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Abstract 

Nematode infections are an important economic constraint to cattle farming. 

Future risk levels and transmission dynamics will be affected by changes in 

climate and farm management. The prospect of altered parasite epidemiology in 

combination with anthelmintic resistance requires the adaptation of current 

control approaches. Mathematical models that simulate disease dynamics under 

changing climate and farm management can help guide the optimization of 

helminth control strategies. Recent efforts have increasingly employed such 

models to assess the impact of predicted climate scenarios on future infection 

pressure for gastro-intestinal nematodes in cattle, and to evaluate possible 

adaptive control measures. This review aims to consolidate the progress made in 

this field to facilitate further modelling and application. 

 

Achieving effective nematode control in the 21st century 

Over the past decades, several aspects of livestock production, their parasites 

and the host-parasite relationship have changed and arguably more drastic 

changes can be expected in the next half-century. Gastro-intestinal nematodes 

(GINs) represent the most prevalent parasites of grazing ruminants and are an 

important constraint for livestock farming [1]. Infections with GINs impair the 

health of livestock, but due to intensive chemoprophylaxis clinical infections are 

rarely observed and nowadays the focus lies mainly on the economic impact of 

the disease. The future control of these parasites, however, is challenged by 

several factors such as the development of anthelmintic resistance [2] and 
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changes in climate and farm management [3]. Current control programmes are 

still based on transmission and epidemiological patterns that were mapped 

decades ago. They need to be re-evaluated and adapted in order to maintain 

their efficacy [4].  

Because the host-parasite system is a tight network, impacting factors will often 

interact, resulting in a complex web of interrelated and sometimes opposing 

forces. Future control approaches therefore need to be holistic by taking these 

interactions into account, and for each adaptive change in management the 

consequences on the whole system need to be considered before intervening [3, 

5]. 

Mathematical transmission models that simulate disease dynamics and host 

responses have great potential to improve our understanding of parasite 

epidemiology under changing conditions and to support the implementation of 

integrated parasite control strategies. This review first discusses current and 

anticipated trends for both livestock and their GIN parasites while focussing on 

the underlying drivers of these changes and their interactions, with the aim of 

explaining how transmission models are an asset in dealing with changing 

parasite epidemiology, and can form the foundation of sustainable and effective 

control. Then, an overview of the currently available models for GIN infections in 

ruminants is given, focusing on cattle, and recent progress in the development 

and application of transmission models to predict future risks is discussed. 

Progress in modelling GIN in other host species, such as sheep, is identified 



 4 

where it can support similar efforts for cattle. Finally, we identify key challenges 

in the field and suggest ways of addressing them.  

 

Livestock in a changing world: the toll of intensified farming 

In the previous century, global livestock production has grown substantially, with 

increasing numbers of animals reared and enhanced productivity per animal. In 

more developed regions, cattle farms have disaggregated into specialised milk 

and beef industries that show 30% higher milk yields per animal and 30% higher 

carcass weights, respectively, compared to 1960’s production levels [6]. 

However, the high levels of animal performance reached today compromise 

other aspects of animal production and the resulting asynchrony between 

animals and their environment also affects animal welfare [7]. On the other hand, 

modern production systems are more sustainable than historical methods in that 

their higher efficiency reduces environmental impact per output unit produced [8]. 

However, the scale of growth and intensification that the industry has 

experienced takes a significant environmental toll locally and globally. It is 

common knowledge now that human activity is one of the primary causes of 

climate change [9], with global livestock production representing 15% of all 

anthropogenic greenhouse gas (GHG) emissions [10]. The place of livestock in 

sustainable food production is increasingly questioned due to concerns around 

food safety, environmental impacts and animal welfare [11], and these factors 

are likely to be key in shaping future livestock production systems (Box 1). Global 

demand for livestock products is expected to double by 2050 [10] and the 
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livestock industry will thus have a continued role in securing the world’s food 

supply, while operating against a background of increased climate variability and 

ambitious environmental and social goals. Since GINs are a major constraint on 

production, achieving these goals will logically rely on increasingly efficient 

parasite control. 

 

Gastro-intestinal nematodes under climate change 

There has been an ongoing shift in the focus of health management in livestock 

production to disease prevention rather than treatment [12]. In the future, 

infectious disease patterns are also expected to change, but the impact of these 

changes is difficult to foresee. For cattle, no longitudinal observations on trends 

in nematode infection levels are available yet. For GIN infections in sheep, some 

early evidence of changing trends suggests that not only parasite abundance, but 

also seasonality and spatial distribution are already affected [13]. The two main 

drivers of increased risks from GINs are anthelmintic resistance and climate 

change. Interaction between them and other factors that influence parasite 

epidemiology, such as farm management, make predicting future parasitic 

disease patterns and designing adapted control strategies even more 

challenging.  

