
Reasoning about Cognitive Trust in Stochastic
Multiagent Systems

Xiaowei Huang, Marta Kwiatkowska, and Maciej Olejnik

University of Oxford, Oxford, UK
xiaowei.huang@live.com

marta.kwiatkowska@cs.ox.ac.uk

maciej.olejnik@cs.ox.ac.uk

Abstract. We consider the setting of stochastic multiagent systems
modelled as stochastic multiplayer games and formulate an automated
verification framework for quantifying and reasoning about agents’ trust.
To capture human trust, we work with a cognitive notion of trust defined
as a subjective evaluation that agent A makes about agent B’s ability
to complete a task, which in turn may lead to a decision by A to rely
on B. We propose a probabilistic rational temporal logic PRTL∗, which
extends the probabilistic computation tree logic PCTL∗ with reasoning
about mental attitudes (beliefs, goals and intentions), and includes novel
operators that can express concepts of social trust such as competence,
disposition and dependence. The logic can express, for example, that
“agent A will eventually trust agent B with probability at least p that
B will behave in a way that ensures the successful completion of a given
task”. We study the complexity of the automated verification problem
and, while the general problem is undecidable, we identify restrictions
on the logic and the system that result in decidable, or even tractable,
subproblems.

Keywords: multi-agent systems · stochastic games · cognitive trust · quantita-
tive reasoning · probabilistic temporal logic

1 Introduction

Mobile autonomous robots are rapidly entering the fabric of our society, to men-
tion driverless cars and home assistive robots. Since robots are expected to work
with or alongside humans in our society, they need to form partnerships with
humans, as well as other robots, understand the social context, and behave,
and be seen to behave, according to the norms of that context. Human part-
nerships such as cooperation are based on trust, which is influenced by a range
of subjective factors that include subjective preferences and experience. As the
degree of autonomy of mobile robots increases and the nature of partnerships
becomes more complex, to mention shared autonomy, understanding and rea-
soning about social trust and the role it plays in decisions whether to rely on
autonomous systems is of paramount importance. A pertinent example is the

ar
X

iv
:1

90
5.

06
62

7v
1

 [
cs

.L
O

]
 1

6
M

ay
 2

01
9

2 X. Huang, M. Kwiatkowska, M. Olejnik

recent Tesla fatal car accident while on autopilot mode [38], which is a result of
over-reliance (“overtrust”) by the driver, likely influenced through his personal
motivation and preferences.

Trust is a complex notion, viewed as a belief, attitude, intention or behaviour,
and is most generally understood as a subjective evaluation of a truster on a
trustee about something in particular, e.g., the completion of a task [24]. A clas-
sical definition from organisation theory [40] defines trust as the willingness of
a party to be vulnerable to the actions of another party based on the expectation
that the other will perform a particular action important to the trustor, irrespec-
tive of the ability to monitor or control that party. The importance of being able
to correctly evaluate and calibrate trust to guide reliance on automation was
recognised in [39]. Trust (and trustworthiness) have also been actively studied
in many application contexts such as security [31] and e-commerce [14]. However,
in this paper we are interested in trust that governs social relationships between
humans and autonomous systems, and to this end consider cognitive trust that
captures the human notion of trust. By understanding how human trust in an
autonomous system evolves, and being able to quantify it and reason about it,
we can offer guidance for selecting an appropriate level of reliance on autonomy.

The goal of this paper is therefore to develop foundations for automated,
quantitative reasoning about cognitive trust between (human and robotic) agents,
which can be employed to support decision making in dynamic, uncertain en-
vironments. The underlying model is that of multiagent systems, where agents
are autonomous and endowed with individual goals and preferences in the style
of BDI logic [45]. To capture uncertainty, we work in the setting of stochas-
tic multiagent systems, represented concretely in terms of concurrent stochastic
multiplayer games, where stochasticity can be used to model, e.g., component
failure or environmental uncertainty. This also allows us to represent agent beliefs
probabilistically. Inspired by the concepts of social trust in [17], we formulate a
probabilistic rational temporal logic PRTL∗ as an extension of the probabilistic
temporal logic PCTL∗ [23] with cognitive aspects. PCTL∗ allows one to express
temporal properties pertaining to system execution, for example “with proba-
bility p, agent A will eventually complete a given task”. PRTL∗ includes, in
addition, mental attitude operators (belief, goal, intention and capability), to-
gether with a collection of novel trust operators (competence, disposition and
dependence), in turn expressed using beliefs. The logic PRTL∗ is able to express
properties such as “agent A will eventually trust agent B with probability at
least p that B will behave in a way that ensures the successful completion of
a given task” that are informally defined in [17]. PRTL∗ is interpreted over a
stochastic multiagent system, where the cognitive reasoning processes for each
agent can be modelled based on a cognitive mechanism that describes his/her
mental state (a set of goals and an intention, referred to as pro-attitudes) and
subjective preferences.

Since we wish to model dynamic evolution of beliefs and trust, the mech-
anisms are history-dependent, and thus the underlying semantics is an infinite
branching structure, resulting in undecidability of the general model checking

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 3

problem for PRTL∗. In addition, there are two types of nondeterministic choices
available to the agents, those made along the temporal or the cognitive dimension.
By convention, the temporal nondeterminism is resolved using the concept of ad-
versaries and quantifying over them to obtain a fully probabilistic system [22],
as is usual for models combining probability and nondeterminism. We use a
similar approach for the cognitive dimension, instead of the classical accessibil-
ity relation employed in logics for agency, and resolve cognitive nondeterminism
by preference functions, given as probability distributions that model subjective
knowledge about other agents. Also, in contrast to defining beliefs in terms of
knowledge [16] and probabilistic knowledge [22] operators, which are based solely
on agents’ (partial) observations, we additionally allow agents’ cognitive changes
and subjective preferences to influence their belief.

This paper makes the following original contributions.

• We introduce autonomous stochastic multiagent systems as an extension of
stochastic multiplayer games with a cognitive mechanism for each agent (a
set of goals and intentions).

• We provide a mechanism for reasoning about agent’s cognitive states based
on preference functions that enables a sound formulation of probabilistic
beliefs.

• We formalise a collection of trust operators (competence, disposition and
dependence) informally introduced in [17] in terms of probabilistic beliefs.

• We formulate a novel probabilistic rational temporal logic PRTL∗ that ex-
tends the logic PCTL∗ [23] with mental attitude and trust operators.

• We study the complexity of the automated verification problem for PRTL∗

and, while the general problem is undecidable, we identify restrictions on the
logic and the system that result in decidable, or even tractable, subproblems.

The structure of the paper is as follows. Section 2 gives an overview of re-
lated work, and in Section 3 we discuss the concept of cognitive trust. Section 4
presents stochastic multiplayer games and strategic reasoning on them. Section 5
introduces autonomous stochastic multiagent systems, an extension of stochastic
multiplayer games with a cognitive mechanism. Section 6 introduces preference
functions and derives the semantics of the subjective, probabilistic belief op-
erator. Section 7 defines how beliefs vary with respect to agents’ observations.
In Section 8 we define trust operators and the logic PRTL∗. We consider the
interactions of beliefs and pro-attitudes in Section 9 via pro-attitude synthesis.
Section 10 gives the undecidable complexity result for the general PRTL∗ model
checking problem and Section 11 presents several decidable logic fragments. We
conclude the paper in Section 12.

A preliminary version of this work appeared as [29]. This extended version
includes detailed derivations of the concepts, illustrative examples and full proofs
of the complexity results omitted from [29].

4 X. Huang, M. Kwiatkowska, M. Olejnik

2 Related Work

The notion of trust has been widely studied in management, psychology, phi-
losophy and economics (see [37] for an overview). Recently, the importance of
trust in human-robot cooperation was highlighted in [35]. Trust in the context of
human-technology relationships can be roughly classified into three categories:
credentials-based, experience-based, and cognitive trust. Credentials-based trust
is used mainly in security, where a user must supply credentials in order to gain
access. Experience-based trust, which includes reputation-based trust in peer-
to-peer and e-commerce applications, involves online evaluation of a trust value
for an agent informed by experiences of interaction with that agent. A formal
foundation for quantitative reputation-based trust has been proposed in [33]. In
contrast, we focus on (quantitative) cognitive trust, which captures the social
(human) notion of trust and, in particular, trust-based decisions between hu-
mans and robots. The cognitive theory of [17], itself founded on organisational
trust of [40], provides an intuitive definition of complex trust notions but lacks
rigorous semantics. Several papers, e.g., [41,30,25,26], have formalised the theory
of [17] using modal logic, but none are quantitative and automatic verification is
not considered. Of relevance are recent approaches [49,48] that model the evo-
lution of trust in human-robot interactions as a dynamical system; instead, our
formalism supports evolution of trust through events and agent interactions.

A number of logic frameworks have been proposed that develop the theory of
human decisions [6] for artificial agents, see [42] for a recent overview. The main
focus has been on studying the relationships between modalities with various
axiomatic systems, but their amenability to automatic verification is arguable
because of a complex underlying possible world semantics, to mention the sub-
tree relation of BDI logic [45]. The only attempt at model checking such logics
[47] ignores the internal structure of the possible worlds to enable a reduction
to temporal logic model checking.

The distinctive aspects of our work is thus a quantitative formalisation of
cognitive trust in terms of probabilistic temporal logic, based on a probabilistic
notion of belief, together with algorithmic complexity of the corresponding model
checking problem.

3 Cognitive Theory of Social Trust

In the context of automation, trust is understood as delegation of responsibility
for actions to the autonomous system and willingness to accept risk (possible
harm) and uncertainty. The decision to delegate is based on a subjective evalu-
ation of the system’s capabilities for a particular task, informed by factors such
as past experience, social norms and individual preferences. Moreover, trust is a
dynamic concept which evolves over time, influenced by events and past experi-
ence. The cognitive processes underpinning trust are captured in the influential
theory of social trust by [17], which is particularly appropriate for human-robot
relationships and serves as an inspiration for this work.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 5

The theory of [17] views trust as a complex mental attitude that is relative to
a set of goals and expressed in terms of beliefs, which in turn influence decisions
about agent’s future behaviour. They consider agent A’s trust in agent B for a
specific goal ψ (goals may be divided into tasks), and distinguish the following
core concepts: competence trust, where A believes that B is able to perform
ψ, and disposition trust, where A believes that B is willing to perform ψ. The
decision to delegate or rely on B involves a complex notion of trust called de-
pendence: A believes that B needs, depends, or is at least better off to rely on B
to achieve ψ, which has two forms, strong (A needs or depends on B) and weak
(for A, it is better to rely than not to rely on B). [17] also identify fulfilment
belief arising in the truster’s mental state, which we do not consider.

We therefore work in a stochastic setting (to represent uncertainty), aiming to
quantify belief probabilistically and express trust as a subjective, belief-weighted
expectation, informally understood as a degree of trust.

4 Stochastic Multiagent Systems and Temporal
Reasoning

A multiagent systemM comprises a set of agents (humans, robots, components,
processes, etc.) running in an environment [16]. To capture random events such
as failure and environmental uncertainty that are known to influence trust, we
work with stochastic multiagent systems, concretely represented using concur-
rent stochastic multiplayer games, where each agent corresponds to a player.
Taking such models as a starting point, in this section we gradually extend
them to autonomous multiagent systems that support cognitive reasoning.

4.1 Stochastic Multiplayer Games

Given a finite set S, we denote by D(S) the set of probability distributions on S
and by P(S) the power set of S. Given a probability distribution δ over a set S,
we denote by supp(δ) the support of δ, i.e., the set of elements of S which have
positive probability. We call δ a Dirac distribution if δ(s) = 1 for some s ∈ S.

We now introduce concurrent stochastic games, in which several players re-
peatedly make choices simultaneously to determine the next state of the game.

Definition 1. A stochastic multiplayer game (SMG) is a tuple M = (Ags, S,
Sinit, {ActA}A∈Ags, T, L), where:

• Ags = {1, ..., n} is a finite set of players called agents, ranged over by A, B,
...
• S is a finite set of states,
• Sinit ⊆ S is a set of initial states,
• ActA is a finite set of actions for the agent A,
• T : S × Act → D(S) is a (partial) probabilistic transition function, where
Act = ×A∈AgsActA,

6 X. Huang, M. Kwiatkowska, M. Olejnik

• L : S → P(AP) is a labelling function mapping each state to a set of atomic
propositions taken from a set AP .

We assume that each (global) state s ∈ S of the system includes a local
state of each agent and an (optional) environment state. In every state of the
game, each player A ∈ Ags selects a local action aA ∈ ActA independently
and the next state of the game is chosen by the environment according to the
probability distribution T (s, a) where a ∈ Act is the joint action. In other words,
the probability of transitioning from state s to state s′ when action a is taken is
T (s, a)(s′). In this paper we will usually omit the environment part of the state.

In concurrent games players perform their local actions simultaneously. Turn-
based games are a restricted class of SMGs whose states are partitioned into
subsets, each of which is controlled by a single agent, meaning that only that
agent can perform an action in any state in the partition. Turn-based games
can be simulated by concurrent games by requiring that, in states controlled
by agent A, A performs an action aA ∈ ActA and the other agents perform a
distinguished silent action ⊥.

Let aA denote agent A’s action in the joint action a ∈ Act. We let Act(s) =
{a ∈ Act | T (s, a) is defined} be the set of valid joint actions in state s, and
ActA(s) = {aA | a ∈ Act(s)} be the set of valid actions in state s for agent A.
T is called serial (or total) if, for any state s and joint action a ∈ Act, T (s, a)
is defined. We often write s−→a

T s
′ for a transition from s to s′ via action a,

provided that T (s, a)(s′) > 0.

Paths A path ρ is a finite or infinite sequence of states s0s1s2... induced from the
transition probability function T , i.e., satisfying T (sk, a)(sk+1) > 0 for some a ∈
Act, for all k ≥ 0. Paths generated by T are viewed as occurring in the temporal
dimension. We denote the set of finite (resp. infinite) paths ofM starting in s by
FPathM(s) (resp. IPathM(s)), and the set of paths starting from any state by
FPathM (resp. IPathM). We may omitM if clear from the context. For any path
ρ we write ρ(k) for its (k+ 1)-th state, ρ[0..n] for the prefix s0...sn, and ρ[n..∞]
for the suffix snsn+1... when ρ is infinite. If ρ is finite then we write last(ρ) for
its last state and |ρ| for its length, i.e., the number of states in ρ. Given two
paths ρ = s0...sn and ρ′ = s′0...s

′
m, we write ρ · ρ′ = s0...sns

′
1...s

′
m when sn = s′0

for their concatenation by an overlapping state, and ρρ′ = s0...sns
′
0s
′
1...s

′
m for

the regular concatenation.

Strategies A (history-dependent and stochastic) action strategy σA of agent
A ∈ Ags in an SMG M is a function σA : FPathM → D(ActA), such that
for all aA ∈ ActA and finite paths ρ it holds that σA(ρ)(aA) > 0 only if aA ∈
ActA(last(ρ)). We call a strategy σ pure if σ(ρ) is a Dirac distribution for any
ρ ∈ FPathM. A strategy profile σD for a set D of agents is a vector of action
strategies ×A∈DσA, one for each agent A ∈ D. We let ΣA be the set of agent
A’s strategies, ΣD be the set of strategy profiles for the set of agents D, and Σ
be the set of strategy profiles for all agents.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 7

Probability space In order to reason formally about a given SMG M we
need to quantify the probabilities of different paths being taken. We there-
fore define a probability space over the set of infinite paths IPathM(s0) start-
ing in a given state s0 ∈ S, adapting the standard construction from [32].
Our probability measure is based on the function assigning probability to a
given finite path ρ = s0...sn under strategy σ ∈ Σ, defined as Prσ(ρ) =∏n−1
i=0

∑
a∈Act σ(ρ[0..k])(a) ·T (sk, a)(sk+1). To define measurable sets, for a path

ρ we let Cylρ be a basic cylinder, which is a set of all infinite paths starting with

ρ. We then set FMs to be the smallest σ-algebra generated by the basic cylin-
ders {Cylρ | ρ ∈ FPathM(s)} and PrMσ to be the unique measure on the set of

infinite paths IPathM(s) such that PrMσ (Cylρ) = Prσ(ρ). It then follows that

(IPathM(s),FMs ,PrMσ) is a probability space [32].

Example 1. We consider a simple (one shot) trust game from [34], in which there
are two agents, Alice and Bob. At the beginning, Alice has 10 dollars and Bob
has 5 dollars. If Alice does nothing, then everyone keeps what they have. If Alice
invests her money with Bob, then Bob can turn the 15 dollars into 40 dollars.
After having the investment yield, Bob can decide whether to share the 40 dollars
with Alice. If so, each will have 20 dollars. Otherwise, Alice will lose her money
and Bob gets 40 dollars.

Table 1. Payoff of a simple trust game

share keep
invest (20, 20) (0, 40)

withhold (10, 5) (10, 5)

For the simple trust game, the payoffs of the agents are shown in Table 1.
The game has a Nash equilibrium of Alice withholding her money and Bob
keeping the investment yield. This equilibrium discourages collaboration between
agents and has not been confirmed empirically under the standard economic
assumptions of pure self-interest [5].

To illustrate our methods, we construct a stochastic multiplayer game G
with Ags = {Alice,Bob}, S = {s0, s1, ..., s4} with s0 being the initial state,
ActAlice = {invest, withhold,⊥}, ActBob = {share, keep,⊥} and the transition
function defined in an obvious way (see Figure 1). Note that we do not represent
payoffs explicitly in our modelling of the trust game, but rather capture them
using atomic propositions. For example, richerAlice,Bob is true is state s1, while
richerBob,Alice holds in s3. Note also that Alice and Bob proceed in turns, which
is captured through joint actions where the other agent takes the silent action
⊥. We represent states as pairs:

(aAlice, aBob),

8 X. Huang, M. Kwiatkowska, M. Olejnik

where aAlice ∈ ActAlice is Alice’s last action and aBob ∈ ActBob is Bob’s last
action. For example, s0 = (⊥,⊥), s2 = (invest,⊥) and s4 = (⊥, share).

Table 2. Strategies for Alice and Bob

Strategy withhold invest keep share

σpassive 0.7 0.3
σactive 0.1 0.9
σshare 0.0 1.0
σkeep 1.0 0.0

s0

s1 s2

s3 s4

withhold invest

keep share(10,5)

(0,40) (20,20)

Fig. 1. Simple trust game

We now equip agents with strategies. For Alice, we define σactive and σpassive,
where the former corresponds to high likelihood of Alice investing her money and
the latter allocates greater probability to withholding it. For Bob, we set two
pure strategies σkeep and σshare, corresponding to him keeping and sharing the
money with Alice. The strategies are summarised in Table 2. 2

4.2 Temporal Reasoning about SMGs

We now recall the syntax of the Probabilistic Computation Tree Logic PCTL∗ [3,4]1

for reasoning about temporal properties in systems exhibiting nondeterministic
and probabilistic choices. PCTL∗ is based on CTL∗ [13] for purely nondetermin-
istic systems and retains its expressive power, additionally extending it with a
probabilistic operator P./qψ.

1 Note that we do not consider here the coalition operator, and therefore the logic
rPATL* [12] that is commonly defined over stochastic game models.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 9

Definition 2. The syntax of the logic PCTL∗ is as follows.

φ ::= p | ¬φ | φ ∨ φ | ∀ψ | P./qψ
ψ ::= φ | ¬ψ | ψ ∨ ψ | #ψ | ψUψ

where p is an atomic proposition, ./∈ {<,≤, >,≥}, and q ∈ [0, 1].

In the above, φ is a PCTL∗ (state) formula and ψ an LTL (path) formula.
The operator ∀ is the (universal) path quantifier of CTL∗ and P./qψ is the prob-
abilistic operator of PCTL [23], which expresses that ψ holds with probability
in relation ./ with q. The remaining operators, #ψ (next) and ψUψ (until) fol-
low their usual meaning from PCTL and CTL∗. The derived operators such as
φ1 ∧φ2, 3ψ (eventually), 2ψ (globally), ψRψ (release) and ∃φ (existential path
quantifier) can be obtained in the standard way.

Let M be an SMG. Given a path ρs which has s as its last state, a strategy
σ ∈ Σ of M, and a formula ψ, we write:

ProbM,σ,ρs(ψ)
def
= PrMσ {δ ∈ IPathMT (s) | M, ρs, δ |= ψ}

for the probability of implementing ψ on a path ρs when a strategy σ applies.
The relation M, ρ, δ |= ψ is defined below. Based on this, we define:

ProbminM,ρ(ψ)
def
= infσ∈Σ ProbM,σ,ρ(ψ),

P robmaxM,ρ(ψ)
def
= supσ∈Σ ProbM,σ,ρ(ψ)

as the minimum and maximum probabilities of implementing ψ on a path ρ over
all strategies in Σ.

We now give semantics of the logic PCTL∗ for concurrent stochastic games.

Definition 3. Let M = (Ags, S, Sinit, {ActA}A∈Ags, T, L) be an SMG and ρ ∈
FPathMT . The satisfaction relation |= of PCTL∗ is defined inductively by:

• M, ρ |= p if p ∈ L(last(ρ)),
• M, ρ |= ¬φ if not M, ρ |= φ,
• M, ρ |= φ1 ∨ φ2 if M, ρ |= φ1 or M, ρ |= φ2,
• M, ρ |= ∀ψ if M, ρ, δ |= ψ for all δ ∈ IPathMT (last(ρ)),

• M, ρ |= P./qψ if Prob
opt(./)
M,ρ (ψ) ./ q, where

opt(./) =

{
min when ./∈ {≥, >}
max when ./∈ {≤, <}

and for any infinite continuation δ ∈ IPathMT of ρ (i.e., δ(0) = last(ρ)):

• M, ρ, δ |= φ if M, ρ |= φ,
• M, ρ, δ |= ¬ψ if not M, ρ, δ |= ψ,
• M, ρ, δ |= ψ1 ∨ ψ2 if M, ρ, δ |= ψ1 or M, ρ, δ |= ψ2,
• M, ρ, δ |= #ψ if M, ρ · δ[0..1], δ[1..∞] |= ψ,

10 X. Huang, M. Kwiatkowska, M. Olejnik

• M, ρ, δ |= ψ1Uψ2 if there exists n ≥ 0 such that M, ρ · δ[0..n], δ[n..∞] |= ψ2

and M, ρ · δ[0..k], δ[k..∞] |= ψ1 for all 0 ≤ k < n.

We note that the semantics of state formulas is defined on finite paths (his-
tories) rather than states, whereas the semantics of path formulas is defined on
a finite path together with its infinite continuation (rather than a single infinite
path). The reason for defining it in such a way is to be consistent with defini-
tions of trust operators (which we introduce in Section 8), whose semantics is
dependent on execution history (understood as a sequence of past states of a
system).

Below, we write < for >, > for <, ≤ for ≥ and ≥ for ≤ (inverting the order),
and write <̂ for ≤, >̂ for ≥, ≤̂ for <, and ≥̂ for > (strict/non-strict variants).

Proposition 1. Let M be an SMG and ρ ∈ FPathM. The following equiva-
lences hold for any formula ψ:

1. M, ρ |= ¬P./qψ iff M, ρ |= P .̂/1−q¬ψ
2. M, ρ |= P./qψ iff M, ρ |= P./1−q¬ψ

Definition 4. For a given SMG M and a formula φ of the language PCTL∗,
the model checking problem, written as M |= φ, is to decide whether M, s |= φ
for all initial states s ∈ Sinit.

Example 2. Here we give a few examples of PCTL∗ formulas that we may wish
to check on the trust game from Example 1. The formula

P≤0.9#(aAlice = invest)

expresses that the probability of Alice investing in the next step is no greater
than 0.9. On the other hand, the formula

P≤13(aBob = keep)

states (the obvious fact) that the probability of Bob keeping the money in the
future is no greater than 1. Finally, the formula

∃3richerAlice,Bob,

where richerAlice,Bob is an atomic proposition with obvious meaning, states that
eventually a state can be reached where Alice has more money than Bob.

All the above formulas are true when evaluated at the state s0, given in Fig 1.
2

5 Stochastic Multiagent Systems with the Cognitive
Dimension

In this section, we present a framework for reasoning about autonomous agents in
multiagent systems. The key novelty of our model is the consideration of agents’

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 11

mental attitudes to enable autonomous decision making, which we achieve by
equipping agents with goals and intentions (also called pro-attitudes). We en-
hance stochastic multiplayer games with a cognitive mechanism to represent
reasoning about goals and intentions. The system then evolves along two in-
terleaving dimensions: temporal, representing actions of agents in the physical
space, and cognitive, which corresponds to mental reasoning processes, i.e., goal
and intention changes, that determine the actions that agents take.

5.1 Cognitive Reasoning

We now motivate and explain the concepts of the cognitive state of an agent and
the cognitive mechanism, and how they give rise to partial observability.

Cognitive State We assume that each agent has a set of goals and a set of
intentions, referred to as pro-attitudes and viewed as high-level concepts. We
follow existing literature, see e.g., Bratman [6] and Gollwitzer [21], etc., and
identify commitment as the distinguishing factor between goals and intentions,
i.e., an intention is a committed plan of achieving some immediate goal. We
therefore think of goals as abstract attitudes, for example selflessness or risk-
taking, whereas intentions are more concrete and directly influence agents’ be-
haviour. Goals are usually static and independent of external factors, whereas
intentions are dynamic, influenced by agent’s own goals and by its beliefs about
other agents’ pro-attitudes. For the purposes of our framework, we assume that
agents use action strategies to implement their intentions and therefore there
exists a one-to-one association between intentions and action strategies. This
way, agents’ behaviour in the physical space is determined by their mental state.

For an agent A, we use GoalA to denote its set of goals and IntA to denote
its set of intentions. At any particular time, an agent may have several goals,
but can only have a single intention. Goals are not required to satisfy constraints
such as consistency.

Definition 5. Let A be an agent and let GoalA and IntA be its set of goals
and intentions, respectively. A cognitive state of A consists of a set of goals and
an intention, which can be retrieved from global states of the system using the
following functions:

• gsA : S → P(GoalA), i.e., gsA(s) is a set of agent A’s goals in state s,
• isA : S → IntA, i.e., isA(s) is the agent A’s intention in state s.

To illustrate the concepts, we now extend the trust game given in the previous
examples to include agents’ goals and intentions.

