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Photosynthesis is conceivably the most important biological process on Earth. By performing 17 

oxygenic photosynthesis, cyanobacteria, algae, and plants can use solar energy to power their 18 
metabolism and produce sugars and oxygen for life on earth. These photosynthetic organisms have 19 

evolved a specialized intracellular membrane system − the thylakoid membrane − inside the 20 
cytoplasmic membrane to carry out the reactions of photosynthesis. The key players in the thylakoid 21 

membrane for efficient photosynthetic electron flow are a series of membrane-spanned multi-subunit 22 

complexes with hundreds of noncovalently-bound chlorophyll and carotenoid pigments, including 23 
photosystem I (PSI), photosystem II (PSII), cytochrome b6f, and ATP synthase (ATPase). In addition, 24 

the membrane-associated antenna in cyanobacteria and red algae, known as the phycobilisome, 25 

and the membrane-embedded light-harvesting complexes (LHC) in algae and plants play decisive 26 
roles in enhancing the light-harvesting capacity of photosystems. Recent development and 27 

application of cryo-electron microscopy in photosynthesis studies have substantially empowered our 28 

toolkit for elucidating the macromolecular structures and functions of individual photosynthetic 29 
proteins and supercomplex assemblies. 30 

 31 
Despite a great amount of information on the atomic structures and spectroscopic properties of 32 
individual photosynthetic pigment-protein complexes, we lack an extensive understanding about how 33 

thylakoid membranes are formed and structurally defined in cells, as well as the spatial organization 34 
and dynamics of photosynthetic complexes in thylakoids (Liu, 2016). A recent paper by Engel, 35 
Nickelsen, and colleagues (Rast et al., 2019) reported a cryo-electron tomography (cryo-ET) study 36 

on the subcellular architecture of thylakoids in a model cyanobacterium Synechocystis sp. PCC 6803. 37 
Cryo-ET has demonstrated its extraordinary power in performing in situ high-precision observations 38 

of biological structures in a near-physiological context, inside cells frozen without chemical fixation. 39 

Based on the cryo-ET observations, here we discuss the recent advances in understanding the 40 
biogenesis, networking and supercomplex organization of cyanobacterial thylakoid membranes. 41 

 42 

Thylakoid membrane convergence and continuity 43 
Numerous studies have indicated that thylakoid membranes in cyanobacterial cells converge at 44 

several sites of the cell periphery (Nevo et al., 2007; van de Meene et al., 2006). These convergence 45 

regions, termed “thylakoid centers”, were previously described as cylindrical, rod-like structures, 46 
acting as the sites where PSII biogenesis commences (Stengel et al., 2012). The recent cryo-ET 47 

images revealed that the thylakoid convergence regions are membrane tubules and vary in structure 48 

(Rast et al., 2019).  49 
 50 
At the thylakoid convergence regions, distinct layers of thylakoid stacks interconnect with each other 51 

to form a continuous membrane network (Figure 1A). The highly connected thylakoid membrane 52 

network appears as a conserved feature in not solely cyanobacterial species (Nevo et al., 2007; Rast 53 

et al., 2019; Ting et al., 2007), but also other photosynthetic organisms. Similar structures have also 54 
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been visualized by cryo-ET for the thylakoid membranes in chloroplasts of Chlamydomonas and 55 

plants (Daum and Kuhlbrandt, 2011; Engel et al., 2015), and the photosynthetic membranes of 56 
purple photosynthetic bacteria, such as the vesicular intracytoplasmic membranes (ICMs) of 57 

Rhodobacter sphaeroides (Noble et al., 2018; Scheuring et al., 2014) and the lamellar ICMs of 58 
Blastochloris viridis (Konorty et al., 2008). Interconnection between different photosynthetic 59 

membrane layers could potentially facilitate diffusion of constituents between adjacent thylakoid 60 

lumens and within the whole membrane network. 61 
 62 

Connection between the thylakoid and cytoplasmic membranes 63 

It remained unclear whether cyanobacterial thylakoid membranes physically connect with 64 
cytoplasmic membranes and whether the biogenesis of cyanobacterial thylakoids correlates with the 65 

cytoplasmic membrane contact sites. Conventional electron tomography using high-pressure 66 

freezing and freeze substitution has proposed that there are direct connections between cytoplasmic 67 
and thylakoid membranes in cyanobacteria (van de Meene et al., 2006). Likewise, connections 68 

between thylakoids and the inner chloroplast envelope in Chlamydomonas (Engel et al., 2015) and 69 
invaginations between ICMs and cytoplasmic membranes in purple photosynthetic bacteria (Konorty 70 
et al., 2008; Noble et al., 2018) have been discerned. The recent Cryo-ET views of Synechocystis 71 