The emerging phenomenon of anthelmintic resistance [2] necessitates urgently 

adapted control strategies that are effective in limiting production losses, while 

maintaining the efficacy of available anthelmintic classes in the long term. The 

keystone of the currently proposed control approaches is therefore maintaining a 
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significant proportion of the parasite population in refugia (see Glossary), in order 

to assure the propagation of susceptibility-associated genes to the next 

generation. Two newly formalised control approaches that are based on this 

concept are targeted treatments (TT) and targeted selective treatments (TST) [4]. 

When applying TT, the whole herd is treated based on knowledge of the risk or 

severity of infection. When applying TST, only those animals in the herd that are 

thought to benefit the most from treatment are treated, based on indicators 

related to parasitological parameters (e.g. faecal egg counts), production 

parameters (e.g. weight gain, milk yield, body condition score or morbidity 

parameters such as anemia score). Consequently, future advice on worm control 

is expected to shift to treating selected individual animals rather than entire herds 

[4]. Although this imperative is currently stronger for sheep than cattle because of 

the earlier emergence of anthelmintic resistance in the sheep sector, ensuring 

the future sustainability of anthelmintic use in cattle points to the need to 

integrate TT and TST into control measures before resistance becomes 

pervasive. Lessons and approaches from sheep farming can be usefully 

transferred, with modification, to cattle systems, and modelling can help to 

support that.  

Because climate is, together with farm management, one of the most important 

drivers of parasite epidemiology, expected climate change scenarios will also 

have an impact on parasite infection patterns. The effects of climate change on 

future parasite epidemiology are not straightforward, and can be direct (Box 2) or 

indirect (Box 3). Interactions between climate change and anthelmintic resistance 
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or farm management complicate the development of forecasting tools [14]. 

Increasingly, novel approaches to control, such as vaccination and breeding for 

resistant hosts, are being integrated to reduce reliance on anthelmintic drugs, 

adding further interactions to the system and complicating prediction of changes 

in epidemiology. 

 

Mechanistic models - a tool to support sustainable parasite control 

In the field of veterinary parasitology, transmission models that simulate GIN 

infections have been around for several decades. Given the nature of parasite-

host interactions, transmission models are important tools to represent and 

manipulate such complex processes and interactions. Forecasting, analysing and 

educating are the key aims that have driven the creation of transmission models 

that simulate GIN infections [15]. Transmission models enable extrapolation of 

current knowledge to alternative scenarios, including possible future changes 

(see above), and across large spatial and temporal scales [16-18], and will 

therefore be important to understand the impact of anthelmintic resistance and 

climate change on parasite epidemiology and to facilitate the implementation of 

sustainable control strategies. 

When developing a model, the main criterion in choosing the most appropriate 

approach should be the aim and intended application of the final model, since 

models are often unreliable outside their intended use. Compared to empirical 

models, mechanistic models are better placed to make predictions concerning 

parasite transmission and disease risk under alternative conditions because 
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extrapolation is less of a limitation [19]. Mechanistic models, however, require an 

in-depth understanding of the processes within the system to be modelled and 

make use of more inputs and parameters because they generally incorporate 

more biological detail (e.g. [17]). Lack of knowledge and adequate parameter 

estimates is therefore the primary bottleneck encountered in the development of 

this type of model [19]. In practice, however, the distinction between empirical 

and mechanistic models is not always that strict: most empirical models 

incorporate a certain level of understanding of the system to be modelled and 

most mechanistic models include and use some kind of empirical information. 

In cases where the effect of chance events and the resulting random fluctuations 

in population dynamics are of interest, stochastic models are applied. Individual 

based models are a specific type of stochastic model and aim to incorporate 

variation between individuals by taking specific characteristics of each individual 

in the population into account. Incorporating variation between individuals in a 

model will be required, for example, to simulate TST programmes. Stochastic 

models explicitly recognise the stochastic nature of the infection dynamics and 

are therefore able to capture a large range of phenomena. They can, however, 

be computationally intensive and the complexity of such models can sometimes 

impair the theoretical understanding while mean-field models provide a more 

tractable solution.  

 

Development of a mechanistic model for gastro-intestinal nematodes  
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The development of mechanistic models is a continuous and cyclic process 

(Figure 1). The development process is in general not finished after validating the 

first model version, but going back to the drawing board and adjusting model 

structure and/or model parameterisation will likely be the following step. During 

model development, uncertainty can arise from different sources and, in general, 

three types of uncertainty must be accounted for: methodological, structural and 

parameter uncertainty. Bilcke et al. [20] provide a complete review on the types 

of uncertainty and how to deal with them. Uncertainty further needs to be 

distinguished from variability. Where uncertainty mainly originates from a 

knowledge or information gap, random variation originates from the fact that 

populations are heterogeneous and that differences exist between and within 

individuals.  