Example 3. It is argued in [34] that the single numerical value as the payoff of the
trust game introduced in Example 1 is an over-simplification. A more realistic
utility should include both the payoff and other hypotheses, including trust. An
example payoff table is given in Table 3, in which Bob’s payoff will increase by
5 to denote that he will gain Alice’s trust if sharing the investment yield and

12 X. Huang, M. Kwiatkowska, M. Olejnik

Table 3. Payoff of a simple trust game with trust as a decision factor

share keep
invest (20,20+5) (0,40-20)

withhold (10,5) (10,5)

decrease by 20 to denote that he will lose Alice’s trust if keeping the investment
yield without sharing. With the updated payoffs, the new Nash equilibrium is
for Alice to invest her money and Bob to share the investment yield.

The main point for the new payoffs is for the agents to make decisions not
only based on the original payoffs, but also based on the trust that the other
agent has. This reflects some actual situations in which one agent may want to
improve, or at least maintain, the trust of the other agent. In our modelling
of such a game, we show that this can be captured by adding the cognitive
dimension and assuming that Bob makes decisions by considering additionally
whether Alice’s trust in him reaches a certain level.

For Alice, we let GoalAlice = {passive, active} be two goals which repre-
sent her attitude towards investment. Intuitively, passive represents the goal
of keeping the cash and active represents the goal of investing. For simplicity,
we assume that Alice’s intention is determined by her goals and set IntAlice =
{passive, active}. We also assume that Alice uses strategy σpassive to implement
her passive intention, and σactive to implement her active intention, where the
strategies are defined in Example 1.

Bob has a set of goals GoalBob = {investor, opportunist}, which represent
the goals of being an investor pursuing long-term profits and being an oppor-
tunist after short-term profits, respectively. As for Alice, Bob’s intentions are
associated with action strategies, and we have already defined two such strate-
gies: σshare, in which Bob shares the investment yield with Alice, and σkeep, in
which Bob keeps all the money for himself. Hence IntBob = {share, keep}, with
the obvious association. We assume that Bob’s intention will be share when he
is an investor and his belief in Alice being active is above a certain threshold,
and keep otherwise. Intuitively, when he is an investor, Bob intends to build a
good relationship with Alice (in other words, gain Alice’s trust), hoping that it
will pay off in his future interactions with her.

We extend the trust game G defined in Example 1 by expanding the states
to additionally include cognitive states. In particular, each state can now be
represented as a tuple:

(aAlice, aBob, gsAlice, gsBob, isAlice, isBob),

such that aAlice and aBob are as before and gsAlice ⊆ GoalAlice ∪ {⊥}, gsBob ⊆
GoalBob ∪ {⊥}, isAlice ∈ IntAlice ∪ {⊥}, and isBob ∈ IntBob ∪ {⊥} denote the
cognitive part of the state, namely Alice’s and Bob’s goals and intentions. 2

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 13

Partial Observation It is common that, in real-world systems, agents are not
able to fully observe the system state at any given time. In a typical scenario,
every agent runs a local protocol, maintains a local state, observes part of the
system state by, e.g., sensing devices, and communicates with other agents. It is
impractical, and in fact undesirable, from the system designer’s point of view,
to assume that agents can learn the local states of other agents or learn what
the other agents observe. In the context of our work partial observability arises
naturally through the cognitive state, which represents an internal state of every
agent that is, in general, not observable by other agents. We formalise this notion
with the following definition.

Definition 6. A partially observable stochastic multiplayer game (POSMG) is
a tuple M = (G, {OA}A∈Ags, {obsA}A∈Ags), where

• G = (Ags, S, Sinit, {ActA}A∈Ags, T, L) is an SMG,
• OA is a finite set of observations for agent A, and
• obsA : S −→ OA is a labelling of states with observations for agent A.

Remark 1. We note that, unlike partially observable Markov processes (POMDPs),
in which observations are probability distributions, we follow the setting in [18]
and work with deterministic observations. In [20], it is stated without proof that
probabilistic observations do not increase the complexity of the problem.

We lift the observations from states to paths in the obvious way. Formally,
for a finite path ρ = s0...sn, we define obsA(ρ) = obsA(s0)...obsA(sn).

Remark 2. In our model, an agent remembers both its past observations and the
number of states, known as synchronous perfect recall [16]. This assumption is
necessary for the definition of belief in Section 7.

Example 4. For the trust game from Example 3, the agents’ observation func-
tions for A ∈ {Alice,Bob} are as follows:

obsA((aAlice, aBob, gsAlice, gsBob, isAlice, isBob)) = (aAlice, aBob, gsA, isA),

denoting that they cannot observe the opponent’s cognitive state but can observe
their last action. The set of observations OA can be easily inferred from this
definition. 2

We sayM is fully observable if s = s′ iff obsA(s) = obsA(s′) for all A ∈ Ags.
In fully observable systems, agents make decisions based on the current state,
whereas in partially observable systems decisions must be based on all past
observations.

Cognitive Mechanism While agents interact with each other and with the en-
vironment by taking actions in the physical space, they make decisions through
cognitive processes that determine their behaviour. Thus, in addition to the tem-
poral dimension of transitions s−→a

T s
′, we also distinguish a cognitive dimen-

sion of transitions s−→Cs
′, which corresponds to mental reasoning processes.

14 X. Huang, M. Kwiatkowska, M. Olejnik

The idea is that each temporal transition is preceded by a cognitive transition,
which represents an agent’s reasoning that led to its decision about which action
to take. While transitions in the temporal dimension conform to the transition
function T , cognitive changes adhere to the cognitive mechanism, which deter-
mines for an agent its legal goals and intentions. Formally, we have the following
definition of a stochastic game extended with a cognitive mechanism.

Definition 7. A stochastic multiplayer game with the cognitive dimension (SMGΩ)
is a tuple M = (G, {ΩA}A∈Ags, {πA}A∈Ags), where

• G = (Ags, S, Sinit, {ActA}A∈Ags, T, L, {OA}A∈Ags, {obsA}A∈Ags) is a POSMG,
• ΩA = 〈ωgA, ωiA〉 is the cognitive mechanism of agent A, consisting of a legal

goal function ωgA : S → P(P(GoalA)) and a legal intention function ωiA :
S → P(IntA), and
• πA = 〈πgA, πiA〉 is the cognitive strategy of agent A, consisting of a goal

strategy πgA : FPathM → D(P(GoalA)) and an intention strategy πiA :

FPathM → D(IntA).

We refer to the SMG G from the above definition as the induced SMG from M.

Thus, the SMGΩ model generalises the usual notion of multiplayer games by
extending states S with agents’ cognitive states, and adding for each agent A
the cognitive mechanism ΩA and A’s cognitive strategies to enable autonomous
decision making. We sometimes refer to the set Ω = {ΩA}A∈Ags of cognitive
mechanisms of all agents as the cognitive mechanism of the system M.

The legal goal (resp. intention) function ωgA (resp. ωiA) specifies legal goal
(resp. intention) changes in a given state. Intuitively, those are goal (resp. inten-
tion) changes that an agent is allowed (but might not be willing) to make. One
possible use of those functions is to enforce application-specific constraints that
goals or intentions must satisfy (see Example 5).

The cognitive strategy πA determines how an agent’s cognitive state evolves
over time. Specifically, the goal (resp. intention) strategy πgA (resp. πiA) specifies
the incurred goal (resp. intention) changes (along with their probabilities), which
are under agent A’s consideration for a given execution history. We sometimes
call πgA (resp. πiA) a possible goal (resp. intention) function and require that pos-

sible goal (resp. intention) changes are also legal. Formally, for all ρs ∈ FPathM,
we must have supp(πgA(ρs)) ⊆ GoalA(s) and supp(πiA(ρs)) ⊆ IntA(s).

Remark 3. We remark that cognitive strategies πgA and πiA are, in general, not
computable. In Section 9 we propose how to realise cognitive strategies so that
they can be effectively computed.

We note the following correspondence between the cognitive and temporal
dimension: GoalA and IntA (regarded as sets) specify all the goals and intentions
of a given agent A similarly to the way that ActA specifies all the actions of
A, while the cognitive mechanism Ω identifies possible cognitive transitions in a
similar fashion to the transition function T playing the same role for the temporal

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 15

dimension. Finally, a cognitive strategy gives the probability for agents’ goal and
intention changes, analogously to an action strategy quantifying the likelihood
of actions taken by agents in the temporal dimension.

The following standard assumption ensures that agents’ temporal and cog-
nitive transitions, as well as their cognitive strategies, are consistent with their
partial observability.

Assumption 1. (Uniformity Assumption) An SMGΩM = (Ags, S, Sinit, {ActA}A∈Ags,
T, L, {OA}A∈Ags, {obsA}A∈Ags, {ΩA}A∈Ags, {πA}A∈Ags) satisfies the Uniformity
Assumption if the following conditions hold.

• Agents can distinguish states with different sets of joint actions or legal
cognitive changes: for any two states s1 and s2 and an agent A ∈ Ags,
obsA(s1) = obsA(s2) implies ActB(s1) = ActB(s2), ωgB(s1) = ωgB(s2), and
ωiB(s1) = ωiB(s2), for all B ∈ Ags.
• Agents can distinguish execution histories which give rise to different cogni-

tive strategies: for any two finite paths ρ1, ρ2, obsA(ρ1) = obsA(ρ2) implies
πgA(ρ1)(x) = πgA(ρ2)(x) and πiA(ρ1)(x) = πiA(ρ2)(x) for all x ⊆ GoalA.

Given a state s and a set of agent A’s goals x ⊆ GoalA, we write A.g(s, x)
for the state obtained from s by substituting agent A’s goals with x. Similar
notation A.i(s, x) is used for the intention change when x ∈ IntA. Alternatively,

we may write s−→A.g.x
C s′ if s′ = A.g(s, x) contains the goal set x for A and

s−→A.i.x
C s′ if s′ = A.i(s, x) contains the intention x for A.

Example 5. Having extended states of the trust game G with goals and intentions
in Example 3, we now make G into an SMGΩ by introducing cognitive transitions,
defining the cognitive mechanism and specifying cognitive strategies of agents.

We give a graphical representation of G in Figure 2. Note that w and i stand
for Alice’s actions withhold and invest respectively, whereas s and k denote Bob’s
actions share and keep. Cognitive transitions are represented with dashed lines.
Temporal actions are annotated with probabilities which reflect the intention
(i.e., an action strategy) that an agent has in a given state.

Below we explain how we arrived at such a system. The execution of the
game starts by agents choosing their goals. While it may seem unnatural (a more
realistic approach would probably involve multiple initial states corresponding
to agents having different goals), such a way of modelling plays well with our
formalism and does not restrict the generality of our approach. Formally, we
specify those cognitive transitions using legal goal function for Alice and Bob as
follows:

ωgAlice(s0) = {{active}, {passive}},
ωgBob(sk) = {{investor}, {opportunist}},

where k ∈ {1, 2}.
Once their goals are set, agents begin interacting with one another in the

physical space by taking actions. However, each action is preceded by an agent

16 X. Huang, M. Kwiatkowska, M. Olejnik

s0

s1 s2

s3 s4 s5 s6

s7 s8 s9 s10 s11 s12 s13 s14

s15 s16 s17 s18 s19 s20 s21 s22

s23 s24 s25 s26 s27 s28 s29 s30 s31 s32 s33 s34 s35 s36 s37 s38

A.g.{passive} A.g.{active}

B.g.{investor} B.g.{opportunist} B.g.{investor} B.g.{opportunist}

w : 0.7 i: 0.3 w : 0.7 i: 0.3 w : 0.1 i: 0.9 w : 0.1 i: 0.9

B.i.σshare B.i.σkeepB.i.σshare B.i.σkeep B.i.σshare B.i.σkeepB.i.σshare B.i.σkeep

k :0 s:1 k :1 s:0 k :0 s:1 k :1 s:0 k :0 s:1 k :1 s:0 k :0 s:1 k :1 s:0

Fig. 2. Trust game with cognitive dimension

determining its intention, which represents the mental reasoning that results in
action selection. Note that we do not depict Alice’s intention change in Figure 2,
the reason being our assumption that Alice’s intention is fully determined by
her goals.

As mentioned above, Alice’s actions are annotated with probabilities, ac-
cording to our assumption that cognitive state determines agents’ behaviour.
For example, in states s3 and s4, Alice’s intention is passive, and so the prob-
abilities of withholding and investing the money are given by Table 2. If Alice
withholds her money, the game ends. Otherwise, Bob determines his intention
(his choice depends on his goals and his belief about Alice’s goals) and performs
his action of keeping or sharing his profit. Bob’s legal intentions are given by his
legal intention function, defined as:

ωiBob(sk) = {share, keep},

where k ∈ {8, 10, 12, 14}.

Finally, we define Bob’s intention strategy. As mentioned above, Bob takes
on intention share only if he is an investor and he believes that Alice is active.
The latter depends on Alice’s actions in the physical space (since Bob can’t
observe Alice’s cognitive state). In this case, Alice investing her money with

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 17

Bob increases his belief that she is active. We therefore set:

πiBob(s0s1s3s8) = 〈share 7→ 1, keep 7→ 0〉
πiBob(s0s1s4s10) = 〈share 7→ 0, keep 7→ 1〉
πiBob(s0s2s5s12) = 〈share 7→ 1, keep 7→ 0〉
πiBob(s0s2s6s14) = 〈share 7→ 0, keep 7→ 1〉

Note that the above strategy is pure. While the framework does not enforce it,
we believe defining it in such a way more accurately resembles human cognitive
processes. Also, as we will see later, pure intention strategies are more compatible
with our trust formulations.

Finally, note that we don’t consider goal strategies here. The reason for that
is our representation of goals in this example as static mental attitudes which
agents possess or not, rather than choose dynamically. We therefore treat the first
two cognitive transitions as nondeterministic for now. In Section 6, we introduce
a mechanism which motivates choosing such representation. 2

Remark 4. We remark that, while defining the intention strategy as in the above
example is easy for simple systems, for more complex games this approach does
not scale. In particular, we could consider repeated version of the trust game, for
which constructing Bob’s intention strategy manually is impractical. However, in
Section 7, we formalise the notion of agent’s belief and, in Section 9, we propose
an intuitive method of constructing the intention strategy efficiently.

Induced SMG For a concrete system, it is conceptually simpler to assume a
certain, predefined interleaving of cognitive and temporal transitions, as we did
in Example 5. However, in general, such interleaving might be arbitrary since
agents may change their mental state at any time. It is therefore often useful to
think of a SMGΩ as a collection of induced SMGs, each corresponding to one
configuration of mental states of agents. Those induced SMGs do not differ as
far as their components are concerned (i.e., states, actions and transitions are
the same), but different mental states give rise to different behaviour. Execution
of such an SMGΩ can then be viewed as starting in one of the induced SMGs,
remaining there as long as agents perform temporal actions and moving to a
different induced SMG as soon as one agent changes its mental state. In the
long run, execution alternates between different standard SMGs, where, at any
point, current SMG reflects current mental states of agents, and each temporal
transition preserves the current SMG, while each cognitive transition switches
to a different SMG. The benefit of such an approach is that each induced SMG
can then be reasoned about using standard techniques. We note also that, for
the purposes of the logic operators introduced later in the paper, we assume that
both temporal and cognitive transitions are available to agents in any state.

Paths In contrast to the conventional multiplayer games, where each path in-
cludes a sequence of temporal transitions, which are consistent with the tran-
sition function T , in an SMGΩ , in view of the active participation of agents’

18 X. Huang, M. Kwiatkowska, M. Olejnik

pro-attitudes in determining their behaviour, a path can be constructed by in-
terleaving of temporal and cognitive transitions. Each cognitive transition rep-
resents a change of an agent’s goals or intention. We now extend the definition
of a path to allow cognitive transitions.

Definition 8. Given a stochastic multiplayer game with the cognitive dimension
(SMGΩ) M, we define a finite, respectively infinite, path ρ as a sequence of
states s0s1s2... such that, for all k ≥ 0, one of the following conditions is satisfied:

1. sk−→a
T sk+1 for some joint action a such that a ∈ Act(sk),

2. sk−→A.g.x
C sk+1 for some A ∈ Ags and x ⊆ GoalA(sk),

3. sk−→A.i.x
C sk+1 for some A ∈ Ags and x ∈ IntA(sk).

We reuse the notation introduced in Section 4.1 for regular paths and denote
the set of finite (resp. infinite) paths by FPathM (resp. IPathM), and the set of
finite (resp. infinite) paths starting in state s by FPathM(s) (resp. IPathM(s)).

The first condition represents the standard temporal transition, while the
other two stand for cognitive transitions – the former is a goal change, whereas
the latter is an intention change.

We often require that both the legal goal function and the legal intention
function are serial, i.e., for any state s and any subset x of GoalA, there exists
a state s′ ∈ S such that s−→A.g.x

C s′, and for any state s and any intention
x ∈ IntA, there exists a state s′ ∈ S such that s−→A.i.x

C s′. This is a non-trivial
requirement, since such states s′ can be unreachable via temporal transitions.

Remark 5. We remark that the seriality requirement for the probabilistic transi-
tion function is usually imposed for model checking, and by no means reduces the
generality of the problem, as we can introduce absorbing states to accommodate
undefined temporal or cognitive transitions in an obvious way.

Deterministic Behaviour Assumption Recall that intentions of agents are
associated with action strategies, thereby determining agents’ behaviour in a
physical space. Below, we formalise that idea, in addition requiring that the
associated strategies are pure, which simplifies results.

Assumption 2. (Deterministic Behaviour Assumption) An SMGΩ M satisfies
the Deterministic Behaviour Assumption if each agent’s cognitive state deter-
ministically decides its behaviour in terms of selecting its next local action. In
other words, agent’s cognitive state induces a pure action strategy that it follows.

Hence, since global states encode agents’ cognitive states, under Assump-
tion 2 the transition function T becomes deterministic, i.e., for every state s,
there exists a unique joint action a such that next state s′ is chosen with probabil-
ity T (s, a)(s′). Therefore, each SMG induced from M, with fixed pro-attitudes,
can be regarded as a Markov chain.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 19

Remark 6. We note that a more general version of Assumption 2 is possible,
where the action strategy is not assumed to be pure, and our results can be
easily adapted to that variant. In fact, action strategies introduced in Example 1
are not pure and so the trust game does not satisfy the strict version of the
Deterministic Behaviour Assumption as stated above. Example 7 illustrates how
the calculations can be adapted to handle that.

5.2 Cognitive Reasoning

We can now extend the logic PCTL∗ with operators for reasoning about agent’s
cognitive states, resulting in the logic called Probabilistic Computation Tree
Logic with Cognitive Operators, PCTL∗Ω .

Definition 9. The syntax of the logic PCTL∗Ω is:

φ ::= p | ¬φ | φ ∨ φ | ∀ψ | P./qψ | GAφ | IAφ | CAφ
ψ ::= φ | ¬ψ | ψ ∨ ψ | #ψ | ψUψ

where p ∈ AP , A ∈ Ags, ./∈ {<,≤, >,≥}, and q ∈ [0, 1].

Intuitively, the newly introduced cognitive operators GAφ (goal), IAφ (in-
tention) and CAφ (capability) consider the task expressed as φ and respectively
quantify, in the cognitive dimension, over possible changes of goals, possible in-
tentions and legal intentions.

The semantics for PCTL∗Ω is as follows.

Definition 10. LetM = (Ags, S, Sinit, {ActA}A∈Ags, T, L, {OA}A∈Ags, {obsA}A∈Ags,
{ΩA}A∈Ags, {πA}A∈Ags) be a SMGΩ, ρ a finite path in M and s ∈ S such that

ρs ∈ FPathM. The semantics of previously introduced operators of PCTL∗ re-
mains the same in PCTL∗Ω. For the newly introduced cognitive operators, the
satisfaction relation |= is defined as follows:

• M, ρs |= GAφ if ∀x ∈ supp(πgA(ρs)) ∃s′ ∈ S : s−→A.g.x
C s′ and M, ρss′ |= φ,

• M, ρs |= IAφ if ∀x ∈ supp(πiA(ρs))∃s′ ∈ S : s−→A.i.x
C s′ and M, ρss′ |= φ,

• M, ρs |= CAφ if ∃x ∈ ωiA(s)∃s′ ∈ S : s−→A.i.x
C s′ and M, ρss′ |= φ.

Thus, GAφ expresses that φ holds in future regardless of agent A changing its
goals. Similarly, IAφ states that φ holds regardless of A changing its intention,
whereas CAφ quantifies over the legal intentions, and thus expresses that agent
A could change its intention to achieve φ (however, such a change might not be
among agent’s possible intention changes).

Remark 7. We note that, when evaluating PCTL∗ operators, we assume that
agents keep their current mental attitudes, i.e., that the future path is purely
temporal. Formally, for a SMGΩM, PCTL∗ operators should be interpreted over
the SMG induced fromM. Furthermore, when evaluating PCTL∗Ω formulas, we
assume agents can change their goals and intentions at any time, in line with
the ‘induced SMGs’ interpretation presented in Section 5.1. That ensures that
the cognitive operators can be applied at any point of execution, as well as
meaningfully chained, nested or manipulated in any other way.

20 X. Huang, M. Kwiatkowska, M. Olejnik

Remark 8. We comment here about our definition of the semantics of GAφ, IAφ
and CAφ, whereby the changes of goals and intentions do not incur the changes
of other components of the state. This can be counter-intuitive for some cases,
e.g., it is reasonable to expect that the intention of the agent may change when
its goals are changed. We believe that such dependencies are better handled at
the modelling stage. For example, a simultaneous change of goals and intention
can be modelled as two consecutive cognitive transitions – a goal change followed
by an intention change.

Below, we write Xφ with X ∈ {GA, IA,CA} for ¬X¬φ. For instance, formula
IAφ expresses that it is possible to achieve φ by changing agent A’s intention.
Note that it is not equivalent to CAφ, which quantifies over legal, rather than
possible, intentions.

Example 6. Here we give examples of formulas that we may wish to check on
the trust game from Example 5. The formula:

GAliceP≤0.93(aAlice = invest)

expresses that, regardless of Alice changing her goals, the probability of her
investing in the future is no greater than 90%. On the other hand, the formula:

CBobP≤0#(aBob = keep)

states that Bob has a legal intention which ensures that he will not keep the
money as his next action. Also, the formula:

IAlice∃3richerAlice,Bob,

where richerAlice,Bob is an atomic proposition with obvious meaning, states that
Alice can find an intention such that eventually a state can be reached where
Alice has more money than Bob. Finally, the formula:

IAlice∃3GBob∀3¬richerAlice,Bob

expresses that Alice can find an intention such that it is possible to reach a state
such that, for all possible Bob’s goals, the game will always reach a state in
which Bob is no poorer than Alice. 2

In this paper we study the model checking problem defined as follows.

Definition 11. For a given SMGΩ M and a formula φ of the language PCTL∗Ω
the model checking problem, written as M |= φ, is to decide whether M, s |= φ
for all initial states s ∈ Sinit.

The model checking problem amounts to checking whether a given finite
model satisfies a formula. For logics PCTL and PCTL∗ the model checking
problem over Markov chains is known to be decidable, with the complexity
results summarised in Table 4. These logics thus often feature in probabilistic

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 21

Table 4. Complexity of Markov chain model checking

PCTL PTIME-complete

PCTL∗ PSPACE-complete

model checkers, e.g., PRISM [36] and Storm [15]. In contrast, the satisfiability
problem, i.e., the whether there exists a model that satisfies a given formula, for
these logics is an open problem [8]. Therefore. the satisfiability problem for the
logic introduced here is likely to be challenging.

Consider a SMGΩ M in which agents never change their mental attitudes.
Then, thanks to Assumption 2, all transitions in the system are effectively de-
terministic and M can be viewed as a Markov chain. Using complexity results
summarised in Table 4 we formalise the above observation with the following
theorem.

Theorem 1. If the cognitive strategies of all agents in a systemM are constant,
then the complexity of model checking PCTL∗Ω over SMGΩ is PSPACE-complete,
and model checking PCTLΩ over SMGΩ is PTIME-complete.

However, it is often unrealistic to assume that agents’ cognitive strategies
are constant. In Section 9, we suggest a variation of our model based on agents
reasoning about their beliefs and trust, all of whose components are finite, which
makes it amenable for model checking.

6 Preference Functions and Probability Spaces

In this section, we develop the foundations for reasoning with probabilistic beliefs,
which we define in Section 7. In order to support subjective beliefs, we utilise the
concept of preference functions, which resolve the nondeterminism arising from
agents’ cognitive transitions in a similar way to how action strategies resolve
nondeterminism in the temporal dimension. This enables the definition of prob-
ability spaces to support reasoning about beliefs, which will in turn provide the
basis for reasoning about trust. The central model of this paper, autonomous
stochastic multiagent systems, is then introduced.

Preference Functions To define a belief function, the usual approach is to
employ for every agent a preference ordering, which is a measurement over the
worlds. This measurement is commonly argued to naturally exist with the prob-
lem, see [18] for an example. However, the actual definition of such a measure-
ment can be non-trivial, because the number of worlds can be very large or even
infinite, e.g. in [18] and in this paper, and thus enumerating all worlds can be
infeasible.

In this paper, instead of an (infinite definition of) preference ordering, we
resolve the nondeterminism in the system by introducing preference functions.

22 X. Huang, M. Kwiatkowska, M. Olejnik

The key idea for a preference function is to estimate, for an agent A, the pos-
sible changes of goals or intentions of another agent B in a given state using a
probability distribution. In other words, preference functions model probabilis-
tic prior knowledge of agent A about pro-attitudes of another agent B. That
knowledge may be derived from prior experience (through observations), per-
sonal preferences, social norms, etc., and will in general vary between agents. A
uniformly distributed preference function can be assumed if no prior information
is available, as is typical in Bayesian settings.

Resolving the nondeterminism (for temporal dimension – by Assumption 2,
for cognitive dimension – by preference functions) allows us to define a family of
probability spaces for each agent. Since preference functions vary among agents,
probability spaces are also different for every agent. Moreover, each agent has
multiple probability spaces, corresponding to its own various cognitive states.
Intuitively, every probability space represents agent’s subjective view on the rel-
ative likelihood of different infinite paths being taken in the system.

We are now ready to define the central model of this paper.

Definition 12. An autonomous stochastic multi-agent system (ASMAS) is a
tuple M = (G, {pA}A∈Ags), where

• G = (Ags, S, Sinit, {ActA}A∈Ags, T, L, {OA}A∈Ags, {obsA}A∈Ags, {ΩA}A∈Ags,
{πA}A∈Ags) is an SMGΩ and
• pA is a family of preference functions of agent A ∈ Ags, defined as

pA
def
= {gpA,B , ipA,B | B ∈ Ags and B 6= A},

where:
– gpA,B : S → D(P(GoalB)) is a goal preference function of A over B

such that, for any state s and x ∈ P(GoalB), we have gpA,B(s)(x) > 0
only if x ∈ ωgB(s), and

– ipA,B : S → D(IntB) is an intention preference function of A over B
such that, for any state s and x ∈ IntB, we have ipA,B(s)(x) > 0 only
if x ∈ ωiB(s).

