Heat transfer of power-law fluids in plane Couette-Poiseuille flows with viscous dissipation
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ABSTRACT 
Analytical expressions for the velocity and temperature profiles, bulk temperature and Nusselt numbers, in a fully-developed laminar Couette-Poiseuille flow between parallel plates of a power-law fluid with constant, and distinct, wall heat fluxes, in the presence of viscous dissipation are deduced and presented. Both favorable and adverse pressure gradient cases were analyzed. The walls’ shear stresses ratio, which arises naturally when the dimensionless hydrodynamic solution is obtained, together with the fluid power-law index Brinkman number and the walls’ heat fluxes ratio are the independent variables in the heat transfer solutions. With the exception of Newtonian fluids, there are in general two distinct analytical solutions, one for positive and another for negative values of the walls’ shear stresses ratio. The existence of singular points are also observed, where for a given value of the power-law index, there are values of the walls’ shear stresses ratio for which the Nusselt number becomes independent of the Brinkman number. It was also found that in a Couette-Poiseuille flow, for each value of the power-law index there exists a certain negative value of the walls’ shear stresses ratio, that makes the Nusselt numbers at both walls identically zero.
INTRODUCTION
Heat transfer in a Couette–Poiseuille flow between parallel plates is important in several industrial applications. Continuous casting, extrusion in food and polymer industries (in particular for shallow-screw geometries) and heat transfer in thin lubricant films, such as the flow in the thin gap between the piston ring end gap and the cylinder of an internal combustion engine and in bearing-journal devices, are examples where the approximation of a laminar Couette–Poiseuille flow between parallel walls is used [

-
-
-
-
]. Regarding bearing-journal devices applications, for example, Schlichting [
] has said the following, "Couette-Poiseuille flows are important in considering flows in bearings" and, regarding the Couette flow, Özişik [
] states the following "The heat transfer problem characterized with this simple model is important for a journal and its bearing in which one surface is stationary while the other is rotating and the clearance between them is filled with a lubricant oil of high viscosity".
Frequently fluids are non-Newtonian with high viscosity, which makes the viscous dissipation effect more relevant, and sometimes a knowledge and control of the temperature throughout the flow is fundamental to ensure the final quality of the product, especially in food or pharmaceutical products. Under these circumstances, knowledge of heat transfer and temperature profiles is critical. Another application of this flow is in the study of flows with wall slip, according to Spencer et al. [
] the wall movement with a specific velocity is equivalent to forcing a slip velocity at the wall of the channel which can be viewed as the effect due to a super hydrophobic surface for example. 
Early works on heat transfer in Couette-Poiseuille flow between parallel plates were analytical and began naturally by using Newtonian fluids. The work of Bruin [
], also for a Newtonian fluid, presents a good compilation of references to these early works. According to Lin [1], the first work on heat transfer in a Couette flow with a non-Newtonian fluid, although with unrealistic simplifications, was that of Tien [
], where asymptotic solutions to the Graetz problem for a power-law fluid were obtained. In this work the axial heat convection was neglected along with the pressure gradient. In Ref. [1] the mentioned restrictions were reduced by studying the heat transfer in a laminar Couette flow of a power-law fluid, hydrodynamically developed but thermally developing, with favorable pressure gradient and viscous dissipation using an implicit finite-difference method. Two cases were analyzed, constant but distinct wall temperatures and the case of the stationary wall kept at constant temperature while the moving wall was insulated. Subsequently, other works on non-Newtonian fluids emerged.
In the works of Lawal and Kalyon [2, 
], the Couette-Poiseuille flow between parallel plates was used to model the viscoplastic fluid extrusion process, for a Herschel-Bulkley fluid, in the presence of slip and convective heat transfer at the walls. In Ref. [2] the effect of an adverse pressure gradient was also considered. In both works the problem of solving the equation of conservation of energy is converted to that of solving an eigenvalue problem, enabling the development of general analytical and exact solutions for a model of non-isothermal extrusion processing.
In the analytical works of Hashemabadi et al. [3] and [
] the fully-developed heat transfer of a Couette-Poiseuille flow of the simplified Phan-Thein and Tanner [
] fluid between parallel plates has been studied. The stationary plate was kept at constant temperature [3] or subjected to a constant heat flux [13] while the moving plate was considered insulated in both works. The effect of viscous dissipation and of the pressure drop was taken into account. The results indicate that the heat transfer is strongly influenced by the viscous dissipation and, to a lesser degree, by the Deborah number and pressure drop, with an increase in the Brinkman number the Nusselt number decreases.

