
UNCECOMP 2019
3rd ECCOMAS Thematic Conference on

Uncertainty Quantification in Computational Sciences and Engineering
M. Papadrakakis, V. Papadopoulos, G. Stefanou (eds.)

Crete, Greece, 24–26 June 2019

COMPUTING WITH UNCERTAINTY: INTRODUCING PUFFIN THE
AUTOMATIC UNCERTAINTY COMPILER

Nick Gray, Marco De Angelis and Scott Ferson

Institute for Risk and Uncertainty, University of Liverpool, United Kingdom
e-mail: nickgray@liverpool.ac.uk

Keywords: Uncertainty Quantification, Uncertainty Compiler,

Abstract. Although engineers often recognise the advantages of applying uncertainty analysis
to their complex simulations, they often lack the time, patience or expertise to undertake that
analysis. We describe a software tool, named puffin, that takes existing code and converts in to
uncertainty aware code in the same language making use of intrusive uncertainty propagation
techniques. It can work either automatically or with user specification of the uncertainties
involved in the system.

Nick Gray, Marco De Angelis and Scott Ferson

1 INTRODUCTION

Modern engineering is all about numerical calculation, with the inexorable growth of com-
puter power more of these calculations are being undertaken with ever more complex computer
simulations. These developments means that new technologies, as digital twins [1], have begun
to be explored. Engineers need to make calculations even when there is uncertainty about the
quantities involved.

There are two types of uncertainty aleatory and epistemic with in the numerical calculations
essential to engineering. Aleatory uncertainty arises from the natural variability in dynamical
environments and material properties, errors in manufacturing processes or inconsistencies in
the realisation of systems. Aleatory uncertainty cannot be reduced by empirical effort. Epis-
temic uncertainty is caused by measurement imperfections or lack of perfect knowledge of a
system. This could be due to not knowing the full specification of a system in the early phases
of engineering design.

Imperfect scientific understanding of the underlying physics or biology involved, would
cause uncertainty in the future performance of a system even after the design specifications have
been decided. If uncertainties are small they can often be neglected or swept away by looking at
the worst-case scenarios. However, in situations where the uncertainty is large, or would affect
an engineering decision, this approach is suboptimal or impossible. Instead, a comprehensive
strategy of accounting for the two kinds of uncertainty is needed that can propagate imprecise
and variable numerical information through calculations.

Many engineers work with legacy computer codes that do not take full account of uncertain-
ties. Because analysts are typically unwilling to rewrite their codes, various simple strategies
have been used to remedy the problem, such as elaborate sensitivity studies or wrapping the
program in a Monte Carlo loop. These approaches treat the program like a black box because
users consider it uneditable. However, whenever it is possible to look inside the source code, it
is better characterised as a crystal box because the operations involved are clear but fixed and
unchangeable in the mind of the current user.

Strategies are needed that automatically translate original source into code with appropri-
ate uncertainty representations and propagation algorithms. We have developed an uncertainty
compiler for this purpose, named Puffin1, along with an associated language. It handles the
specifications of input uncertainties and inserts calls to an object-oriented library of intrusive
uncertainty quantification (UQ) algorithms. We use ANTLR [2], a parser/lexer generator, and
Python to translate uncertainty näive code into code with a full account of uncertainty in the
same language. In theory, the approach could work with any computer language. We currently
support Python and later versions will handle FORTRAN, C, R and MATLAB languages.

2 PUFFIN LANGUAGE

In order to develop Puffin it was first essential to build an uncertainty language. Puffin
language enables users to specify the uncertainties involved in their code before compiling it
into pre-existing scripts. Currently enables uncertainty analysis with five types:

• Interval (unknown value or values for which sure bounds are known), [3]

• Probability distribution (random values varying according to specified law such as nor-
mal, lognormal, Weibull, etc., with known parameters),

1In ornithology puffins belong to the family auks, as we are making an automatic uncertainty compiler (auc)
puffin seemed like a fitting name

Nick Gray, Marco De Angelis and Scott Ferson

• P-box (random values for which the probability distribution cannot be specified exactly
but can be bounded),[4]

• Confidence box (confidence structure that is a representation of inferential uncertainty
about a parameter compatible with both Bayesian and frequentist paradigms), [5]

• Natural language expressions (such as about 7.2 or at most 12)

We are also planning other . For each language that the compiler is to support a library of intru-
sive UQ code is required that will allow these types of numbers to be freely mixed together in
mathematical expressions to reflect what is known about each quantity. Such libraries already
exist for MATLAB and R and a python equivalent is currently in active development.