Remark 9. During system execution, preference functions may be updated as
agents learn new information through interactions; we will discuss in Section 9
how this can be implemented in our framework.

Intuitively, a preference function provides agent A with a probability distri-
bution over another agent B’s changes of pro-attitudes. Naturally, we expect
preference functions to be consistent with partial observability. We therefore
extend the Uniformity Assumption in the following way.

Assumption 3. (Uniformity Assumption II) LetM = (Ags, S, Sinit, {ActA}A∈Ags,
T, L, {OA}A∈Ags, {obsA}A∈Ags, {ΩA}A∈Ags, {πA}A∈Ags, {pA}A∈Ags) be an AS-
MAS. For an agent A ∈ Ags and any two states s1, s2 ∈ S, we assume that
obsA(s1) = obsA(s2) implies gpB,A(s1)(x) = gpB,A(s2)(x) and ipB,A(s1)(x) =
ipB,A(s2)(x) for any B ∈ Ags such that B 6= A and x ⊆ GoalA. That is, agents’
preferences over a given agent are the same on all paths which a given agent
cannot distinguish.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 23

We also mention that Assumption 2 (Deterministic Behaviour Assumption)
extends to ASMAS in a straightforward manner.

Transition Type In general, in any state of the system, an agent may choose
a temporal or a cognitive transition. However, it is often desirable, e.g., when
constructing a probability space, to restrict the type of transition available to an
agent.

Definition 13. Given a path s0s1s2... in an ASMAS M satisfying Assump-
tion 2 and an agent A ∈ Ags, we use tpA(sk, sk+1) to denote the type, as seen
by agent A, of the transition that is taken to move from state sk to sk+1. More
specifically, we distinguish five different transition types:

• tpA(sk, sk+1) = a if sk−→a
T sk+1 for some a ∈ Act,

• tpA(sk, sk+1) = A.g.x if sk−→A.g.x
C sk+1 for some x ⊆ ωgA(sk),

• tpA(sk, sk+1) = A.i.x if sk−→A.i.x
C sk+1 for some x ∈ ωiA(sk),

• tpA(sk, sk+1) = B.g if sk−→B.g.x
C sk+1 for another agent B ∈ Ags and x ⊆

ωgB(sk),

• tpA(sk, sk+1) = B.i if sk−→B.i.x
C sk+1 for another agent B ∈ Ags and x ∈

ωiB(sk).

Remark 10. Assumption 2 guarantees that, if the transition form sk to sk+1 is
temporal, then the action a is uniquely determined.

We write tpA(ρ) = tpA(ρ(0), ρ(1)) · tpA(ρ(1), ρ(2)) · ... for the type of a path
ρ. When ρ is a finite path and t is a type of an infinite path, we say that ρ
is consistent with t if there exists an infinite extension ρ′ = ρδ of ρ such that
tpA(ρ′) = t.

We note that the type of agent’s own cognitive transitions is defined differ-
ently than the type of another agent’s cognitive transitions. This stems from our
implicit assumption that agents can observe their own cognitive changes, but
they cannot, in general, observe another agent’s cognitive transitions. Formally,
we make the following assumption.

Assumption 4. (Transition Type Distinguishability Assumption) Let M =
(Ags, S, Sinit, {ActA}A∈Ags, T, L, {OA}A∈Ags, {obsA}A∈Ags, {ΩA}A∈Ags, {πA}A∈Ags,
{pA}A∈Ags) be an ASMAS. For an agent A ∈ Ags and any two finite paths ρ1,
ρ2, we assume that obsA(ρ1) = obsA(ρ2) implies tpA(ρ1) = tpA(ρ2). That is,
agents can distinguish paths of different types.

This assumption is essential to ensure that the belief function is defined over
finite paths in the same probability space.

Initial Distribution We replace the set of initial states with a more accurate
notion of initial distribution µ0 ∈ D(Sinit), as a common prior assumption of the
agents about the system, which is needed to define a belief function.

24 X. Huang, M. Kwiatkowska, M. Olejnik

Probability Spaces We now define a family of probability spaces for an ar-
bitrary ASMAS. Recall that our ultimate goal is to define the belief function.
To motivate the following construction, we mention that the belief function pro-
vides a probability distribution over paths which are indistinguishable (i.e., have
the same observation) to a given agent. There are two important consequences
of this: (i) probability spaces will vary among agents, reflecting the difference
in their partial observation, and (ii) rather than defining a single probability
space, spanning all the possible paths, for a given agent, we may define many of
them, as long as every pair of indistinguishable paths lies in the same probabil-
ity space. Hence, using the fact that agents can observe the type of transitions
(by Assumption 4), we parameterise probability spaces by type, so that each
contains paths of unique type.

We begin by introducing an auxiliary transition function, specific to each
agent, which will be used to define the probability measure.

Definition 14. LetM = (Ags, S, Sinit, {ActA}A∈Ags, T, L, {OA}A∈Ags, {obsA}A∈Ags,
{ΩA}A∈Ags, {πA}A∈Ags, {pA}A∈Ags) be an ASMAS. Based on temporal transi-
tion function T and preference functions {pA}A∈Ags, we define an auxiliary tran-
sition function TA for agent A ∈ Ags as follows for s, s′ ∈ S:

TA(s, s′) =


T (s, a)(s′) if tpA(s, s′) = a
gpA,B(s)(x) if tpA(s, s′) = B.g and s−→B.g.x

C s′

ipA,B(s)(x) if tpA(s, s′) = B.i and s−→B.i.x
C s′

1 if tpA(s, s′) = A.g.x for some x ∈ ωgA(s)
or tpA(s, s′) = A.i.x for some x ∈ ωiA(s)

The application of the function TA resolves the nondeterminism in both the
temporal and cognitive dimensions and the resulting system is a family of proba-
bility spaces, each containing a set of paths of the same type. While the probabil-
ities of temporal transitions are given by the transition function T and computed
by all agents in the same way, each agent resolves the nondeterminism in the
cognitive dimension differently. For an agent A, all possible cognitive transitions
of another agent B have the same type and hence lie in the same probability
space; A uses its preference functions to associate probabilities to them. On the
other hand, each of A’s own possible pro-attitude changes has a different type
and lies in a different probability space; A therefore treats it as a deterministic
transition and assigns probability 1 to it.

We now construct a probability space for an arbitrary ASMAS M, agent A
and a type t in a similar way as in Section 4. The sample space consists of infinite
paths of type t starting in one of the initial states, i.e., ΩM,t =

⋃
s∈S,µ0(s)>0{δ ∈

IPathM(s) | tpA(δ) = t}. We associate a probability to each finite path ρ =
s0...sn consistent with t via function PrA(ρ) = µ0(ρ(0))·∏0≤i≤|ρ|−2 TA(ρ(i), ρ(i+

1)). We then set FM to be the smallest σ-algebra generated by cylinders {Cylρ∩
ΩM,t | ρ ∈ FPathM} and PrMA to be the unique measure such that PrMA (Cylρ) =

PrA(ρ). It then follows that (ΩM,t,FM,PrMA) is a probability space.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 25

Note that, for agents A and B such that A 6= B in a system M, agents’
probability spaces will in general differ in probability measures PrMA and PrMB ,
because their preference functions may be different.

Example 7. We now define preference functions for Bob and Alice of Example
1. For example, setting:

gpBob,Alice(s0) = 〈passive 7→ 1/3, active 7→ 2/3〉

indicates that Bob believes Alice is more likely to be active than passive. Sim-
ilarly, we give Alice’s preference functions. We first note that obsBob(s1) =
obsBob(s2). Therefore, by Assumption 3, gpAlice,Bob(s1) = gpAlice,Bob(s2). Set-
ting:

gpAlice,Bob(sk) = 〈investor 7→ 1/2, opportunist 7→ 1/2〉,

for k ∈ {1, 2}, represents that Alice has no prior knowledge regarding Bob’s
mental attitudes. Finally, we define Alice’s intention preference over Bob. Since
obsBob(s8) = obsBob(s12) and obsBob(s10) = obsBob(s14), Assumption 3 implies
that ipAlice,Bob(s8) = ipAlice,Bob(s12) and ipAlice,Bob(s10) = ipAlice,Bob(s14). We
may set:

ipAlice,Bob(sk) = 〈share 7→ 3/4, keep 7→ 1/4〉 for k ∈ {8, 12},
ipAlice,Bob(sk) = 〈share 7→ 0, keep 7→ 1〉 for k ∈ {10, 14}

to indicate that Alice knows that Bob will keep the money when he is an oppor-
tunist, but she thinks it is quite likely that he will share his profit when he is an
investor.

We now compute the probability that Alice and Bob will have the same
amount of money at the end of the game. In other words, we want to find the
probability that Alice invests her money with Bob and Bob shares his profit with
her. As noted above, probability spaces differ between agents. We first perform
the computation from Alice’s point of view and consider two cases: (i) Alice
being passive and (ii) Alice being active. For (i), letting ρ1 = s0s1s3s8s15s24 and
ρ2 = s0s1s4s10s17s28, we compute:

PrAlice(ρ1) = gpAlice,Bob(s1)(investor) · (σpassive(s0s1s3)(invest) · T (s3, invest)(s8))

· ipAlice,Bob(s8)(share) · (σshare(s0s1s3s8s15)(share) · T (s15, share)(s24))

=
1

2
· (3

10
· 1) · 3

4
· (1 · 1) =

9

80
,

PrAlice(ρ2) = gpAlice,Bob(s1)(opportunist) · (σpassive(s0s1s4)(invest) · T (s4, invest)(s10))

· ipAlice,Bob(s10)(share) · (σshare(s0s1s4s10s17)(share) · T (s17, share)(s28))

=
1

2
· (3

10
· 1) · 0 · (1 · 1) = 0.

26 X. Huang, M. Kwiatkowska, M. Olejnik

Similarly, in case (ii), letting ρ3 = s0s2s5s12s19s32 and ρ3 = s0s2s6s14s21s36,
we compute:

PrAlice(ρ3) = gpAlice,Bob(s2)(investor) · (σactive(s0s2s5)(invest) · T (s5, invest)(s12))

· ipAlice,Bob(s12)(share) · (σshare(s0s2s5s12s19)(share) · T (s19, share)(s32))

=
1

2
· (9

10
· 1) · 3

4
· (1 · 1) =

27

80
,

PrAlice(ρ4) = gpAlice,Bob(s2)(opportunist) · (σactive(s0s2s6)(invest) · T (s6, invest)(s14))

· ipAlice,Bob(s14)(share) · (σshare(s0s2s6s14s21)(share) · T (s21, share)(s36))

=
1

2
· (9

10
· 1) · 0 · (1 · 1) = 0.

Hence, from Alice’s point of view, the probability that both will have 20
dollars at the end of the game is three times higher when she is active, and
roughly equal to 1/3. This is consistent with our expectations, since the only
difference between the two scenarios is the likelihood of her investing, which is
three times greater when she is active.

We now perform a similar computation for Bob. Again, we consider (i) Bob
being an investor and (ii) Bob being an opportunist. We start with case (i), but
we have to be a little more careful now. In order for the result to be meaningful,
all paths in which Bob is an investor must be in the same probability space.
However, currently, this is not the case for paths corresponding to different
intention changes for Bob. To fix that, we use Bob’s intention strategy πiBob to
quantify the likelihoods of paths in different probability spaces. We may then
compute:

PrBob(ρ1) = gpBob,Alice(s0)(passive) · (σpassive(s0s1s3)(invest) · T (s3, invest)(s8))

· πiBob(s0s1s3s8)(share)

· (σshare(s0s1s3s8s15)(share) · T (s15, share)(s24))

=
1

3
· (3

10
· 1) · 1 · (1 · 1) =

1

10
,

PrBob(ρ3) = gpBob,Alice(s0)(active) · (σactive(s0s2s5)(invest) · T (s5, invest)(s12))

· πiBob(s0s2s5s12)(share)

· (σshare(s0s2s5s12s19)(share) · T (s19, share)(s32))

=
2

3
· (9

10
· 1) · 1 · (1 · 1) =

3

5
.

In case (ii), Bob chooses intention σkeep with probability 1 and so the prob-
ability of him sharing the profit is 0. 2

7 Reasoning with Probabilistic Beliefs

In presence of partial observation and, resulting from it, imperfect information
that agents have about system state, one resorts to using beliefs to represents

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 27

agents’ knowledge. In this section, we define a probabilistic belief function beA
of an agent A in an autonomous stochastic multiagent system (ASMAS), which
models agents’ uncertainty about the system state and its execution history.

In [18], a qualitative belief notion is defined based on a plausibility measure.
We consider probability measure instead, and define a quantitative belief function
expressing that agent A believes φ with probability in relation ./ to q if it knows
φ with probability in relation ./ to q. This can be seen as a quantitative variant
of the qualitative definition in [44], according to which agent A believes φ if the
probability of φ is close to 1. It is generally accepted that trust describes agents’
subjective probability [19] and therefore needs to be measured quantitatively.

7.1 Belief Function

Before defining the belief function, we establish an equivalence relation ∼oA on
the set of finite paths of an autonomous systemM for an agent A. We say that
paths ρ, ρ′ ∈ FPathM are equivalent (from the point of view of A), denoted
ρ ∼oA ρ′, if and only if obsA(ρ) = obsA(ρ′). Intuitively, each equivalence class
contains paths which a given agent cannot differentiate from each other. Note
that, by Assumption 4, each equivalence class comprises paths of the same type.

Example 8. Recall the trust game G from Example 5 and the observation func-
tion defined on G in Example 4. Using that definition, we obtain obsBob(s0s1) =
obsBob(s0s2), which is intuitively correct, since Bob cannot observe Alice’s goals.
These two paths form an equivalence class. Similarly, obsBob(s0s1s3s8) = obsBob(s0s2s5s12)
and obsBob(s0s1s4s10) = obsBob(s0s2s6s14), and both pairs of paths form an
equivalence class. 2

The belief function quantifies agent’s belief about the execution history of
the system at any given time. Intuitively, at any point during system execu-
tion, agent’s observation history uniquely identifies an equivalence class (with
respect to ∼oA), consisting of all paths with that observation. The belief function
gives a probability distribution on that equivalence class. We define OPathA =
{obsA(ρ) | ρ ∈ FPathM} to be a set of all finite observation histories (path
observations), and for a given path observation o ∈ OPathA, class(o) denotes
the equivalence class associated with o. Recall that, for any finite path ρ, Cylρ
denotes a basic cylinder with prefix ρ.

Definition 15. LetM be an ASMAS and A an agent inM. The belief function
beA : OPathA → D(FPathM) of an agent A is given by:

beA(o)(ρ) = PrMA (Cylρ |
⋃

ρ′∈class(o)
Cylρ′).

Hence, given that agent A’s path observation is o at some point, their belief
that the execution history at that time is ρ is expressed as the conditional prob-
ability of the execution history being ρ, given that the execution history belongs
to the equivalence class class(o). We note that sometimes, e.g., when the obser-
vation is clear from the context, we might omit it, and simply write beA(ρ) for
agent A’s belief that the execution history at some point is ρ.

28 X. Huang, M. Kwiatkowska, M. Olejnik

Example 9. We return again to Example 5 and let ρ1 = s0s1 and ρ2 = s0s2.
Recall from Example 8 that obsBob(ρ1) = obsBob(ρ2), and let o1 denote that
common observation. Hence, o1 is a path observation associated with the equiv-
alence class {ρ1, ρ2}. We compute beBob(o1, ρ1) and beBob(o1, ρ2) below.

beBob(o1, ρ1) = PrGBob(Cylρ1 |
⋃

ρ∈class(o)
Cylρ)

=
PrGBob(Cylρ1)

PrGBob(Cylρ1) + PrGBob(Cylρ2)

=
gpBob,Alice(s0)(passive)

gpBob,Alice(s0)(passive) + gpBob,Alice(s0)(active)

=
1

3
.

Similar computation shows that:

beBob(o1, ρ2) =
2

3
.

We also let ρ3 = s0s1s3s8, ρ4 = s0s2s5s12 and recall from Example 8 that
obsBob(ρ3) = obsBob(ρ4). We let o2 denote that common observation and, per-
forming similar computation as above, we obtain:

beBob(o2, ρ3) =
1

7
,

beBob(o2, ρ4) =
6

7
.

Analogously, letting ρ5 = s0s1s4s10, ρ6 = s0s2s6s14 and o3 = obsBob(ρ5) =
obsBob(ρ6), we compute:

beBob(o3, ρ5) =
1

7
,

beBob(o3, ρ6) =
6

7
.

2

The following theorem gives a recursive definition of the belief function. In-
tuitively, the beliefs of agent A are represented as a distribution over a set of
possible states which are reachable by paths consistent with the current ob-
servation history. This belief distribution will be updated in the Bayesian way
whenever a new observation is taken.

Theorem 2. The beliefs beA(ρ) can be computed recursively over the length of
path ρ:

• For an initial state s, beA(s) =
µ0(s)∑

s′∈S∧obsA(s′)=obsA(s) µ0(s′)
.

• For ρ a path such that |ρ| = k + 2 and k ≥ 0,

beA(ρ) =
beA(ρ[0..k])× TA(ρ(k), ρ(k + 1))∑

ρ′∈FPathM∧obsA(ρ′)=obsA(ρ[0..k])

∑
s∈S∧obsA(s)=obsA(ρ(k+1)) beA(ρ′)× TA(ρ′(k), s)

.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 29

7.2 Belief ASMAS

A conceptually simpler construction, defined below, can be effectively used to
reason about a single agent’s understanding about the system, when there is no
need for nested reasoning on agents’ beliefs. We employ a well-known construc-
tion [10] which, for a systemM and a fixed agent A, induces an equivalent belief
ASMAS βA(M) whose states are distributions over states of M called belief
states. Intuitively, belief states quantify agent’s uncertainty about the current
state of a system by specifying their belief, expressed as a probability distri-
bution: although we may not know which of several observationally-equivalent
states we are currently in, we can determine the likelihood of being in each one.
The belief ASMAS is fully observable but its state space is possibly infinite.

Formally, a belief ASMAS for an ASMAS M and an agent A is a tuple
βA(M) = (Ags,D(S),Binit, {ActA}A∈Ags, T βA, L), where Binit = {boinit | o ∈ OA}
is a set of initial belief states such that:

boinit(s) =


µ0(s)∑

s′∈S&obsA(s′)=obsA(s) µ0(s′)
if obsA(s) = o

0 otherwise.

We now give the transition function T βA. Intuitively, from a belief state b, dif-
ferent belief states b′ are possible, each corresponding to a unique combination
of A’s next observation and the type of transition taken. Transition probabilities
are then computed based on the temporal transition function T or A’s prefer-
ences. The definition is split into three parts, reflecting the different types of
transitions present in an ASMAS.

First, for b, b′ ∈ D(S) and a ∈ Act, we have

T βA(b, a)(b′) =
∑
s∈S

b(s) · (
∑

o∈OA&ba,o=b′

∑
s′∈S&b′(s′)>0

T (s, a)(s′)),

where ba,o is a belief state reached from b by performing a and observing o, i.e.,

ba,o(s′) =


∑
s∈S b(s) · T (s, a)(s′)∑

s∈S b(s)
∑
s′′∈S&obsA(s′′)=o T (s, a)(s′′)

if obsA(s′) = o

0 otherwise.

Intuitively, the belief state reached by agent A from b by performing a and
observing o is a probability distribution over states s such that obsA(s) = o,
where the probability of each state is weighted according to the probabilities of
transitions from states in the support of b to that state.

Second, for x ⊆ GoalA,

T βA(b, A.g.x)(b′) =
∑
s∈S

b(s) · (
∑

o∈OA&bA.g.x,o=b′

∑
s′∈S&b′(s′)>0

(s−→A.g.x
C s′)),

30 X. Huang, M. Kwiatkowska, M. Olejnik

where bA.g.x,o is belief reached from b by performing A’s goal change into x and
observing o, i.e.,

bA.g.x,o(s′) =


∑
s∈S b(s) · (s−→

A.g.x
C s′)∑

s∈S b(s)
∑
s′′∈S&obsA(s′′)=o(s−→

A.g.x
C s′′)

if obsA(s′) = o

0 otherwise.

Note the we interpret s−→A.g.x
C s′ as having value 0 or 1, depending on whether a

transition of a specified type exists or not. The case corresponding to an intention
change of agent A is defined analogously.

Third, for B ∈ Ags such that B 6= A,

T βA(b, B.g)(b′) =
∑
s∈S

b(s)·(
∑

o∈OA&bB.g,o=b′

∑
s′∈S&b′(s′)>0

∑
x∈ωg

A(s)

gpA,B(s)(x)·(s−→B.g.x
C s′)),

where bB.g,o is belief reached from b by performing B’s goal change into x and
observing o, i.e.,

bB.g,o(s′) =


∑
s∈S b(s)

∑
x gpA,B(s)(x) · (s−→B.g.x

C s′)∑
s∈S b(s)

∑
s′′∈S&obsA(s′′)=o

∑
x gpA,B(s)(x) · (s−→B.g.x

C s′′)
if obsA(s′) = o

0 otherwise.

The case of intention change can be defined in a similar manner.

Example 10. We illustrate the above construction on the trust game G from
Example 5 by considering the initial few states of the belief ASMAS βBob(G)
corresponding to G. Since the game has a single initial state, the belief ASMAS
also has a single initial belief state, namely b0 = bo1init = 〈s0 7→ 1〉.

We now compute possible belief states after the first transition, i.e. Alice’s
goal change. Recall that Bob cannot distinguish states s1 and s2; we let o1 =
obsBob(s1) = obsBob(s2). Then the new belief state is b1 = bAlice.g,o10 , with:

b1(s1) = bAlice.g,o10 (s1) =
b0(s0) · gpBob,Alice(s0)({passive})

b0(s0) · (gpBob,Alice(s0)({passive}) + gpBob,Alice(s0)({active}))

=
2
3

2
3 + 1

3

=
2

3
,

where we used Bob’s preference function gpBob,Alice defined in Example 7. Sim-
ilar computation shows that:

b1(s2) =
1

3
.

Since Bob has only one possible observation at this point of the game,
we expect that b1 is his only possible belief state after first transition, i.e.
T βBob(b0, Alice.g)(b1) = 1. Indeed,

T βBob(b0, Alice.g)(b1) = b0(s0) · (gpBob,Alice(s0)({passive}) + gpBob,Alice(s0)({active}))
= 1.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 31

Next, Bob sets his goal. We let o2 = obsBob(s3) = obsBob(s5) and o3 =

obsBob(s4) = obsBob(s6). If Bob observes o2, then his belief state is b2 = bBob.g,o21 ,
such that:

b2 = 〈s3 7→ 2/3, s5 7→ 1/3〉.

If he observes o3 then his belief state is b3 = bBob.g,o31 , with:

b3 = 〈s4 7→ 2/3, s6 7→ 1/3〉.

The transition function is as follows.

T βBob(b1, Bob.g.{investor})(b2) = 1,

T βBob(b1, Bob.g.{opportunist})(b3) = 1.

Finally, we consider how belief state changes after Alice’s temporal transi-
tion. There are four possible observations for Bob at this stage, namely o4 =
obsBob(s7) = obsBob(s11), o5 = obsBob(s8) = obsBob(s12), o6 = obsBob(s9) =
obsBob(s13), o7 = obsBob(s10) = obsBob(s14). Hence there are four possible belief

states, b4 = bBob.g,o42 , b5 = bBob.g,o52 , b6 = bBob.g,o63 , b7 = bBob.g,o73 , such that:

b4 = 〈s7 7→ 2/3, s11 7→ 1/3〉,
b5 = 〈s8 7→ 2/3, s12 7→ 1/3〉,
b6 = 〈s9 7→ 2/3, s13 7→ 1/3〉,
b7 = 〈s10 7→ 2/3, s14 7→ 1/3〉.

Figure 3 depicts belief states of βBob(G) which we have computed.

b0

b1

b2 b3

b4 b5 b6 b7

A.g

B.g.{investor} B.g.{opportunist}

invest withholdinvest withhold

b0 = 〈s0 7→ 1〉
b1 = 〈s1 7→ 2

3
, s2 7→ 1

3
〉

b2 = 〈s3 7→ 2
3
, s5 7→ 1

3
〉

b3 = 〈s4 7→ 2
3
, s6 7→ 1

3
〉

b4 = 〈s7 7→ 2
3
, s11 7→ 1

3
〉

b5 = 〈s8 7→ 2
3
, s12 7→ 1

3
〉

b6 = 〈s9 7→ 2
3
, s13 7→ 1

3
〉

b7 = 〈s10 7→ 2
3
, s14 7→ 1

3
〉

Fig. 3. Belief ASMAS βBob(G)

2

32 X. Huang, M. Kwiatkowska, M. Olejnik

As in our construction of the probability measure Prs,σ for SMGs in Section 4,
a strategy profile σ induces a probability measure Prb,σ on any belief state b
over infinite paths of ASMAS βA(M). We note that, in general, βA(M) has a
(continuous) infinite state space.

8 Reasoning about Beliefs and Trust

In this section, we formalise the notions of trust, which are inspired by the social
trust theory of [17]. We define trust in terms of the belief function and further
extend PCTL∗Ωto capture reasoning about beliefs and trust.

In Section 7, a Bayesian-style definition of the belief function is presented.
It uses agents’ partial observation function and probability measure, which is
in turn defined in terms of preference functions introduced in Section 6. In this
section, we assume the existence of such a belief setting, i.e., one belief function
for every agent, and define operators to reason about agents’ beliefs and trusts.

Expressing Trust Our trust operators follow the intuition of social trust con-
cepts from [17], but the technical definitions are different and more rigorous. We
distinguish between two types of trust, competence, meaning that agent A be-
lieves that B is capable of producing the expected result, and disposition, which
means that agent A believes that agent B is willing to do what A needs. More-
over, we express trust with the usual probabilistic quantification of certainty that
we sometimes use in our daily life, e.g., “I am 99% certain that the autonomous
taxi service is trustworthy”, or “I trust the autonomous taxi service 99%”. Our
formalisation then captures how the value of 99% can be computed based on
the agent’s past experience and (social, economic) preferences. Indeed, [17] also
provides a justification for quantifying trust with probabilities, e.g. in Section
5, where it is stated that the degree of trust is a function of the subjective cer-
tainty of the pertinent beliefs. We do not consider fulfilment belief also discussed
in [17].

Beliefs and trust are intimately connected. As agents continuously interact
with the environment and with each other, their understanding about the system
and the other agents may increase, leading to an update of their beliefs. This
change in an agent’s beliefs may also lead to an update of trust, which is reflected
in the definition of the semantics of our trust operators.