 

Model structure  

The first step in creating a mechanistic model is constructing the model’s 

blueprint. This is typically pictured as a flow chart, in which the different model 

compartments (e.g. parasite life stages) are incorporated as separate entities 

that are connected. Most models for GINs are life cycle based models that 

simulate the different parasite life stages during both the parasitic and free-living 

phases. Decisions concerning the complexity of the model need to be driven by 

the goal, as well as the available information and its credibility, but the logical 

approach is to aim for a model that is as parsimonious as possible: a model only 

needs to be as detailed as required to provide useful insights into the research 
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question that is investigated [15]. The potential of creating highly complex models 

is constrained by the available level of understanding and the accessibility of 

adequate parameter estimates. Moreover, it needs to be noted that the 

usefulness of increased model complexity is constrained by the availability of 

adequate data for model input and validation [21], and increased opacity around 

the key drivers of model output. Drawing general conclusions from complex 

models may be difficult [22], and uncertainty analysis and validation (see below) 

should be used to achieve an appropriate level of complexity. 

 

Parameterisation and parameter uncertainty 

Several sources can be consulted to obtain values to parameterise the model 

framework: literature review, experimental work, expert opinion and data fitting. If 

adequate data are available, a literature review is a logical start, and ideally 

should follow the principles of systematic review and meta-analysis of parameter 

values (e.g. [23]). Directly measuring life history traits (e.g. development time 

from egg to larvae) in laboratory experiments or field trials has the advantage 

that specific conditions can be created and replicated (e.g. [24]). In some cases, 

however, parameter estimates cannot be obtained by measuring or observing 

and alternative methods need to be used such as expert elicitation [25] or 

parameter fitting. In the latter approach, model predictions are directly fitted to 

real observations. The parameter value that provides the best fit between 

predictions and observations is then implemented (e.g. [26]). Parameter fitting is 
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an example of how the strict distinction between empirical and mechanistic 

models is often not justified.  

Uncertainty derived from parameter measurement errors, absence of data or 

inability to estimate parameters, is referred to as parameter uncertainty. Further, 

it might be that available parameter estimates are not always representative for 

the parasite species or region of interest. Sensitivity analysis and uncertainty 

analysis are ways to deal with this kind of uncertainty [20]. Sensitivity analysis 

attempts to identify key influential parameters by determining the change in 

model output that results from changes in model input, while uncertainty analysis 

describes the range of potential model outputs together with their associated 

probabilities of occurrence. Both methods can be used to identify key parameters 

with a major influence on model output and can be used to guide further efforts to 

obtain more accurate parameter estimates. A key point here is that, when 

estimating parameters, bounds of uncertainty in those estimates should be 

explicit, so that its influence can be tested across a meaningful interval, and 

parameters ranked by the need for further work to narrow those bounds. 

Uncertainty in parameter values can also be incorporated through fuzzy logic, 

whereby qualitative descriptions of the conditions under which parameter values 

vary are formalised in a model as logical operators [27-29]. Although confounding 

the uncertainty related to model structure and to parameter values, and making it 

difficult to estimate the influence of each separately, this is a useful way of 

achieving a working model when adequate quantitative data are scarce, yet 
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plausible boundaries on key parameters can be justified, for example by expert 

elicitation. 

 

Model validation  

An important step in model development is validation against observed data. 

Different aspects need to be considered when validating a mechanistic model 

and no absolute criteria exist. What exactly demonstrates a model’s validity is a 

matter of discussion and is rather related to the intended applications and users 

of the model than to the model itself [30]. The model of Grenfell et al. [31], for 

example, was not validated against any observations. Later on, the authors 

argued that whether ‘a model is able to generate patterns that would be regarded 

as typical for a specific region by an experienced field worker’, should be a 

criterion for validity of GIN models [32, 33]. An objective assessment of such a 

criterion, however, seems to be difficult in practice and for models intended to 

extrapolate current knowledge to alternative scenarios in less known contexts, it 

defeats the purpose. Nevertheless, model validation by comparison with field 

observations is not always straightforward. It is, as Smith and Grenfell [33] 

stated, often unreasonable to expect precise correspondence between a single 

set of observations and model output. 

Different approaches for objective assessment can be applied for model 

validation but no single approach is considered as the overall norm [30]. The 

display of observations together with simulations in time series plots, for 

example, aims to provide an overview of model performance in a rather intuitive 
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manner, but can pose difficulties for exact interpretation [30] or can even be 

misleading (see [32]). Regression analysis of observations versus simulations, 

and related approaches (e.g. [34]), therefore have great value [17], by providing 

estimates of model fit that are quantitative and comparable between models. 