In the numerical work of Davaa et al. [
], the fully-developed heat transfer of Couette–Poiseuille flow between parallel plates of a modified power-law fluid, details about this model can be seen in Ref. [
], has been studied. Two cases were analyzed, in one case the stationary wall is subjected to a constant heat flux while the moving wall was insulated and in the other case the opposite was studied. The effects of viscous dissipation, pressure drop and the power-law index, n, were analyzed. An implicit finite-difference method was used to integrate the energy equation. When the bulk flow velocity is the same as the moving wall but has the opposite direction, an increase of the Nusselt number at the moving wall with an increase of the Brinkman number and power-law index was observed.
A more recent numerical work about the fully-developed heat transfer in a Couette–Poiseuille flow is that of Mokarizadeh et al. [
]. The viscoelastic Giesekus fluid was used and the following two different boundary conditions were analyzed, constant heat flux at the stationary wall and moving wall insulated and constant, and equal temperature at both walls, the viscous dissipation was also taken into consideration. The momentum equation was analytically solved but the energy equation was solved by a finite-volume method.
In the work of Francisca et al. [
], an analytical solution was presented for a fully-developed laminar Couette-Poiseuille flow of a power-law fluid, with constant but distinct heat fluxes at the walls in the presence of viscous dissipation. In this work, restricted to pseudoplastic fluids, n<1, only the heat transfer at the moving wall was analyzed. As the expressions obtained were in the authors own words "excessively huge" only expressions for three particular cases of n, 0.25, 0.5 and 1, are presented. According to the authors, the Nusselt number depends on the power-law index, of the walls heat flux ratio, of the Brinkman number, of the ratio between the moving wall and bulk flow velocities, designated by 
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 used in the present work) and of the dimensionless pressure gradient, designated by ( in their equation (11), and designated by 
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 in the present work. On the contrary, in Ref. [15] and in the present work, the first four parameters are sufficient, since the last two, 
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, are dependent on each other, see for example the equation (4.2-24) of Bird et al. [
], something that clearly does not happen in Ref. [18], as shown in their figure 4 where 
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 varies independently of (. The results presented are also in disagreement with the ones shown in Ref. [15], for example for n=1, 
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=1 and Br=0 the Nusselt number value at the moving wall, based on the hydraulic diameter and with the stationary wall insulated, is 7.24 and in Ref. [18] is 7.91.

In the work of Wong and Hung [
] the field synergy principle is employed to analyze convective heat transfer enhancement in plane Couette–Poiseuille flows of constant-viscosity fluids. Other recent uses of the approximation of a Couette-Poiseuille flow between parallel plates can be seen in Refs [
, 
], where, simulating industrial extrusion processes, hydrodynamic analytical solutions are derived for the Bingham and the Phan-Thien—Tanner fluids, respectively. 

Having considered the current state of the art, we may conclude that the present flow is still of major practical relevance, but closed form analytical expressions, often more perceptive and enlightening than the numerical solutions remain scarce in the literature. Such results are also useful to benchmark numerical codes for the solution of complex heat transfer problems involving non-Newtonian fluids. The goal of the present study is to partially fill this gap by obtaining analytical solutions for the heat transfer in a laminar fully-developed Couette-Poiseuille flow of a power-law fluid between parallel plates in the presence of viscous dissipation. The fluid properties are considered to be independent of temperature and asymmetric heat-flux wall boundary conditions are imposed, the heat-flux is considered positive when entering the fluid. These solutions will be valid for any value of power-law index, n, and pressure gradient. As far as the authors are aware, this is the first time such a comprehensive study is presented in the literature.
HYDRODYNAMIC ANALYSIS
Although there are already in the literature hydrodynamic solutions for this flow Ref. [19], the need to properly account for the heat generated by viscous dissipation, and to obtain compact expressions for the heat transfer solutions, by using nondimensional variables that naturally arise from a dimensionless hydrodynamic analysis, requires that such an analysis be carried out which is therefore presented in this section.
Figure 1 schematically shows the parallel plates geometry, spaced apart by a distance B, with the heat fluxes in the stationary, 
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, and moving, 
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, walls. Also shown in Figure 1 is a velocity profile and the Cartesian coordinate system with the axes origin on the stationary wall. It will also be with respect to this coordinate system that the signs of the walls shear stresses, 
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, will be referred to, even when other coordinate systems are used. In this work, the velocity of the moving plate, V, has always the positive direction of the abscissa axis. 

For a power-law fluid the rheological model is given in one-dimensional form by 
(1)
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where
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 is the shear stress, K is the consistency index, n is the power-law index, 
[image: image15.wmf]g

&

 is the shear rate that can be replaced by the derivative 
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 in this one-dimensional flow, where u is the local velocity. In the discussion that will follow the shear stress, 
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, is considered positive when material at higher y exerts a shear in the positive x-direction on material at smaller y, as can be seen in Figure 2.
From the linear momentum conservation equation in the streamwise direction, i.e. xx axis cf. Figure 1, between 0 and y the following two expressions result
(2)
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where P is the static pressure. When y=B it follows from equation (2) that,

(4) 
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with 
[image: image21.wmf]w,2w,1

C

tt

=

. The sign of C will always be referenced to the coordinate system shown in Figure 1, even when other coordinate systems are used. The dimensionless form of equation (4) is the following
(5) 
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, where Dh=2B is the hydraulic diameter and 
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 is the dimensionless stationary wall shear stress given by,