6803 cells validated the presence of contact sites, with a distance of 2−4 nm between the 72 
cytoplasmic membrane and the thylakoid convergence region facing the cytoplasmic membrane 73 
(Figure 1B)(Rast et al., 2019). Such tight contacts appear to be mediated by special protein-based 74 

bridges. Strikingly, Cryo-ET did not show physical fusions of thylakoid and cytoplasmic membranes, 75 
in agreement with previous results (Liberton et al., 2006). Given the limited sample volume and the 76 

“local” view of current cryo-ET methodology, one could not make a conclusive statement whether 77 

the fusion of two membranes exist, or is highly dynamic depending on the conditions of the external 78 
environment and cell growth. Indeed, the connections between the ICMs and cytoplasmic 79 

membranes in Rhodobacter sphaeroides have been proved to be dynamic during the aging process 80 

(Noble et al., 2018). 81 
 82 

Heterogeneity of the thylakoid membrane  83 

Like other biological membranes such as plant chloroplasts, cyanobacterial thylakoid membranes 84 
are highly dynamic and exhibit heterogeneity in membrane shape, protein distribution and function. 85 

Pigment–protein complexes that functionally coordinate are prone to be in close proximity to and 86 

interact with each other, leading to the formation of functionally distinct thylakoid membrane domains. 87 
Cryo-ET revealed that the thylakoid convergence regions of Synechocystis 6803 are structurally 88 
distinct from other thylakoid regions (Figure 1B)(Rast et al., 2019). Membrane-associated ribosomes, 89 

but not phycobilisomes, are present on the convergence membrane surface, indicating the biogenic 90 

role of the convergence membrane region. In addition, thylakoid membranes that face the internal 91 

cytosol harbor the majority of membrane-associated ribosomes, indicating that these regions are the 92 
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primary sites of membrane protein biogenesis. In contrast, thylakoid membranes facing other 93 

thylakoids accommodate a high content of phycobilisomes and very low levels of ribosomes, 94 
suggesting the photosynthetic activities of these thylakoid regions. In addition to the spatial 95 

segregation of phycobilisomes and ribosomes, previous work using atomic force microscopy (AFM) 96 
and live-cell confocal fluorescence microscopy has described the heterogeneous distribution of PSI, 97 

PSII, cytochrome b6f, and ATPase throughout cyanobacterial thylakoid membranes (Casella et al., 98 

2017). 99 
 100 

The thylakoid surface appears discontinuous, with perforations observed in thylakoid sheets (Engel 101 

et al., 2015; Nevo et al., 2007). These membrane apertures may aid the transport of 102 
molecules/proteins through thylakoid sheets. The thylakoid perforations were not explicitly 103 

delineated in the cryo-ET study of Synechocystis 6803 (Rast et al., 2019). However, the 3D 104 

architecture of the convergence membranes may allow diffusion of cytosolic molecules around the 105 
thylakoid network. 106 

 107 
In summary, in situ cryo-ET has opened fascinating opportunities for visualizing cells and subcellular 108 
compartments in three dimensions with molecular details. The recent cryo-ET observations of 109 

cyanobacterial cells by Engel and colleagues (Rast et al., 2019) have provided new insight into the 110 
biogenesis, continuity and protein organization of thylakoid membranes. Advances in tomographic 111 
imaging and data analysis gained in the study could be extended to in situ structural 112 

characterizations of plant chloroplasts, mitochondria, and other biological organelles, to yield 113 
important information about their physiological structures and functions in a near-physiological 114 

context. These molecular views will have an impact on the rational design and generation of artificial 115 

photosynthetic systems. Further efforts may focus on visualizing the biosynthesis, spatial distribution, 116 
and dynamics of photosynthetic complexes in thylakoids, using cryo-ET of sectioned cell or intact 117 

cells in combination with complementary techniques, such as AFM and super-resolution live-cell 118 

fluorescence microscopy. Cryo-ET imaging at sequential timepoints will allow evaluation of organelle 119 
dynamics and structural flexibility in variable physiological states, to explore extensively the adaptive 120 

strategies of the photosynthetic machinery in response to environmental changes. 121 
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Figure Legend 171 

 172 
Figure 1. Schematic model of thylakoid membrane organization in the cyanobacterium 173 

Synechocystis sp. PCC 6803 174 
(A) Diagram of the in situ structure of the thylakoid membrane network determined by cryo-ET (Rast 175 

et al., 2019). 176 

(B) Contacts between the thylakoid convergence region and cytoplasmic membrane and the 177 
heterogeneous distribution of phycobilisomes and ribosomes on different surfaces of thylakoid 178 

and cytoplasmic membranes. Note: the abundance of individual complexes is only an estimation 179 

relative to cryo-ET results (Rast et al., 2019) and their exact locations remain speculative. 180 




