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Abstract

Deep neural networks (DNNs) have a wide range of applications, and
software employing them must be thoroughly tested, especially in safety-
critical domains. However, traditional software test coverage metrics cannot
be applied directly to DNNs. In this paper, inspired by the MC/DC cover-
age criterion, we propose a family of four novel test coverage criteria that
are tailored to structural features of DNNs and their semantics. We vali-
date the criteria by demonstrating that test inputs that are generated with
guidance by our proposed coverage criteria are able to capture undesired
behaviours in a DNN. Test cases are generated using a symbolic approach
and a gradient-based heuristic search. By comparing them with existing
methods, we show that our criteria achieve a balance between their ability
to find bugs (proxied using adversarial examples and correlation with
functional coverage) and the computational cost of test input generation.
Our experiments are conducted on state-of-the-art DNNs obtained using
popular open source datasets, including MNIST, CIFAR-10 and ImageNet.

1 Introduction

Artificial intelligence (AI), and specifically deep neural networks (DNNs), can
deliver human-level results in some specialist tasks. There is now a prospect
of a wide-scale deployment of DNNs in safety-critical applications such as self-
driving cars. This naturally raises the question how software implementing
this technology should be tested, validated and ultimately certified to meet the
requirements of the relevant safety standards.

Research and industrial communities worldwide are making significant efforts
towards the best practice for safety assurance for learning-enabled autonomous
systems. Among all efforts, we mention a proposal under consideration by IEEE
to form an official technical committee for verification of autonomous systems [1].
Moreover, as stated in [29], the learnt algorithm should be verified with an
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appropriate level of coverage. This paper develops a technical solution to support
these efforts.

The software industry relies on testing as a primary means to provide stake-
holders with information about the quality of a software product or service [17].
Research in software testing has resulted in a broad range of approaches to
assess software at different criticality levels. In white-box testing, the structure
of a program is exploited to (perhaps automatically) create test cases. Code
coverage criteria (or metrics) have been designed to quantify the completeness of
a test suite. For example, a test suite with 100% statement coverage exercises all
statements at least once. While it is arguable to what extent coverage ensures
correct functionality, high coverage is able to increase users’ confidence (or trust)
in the program. Structural coverage metrics are used as a means of assessment
in several high-tier safety standards; for instance, DO-178C requires MC/DC
coverage for function bodies [28]. MC/DC was developed by NASA, and is
used in avionics software development guidance to ensure adequate testing of
applications with the highest criticality.

AI systems that use DNNs are typically implemented in software. However,
(white-box) testing for traditional software cannot be directly applied to DNNs.
In particular, the flow of control in DNNs is typically simplistic and is unable to
capture the knowledge that is learned during the training phase. The definition of
useful structural coverage criteria for DNNs is therefore nontrivial [4]. Meanwhile,
DNNs exhibit “bugs” that differ to those in traditional software. Notably,
adversarial examples [34], in which two apparently indistinguishable inputs yield
contradicting decisions, are a prominent safety concern in DNNs.

We believe that the testing of DNNs, guided by proper coverage criteria, must
help developers to find those bugs; it has to be able to quantify the robustness of
the network and it needs to support the analysis of the internal structures of the
DNN. The tests should enable developers to understand and compare different
networks and should be able to support safety-related arguments.

Technically, DNNs feature not only an architecture, which bears some sim-
ilarity with traditional software programs, but also a large set of parameters,
which are tuned by the training procedure. Any approach to testing DNNs needs
to consider the unique properties of DNNs, such as the syntactic connections
between neurons in adjacent layers (neurons in a given layer interact with each
other and then pass information to higher layers), the activation functions used
and the semantic relationship between layers.

In this paper we propose a novel white-box testing methodology for feedfor-
ward DNNs. In particular, we propose a family of four test coverage criteria,
inspired by the MC/DC test coverage criterion [14] from traditional software
testing, that fit the distinct properties of DNNs mentioned above. It is known
that an overly weak criterion may lead to insufficient testing; e.g., 100% neuron
coverage [27] can be achieved by a simple test suite comprised of a few input
vectors from the training dataset. Conversely, an overly strong criterion may
lead to computational intractability; e.g., 100% safety coverage is shown to
be difficult to achieve in [39]. Our criteria, when applied to guide test case
generation, deliver both appropriate testing (i.e., it is non-trivial to achieve 100%
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coverage) and are computationally feasible. As a matter of fact, except for the
safety coverage criterion in [39], all existing structural test coverage criteria for
DNNs [27, 21] are special cases of our proposed criteria. Our criteria are the first
that capture and quantify the causal relationships in a DNN that are critical for
understanding the behaviour of the neural network [41, 25].

Subsequently, we validate the utility of our MC/DC variant by applying it
to different approaches to DNN testing. First, we implement state-of-the-art
concolic testing for DNNs [33]. Concolic testing combines concrete testing with
a symbolic encoding. Specifically, a linear programming (LP) based algorithm
produces a new test case (i.e., an input vector) by encoding a fragment of
the DNN and then minimises the difference between the new and the current
input vector. LP can be solved efficiently in PTIME, so the concolic test-case
generation algorithms can generate a test suite with low computational cost for
small to medium-sized DNNs. The LP test generation algorithm does not apply
to DNNs with tanh or sigmoid activation functions, or to DNNs that are very
large. We have therefore developed a gradient descent based algorithm that
takes the test condition as the optimisation objective, and searches for test cases
in an adaptive manner under the guidance of the first-order derivative of the
DNNs; this method is able to scale to large DNNs and is a good fit for tanh or
sigmoid activation functions.

Finally, we experiment with our test coverage criteria on state-of-the-art
neural networks that have a broad range of sizes (from a few hundred up to
millions of neurons) to demonstrate the utility of our criteria with respect to four
aspects: bug finding (proxied by adversarial examples), their ability to quantify
the safety of a DNN, the efficiency of testing input generation, and whether they
can support the analysis of the structure of a DNN.

2 Preliminaries: Deep Neural Networks

A (feedforward and deep) neural network [12], or DNN, is a tuple N = (L, T,Φ),
where L = {Lk | k ∈ {1, . . . ,K}} is a set of layers, T ⊆ L × L is a set of
connections between the layers and Φ = {φk | k ∈ {2, . . . ,K}} is a set of
functions, one for each non-input layer. In a DNN, L1 is the input layer and
LK is the output layer; the other layers are called hidden layers. Each layer Lk

consists of sk neurons (or nodes). The l-th node of layer k is denoted by nk,l.
Each node nk,l for 1 < k < K and 1 ≤ l ≤ sk is associated with two variables uk,l
and vk,l, to record the values before and after an activation function, respectively.
ReLU [23] is by far the most popular activation function for DNNs, according to
which the activation value of each node of hidden layers is

vk,l = ReLU(uk,l) =

{
uk,l if uk,l ≥ 0

0 otherwise.
(1)

Each input node n1,l for 1 ≤ l ≤ s1 is associated only with a variable v1,l and
each output node nK,l for 1 ≤ l ≤ sK is associated only with a variable uK,l,
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Figure 1: A simple neural network

because no activation function is applied on them. We let DLk
= Rsk be the

vector space associated with layer Lk, one dimension for each variable vk,l. Every
point x ∈ DL1

is a possible input.
Except for the input nodes, every node is connected to nodes in the preceding

layer by trained parameters such that for all k and l with 2 ≤ k ≤ K and
1 ≤ l ≤ sk, we have:

uk,l = bk,l +
∑

1≤h≤sk−1

wk−1,h,l · vk−1,h (2)

where wk−1,h,l is the weight for the connection between nk−1,h (i.e., the h-th
node of layer k−1) and nk,l (i.e., the l-th node of layer k), and bk,l is the so-called
bias for node nk,l. We note that this definition can express both fully-connected
functions and convolutional functions. The function φk is the combination of
Equations (1) and (2). Owing to the use of the ReLU given in (1), the behavior
of the neural network is highly non-linear.