Changes of beliefs and trust will affect goals and intentions, which will be
captured via so called pro-attitude synthesis, which is introduced in Section 9.
Based on its updated beliefs, an agent may modify its strategy to implement its
intention.

8.1 Probabilistic Rational Temporal Logic

We now introduce Probabilistic Rational Temporal Logic (PRTL∗) that can
express mental attitudes of agents in an ASMAS, as well as beliefs and trust.
PRTL∗ extends the logic PCTL∗Ω with operators for reasoning about agent’s
beliefs and cognitive trust.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 33

Definition 16. The syntax of the logic PRTL∗ is as follows:

φ ::= p | ¬φ | φ ∨ φ | ∀ψ | P./qψ | GAφ | IAφ | CAφ | B./qA ψ | CT./qA,Bψ | DT./qA,Bψ
ψ ::= φ | ¬ψ | ψ ∨ ψ | #ψ | ψUψ
where p ∈ AP , A,B ∈ Ags, ./∈ {<,≤, >,≥}, and q ∈ [0, 1].

Intuitively, B./qA ψ is the belief operator, expressing that agent A believes ψ
with probability in relation ./ with q. CT./qA,Bψ is the competence trust operator,
expressing that agent A trusts agent B with probability in relation ./ with q
on its capability of completing the task ψ, where capability is understood to
be the possibility of taking one of its legal intentions defined with function ωiB .
DT./qA,Bψ is the disposition trust operator, expressing that agent A trusts agent B
with probability in relation ./ with q on its willingness to do the task ψ, where
the state of willingness is interpreted as unavoidably taking an intention defined
with function πiB . Recall that we use function ωiB for the legal intentions and
function πiB for the possible intentions, i.e., intentions available assuming agent’s
willingness. We use T to range over the two trust operators CT and DT.

Before we define the semantics, we require additional notation. We write:

Prmax,minM,A,ρ (ψ)
def
= supσA∈ΣA

infσAgs\{A}∈ΣAgs\{A} PrM,σ,ρ(ψ),

Prmin,maxM,A,ρ (ψ)
def
= infσA∈ΣA

supσAgs\{A}∈ΣAgs\{A}
PrM,σ,ρ(ψ)

to denote the strategic ability of agent A in implementing ψ on a finite path ρ.
Intuitively, Prmax,minM,A,ρ (ψ) gives a lower bound on agent A’s ability to maximise

the probability of ψ, while Prmin,maxM,A,ρ (ψ) gives an upper bound on agent A’s
ability to minimise the probability of ψ.

Moreover, we extend the expression B.i(s, x) to work with finite paths:
B.i(ρ, x) for the path ρ′ = ρs and last(ρ)−→B.i.x

C s. Intuitively, it is the con-
catenation of path ρ with a cognitive transition B.i.x.

For a measurable function f : FPathM → [0, 1], we denote by EbeA [f] the
belief-weighted expectation of f , i.e.,

EbeA [f] =
∑

ρ∈FPathM
beA(ρ) · f(ρ).

With this in mind, we aim to define the new operators so that B./qA ψ nor-
malises the probability measure of the formula P./qψ with agent’s probabilistic
belief, whereas T./qA,Bψ operators consider moreover the possible or legal inten-
tion changes of another agent B. The intention changes are conditioned over
agent’s strategic ability of implementing formula ψ, expressed by Prmax,minM,A,ρ (ψ)

and Prmin,maxM,A,φ (ψ).

Definition 17. LetM = (Ags, S, Sinit, {ActA}A∈Ags, T, L, {OA}A∈Ags, {obsA}A∈Ags,
{ΩA}A∈Ags, {πA}A∈Ags, {pA}A∈Ags) be an ASMAS and ρ a finite path in M.
The semantics of previously introduced operators of PCTL∗ and PCTL∗Ω re-
mains the same in PRTL∗(see Definitions 3 and 10). For the newly introduced
belief and trust operators, the satisfaction relation |= is defined as follows:

34 X. Huang, M. Kwiatkowska, M. Olejnik

• M, ρ |= B./qA ψ if
EbeA [V ./B,M,ψ] ./ q,

where the function V ./B,M,ψ : FPathM → [0, 1] is such that

V ./B,M,ψ(ρ′) =

{
Prmax,minM,A,ρ′ (ψ) if ./∈ {≥, >}
Prmin,maxM,A,ρ′ (ψ) if ./∈ {<,≤}

• M, ρ |= CT./qA,Bψ if
EbeA [V ./CT,M,B,ψ] ./ q,

where the function V ./CT,M,B,ψ : FPathM → [0, 1] is such that

V ./CT,M,B,ψ(ρ′) =


sup

x∈ωi
B(last(ρ′))

Prmax,minM,A,B.i(ρ′,x)(ψ) if ./∈ {≥, >}

inf
x∈ωi

B(last(ρ′))
Prmin,maxM,A,B.i(ρ′,x)(ψ) if ./∈ {<,≤}

• M, ρ |= DT./qA,Bψ if
EbeA [V ./DT,M,B,ψ] ./ q,

where the function V ./DT,M,B,ψ : FPathM → [0, 1] is such that

V ./DT,M,B,ψ(ρ′) =


inf

x∈supp(πi
B(ρ′))

Prmax,minM,A,B.i(ρ′,x)(ψ) if ./∈ {≥, >}

sup
x∈supp(πi

B(ρ′))

Prmin,maxM,A,B.i(ρ′,x)(ψ) if ./∈ {<,≤}

We interpret formulas φ in ASMAS M in a state reached after executing a
path ρ, in history-dependent fashion. Recall that this path may have interleaved
cognitive and temporal transitions. However, when evaluating a given belief or
trust formula, we assume that agents do not change their mental attitudes (i.e.,
the future path is purely temporal, contained within a single induced SMG),
which motivates using the probability measure defined in Section 4 in the above
definition. The belief formula corresponds to the probability of satisfying φ in
future in the original ASMAS M weighted by the belief distribution; in other
words, it is a belief-weighted expectation of future satisfaction of φ, which is
subjective, as it is influenced by A’s partial observation and its prior knowledge
about B encoded in the preference function. The competence trust operator
reduces to the computation of optimal probability of satisfying ψ inM over legal
changes of agent’s intention, which is again weighted by the belief distribution
and compared to the probability bound q. Dispositional trust, on the other hand,
computes the optimal probability of satisfying ψ in M over possible changes of
agent’s intention, which is weighted by the belief distribution and compared to
the probability bound q.

For a relational symbol ./∈ {≥, >}, the expression V ./CT,M,B,ψ(ρ) computes
the maximum probability of completing the task ψ on path ρ, among all legal
changes of agent B’s intention. Therefore, when interpreting formula CT./qA,Bψ,

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 35

we assume the optimal capability of agent B. Note that this capability is not nec-
essarily within B’s possible intention changes. On the other hand, for ./∈ {≥, >},
the expression V ./DT,M,B,ψ(ρ) computes the minimum probability of completing
the task ψ on path ρ that all agent B’s possible intentional changes can achieve.
Therefore, when interpreting formula DT./qA,Bψ, we consider all possible states

of agent B’s willingness. It should be noted that the T./qA,B operators cannot be
derived from the other operators.

Remark 11. We remark that, while defining competence trust in terms of legal
intentions should be rather uncontroversial, the disposition trust operator may
be expressed in an alternative way. Given that DT./qA,B computes A’s trust to-
wards B and that intentional attitudes of B are in general not observable to
A, one could argue that it is not realistic to assume that A uses B’s intention
strategy to compute its trust towards B. It would perhaps be more natural to
use A’s intention preference function ipA,B instead, since it precisely represents
A’s expectations about B’s mental attitudes. Indeed, it is possible to make such
a modification, which we discuss below.

First of all, note that, in the definition of DT./qA,B above, we restrict A’s

knowledge to the support of πiB , i.e., to B’s possible intentions, rather than
allowing A to know B’s full intention strategy. As a side note, the consequence
of this is that A’s disposition trust towards B differs from competence trust
only when the set of possible intentions of B is a strict subset of B’s legal
intentions. In particular, it is the case when B’s intention strategy is pure, such
as in Example 5. Hence, an important practical consideration to bear in mind
when constructing instances of ASMAS is to keep cognitive strategies pure, or
close to pure (with few intentions in the support). In fact, Section 9 provides an
easy way to achieve this.

Going back to the alternative way of defining DT./qA,B , if we replace B’s in-

tention strategy πiB by A’s intention preferences over B, ipA,B , it makes sense
to include in our calculations of trust the full probability distribution that ipA,B
provides, rather than just its support, as we do for πiB . That’s because ipA,B rep-
resents knowledge that A realistically possesses, so there’s no reason to introduce
any restrictions on it. We then end up with DT./qA,B defined as a belief-preference-
weighted expectation of agent’s strategic ability of implementing a given formula
ψ. Note that, with such formulation of DT./qA,B , the last equivalence of Theorem 3
does not hold.

Finally, note that disposition trust operator of one agent may be nested
inside a belief operator of another agent, which calls for nested preferences (i.e.,
preferences over preferences) in an idealised version of DT./qA,B . We aim to avoid
such complexities at this early stages of the development of the framework, and
therefore settle for a simplified notion of disposition trust involving intention
strategy.

Example 11. Here we give examples of formulas that we may wish to verify on
the trust game defined in Example 5. The formula

B≥0.6Bob #(aAlice = invest)

36 X. Huang, M. Kwiatkowska, M. Olejnik

states that Bob believes that, with probability at least 0.6, Alice will invest the
money with him in the next step. On the other hand, the formula

DT≥0.9Alice,Bob3(aBob = keep)

states that Alice can trust Bob with probability no less than 0.9 that he will
keep the money for himself. The formula

∀2(richerBob,Alice → P≥0.93CT≥1.0Bob,AlicericherAlice,Bob)

states that, at any point of the game, if Bob is richer than Alice, then with
probability at least 0.9, in future, he can almost surely, i.e., with probability 1,
trust Alice on her ability to become richer.

It is also possible, and often desired, to have a trust operator within the scope
of a belief operator. For instance,

B≥0.7Bob DT
≥0.5
Alice,Bob3(aBob = share)

expresses that Bob believes that, with probability at least 0.7, Alice’s trust that
he will share the profits with her in the future is at least 0.5. Such construct
might represent Bob’s reasoning leading to his decision of whether to share his
profit or not, where he considers Alice’s trust towards him as a determining
factor. A similar statement might be expressed by the following formula:

B≥0.7Bob B
≥0.5
AliceIBob∃3(aBob = share).

The above states that Bob believes that, with probability at least 0.7, Alice
believes that, with probability at least 0.5, Bob has a possible intention which
ensures that it is possible that he shares the profit. The first formula may be
seen as a quantitative version of the second, as it additionally (implicitly, via
DT operator) considers the probability of Bob sharing the profit. However, both
formulas are equivalent for the trust game, assuming the action strategies defined
in Example 3 and intention strategy from Example 5. To see that, first note
that Bob’s intention strategy is pure, hence he has only one possible intention.
Second, since the action strategy implementing that intention (whatever it is)
is pure, the probability of him sharing the profit is either 1 or 0. Therefore,
infx∈supp(πi

Bob(ρ))
PrG,Bob.i(ρ,x)(3(aBob = share)) takes only two values, 1 and 0,

and is equal to 1 whenever PrG,Alice,ρ(IBob∃3(aBob = share)) = 1 for any path
ρ = ρ′sk for k ∈ {8, 10, 12, 14}. Hence,

DT≥0.5Alice,Bob3(aBob = share) ≡ B≥0.5AliceIBob∃3(aBob = share).

In general, however, those two formulas differ in their semantics. 2

Definition 18. For a given autonomous stochastic multi-agent system M and
a formula φ of the language PRTL∗, the model checking problem, written as
M |= φ, is to decide whether M, s |= φ for all initial states s ⊆ supp(µ0).

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 37

8.2 Restricting to Deterministic Behaviour Assumption

The above semantics is complex because of the quantification over agents’ strate-
gies. However, under Assumption 2, this quantification is not necessary, since
the system conforms to a single action strategy, induced from agents’ cognitive
states, which we call the induced strategy σind. As a result, some operators have
simpler semantics. We begin with an easy consequence of restricting ourselves
to a single action strategy.

Proposition 2. With Assumption 2 on ASMAS M, we have the following
equivalence for ρ being a finite path, and ψ being a PRTL∗ formula.

Prmax,minM,A,ρ (ψ) = Prmin,maxM,A,ρ (ψ) = Prmax,minM,ρ (ψ) = Prmin,maxM,ρ (ψ) = PrM,σind,ρ(ψ).

Moreover, for systems M satisfying Assumption 2, we will often omit the σind
component in the last expression above and write PrM,ρ(ψ) instead. Intuitively,
it represents the probability of ψ being satisfied on a future path in a system M
given that the current path is ρ.

Definition 19. Let M be an ASMAS satisfying Assumption 2 and ρ a finite
path inM. The following are several operators whose semantics can be simplified
according to Proposition 2.

• M, ρ |= P./qψ if
PrM,ρ(ψ) ./ q.

• M, ρ |= B./qA ψ if
EbeA [VB,M,ψ] ./ q,

where the function VB,M,ψ : FPathM → [0, 1] is such that

VB,M,ψ(ρ′) = PrM,ρ′(ψ)

• M, ρ |= CT./qA,Bψ if
EbeA [V ./CT,M,B,ψ] ./ q,

where the function V ./CT,M,B,ψ : FPathM → [0, 1] is such that

V ./CT,M,B,ψ(ρ′) =


sup

x∈ωi
B(last(ρ′))

PrM,B.i(ρ′,x)(ψ) if ./∈ {≥, >}

inf
x∈ωi

B(last(ρ′))
PrM,B.i(ρ′,x)(ψ) if ./∈ {<,≤}.

• M, ρ |= DT./qA,Bψ if
EbeA [V ./DT,M,B,ψ] ./ q,

where the function V ./DT,M,B,ψ : FPathM → [0, 1] is such that

V ./DT,M,B,ψ(ρ′) =


inf

x∈supp(πi
B(ρ′))

PrM,B.i(ρ′,x)(ψ) if ./∈ {≥, >}
sup

x∈supp(πi
B(ρ′))

PrM,B.i(ρ′,x)(ψ) if ./∈ {<,≤}.

38 X. Huang, M. Kwiatkowska, M. Olejnik

Intuitively, given that the action strategy in the system is fixed as σind, there
is no need to consider agents’ strategic abilities, and hence the probability of a
given formula ψ being satisfied can be uniquely determined, which simplifies the
definitions above.

8.3 A Single-Agent Special Case

The semantics can be further simplified if we work with the single-agent case,
in which case we can employ the belief ASMAS construct βA(M) as given in
Section 7.2. Recall that this approach explores belief states (distributions over
states of M) and that δA is a mapping from paths in M to paths in belief
ASMAS βA(M). Therefore, to evaluate belief and trust we can directly employ
current belief last(δA(ρ)), instead of working with belief distribution beA defined
on finite paths ρ.

Here we only present the semantics of the belief and trust operators.

Definition 20. Let M be an ASMAS satisfying Assumption 2 and ρ a finite
path in M. The semantics of the belief and trust operators can be defined on
βA(M) as follows.

• M, ρ |= B./qA ψ if

Elast(δA(ρ))[Satψ] ./ q,

where the function Satψ : S → [0, 1] is such that Satψ(s) = 1 if M, s |=
ψ and 0 otherwise.

• M, ρ |= CT./qA,Bψ for ./∈ {≥, >} if

Elast(δA(ρ))[VCT,M,B,ψ] ./ q

where the function VCT,M,B,ψ : S → [0, 1] is such that

VCT,M,B,ψ(s) = sup
x∈ωi

B(s)

PrM,B.i(s,x)(ψ)

and if ./ is ≤ or < we replace sup with inf in the above.

• M, ρ |= DT./qA,Bψ if for ./∈ {≥, >} if

Elast(δA(ρ))[V
./
DT,M,B,ψ] ./ q

where the function V ./DT,M,B,ψ : S → [0, 1] is such that

V ./DT,M,B,ψ(s) = inf
x∈πi

B(ρ′)
PrM,B.i(s,x)(ψ)

for ρ′ such that δA(ρ′) = δA(ρ) and last(ρ′) = s; if ./ is ≤ or < we replace
inf with sup in the above.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 39

Note that A’s belief in ψ is evaluated as an expectation of satisfaction of
ψ computed in the current belief state. A’s competence trust in B’s ability to
perform ψ reduces to the expectation of the optimal probability of completing
ψ, over all legal changes of B’s intention. Similarly, to evaluate A’s disposition
trust in B’s willingness to perform ψ we compute the expectation of the optimal
probability of completing ψ, over all possible changes of B’s intention πiB .

Remark 12. The sets of possible intentions πiB(·) of agent B can be determined
for a given belief state with pro-attitude synthesis defined in Section 9.

8.4 Other Trust Notions

In [17], another concept related to trust called dependence is introduced, whose
interpretation is that agent A needs agent B (strong dependence), or is better
off relying on B (weak dependence). We now propose how those two concepts
can be formalised in an ASMAS under Assumption 2.

Definition 21. Let M be an ASMAS satisfying Assumption 2 and ρ a finite
path in M. We introduce operators ST./qA,B and WT./A,B to express strong and
weak dependence, with the semantics given by:

• M, ρ |= ST./qA,Bψ if M, ρ |= (¬B./qA ψ ∧ CT./qA,Bψ) ∨ (B./qA ψ ∧ ¬CT./qA,Bψ)
• M, ρ |= WT./A,Bψ if

EbeA [VM,A,B,ψ] ./ EbeA [V ./CT,M,A,ψ],

where the function VM,A,B,ψ : FPathM → [0, 1] is such that

VM,A,B,ψ(ρ′) =
∑

x∈ωi
B(last(ρ′))

ipA,B(last(ρ′))(x) · PrM,B.i(ρ′,x)(ψ).

Intuitively, ST./qA,Bψ states that, according to agent A’s beliefs, either (i) the
probability of ψ will not be as required unless agent B takes on an appropriate
intention, or (ii) the probability of ψ will be as required unless B takes on a
certain intention. In other words, strong dependence of A on B over ψ means
that B can control the probability of future satisfaction of ψ. On the other
hand, WT./A,Bψ states that, according to A’s beliefs and preferences, intentional
changes of agent B can bring about better results than any of the available
intentional changes of agent A.

We note that alternative definitions of the above notions are possible. For
example, we could introduce a non-probabilistic version of strong dependence,
based solely on the CA operator. We could define

M, ρ |= STA,Bφ if M, ρ |= CBCA¬φ ∧ CBCAφ.

Intuitively, here STA,Bφ means that B can take on an intention such that,
regardless of what intention A takes on, φ will not be satisfied, and B can take

40 X. Huang, M. Kwiatkowska, M. Olejnik

on another intention, such that A can take on an intention which ensures that φ
holds. In other words, B can either make it impossible for A to achieve φ, or it
can allow A to make φ true. We can view the above definition as a more objective,
absolute interpretation of strong dependence, whereas the probabilistic version
represents a subjective notion, influenced by agent’s understanding of the system
execution. Depending on the use case, either variant of the strong dependence
operator might be employed.

Weak dependence can also be interpreted in a different way, especially in sys-
tems equipped with a reward structure. The intuitive meaning of the expression
better off used in the informal definition of weak dependence relates to some im-
plicit notion of agent’s well being. Definition 21 takes the probability of satisfying
a given formula as agent’s reward. However, in presence of a reward structure,
we could allow ψ to include a reward operator and adapt the definitions of the
V -functions to compute expected reward.

Example 12. In the trust game, Bob’s financial situation is dependent on Alice’s
actions. We can formally express that in PRTL∗ with the following formula,
where profitBob is an atomic proposition, true in states in which Bob has more
money than in the initial state:

STBob,Alice ∀3profitBob.

It expresses that Bob needs Alice’s cooperation to ensure that, at some point in
the future, he will have more money than when he started. In fact, Alice’s hopes
of making a profit depend on Bob’s cooperation, which we could express by a
formula very similar to the one above.

We remark also that we could equip the trust game with a reward structure
that reflects agents’ payoffs. We could then express that Bob is weakly dependent
on Alice to maximise his payoff with the following formula:

WTBob,AliceR=?[3end],

where R=?[3end] returns the expected reward accumulated before the game
ends.

8.5 Trust for Systems with Sure Beliefs

We now consider a special class of systems where agent A has sure beliefs, i.e.,
for all finite paths ρ, we have either beA(ρ) = 1 or beA(ρ) = 0. Intuitively,
agent A is sure about the current system state and the execution history. The
following theorem shows that, in such systems, agent A’s beliefs and trusts can
be expressed with other operators.

Theorem 3. For ASMAS M in which agent A has sure beliefs, the following
equivalences hold for any finite path ρ, formula ψ, and agent B 6= A:

• M, ρ |= B./qA ψ if and only if M, ρ |= P./qψ,
• M, ρ |= CT./qA,Bψ if and only if M, ρ |= CBP./qψ,

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 41

• M, ρ |= DT./qA,Bψ if and only if M, ρ |= IBP./qψ.

Intuitively, the first equivalence shows that agent A’s belief of ψ reduces to
computing the probability of satisfying ψ. The other two equivalences concern
agent A acting as a trustor and agent B as a trustee. The former indicates that
agent A’s trust in B’s competence in achieving ψ is equivalent to the existence
of B’s legal intention which ensures satisfaction of ψ, while the latter means
that A’s trust in B’s disposition towards achieving ψ is equivalent to B ensuring
satisfaction of ψ under all possible intentions.

The following proposition shows that the sure-belief system has an equivalent
definition as fully observable system. Therefore, Theorem 3 also holds for fully
observable systems.

Proposition 3. LetM be an ASMAS and A an agent inM. The following two
statements are equivalent:

• Agent A has sure beliefs, i.e., for all finite paths ρ, we have either beA(ρ) = 1
or beA(ρ) = 0.
• Agent A has full observation, i.e., obsA(s) = s for all s ∈ S.

9 Pro-attitude Synthesis

Recall that the cognitive strategies πgA and πiA are defined on the (possibly
infinite) set of paths and may lack a finite representation necessary for model
checking. We now formalise an idea, which is informally argued in [27,7], that
the changes of pro-attitudes are determined by the changes of beliefs, but not
vice versa.

This will enable us to synthesize the cognitive strategies πgA and πiA by con-
sidering agent A’s beliefs and trust expressed as formulas of the logic PRTL∗

and used to constrain pro-attitude changes. In particular, we will associate with
each set of goals a condition, expressed as a PRTL∗ formula, which will guard
that set of goals. The intuitive interpretation of such an association is that an
agent takes a set of goals when the associated condition is satisfied. To guard
intentions, we additionally use the agent’s own goals, since agents’ intentions
are influenced by their goals. We note that such a construction closely resembles
human reasoning – for example, recall that in Example 3 we stated that Bob
takes intention share when he is an investor (i.e., his goal is investor) and his
belief in Alice being active is sufficient. In Example 13, we show how to express
this statement formally using pro-attitude synthesis, which consists of evaluating
Bob’s belief in Alice being active as a guarding mechanism for his intention to
share and setting a minimum belief threshold.

Let LA(PRTL∗) be the set of formulas of the logic PRTL∗ that are Boolean
combinations of atomic propositions and formulas of the form B./qA ψ, T./qA,Bψ,

B./?A ψ or T./?A,Bψ, such that ψ does not contain temporal operators. The formulas

B./?A ψ and T./?A,Bψ denote the quantitative variants of B./qA ψ and T./qA,Bψ that yield
the actual value of the probability/expectation.

42 X. Huang, M. Kwiatkowska, M. Olejnik

The language LA(PRTL∗) allows nested beliefs2, for example B≥0.9A B>0.7
B ψ,

under the condition that the outermost belief operator is for agent A. The nesting
is useful since one may want to reason about, e.g., an agent’s belief over the other
agent’s trust in himself. Moreover, all modal logic formulas in LA(PRTL∗) must
be in the scope of a belief operator of agent A. This is to ensure that agent A is
able to invoke the synthesis with the limited information it has.

Below, we work with an arbitrary ASMASM and a set of agents Ags inM.

Definition 22. For every agent A ∈ Ags, we define:

• a goal guard function λgA : P(GoalA)→ LA(PRTL∗) and

• an intention guard function λiA : IntA × P(GoalA)→ LA(PRTL∗).

The guard functions are partial functions associating pro-attitudes with con-
ditions expressed using belief and trust formulas that can be evaluated based on a
finite execution history. Note how λiA differs from λgA in that it guards intentions
by agent’s own goals. We call λgA trivial if λgA(x) = true for all x ∈ P(GoalA).
Similarly for λiA.

We recall that Ω = {〈ωgA, ωiA〉}A∈Ags is the cognitive mechanism of M.
Additionally, we set Λ = {〈λgA, λiA〉}A∈Ags and call it the guarding mecha-
nism. In the following, we present an approach to obtain the infinite structure
Π = {πgA, πiA}A∈Ags, i.e., cognitive strategies of all agents, from finite structures
Ω and Λ.

First, for agent A ∈ Ags, we define the goal evaluation function evalgA, such

that for x ⊆ P(GoalA), evalgA(x) : FPathM → [0, 1] is given by:

evalgA(x)(ρ) =

{
M, ρ |= λgA(x) if x ∈ ωgA(last(ρ))
0 otherwise

Intuitively, evalgA(x) evaluates the (probabilistic) satisfiability of agent A’s
beliefs or trust expressed as LA(PRTL∗) formulas given by λgA(x). Note that
the expressions B./?A ψ and T./?A,Bψ return their corresponding probabilistic values,

andM, ρ |= B./qA ψ andM, ρ |= T./qA,Bψ return the value 0 or 1 depending on the
verification result.

Similarly, we define the intention evaluation function evaliA, such that for

any x ∈ IntA, y ⊆ P(GoalA), evaliA(x, y) : FPathM → [0, 1] is given by:

evaliA(x, y)(ρ) =

{
M, ρ |= λiA(x, y) if x ∈ ωiA(last(ρ)),
0 otherwise.

We now use pro-attitude evaluation functions to provide a finite definition of
a cognitive strategy.

2 Because the semantics of trust is based on the belief function beA, a trust formula
is also called a belief formula in this paper.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 43

Definition 23. LetM be an ASMAS with a cognitive mechanism Ω = {ωgA, ωiA}A∈Ags
and let Λ = {〈λgA, λiA〉}A∈Ags be a guarding mechanism for M. In a finite-

memory setting, the goal strategy πgA : FPathM → D(P(GoalA)) can be instan-

tiated as follows: for any x ⊆ GoalA and ρ ∈ FPathM, we set

πgA(ρ)(x) =
evalgA(x)(ρ)∑

x∈ωg
A(last(ρ)) eval

g
A(x)(ρ)

.