Excessive reliance on a good statistical fit to data, however, should be avoided 

when such data are scarce or unreliable, since bias or measurement error in the 

validation data could undermine the credibility of models that otherwise perform 

well. A common inconvenience of validating mechanistic GIN models with field 

observations is that it requires data with specific characteristics and a high level 

of detail. These kinds of data are often not readily available and are rarely 

collected for the explicit purpose of model validation. Future efforts should 

integrate theoretical modelling with practical fieldwork in order to avoid that 

models are used as secondary analysis and to fuel further progress and 

advances in this research [35].  

Agreed criteria for what constitutes an adequate model fit would be useful but are 

likely to remain elusive, given the above limitations. Model validation should 

reveal parameters and other elements, for which the state of knowledge is 

relatively poor, and this should spur further experiments and, where necessary, 

changes in model structure (e.g. simplification). Building good models is 

therefore an iterative process, and validation a fulcrum in this process. 

 

Modelling gastro-intestinal nematodes in farmed ruminants: an overview 
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The first transmission models that describe GIN infections in ruminants were 

developed during the mid-1960s. Several reviews elaborate on the description of 

these models and the challenges faced (e.g. [19, 22, 32, 33]), but an easy-to-

access overview of the existing models is lacking. Table 1 aims to provide a 

comprehensive overview of the available mechanistic models for GIN infections 

to facilitate future model development. Besides models for cattle, also models for 

sheep and farmed ruminants in general are included here. Compared to sheep, 

models for nematode infections in cattle have received less attention and 

focused on only one nematode species, namely Ostertagia ostertagi. Future 

modelling efforts, however, can benefit from advances made in other host 

species, such as sheep, and in general modeling and computing to make step 

changes in their application to cattle. Extension beyond GIN, e.g. to lungworm, 

should also be a future aim. 

Following Smith and Grenfell [33], the models were labelled as either generic or 

specific in Table 1. Authors often described their model in several subsequent 

papers, therefore an attempt was made to bundle joint papers as much as 

possible. Likewise, certain models were further developed in follow-up research 

by extending the framework or sometimes several existing models were 

combined into one model. Finally, information is provided on whether a model is 

deterministic, demographically stochastic or environmentally stochastic, whether 

it as an individual-based model, and whether the publication reports validation 

against field observations.  
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Progress in tackling acquired immunity  

Incorporating the acquisition of immunity during the course of a GIN infection and 

modelling its impact on parasite population dynamics remains an important 

challenge. The fact that it is so difficult to quantify the level of acquired immunity 

in a direct manner has made it difficult to determine the adequate mathematical 

incorporation and parameterisation in models. Reliable data that allow 

quantification of how parameters related to exposure and immune stimulation 

correlate to consequences of acquired immunity on parasitological parameters 

(e.g. fecundity), however, are of great value here.  

Some recent approaches have specifically focused on the phenomenon and 

incorporate explicit descriptions of the development of immunity [26, 36, 37]. 

Singleton et al. [26], for example, simulated the effects of the immune response 

on parasite length and fecundity using immunoglobulin A (IgA) titres in sheep as 

a measure of immunity. The model was later modified to an individual based 

model that allows immuno-genetic variation [36]. Garnier et al. [37] built further 

on the moment closure approach of Grenfell et al. [38] and fitted their immune 

response to data of trickle infection experiments. More mechanistic approaches 

have also made contributions in the efforts to capture the role of acquired 

immunity [39, 40]. Specific mechanistic understanding and parameter estimation 

for cattle, however, are not so well developed. 

These recent approaches provide promising and innovative ways to incorporate 

immunity in parasitic disease modelling and future efforts will need to decide 

between incorporating increasing mechanistic richness in modeling immunity 
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despite the presence of uncertainty and taking a more phenomenological or 

heuristic view. A key question here, however, will be whether the empirical 

relationships used to derive such solutions are robust to capture changing 

interactions under, for example, management, environment or genetic change.  

 

Modelling gastro-intestinal nematodes under climate change  

Several recent modelling efforts have focused on assessing climate driven 

changes in future parasite risk levels. A detailed mechanistic framework for GINs 

in ruminants was developed that allows parameterisation for different nematode 

species and can be used to predict risk levels of GINs on pasture [17]. 