Finally, for any input, the DNN assigns a label, which is the index of the
node of the output layer with the largest value: label = argmax1≤l≤sKuK,l. Let
L be the set of labels.

Example 1. Figure 1 is a simple DNN with four layers. Its input space is
DL1

= R2 where R is the set of real numbers.

Given one particular input x, the DNN N is instantiated and we use N [x] to
denote this instance of the network. In N [x], for each node nk,l, the values of the
variables uk,l and vk,l are fixed and denoted by uk,l[x] and vk,l[x], respectively.
Therefore, the activation or deactivation of each ReLU operation in the network
is also determined. We define

signN (nk,l, x) =

{
+1 if uk,l[x] = vk,l[x]

−1 otherwise.
(3)

The subscript N will be omitted when clear from the context. The classification
label of x is denoted by N [x].label .
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Example 2. Let N be a DNN whose architecture is in Figure 1. Assume that the

weights for the first two layers are W1 =
[
4 0 −1
1 −2 1

]
and W2 =

 2 3 −1
−7 6 4
1 −5 9

 and that

all biases are 0. When given an input x = [0, 1], we get sign(n2,1, x) = +1, since
u2,1[x] = v2,1[x] = 1, and sign(n2,2, x) = −1, since u2,2[x] = −2 6= 0 = v2,2[x].

To keep the discussion simple, the presentation focuses on DNNs with fully
connected layers. However, as shown in our experiments, our method can also be
applied to other popular DNN structures, such as convolutional and max-pooling
layers, and sigmoid activation functions used in state-of-the-art DNNs, which
are not fully connected.

3 Adequacy Criteria for Testing DNNs

3.1 Test Coverage and MC/DC

A test adequacy criterion, or a test coverage metric, is used to quantify the
degree of adequacy to which the software is tested by a test suite using a set of
test coverage conditions. Throughout this paper, we use “criterion” and “metric”
interchangeably.

Our coverage criteria for DNNs are inspired by established practices in
software testing, and in particular the MC/DC test coverage criterion [14],
but are designed for the specific attributes of DNNs. MC/DC is a method for
measuring the extent to which safety-critical software has been tested. At its core
is the idea that if a choice can be made, all the possible factors (conditions) that
contribute to that choice (decision) must be tested. For traditional software, both
conditions and the decision are usually Boolean variables or Boolean expressions.

Example 3. The decision

((a > 3) ∨ (b = 0)) ∧ (c 6= 4) (4)

contains the conditions (a > 3), (b = 0) and (c 6= 4). The following four test
cases provide full MC/DC coverage:

1. (a > 3)=false, (b = 0)=true, (c 6= 4)=false

2. (a > 3)=true, (b = 0)=false, (c 6= 4)=true

3. (a > 3)=false, (b = 0)=false, (c 6= 4)=true

4. (a > 3)=false, (b = 0)=true, (c 6= 4)=true

The first two test cases already provide both condition coverage (i.e., all possibil-
ities for the conditions are exercised) and decision coverage (i.e., both outcomes
for the decision are exercised). The last two test cases are needed for MC/DC
because each condition should evaluate to true and false at least once, and should
independently affect the decision outcome (e.g., the effect of the first condition
can be seen by comparing cases 2 and 3).
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3.2 Decisions and Conditions in DNNs

Our instantiation of the concepts “decision” and “condition” for DNNs is inspired
by the similarity between Equation (2) and Equation (4) and the semantics of
DNNs. The information represented by nodes in the next layer can be seen as
a “summary” (implemented by the layer function, the weights and the bias) of
the information in the current layer. It has been claimed that nodes in a deeper
layer (having the larger layer index) represent “more complex” attributes of the
input [41, 25].

We let Ψk ⊆ P(Lk) be a set of subsets of nodes at layer k. Without loss
of generality, each element of Ψk, i.e., a subset of nodes in Lk, represents a
feature learned at layer k. That is, Ψk is the set of features and any ψk,l ∈ Ψk

is a feature. Therefore, the core idea of our criteria is to ensure that not only
the presence of a feature needs to be tested, but also the effects of less complex
features on a more complex feature must be tested. We use tk = |Ψk| to denote
the number of features in Ψk and ψk,l for 1 ≤ l ≤ tk to denote the set of nodes
of the l-th feature. Features can be overlapping, i.e., there may be l1 and l2 with
ψk,l1 ∩ ψk,l2 6= ∅. We consider every feature ψk,l for 2 ≤ k ≤ K and 1 ≤ l ≤ tk
a decision, and say that its conditions are those features connected to it in
the layer k − 1, i.e., {ψk−1,l′ | 1 ≤ l′ ≤ tk−1}. For simplicity, the DNN model
described in Section 2 only considers a fully connected structure. In the more
general case, two features in adjacent layers of a DNN need not be connected,
and thus there is no causal effect between such feature pairs.

The concept of a “feature” generalises the basic building block in the DNN
from a single node to a set of nodes. A single node feature can be represented
as a singleton set. In practice, this definition of “feature” is a good fit for the
tensor implementation in popular machine learning libraries [2] and there are a
variety of applicable feature extraction methods such as SIFT [20], SURF [5],
etc. To work with features, we extend the notations uk,l[x] and vk,l[x] for a node
nk,l to a feature ψk,l and write ψk,l[x] and φk,l[x] for the vectors before and after
the activation function, respectively.

Definition 1. A feature pair (ψk,i, ψk+1,j) are two features in adjacent layers
k and k + 1 such that 1 ≤ k < K, 1 ≤ i ≤ tk and 1 ≤ j ≤ tk+1. Given a DNN
N , we write O(N ) (or, simply O) for the set of its feature pairs. We may also
call (ψk,i, ψk+1,j) a neuron pair if both ψk,i and ψk+1,j are singleton sets.

Our new criteria are defined by instantiating the definitions of what it means
to “change” the result of a condition and of a decision in different ways. Unlike
Boolean variables or expressions, where it is obvious what a “change” is, i.e.,
true becomes false or false becomes true, in DNNs there are many different ways
of defining that a decision is affected by the changes of the conditions. Before
giving definitions for “affected” in Section 3.3, we start by clarifying when a
feature “changes”.

First, the change observed on a feature can be either a sign change or a value
change.
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Definition 2 (Sign Change). Given a feature ψk,l and two test cases x1 and x2,
the sign change of ψk,l is triggered by x1 and x2, denoted by sc(ψk,l, x1, x2),
iff sign(nk,j , x1) 6= sign(nk,j , x2) for all nk,j ∈ ψk,l. Moreover, we write
nsc(ψk,l, x1, x2) if sign(nk,j , x1) = sign(nk,j , x2) for all nk,j ∈ ψk,l.

Note that nsc(ψk,l, x1, x2) 6= ¬sc(ψk,l, x1, x2). That is, nsc is one special
case when sc does not hold.