(6) 
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By combining equations (2) and (4), the following expression for the shear stress profile emerges
(7) 
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By making 
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 in equation (7), the zero shear stress location, 
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Since 
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 corresponds to a location of a zero derivative in the velocity profile, equation (8) shows that the velocity profile will only have a maximum, or a minimum, i.e., 
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, if C<0, i.e. wall shear stresses with opposite signs. For C>0, the velocity profile does not exhibit a maximum or minimum, for 0<C<1, 
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. Given the distinct mathematical approaches used in each of these situations, C(0 or C(0, it was necessary to divide the problem into two distinct cases, case I for C(0 and case II for C(0. In Ref. [19] the hydrodynamic analysis was also divided into two cases, for velocity profiles with or without a zero derivative, cases II and I respectively, but the sign of C was not used as a criteria to select the corresponding case. 
Figure 3 summarizes schematically the various possible velocity profiles in a Couette-Poiseuille flow, as previously mentioned, the velocity of the moving plate, V, is considered to be always positive. When C>0, the shear stress does not change sign along the duct cross section, case I in Figure 3. For C<0, 
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, the velocity profile shows a maximum, when dP/dx<0, or a minimum, when dP/dx>0, case II in Figure 3, for some values of C<-1 the bulk flow velocity, 
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Next we present the hydrodynamic solutions for each of the cases I and II referred to above, that will be used to calculate the heat generated by viscous effects and also in the integration of the differential equation of energy conservation. Besides the existence of a unequivocal relation between the hydrodynamic behavior of the flow and the value of C, cf. Figure 3, the use of the dimensionless variable C in the calculations is new to the literature, allowing us to obtain compact expressions for the hydrodynamic and heat transfer solutions, as can be seen in the following sections.
Hydrodynamic solution case I, C(0
In this case, using the rheological model of the power-law fluid, equation (1), and the shear stress profile given by equation (7), we can write that,

(9) 
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resulting in the following dimensionless expression for the derivative of the velocity profile,
(10)
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with 
[image: image42.wmf]*

uuV

=

, 
[image: image43.wmf]yyB

+

=

 and 
[image: image44.wmf](

)

(

)

1

w,1

n

BVK

bt

=

, because V>0 and C>0 the stationary wall shear stress, 
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, is in this case always positive in the xy coordinate system of Figure 1. The corresponding boundary conditions are the following,
(11) 
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the dimensionless variable ( was calculated by imposing 
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The dimensionless velocity profile is then given by equation (13).
(13) 
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As particular cases of the previous expression we have 
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Since the wall shear stress, 
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Equation (14) enables the calculation of C given the pressure gradient and vice versa. 

The dimensionless stationary wall shear stress, 
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Integrating the velocity profile, Equation (13), along the entire duct cross section the following expression for the bulk flow velocity, 
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, is obtained,
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Equation (16) allows the value of C to be found given the value of 
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Hydrodynamic solution case II, C<0
In this case, two distinct coordinate axes, yI and yII, were used, one for each side of the zero shear stress location, 
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, the abscissa axis is now represented by x(, cf. Figure 4. From equation (8) it is seen that this point is at a distance 
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 from the moving wall. This approach, which was used for the first time in the literature in [
], allows simpler expressions for the velocity profile than those existing in the literature to be obtained [19], which in turn allows simpler expressions for the temperature profile and Nusselt number to be obtained, when integrating the differential energy conservation equation.
It must be emphasized however that, although using two new coordinate systems in case II, where the shear stress has the same sign in both reference frames regardless the shape of the velocity profile, the variable C, and its corresponding sign, continues to be referred to the same coordinate system used already in case I, i.e. the one with its origin on the stationary wall as depicted in Figure 1.

Since the shear stress varies linearly with the y coordinate, equation (7), in the new coordinate systems this linear relation is represented by equations (17) and (18) for axes x'yI and x'yII, respectively. It should not be forgotten that, like C, the signs of 
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 are referred to the axes system shown in Figure 1 which do not change sign regarding the x'yI axes system but change sign with respect to the x'yII coordinate system, Figure 4.
(17) 

[image: image70.wmf](

)

(

)

,Iw,2Iw,1I

11

yx

yCCyC

ttt

++

=-=-

 
(17)
(18) 

[image: image71.wmf](

)

,IIw,1II

1

yx

yC

tt

+

=-

 
(18)
with 
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As can be seen, the following equation describes the shear stress behavior across all the velocity profile, i.e., valid for both coordinate systems x(yI and x(yII
(19) 

[image: image75.wmf](

)