In Puffin language, if compiling into languages with immutable values and editable variables,
-> will be used for immutable values and = for editable variables, in languages where this isn’t
the case they can be used interchangeably. # are used for comments. Guillemets surround code
snippits from the target language. Both single and double quotation marks can be used in Puffin,
although if the target language is pernickety about which one is used then the user will have to
be aware of this themselves.

2.1 Intervals

An interval is an uncertain number representing values obeying an unknown distribution over
a specified range, or perhaps a single value that is imprecisely known even though it may in fact
be fixed and unchanging. Intervals thus embody epistemic uncertainty. Intervals can be speci-
fied by a pair of scalars corresponding to the lower and upper bounds of the interval. Interval
arithmetic computes with ranges of possible values, as if many separate calculations were made
under different scenarios. However, the actual computations the software does are made all
at once, so they are very efficient. As shown in Figure 1, there are several different formats
for specifying intervals. All types of intervals are defined using square brackets, this simplest
definition is for the lower bound and upper bound to be comma separated within the square
brackets. Plus minus intervals can be defined with either a positive number or a percentage.
They can also be defined by a single number within the brackets in which case the significant
digits are used for the bounds of the interval. There may sometimes be uncertainty about the
endpoints, this can be specified using nested intervals such as shown in line 5

[1] a -> [1,2]
[2] b -> [1±2] #[-1,3]
[3] c -> [1±2%] #[0.98,1.02]
[4] d -> [1.0] #[0.95,1.05]
[5] e -> [[0,1],[2,3]] #[0,3]

Figure 1: Syntax for defining intervals in Puffin language, ± can be substituted with +- or -+. The comments show
what the interval is taken to be when compiling.

2.2 Distributions and P-Boxes

Probability distributions are specified by their shape and parameters, such as gaussian(5,1),
uniform(0,9), or weibull(3,6). A non-exhaustive list of distributions available in the langauge

Nick Gray, Marco De Angelis and Scott Ferson

is shown in table 1, however we are planning to add more. As with all keywords in Puffin
they can be defined in either all caps, all lower or sentence case. For distributions with com-
mon short names then these will also be accessible, for example N for the normal distribution.
P-boxes can be specified as probability distributions with intervals for one or more of their pa-
rameters. If the shape of the underlying distribution is not known, but some parameters such
as the mean, mode, variance, etc. can be specified (or given as intervals), the software will
construct distribution-free p-boxes whose bounds are guaranteed to enclose the unknown distri-
bution subject to constraints specified.

Bernoulli beta binomial Cauchy
chi-squared delta empirical distributions exponential

F distribution Frechet gamma geometric
Gaussian Gumbel Laplace logistic
lognormal logtriangular normal Pareto

Pascal Poisson power function rayleigh
reciprocal Simpson Student-t trapzoidal
triangular uniform Wakeby Weibul

Table 1: Some of the distributions available in the uncertainty language

Probability bounds analysis integrates interval analysis and probabilistic convolutions which
are often implemented with Monte Carlo simulations. It uses p-boxes, which are bounds around
probability distributions, to simultaneously represent the aleatory uncertainty about a quantity
and the epistemic uncertainty about the nature of that variability. Probability distributions are
special cases of p-boxes, so one can do a traditional probabilistic analysis with the add-in as
well. The calculations the software does are very efficient and do not require Monte Carlo
replications.

Figure 2 shows several difference distribution and p-box assignments.

[1] a -> t(1,2) #student-t distribution
[2] b -> beta(2,3)
[3] c -> normal([0±0.5],1)
[4] d -> U([1,2],3) #Uniform distribution

Figure 2: Syntax for defining p-boxes in Puffin language

2.3 C-Boxes

Confidence boxes (c-boxes) are imprecise generalisations of traditional confidence distribu-
tions, which, like Student’s t–distribution, encode frequentist confidence intervals for parame-
ters of interest at every confidence level. They are analogous to Bayesian posterior distributions
in that they characterise the inferential uncertainty about distribution parameters estimated from
sparse or imprecise sample data, but they have a purely frequentist interpretation that makes