Before proceeding to another kind of change called value change, we need
notation for the value function. A value function is denoted by g : Ψk ×DL1 ×
DL1

→ {true, false}. Simply speaking, it expresses the intuition (or knowledge)
of the developer of the DNN about what constitutes a “significant change” on
the feature ψk,l, by specifying the difference between two vectors ψk,l[x1] and
ψk,l[x2]. We do not impose restrictions on the form of a value function, except
that for practical reasons, it needs to be evaluated efficiently. Here, we give a
few examples.

Example 4. For a singleton set ψk,l = {nk,j}, the function g(ψk,l, x1, x2) can

express |uk,j [x1]− uk,j [x2]| ≥ d (absolute change) or
uk,j [x1]
uk,j [x2]

> d∨ uk,j [x1]
uk,j [x2]

< 1/d

(relative change). It can also be a constraint on one of the values uk,j [x2], say
an upper bound uk,j [x2] > d.

Example 5. For the general case, the function g(ψk,l, x1, x2) can express
the distance between two vectors ψk,l[x1] and ψk,l[x2] by norm-based distances
||ψk,l[x1] − ψk,l[x2]||p ≤ d for a real number d and a distance measure Lp, or
structural similarity distances such as SSIM [38]. It can also express constraints
between nodes of the same layer, such as

∧
j 6=i vk,i[x1] ≥ vk,j [x1].

The distance measure Lp could be L1 (Manhattan distance), L2 (Euclidean
distance), L∞ (Chebyshev distance) and so on. We remark that there is no
consensus on which norm is the best to use and, furthermore, the appropriate
choice is likely domain specific. Finally, we define “value change” as follows.

Definition 3 (Value Change). Given a feature ψk,l, two inputs x1 and x2, and
a value function g, the value change of ψk,l w.r.t. g is triggered by x1 and x2,
denoted by vc(g, ψk,l, x1, x2), if g(ψk,l, x1, x2)=true. We write ¬vc(g, ψk,l, x1, x2)
when this condition is not satisfied.

3.3 Coverage Criteria

In this section, we present a family of four criteria that capture the state changes
in a DNN that were just defined.

Definition 4 (Sign-Sign Coverage, or SS Coverage). A feature pair α =
(ψk,i, ψk+1,j) is SS-covered by two test cases x1, x2, denoted by SS (α, x1 , x2 ), if
the following conditions are satisfied by the DNN instances N [x1] and N [x2]:

• sc(ψk,i, x1, x2) and nsc(Pk \ ψk,i, x1, x2);

• sc(ψk+1,j , x1, x2)
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input n2,1 n2,2 n2,3 n3,1 n3,2 n3,3
(0.1, 0) 0.4 0 −0.1 (0) 0.8 1.2 −0.4 (0)
(0,−1) −1(0) 2 −1 (0) −14 (0) 12 8
sign ch. sc ¬sc ¬sc sc ¬sc sc

(0, 1) 1 −2 (0) 1 3 −2 (0) 8
(0.1, 0.1) 0.5 −0.2 (0) 0 1 1.5 −0.5 (0)
sign ch. ¬sc ¬sc ¬sc ¬sc sc sc

(0,−1) −1 (0) 2 −1 (0) −14 (0) 12 8
(0.1,−0.1) 0.3 0.2 −0.2 (0) −0.8 (0) 2.1 0.5
sign ch. sc ¬sc ¬sc ¬sc ¬sc sc

(0, 1) 1 −2 (0) 1 3 −2 (0) 8
(0.1, 0.5) 0.9 −1 (0) 0.4 2.2 0.7 2.7
sign ch. ¬sc ¬sc ¬sc ¬sc sc ¬sc

Table 1: Activation values and sign changes for the inputs in Examples 6, 7, 8,
9. An entry has the form v, in which v ≥ 0, or u(v), in which u < 0, v = 0, or
sc, denoting that the sign has been changed, or ¬sc, denoting that there is no
sign change.

where Pk is the set of nodes in layer k.

SS coverage provides evidence that the sign change of a condition feature
ψk,i independently affects the sign of the decision feature ψk+1,j of the next
layer. Intuitively, the first condition says that the sign change of feature ψk,i

is triggered by x1 and x2, without changing the signs of other non-overlapping
features. The second says that the sign change of feature ψk+1,j is triggered by
x1 and x2.

Example 6. (Continuation of Example 2) Given inputs x1 = (0.1, 0) and
x2 = (0,−1), we compute the activation values for each node as given in Table 1.
Therefore, we have sc({n2,1}, x1, x2), nsc({n2,2}, x1,
x2), nsc({n2,3}, x1, x2) and sc({n3,1}, x1, x2). By Definition 4, the feature pair
({n2,1}, {n3,1}) is SS-covered by x1 and x2.

SS coverage is close to MC/DC: instead of observing the change of a Boolean
variable (i.e., true → false or false → true), we observe a sign change of a feature.
However, the behavior of a DNN has additional complexity that is not necessarily
captured by a direct adoption of the MC/DC-style coverage to a DNN. We now
give three additional coverage criteria to complement SS coverage.

First, the sign of ψk+1,j may change when transitioning from one test input
to another, even when none of the nodes nk,i in layer k changes its sign. Note
that Pk, the set of all nodes in layer k, is also a feature and thus we write
nsc(Pk, x1, x2) to express that no sign change occurs for any of the nodes in
layer k.
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Definition 5 (Value-Sign Coverage, or VS Coverage). Given a value function g,
a feature pair α = (ψk,i, ψk+1,j) is VS-covered by two test cases x1, x2, denoted
by VS g(α, x1 , x2 ), if the following conditions are satisfied by the DNN instances
N [x1] and N [x2]:

• vc(g, ψk,i, x1, x2) and nsc(Pk, x1, x2);

• sc(ψk+1,j , x1, x2).

Intuitively, the first condition describes the value change of nodes in layer
k and the second requires the sign change of the feature ψk+1,j . Note that,
in addition to vc(g, ψk,i, x1, x2), we need nsc(Pk, x1, x2), which prevents sign
changes for any node at layer k. This is to ensure that the overall change to the
activation pattern in layer k is small.

Example 7. (Continuing Example 2) Given two inputs x1 = (0, 1) and x2 =
(0.1, 0.1), by the computed activation values in Table 1, we have sc({n3,3}, x1, x2)
and no node in layer 2 changes its activation sign, i.e., nsc({n2,1, n2,2, n2,3}, x1, x2).
Thus, by Definition 5, x1 and x2 (given a value function g) can be used to VS-
cover the feature pair, e.g., ({n2,1, n2,2}, {n3,3}).

Until now, we have treated the sign change of a decision feature ψk+1,j as the
equivalent of the change of a decision in MC/DC. This view may still be limited.
For DNNs, a key safety problem [34] related to their high non-linearity is that
an insignificant (or imperceptible) change to the input (e.g., an image) may lead
to a significant change in the output (e.g., its label). We expect that our criteria
can guide test case generation algorithms towards such cases, by working with
two adjacent layers that are finer than the input-output relation. We notice that
the label change in the output layer is the direct result of the changes to the
activation values in the penultimate layer. Therefore, in addition to the sign
change, the change of the value of the decision feature ψk+1,j is also important.