Likewise, the intention strategy πiA : FPathM → D(IntA) can be instantiated

as follows: for any x ∈ IntA and ρ ∈ FPathM, we set

πiA(ρ)(x) =
evaliA(x, y)(ρ)∑

x∈ωi
A(last(ρ)) eval

i
A(x, y)(ρ)

,

where y = gsA(last(ρ)).

This definition allows us to transform the model M into eval(M), which,
besides the cognitive mechanism Ω, contains the cognitive strategy of each agent.
Once eval(M) has been precomputed, model checking a given specification can
be carried out on eval(M) instead ofM. We refer to this approach as pro-attitude
synthesis before model checking. Besides formalising the intuition that agent’s
pro-attitudes are affected by its beliefs, this approach makes the interaction of
agents’ beliefs and trust possible, without resorting to nested beliefs.

Example 13. We show how a cognitive strategy can be constructed from the
guarding mechanism for Bob in the trust game G. Since we assume that goals of
agents are static throughout the execution of the game, we only concern ourselves
with the intention guard function. We recall our informal assumption that Bob’s
intention will be share when he is an investor and his belief in Alice being active
is sufficient, and keep otherwise. We formalise it as follows:

λiBob(share, {investor}) = B>0.7
Bob activeAlice,

λiBob(keep, {investor}) = ¬B>0.7
Bob activeAlice,

λiBob(share, {opportunist}) = ⊥,
λiBob(keep, {opportunist}) = >,

where activeAlice holds in states in which Alice’s goal is active and we used a
value 0.7 to represent Bob’s belief threshold.

We now synthesize Bob’s intention strategy. We let ρ1 = s0s1s3s8 and ρ2 =
s0s2s5s12. We recall from Example 8 that obsBob(ρ1) = obsBob(ρ2) and we let o1
denote that common observation. By Example 9:

beBob(o1, ρ1) = 1/7,

beBob(o1, ρ2) = 6/7.

44 X. Huang, M. Kwiatkowska, M. Olejnik

Therefore, since G, ρ1 |= ¬activeAlice and G, ρ2 |= activeAlice (below and in what
follows, k ∈ {1, 2}):

G, ρj |= B=6/7
Bob activeAlice.

Hence

evaliBob(share, {investor})(ρk) = 1,

evaliBob(keep, {investor})(ρk) = 0,

and so:

πiBob(ρk)(share) = 1,

πiBob(ρk)(keep) = 0.

Likewise, letting ρ3 = s0s1s4s10, ρ4 = s0s2s6s14 and k ∈ {3, 4} one can show
that:

πiBob(ρj)(share) = 0,

πiBob(ρj)(keep) = 1.

As expected, if Bob is an opportunist, he keeps the money for himself. However,
when he is an investor and Alice invests the money with him, his belief that
Alice is active is high enough for him to share the profits, hoping to gain Alice’s
trust. 2

Finally, we remark that, while it may not be immediately clear how pow-
erful pro-attitude synthesis is after considering a simple example such as this,
full appreciation of it can be gained by applying it to more complex systems.
One such system is provided by an iterated trust game, in which Alice and Bob
interact with each other repeatedly, in which beliefs and trust evolve dynam-
ically. Rather than specifying cognitive strategies by hand for each iteration,
pro-attitude synthesis enables one to encode them in a natural way via guard
functions and generate them dynamically. Such an approach scales well to larger
systems and closely resembles human reasoning.

Preference Functions Update During the execution of the system, agents
learn new information about other agents by observing their actions. As a re-
sult, their understanding of others’ behaviour, motivations and cognitive state
increases. This new knowledge gained by agents is reflected in their belief func-
tion, which could be used to update agents’ preference functions. To do that, we
extend guarding mechanism of each agent A by introducing guard functions of
A over B for every other agent B. In particular, for agents A and B, we define a
goal (resp. intention) guard function λgA,B (resp. λiA,B) of A over B in a similar
way as in Definition 22, and then the goal (resp. intention) evaluation function
evalgA,B (resp. evaliA,B) of A over B. Intuitively, λgA,B (resp. λiA,B) captures A’s
expectation of how B updates their mental attitudes. In case A does not possess
such information, λgA,B (resp. λiA,B) are trivial. We then define gphA,B and iphA,B

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 45

(where h stands for history, representing that updated preference functions are
history-dependent) by weighting the state-defined preferences with respect to
the evaluation functions as follows:

• gphA,B(ρ)(x) =
gpA,B(last(ρ))(x)× evalgA,B(x)(ρ)∑

x⊆GoalA gpA,B(last(ρ))(x)× evalgA,B(x)(ρ)
,

• iphA,B(ρ)(x) =
ipA,B(ρ)(x)× evaliA,B(x, y)(ρ)∑

x∈IntA ipA,B(ρ)(x)× evaliA,B(x, y)(ρ)
,

where y = gsB(last(ρ)).
Intuitively, the preference functions of agent A over B will be adjusted with

respect to its current understanding of the system execution and the knowledge it
has acquired throughout, represented by a LA(PRTL∗) formula in the guarding
functions λgA,B and λiA,B . The probability space construction from Section 6 can

be adapted to work with the updated preference functions phA. Therefore, we
have probability spaces for both pro-attitude synthesis and model checking.

Example 14. After investing her money with Bob, Alice might be concerned
whether she can trust Bob to share his profit with her. Such trust can be for-
mally expressed by a formula φ = DT≥?Alice,Bobψ, where ψ = #(aBob = share)
and ≥ indicates that Alice wants to find a lower bound on such trust value.
We assume that Alice is active and let ρ1 = s0s2s5s12, ρ2 = s0s2s6s14, o1 =
obsAlice(ρ1) = obsAlice(ρ2) and k ∈ {1, 2}. We use Alice’s preference function
defined in Example 7, which we recall to be:

gpAlice,Bob(sk) = 〈investor 7→ 1/2, opportunist 7→ 1/2〉.

From that, we easily compute Alice’s belief upon observing o1 to be:

beAlice(o1, ρ1) = 1/2,

beAlice(o1, ρ2) = 1/2.

We now compute V ≥DT,G,Bob,ψ(ρk). We recall from Example 13 that, in state
s10, Bob’s only possible intention change is Bob.i.keep, and, in state s14, his
only possible intention change is Bob.i.share. Since PrG,Bob.i(ρk,keep)(ψ) = 0
and PrG,Bob.i(ρk,share)(ψ) = 1, we obtain:

V ≥DT,G,Bob,ψ(ρ1) = 0,

V ≥DT,G,Bob,ψ(ρ2) = 1.

Therefore:

G, ρk |= DT≥?Alice,Bobψ = 1/2.

Hence, Alice can trust Bob with probability at least 50% in his willingness to
share his profit with her.

46 X. Huang, M. Kwiatkowska, M. Olejnik

Note that an alternative way of formulating the trust we wish to compute is
to use competence trust instead, in which case φ = CT≥?Alice,Bobψ. Most of the
computations stay the same in that case, the exception being the V -functions:

V ≥CT,G,Bob,ψ(ρ1) = 1,

V ≥CT,G,Bob,ψ(ρ2) = 1.

Therefore:
G, ρk |= CT≥1Alice,Bobψ.

Hence, Alice can trust Bob with certainty on his capability to share his profit
with her. We remark that the difference in the value of competence trust and
disposition trust is as expected – intuitively, Alice knows for sure that Bob is
capable of sharing his profit with her, but she cannot be sure that he is willing
to do that.

Finally, we consider Alice’s belief that Bob will share money with her. We
let φ = B=?

Aliceψ and recall Alice’s intention preference function over Bob defined
in Example 7:

ipAlice,Bob(si) = 〈share 7→ 3/4, keep 7→ 1/4〉 for i ∈ {8, 12},
ipAlice,Bob(si) = 〈share 7→ 0, keep 7→ 1〉 for i ∈ {10, 14}.

Hence, after Bob settles his intention, Alice’s belief is as follows:

beAlice(ρ1s19) = 3/8,

beAlice(ρ1s20) = 1/8,

beAlice(ρ2s21) = 0,

beAlice(ρ2s22) = 1/2.

Therefore:
G, s0s2 |= B=3/8

Aliceψ.

Intuitively, due to inaccuracy of Alice’s prior knowledge about Bob (encoded
in preference functions), her belief that Bob will share his profit with her differs
from her trust towards Bob sharing the money. 2

10 Model Checking Complexity

In the next two sections we consider model checking ASMAS against PRTL∗

formulas. We first present the verification procedure and then analyse its com-
plexity.

We redefine the autonomous stochastic multi-agent system of Definition 12
by replacing an infinite structureΠ with a finite structure Λ, defined in Section 9.

Our automated verification framework accepts as inputs an ASMAS M sat-
isfying Assumption 2 and a PRTL∗ specification formula φ. The verification
procedure proceeds as follows:

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 47

MODEL CHECKING

SMG M eval(M)

SMGΩ ASMAS

+ {OA}A∈Ags, {obsA}A∈Ags

+ cognitive mechanism {ΩA}A∈Ags

+ cognitive strategies {πA}A∈Ags

+ preference functions {pA}A∈Ags

Π = {πA}A∈Ags ⇒ Λ = {ΛA}A∈Ags

{pA}A∈Ags ⇒ {phA}A∈Ags

{ΛA}A∈Ags ⇒ {πA}A∈Ags

Fig. 4. Model progression and model checking diagram

1. Perform pro-attitude synthesis on the system M to obtain eval(M). In the
new system, guarding mechanism Λ is replaced by cognitive strategies, Π, of
agents. (In this phase, functions beA are based on preference functions pA.)

2. Update the preference functions pA into phA according to the results of pro-
attitude synthesis, as defined in Section 9.

3. Model check formula φ on the system eval(M). (In this phase, the belief
functions beA are based on preference functions phA.)

The checking of expressions M, ρ |= φ in Steps 1 and 3 relies on the corre-
sponding preference functions pA and phA, respectively. However, for simplicity
of the notations, we still write them asM, ρ |= φ. Note that cognitive strategies
synthesised in Step 1 generally lack a precise finite representation. Remark 13 dis-
cusses a possible approximate solution, while Appendix B presents a restriction
on the system which ensures that a finite representation for Π exists. Figure 4
summarises the differences between the models introduced in this paper and
outlines the model checking process. Unfortunately, the problem is undecidable
in general for both the synthesis step and the model checking step. First of all,

Theorem 4. The synthesis of pro-attitude functions whose formulas are in the
language LA(PRTL∗) is undecidable.

A guarding mechanism Λ = {〈λgA, λiA〉}A∈Ags is trivial if, for all agents A, we
have λgA(x) = true for all x ∈ P(GoalA) and λiA(x, y) = true for all x ∈ IntA
and y ∈ P(GoalA). If the guarding mechanism is trivial then the first two steps
can be skipped, and the computation proceeds directly to model checking. In
this case, we have

Theorem 5. Model checking PRTL∗ is undecidable, even if the guarding mech-
anism is trivial.

We note that both of the above problems are undecidable even for formulas
concerning beliefs of a single agent. Proofs can be found in Appendix A.

48 X. Huang, M. Kwiatkowska, M. Olejnik

11 Decidable Fragments

To counter the undecidability results, we explore fragments of the general prob-
lem. In this section, we only present proof ideas for the complexity results. The
details of the proofs can be found in the Appendix. Table 5 summarises com-
plexity results for the proposed fragments.

Table 5. Complexity of decidable fragments

BPRTL∗ PSPACE-hard

PRTL∗
1 PSPACE-complete

PQRTL∗
1 PTIME

Table 6. Assumptions of decidable fragments

BPRTL∗ PRTL∗
1 PQRTL∗

1

no U or 2 operators Λ is trivial φ = 2(ψ ⇒ P./q3B≥1
A ψ)

all # preceded by P, ∀ or ∃ BA, TA for single A only or 2(ψ ⇒ P./q3T≥1
A,Bψ)

constant depth of B, T nesting no nesting of B and T
no B or T in scope of P
constant # of B and T

“expanded system restriction”

11.1 A Bounded Fragment

The bounded fragment, named BPRTL∗, allows formulas which 1) do not contain
temporal operators U and 2, 2) all # operators are immediately prefixed with a
probabilistic operator or a branching operator, i.e., in a combination of P./q#ψ,
∀#ψ, or ∃#ψ, and 3) the nested depth of belief and trust operators is constant.
The last constraint is needed to ensure that the complexity is not measured over
the nested depth of belief and trust operators. For the upper bound, we have
the following result.

Theorem 6. The complexity of the bounded fragment BPRTL∗ is in EXP-
TIME.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 49

In Appendix B, we present an EXPTIME algorithm which performs the
verification procedure from Section 10. It uses boundedness of the logic fragment
to limit the length of paths that need to be considered to evaluate a guard or
the specification formula. It then constructs an expanded system whose states
capture all past observations of all agents, enabling belief and trust formulas
to be evaluated locally. Model checking the original system is then reduced to
model checking the expanded system, which admits a standard recursive labelling
procedure, similar to the one used for PCTL model checking.

For the lower bound, we have the following result.

Theorem 7. The complexity of the bounded fragment BPRTL∗ is PSPACE-
hard.

The proof is a reduction from the quantified Boolean formula problem. Given
a QBF φ, the reduction constructs an ASMAS with two agents, ∀ and ∃, playing
a game of two phases. In the first phase, the agents decide the truth values of the
variables (atomic propositions) of φ by changing their intentions. Then, in the
second phase, the agent ∃ attempts to show that a randomly chosen clause of φ
evaluates to true by proving that one of its literals is true. If they can do that
regardless of which clause gets selected, then they have a winning strategy in
the game, which is equivalent to φ being true. The challenge lies in designing the
system so that agents’ decisions from phase one are “remembered” until phase
two, and devising an appropriate formula to express the existence of a winning
strategy for ∃. The details of the proof are in Appendix B.

11.2 A Fragment with U and 2 operators

The fragment of this section, named PRTL∗1, works with the U and 2 temporal
operators in the specification formula φ. With U and 2 operators, the specifi-
cation formula can express long-run properties about agent’s mental attitudes
in the system, and therefore this fragment complements the bounded fragment.
However, the fragment is subject to other restrictions as follows.

• The guarding mechanism Λ is trivial. That is, the algorithm works with the
model checking step without conducting pro-attitude synthesis first.
• The specification formula φ is restricted so that 1) it works with a single

agent’s beliefs and trust, 2) there are no nested beliefs or trust, 3) beliefs
and trust cannot be in the scope of a probabilistic operator P, and 4) there
is a constant number of belief or trust operators.
• The expanded system, described below, satisfies the restriction that, along

any path of the expanded system, the evaluation of belief or trust subfor-
mulas for agent A are the same on any two expanded states if the support
of the probabilistic distributions over the set of states are the same.

Remark 13. We remark that the pro-attitude synthesis problem is strictly harder
than model checking for long-run properties because it needs a finite represen-
tation for the set eval(x) of paths. For this reason, this fragment and PRTL∗1 do

50 X. Huang, M. Kwiatkowska, M. Olejnik

not handle synthesis. Future work may involve formulating an approach based
on order effects [2,46,28] to approximate the set eval(x). The focus of this paper
is on approaches that can be computed precisely.

The restriction on the expanded system is essential. It results from an in-
vestigation into the undecidability, which has established that the undecidable
cases arise because of the existence of non-monotonic flows of probability be-
tween states in two consecutive visits of the same expanded state. By assuming
stability (as we do in this fragment) or monotonicity of the flows, decidability
can be achieved. Moreover, we note that this fragment has full expressiveness of
LTL. In the following, we assume that it is the agent A’s beliefs that the formula
φ is to describe. We have the following result for the upper bound.

Theorem 8. The complexity of the fragment PRTL∗1 is in PSPACE.

Given a system M and a formula φ, the algorithm proceeds by first com-
puting those subformulas which do not have belief or trust formulas in their
scope. These computations can be done by an adaptation of the usual proba-
bilistic temporal logic model checking. Then, to compute a formula with belief
and trust subformulas, we construct an expanded systemMA(φ) with the state
space S† = S ×D(S)×R× ...×R, where R is the domain of real numbers with
fixed precision3. Although R is infinite, we need only a finite number of real num-
bers. The restriction imposed on the system ensures that the system MA(φ) is
of size exponential with respect to the size of the systemM. However, we do not
explicitly construct the system, but instead take an automata-theoretic approach
and perform on-the-fly computation by, e.g., two-phase search. The belief and
trust formulas can be directly evaluated on the states of the expanded system.
The details of the construction are in Appendix C.

We have the following results for the lower bound. Recall that a strongly
connected component (SCC) of a graph G is a subgraph of G in which every
vertex is reachable from every other vertex.

Theorem 9. The complexity of the fragment PRTL∗1 is PSPACE-hard.

The proof is a reduction from the language universality problem of nondeter-
ministic finite automata. Given an NFA A = (Q, q0, δ, F), we construct a single
agent system M(A) which, starting from an initial state s0, moves into one of
two subsystems M1(A) and M2(A), with a uniform distribution. The system
M1(A) simulates the universal language Σ∗, while M2(A) simulates the lan-
guage of A. In other words, every word in Σ∗ has a corresponding execution in
M1(A) and every word in Σ∗ that produces a valid run of A has a correspond-
ing execution (one for each unique run) in M2(A) which ends in a designated
state (one labelled finished) if the corresponding run on A ends in a final state.
We define the observation function so that the agent cannot distinguish between
paths in M1(A) and M2(A) corresponding to the same word. This then allows
us to prove that the non-universality of the language of A is equivalent to the

3 We assume that each number can be encoded with complexity O(1).

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 51

satisfaction of a carefully designed formula revolving around agent’s qualitative
belief that the system reaches a designated state. Finally, the reduction is com-
pleted by showing that the systemM(A) satisfies the restriction outlined above,
which follows by observing that agent’s belief stays constant in all SCCs of the
expanded system. The details of the proof are in Appendix C.

11.3 A Polynomial Time Fragment

One of the restrictions in the previous fragment is that beliefs and trust cannot
be in the scope of a probabilistic operator. In that fragment, this restriction
ensures that the complexity is in PSPACE, because it can be harder to perform
quantitative verification of the probabilistic and belief operators. In this section,
we partly complement this with a fragment in which the belief or trust operators
can be in the scope of a probabilistic operator but need to be qualitative, i.e.,
almost sureness. We show that this fragment, named PQRTL∗1, is, very surpris-
ingly, polynomial time. Note that, as before, T ranges over two trust operators
CT and DT.

We consider the model checking step and restrict formulas to be of the form
2(ψ ⇒ P./q3B≥1A ψ) or 2(ψ ⇒ P./q3T≥1A,Bψ) such that, in ψ, there are no belief
or trust operators and every temporal operator is immediately prefixed with a
branching operator, i.e., in the style of CTL. The system M needs to satisfy
the formula M |= 2(ψ ⇒ 2ψ), which means that, once ψ holds, it will hold
henceforth. The following is the result.

Theorem 10. The complexity of the fragment PQRTL∗1 is in PTIME.

We give a polynomial time algorithm in Appendix D. The algorithm first
constructs a systemM# in which two copies of systemM run by synchronising
their observations and the second copy avoids the states where ψ is satisfiable.
The computation is then to find strongly connected components (SCCs) ofM#

such that a) the formula ψ is satisfiable on some state of the first copy, b)
both copies are closed SCCs, and c) the two copies are equivalent in terms of
the acceptance probability of words. We show that the checking of formulas
P./q3B≥1A ψ or P./q3T≥1A,Bψ on states satisfying ψ is equivalent to comparing
the reachability probability of these SCCs with the value 1 − q. The PTIME
complexity is due to the fact that the computation of SCCs and checking the
three conditions on SCCs can be done in polynomial time; in particular, checking
of equivalence of acceptance probability of all words can be done in polynomial
time by [50].

12 Conclusions

The paper proposes an automated verification framework for autonomous stochas-
tic multi-agent systems and specifications given in probabilistic rational tempo-
ral logic PRTL∗, which includes novel modalities for quantifying and reasoning

52 X. Huang, M. Kwiatkowska, M. Olejnik

Table 7. Assumptions of the framework

1. Deterministic Behaviour Assumption (Assumption 2)
2. Uniformity Assumptions (Assumptions 1, 3)
3. Transition Type Distinguishability Assumption (Assumption 4)
4. Synchronous perfect recall (Remark 2)
5. PCTL∗ formulas are evaluated in induced SMGs (Remark 7)
6. Constraints on the language LA(PRTL∗)
7. Seriality of legal goal and intention functions

about agents’ cognitive trust. Our model is an extension of stochastic multi-
player games with cognitive reasoning, which specifies how agents’ goals and
intentions change during system execution, and admits probabilistic beliefs on
which the trust concepts are founded. We study computational complexity of the
decision problems and show that, although the general problem is undecidable,
there are decidable, even tractable, fragments. Their existence is made possible
by numerous assumptions and restrictions that we place on our system, which
are summarised in Table 7.

As can be seen from the illustrative running example in this paper, the frame-
work is applicable to a wide range of scenarios of human-robot interactions. This
includes competitive settings such as the trust game, as well as cooperative sce-
narios, which are more commonly considered in robotics community, such as a
table clearing task [11]. Furthermore, the development of trust sensors (see [1])
complements our framework very well; they could serve as a source of agent
preferences and for validation purposes.

A natural next step following the development of the framework is implement-
ing its techniques in the form of a model checker. To overcome undecidability,
a subset of the problem will be considered, in particular, the bounded fragment
BPRTL∗. Since a finite set of finite paths is sufficient to model check a bounded
specification formula, pro-attitude synthesis only needs to consider those finite
paths and the resulting cognitive strategies have a finite representation. Pref-
erence function update also only needs to be performed on the relevant finite
paths. Finally, computing the satisfaction of a specification formula is a recursive
procedure that keeps track of the execution history to evaluate belief and trust
formulas. Other decidable fragments also provide a basis for implementation,
but their strong restrictions make them less practical.

Another interesting direction for future works involves investigating how
memory decay can be introduced into the framework. Intuitively, humans tend
to remember more recent experiences better and this should be reflected in the
semantics of trust. As a side effect, decidability will be achieved if appropriately
old memory is discarded. With that, a Bellman operator may be defined which
will allow more efficient evaluation of trust.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 53

Finally, it would be interesting to study an axiomatisation for our logic, as
well as the satisfiability problem, which we believe to be challenging.

Acknowledgments. The authors are supported by ERC Advanced Grant VERI-
WARE and EPSRC Mobile Autonomy Programme Grant EP/M019918/1.

References

1. Akash, K., Hu, W., Jain, N., Reid, T.: A classification model for sensing human
trust in machines using EEG and GSR. CoRR abs/1803.09861 (2018), http:

//arxiv.org/abs/1803.09861

2. Asch, S.: Forming impression of personality. The Journal of Abnormal and Social
Psychology 40(3), 258–290 (1946)

3. Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-Vincentelli, A.: It usu-
ally works: The temporal logic of stochastic systems. In: Computer Aided Verifi-
cation. pp. 155–165. Springer Berlin/Heidelberg (1995)

4. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. The MIT
Press (2008)

5. Berg, J., Dickhaut, J., McCabe, K.: Trust, reciprocity, and social history. Games
and Economic Behavior 10(1) (1995)

6. Bratman, M.: Intentions, Plans, and Practical Reason. Harvard University Press,
Massachusetts (1987)

7. Castelfranchi, C., Paglieri, F.: The role of beliefs in goal dynamics: prolegomena
to a constructive theory of intentions. Synthese 155, 237–263 (2007)

8. Chakraborty, S., Katoen, J.P.: On the satisfiability of some simple proba-
bilistic logics. In: Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science. pp. 56–65. LICS ’16, ACM, New York, NY, USA
(2016). https://doi.org/10.1145/2933575.2934526, http://doi.acm.org/10.1145/
2933575.2934526

9. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM
28(1), 114–133 (1980)

10. Chatterjee, K., Chmelik, M., Tracol, M.: What is decidable about partially ob-
servable markov decision processes with ω-regular objectives. J. Comput. Syst.
Sci. 82(5), 878–911 (2016). https://doi.org/10.1016/j.jcss.2016.02.009, http://dx.
doi.org/10.1016/j.jcss.2016.02.009

11. Chen, M., Nikolaidis, S., Soh, H., Hsu, D., Srinivasa, S.: Planning with trust for
human-robot collaboration. CoRR abs/1801.04099 (2018), http://arxiv.org/
abs/1801.04099

12. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. FMSD 43(1) (2013)

13. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press (1999)
14. Corbitt, B.J., Thanasankit, T., Yi, H.: Trust and e-commerce: a study of consumer

perceptions. Electronic Commerce Research and Applications 2(3), 203–215 (2003)
15. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: A modern prob-

abilistic model checker. CoRR abs/1702.04311 (2017), http://arxiv.org/abs/
1702.04311

16. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT
Press (1995)

17. Falcone, R., Castelfranchi, C.: Social trust: A cognitive approach. In: Trust and
Deception in Virtual Societies, pp. 55–90. Kluwer (2001)

http://arxiv.org/abs/1803.09861
http://arxiv.org/abs/1803.09861
https://doi.org/10.1145/2933575.2934526
http://doi.acm.org/10.1145/2933575.2934526
http://doi.acm.org/10.1145/2933575.2934526
https://doi.org/10.1016/j.jcss.2016.02.009
http://dx.doi.org/10.1016/j.jcss.2016.02.009
http://dx.doi.org/10.1016/j.jcss.2016.02.009
http://arxiv.org/abs/1801.04099
http://arxiv.org/abs/1801.04099
http://arxiv.org/abs/1702.04311
http://arxiv.org/abs/1702.04311

54 X. Huang, M. Kwiatkowska, M. Olejnik

18. Friedman, N., Halpern, J.Y.: Modeling belief in dynamic systems, part i: Founda-
tions. Artificial Intelligence 95(2), 257–316 (1997)

19. Gambetta, D. (ed.): Trust. Basil Blackwell, Oxford (1990)
20. Goldsmith, J., Mundhenk, M.: Complexity issues in markov decision processes. In:

the Thirteenth Annual IEEE Conference on Computational Complexity (1998)
21. Gollwitzer, P.M.: Goal achievement: The role of intentions. European Review of

Social Psychology 4, 141–185 (1993)
22. Halpern, J.Y., Tuttle, M.R.: Knowledge, probability, and adversaries. Journal of

the ACM 40(3), 917–962 (1993)
23. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal

aspects of computing 6(5), 512–535 (1994)
24. Hardin, R.: Trust and trustworthiness. Russell Sage Foundation (2002)
25. Herzig, A., Lorini, E., Hübner, J.F., Vercouter, L.: A logic of trust and reputation.