Accordingly, this model was used to predict trends in infection pressure for 

Haemonchus contortus, Teladorsagia circumcincta (in small ruminants) and O. 

ostertagi (in cattle) under future climate scenarios [17]. Others also explored 

climate driven changes in the dynamics of GIN infections in sheep by using 

mechanistic models to demonstrate that small changes in climatic conditions 

around critical thresholds might result in significant changes in parasite burden 

[41]. However, not only mechanistic models prove their purpose here [16, 18, 

42]. Transmission models with a simplified output, for example, allow extension 

across a large spatio-temporal scale; this approach has been used to predict a 

prolonged transmission and increased risk levels for H. contortus in sheep in the 

UK and Europe under future conditions [16]. Further, more empirically driven 

predictions using a threshold model gave new insights into how climate 

projections will likely affect parasite epidemiology and parasite disease patterns 
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[18]. For now, few published predictions have incorporated aspects of future 

changes in farm management [16], despite its clear importance as a player in the 

driving forces behind parasite risk, and cattle-specific assessments are less 

developed. This is a task, which is probably more suited to mechanistic models 

because these generally include a greater deal of detail and complexity in model 

structure (see also Mechanistic models - a tool to support sustainable parasite 

control).  

 

Application and implementation of models  

Predictive models aim to forecast the occurrence and severity of disease, while 

illustrative models serve the aims of simulation, analysis and education [15, 22]. 

The latter are for example used to improve the understanding of the impact of 

applying different control approaches on infection levels or the development of 

anthelmintic resistance, often generalising over several systems. Although this 

categorisation is rather arbitrary, there is a bias in the literature towards 

illustrative over predictive models. One reason is that the more specific a model, 

the easier it becomes to demonstrate imperfections through comparison with 

data from that specific system. Illustrative models side-step this problem by 

avoiding claims of fidelity to any exact real-world situation. It is important to 

overcome this bias against models that are capable of being disproven, if the 

kind of system-specific models needed for detailed decision support are to see 

the light of day. Modellers should be transparent about the limitations of their 

models, and end users accepting of the fact that all models are flawed by virtue 
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that they must simplify reality. Furthermore, more attention must be given to 

model implementation and integration with farmer decision systems, if the strong 

scientific foundation for predictive epidemiological models (Table 1) is to achieve 

its potential for impact at farm level. To date, scientific advances in modelling 

these systems have arguably made no difference at all to practical parasite 

control on the ground. A wider skill set and greater commercial sophistication will 

be needed to leverage the potential impacts of these models more effectively. In 

very many cases, potentially useful models have been developed but have not 

made the transition from scientific paper to application in the field, and greater 

consideration is needed of the reasons for this and how they might be overcome. 

  

Concluding remarks 

The major challenge of the coming years for the cattle industry and livestock 

production in general will be to produce high quality food in a way that is ethically 

and environmentally acceptable while maintaining economic viability. To maintain 

or increase the future provision of animal products, the control of GINs will 

remain important, but is challenged by the need to decrease the use of 

anthelmintic products while increased climate variability affects parasite 

epidemiology. Tools that underpin an approach that takes the consequences of 

each intervention into consideration can support the orchestration of the complex 

interplay of influencing factors. Recent efforts show that mathematical models 

can serve their purpose here, as they enhance our understanding of how future 

annual parasite risk levels will be affected, and could focus chemical and other 
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interventions more effectively in an increasingly variable environment. Yet, 

important challenges remain (see Outstanding Questions), with major 

bottlenecks in the development of transmission models for GIN including the lack 

of purpose driven data and the fact that acquired immunity is only partially 

understood. A better and more active integration of modelling with data collection 

would mean a great improvement in this matter. The potential to access data 

from high-throughput diagnostics, originally obtained to monitor performance in 

intensive livestock systems, and the upcoming trend of performing on-farm 

measurements, further provide important possibilities in solving the issue of data 

availability and lowering the costs of data sampling. Knowledge transfer between 

end users and model developers and identification of user needs will also 

become action points if, in the long run, we want to achieve a more detailed 

decision support using transmission models for worm control. 
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Figures 

Figure 1. The cyclic process of developing mechanistic transmission models to 

simulate gastro-intestinal nematode infections.  

 

Additional material (text boxes, tables, and Glossary) 

Text boxes: 

Box 1. Drivers of change for the cattle sector: parasites in context 

Climate change 

The vulnerability of cattle to the effects of climate change depends on 

geographical region and production system [43]. Climate change will affect 

animals directly, for example by increasing heat stress [3]. Indirect effects, such 

as changes in farm management practice and infectious disease dynamics, 

might, however, be more important. For example, under future temperature and 

precipitation conditions the length of grazing seasons may increase [44], and this 

could compromise herbage quality and nutrient concentration, constraining host 

physiology and immunity [5], as well as prolonging parasite transmission 

seasons.  

Environmental impacts and mitigation actions 

Imposed rules and legislative measures to achieve environmental goals, and 

farmers’ attempts to mitigate detrimental effects of climate change, will affect 



 34 

future animal production. Minimising the industry’s contribution to climate change 

through GHG emissions can be decreased by acting on emissions directly or by 

enhancing production efficiency and thus lowering the emissions per unit of food 

produced [45]. Intensification can enhance production efficiency and reduce land 

use requirements [45], even to the point of zero-grazing systems, but the impacts 

of inputs into those systems such as fertiliser and fuel, and outputs such as 

slurry, should be integrated into assessments. While the influence of parasites on 

GHG emissions is likely less than that of nutrition, reducing parasite challenge 

can provide a tractable means of intervention to mitigate environmental impacts, 

by supporting productivity and hence decreasing emissions per unit produced [3]. 