Definition 6 (Sign-Value Coverage, or SV Coverage). Given a value function g,
a feature pair α = (ψk,i, ψk+1,j) is SV-covered by two test cases x1, x2, denoted
by SV g(α, x1 , x2 ), if the following conditions are satisfied by the DNN instances
N [x1] and N [x2]:

• sc(ψk,i, x1, x2) and nsc(Pk \ ψk,i, x1, x2);

• vc(g, ψk+1,j , x1, x2) and nsc(ψk+1,j , x1, x2).

The first condition is the same as that in Definition 4. The difference
is in the second condition, which now considers the feature value change
vc(g, ψk+1,j , x1, x2) with respect to a value function g, by independently modify-
ing the sign of one of its condition features. Intuitively, SV coverage captures
the significant change of a decision feature’s value and complements the sign
change case.
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Example 8. (Continuing Example 2) Consider the feature pair ({n2,1}, {n3,2}).
Given two inputs x1 = (0,−1) and x2 = (0.1,−0.1), by the computed activa-
tion values in Table 1, we have sc({n2,1}, x1, x2) and nsc({n2,2, n2,3}, x1, x2).

If, according to the function g,
u3,2[x1]
u3,2[x2]

≈ 5.71 is a significant change, i.e.,

g(u3,2[x1], u3,2 [x2]) = true, then the pair ({n2,1}, {n3,2}) is SV-covered by x1
and x2.

Finally, we obtain the following definition by replacing the sign change of
the decision in Definition 5 with value change.

Definition 7 (Value-Value Coverage, or VV Coverage). Given two value func-
tions g1 and g2, a feature pair α = (ψk,i, ψk+1,j) is VV-covered by two test cases
x1, x2, denoted by VV g1 ,g2 (α, x1 , x2 ), if the following conditions are satisfied by
the DNN instances N [x1] and N [x2]:

• vc(g1, ψk,i, x1, x2) and nsc(Pk, x1, x2);

• vc(g2, ψk+1,j , x1, x2) and nsc(ψk+1,j , x1, x2).

Intuitively, VV coverage targets scenarios in which there is no sign change
for a condition feature, but in which the value of a decision feature changes
significantly.

Example 9. (Continuation of Example 2) For any i ∈ {1, . . . , 3}, the feature
pair ({ψ2,i}, {ψ3,3}) is VV-covered by the inputs x1 = (0, 1) and x2 = (0.1, 0.5),

subject to the value functions g1 and g2. As shown in Table 1,
u3,3[x1]
u3,3[x2]

≈ 2.96,

for all i ∈ {1, . . . , 3} : nsc({n2,i}, x1, x2) and nsc({n3,3}, x1, x2).

We present four representative variants that best express our idea in terms
of the features and the relationship between the features in neighbouring layers.
While we agree that this choice is empirical and that there exist other ways to
identify causal changes in a neural network, our particular choice is based on
the principle that a) the operations between two adjacent DNN layers drive the
choice of features and b) that there is a straightforward relationship between
the features in two adjacent layers.

3.4 Coverage Metrics

Using the definitions in Section 3.3, we now are able to define the set of properties
that a suite of test cases needs to satisfy for each of our coverage criteria. Let
F = {SS ,VS g ,SV g ,VV g1 ,g2 } be our set of criteria, and let f ∈ F be one of
them. A test suite comprises of a sequence of test inputs and expected test
outputs; our coverage criteria do not consider the expected outputs, and thus,
for the purpose of defining the metric for the case of a stateless network we can
view a test suite T as a finite and unordered set of test inputs, i.e., T ⊆ DL1

.
Let O denote the set of pairs of neurons in a DNN. A test suite T for that DNN
satisfies criterion f completely if

∀α ∈ O ∃ x1, x2 ∈ T : f(α, x1, x2) (5)
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In practice, coverage for all feature pairs is rarely achieved; we therefore compute
the degree to which the test condition f is satisfied by the test suite T .

Definition 8 (Coverage Metric). Given a DNN N , a test condition fixed by
(f,O) and a test suite T , the value of the coverage metric Mf (N , T ) is

Mf (N , T ) =
|{α ∈ O|∃x1, x2 ∈ T : f(α, x1, x2)}|

|O|
(6)

That is, we compute the percentage of the feature pairs that are covered by
test cases in T with respect to the coverage criterion f . Finally, instantiating
f with one of the criteria in F , we obtain four coverage metrics MSS (N , T ),
MVSg (N , T ), MSV g (N , T ) and MVV g1 ,g2 (N , T ).

4 Comparison with Existing Structural Test Cov-
erage Criteria

There have already been proposals for structural test coverage criteria for DNNs.
In this part, we compare our new criteria with safety coverage (MS ) [39], neuron
coverage (MN ) [27] and several of its extensions given in [21], including neuron
boundary coverage (MNB ), multisection neuron coverage (MMN ) and top neuron
coverage (MTN ). While [27] and [39] have been published slightly ahead of our
work, our criteria have been developed in parallel with [21].

A metric M1 is said to be “weaker than” (or is “subsumed by”) another
metric M2, denoted by M1 �M2, iff for any given test suite T on N , we have
M1(N , T ) < 1 implies M2(N , T ) < 1. For instance, as shown in Example 3,
decision coverage and condition coverage are strictly weaker than MC/DC, since
MC/DC coverage cannot be achieved before all decisions and conditions are
covered.

The introduction of the feature relation in this work is very powerful, for
two reasons: 1) the criteria in this paper are stronger than those in [27] and
[21], which only consider the activation status of individual neurons, and 2) it
is non-trivial for safety coverage [39], which is comparable to traditional path
coverage that requires covering every program execution path, to satisfy all test
conditions of our criteria.

In the following, we give a uniform formalisation of the criteria from [27, 39,
21], using the notation introduced in this paper, and we define Mf (N , T ) for
f ∈ {N ,S ,NB ,MN ,TN }.

Definition 9 (Neuron Coverage). A node nk,i is neuron covered by a test input
x, denoted by N (nk,i, x), if sign(nk,i, x) = +1.

Informally, neuron coverage requires that each neuron nk,i must be activated
at least once by some test input. Neuron coverage was later generalised in [21]
using more fine-grained neuron activation conditions, including the boundary
value for a neuron’s activation. For simplicity, we only consider upper bounds

11



when working with neuron boundary coverage. Given a node nk,i and a training
dataset X, we let vuk,i = maxx∈X vk,i[x] be its maximum value over the inputs
in X.

Definition 10 (Neuron Boundary Coverage). A node nk,i is neuron boundary
covered by a test input x, denoted by NB (nk,i, x), if vk,i[x] > vuk,i.

Let rank(nk,i, x) be the rank of vk,i[x] among those values of the nodes at
the same layer, i.e., it refers to the relative activation magnitude of the neuron
under input x among all values in {vk,j [x] | 1 ≤ j ≤ sk}.

Definition 11 (Top Neuron Coverage). For 1 ≤ m ≤ sk, a node nk,i is top-m
neuron covered by x, denoted by TN m(nk,i, x), if rank(nk,i, x) ≤ m.

Let vlk,i = minx∈X vk,i[x]. We can split the interval Ik,i = [vlk,i, v
u
k,i] into m

equal sections and let Ijk,i be the j-th section.

Definition 12 (Multisection Neuron Coverage). Given m ≥ 1, a node nk,i is
m-multisection neuron covered by a test suite T , denoted by MN m(nk,i, T ), if

∀1 ≤ j ≤ m ∃ x ∈ T : vk,i[x] ∈ Ijk,i, i.e., all sections are covered by some test
cases.