,w,1

1

yxii

yC

tt

+

=-

 
(19)
the subscript i can take the values I or II according to the y-axis, yI or yII respectively, to which it refers. Using again the rheological model of the power-law fluid, equation (1), and the shear stress profile given by equation (19), now using the modulus because in the rheological model the shear stress is always positive, the following dimensionless equation for the velocity gradient is obtained,
(20) 
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with 
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, note that the derivative sign changes when
C=-1, cf. Figure 3. The remaining dimensionless variables are defined in the same manner as in case I. Equation (21) shows the boundary conditions used to integrate equation (20) and to determine the value of (, equation (22). 
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The equations for the velocity profile thus obtained are the following, 
 (23)
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these equations are valid for the following intervals of the yI and yII coordinates, 
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By integrating the velocity profile across the flow cross-section, equation (25), a relation between the dimensionless bulk flow velocity, 
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, and the parameters C and n is obtained, equation (26).
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It should be noted that in this case II, 
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Since the wall shear stress, 
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, the dimensionless stationary wall shear stress, 
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The dimensionless pressure gradient, equation (5), in case II C(0, is given by the following expression,
(28) 
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These hydrodynamic results, for cases I and II, coincide with the results presented in Ref. [19].

For a Newtonian fluid, n=1, the solutions from both cases, I and II, give rise to the same expressions, note that 
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 for a Newtonian fluid, n=1, valid in the interval-(<C<+(, are as follows,
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To the best knowledge of the authors this is the first time that these generic analytical solutions for Newtonian fluids are published in the literature. According to equation (29), we may infer that, for a Newtonian fluid, the pressure gradient strength and sign is directly proportional to the velocities difference 
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 being the dimensional pressure gradient and ( the dynamic viscosity. 
As we have previously stated, the results here are restricted to laminar flows. Experimentally it has been shown [7] that, for a Newtonian fluid, the critical Reynolds number marking the transition between laminar and turbulent flow, Recrit, in Couette flow is 
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 and in a channel flow it is 
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. For Couette-Poiseuille flow, even for Newtonian Fluids, Recrit, appears not to have been studied in detail but will obviously depend upon the sign of the imposed pressure gradient. For a power-law fluid there is another difficulty, which is the definition of a characteristic viscosity for this flow, to be used in the Reynolds number, a parameter which is usually based on the Newtonian wall shear rate, see reference [
] for example, that in this flow has distinct values in the two walls. 
THERMAL ANALYSIS
In this section we present the complete procedure that was carried out in the thermal analysis, starting from the analysis to the heat generated by viscous effects, through obtaining the differential equations of energy conservation and culminating with the analytical solutions.
Heat generated by viscous dissipation

Due to its importance on heat transfer, this section will analyze in detail the heat generated by viscous effects in a Couette-Poiseuille flow between parallel plates of a power-law fluid.
The heat generated by viscous effects, per unit of wall area and time, is denoted by 
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 and in dimensionless form by 
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 relevant to the heat transfer calculations, can be determined by two distinct processes albeit with the same origin, i.e., the integral 
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 between the two walls. A process will be undertaken to carry out this integration by replacing 
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 by their respective expressions already deduced for both cases, I and II. In case I, C>0, and by equations (7) and (10) we have,
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in case II, C<0, following an approach similar to the previous one, but now using equations (19) and (20), and integrating in this case the function 
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 because it involves variables using two different coordinate systems and this product must always be positive, the expression in equation  (31) is obtained. Note that for this deduction the following equality was used, 
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A second calculation process to determine 
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 is to apply the integration by parts method to the integral 
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 which results in the following integral approach expression,
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which in dimensionless form results in the following expression, valid for both cases I and II,

(33) 
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To calculate 
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, one can use equations (30) or (33) in case I, or equations  (31) or (33) in case II. When analyzing equation (33), it can be seen that the heat generated by friction contains two components, one associated with the Couette flow, 
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 corresponds to the work exchanged between the moving plate and the fluid, and has a negative sign when it is supplied to the moving plate by the fluid. For its part, the term 
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 corresponds to the flow work lost, i.e., converted to heat, positive sign, or gained by the fluid, negative sign, the latter coming in this case from the moving wall. Of course, the sum of the two components, 
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In the particular case of n=1 the corresponding expression of 
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 is valid for both cases, i.e., valid in the interval -(<C<+(, and is as follows,
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Energy conservation equations

Based on an energy conservation balance to a duct of length dx the following equation emerges,
(35) 
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where 
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 is the fluid density, c is its specific heat and 
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 is the bulk temperature. Rearranging equation (35) the following expression for 
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 emerges,

(36) 

[image: image135.wmf](

)

*

ww,1

wdissip

ww,2

21

2

2

qVCCU

qq

qVdPdxUB

dT

dxUBcUBcUBc

t

t

rrr

éù

+--

+

+-

ëû

===

&

&&

&

 
(36)
where 
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[image: image137.wmf](

)

*

dissipw,2w,1

1

qVdPdxUBVCCU

tt

éù

=-=--

ëû

&

, equation (33), the walls shear stress based on the coordinate system of Figure 1. Note that with, 
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Using a similar method to the one shown in Ref. [
] for a constant wall heat flux in a pipe, but now taking into consideration the presence of viscous dissipation, it can also be shown that 
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The differential energy conservation equation in Cartesian coordinates, is,
(37)
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where 
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 is the fluid thermal conductivity. After replacing 
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 (equation (36)), the differential energy conservation equation now takes the following form,
(38)
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whose dimensionless form is the following,

 (39)
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where
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 is the moving wall temperature) and Br* is the generalized  Brinkman number [
]
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Since from equation (33) we know that 
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, equation  (39) can be rearranged to the following form,
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that will have different expressions depending on the case, I or II, under analysis, as will be seen below.