Public awareness and consumer opinion 

In affluent western countries, public awareness concerning food production is 

growing. Animal welfare is an important consideration, and for cows is often 

connected with outdoor access and ability to graze, which can also affect 

perceptions of food quality and healthfulness [46]. In many systems, there are 

trade-offs between behavioural welfare indicators and disease control along the 

intensive-extensive gradient, which have been poorly quantified and could affect 

societal acceptance in future, as could changing dietary preferences (e.g. [47]) 

and concerns over chemical residues. Without a doubt, public opinions will drive 

farming system change in future, concurrently influencing parasite risks and the 

legitimate means for its management. 
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Box 2. Direct impacts of climate change on gastro-intestinal nematodes 

Parasite abundance and larval availability are directly affected by climate through 

the influence of temperature and moisture on development, migration and 

mortality of the free-living stages. Future climate scenarios predict an increased 

daily temperature for temperate regions [9], which theoretically can have 

opposing effects on the different parasite life stages. Higher temperatures will 

increase the development rate of eggs and early larval stages found in the faecal 

pat, but they will also increase the mortality of larval stages found on pasture, 

especially affecting larval survival during winter [14]. The potential of the 

predicted temperature increase to affect development or mortality, however, 

varies between different nematode species and, therefore, also the sensitivity of 

each nematode species to climate change varies [14]. Moreover, it is possible 

that the short generation time of these parasites allows for rapid evolution of key 

life history traits. In addition, not only does the threshold for development of the 

free-living stages differ between nematode species, but also species-specific 

needs exist for other life history traits, for example egg hatching in Nematodirus 

battus [48], while increased temperature variability can drive increased or 

decreased infective stage abundance depending on its relationship with 

important biological thresholds. The moisture level in temperate regions is not 

currently considered as a limiting factor for egg or larval development as this 

process occurs inside the dung [24]. However, rainfall impacts larval emergence 

from the faecal pat on to the herbage [49]. Future predictions report long periods 

of drought followed by short periods of heavy rainfall, which could lead to 
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increased egg and larval mortality in desiccated faeces and sudden increases in 

larval emergence and pasture infectivity [14]. If parasite abundance will in fact 

increase, it still remains a complex network of parasite population dynamics and 

interactions that determines whether this will also lead to an increase in parasitic 

disease risk [3]. Models can be of great value here; Molnár et al. [50], created a 

model framework that determines the fundamental thermal niche of a parasite 

and thus allows to estimate parasite fitness under climate change.  

 

Box 3. Indirect impacts of climate change on gastro-intestinal nematodes 

Climate change can also indirectly influence parasite epidemiology by affecting 

farm management, by influencing the development of anthelmintic resistance or 

by influencing host immunity. If climate change acts as a driver for longer grazing 

seasons [44] the period of host exposure to GINs is also increased and the 

number of potential parasite generations per grazing season may be increased, 

probably increasing the overall pasture infection level [3]. Theoretically, this could 

lead to more frequent application of anthelmintic treatments and consequently to 

development of anthelmintic resistance [51]. Moreover, detrimental effects of 

climate change on larval survival on pasture can diminish the population of GINs 

in refugia, further driving the development of anthelmintic resistance [51]. On the 

other hand, decreased larval survival could mitigate the increase of the pasture 

population described above, decreasing infection pressure and the need to treat. 

This will only attenuate selection for anthelmintic resistance if changes in 

epidemiology are recognized (better still predicted) and acted on accordingly. 
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Climate change can compromise host immunity by negatively affecting the host’s 

nutrition status [52]. Heat stress is associated with decreased feed intake [53] 

and grassland quality can be negatively influenced by the expected climate 

conditions [5]. Mitigation of these trends can be expected through certain 

anticipated adaptations and interventions [54]. For example, if the future 

implementation of zero-grazing systems in the dairy industry increases to 

enhance production efficiency and decrease GHG emissions, the risk of pasture 

borne diseases such as GIN infections will be reduced. The use of zero-grazing 

systems can, however, increase the incidence of other diseases [55]; moreover, 

these animals will not have acquired sufficient immunity against GINs, which 

becomes important when they, for example, are sold to farms that do pasture 

their animals [3]. The interplay between exposure, immunity and the production 

cycle is complex and optimising age-related exposure implies fine judgement at 

farm level, which can be supported by good models.  
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Tables  

Table 1. Overview of different transmission models for gastro-intestinal nematode (GIN) infections in cattle, 

sheep and ruminants in general that shows the progression made from early to recent models.  