Given f ∈ {N ,NB ,TN m} and the set H(N ) of hidden nodes in N (the nodes
of hidden layers of N ), their associated coverage metric can be then defined as
follows:

Mf (N , T ) =
|{n ∈ H(N ) | ∃x ∈ T : f(n, x)}|

|H(N )|
(7)

MMNm (N , T ) can be obtained by a simple adaptation.
We can show that the criteria in [27, 39] are special cases of our criteria

(with a suitable value function g). As exemplar, the “weaker than” relationship
between neuron coverage and SS coverage is proved in the lemma below.

Lemma 1. MN �MSS .

Proof. For every hidden node nk,j ∈ H(N ), there exists a feature pair ({nk−1,i}, {nk,j}) ∈
O(N ) for any 1 ≤ i ≤ sk−1. Then, by Definition 4, we have sc({nk,j}, x1, x2),
which by Definition 2 means that sign(nk,j , x1) 6= sign(nk,j , x2). That is, either
sign(nk,j , x1) = +1 or sign(nk,j , x2) = +1. Therefore, if nk,j is not covered
in a test suite T1 for neuron coverage, none of the pairs ({nk−1,i}, {nk,j}) for
1 ≤ i ≤ sk−1 is covered by a test suite T2 that provides SS coverage.

In [39], the input space is discretised with a set of hyper-rectangles, and then
one test case is generated for each hyper-rectangle. This is referred to as “safety
coverage”.

Definition 13 (Safety Coverage). Let each hyper-rectangle, rec, contain those
inputs with the same pattern of ReLU, i.e., for all x1, x2 ∈ rec we have
sign(nk,l, x1) = sign(nk,l, x2) for all nk,l ∈ H(N ). A hyper-rectangle, rec, is
covered by a test case x, denoted by S (rec, x), if x ∈ rec.
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MSS MVSg MSV g MVV g1,g2
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MMNm

MN MNB MTNm

Figure 2: Subsumption relationship between several structural test coverage
criteria for DNNs

Let Rec(N ) be the set of hyper-rectangles. Then

MS (N , T ) =
|{rec ∈ Rec(N ) | ∃x ∈ T : S (rec, x)}|

|Rec(N )|
(8)

Such a scheme is computationally intractable because of the high dimensionality
of DNNs. The approach to testing in this paper aims to be more practical.

Figure 2 gives a diagrammatic summary of the relations between all existing
structural test coverage criteria for DNNs. The arrows represent the “weaker
than” relation. The complete proofs are in a longer version of this paper [32].
As indicated in Figure 2, our criteria require more test cases to be generated
than those in [27, 21], and therefore can make testing more exhaustive. On the
other hand, SS coverage is weaker than safety coverage [39].

5 Automated Coverage-Driven Test Case Gen-
eration

We conjecture that the criteria proposed above achieve a good balance between
their ability to guide test case generation towards relevant cases and computa-
tional cost. To show this hypothesis, we now apply our criteria to drive two
different test case generation approaches for DNNs.

The test conditions required by our criteria exhibit particular combinations
of the condition feature and the decision feature, and it is not trivial to generate
test cases for them. Owing to the lack of awareness of the feature relation,
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the test input generation methods in [27, 39, 21] cannot be directly used to
generate tests that satisfy our criteria. Also, as pointed out in [24], random test
case generation is prohibitively inefficient for DNNs. Conversely, the symbolic
encoding that is used in the concolic testing method in [33] is expressive enough
to encode the test conditions defined by our criteria and is suitable for small- to
medium-sized DNNs. Furthermore, in this section, we also present a new test
case generation algorithm based on gradient descent search, which scales to large
DNNs.

5.1 Test Oracle

An oracle in software testing is a mechanism to detemine whether a test has
passed or failed. The DNN N represents a function F̂(x), which approximates
F(x) : DL1

→ L, which models perfect perception. Therefore, the ultimate
safety requirement is that for all test cases x ∈ DL1

, we have F̂(x) = F(x).
However, it is not practical to use this requirement to define the oracle because
of the large number of inputs in DL1

and the high cost of asking humans to label
images. A pragmatic compromise, as done in many other works including [34, 15],
is to use the following oracle as an inexpensive proxy.

Definition 14 (Oracle). Given a finite set X of correctly labeled inputs, a test
with input x′ passes if there exists some x ∈ X such that x and x′ are “close
enough” and F̂(x′) = F̂(x).

Ideally, the question of whether two inputs x and x′ are close enough is to
be answered according to human perception. In practice, this is approximated
by various approaches, including norm-based distance measures. Specifically,
given the norm Lp and an upper bound b for the distance, we say that two
inputs x and x′ are close iff ||x−x′||p ≤ b. We write close(x, x′) for this relation.
An adversarial example is detected if there is a pair of inputs satisfying this
definition such that the two labels assigned to them by the DNN differ and either
x or x′ is in the training or validation dataset.

The choice of b is problem-specific. In our experiments, we evaluate the
distribution of adversarial examples with respect to the distance (as illustrated
in Figure 5 for one of the criteria). We remark that there may exist other ways
to define a test oracle for DNNs, and that our coverage criteria are independent
from its particular definition.

5.2 Test Case Generation with LP

We first apply the concolic testing approach in [33] to generate test inputs that
satisfy the test conditions defined by our criteria. In [33], the test conditions are
symbolically encoded using a linear programming (LP) model, which is solved
to obtain new test cases. Specifically, the LP-based approach fixes a particular
pattern of node activations according to a given input x.
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While the overall behaviour of a DNN is highly non-linear, owing to the use
of the ReLU activation function, once the DNN is instantiated with a particular
input, the activation pattern is fixed, and we obtain an LP model.

LP model of a DNN instance The variables used in the LP model are
typeset in bold. All variables range over the rational numbers. Given an input
x, the input variable x, whose value is to be synthesized with LP, is required to
exhibit the same activation pattern as x, i.e.,
∀nk,i : sign(nk,i,x) = sign(nk,i, x).

We use variables uk,i and vk,i to denote the values of a node nk,i before
and after the application of ReLU, respectively. Then, we have the set C1[x] of
constraints to encode ReLU operations for a network instance, where C1[x] is
given as:

{uk,i ≥ 0 ∧ vk,i = uk,i | sign(nk,i, x) ≥ 0, k ∈ [2,K), i ∈ [1 . . . sk]}
∪{uk,i < 0 ∧ vk,i = 0 | sign(nk,i, x) < 0, k ∈ [2,K), i ∈ [1 . . . sk]} (9)

Note that the activation values uk,i of the nodes are determined by the
activation values vk−1,j of the nodes in the previous layer, following Equation (2).
Therefore, we add the following set of constraints, C2[x], as a symbolic encoding
of the activation values of the nodes.

{uk,i =
∑

1≤j≤sk−1

{wk−1,j,i · vk−1,j}+ bk,i | k ∈ [2,K), i ∈ [1 . . . sk]} (10)

The resulting LP model C[x] = C1[x] ∪ C2[x] represents a symbolic set of inputs
that have the same activation pattern as x. Further, we can specify some
optimisation objective, obj, and call an LP solver to find the optimal x (if one
exists). In concolic testing, each time the DNN is instantiated with a concrete
input x1, the corresponding partial activation pattern serves as the base for the
LP modeling, upon which a new test input x2 may be found that satisfies the
specified test condition.