Energy equation case I, C>0
In equation (41) 
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 by  equation (7) and u* and 
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 are given by equations (13) and (16), respectively. By implementing these replacements, the following dimensionless form of the differential energy conservation equation for case I is obtained,
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with 
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and
(44) 
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subjected to the following boundary conditions:

 (45)
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with ( being the wall heat fluxes ratio 
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Energy equation case II, C<0
In this case, equation (41) was once again used, now for the coordinate systems 
[image: image169.wmf]I

xy

¢

 and 
[image: image170.wmf]II

xy

¢

, Figure 4, following a process analogous to the previous one, i.e., 
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 are given by equations  (24) and (26), respectively. By implementing these substituitions, the following dimensionless form of the differential energy conservation equation for case II is obtained,
(46) 
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with 
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and
(48) 
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subjected to the following boundary conditions:

(49)

[image: image179.wmf](

)

*

I

I

*

I

**

IIw,2

**

III

**

III

**

III

*

II

II

*

II

   

11

    0

1

0   

0   

11

   

11

i

i

dT

C

y

Cdy

C

yTT

C

yTT

dTdT

y

dydy

dT

y

Cdy

W

l

W

W

+

+

+

+

+

ì

ï

===

-+

ï

ï

ï

===

-

ï

ï

==

í

ï

ï

==-

ï

ï

ï

==

ï

-+

î

 
(49)
with once again ( being the ratio of the wall heat fluxes, 
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The Nusselt number calculation expressions shown in equations (50) and (51) for the stationary and moving walls, Nu1 and Nu2, respectively, are obtained using Newton's law of cooling, 
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, where (j is the convection coefficient in wall j.
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(51) 
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The bulk temperature, 
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, is calculated using the following expression 
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Analytical expressions for C>0

The temperature gradient profile is given by the following equation, 
(54) 
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and the temperature profile is 
(55) 
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The stationary wall temperature, 
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The values of the heat flux ratios leading to identical wall temperatures, 
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, is in this case given by the following expression,
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Equation (58) shows the bulk temperature calculation expression, where the bulk flow velocity, 
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, is given in this case by equation (16).
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(58)
The dimensionless compaction constants f, g, h, i and j have the following values,
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Knowing the bulk temperature, equation (58), and using equations (50), (51) and (56) the calculation of the Nusselt numbers values, Nu1 and Nu2, is straightforward. For C=1, pure Couette flow, the results obtained, which do not depend on the n value since the velocity profile is always linear, are shown in equation (59).
(59)
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Analytical expressions for C<0 and validation of results
The gradient temperature profile is given by the following equations,
(60)
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and the temperature profile equations are,
(62)
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The mathematical expression for the stationary wall temperature, 
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The mathematical expression for the values of the heat flux ratios leading to identical wall temperatures, 
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Finally, the expression of the bulk temperature is the following,
(66)
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where the bulk flow velocity, 
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, is given by equation (26).

The dimensionless compaction constants a, b, and d have the following values,
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Once again, knowing the bulk temperature, equation (66), and using equations (50), (51) and (64) the calculation of the Nusselt numbers values, Nu1 and Nu2, is straightforward.
For C=-1, Poiseuille flow between parallel plates, the obtained Nu expressions are the same as the ones presented in the work of de Caldas and Coelho [23]. For C=-(, the Nusselt and other expressions, equal to those obtained for C=+(, do not depend on the  Brinkman number, and are as follows
(67) 
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These Nusselt numbers are Brinkman number independent because, for this velocity profile, C=(, the local temperature increase due to viscous dissipation, 
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[image: image214.wmf]dissip

qcUB

r

&

, therefore both terms cancel out in the energy conservation equation, equation (38). In non-dimensional form this is equivalent to,

(68) 
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For C=0, the solutions from both cases are also the same and the Nusselt number expressions are the following,
(69) 
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For a Newtonian fluid, n=1, the results from both cases, C<0 and C>0, are once again the same and are shown in equation (70),
(70)
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 (70)
The above expressions are therefore valid for n=1 and any value of C, in the particular case of C=1 it is necessary to calculate the limit when C(1, which gives rise to equation (59), since as previously mentioned, solutions for the case of C=1 are independent of the n value.