Nick Gray, Marco De Angelis and Scott Ferson

them useful in engineering because they offer a guarantee of statistical performance through
repeated use. Unlike confidence intervals which cannot usually be used in mathematical cal-
culations, c-boxes can be propagated through mathematical expressions using the ordinary ma-
chinery of probability bounds analysis, and this allows analysts to compute with confidence,
both figuratively and literally, because the results also have the same confidence interpretation.
For instance, they can be used to compute probability boxes for both prediction and tolerance
distributions. C–boxes can be computed in a variety of ways directly from random sample data.
There are c-boxes both for parametric problems (where the family of the underlying distribution
from which the data were randomly generated is known to be normal, lognormal, exponential,
binomial, Poisson, etc.), and for nonparametric problems in which the shape of the underlying
distribution is unknown. Confidence boxes account for the uncertainty about a parameter that
comes from the inference from observations, including the effect of small sample size, but also
the effects of imprecision in the data and demographic uncertainty which arises from trying to
characterise a continuous parameter from discrete data observations.

In Puffin language, c-boxes can be defined using dot notation shown in Figure 3. All distri-
butions that work with p-boxes are also available in c-box form.

[1] a -> cbox.uniform([0,1],[2,3])
[2] b -> cbox.beta(2,3)
[3] c -> cbox.edf(X,Y)

Figure 3: Syntax for defining c-boxes in Puffin language. Line 3 shows the definition from an empirical distribution
function where X and Y would represent arrays of data

2.4 Hedge Words

In order to make uncertainty analysis as simple as possible for the end user Puffin language
allows for users to be able to input their uncertainties using natural language expressions such as
about or almost. Table 2, lists some the allowed hedge words and their possible interpretations.

Hedge words can be interpreted as intervals [6] or or c-boxes. [7]

Nick Gray, Marco De Angelis and Scott Ferson

Hedged Numerical Expression Possible Interpretation
about x [x± 2× 10−d]
around x [x± 10× 10−d]
count x [x±

√
x]

almost x [x− 0.5× 10−d, x]
over x [x, x+ 0.5× 10−d]
above x [x, x+ 2× 10−d]
below x [x− 2× 10−d, x]
at most x [0, x]
at least x [x,∞]
order x [x/2, 5x]
between x and y or

[x, y]
from x to y
x out of y cbox.beta(a,b)

Table 2: Hedge expressions and their mathematical equivalent. Note: d is the number of significant figures of x

2.5 Dependence assumptions

By default, the language assumes that each newly specified probability distribution or p-box
is stochastically independent of every other. Users can change this assumption by specifying
nature of the dependence using the syntax shown in Figure 4.

In addition, Puffin language automatically tracks calculations that were used to compute un-
certain numbers and will modify the default assumption of independence if appropriate. For
instance, an increasing monotone function (such as log, exp, and sqrt) of a distribution creates
an uncertain number that is perfectly dependent on the original distribution. Reciprocation cre-
ates an uncertain number that is oppositely dependent on the original distribution. When the
function that transforms an uncertain number is complex and the relationship between the origi-
nal distribution and the result cannot be educed, the two are assigned the unknown dependence.
If the two later are used in a calculation, Fréchet convolution, which makes no assumption about
the dependence between the arguments, is used to combine them. Fréchet convolution must be
used because an assumption of independence would be untenable, because one argument is a
direct function of the other. Generally, Fréchet convolution creates p-boxes from precise prob-
ability distributions, or widens the results from p-boxes relative to convolutions that assume
independence or some other precise dependence function. The extra width represents the addi-
tional uncertainty arising from not knowing the dependence function. Users can countermand
the languages automatic tracking of dependence and specify the assumption to be used in any
particular convolution.

[1] a -> uniform(0,1) !dep(b)
[2] b -> normal(2,3) !dep(c)
[3] c -> normal(4,5) !dep(a,b)

Figure 4: Syntax for adding dependance between variables in Puffin Language

Nick Gray, Marco De Angelis and Scott Ferson

3 PUFFIN COMPILER

The process for taking the uncertainty naive code and adding in appropriate uncertainty
analysis can be done in two different ways: the automatic approach and the second is to specify
the uncertainty using the language described above. Currently the compiler can only be used
from the terminal or command line. We are planning on developing a user interface for the
compiler that is based on the open source winmerge2 software. It will allow the user to be able
to see the differences between the original and uncertainty code.

To be perhaps more useful the second method allows the end user to specify the uncertainty
manually using the uncertainty language described above. It is possible to generate the Puffin
langauge file by running the –getpuffin command when using the compiler, this will parse over
the file and get all the variable declarations within the script. Figure 5 shows an example of
using the compiler.