5.3 Heuristic Test Input Generation using Gradient Search

The LP optimisation method in Section 5.2 provides a guarantee that an input
pair is returned as long as one exists. However, its scalability depends on the
efficiency of the LP solvers, and it is not trivial to apply this method to DNNs
with millions of neurons. In this part, we offer a heuristic algorithm based on
gradient search as an alternative with better scalability. It has been shown that
gradient search is an efficient method for finding adversarial examples in DNNs.
This approach has been utilised in a number of existing DNN testing methods
(e.g., [27, 21, 40]).

The procedure, given as Algorithm 1, finds an input pair x1, x2, such that the
test condition of the covering method, f , over the feature pair, α = (ψk,i, ψk+1,j),
is satisfied; that is, f(α, x1, x2) is true. In principle, there are two objectives
in the search algorithm: requirements on the feature pair (ψk,i, ψk+1,j), and
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Algorithm 1 get input pair(f, ψk,i, ψk+1,j)

1: for each x1 ∈ data set do
2: sample an input x2 and a positive number ε
3: for a bounded number of steps do
4: if f((ψk,i, ψk+1,j), x1, x2) then return x1, x2

5: update ε
6: if ¬fwiden((ψk,i, ψk+1,j), x1, x2) then x2 ← x2 − ε · ∇F̂(x2)
7: else x2 ← x2 + ε · ∇F̂(x2)

8: return None, None

requirements on other feature pairs. For example, in the case of SS coverage,
this means sc for ψk,i and ψk,2 and nsc for all other features. To simplify the
search, we use fwiden(α, x1, x2) as a relaxed version of the testing condition f ,
such that all its predicates on the features ψk,i and ψk+1,j are eliminated. Given
some original input x1, and starting from an input x2, if feature changes other
than ψk,i and ψk+1,j are too prevalent, and do not meet the requirements
of fwiden (Line 6), then x2 is moved closer to x1, by following the gradient
descent x2 ← x2 − ε · ∇F̂(x2), in an attempt to counteract such feature changes.
This applies to the case when the activation sign changes on other condition
features. Otherwise, the change between x1 and x2 can only trigger a subset
of the predicates (in the testing condition) from the given feature pair, and we
thus need to update x2 following the gradient ascent (Line 7). The algorithm’s
gradient change follows an adaptive manner that comprises: a local search to
update x2 at each step, and a simple strategy for the overall search direction to
move closer or further, with respect to x1. In our implementation, we apply the
FGSM (Fast Gradient Sign Method) [13] to initialise x2 and ε, and use a binary
search scheme to update ε at each step.

As a heuristic, the algorithm works well when there exist two inputs x1 and
x2 s.t. x1 is from the given “data set”, x2 is an input along the gradient search
direction, and (x1, x2) satisfies the specified test condition.

6 Experiments

We conduct experiments using the well-known MNIST Handwritten Image
Dataset, the CIFAR-10 dataset with low-resolution color images and the Im-
ageNet benchmark from the large-scale visual recognition challenge. Our ex-
periments are classified into four categories: À bug finding, Á quantification of
the safety of a DNN, Â efficiency of testing, and Ã the analysis of the internal
structure of DNNs. We also explain the relationship between our criteria and
the existing ones. All implementations and the data discussed in this section are
available online1.

In our implementation, the objective min ||x2−x1||∞ is used in all LPs to find

1https://github.com/TrustAI/DeepConcolic
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good adversarial examples with respect to the test coverage conditions. Moreover,

we use g =
uk+1,j [x2]
uk+1,j [x1]

≥ σ with σ = 2 for g in SV g and σ = 5 for V V g1,g2 (with

respect to g2). We admit that such choices are empirical. For generality and to
speed up the experiments, we leave the value function g1 unspecified. Providing
a specific g1 may require more effort to find an x2 (because g1 is an additional
constraint), but the resulting x2 can be better.

6.1 MNIST

We randomly generate, and then train, a set of ten fully connected DNNs, such
that each network has an accuracy of at least 97.0% on the MNIST validation
data. The detailed network structure, and the number of neurons per layer,
are given in Table 3. Every DNN input has been normalised into [0, 1]28×28.
Experiments were conducted on a MacBook Pro (2.5 GHz Intel Core i5 and 8 GB
of memory).

We apply the coverage criteria defined in Section 3. Besides the coverage
Mf , we also compute the percentage of adversarial examples in the test suite,
denoted by AEf . The use of LP optimisation enables us to use single neurons
as features. That is, each feature pair is in fact a neuron pair. The choice of
pairs of neurons is the most difficult scenario for test input generation.

DNN Bug finding À The results, reported in Table 3, are promising: (1) the
test case generation algorithm achieves high coverage effectively for all coverage
criteria, and (2) the coverage criteria are useful, indicated by the fact that a
significant number of adversarial examples are identified among the generated
test cases. Figure 4 exhibits several adversarial examples found by the tool with
different distances. We note that, for neuron coverage [27], high coverage can be
achieved trivially by selecting a few non-adversarial test cases that we generated.

Quantifying the safety of a DNN Á The coverage Mf and adversarial
example percentage AEf together provide quantitative means to evaluate the
safety of a DNN. Generally speaking, given a test suite, a DNN with a high
coverage level Mf and a low adversarial percentage AEf is considered robust.
In addition, we can study the adversarial quality by plotting a distance curve to
see how close the adversarial examples are to the corresponding original input.
The quality of an adversarial example is measured by its distance to the original
input. An adversarial example is of higher quality than others if its distance
to the original input is smaller. Consider the results for SS coverage for the
last three DNNs in Table 3. In the graph given as Figure 5, the horizontal axis
measures the L∞ distance and the vertical axis gives the accumulated percentage
of the adversarial examples within this distance. A more robust DNN will exhibit
a curve where most adversarial examples have a small distance. Intuitively, this
means that more effort needs to be made to fool such a DNN.
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hidden layers MSS AESS MVSg AEVSg MSV g AESV g MVV g1 ,g2 AEVV g1 ,g2

N1 67x22x63 99.7% 18.9% 100% 15.8% 100% 6.7% 100% 21.1%

N2 59x94x56x45 98.5% 9.5% 100% 6.8% 99.9% 3.7% 100% 11.2%

N3 72x61x70x77 99.4% 7.1% 100% 5.0% 99.9% 3.7% 98.6% 11.0%

N4 65x99x87x23x31 98.4% 7.1% 100% 7.2% 99.8% 3.7% 98.4% 11.2%

N5 49x61x90x21x48 89.1% 11.4% 99.1% 9.6% 99.4% 4.9% 98.7% 9.1%

N6 97x83x32 100.0% 9.4% 100% 5.6% 100% 3.7% 100% 8.0%

N7 33x95x67x43x76 86.9% 8.8% 100% 7.2% 99.2% 3.8% 96% 12.0%

N8 78x62x73x47 99.8% 8.4% 100% 9.4% 100% 4.0% 100% 7.3%

N9 87x33x62 100.0% 12.0% 100% 10.5% 100% 5.0% 100% 6.7%

N10 76x55x74x98x75 86.7% 5.8% 100% 6.1% 98.3% 2.4% 93.9% 4.5%

Figure 3: Coverage results on ten DNNs

(a) 9 → 8 (b) 8 → 2 (c) 1 → 7 (d) 0 → 9

Figure 4: Selected adversarial examples for MNIST
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Figure 5: Accumulated percentage of adversarial examples (y-axis) that do
not exceed a particular distance (given on the x-axis): the adversarial distance
measures the distance between an adversarial example and the original input
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Understanding the behavior of individual layers Ã Our experiments
suggest that different layers of a DNN exhibit different behaviors during testing.
Figure 6 reports the SS coverage results, collected in adjacent layers. In particular,
Figure 6a gives the percentage of covered neuron pairs within individual adjacent
layers. We observe that, when going deeper into the DNN, it can become
harder to cover neuron pairs. Under such circumstances, to improve coverage,
a larger data set is needed when generating pairs of test inputs. Figure 6b
gives the percentage of adversarial examples found at different layers (among
all adversarial examples detected). Interestingly, it seems that most adversarial
examples are found when testing the middle layers.