In order to validate the heat transfer results, besides the comparison with the results of Ref. [23] referred to above, the Nusselt numbers values of the present work were compared with all the Nusselt numbers obtained numerically by Ref. [15] (presented in Tables 1 and 2 of their work). For all tabulated values the agreement between these and the analytic results was exact up to the quoted accuracy (4 sig. fig.), but in order to consider the effects of the viscous dissipation it is necessary to take into account the different definitions of the Brinkman number in the two works. In Ref. [15] the Brinkman number was defined as 
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, already with the characteristic viscosity term, i.e., 
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, adapted to the present case, where a viscosity value was not imposed to the zero shear rate. Given the definition of the Brinkman number adopted in this work, Br*, equations(40) and (33), and that 
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 of the referred work, it is possible to find the following relation between the two Brinkman number definitions,
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The agreement between these results also shows that the use in Ref. [15] of the modified power-law model [16] does not have in this case any advantage over the traditional power-law model.
It should be noted that in keeping Br and 
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 constants while varying the n value as done in Ref. [15] implies that the ratio 
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 varies, leading to results that may be misleading. For example, in the case of Br=0.1, 
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 and (=(, these authors found that Nu2 varied from 7.9, to n=0.5, and 18.7, to n=1.5, while maintaining Br* constant and equal to 0.1, Nu2 varies between 9.8, to n=0.5 (
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=0.04), i.e., Br varies six times when theoretically it should remain constant. This fact once again highlights the importance of working with the generalized Brinkman number definition, where the ratio 
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The results of Nu2 for Newtonian fluids, equation (70), are also in agreement with the results given in [20], their equation (24). Finally, the obtained analytic expressions of Nusselt number for Newtonian fluids in the cases of (=(, Nu2, and (=0, Nu1, are the same as those shown in reference [4], taking into consideration that 
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RESULTS AND DISCUSSION

Figure 5 shows the variation of 
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, equation (33), with C for n=1, equations (29) and (34), the auxiliary variables 
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 are also presented (but in gray). As a result of the non-dimensionalization, V being in the denominator, all the dimensionless variables have a discontinuity for C=-1, V=0. As mentioned previously, the variable 
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For C>1 the pressure gradient, 
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, becomes positive and since the bulk flow velocity, 
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, is also positive there is in this case an increase of the flow work, 
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 <0, at the expense of the work that the moving wall supplies to the fluid, 
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>0, the difference between both is the useful energy that is converted to heat. 
For 0<C<1 the pressure gradient, 
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, is negative and the bulk flow velocity, 
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, and 
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 are both positive, which means that the reduction in the flow work and the work provided by the moving wall to the fluid are now both converted into heat. In the range 
-1<C<0, 
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 remains negative and increases in absolute value, part of the reduction of flow work accompanying the pressure decrease is now supplied to the movable plate in the form of work, 
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<0, and the remainder is converted into heat. 
In the range -2<C<-1, 
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 is now positive but the bulk flow velocity, 
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, is negative, i.e., the flow work reduction and the work provided by the moving wall to the fluid are also now both converted into heat. Finally, for C<-2 the bulk flow velocity becomes positive, with the pressure gradient keeping its positive sign, and again part of the work provided by the moving wall to the fluid, 
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>0, is used to increase the flow work, 
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<0, with the remainder being converted into heat.
Figure 6 shows the variation of the Nusselt number in the moving wall, Nu2, with the power-law index n, in the case where the stationary wall is insulated, (=∞, for different values of the Brinkman number, Br*, and for increasing values of C. Figure 6(a) shows the case of 
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=0.16, with C in the narrow range -3.03 <C<-2.98 for the values of n considered. In Figures 6(b), 6(c) and 6(d) the following cases are represented: 
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= -0.75 (-1.35<C<-1.23); 
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= 0.75 (-0.22<C<0); and 
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= 0.6 (0.09<C <0.53), respectively. 
Figure 6(a) shows that for n greater than((0.625 Nu2 decreases with an increase of Br* and for n less than ((0.625 the opposite happens. The presence of a singular point where the Nusselt number is independent of the Brinkman number has also been reported in other works [23, 
] whenever the bulk temperature is calculated for the entire duct cross section, equations (52) or (53). This happens because, the wall temperature, 
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, both vary linearly with the Brinkman number, with their slopes being only a function of the n and C parameters. For each value of n there are two negative values of C that makes the two slopes equal resulting in the temperature difference 
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, and by consequence the Nusselt number, Nu2, independent of Br*. For n=0.625 these C values are -2.93, shown in Figure 6(a), and -0.857, and for n=1, for example, these C values are -3.29 and -0.836. Also for Nu1 we verified the existence of these singular points, which also only occur for C<0, for n=0.625, these C values are -1.364 and -1.231 and for n=1 the C value is -1.333, for n>1 Nu1 always depends on Br*. It should be emphasized that, contrary to what happens for C=((, in these other cases where the Nusselt numbers are independent of the Brinkman number, the temperature profiles remain a function of Br*.
For 
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=-0.75 (-1.35<C<-1.23), shown in Figure 6(b), Nu2 decreases with increasing values of Br*, and the singular points referred to above no longer occur. In these two cases, Figures 6(a) and 6(b), an increase of n always leads to a decrease of Nu2.
In Figures 6(c) and 6(d), with values of C higher than previous ones, Nu2 initially increases with increasing values of Br* but for higher Brinkman numbers Nu2 decreases and starts to take negative values. The way Nu2 varies with n now depends greatly on the value of Br*, for Br*(0.24 the effect of n upon Nu2 is significant but for other values of Br* no influence of n is noticed.