[1] a = 1
[2] b = 2.5
[3] c = 3
[4]
[5] d = a*b+c
[6] print(d)

Input Script
[1] a -> normal(1,0.1)
[2] b -> [2.4,2.6]
[3] c -> about 3

UQ Script

[1] a = normal(1,0.1)
[2] b = interval(2.4,2.6)
[3] c = interval(2.8,3.2)
[4]
[5] d = a*b+c
[6] print(d)

Output Script

Figure 5: The result of using the compiler whilst defining the uncertainty in Puffin langauge on a simple pseu-
docode script.

3.1 Automatic Uncertainty Analysis

The automatic approach takes the significant figures of the assignments and uses that infor-
mation as a proxy for the uncertainty for an example see Figure 3.1. When using this mode the
compiler will need to tread carefully around mathematical constants such as π or e for which
there is no uncertainty. For example if the variable had value equal to 3.14159 then it would be
pretty clear that it is referring to the mathematical constant however if the value was 3.1 then it
could be ambiguous. 3.141 could also cause problems, the correct rounding of π to 3 decimal
places is 3.142 however 3.141 is so ubiquitous as the start of π that it would be a simple error

2winmerge.org/

Nick Gray, Marco De Angelis and Scott Ferson

for an analysis to make when creating code.

[1] a = 1
[2] b = 2.5
[3] c = 1.0
[4]
[5] d = a*b+c
[6] print(d)

[1] a = interval(0.5,1.5)
[2] b = interval(1.45,2.55)
[3] c = interval(0.95.1.05)
[4]
[5] d = a*b+c
[6] print(d)

Output Script

Input Script

Figure 6: The result of using the compiler in automatic mode on a simple pseudocode script.

3.2 Direct Compiler

Once Puffin language has been fully developed we are intending to create a direct compiler
that allows creation of scripts in the code. Initially the compiler will turn the Puffin code directly
into Python 3 code. Figure 7 shows direct translation from Puffin language to Python.

Nick Gray, Marco De Angelis and Scott Ferson

[1] a -> 3
[2] b -> [1,2]
[3] c -> normal(0,1)
[4]
[5] d = a*b + c
[6] print d

[1] import uq
[2]
[3] a = 3
[4] b = uq.interval(1,2)
[5] c = uq.normal(0,1)
[6]
[7] d = a*b + c
[8] print(d)

Figure 7: Direct translation from Puffin language to Python 3

4 REPEATED VARIABLE PROBLEM

A limitation of using the Puffin compiler to incorporate uncertainty analysis into numerical
calculations arise from multiple occurrences of an uncertain variable in a mathematical expres-
sion. Let a = [1, 2], b = [−1, 1] and c = [3, 4]. Applying interval arithmetic naively gives

ab+ ac = [1, 10] (1)

but also
a(b+ c) = [2, 10] (2)

One would expect that the results of equation 1 and equation 2 would be the same as, alge-
braically, ab + ac ≡ a(b + c) however the distributive law of real numbers does not generally
hold for uncertain numbers. In the case of intervals, the expression with repeated uncertain
quantities may be wider than the one with no such repetitions, even when they would be equiv-
alent for real values, the uncertain number appearing twice in the first formulation means, in
effect, the uncertainty it represents is entered twice into the resulting calculation.

This problem besets most uncertainty quantification methods, although an advantage of
Monte Carlo methods is that they can escape this problem. This uncertainty inflation would
also occur if a calculation is conducted in multiple steps. For instance, if the first term ab in the
example above is calculated on one line and on a new line ac is calculated before the final sum

Nick Gray, Marco De Angelis and Scott Ferson

is calculated in a third line, the uncertainty of a will have been introduced into the final result
twice leading to the inflated uncertainty shown in equation 1.

If possible, the number of repetitions of uncertain variables should be reduced by algebraic
manipulation to avoid possible inflation of the uncertainty. This would apply whether the un-
certain parameter is an interval, distribution, p-box or c-box. It should be noted that only the
repeated variable matters when reducing the expression because other variables can be as ar-
bitrarily complex, with as many repeats required. For instance if x is the only uncertain in
equation 3 then the fact that b is repeated five times is irrelevant.