Host 

species 

Parasite 

species 

Lifecycle 

stage 

modelled 

Generic/Specific Deterministic 

or stochastic 

(environmental 

or 

demographic) 

Individual 

based 

model 

(yes/no) 

Original 

model 

(yes/no) 

Expansion 

or 

application 

of an 

existing 

model 

Generic/Specific Validated 

against 

field data 

Reference 

Cattle O. ostertagi Entire life 

cycle 

Specific Deterministic No Yes - Specific Yes [56, 57] 

Cattle O. ostertagi Entire life 

cycle 

Specific Stochastic 

(environmental) 

No Yes - Specific No [58-61] 

Cattle O. ostertagi Entire life 

cycle 

Specific Stochastic 

(environmental) 

No No Application 

of [58-61] 

Specific No [62] 
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Cattle O. ostertagi Entire life 

cycle 

Specific Stochastic 

(environmental) 

No No Expansion of 

[58-61] 

Specific Yes [63, 64] 

Cattle O. ostertagi Free-living 

phase 

(Develoment 

from egg to 

L3) 

Specific Fuzzy rule-

based system 

No Yes - Specific Yes [27] 

Cattle O. ostertagi Free-living 

phase 

Specific Fuzzy rule-

based system 

No Yes - Specific Yes [29] 

Cattle O. ostertagi Parasitic 

phase 

Specific Fuzzy rule-

based system 

No Yes - Specific No [28] 

Sheep - Free-living 

phase 

(Distribution 

of L3 on 

Generic Deterministic No Yes - Generic No [65, 66] 
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pasture) 

Sheep - Entire life 

cycle 

Generic Deterministic No Yes - Generic Yes [67] 

Sheep - Entire life 

cycle 

Generic Stochastic 

(environmental) 

No Yes - Generic Yes [68, 69] 

Sheep - Entire life 

cycle 

Generic Stochastic 

(demographic) 

Yes Yes - Generic No [70] 

Sheep - Entire life 

cycle 

Generic Deterministic No No Application 

and 

expansion of 

[71] 

Generic No [72] 

Sheep - Entire life 

cycle 

Generic Stochastic 

(demographic) 

Yes No Expansion of 

[73, 74] 

Generic No [75, 76] 

Sheep - Parasitic Generic Deterministic No Yes - Generic No [77, 78] 
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stage 

Sheep - Parasitic 

stage 

Generic Stochastic 

(demographic) 

No No Expansion 

and 

application 

of [77, 78] 

Generic No [79] 

Sheep - Entire life 

cycle 

Generic Stochastic 

(environmental) 

No No Applications 

of [68, 69] 

Generic No [80-82] 

Sheep - Entire life 

cycle 

Generic Stochastic 

(demographic) 

Yes No Expansion of 

[73] by 

combining it 

with [83] 

Generic No [39, 41] 

Sheep - Entire life 

cycle 

Generic Stochastic 

(demographic) 

No Yes - Generic No [84] 

Sheep H. contortus Entire life Specific Deterministic No Yes - Specific No [85] 
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cycle 

Sheep T. circumcincta Entire life 

cycle 

Specific Stochastic 

(environmental) 

No Yes - Specific Yes [86] 

Sheep T. circumcincta Entire life 

cycle 

Specific Deterministic No Yes - Specific Yes [87] 

Sheep T. circumcincta Entire life 

cycle 

Specific Deterministic No No Expansion of 

[87] 

Specific No [88, 89] 

Sheep T. colubriformis Parasitic 

phase 

Specific Deterministic No Yes - Specific No [90] 

Sheep T. colubriformis Entire life 

cycle 

Specific Stochastic 

(environmental) 

No No Expansion 

and 

application 

of [90] 

Specific Yes [91-93] 

Sheep H. contortus Entire life Specific Deterministic No No Adaptation Specific No [94] 
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cycle of [89] 

Sheep T. colubriformis Parasitic 

phase 

Specific Stochastic 

(environmental) 

No No Application 

and 

expansion 

[90] 

Specific No [95, 96] 

Sheep Teladorsagia 

spp., 

Trichostrongylus 

spp., H. 

contortus 

Entire life 

cycle 

Specific Deterministic No No Application 

of [71] 

Specific No [97] 

Sheep Teladorsagia 

spp., 

Trichostrongylus 

spp., 

Haemonchus 

spp. 

Entire life 

cycle 

Specific Deterministic No Yes - Specific Yes [98] 
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Sheep T. circumcincta Entire life 

cycle 

Specific Stochastic 

(demographic) 

Yes Yes - Specific No [99] 

Sheep Teladorsagia 

spp., 

Trichostrongylus 

spp., 

Haemonchus 

spp. 