For the case where the moving wall is insulated, (=0, and for the same values of 
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 referred to above, not shown, it was found that Nu1 varies very little with the value of n, always presenting positive values, lower than those of Nu2 for (=( when C>-1 or C<
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 is the C value that renders 
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=0, and decreasing with increasing values of Br*.
Figure 7 shows how Nusselt numbers Nu1 and Nu2 vary with the C parameter for different  Brinkman numbers in the case of a Newtonian fluid and three distinct values of ( (0, 1 and (). It is possible to see that Nu1 is always positive, varies less with C than Nu2 and also generally presents lower values than the latter. In Figure 7 it is possible to observe again the existence of singular points, for Nu1 (=0 and C= -1.333, Figure 7(a), and for Nu2, now for (=( and occurring in this case for C=-3.29 and C=-0.836, Figure 7(b), i.e., the Brinkman number varies but the Nusselt number remains constant.
Figure 7 also shows that Nu1 and Nu2 present a zero value for C=-2, this occurs because the wall temperatures are in this case much higher than the bulk temperature due to the fact that the bulk velocity is zero. From a practical point of view this should be taken into consideration since a significant increase in the wall temperatures may have harmful consequences e.g. damage or wear to journal-bearing or extruder surfaces. The following equation allows, for a given n value, to calculate the value of C=
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 for which Nu1=Nu2=0, and is valid regardless of the values of Br* and (,
(72) 

[image: image267.wmf](

)

(

)

(

)

**

21

00

211

nn

UU

nCCnn

+

==

-++=+

 
 (72)
Figure 8 shows the variation of Nu1 and Nu2 with the Brinkman number when (=1, n=0.7 and 
[image: image268.wmf]*

U

=

0.75 (C=-0.14). While Nu1 decreases monotonically with increasing values of Br*, Nu2 increases initially, exhibits a discontinuity for Br*(0.054, when 
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, and then takes negative values decreasing in absolute value. For n=1.3, not shown, with the other variables remaining the same, both Nusselt numbers decrease monotonically with the Br*, with values similar to those of Nu1 shown in Figure 8.

In Figure 9, two non-dimensional temperature profiles, 
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 vs 
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, for Br*=0 and Br*=0.2 are shown, for the case analyzed in Figure 8. For Br*=0 the temperature in the stationary wall ,
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, giving rise to a positive value of Nu2, whereas for Br*=0.2 the opposite occurs and Nu2 now has a negative value, cf. Figure 8. The stationary wall temperature, 
[image: image276.wmf]*

w,1

T

 (
[image: image277.wmf]I

y

+

=-0.877), is always higher than the bulk temperature, increasing the difference 
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, as Br* increases, which translates into an always positive value of Nu1 that decreases with Br*, cf. Figure 8.
Finally in Figure 10 it is shown how Nu1 and Nu2 vary with the wall heat fluxes ratio, 
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. In Figures 10(a) and (b) for the case where n=0.7 and 
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0.75 (C=-0.14) and in Figures 10(c) and (d) for n=1.3 and 
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0.16 (C=-2.93). Generally, in Figures 10(a) and (b), an increase of ( causes Nu1 to pass from positive to negative values, since the stationary wall temperature, 
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, decreases with respect to the bulk temperature, 
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, and with Nu2 the opposite occurs. An increase in Br*, by raising the walls’ temperature, originates an increase in the value of ( for which the discontinuity in the Nusselt number curve occurs, i.e., 
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For a lower C value, as is the case shown in Figures 10(c) and (d), i.e., n=1.3 and 
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=

0.16 (C=-2.93), the behavior of Nu1 and Nu2 is different from the previous one. In this case the Nusselt values remain always positive, decreasing Nu1 and increasing Nu2 as ( increases. Also higher Brinkman numbers values corresponds to lower values of the Nusselt number.

Figure 10(d) also shows the singular cases that occurs for n(0.625 when 
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0.16 (C=-2.93) and 
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2.32 (C=-0.857). It was already discussed with regard to Figure 6(a) that in this situation Nu2 did not depend on Br* and in Figure 10(d) this is confirmed once again, since the variation of Nu2 with (, gray lines, remains the same regardless of the value of Brinkman value. The behavior of Nu1 in this case, n(0.625 for C=-0.857 and C=-2.93, not shown, is very similar to that shown in Figure 10(a) and Figure 10(c), respectively.
As we have previously made clear [23, 27], any meaningful discussion about the physical behavior of the Nusselt number must include the use of not one, as done in the present work, but two bulk temperatures, one for each side of the y location of the temperature profile whose derivative is zero. As a consequence, we do not overly dwell on a detailed physical description of the Nusselt number behavior here. 