(a+ bx)n(c+ dx)n =

(
(2bdx+ ad+ bc)2 − (ad+ bc)2 + 4abcd

4bd

)n

(3)

Unfortunately, it is not always possible to reduce all multiple occurrences. For example, equa-
tion 4 cannot be reduced to a single instance of x. In such cases, special or ad hoc strategies
must be devised, even partial solutions improve calculations.

x3 + x2 + x+ 1 (4)

When computing with intervals, we are guaranteed that the result of a computation with
repeated variables will have width no smaller than the correct answer. Therefore, even if mul-
tiple occurrences of the variable cannot be reduced, a conservative estimate of the final value
can still be calculated. In risk assessment such an estimate may meet the practical needs of an
analysis. For probability distributions and p-boxes, this guarantee holds when using FrÃl’chet
convolutions, however it does not extend to cases where independence has been assumed or
precise dependancies have been specified between the variables. The size of any error cause by
repeated variables is dependant on the particulars of the mathematical expression as well as the
quantities involved

A useful extension to the compiler would be to automatically detect and simplify mathe-
matical expressions with repeated uncertain variables, even over multiple lines, in a way that
reduces the repetitions of parameters containing uncertainty or in situations where they cannot
be simplified then display a warning to the user. An example of how this might look when
generating the Puffin langauge file form a script is show in Figure 8. Although this problem is
known to be NP-hard in general, software strategies can be designed to find expressions with
fewer repetitions of the same variable. In instances where no solution could be found then
the compiler should issue appropriate warnings to the user. We are exploring a strategy that
repeatedly applies mathematical identities that reduce the number of appearances of uncertain
parameters. There are many such reducing templates. The approach is to parse an expression
into a binary tree, and search for matches with a reducing template in each subtree. The search
is iterated over all the templates and over all subtrees, and it is repeated until no further reduc-
tion occurs. To shorten the list of reducing templates, the matching algorithms automatically
test multiple rearrangements of the subtree that are implied by associativity and commutativity
of basic operators.

Nick Gray, Marco De Angelis and Scott Ferson

#! Automatically reduced number of repetitions
#! of variable x in line:
x = x*a+x*b -> x = x*(a+b)

#! Automatically reduced number of repetitions
#! of variables x and y in line:
z = (x+y)/(1-xy) -> z = tan(arctan(x)+arctan(y))

#!! Can't find repeated variable reduction for x
#!! in line:
z = (a+x)/(b+x)
#!! May cause artificial uncertainty inflation

Figure 8: Example Puffin syntax showing how a generated Puffin file could highlight repeated variables to the user
and automatically reduce where possible

Acknowledgement

The authors would like to acknowledge the support of the UK Engineering and Physical
Science Research Council through grant number EP/R006768/1

REFERENCES

[1] Mike Shafto, Mike Conroy, Rich Doyle, Ed Glaessgen, Chris Kemp, Jacqueline LeMoigne,
and Lui Wang. Modeling, Simulation, Information Technology and Processing Roadmap
- Technology Area 11. Technical report, National Aeronautics and Space Administration,
2012.

[2] Terence Parr. The Definitive ANTLR 4 Reference. The Pragmatic Bookshelf, Dallas, USA,
2012.

[3] Ramon E Moore, R Baker Kearfott, and Michael J Cloud. Introduction to Interval Analysis,
volume 110. Society for Industrial and Applied Mathematics, Philadelphia, USA, 2009.

[4] Scott Ferson, Vladik Kreinovich, Lev Ginzburg, Davis S Myers, and Kari Sentz. Construct-
ing Probability Boxes and Dempster-Shafer Structures. Technical Report January, Sandia
National Lab.(SNL-NM)„ Albuquerque, United States, 2003.

[5] Michael Scott Balch. Mathematical foundations for a theory of confidence structures. In-
ternational Journal of Approximate Reasoning, 53(7):1003–1019, 2012.

[6] Scott Ferson, Jason O’Rawe, Andrei Antonenko, Jack Siegrist, James Mickley, Christian C.
Luhmann, Kari Sentz, and Adam M. Finkel. Natural language of uncertainty: numeric
hedge words. International Journal of Approximate Reasoning, 57:19–39, feb 2015.

[7] Scott Ferson, Michael Balch, Kari Sentz, and Jack Siegrist. Computing with Confidence.
In Proceedings of the Eighth International Symposium on Imprecise Probability: Theory
and Applications, Compiègne, France, 2013.

	INTRODUCTION
	PUFFIN LANGUAGE
	Intervals
	Distributions and P-Boxes
	C-Boxes
	Hedge Words
	Dependence assumptions

	PUFFIN COMPILER
	Automatic Uncertainty Analysis
	Direct Compiler

	REPEATED VARIABLE PROBLEM