Entire life 

cycle 

Specific Deterministic No No Applications 

of [98] 

Specific Yes [100, 101] 

Sheep T. circumcincta Entire life 

cycle 

Specific Stochastic 

(demographic) 

Yes No Application 

and 

expansion 

[99] 

Specific No [102, 103] 

Sheep T. circumcincta Entire life 

cycle 

Specific Deterministic No No Expansion of 

[77, 78] 

Specific No [104] 

Sheep T. circumcincta Entire life Specific Deterministic No No Expansion of Specific No [26] 
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cycle [70] 

Sheep T. circumcincta, 

T. colubriformis, 

H. contortus 

Entire life 

cycle 

Specific Deterministic No No Expansion 

and 

application 

of [91] 

Specific Yes [105, 106] 

Sheep T. circumcincta Entire life 

cycle 

Specific Deterministic No No Applications 

of [104] 

Specific No [107-109] 

Sheep T. circumcincta, 

T. colubriformis, 

H. contortus 

Free-living 

phase 

(Development 

from egg to 

L3) 

Specific Stochastic 

(environmental) 

No Yes - Specific No [110] 

Sheep T. circumcincta Entire life 

cycle 

Specific Stochastic 

(demographic) 

Yes No Expansion of 

[26] 

Specific No [36] 
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Sheep T. circumcincta Parasitic 

phase 

Specific Stochastic 

(demographic) 

No No Expansion of 

[38] 

Specific No [37] 

Sheep H. contortus Entire 

lifecycle 

Specific Stochastic 

(environmental) 

No No 
Expansion of 

[97] 

Specific Yes [42] 

Sheep H. contortus Entire 

lifecycle 

Specific Stochastic 

(environmental) 

No Yes - Specific No [16] 

Ruminants - Entire life 

cycle 

Generic Stochastic 

(demographic) 

No Yes - Generic No [111, 112] 

Ruminants - Entire life 

cycle 

Generic Stochastic 

(environmental) 

No Yes - Generic No [73, 74] 

Ruminants - Entire life 

cycle 

Generic Stochastic 

(environmental) 

No No Expansion of 

[73, 74] 

Generic No [71] 

Ruminants - Entire life Generic Stochastic No No Expansion 

and 

Generic No [113, 114] 



 47 

 

 

 

cycle (demographic) stochastic 

reformulation 

of [73] 

Ruminants - Entire life 

cycle 

Generic Stochastic 

(demographic) 

No Yes - Generic No [115] 

Ruminants - Free-living 

phase 

Generic Stochastic 

(environmental) 

No Yes - Generic Yes [17] 
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Glossary 

Deterministic model: Model that assumes no variability or randomness and 

describes what happens on average in the system or process modelled.  

Demographic stochasticity: Variability in population growth arising from 

random differences among individuals in survival and reproduction rates.  

Empirical model: Model based on measurements and observations. Empirical 

models consider correlative relationships that are in line with the current 

understanding of the system of interest, but without fully describing the system’s 

behaviour. Synonyms: statistical, correlative, or phenomenological models.  

Environmental stochasticity: Variability in population growth as a result of 

fluctuations in external factors such as climate. 

Generic model: A generic model provides a framework that aims to assess the 

general dynamics of parasite infections. Generic models rather consider a group 

of similar parasites (e.g. GIN) instead of specific parasite species. In general, 

they do not incorporate excessive amounts of biological detail and their structure 

is kept rather simple to not obscure key processes, and to ensure general 

applicability across a range of systems. 

Individual based model: Models that assume a heterogeneous population in 

which every individual of the population has its own characteristics and that 

tracks the infection process for each of these individuals. Population level effects 

are explicitly emergent properties of individual-level processes. In contrast to 

population based models, these models are therefore per definition considered to 

be demographically stochastic. A synonym used is agent based model. 
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Mechanistic model: Mechanistic models are based on the current knowledge 

and understanding of the system of interest and are therefore process-oriented. 

They consider the mechanisms that underlie the system’s behaviour and 

explicitly describe these. For infectious disease modelling, these models are 

typically compartmental. Synonyms: compartmental models, process-based 

models. 

Population based model: Models that assume a homogeneous population. 

They can be either deterministic or stochastic.  

Refugia: Proportion of the parasite population that remains unexposed to 

anthelmintics, which is found in untreated hosts and/or on pasture. 

Stochastic model: Model that incorporates the effect of variable events and the 

resulting fluctuations in the population dynamics, for example environmental 

variability such as climate, or demographic variability such as death rates.  

Specific model: Specific models describe the population dynamics of a 

particular parasite species and sometimes of a specific region or specific 

management situations. They often contain a greater deal of biological detail 

compared to generic models. 

 

 

 