CONCLUSIONS
In this work, closed form analytical expressions for the temperature profile, wall heat flux ratios leading to identical wall temperatures, 
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, and consequent Nusselt numbers at the stationary wall, Nu1, and moving wall, Nu2, are presented for the first time in the literature for a fully-developed Couette-Poiseile flow with constant and distinct wall heat fluxes in the presence of viscous dissipation for a power-law fluid. The parameter 
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, are the independent variables in the equations of 
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, Nu1 and Nu2. The calculation of the C value is a straightforward procedure once the bulk temperature, 
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With the exception of Newtonian fluids, i.e. n=1, for which the analytical solutions obtained are valid for any value of C, in general, due to the different velocity profile equations for case I, C(0, and case II, C(0, the heat transfer analytical solutions are also different for case I or case II.
As in Ref. [23], the use of two different ordinates axes, yI and yII, one for each side of the zero shear stress location, that is where 
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, proved to be decisive in obtaining simpler mathematical expressions for the heat transfer analytical solutions in case II.
Although the heat dissipated by viscous effects, 
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, is always positive, its two components, i.e., the work exchanged between the moving wall and the fluid, 
[image: image299.wmf]C

c
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, can take values with opposite signs, meaning that part of one of these types of work transforms into the other.
Much as been observed previously [23, 27], the existence of singular points, where for a given C, there exists a value of n for which Nu1 or Nu2 remain constant regardless of the Brinkman number (being only a function of (), was also noticed in the present work. For C=((, this happens because both terms, 
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, in the differential form of the energy conservation equation cancel out, rendering the solutions independent of the Brinkman number. For the other singular points, the temperature profiles remain a function of the Brinkman number, but the walls and the bulk temperatures, that vary linearly with Br*, have, in these singular points, the same slope thus in the temperature differences, 
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, and consequently in the Nusselt numbers, the Brinkman number cancels out.
For (=(, the variation of the Nusselt number at the moving wall, Nu2, with n changes according to the value of C. For low values of C, Nu2 decreases as n increases but for higher C values the behavior is more variable with Nu2 decreasing or increasing with C depending of the Brinkman value, Br*, coming to show negative values. Similarly to what happens to the variation of the Nusselt number with n, also in the variation of Nu with ( the behavior is different depending on whether it is a low value of C, in the present case C(-3, where Nu1 and Nu2 vary monotonically with (, or a higher C value, in the present case C(-0.1, for which the variations of Nu1 and Nu2 already show discontinuities and negative values as ( increases. 
It has also been found that in a Couette-Poiseuille flow, for each value of the power-law index, n, there is a value of C that, by rendering the bulk velocity zero, gives rise to the simultaneous occurrence of zero values of the Nusselt numbers Nu1 and Nu2, independent of the values of Br* and (, something that may be relevant from a practical point of view, if the objective is to thermally isolate a fluid or, indicating the possibility of situations that promote an exaggerated increase of the temperature of the walls in a fluid heating process.
In addition to their fundamental importance and potential use in designing extrusion equipment or in journal-bearing heat transfer studies (using negative Brinkman numbers, i.e., heat coming out from the fluid at both walls, as it happens in this specific case), we hope the analytical expressions here shown will also be of use for those wishing to benchmark numerical codes for the solution of complex heat transfer problems involving non-Newtonian fluids. 
NOMENCLATURE 
a
dimensionless compaction constant
b
dimensionless compaction constant
B
distance between plates, m
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Subscripts 
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stationary wall

2
moving wall

i
coordinate system I or II, Figure 4
I
coordinate system, Figure 4
II
coordinate system, Figure 4
j
1, stationary wall, or 2, moving wall
w
wall
(=0
zero shear stress location 
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*
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Figure 2 – Scheme indicating the arbitrary positive direction for the shear stresses.
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Figure 3 – Schematic velocity profiles for different values of C and dP/dx when the velocity of the moving wall has the positive direction of the xx axis, coordinate system xy also shown in Figure 1.
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Figure 4 – Schematic representation of the two coordinate systems used in the analysis of case II (C<0). The origin of the coordinate systems is located at the point of the velocity profile where the shear stress is zero.
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Figure 5 – Variation with C of the heat generated by viscous effects, 
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Figure 7 – Variation of the Nusselt numbers Nu1 and Nu2, for a Newtonian fluid, with the C parameter and different values of the Brinkman number, Br*, and of the wall heat fluxes ratio, (.
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Figure 8 – Nu1 (gray line) and Nu2 (black line) versus the Brinkman number, Br*, when (=1, n=0.7 and 
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Figure 9 – Dimensionless temperature profiles, 
[image: image364.wmf]*

T

 vs 
[image: image365.wmf]I

y

+

, for two distinct Brinkman number values, Br*, when (=1, n=0.7 and 
[image: image366.wmf]*

U

=0.75 (C=-0.14).

[image: image378.png]


Figure 10 – Nu1 and Nu2 versus ( for different values of the Brinkman number, Br*, when n=0.7 with 
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