SS coverage with top weights Â For SS coverage criteria with neuron
pairs, there are |O| test conditions for O ⊆ O(N ) in total. We note that

|O(N )| =
∑K

k=2 sk · sk−1. To reduce the test suite size, we define O as fol-
lows: (ψk,i, ψk+1,j) ∈ O only when the weight is one of the κ largest among
{|wk,i′,j | | i′ ∈ [1 . . . sk]}. The rationale is that condition neurons do not equally
affect their decision, and those with higher (absolute) weights are likely to have
a larger influence.

Figure 7 shows the difference of the coverage and adversarial example per-
centages when comparing SS coverage and its simplification with κ = 10, denoted
by SSw10. In general, the two are comparable. This is very useful in practice,
as the “top weights” simplification reduces the size of the resulting test suite;
thus, the simplification can be used as a fast pre-processing phase and can even
deliver performance that is comparable to that of SS coverage.

Cost of LP calls Â Since the LP encoding of the (partial) activation pattern
plays a key role in the test generation, we give details of the cost of the LP calls.
For every DNN, we select a set of neuron pairs, where each decision neuron is in
a different layer. Then, we measure the number of variables and constraints, and
the time t in seconds (averaged over 100 runs) spent on solving each LP. We use
CPLEX as the LP solver. The results in Table 2 confirm that the LP model of a
partial activation pattern is indeed lightweight, and that its complexity increases
in a linear manner when traversing into deeper layers of a DNN.

6.2 CIFAR-10

The CIFAR-10 dataset is a collection of 32x32 color images with ten kinds
of objects. In contrast to the MNIST case, we need to train a DNN with
convolutional layers in order to handle the CIFAR-10 image classification problem.
We apply the test case generation in Algorithm 1 for the SS coverage and measure
the coverage results individually for the decision features at each different
layer. Overall, an SS coverage higher than 90% is achieved with a substantial
average 84.36% of the tests generated being adversarial examples. An interesting
observation can be made in Figure 8 (Ã), which shows that in this case the causal
changes of features at deeper layers are able to detect smaller perturbations
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Figure 6: SS coverage by layer: (a) the coverage level per DNN layer; (b) the
detected adversarial examples at each layer with respect to the total amount of
adversarial examples
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Figure 7: SS vs. SSw10 . Results demonstrate that the SS coverage and its
top-weight simplification have similar coverage levels (MSS − MSSw10) and
percentages of adversarial examples (AESS −AESSw10)

N8 N9 N10

#vars |C| t #vars |C| t #vars |C| t
L2-3 864 3294 0.58 873 3312 0.57 862 3290 0.49
L3-4 926 3418 0.84 906 3378 0.61 917 3400 0.71
L4-5 999 3564 0.87 968 3502 0.86 991 3548 0.75
L5-6 1046 3658 0.91 – – – 1089 3744 0.82
L6-7 – – – – – – 1164 3894 0.94

Table 2: Number of variables and constraints, and time cost of each LP call (in
seconds)
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of inputs that cause adversarial behaviours. This could be helpful feedback
for developers for debugging or tuning the parameters of the neural network.
Selected adversarial examples are given in Figure 9.

6.3 ImageNet

We applied our methods to VGG16 [30], a large-scale DNN trained on the
ImageNet dataset. The heuristic search Algorithm 1 is called to generate test
cases. We consider every neuron a decision feature. While feature extraction
methods such as SIFT [20] can obtain condition features, in our experiments
we use arbitrary sets of neurons as conditions. We define a size parameter ω
and require feature ψk,i to have size ≤ ω · sk. Recall that sk is the number of
neurons in layer k.

Effect of feature size À Á Ã We apply SS coverage on 2,000 randomly
sampled feature pairs with ω ∈ {0.1%, 0.5%, 1.0%}. The test case generation
method shows its effectiveness by returning a test suite in which 10.5%, 13.6%
and 14.6% of the tests are adversarial examples, respectively. We report the
average distance of the adversarial examples and the standard deviation in
Figure 10. The results confirm that there is a relationship between the feature
pairs and the input perturbation. Among the generated adversarial examples, a
more fine-grained feature is able to capture smaller perturbations than a coarse
one.

The results in Figure 10 are obtained using the L∞-norm, which corresponds
to the maximum change to a pixel. We observe that, although the change of
each pixel is very small, for every adversarial example a large portion (around
50%) of the pixels are changed. A typical adversarial example image is given in
Figure 11. Overall, the detected adversarial examples are high quality.

SV with neuron boundary coverage À Á As shown in Section 4, our
coverage criteria are strictly stronger than neuron boundary coverage. In fact,
neuron boundary is a special case of SV coverage, when the value function of
the decision feature is designed to make the activation value exceed the specified
boundary value. We confirm this claim empirically, similarly to the experiments
above, by generating a test suite using SV with neuron boundary coverage. We
noticed that reaching boundary activation values requires substantial changes
to the inputs. We set the feature size using ω = 10% and obtain a test suite
with 22.7% adversarial examples. However, the distance of these adversarial
examples, with average L∞-norm distance 3.49 and standard deviation 3.88, is
much greater than those for the SS coverage, as illustrated in Figure 10.

6.4 Comparing DNNs using Testing

We discuss whether testing can inform a choice between alternative DNN models.
In our experiment, we choose two DNNs such that one is apparently better than
the other, and then apply coverage-guided testing and compare the results.
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Figure 8: Average adversarial distance for decision features at different layers

(a) bird → airplane (b) airplane → cat

Figure 9: Two selected adversarial examples for CIFAR-10
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Figure 10: Adversarial distance with different feature sizes: a smaller distance
corresponds to more subtle adversarial examples
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+   =
traffic light b=0.26 lipstick

Figure 11: An adversarial example (“lipstick”) for the original traffic light input

Complex vs. simple features The recognition of features is a fundamental
building block in deep learning, and the convolutional kernel operation in a
neural network is the most basic approach to define a feature. Without loss of
generality, a convolutional DNN can be treated as a neural network such that
the activation of a node in layer k is computed by the activations of a subset of
precedent nodes, and each node belongs to a feature map in its layer. Hence,
each node nk,i is a feature that abstracts the preceding features such that each
preceding feature at layer (k − 1) is a subset of nodes from the same feature
map that are connected to nk,i. Nodes in the same feature map share the same
weights and bias that is given by a convolutional filter of some shape d1×d2 [12].

