M. Millunchick, Journal of Applied Physics 119, 215302 (2016). 



17 

 

24  N. Segercrantz, J. Slotte, I. Makkonen, F. Tuomisto, I. Sandall, M. Ashwin, and T. Veal, 
Journal of Physics D: Applied Physics 50, 295102 (2017). 

25  M. K. Rajpalke, W. Linhart, M. Birkett, K. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, 
M. Ashwin, and T. D. Veal, Journal of Applied Physics 116, 043511 (2014). 

26  L. Yue, X. Chen, Y. Zhang, F. Zhang, L. Wang, J. Shao, and S. Wang, Journal of Alloys and 
Compounds 742, 780 (2018). 

27  J. Hilska, E. Koivusalo, J. Puustinen, S. Suomalainen, and M. Guina, arXiv preprint 
arXiv:1901.02687 (2019). 

28  O. Dier, C. Lin, M. Grau, and M.‐C. Amann, Semiconductor science and technology 19, 1250 
(2004). 

29  B. Rotelli, L. Tarricone, E. Gombia, R. Mosca, and M. Perotin, Journal of applied physics 81, 
1813 (1997). 

30  O. Delorme, L. Cerutti, E. Luna, G. Narcy, A. Trampert, E. Tournié, and J.‐B. Rodriguez, 
Applied Physics Letters 110, 222106 (2017). 

31  L. A. Giannuzzi, B. Kempshall, S. Schwarz, J. Lomness, B. Prenitzer, and F. Stevie, in 
Introduction to focused ion beams (Springer, 2005), p. 201. 

32  S. Haywood, N. Mason, and P. Walker, Journal of Crystal Growth 93, 56 (1988). 
33  P. K. Rao and V. R. Reddy, Materials Chemistry and Physics 114, 821 (2009). 
34  R. T. Tung, Materials Science and Engineering: R: Reports 35, 1 (2001). 
35  J. H. Werner and H. H. Güttler, Journal of applied physics 69, 1522 (1991). 
36  A. Duzik and J. M. Millunchick, Journal of Crystal Growth 390, 5 (2014). 
37  X. Liu, H. Li, F. Guo, M. Li, and L. Zhao, Physica E: Low‐dimensional Systems and 

Nanostructures 41, 1635 (2009). 

38  R. Wyckoff, Crystal Structures Vol. 1, 2nd ed. (Interscience Publishers, ,New York, 1963). 

 

 




















	Manuscript File
	Figure1
	Figure2
	Figure3
	Figure4a
	Figure4b
	Figure5a
	Figure5b
	Figure6
	Figure7