Logic Journal of IGPL 18(1), 214–244 (2010)
26. Herzig, A., Lorini, E., Moisan, F.: A simple logic of trust based on propositional

assignments. The Goals of Cognition. Essays in Honor of Cristiano Castelfranchi
pp. 407–419 (2013)

27. van der Hoek, W., Jamroga, W., Wooldridge, M.: Towards a theory of intention
revision. Synthese 155(2), 265–290 (2007)

28. Hogarth, R.M., Einhorn, H.J.: Order effects in belief updating: The belief-
adjustment model. Cognitive Psychology 24(1), 1–55 (1992)

29. Huang, X., Kwiatkowska, M.: Reasoning about cognitive trust in stochastic multi-
agent systems. In: Thirty-First AAAI Conference on Artificial Intelligence (AAAI-
17) (2017)

30. Jøsang, A.: A logic for uncertain probabilities. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 9(03), 279–311 (2001)

31. Kagal, L., Finin, T., Joshi, A.: Trust-based security in pervasive computing envi-
ronments. Computer 34(12), 154 – 157 (2001)

32. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. Springer-
Verlag (1967)

33. Krukow, K., Nielsen, M., Sassone, V.: Trust models in ubiquitous computing. Philo-
sophical Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 366(1881), 3781–3793 (2008)

34. Kuipers, B.: What is trust and how can my robot get some? In: a Talk
at Social Trust in Autonomous Robots, a workshop in Robotics: Science and
Systems 2016 (2016), http://qav.comlab.ox.ac.uk/trust_in_autonomy/img/

KuipersTrustWorkshop16.pdf

35. Kuipers, B.: How can we trust a robot? Commun. ACM 61(3), 86–95 (Feb 2018).
https://doi.org/10.1145/3173087, http://doi.acm.org/10.1145/3173087

36. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proc. 23rd Interna-
tional Conference on Computer Aided Verification (CAV’11). LNCS, vol. 6806, pp.
585–591. Springer (2011)

37. Lahijanian, M., Kwiatkowska, M.: Social trust: a major challenge for the future of
autonomous systems. In: AAAI Fall Symposium on Cross-Disciplinary Challenges
for Autonomous Systems. AAAI Fall Symposium, AAAI, AAAI Press (2016)

38. Lee, D.: US opens investigation into tesla after fatal crash. British
Broadcasting Corporation (BBC) News (Jul 2016), http://www.

bbc.co.uk/news/technology-36680043, [Online; posted 1-July-2016;
http://www.bbc.co.uk/news/technology-36680043]

http://qav.comlab.ox.ac.uk/trust_in_autonomy/img/KuipersTrustWorkshop16.pdf
http://qav.comlab.ox.ac.uk/trust_in_autonomy/img/KuipersTrustWorkshop16.pdf
https://doi.org/10.1145/3173087
http://doi.acm.org/10.1145/3173087
http://www.bbc.co.uk/news/technology-36680043
http://www.bbc.co.uk/news/technology-36680043

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 55

39. Lee, J.D., See, K.A.: Trust in automation: Designing for appropriate reliance. Hu-
man Factors: The Journal of the Human Factors and Ergonomics Society 46(1),
50–80 (2004)

40. Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model of organizational
trust. Academy of management review 20(3), 709–734 (1995)

41. Meyer, J.J.C., van der Hoek, W., van Linder, B.: A logical approach to the dy-
namics of commitments. Artificial Intelligence 113(1), 1–40 (1999)

42. Meyer, J.J.C., Broersen, J., Herzig, A.: BDI logics. In: Handbook of Epistemic
Logic. College Publications (2014)

43. Paz, A.: Introduction to probabilistic automata (Computer science and applied
mathematics). Academic Press (1971)

44. Pearl, J.: Probabilistic semantics for nonmonotonic reasoning: a survey. In: KR
1994 (1994)

45. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
KR 1991 (1991)

46. Ritter, F.E., Nerb, J., Lehtinen, E., , O’Shea, T.: In Order to Learn: How the
sequence of topics influences learning. Oxford University Press (2007)

47. Schild, K.: On the relationship between bdi logics and standard logics of concur-
rency. Autonomous Agents and Multi-Agent Systems pp. 259 – 283 (2000)

48. Setter, T., Gasparri, A., Egerstedt, M.: Trust-based interactions in teams of mobile
agents. In: American Control Conference. pp. 6158–6163 (Jun 2016)

49. Sweet, N., Ahmed, N.R., Kuter, U., Miller, C.: Towards self-confidence in au-
tonomous systems. In: AIAA Infotech@ Aerospace, pp. 1651–1652 (2016)

50. Tzeng, W.G.: A polynomial-time algorithm for the equivalence of probabilistic
automata. SIAM Journal on Computing 21(2), 216 – 227 (1992)

56 X. Huang, M. Kwiatkowska, M. Olejnik

A Undecidability of the General Problem

The undecidability proof is by a reduction from the emptiness problem and strict
emptiness problem of probabilistic automata, both known as undecidable prob-
lems [43]. A probabilistic automaton PA is a tuple (Q,A, (Ma)a∈A, q0, F), where

• Q is a finite set of states,
• q0 is the initial state,
• F ⊆ Q is a set of accepting states,
• A is the finite input alphabet, and
• (Ma)a∈A is the set of transition matrix.

For each a ∈ A, Ma ∈ [0, 1]Q×Q defines transition probabilities, such that given
q, q′ ∈ Q, Ma(q, q′) is the probability that q makes a transition to q′ when a is the
input. For every q ∈ Q and a ∈ A, we have

∑
q′∈QMa(q, q′) = 1. Plainly, given

a state q, an input a makes a transition to a distribution on Q, and we further
extend Ma to be a transformer from distributions to distributions. Let D(Q) be
the set of all probabilistic distributions on the set Q. Given ∆ ∈ D(Q), we write
Ma(∆) for the distribution transformed from ∆ by a, such that for all q′ ∈ Q,
Ma(∆)(q′) =

∑
q∈supp(∆)∆(q)·Ma(q, q′). Given w = a1 ·a2 ·. . .·an ∈ A∗, we write

Mw for the function Man ◦Man−1
◦ · · · ◦Ma1 (we assume function application is

right associative).
The emptiness problem of a probabilistic automata is defined as follows:

Given a probabilistic automaton PA = (Q,A, (Ma)a∈A, q0, F) and ε ∈ [0, 1],
decide whether there exists a word w such that Mw(∆0)(F) ≥ ε, where ∆0(q0) =
1 and ∆0(q) = 0 for q ∈ Q \ {q0}. Replacing ‘≥’ by a strict inequality ‘>’ yields
the strict emptiness problem. Both problems are known to be undecidable.

Pro-attitude Synthesis is Undecidable First of all, we show that the synthesis of
pro-attitude functions in which the formulas are in the language LA(PRTL∗)
is undecidable. Formally, let PA = (Q,A, (Ma)a∈A, q0, F) be a probabilistic au-
tomaton and AP = {final, found} be a set of atomic propositions. We can then
construct an ASMAS M(PA) = (Ags, S, Sinit, Act1, T, L,O1, obs1, Ω1, π1, p1)
such that

• Ags = {1}, i.e., this is a single-agent system,
• S = A×Q× {1, 2},
• Sinit = {(a, q0, 1)} for some a ∈ A,
• Act1 = {τ},
• the transition relation is as follows for k ∈ {1, 2}:

T ((a, q, k), τ, (a′, q′, k)) =
Ma′(q, q

′)∑
a′∈A

∑
q′∈QMa′(q, q′)

• found ∈ L((a, q, 2)) for a ∈ A and q ∈ Q, and final ∈ L((a, q, k)) for a ∈ A,
q ∈ F , and k ∈ {1, 2}.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 57

Intuitively, the system consists of two subsystems, indexed with the third com-
ponent of the states (i.e., 1 or 2), running in parallel without any interaction.
The observation is defined as follows:

• O1 = A, and
• obs1((a, q, k)) = a for all (a, q, k) ∈ S.

The moving from the first subsystem to the second subsystem is done by agent
1’s intentional changes, which are guarded with a testing on agent 1’s beliefs.
We only define relevant intentional attitudes in Ω1 as follows.

• Int1 = {x1, x2},

As defined in Section 9, the cognitive strategy π1 can be obtained from Ω1 and
Λ, with the latter defined as follows for the intentional strategy.

• λi1(x2) = B≥(>)ε
1 final for some ε ∈ [0, 1] and λi1(x1) = true

The preference functions p1, the goal attitude Goal1 in Ω1, and the goal guards
λg1 are not defined, because they are not used in this reduction. The initial
distribution µ0 is a Dirac distribution over the initial states Sinit. Therefore,
given a PA and a number ε ∈ [0, 1], the (strict) emptiness of the problem
Mw(∆0)(F) ≥ (>)ε is equivalent to checking whether M(PA) |= ∃3 I1found.

Model Checking PRTL∗ without Pro-Attitudes is Undecidable In the following,
we show that model checking PRTL∗ is also undecidable, for systems where
the guarding mechanism Λ is trivial. Formally, let PA be as before and AP =
{final} be a set of atomic propositions. We then construct an ASMASM(PA) =
(Ags, S, Sinit, Act1, T, L,O1, obs1, Ω1, π1, p1) such that

• Ags = {1}, i.e., this is a single-agent system,
• S = A×Q,
• Sinit = {(a, q0)} for some a ∈ A, with the initial distribution µ0 being a

Dirac distribution over Sinit,
• Act1 = {τ},
• the transition relation T is as follows:

T ((a, q), τ, (a′, q′)) =
Ma′(q, q

′)∑
a′∈A

∑
q′∈QMa′(q, q′)

• final ∈ L((a, q)) for a ∈ A and q ∈ F .

Agent 1’s observation is defined as

• O1 = A, and
• obs1((a, q)) = a for all (a, q) ∈ S.

We do not need the functions Ω1, π1, p1 in this reduction. Given a PA and a
number ε ∈ [0, 1], the (strict) emptiness of the problem Mw(∆0)(F) ≥ (>)ε is

equivalent to checking whether M(PA) |= ∃3B≥(>)ε
1 final.

58 X. Huang, M. Kwiatkowska, M. Olejnik

B A Decidable Fragment of Bounded Length

As shown in Section A, the automated verification problem defined in Section 10
is undecidable in general. In this section, we present a fragment of the problem
whose computational complexity falls between PSPACE and EXPTIME. Note
that in the following discussions on decidable fragments (i.e., Appendix B, C,
and D), we only consider dispositional trust formula DT./qA,Bψ. The competence

trust formula CT./qA,Bψ can be handled in a similar way.

Bounded Fragment The bounded fragment works with specification formulas
φ which do not contain temporal operators U and 2, all # operators are im-
mediately prefixed with a probabilistic operator or a branching operator, i.e.,
in a combination of P./q#ψ, ∀#ψ, or ∃#ψ, and the nested depth of belief and
trust operators is constant. We remark that the specification formula φ can be
extended to include subformulas of the form P./q(ψ1U≤kψ2), ∀(ψ1U≤kψ2), or
∃(ψ1U≤kψ2). Moreover, the restriction on nested temporal operators can be re-
laxed by taking the bounded semantics for LTL. We focus on the simpler syntax
to ease the notation.

Let d(φ) be the maximal length of the paths that are needed for the specifi-
cation formula φ. Specifically:

• d(p) = 0,
• d(φ1 ∨ φ2) = max{d(φ1), d(φ2)},
• d(¬ψ) = d(∀ψ) = d(P./qψ) = d(B./qA ψ) = d(ψ), and
• d(#ψ) = d(GAψ) = d(IAψ) = d(CAψ) = d(DT./qA,Bψ) = d(ψ) + 1.

B.1 Upper Bound

The algorithm proceeds in three steps according to the verification procedure in
Section 10.

Pro-attitude Synthesis The purpose of the synthesis is to realise the guarding
mechanism, i.e., for every x ∈ P(GoalA) and y ∈ IntA, compute an equivalent
representation for the formulas λgA(x) and λiA(x, y) for all agents A. Here we
only consider formulas of the forms B./qA φ and DT./qA,Bφ, and claim that formulas

of the other forms B=?
A φ and DT=?

A,Bφ can be handled by adapting the technique
slightly. Without loss of generality, we let x ∈ P(GoalA). By the constraint of
the language LA(PRTL∗) that no temporal operator can be in the scope of a
belief operator, the satisfiability of M,ρ |= λgA(x) depends only on those paths of
length |ρ|. Moreover, by the semantics of the language PRTL∗, model checking
the bounded specification formula φ requires only those paths of length not
greater than d(φ) + 1. Therefore, for this fragment, the synthesis is equivalent
to finding a set of paths eval(x, d(φ)), where

eval(x, k) = {ρ ∈ FPathM | |ρ| ≤ k, x ∈ GoalA(last(ρ)),M, ρ |= λgA(x)}

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 59

for 1 ≤ k ≤ d(φ).
Given a state s ∈ S, we write obs(s) = (obs1(s), ..., obsn(s)) for the tuple

of agents’ observations at state s. For 0 ≤ k ≤ d(φ) − 1, we let Ok = {⊥} ∪
(O1×...×On) be the set of possible observations at time k, where ⊥ denotes that
agents have not made any observations at time k. The state space of the following
expanded systemM# is S×O0×...×Od(φ)−1. For a state s# = (s, o0, ..., od(φ)−1)
of M#, we write LM(s

#) for original state s and Lk(s#) with 0 ≤ k ≤ d(φ)− 1
for the observations at time k, i.e., Lk(s#) = ok ∈ Ok. Moreover, for a tuple of
observations Lk(s#), we write LkA(s#) for agent A’s observation. These notations
can be extended to work with a sequence of states whenever reasonable, e.g.,
LM(s

#
0 s

#
1 ...) = LM(s

#
0)LM(s

#
1)..., etc.

GivenM = (Ags, S, Sinit, {ActA}A∈Ags, T, L, {OA}A∈Ags, {obsA}A∈Ags, {ΩA}A∈Ags,
{πA}A∈Ags, {pA}A∈Ags), we construct a systemM# = (Ags, S#, S#

init, {ActA}A∈Ags,
{T#

k }0≤k≤d(φ)−1, L#, {O#
A}A∈Ags, {obs#A}A∈Ags, {Ω#

A }A∈Ags, {πA}A∈Ags, {p#A}A∈Ags)
such that

• S# = S ×O0 × ...×Od(φ)−1,
• for s# ∈ S#, s# ∈ S#

init whenever µ#
0 (s#) > 0, where µ#

0 (s#) = µ0(LM(s
#))

if L0(s#) = obs(LM(s
#)) and Lk(s#) = ⊥ for 1 ≤ k ≤ d(φ)−1, and µ#

0 (s#) =
0 otherwise,
• T#

k (s#1 , a, s
#
2) = T (LM(s

#
1), a, LM(s

#
2)) if

– Lj(s#2) = Lj(s#1) for all 0 ≤ j ≤ k,

– Lk+1(s#1) = ... = Ld(φ)−1(s#1) = Lk+2(s#2) = ... = Ld(φ)−1(s#2) = ⊥, and

– Lk+1(s#2) = obs(LM(s
#
2)).

and T#
k (s#1 , a, s

#
2) = 0 otherwise,

• L#(s#) = L(LM(s
#)),

• O#
A and obs#A are to be defined later,

• forΩ#
A withA ∈ Ags, we haveGoal#A (s#) = GoalA(LM(s

#)) and Int#A(s#) =
IntA(LM(s

#)) for all s# ∈ S#, and

• for p#A , we have gp#A,B(s#) = gpA,B(LM(s
#)) and gp#A,B(s#) = gpA,B(LM(s

#))
for all A,B ∈ Ags.

Intuitively, in the new systemM#, agents’ observation history are remembered
in the state, and for every time 0 ≤ k ≤ d(φ)− 1, a separate transition relation

T#
k is constructed. The transition relation T#

k maintains the previous observation

history up to time k and adds a new observation Lk+1(s#2) to the next state s#2 .

Before evaluating LA(PRTL∗) formulas, we define a new belief function be
#
A

on the constructed system M#. With this function, we can evaluate belief for-
mulas locally instead of resorting to the observation history as we did for the
original systemM. A sequence ρ# = s#0 ...s

#
d(φ)−1 of states in the expanded sys-

tem M# is a path if, for all 0 ≤ k ≤ d(φ) − 1, one of the following conditions
holds:

• T#
k (s#k , a, s

#
k+1) > 0 for some joint action a ∈ Act.

• there exist B ∈ Ags and x ∈ GoalB(LM(s
#
k)) such that

60 X. Huang, M. Kwiatkowska, M. Olejnik

– LM(s
#
k)−→B.g.x

C LM(s
#
k+1)

– Lj(s#k+1) = Lj(s#k) for all 0 ≤ j ≤ k,

– Lk+1(s#k) = ... = Ld(φ)−1(s#k) = Lk+2(s#k+1) = ... = Ld(φ)−1(s#k+1) = ⊥,
and

– Lk+1(s#k+1) = obs(LM(s
#
k+1)).

• Similar for a transition on which some agent B ∈ Ags changes its intention.

The following proposition states that there is a 1-1 correspondence relation be-
tween paths in M and paths in M#.

Proposition 4. For every path ρ# = s#0 ...s
#
d(φ)−1 inM# such that µ#

0 (s#0) > 0,

we have that LM(ρ
#) is an initialised path of M. On the other hand, for every

initialised path ρ inM whose length is no more than d(φ)+1, there exists exactly
one path ρ# in M# such that LM(ρ

#) = ρ.

Note that the transition relation of the constructed system M# is acyclic,
that is, for every state s#, there does not exist a cyclic path ρ# ∈ FPathM(s#)
such that s# = ρ#(m) for some m ≥ 1. Therefore, we can define clk(s#) as
the time in which the state s# appears, or formally, clk(s#) = k − 1 for k the
greatest number such that Lk(s#) 6= ⊥.

We can now define a probabilistic function T#
k,A for the systemM# and agent

A ∈ Ags as follows, by considering the preference functions of agent A, where
clk(s#1) = k and we write tp(s#1 , s

#
2) for tp(LM(s

#
1), LM(s

#
2)). We note that s#1 s

#
2

needs to be on some path of M#.

T#
k,A(s#1 , s

#
2) =



T#
k (s#1 , a, s

#
2) if tp(s#1 , s

#
2) = a

gpA,B(LM(s
#
1))(x) if tp(s#1 , s

#
2) = B.g and LM(s

#
1)−→B.g.x

C LM(s
#
2)

ipA,B(LM(s
#
1))(x) if tp(s#1 , s

#
2) = B.i and LM(s

#
1)−→B.i.x

C LM(s
#
2)

1 if tp(s#1 , s
#
2) = A.g.x for some x ∈ GoalA(s#1)

or tp(s#1 , s
#
2) = A.i.x for some x ∈ IntA(s#1)

With the non-acyclic property, we can define for every state s# a reachability
probability rPA(s#) as follows with respect to a type t of paths.

• rPA(s#) = µ#
0 (s#) if clk(s#) = 0

• rPA(s#) =
∑
s#1 ∈S#,clk(s#)=clk(s#1)+1 rPA(s#1)×T#

k,A(s#1 , s
#)×(tp(s#1 , s

#) =

t(clk(s#1))), if clk(s#) > 0.

The observation function obs#A for agent A is defined as follows:

• obs#A(s#1) = obs#A(s#2) if obsA(LM(s
#
1)) = obsA(LM(s

#
2)), clk(s#1) = clk(s#2),

and for all 0 ≤ k ≤ clk(s#1), LkA(s#1) = LkA(s#2).

Based on this, O#
A contains all possible observations of A. Moreover, we let

obs#A(s#) to be the set of states that are indistinguishable to agent A at state

s#. We define a belief function be
#
A : S# → [0, 1] as follows for agent A ∈ Ags:

be
#
A(s#) =

rPA(s#)∑
s#1 ∈obs

#
A(s#) rPA(s#1)

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 61

For every path ρ ∈ FPathM in the original systemM, we construct the following
state e#(ρ) in the expanded system M#:

e#(ρ) = (last(ρ), obs(ρ(0)), ..., obs(ρ(|ρ| − 1)),⊥, ...,⊥)

We have the following proposition to reduce the probability of PrA in M into
rPA in M#.

Proposition 5. For any path ρ of M such that |ρ| ≤ d(φ) + 1, we have that
PrA(Cylρ) = rPA(e#(ρ)), where Cylρ is the basic cylinder with prefix ρ.

With this proposition, it is not hard to see that beA(ρ) = be
#
A(e#(ρ)). In the

following, we inductively define a satisfiability relation M#, s# |= φ as follows
for φ a boolean combination of atomic propositions and belief formulas of the
form B./qA ϕ or DT./qA,Bϕ such that ϕ is an atemporal formula.

• M#, s# |= p for p ∈ AP if p ∈ L#(s#)
• M#, s# |= ¬φ if not M#, s# |= φ
• M#, s# |= φ1 ∨ φ2 if M#, s# |= φ1 or M#, s# |= φ2
• M#, s# |= B./qA ψ if ∑

obs#A(s#1)=obs#A(s#)

(M#, s#1 |= ψ)× be
#
A(s#1)

 ./ q

• M#, s# |= DT./qA,Bψ if ∑
obs#A(s#1)=obs#A(s#)

be
#
A(s#1)×

⊗
s#2 ∈πi

B(s#1)

(T#
k,A(s#1 , s

#
2)×M#, s#2 |= ψ)

 ./ q

where ⊗ ≡ inf if ./∈ {≥, >}, ⊗ ≡ sup if ./∈ {≤, <}, and the set πiB(s#1)

contains states s#2 such that s#1 s
#
2 is on some path ofM# and tp(s#1 , s

#
2) =

B.i.
• The case of CT./qA,Bψ can be done similarly as DT./qA,Bψ.

Now we have the following theorem to reduce the problem of model checking
on the original systemM to the model checking on the expanded systemM#.

Theorem 11. M, ρ |= φ if and only if M#, e#(ρ) |= φ, for φ a formula in the
language LA(PRTL∗).

Now we can interpret those belief formulas properly with the above theorem,
i.e., for each x ⊆ GoalA and 1 ≤ k ≤ d(φ), we compute the set

eval#(x, k) = {s# ∈ S# | M#, s# |= λgA(x), clk(s#) ≤ k}

of states in the expanded system M#. It is noted that eval(x, k) = {ρ | |ρ| =
k,∃s# ∈ eval#(x, k) : s# = e#(ρ)}. But we do not need to compute eval(x, k)
because the following procedure will base on M# instead of M.

62 X. Huang, M. Kwiatkowska, M. Olejnik

Preference Function Update This can be done by following the expressions
in Section 9. By the system M# and the functions eval#(x, k), we can have
the updated preference functions pA for all A ∈ Ags. Then we can update the
transition functions T#

k,A(s#1 , s
#
2) into T#,∗

k,A (s#1 , s
#
2) by substituting pA with the

new one. Based on these, we can update the reachability function rPA into rP∗A
and the belief function be

#
A into be

#,∗
A .

Model Checking Specification Formula The model checking algorithm pro-
ceeds by labelling subformulas of φ on the states in S#. We use the notation
sat(s#, ψ) to represent that a formula ψ is labeled on the state s#. The labelling
can be done recursively as follows.

• sat(s#, p) for p ∈ AP , if p ∈ L#(s#),
• sat(s#, ψ1 ∨ ψ2) if sat(s#, ψ1) or sat(s#, ψ2),
• sat(s#,¬ψ) if not sat(s#, ψ),
• sat(s#,∀#ψ) if sat(t#, ψ) for all t# such that T#

k (s#, a, t#) > 0,
• sat(s#, P./q#ψ) if prob(s#, ψ) ./ q, where the function prob(s#, ψ) is ob-

tained as follows.
– prob(s#, ψ) =

∑
t#∈S# T

#
k (s#, a, t#)× sat(t#, ψ).

Intuitively, prob(s#, ψ) is the one-step reachability probability of those states

satisfying ψ from a given state s#. Recall that in the expression T#
k (s#, a, t#),

the action a is determined by state s#.
• sat(s#,B./qA ψ) if (

∑
obs#A(t#)=obs#A(s#) sat(t

#, ψ)× be
#,∗
A (t#)) ./ q

• sat(s#,DT./qA,Bψ) if (
∑
obs#A(t#)=obs#A(s#) be

#,∗
A (t#)×⊗u#∈πi

B(t#)(T
#,∗
k,A (t#, u#)×

sat(u#, ψ)) ./ q where ⊗ ≡ inf if ./∈ {≥, >}, ⊗ ≡ sup if ./∈ {≤, <}, and
the set πiB(t#) contains states u# such that

– LM(t
#)−→B.i,x

C LM(u
#) for some x ∈ IntB such that u# ∈ eval#(x, clk(t#)),

– Lj(u#) = Lj(t#) for all 0 ≤ j ≤ k,
– Lk+1(t#) = ... = Ld(φ)−1(t#) = Lk+2(u#) = ... = Ld(φ)−1(u#) = ⊥, and
– Lk+1(u#) = obs(LM(u

#)).
• the case of sat(s#,CT./qA,Bψ) can be done similarly as that of sat(s#,DT./qA,Bψ).

• sat(s#,GAψ) with clk(s#) = k ≤ d(φ) if sat(t#, ψ) for all t# such that
– LM(s

#)−→B.g.x
C LM(t

#) for some x ⊆ GoalB such that t# ∈ eval#(x, clk(s#)),
– Lj(t#) = Lj(s#) for all 0 ≤ j ≤ k,
– Lk+1(s#) = ... = Ld(φ)−1(s#) = Lk+2(t#) = ... = Ld(φ)−1(t#) = ⊥, and
– Lk+1(t#) = obs(LM(t

#)).
• sat(s#, IAψ) with clk(s#) = k ≤ d(φ) follows the similar pattern as that of
sat(s#,GAψ).

• sat(s#,CAψ) with clk(s#) = k ≤ d(φ) if sat(t#, ψ) for all t# such that
– LM(s

#)−→B.i.x
C LM(t

#) such that x ∈ IntA,
– Lj(t#) = Lj(s#) for all 0 ≤ j ≤ k,
– Lk+1(s#) = ... = Ld(φ)−1(s#) = Lk+2(t#) = ... = Ld(φ)−1(t#) = ⊥, and
– Lk+1(t#) = obs(LM(t

#)).

It is noted that the above labelling procedure is done locally for all the belief
and trust formulas. We have the following theorem to reduce model checking
problem to the above labelling algorithm.