We have trained two convolutional DNNs N c
1 and N c

2 . Both have two
convolutional layers followed by one fully connected layer of 128 neurons. N c

1

(resp. N c
2 ) has 20 (resp. 2) filters for the first convolutional layer and 40 (resp. 4)

filters for the second convolutional layer. The filters have size 5× 5 and every
convolutional layer is augmented with a so-called max-pooling layer of size 2× 2.
Overall, N c

1 has 14,208 hidden neurons, and N c
2 is much smaller with only 1,536

hidden neurons. We say that N c
1 is “complex” and that N c

2 is “simple”.

M
(1,1),(2,1)
SS AE

(1,1),(2,1)
SS M

(1,1),(2,2)
SS AE

(1,1),(2,2)
SS

N c
1 99.7% 1.6% 99.7% 1.5%
N c

2 100.0% 7.6% 100.0% 6.8%

Table 3: SS coverage results per feature map

In the experiment, we use SS coverage to guide the testing of neuron pairs
from feature maps at adjacent layers. We use fk,i to denote the i-th feature map
in the k-th convolutional layer, and M

SS
fk,i
fk+1,j

represents the SS coverage among

neuron pairs such that the condition neuron and decision neuron are from fk,i
and fk+1,j , respectively. Correspondingly, AE

SS
fk,i
fi+1,j

denotes the percentage

of adversarial examples for each feature map. The results are in Table 3. We
obtain high SS coverage for both architectures. The generated test suite confirms
that the use of the complex convolutional structures is justified, as the simple
architecture is much more susceptible to adversarial examples.

To cross-validate this result, we conduct an experiment using the adversarial
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Figure 12: Adversarial examples found by FGSM

attack algorithm FGSM (Fast Gradient Sign Method) [13]. We apply FGSM
to distort the default MNIST validation data set. Figure 12 gives the number
of adversarial examples in the new data set for both neural networks N c

1 and
N c

2 , based on the distorted data; ε is the parameter that controls the degree of
change of the original inputs. The results in Figure 12 are consistent with ours.

A large number of methods based on gradient search have been proposed;
these methods motivate our test generation algorithm in Section 5.3 and other
work on test input generation for DNNs, including [27, 21]. Their ability to find
adversarial examples is the usual metric for their utility. However, we emphasise
that the ultimate aim of coverage criteria is to quantify the coverage of functional
features.

6.5 Test Data Variety as a Proxy for Functional Coverage

We have shown that our proposed test coverage criteria are a good indicator
for the existence of adversarial examples. It is well-known, however, that test
suites that focus on adversarial examples are not effective for assessing functional
properties of DNNs. We propose a different experiment to determine how well
functional coverage is approximated by our structural coverage metrics. The
experiment is based on the assumption that the validation data set is a good
proxy for the intent of the person who is training the DNN. We also assume
that a data label corresponds to a “functional feature” of the DNN, and that
the data labels have roughly similar complexity.

To quantify functional coverage, we first select a subset L′ of the data labels L.
We then hypothesize that the subset of the validation data set that contains
the inputs that are labeled with one of the labels from L′ yields an expected
functional coverage of |L′|/|L|. A coverage metric that is highly correlated with
this number is a good proxy for functional coverage.

In the case of MNIST, there are ten labels, i.e., L = {0, . . . , 9}. The validation
data set consists of 10,000 images. We start with L′ = {0}, and thus, we compute
the structural coverage obtained using all images that are labeled with 0; we
then proceed to L′ = {0, 1}, i.e., all images labeled with either 0 or 1, and so on.
We compare our proposed metric SS coverage (SSC) with neuron coverage (NC)

24



1 2 3 4 5 6 7 8 9 10
|L ′|

0%

20%

40%

60%

80%

100%

NC
 c

ov
er

ag
e

1

2

3

4

5

6

7

8

9

10

(a) NC

1 2 3 4 5 6 7 8 9 10
|L ′|

0%

20%

40%

60%

80%

100%

BN
C 

co
ve

ra
ge

1

2

3

4

5

6

7

8

9

10

(b) BNC

1 2 3 4 5 6 7 8 9 10
|L ′|

0%

10%

20%

30%

SS
C 

co
ve

ra
ge

1

2

3

4

5

6

7

8

9

10

(c) SSC

Figure 13: Coverage results for input data with increasing variety (from “one
label only” to “ten labels”) for ten MNIST DNNs
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and 2-multisection neuron coverage (BNC), as discussed in Section 4. While NC
is similar to traditional statement coverage, BNC resembles branch coverage.

Figure 13 gives the experimental results for the MNIST DNNs in Table 3.
There are several key observations.

• For all neural networks, both NC and BNC immediately report more than
90% coverage, even when given solely images that are labeled with 0. They
are thus a very bad proxy for functional coverage.

• Conversely, although the slope varies for different DNNs, the level of SS
coverage measured increases linearly as the variety in the test data set
increases. This suggests that our structural test coverage criteria are indeed
able to quantify how many test inputs are meaningfully different.

• The results in Figure 13c confirm that it is not trivial to achieve high SS
coverage. This suggests that the test generation algorithms proposed in
this paper create valuable test inputs.

7 Related Work

In the following, we briefly discuss existing techniques for validating safety
properties of DNNs.

Generation of Adversarial Examples for DNNs Most existing work,
e.g., [34, 26, 6, 13] applies various heuristics, generally using search based on
gradient descent or evolutionary techniques. These approaches may be able to
find adversarial examples efficiently, but are not able to provide any guarantee
(akin to verification) or means to quantify the level of confidence (akin to testing)
in the robustness of the neural network.

Testing of DNNs There are few proposals for structural test coverage criteria
for DNNs. The idea of neuron coverage is to cover both activation states of all
neurons [27]. Extensions of neuron coverage are given in [21], and include criteria
that check the corner values of a neuron’s activation level and the activation
levels of a subset of neurons in the same layer. However, the criteria in [27, 21]
simply ignore the causal relationship in the DNN. In [39], the input space is
discretised with hyper-rectangles, and then one test case is generated for each
hyper-rectangle. The resulting safety coverage is a strong criterion, but the
generation of a test suite can be very expensive. While in [7], coverage is enforced
for finite partitions of the input space, relying on predefined sets of application-
specific scenario attributes. The “Boxing Clever” technique in [3] focuses on
the distribution of training data and divides the input domain into a series
of representative boxes. The adversarial test generation in [36, 40] is applied
to evaluate DNN-based control systems in autonomous vehicles. As shown
in [35, 19], quantitative DNN coverage criteria can be applied to support the
design and certification of automotive systems with deep learning components.
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Automated Verification of DNNs The safety problem of a DNN can be
reduced into a constraint solving problem [9]. SAT/SMT and MILP solutions
[11, 15, 18, 8, 37] have already been considered. In [16], the DNN is transformed
into an equivalent hybrid system. These approaches typically only work with
small networks with a few hundred hidden neurons, and overapproximation
techniques [22, 10, 31] can be applied to improve the efficiency.

8 Conclusions

We have proposed a set of novel structural test coverage criteria for DNNs. Our
experiments on various datasets and using two test case generation methods show
promising results, indicating the applicability and effectiveness of the proposed
coverage criteria. The test coverage metrics developed within this paper provide
a method to obtain evidence for adversarial robustness, which is envisaged to
contribute to safety cases. The criteria are also expected to provide additional
insights for domain experts for evaluating the adequacy of a particular dataset
as a means to describe the behavior of a DNN. In particular, our experiments
suggest that they are a good proxy for functional coverage.
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