Theorem 12. M |= φ if and only if sat(s#, φ) for all s# such that µ0(s#) > 0.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 63

Analysis of Complexity For the measurement of the complexity, we use the
number of states |S| as the size of the systemM, and the depth d(φ) as the size
of the specification formula φ. Moreover, we assume that the sets GoalA and
IntA, for all A ∈ Ags, are polynomial with respect to the size of M, and the
size of the formulas in the guarding mechanism, measured with the number of
operators, are also polynomial with respect to the size of M. As usual, the set
of agents Ags is fixed. Also, because the observation function obs is defined on
states, the size of O1 × ...×On is no more than the size of S.

For the complexity of the fragment, we notice that the size of the expanded
system M# is polynomial with respect to the size of M but exponential with
respect to the size of the specification formula φ.

• For the pro-attitude synthesis, for every x ∈ ⋃A∈Ags P(GoalA) ∪ IntA, the

determination of whether s# ∈ eval#(x, d(φ)) can be done in EXPTIME.
• The update of preference functions {pA}A∈Ags and the model M# can be

done in EXPTIME.
• For the model checking of the specification formula, the labelling procedure

can be done in EXPTIME.

Putting them together, we have that the computational complexity of the bounded
fragment of the problem is in EXPTIME. It is noted that, the exponential is with
respect to the size of the specification formula. If the formula is fixed, it is in
PTIME.

B.2 Hardness Problem

The lower bound can be obtained by a reduction from the satisfiability problem
of the quantified Boolean formula (QBF), which is to determine if a QBF formula
is satisfiable. A canonical form of a QBF is

φ = Q1x1...Qnxn : (l11 ∨ l12 ∨ l13) ∧ ... ∧ (lm1 ∨ lm2 ∨ lm3)

where Qi = ∃ if i is an odd number and Qi = ∀ otherwise, and lkj ∈ {x1, ..., xn,
¬x1, ...,¬xn} for all 1 ≤ k ≤ m and 1 ≤ j ≤ 3. Without loss of generality, we
assume that n is an even number. Every QBF formula can be transformed into
this format by inserting dummy variables. For a literal lkj , we write var(lkj) for
its variable and sign(lkj) for its sign. For example, if lkj = ¬x1 then var(lkj) = x1
and sign(lkj) = neg , and if lkj = xn then var(lkj) = xn and sign(lkj) = pos.

The problem can be simulated by a game between two agents ∀ and ∃. The
game consists of two phases: in the first phase, agents decide the values of vari-
ables {x1, ..., xn}, and in the second phase, agents evaluate the boolean formula
(l11 ∨ l12 ∨ l13) ∧ ... ∧ (lm1 ∨ lm2 ∨ lm3). We write odd(k) (even(k)) to denote
that the number k is odd (even). Figure 5 gives a diagram for the construction.
The system has a state space S = {xkb, xhakb | 1 ≤ h ≤ n, 1 ≤ k ≤ n + 1, a, b ∈
{0, 1}} ∪ {ck, chak | 1 ≤ k ≤ m, 1 ≤ h ≤ n, a ∈ {0, 1}} ∪ {lkj , lhakj | 1 ≤ k ≤ m, j ∈
{1, 2, 3}, 1 ≤ h ≤ n, a ∈ {0, 1}} ∪ {vha | 1 ≤ h ≤ n, a ∈ {0, 1}}.

64 X. Huang, M. Kwiatkowska, M. Olejnik

Before proceeding to the reduction, we recall notations is∃(s) and is∀(s)
which return the intention at state s for agents ∃ and ∀, respectively. Assuming
that agents’ intentions are encoded in the states make it easier to understand
the reduction. Similar for the notations gs∃(s) and gs∀(s).

In the first phase, the agents ∃ and ∀ make their decisions by changing their
intentions. The states involved in the first phase are {xkb, xhakb | 1 ≤ h ≤ n, 1 ≤
k ≤ n + 1, a, b ∈ {0, 1}}. Intuitively, the state xkb represents that the value of
variable xk was set to b, and the superscript ha in the state xhakb represents that
the state “remembers” the value a of variable xh. We let Int∃ = {0, 1, 2, 3},
where only 0 and 1 will be used in the first phase, and let Int∀ = {0, 1}. On a
state xkb or xhakb , we define is∃(xkb) = is∃(xhakb) = b for the case of odd(k), and
is∀(xkb) = is∀(xhakb) = b for the case of even(k). We do not define is∃(xkb) and
is∃(xhakb) for the cases of even(k) and is∀(xkb) and is∀(xhakb) for the case of odd(k),
since they will not be used in this proof. Intuitively, the intentional attitude
reflects agent’s choice. Because the value of variable xk for odd(k) will be decided
by agent ∃, we define Int∃(xkb) = Int∃(xhakb) = {0, 1}, so that agent ∃ can choose
the value by changing its intention. Similar for Int∀(xkb) = Int∀(xhakb) = {0, 1}
when even(k).

Since we will test the beliefs of agent ∃ in the specification formula, only
agent ∃’s observations are relevant. We let obs∃(xkb) = obs∃(xhakb) = b for any
1 ≤ k ≤ n+ 1, i.e., it can see both agents’ intentions. However, it is not able to
distinguish observations between xkb and xhakb .

The idea of the first phase is that the states of the form xkb contribute to the
main computation in which agents use their intentions to decide the values of
the variables under their controls. Every time a decision is made, the execution
moves to both the next variable x(k+1)b and a helper computation in which all
states are labelled with the fact about the last decision. E.g., in Figure 5, for the
first variable x1, the agent ∃ can choose between two states x11 and x10, at which
the variable x1 will take different values 1 and 0, respectively. Without loss of
generality, if agent ∃ chooses x11, then the execution will move into both x21 and
x1121, where the state x1121 remembers that the value of variable x1 is 1. Therefore,
from now on, the execution will be possible on both the main computation from
x21 and the helper computation from x1121. But the agent ∃ can not distinguish
these two executions by its observations. Generalising the above, from variable
x1 to xn, we will need to explore the main computation and the other n helper
computations, such that one helper computation is added for each variable.

The execution of the first phase can move into those states xha(n+1)b, where the

main computation moves into xn1(n+1)1 or xn0(n+1)0. By the existence of executions
on these states, the system remembers the choices made by the two agents.
Then in the second phase, the agent ∃ needs to justify that its choices make the
formula (l11 ∨ l12 ∨ l13) ∧ ... ∧ (lm1 ∨ lm2 ∨ lm3) true whenever the QBF formula
is satisfiable. To do this, we let the executions of the first phase move into those
states ck and chak with a uniform distribution. Each of these states represents
intuitively a clause of the QBF formula. Then the agent ∃ will need to pick a
literal to see if it can make the clause satisfiable.

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 65

x11x11

x31x31

c1c1

c2c2

cmcm

x11
21x11
21

x11
40x11
40

x10
20x10
20

x10
40x10
40

l11l11l12l12l13l13 c11
1c
11
1

c11
2c
11
2

c11
mc
11
m

v11v11

l1123l1123 l1122l1122 l1121l1121

c10
1c
10
1

c10
2c
10
2

c10
mc
10
m

v10v10

l1023l1023
l1022l1022 l1021l1021

x11
(n+1)1x11
(n+1)1

x41x41 x40x40

x10
30x10
30 x11

31x11
31x11

31x11
31x11

30x11
30

x21
(n+1)1x21
(n+1)1

x21x21 x20x20

x11
(n+1)0x11
(n+1)0

x21
(n+1)0x21
(n+1)0 xn1

(n+1)1xn1
(n+1)1 xn0

(n+1)0xn0
(n+1)0

x10
(n+1)0x10
(n+1)0 x10

(n+1)1x10
(n+1)1

x10x10

x30x30

x11
20x11
20

x11
41x11
41

x11
21x11
21

x11
41x11
41

x21
31x21
31

x21
41x21
41x21

40x21
40

x21
30x21
30

{x1, pos}{x1, pos} {x1, neg}{x1, neg}

{x1, pos}{x1, pos}

1/m

1/m

1/m
1/m

1/m

1/m

1/m

1/m
1/m

0.5
0.5

0.5 0.5

0.50.5

0.5 0.5

0.5
0.5

0.5
0.5

l21l21l22l22l23l23

{l}{l}{l}{l}{l}{l}

{l}{l} {l}{l} {l}{l} {l}{l} {l}{l} {l}{l} {l}{l} {l}{l} {l}{l}… …

…

… …

… … … … …

…
…

…

…

x11
n0x11
n0 x11

n1x11
n1 x21

n0x21
n0 x21

n1x21
n1

xn1xn1 xn0xn0 x10
n0x10
n0 x10

n1x10
n1

Fig. 5. Diagram for the reduction from QBF problem

66 X. Huang, M. Kwiatkowska, M. Olejnik

Similar to the first phase, the choice of literals is done by agent ∃ changing its
intention. For the cognitive mechanism, we have that is∃(ck) = is∃(chak) = 0 and
Int∃(ck) = Int∃(chak) = {0, 1, 2, 3}. That is, agent ∃ chooses the literal lkx if its
intention is changed into x. Note that, we assume that agent ∃ can distinguish
the clauses, i.e., obs∃(ck) = obs∃(chak) = ck. And it is able to know which clause
the current literal belongs to, i.e., obs∃(lkj) = obs∃(lhakj) = ck.

After a literal lkj is chosen, the execution will need to move to obtain its
value. This is done by a transition into one of the states in the first phase. Let
sign(lkj) be the sign of the literal and var(lkj) be the value of the literal. Without
loss of generality, we let var(lkj) = xh and sign(lkj) = a, then the transition
from state lkj will move into xha(h+1)a, at which the atomic propositions {xh, a}
are labelled. For the state lhakj , it can only move into the state vha, at which the
atomic propositions {xh, a} are labelled.

Formally, let AP = {xi | i ∈ {1, ..., n}}∪{l, pos, neg} be a set of atomic propo-
sitions, we haveM(φ) = (Ags, S, Sinit, {ActA}A∈Ags, T, L, {OA}A∈Ags, {obsA}A∈Ags,
{ΩA}A∈Ags, {πA}A∈Ags, {pA}A∈Ags) such that

• Ags = {∃,∀},
• S = {xkb, xhakb | 1 ≤ h ≤ n, 1 ≤ k ≤ n + 1, a, b ∈ {0, 1}} ∪ {ck, chak | 1 ≤ k ≤
m, 1 ≤ h ≤ n, a ∈ {0, 1}} ∪ {lkj , lhakj | 1 ≤ k ≤ m, j ∈ {1, 2, 3}, 1 ≤ h ≤ n, a ∈
{0, 1}} ∪ {vha | 1 ≤ h ≤ n, a ∈ {0, 1}},

• Sinit = {x11} with µ0(x11) = 1,
• ActA = {ε} for A ∈ {∃,∀},
• the transition function is as follows.

– T (xkb, x(k+1)b) = T (xkb, x
kb
(k+1)b) = 0.5 for 1 ≤ k ≤ n−1, T (xnb, x(n+1)b) =

1,
– T (xhakb , x

ha
(k+1)b) = 1, for 1 ≤ k ≤ n,

– T (xha(n+1)b, c
ha
k) = T (x(n+1)b, ck) = 1/m,

– T (lkj , x
h1
(h+1)1) = 1 for sign(lkj) = pos and var(lkj) = vh,

– T (lkj , x
h0
(h+1)0) = 1 for sign(lkj) = neg and var(lkj) = vh,

– T (lhakj , vha) = 1
• the labelling function is as follows.

– L(xh1kj) = {xh, pos}, L(xh0kj) = {xh, neg},
– L(vh1) = {xh, pos}, L(vh0) = {xh, neg},
– L(lkj) = l

• the set of possible observations is as follows.
– O∃ = {0, 1} ∪ {ck | 1 ≤ k ≤ m} ∪ {∅} for player ∃, and
– we ignore the definition for player ∀ as it is not used in the reduction.

• the partial observation functions are defined as follows for the player ∃.
– obs∃(xkb) = obs∃(xhakb) = b for 1 ≤ k ≤ n+ 1 and b ∈ {0, 1},
– obs∃(ck) = obs∃(chak) = ck for 1 ≤ k ≤ m,
– obs∃(lkj) = obs∃(lhakj) = ck for 1 ≤ k ≤ m and j ∈ {1, 2, 3}, and
– obs∃(vha) = ∅.

• the set of intentions is as follows.
– Int∃ = {0, 1, 2, 3} and Int∀ = {0, 1}, and

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 67

– we ignore the definition for Goal∃ and Goal∀ as they are not used in the
reduction.

• the guarding mechanism is trivial.
• the preference functions are defined as follows.

– ip∃,∃(xkb)(0) = ip∃,∃(xkb)(1) = 0.5 for odd(k),
– ip∃,∀(xkb)(0) = ip∃,∀(xkb)(1) = 0.5 for even(k),
– ip∃,∃t(ck)(0) = ip∃,∃(ck)(1) = ip∃,∃(ck)(2) = ip∃,∃(ck)(3) = 0.25 for

1 ≤ k ≤ m.

In such a system, we have that φ is satisfiable if and only if

M(φ) |= I∃AX I∀AX...I∀AX I∃(l∧
n∧
i=1

((B≥1∃ AX(xi ⇒ pos))∨(B≥1∃ AX(xi ⇒ neg)))).

Note that in above formula and below, we use AX instead of ∀# to avoid confu-
sion with the agents ∀ and ∃. Intuitively, the prefixes I∃AX and I∀AX represent
the choosing of variables’ values by the agents ∃ and ∀, respectively. After the
last AX, the execution moves to the states ck and chak . Then, the last I∃ is for
the agent ∃ to choose a specific literal, and then justify that it is satisfiable. The
former is represented by the presence of a literal l in the formula. The latter is
guaranteed by

∧n
i=1((B≥1∃ (xi ⇒ pos))∨(B≥1∃ (xi ⇒ neg))). Without loss of gener-

ality, we let lha be the chosen literal and assume var(lha) = xi. If sign(xi) = neg
then the main computation will reach the state xh0(h+1)0 which is labelled with
xh and neg . By construction, we know that if the variable xi is assigned the
value neg by one of the agents then the helper computation with superscript i0
is explored, and the helper computation will lead to the state vi0 at which the
propositions xi and neg are labelled. On the other hand, the helper computation
with superscript i1 will not be explored, which means that the state vi1 labelled
with xi and pos is not considered possible by the agent ∃. Therefore, we have
that B≥1∃ (xi ⇒ neg). Similar argument can be taken to show that B≥1∃ (xi ⇒ pos)
when sign(xi) = pos.

C A Decidable Fragment with U and 2 temporal
operators

We present a fragment of the problem that is PSPACE-complete. Unlike the
bounded fragment in Section B, this fragment works with the U and 2 temporal
operators in specification formula φ. With U and 2 operators, the specifica-
tion formula can express long-term properties about agent’s mental attitudes
in the system, and therefore this fragment complements the bounded fragment.
However, the fragment is subject to other restrictions, including the following:

• The guarding mechanism is trivial. That is, the algorithm works with model
checking without conducting pro-attitude synthesis first.

• The specification formula φ has the restrictions that
– it works with a single agent’s beliefs and trusts,

68 X. Huang, M. Kwiatkowska, M. Olejnik

– there is no nested beliefs or trusts,
– beliefs and trusts cannot be in the scope of a probabilistic operator P,

and
– there is a constant number of belief or trust operators.

We make a remark on these constraints. For the first constraint, that we
choose to work with a single agent’s beliefs and trusts is because in Section A
we have shown that the single-agent fragment is undecidable. The second
constraint is imposed to keep the algorithm simple. We conjecture that it
can be relaxed. The third and fourth constraints are to keep the complexity
in PSPACE. For the probabilistic operator, it requires to compute a set of
paths concurrently. We conjecture that the complexity can be in EXPTIME
instead of in PSPACE if relaxing this constraint. To complement this, in
Section D, we study a fragment in which the probabilistic operator works
with qualitative beliefs and trusts. The constraint on the number of belief
or trust operators is to keep the expanded system, to be given below, in the
size of a polynomial with respect to the formula.

• There is a restriction on the system about agent A’s beliefs along the tran-
sitions. The restriction, whose details will be given later, is that along any
path of an expanded system, the evaluations of belief or trust subformulas
are the same on any two expanded states if the support of a probabilistic
distribution over the set of states is the same.

Without loss of generality, we assume that it is the agent A’s beliefs that the
specification formula φ is to describe. Note that the fragment has the full ex-
pressiveness of LTL.

C.1 Upper Bound

Because the guarding mechanism is trivial, we need only handle the third step
of the verification procedure.

Preprocessing Sub-Formulas in the Scope of Belief Operators The first step of the
algorithm is to pre-process subformulas in the scope of belief or trust operators.
Because there is no nested beliefs, these subformulas do not contain any belief or
trust operator. Therefore, they can be handled by the usual probabilistic tem-
poral model checking techniques, with some slight adaptations for the formulas
GAψ, IAψ and CAψ. For every such subformula ψ, we introduce a new atomic
proposition pψ, which intuitively represents the probability of ψ being satisfied.
Let AP ′ = AP

⋃
AP1 such that AP1 is the set of new atomic propositions. We

upgrade the labelling function L into L′ : S × AP ′ → [0, 1], which allows us to
extract the probability value ”stored“ in pψ.

• If p ∈ AP then L′(s, p) = 1, if p ∈ L(s), and L′(s, p) = 0, otherwise.
• If pψ ∈ AP1 then L′(s, pψ) = Prob(M, s, ψ), where Prob(M, s, ψ) is the

probability of satisfying formula ψ among all the temporal paths starting
from s. We note that, because of Assumption 2, there exists a unique value
for Prob(M, s, ψ).

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 69

We assume that L′ is computed from L as part of the algorithm and therefore
no change to our previous definitions (such as Definition 1) is necessary. Note
that, after this pre-processing, all belief or trust formulas are of the form B./qA p
or DT./qA,Bp such that p ∈ AP is an atomic proposition. This pre-processing can
also be applied to subformulas containing no belief or trust formulas. Therefore,
in the following, we assume that in φ, all subformulas contain at least one belief
or trust formulas.

We consider the negated specification formula ¬φ, and verify the existence of
a counterexample. We assume that the formula ¬φ is in negation normal form,
i.e., negation operators only appear in front of atomic propositions.

Construction of Expanded System Let φ be the specification formula and bφ =
{ψ1, ..., ψk} be the set of belief or trust subformulas of the form B./qA p or DT./qA,Bp
such that p1, ..., pk ∈ AP are their atomic propositions. We need some no-
tations. Given a set Q ⊆ S of states, a probability space on Q is a triple
αQ = (S,P(P(S)),PrQ) such that PrQ({s}) > 0 if and only if s ∈ Q. Given
a probability space αQ, we can evaluate belief and trust formulas as follows.

• PrQ(B./qA p) =
∑
s∈Q PrQ(s)× L′(s, p).

• PrQ(DT./qA,Bp) =
∑
s∈Q PrQ(s) ×⊗x∈IntB(s) ∃s′ : L′(s′, p) × (s−→B.i.x

C s′),
where ⊗ ≡ inf if ./∈ {≥, >}, ⊗ ≡ sup if ./∈ {≤, <}.

• the case of CT./qA,Bp is analogous to DT./qA,Bp.

as the probability of those states satisfying formula ψ. In the following, we use
the probability measure PrQ to represent the probability space αQ. Given a
probability distribution PrP and a set of states Q, we define (for a set of states
P):

PrP,Act,Q(t) =

∑
s∈P (PrP (s)× T (s, a, t))∑

t∈Q
∑
s∈P (PrP (s)× T (s, a, t))

,

as the probability measure over Q, by a temporal transition from P in one step.
Moreover, on the pro-attitude dimensions, we define:

PrP,GoalB(s),Q(t) =

∑
s∈P

∑
x∈GoalB(s)(s)(PrP (s)× gpA,B(s, x)× (s−→B.g.x

C t))∑
t∈Q

∑
s∈P

∑
x∈GoalB(s)(s)(PrP (s)× gpA,B(s, x)× (s−→B.g.x

C t))

and

PrP,IntB ,Q(t) =

∑
s∈P

∑
x∈IntB(s)(PrP (s)× ipA,B(s, x)× (s−→B.i.x

C t))∑
t∈Q

∑
s∈P

∑
x∈IntB(s)(PrP (s)× ipA,B(s, x)× (s−→B.i.x

C t))

for B ∈ Ags. Intuitively, they are the probability measures over Q by a goal or
intentional transition of agent B from the states in P . Moreover, the transition is
parameterised over the agent A’s preference functions. Now we define the initial
belief for agent A. Given a state s such that µ0(s) > 0, we define obsA(µ0, s) =

70 X. Huang, M. Kwiatkowska, M. Olejnik

{t | obsA(t) = obsA(s), µ0(t) > 0} to be the set of possible initial states whose
observation is the same as s. Then, we have

ProbsA(µ0,s)(t) =
µ0(t)∑

t∈obsA(µ0,s)
µ0(t)

as the initial belief.
Based on the above notations, we can construct an expanded system which

maintains a probability value for each subformula in bφ. The system isMi(φ) =

(Ags, S†, S†init, {ActA}A∈Ags, T †, L†) such that

• S† = S ×D(S)×R× ...×R, where R is the domain of real numbers. Note
that, although R is infinite, we need only a finite number of real numbers.
We assume that all numbers are of fixed precision and can be encoded with
complexity O(1).

• S†init = {(s,ProbsA(µ0,s),ProbsA(µ0,s)(p1), ...,ProbsA(µ0,s)(pk)) | µ0(s) > 0,AP1 =
{p1, ..., pk}},
• the transition relation is defined as follows.

– T †((s,PrQ, v1, ..., vk), (t,PrQ,Act,Q′ ,PrQ,Act,Q′(ψ1), ...,PrQ,Act,Q′(ψk))) =
T (s, a, t) if
tp(s, t) = Act and Q′ = {t′ | PrQ(s′) > 0, s′−→a′

T t
′, obsA(t′) = obsA(t)}.

– T †((s,PrQ, v1, ..., vk), (t,PrQ,ωg
B(s),Q′ ,PrQ,ωg

B(s),Q′(ψ1), ...,PrQ,ωg
B(s),Q′(ψk))) =

gpA,B(s, t) if and only if tp(s, t) = B.g and Q′ = {t′ | s′ ∈ Q, y ∈
ωgB(s)(s), s′−→B.g.y

C t′,
obsA(t′) = obsA(t)}.

– T †((s,PrQ, v1, ..., vk), (t,PrQ,ωi
B ,Q

′ ,PrQ,ωi
B ,Q

′(ψ1), ...,PrQ,ωi
B ,Q

′(ψk))) =

ipA,B(s, t) if and only if tp(s, t) = B.i and Q′ = {t′ | s′ ∈ Q, y ∈
ωiB(s), s′−→B.i.y

C t′, obsA(t′) = obsA(t)}.
• L†((s,PrQ, v1, ..., vk)) = L(s).

Constraints on the Expanded System The constraints include,

• there do not exist two states (s,PrQ, v1, ..., vk) and (s,PrQ′ , v
′
1, ..., v

′
k) in the

expanded system M† such that they are reachable from one to the other,
supp(PrQ) = supp(PrQ′), and vj 6= v′j for some 1 ≤ j ≤ k, and

• for any two reachable states (s,PrQ, v1, ..., vk) and (s,PrQ′ , v
′
1, ..., v

′
k) such

that supp(PrQ) = supp(PrQ′), only one of them needs to be explored with
T †.

With the above constraints, we can see that the size of the expanded system
is O(2|M|). However, we do not need to explicitly construct it. The algorithm
explores it on-the-fly.

Model Checking Algorithm For the algorithm, we use function sat(s,PrQ, v1, ..., vk, φ)
to denote the satisfiability of the formula φ on the state (s,PrQ, v1, ..., vk). For
the base cases of non-temporal operators, we have the following inductive rules:

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 71

Algorithm 1. Given a state (s,PrQ, v1, ..., vk) ∈ S† and a formula φ, we define
the satisfiability relation sat(s,PrQ, v1, ..., vk, φ) as follows:

• sat(s,PrQ, v1, ..., vk, p) for p ∈ AP if p ∈ L(s);
• sat(s,PrQ, v1, ..., vk,¬φ) if not sat(s,PrQ, v1, ..., vk, φ);
• sat(s,PrQ, v1, ..., vk, φ1 ∨φ2) if sat(s,PrQ, v1, ..., vk, φ1) or sat(s,PrQ, v1, ...,
vk, φ2);
• sat(s,PrQ, v1, ..., vk,Gjφ) if sat(t,PrQ′ , v

′
1, ..., v

′
k, φ) for all states (t,PrQ′ ,

v′1, ..., v
′
k) such that T †((s,PrQ, v1, ..., vk), (t,PrQ′ , v

′
1, ..., v

′
k)) > 0 and tp(s, t) =

B.g.
• sat(s,PrQ, v1, ..., vk, Ijφ) if sat(t,PrQ′ , v

′
1, ..., v

′
k, φ) for all states (t,PrQ′ , v

′
1, ...,

v′k) such that T †((s,PrQ, v1, ..., vk), (t,PrQ′ , v
′
1, ..., v

′
k)) > 0 and tp(s, t) =

B.i.
• sat(s,PrQ, v1, ..., vk,Cjφ) if sat(t,PrQ′ , v

′
1, ..., v

′
k, φ) for all states (t,PrQ′ ,

0, ..., 0) such that s−→B.i.x
C t for some x ∈ ωiB(s), and PrQ′ is any distribution

such that Q′ = {t′ | s′ ∈ Q, s′−→B.i.x
C t′, x ∈ ωiB(s), obsA(t′) = obsA(t)}. Note

that, as we stated earlier, no belief formula will appear in the scope of a legal
intention operator. So the probability values are not useful.
• For the computation of sat(s,PrQ, v1, ..., vk, P

./q#φ) and sat(s,PrQ, v1, ..., vk,
P./qφUφ), we note that, because the constraint that no belief formula can be
in the scope of a probability operator, the components PrQ and v1, ..., vk
in the state are irrelevant. Therefore, we can compute sat(s, P./q#φ) and
sat(s, P./qφUφ) as the usual PCTL model checking.
• sat(s,PrQ, v1, ..., vk,B./qA p) if vj ./ q, for B./qA p being the jth formula in the

set bφ.
• sat(s,PrQ, v1, ..., vk,DT./qA,Bp) if vu ./ q, for DT./qA,Bp being the uth formula

in the set bφ.

Note that the above cases have the same results for those distributions PrQ
whose supports are the same. Now we discuss the case of ∃ψ. With the above
Algorithm 1, we note that other formulas can be interpreted directly on the
states. Therefore, we can introduce atomic propositions pψ for those ψ, and
update the labelling function into pψ ∈ L†((s,PrQ, v1, ..., vk)) if and only if
sat(s,PrQ, v1, ..., vk, ψ). With this processing, the formula ψ is turned into an
LTL formula ψ′. Then as the usual LTL model checking, we turn the formula
ψ into a Buchi automaton Aψ. Let Aψ = (Q,P(AP), δ, B, F) be the automaton
such that Q is a set of states, δ : Q × P(AP) → P(Q) is a transition relation,
B ⊆ Q is a set of initial states, and F ⊆ Q is a set of sets of acceptance states.
Then we construct their product systemM†×Aψ′ = (S‡, S‡init, T

‡, L‡) as follows.

• S‡ = S ×D(S)×R× ...×R×Q
• (s,PrQ, v1, ..., vk, q) ∈ S‡init if (s,PrQ, v1, ..., vk) ∈ S†init and (q0, L

†((s,PrQ,
v1, ..., vk)), q) ∈ δ such that q0 ∈ B.
• ((s,PrQ, v1, ..., vk, q), (t,PrQ′ , v

′
1, ..., v

′
k, q
′)) ∈ T ‡ if we have that

T †((s,PrQ, v1, ..., vk), (t,PrQ′ , v
′
1, ..., v

′
k)) > 0, tp(s, t) = Act, and

(q, L†((t,PrQ′ , v
′
1, ..., v

′
k)), q′) ∈ δ.

• L‡(s,PrQ, v1, ..., vk, q) = L†((s,PrQ, v1, ..., vk)).

72 X. Huang, M. Kwiatkowska, M. Olejnik

Algorithm 2. For the case where the formula is ∃ψ, we have that

• sat(s,PrQ, v1, ..., vk,∃ψ) if M†[{s,PrQ, v1, ..., vk}/S†init]×Aψ is empty;

whereM†[{s,PrQ, v1, ..., vk}/S†init] is the system ofM† by substituting the initial

distribution S†init into S†init({s,PrQ, v1, ..., vk}) = 1.

Then for a formula with nested branching time operators, we can use the
approach of CTL∗ model checking. Finally, we have the following theorem to
state the correctness of the above algorithm.

Theorem 13. M |= φ iff, in M†, sat(s,PrQ, v1, ..., vk, φ) holds for all (s,PrQ,

v1, ..., vk) ∈ S†init.

Analysis of Complexity For the complexity, we need to remember the tuple
(s,PrQ, v1, ..., vk) for Algorithm 1 or the tuple (s,PrQ, v1, ..., vk, q) for Algo-
rithm 2. For Algorithm 1, we may need a polynomial number of alternations
to handle the negation operators or the pro-attitudes. Therefore, by Theorem
4.2 of [9], it is in NPSPACE=PSPACE, the same complexity as that of LTL
model checking. On the other hand, unlike the LTL model checking, the pro-
gram complexity, i.e., the complexity measured with respect to the size of the
system by assuming that the formula is fixed, is also in PSPACE.

C.2 Hardness Problem

The PSPACE-hardness of the problem can be obtained by a reduction from the
problem of deciding if, for a given nondeterministic finite state automaton A
over an alphabet Σ, the language L(A) is equivalent to the universal language
Σ∗. Let A = (Q, q0, δ, F) be an NFA such that Q is a set of states, q0 ∈ Q is an
initial state, δ : Q × Σ → P(Q) is a transition function, and F ⊆ Q is a set of
final states.

We construct a systemM(A) whose states, except for the initial state s0, can
be classified into two subsystemsM1(A) andM2(A). Intuitively, the subsystem
M2(A) simulates the execution of A and upon reading each input symbol, prob-
abilistically checks whether the current state of the automaton is a final state,
while the subsystem M1(A) simulates the universal language Σ∗, at the same
time synchronising with M2(A) on words which produce a valid run of A.

In particular, each state of M2(A) is a pair of a symbol of the alphabet and
an annotated automaton state, where the latter can be of the form q, qu, qn,
qt, or qtf for q ∈ Q. The state (l, q) is a regular state corresponding to those
of automaton A, representing that the state q is reached from another state by
reading a symbol l. However, from a state (l1, q1) to another state (lx, qx) such
that qx ∈ δ(q1, lx), we need to go through two levels of intermediate states. In the
first level, the state (lx, q

u
x) represents a decision point from which the execution

may or may not conduct a test on the current state. The purpose of the test is
to see if the state qx is a final state. With a chance of 0.5, the path will proceed
to (lx, q

n
x) which denotes that no test will be conducted. With another chance of

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 73

0.5, the path will conduct the test. If qx is not a final state (e.g., the state q2 of
Figure 6), then the execution proceeds to the state (lx, q

t
x), at which the atomic

proposition test is labelled. If qx is a final state (e.g., the state q3 of Figure 6),
then the execution proceeds with 0.25 chance to the state (lx, q

t
x) and another

0.25 chance to the state (lx, q
tf
x), at which both the propositions test and finished

are labelled. From both the states (lx, q
t
x) and (lx, q

tf
x), the execution can only

move to a self-loop.

The subsystem M1(A) consists of states which are pairs of a symbol of the
alphabet and one of the elements in {1, u, n, t}, and its structure mirrors that
of M2(A), with the exception of final states (since M1(A) does not know any-
thing about states of automaton A). The purpose of M1(A) is to make sure
that words which do not produce a valid run of A have a corresponding path
in M(A). The intuition of the construction can be seen from the diagram in
Figure 6 The agent A is given distinct observations t on those states (l, qt)
and (l, qtf), that is, agent A can distinguish whether a test occurs at a mo-
ment. Formally, let AP = {test, finished} be a set of atomic propositions, the
system is M(A) = (Ags, S, Sinit, {ActA}A∈Ags, T, L, {OA}A∈Ags, {obsA}A∈Ags,
{ΩA}A∈Ags, {πA}A∈Ags, {pA}A∈Ags) such that

• Ags = {B}, i.e., there is only a single agent B,

• S = {s0}∪(Σ×(Q∪Qt∪Qtf∪Qu∪Qn∪{1, u, n, t})), whereQt = {qt | q ∈ Q},
Qtf = {qtf | q ∈ Q}, Qu = {qu | q ∈ Q} and Qn = {qn | q ∈ Q},
• Sinit = {s0} with µ0(s0) = 1,

• ActB = {aε}, i.e., agent B only has a trivial action aε
• the transition function is defined as follows.

– T (s0, aε, (l0, q0)) = T (s0, aε, (l0, 1)) = 0.5 for some l0 ∈ Σ,

– T ((l, q), aε, (l2, q
u
2)) = 1/k(q) if q2 ∈ δ(q, l2), where k(q) = |{(l2, q2) | q2 ∈

δ(q, l2)}|,
– T ((l, qu), aε, (l, q

n)) = 0.5,

– T ((l, qu), aε, (l, q
t)) = 0.5, if q /∈ F ,

– T ((l, qu), aε, (l, q
t)) = T ((l, qu), aε, (l, q

tf)) = 0.25, if q ∈ F ,

– T ((l, qn), aε, (l, q)) = T ((l, qt), aε, (l, q
t)) = T ((l, qtf), aε, (l, q

tf)) = 1,

– T ((l, 1), aε, (l2, u)) = 1/|Σ|,
– T ((l, u), aε, (l, n)) = T ((l, u), aε, (l, t)) = 0.5, and

– T ((l, n), aε, (l, 1)) = T ((l, t), aε, (l, t)) = 1.

• test ∈ L((l, qt)), test ∈ L((l, qtf)), finished ∈ L((l, qtf)), test ∈ L((l, t)).

• The observation of the agent B is defined as follows.

– obsB((l, q)) = obsB((l, qu)) = obsB((l, qn)) = obsB((l, 1)) = obsB((l, u)) =
obsB((l, n)) = l, and

– obsB((l, qt)) = obsB((l, qtf)) = obsB((l, t)) = l ∧ t.
• other components are omitted as they are not used in this reduction.

In such a system, we have that L(A) = Σ∗ if and only if

M(A) |= testR(¬test ∨ B<1
A (¬finished))

74 X. Huang, M. Kwiatkowska, M. Olejnik

(l1, q1)(l1, q1)

(l2, q
u
2)(l2, q
u
2) (l3, q

u
3)(l3, q
u
3)

(l2, q
n
2)(l2, q
n
2) (l2, q

t
2)(l2, q
t
2) (l3, q

n
3)(l3, q
n
3) (l3, q

t
3)(l3, q
t
3) (l3, q

tf
3)(l3, q
tf
3)

(l2, q2)(l2, q2) (l3, q3)(l3, q3)

0.50.5 0.50.5 0.50.5 0.250.25
0.250.25

1
k(q1)

1
k(q1)

1
k(q1)

1
k(q1)

…

…

1.01.0 1.01.0
1.01.0 1.01.0

1.01.0

(l0, q0)(l0, q0) s0s0

(l0, 1)(l0, 1)

0.50.5

0.50.5

…

(l4, u)(l4, u)

(l4, n)(l4, n)

1
|⌃|
1

|⌃|

1
|⌃|
1

|⌃|

(l4, 1)(l4, 1)

0.50.5

1.01.0
1

|⌃|
1

|⌃|
…

1
|⌃|
1

|⌃|

(l4, t)(l4, t)

1.01.0

0.50.5M2(A)M2(A)

M1(A)M1(A)

Fig. 6. Diagram for the reduction from universality problem of NFA

where R is the release operator of LTL. To see this, we show that the language
L(A) is not universal if and only if there exists an initialised infinite path ρ ∈
IPath

M(A)(s0)
T such that M(A), ρ |= (¬test)U(test ∧ B≤0B (finished)).

(=⇒) If the language is not universal, then there exists a word w = l1...lk
such that no execution of A on w finishes in a final state. From l1...lk, we can
construct a finite path ρ1 = s0(l0, 1)(l1, u)(l1, n)(l1, 1)...(lk−1, u)(lk−1, n)(lk−1, 1)
(lk, u)(lk, t) in M(A), but not able to find a path ρ2 = (l, q0)(l1, q

u
1)(l1, q

n
1)

(l1, q1)...(lk−1, quk−1)(lk−1, qnk−1)(lk−1, qk−1)(lk, q
u
k)(lk, q

tf
k). To see this, we note

that each block (lx, q
u
x)(lx, q

n
x)(lx, qx) for 1 ≤ x ≤ k − 1 represents a piece of

execution that moves from a state (lx−1, qx−1) to another state (lx, qx), such
that qx ∈ δ(qx−1, lx), without conducting a test. At the state (lk, q

u
k), a decision

is made to conduct a test. However, because the word w is not a word of A,
the test will not move into the state (lk, q

tf
k). Otherwise, it contradicts with the

construction of M(A) that only a final state can move into a state of the form
(l, qtf).

Because there does not exist such a path ρ2, we have that M(A), ρ1 |=
B≤0B finished. Moreover, for all the states s before (lk, q

t
k) on the paths ρ1, we have

thatM(A), s |= ¬test, and for the state (lk, q
t
k), we have thatM, (lk, q

t
k) |= test.

Further, because agent B can observe the test action, the check of its beliefs will
only concern those paths ρ′1 on which the test action is only taken in the last
state. Therefore, the probability, under the condition of agent B’s observations,
will not leak into those states of the form (l, qf), and we have M(A), ρ1 |=
¬testU(test ∧ B≤0B finished). Because the until operator assumes the finiteness of

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 75

the path, the latter means that M(A), ρ1δ |= ¬testU(test ∧ B≤0B finished) for any
infinite paths δ that is consistent with the path ρ1.

(⇐=) If M(A), ρ |= (¬test)U(test ∧ B≤0B (finished)) for some infinite path ρ,

then there must exist a finite path ρ1 such that M(A), ρ1 |= B≤0B (finished) and
there is a first test occurs on the state last(ρ1). Now we define function w(ρ)
as that w(ρ1ρ2) = w(ρ1)w(ρ2) and w((l, q)) = l. Intuitively, it abstracts the
alphabets from the paths. Therefore, we have that w(ρ1) is a word of A that
cannot reach a final state.

Finally, we also need to show that the systemM(A) satisfies the constraints.
Note that, the expanded system has two kinds of SCCs. The first kind of SCCs
include transitions on which no test action is conducted, and the second kind
of SCCs include a self loop on those states with a test action. For both the
kinds of SCCs, agent B’s belief about the atomic proposition finished is kept the
same: for the first kind of SCCs, it is always the case that B≤0B (finished) while

for the second kind of SCCs, it can be B≤0B (finished) or B>0
B (finished), depending

on whether the current path can be abstracted into a word of A, and the belief
values will not change.

Not that, because the formula testR(¬test∨B<1
B (¬finished)) is constant with

respect to different instances of automata A, the PSPACE lower bound is also
a lower bound of program complexity. Moreover, the formula complexity, which
measures the complexity of problem by the size of the formula by assuming
that the system is constant, is also PSPACE-complete: the lower bound comes
from the LTL model checking and its upper bound can be derived directly from
the combined complexity. Putting the above together, the problem is PSPACE-
complete for combined complexity, program complexity, and formula complexity.

D A Polynomial Time Fragment

A stochastic automaton is a tuple SA = (Q,A, α, PI) where Q is a set of states,
A is a set of symbols, α : Q × A × Q → [0, 1] is a transition function such
that for every q ∈ Q we have

∑
a∈A

∑
q′∈Q α(q, a, q′) = 1, and PI : Q → [0, 1]

is an initial distribution over Q such that
∑
q∈Q PI(q) = 1. Note that, the

stochastic automata defined here are different with the probabilistic automata
in Section A: a probabilistic automaton requires that for every q ∈ Q and a ∈ A
we have

∑
q′∈QMa(q, q′) = 1. Given a sequence ρ of symbols, the acceptance

probability of ρ in a stochastic automaton SA is∑
q∈Q

(PI(q)×
∑
q′∈Q

α(q, ρ, q′))

where α(q, ρ, q′) is defined as follows: α(q, ρa, q′) =
∑
q′′∈Q α(q, ρ, q′′)×α(q′′, a, q′)

and α(q, ε, q) = 1 for ε an empty sequence of symbols. Two stochastic automata
are equivalent if for each string ρ ∈ A∗, they accept ρ with equal probability
[50].

Given a stochastic automaton SA = (Q,A, α, PI), a pair D = (QD, αD)
is a component of SA if QD ⊆ Q and for all q, q′ ∈ QD and a ∈ A, we have

76 X. Huang, M. Kwiatkowska, M. Olejnik

αD(q, a, q′) = α(q, a, q′). We say that D is a strongly connected component
(SCC) if for all q, q′ ∈ QD, there exists a sequence ρ of symbols such that
αD(q, ρ, q′) > 0, where the computation of αD(q, ρ, q′) can be done recursively
as follows: αD(q, ρa, q′) =

∑
q′′∈QD

αD(q, ρ, q′′)×αD(q′′, a, q′) and αD(q, ε, q) = 1
for ε an empty sequence of symbols. An SCC is closed if for all q ∈ QD we have∑
a∈A

∑
q∈QD

αD(q, a, q′) = 1.

Constraints Assume that we are given a system M and a formula 2(ψ ⇒
P./q3B≥1A ψ) or 2(ψ ⇒ P./q3DT≥1A,Bψ) such that

• ψ does not contain any belief or trust formulas,

• ψ is of CTL-style, i.e., there is no direct nesting of temporal operators, and

• the systemM satisfies thatM |= 2(ψ ⇒ 2ψ), i.e., once formula ψ holds, it
will hold since then.

We consider their negated specification formulas 3(ψ∧P.̂/1−d2B>0
A ¬ψ) or 3(ψ∧

P.̂/1−d2DT>0
A,B¬ψ), and the algorithm, to be given below, is to determine the

existence of a witness for them. We make a remark here that, the polynomial
time complexity of this fragment relies on the Assumption 2 that the transition
function T of the system M is deterministic, i.e., for every state s ∈ S there is
a unique a ∈ Act such that

∑
s′∈S T (s, a, s′) = 1. If this restriction is relaxed by

allowing the possibility of more than one actions a ∈ Act with
∑
s′∈S T (s, a, s′) =

1, it is expected that the complexity could be higher.

Algorithm Fist of all, we need to compute PrM,s(¬ψ) or infx∈ωi
B(s) PrM,B.i(s,x)(¬ψ)

for every state s and formula ¬ψ, depending on which operator, B>0
A or DT>0

A,B ,
the formula ¬ψ is in the scope of. Recall that PrM,s(ψ) is the probability of
satisfying ψ among all the temporal paths starting from state s. Because of the
restrictions on ψ, these can be computed in polynomial time, using a standard
PCTL model checking procedure on DTMCs. We can define PrM,ρ(ψ) for ρ a
path as PrM,last(ρ)(ψ), and have the following proposition.

Proposition 6. For a formula ψ without any belief or trust operator, we have
that PrM,ρ(ψ) = PrM,ρ′(ψ) and infx∈ωi

B(last(ρ)) PrM,ρ(ψ) = infx∈ωi
B(last(ρ′)) PrM,ρ′(ψ)

whenever last(ρ) = last(ρ′).

Because belief formulas and trust formulas can be handled in a similar way,
in the following we only work with belief formulas. The technique can be adapted
to work with trust formulas. From the system M, we can construct a system
M# = (S × S, T#, S#

init, L
#) such that

• S#
init = {(s1, s2) | s1, s2 ∈ Sinit, obsA(s1) = obsA(s2)},

• T#((s1, s2), (a1, a2), (s′1, s
′
2)) = (T (s1, a1, s

′
1), T (s2, a2, s

′
2)) if obsA(s′1) = obsA(s′2),

PrM,s′2
(ψ) = 0, T (s1, a1, s

′
1) > 0, and T (s2, a2, s

′
2) > 0, and

• L#((s1, s2)) = (L(s1), L(s2)).

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 77

Intuitively, M# is the production of two copies of the system M such that
the two copies preserve the same observations along the transitions (by letting

obsA(s1) = obsA(s2) in S#
init and obsA(s′1) = obsA(s′2) in T#) and the second

copy always selects those states which do not satisfy the formula ψ (by letting
PrM,s′2

(ψ) = 0). On such a system M#, we define operator Lk for k ∈ {1, 2}
such that Lk(M#) = (S × S, T#

k , S
#
init,k, L

#
k) where

• sk ∈ S#
init,k if (s1, s2) ∈ S#

init and k ∈ {1, 2}.
• T#

k ((s1, s2), (a1, a2), (s′1, s
′
2)) is the kth component of T#((s1, s2), (a1, a2),

(s′1, s
′
2)), and

• L#
k ((s1, s2)) is the kth component of L#((s1, s2)).

Intuitively, in Lk(M#), we only consider those initial and transition probabilities
of the kth copy of the system M.

Let Q#
D ⊆ S × S be a set of states. A component of M# is a pair D# =

(Q#
D, T

#
D). We define T#

k,D as the kth component of T#
D for k ∈ {1, 2}.

Definition 24. We say that the component D# is an SCC if either (Q#
D, T

#
1,D)

or (Q#
D, T

#
2,D) is an SCC, and is a double-closed SCC if both (Q#

D, T
#
1,D) and

(Q#
D, T

#
2,D) are closed SCCs.

By the construction of M#, we have

Proposition 7. (Q#
D, T

#
1,D) is an SCC if and only if (Q#

D, T
#
2,D) is an SCC.

Moreover, given (Q#
D, T

#
k,D), we can compute a stationary distribution for

each of (Q#
D, T

#
1,D) and (Q#

D, T
#
2,D). Such a stationary distribution always exists

and uniquely exists for a finite (Q#
D, T

#
k,D), which is a DTMC. Let µ#

k,D be the

stationary distribution of (Q#
D, T

#
k,D). Then, from a component D# = (Q#

D, T
#
D),

we can construct two stochastic automata SA1(D#) = (Q#
D, A, T

#
1,D, µ

#
1,D) and

SA2(D#) = (Q#
D, A, T

#
2,D, µ

#
2,D) where µ#

1,D and µ#
2,D are their initial distribu-

tions.

Definition 25. We say that D# is internal equivalent when two automata SA1(D#)

and SA2(D#) are equivalent. A component D# = (Q#
D, T

#
D) is formula-specific

with respect to the formula ψ if PrM,s(ψ) > 0 for some (s, t) ∈ Q#
D and t ∈ Q.

Recall that, two stochastic automata are equivalent if they have the same
acceptance probability for all strings. Note that, in the construction of M#, we
require that the second copy always selects those states which do not satisfy the
formula ψ. Therefore, a formula-specific component suggests that the component
contains inconsistency between two copies of the system M with respect to the
formula ψ.

Let Path(D#) be the set of paths in D#, and IPath(D#) and FPath(D#)
be the set of infinite and finite paths in D#, respectively. We also extend the

78 X. Huang, M. Kwiatkowska, M. Olejnik

transition relations T#
1,D and T#

2,D to work with paths in Path(D#), similar as

that of α and αD in stochastic automata. We do not define obs#A because the
two copies of the system have the same observations.

Let ρ be a finite path such that last(ρ) is in an SCC D#. Given a path ρ1 in
the SCC D#, we let obsA(ρ1) = {ρ ∈ Path(D#) | obsA(ρ) = obsA(ρ1)} be the
set of paths that agent A cannot distinguish. Then we write

g(ρ,D#, k, ε) ≡ T#
1,D({ρ1 ∈ FPath(D#) |

T#
2,D(obsA(ρρ1))

T#
1,D(obsA(ρρ1))

> ε, |ρ1| = k})

for the probability of infinite continuations of ρ whose probability ratio between
the two copies of the system is maintained (i.e., greater than ε). Moreover,
we let g(ρ,D#) = 1, if for all number k ∈ N, there exists ε > 0 such that
g(ρ,D#, k1, ε) = 1, and g(ρ,D#) = 0, otherwise. We have the following propo-
sitions.

Proposition 8. If D# is not internal equivalent then g(ρ,D#) = 0 for all finite
paths ρ whose last state is on D#.

Proof. Let ρ1 be the shortest path on which the two copies of the system have
different acceptance probabilities. By the construction of M#, some transitions
are removed due to the restriction of PrM,s2(ψ) = 0. Therefore, the proba-
bility of the second copy is less than the one of the first copy, and we have

T#
2,D(obsA(ρρ1))

T#
1,D(obsA(ρρ1))

< 1. Then we can construct a path ρ2 which contains a large

number of pieces of observations that are equivalent to ρ1. With this path,

we have that, for all ε > 0,
T#
2,D(obsA(ρρ2))

T#
1,D(obsA(ρρ2))

< ε. Therefore, we have that

g(ρ,D#) = 0.

Proposition 9. g(ρ,D#) = 1 if and only if D# is double-closed and internal
equivalent.

Proof. (⇐) Assume that D# is double-closed and internal equivalent. By the
definition of internal equivalence, for all finite paths ρ1 ∈ FPath(D#), we

have that T#
2,D({ρ2 ∈ FPath(D#) | obsA(ρ2) = obsA(ρ1)}) = T#

1,D({ρ2 ∈
FPath(D#) | obsA(ρ2) = obsA(ρ1)}), which means that T#

2,D(obsA(ρρ1)) =

T#
1,D(obsA(ρρ1)) > 0. Because D# is double-closed, we have that g(ρ,D#) = 1.

(⇒) Assume that g(ρ,D#) = 1. We show that both conditions are indispens-
able. If D# is not double-closed and it is the first copy that is not closed, then
the probability of T#

1,D will flow out of the SCC. Therefore, g(ρ,D#, k, ε) = 0 for

a sufficiently large number k. If D# is not double-closed and it is the second copy

that is not closed, then
T#
2,D(obsA(ρρ1))

T#
1,D(obsA(ρρ1))

= 0 for a sufficiently large |ρ1|, which

Reasoning about Cognitive Trust in Stochastic Multiagent Systems 79

means that g(ρ,D#) = 0. Moreover, the case in which D# is double-closed but
not internal equivalent is guaranteed by Proposition 8.

Proposition 10. Let ρ be a finite path such that last(ρ) is on an SCC D#, and
D# is double-closed, internal equivalent, and formula-specific with respect to ψ.
Then g(ρ,D#) = 1 if and only if for all ρ1 ∈ Path(D#), (

∑
obsA(ρ′)=obsA(ρρ1)

beA(ρ′)×
PrM,ρ′(¬ψ)) > 0.

Proof. This is equivalent to proving that

∑
obsA(ρ′)=obsA(ρρ1)

beA(ρ′)× PrM,ρ′(¬ψ) > 0 iff
T#
2,D(obsA(ρρ1))

T#
1,D(obsA(ρρ1))

> 0,

for ρ1 ∈ Path(D#).

Now, by the construction ofM# (in which the second copy satisfies PrM,s2(ψ) =

0) and the three conditions of D#, we have that

∑
obsA(ρ′)=obsA(ρρ1)

beA(ρ′)× (PrM,ρ′(¬ψ) > 0) =
T#
2,D(obsA(ρρ1))

T#
1,D(obsA(ρρ1)

.

The equivalence of∑
obsA(ρ′)=obsA(ρρ1)

beA(ρ′)× (PrM,ρ′(¬ψ) > 0) > 0

and ∑
obsA(ρ′)=obsA(ρρ1)

beA(ρ′)× PrM,ρ′(¬ψ) > 0

can be seen by their structures.

With these propositions, we have the following algorithm.

Algorithm 3. After the computation of PrM,s(¬ψ) or infx∈ωi
B(s)PrM,B.i(s,x)(¬ψ)

for every state s and formula ¬ψ, the algorithm proceeds by the following sequen-
tial steps:

1. compute the set of SCCs ofM# such that D# is formula-specific with respect
to ψ, double-closed, and internal equivalent,

2. for every state s satisfying ψ, we do the following:

(a) compute the reachability probability to those SCCs from the first step; let
the probability value be p, and

(b) check whether p.̂/1− q.
If there exists a state s that can satisfy the above computation, then the
specification formula does not hold, otherwise holds.

80 X. Huang, M. Kwiatkowska, M. Olejnik

Analysis of Complexity The complexity of the algorithm is in polynomial time.
First of all, the computation of PrM,s(¬ψ) or infx∈ωi

B(s)PrM,B.i(s,x)(¬ψ) can
be done in polynomial time because ψ is of CTL-style and contains no belief
or trust formula. Second, for the first step of the algorithm, the computation
of all SCCs of M#, whose size is quadratic with respect to M, can be done in
polynomial time by Tarjan’s algorithm, and the checking of the three conditions
(i.e., formula-specific with respect to ψ, double-closed, and internal equivalent)
can be done in polynomial time. In particular, the checking of internal-equivalent
of an SCC can be done in polynomial time is a result of the existence of a
polynomial time algorithm for the equivalence of stochastic automata [50]. Third,
for the second step of the algorithm, the computation of reachability probability
on M# can be done in polynomial time, and the comparison of values can be
done in constant time.

	Reasoning about Cognitive Trust in Stochastic Multiagent Systems

