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Abstract 
A Bayesian frequency domain method for modal identification using asynchronous ambient 

data has been proposed previously. It provides a flexible and economical way to conduct 

ambient vibration tests as time synchronisation among data channels is not required. To 

simplify computation, zero coherence among synchronous data groups is assumed in the 

method, which inevitably introduces modelling error and lacks the ability of quantifying the 

synchronisation degree among different groups. To address these issues, a Bayesian modal 

identification method with a general coherence assumption among synchronisation groups is 

proposed in this paper. Computational difficulties are addressed and an efficient algorithm for 

determining the most probable values of modal properties is proposed. Synthetic and 

laboratory data examples are presented to validate the proposed method. It is also applied to 

modal identification of a full-scale ambient test, which illustrates the feasibility of the 

proposed method to real asynchronous data under field test configurations. For the cases 

investigated the proposed method does not lead to significant improvement in the 

identification accuracy of modal parameters compared to the method with zero coherence 

assumption. This is consistent with previous experience regarding the robustness of the zero 

coherence assumption and is now verified in this work. One may use the latter in practice for 

computational efficiency if the synchronisation degree among different groups is not 

demanded.  
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1. Introduction 
Operational Modal Analysis (OMA) has been widely used in structural health monitoring 

(SHM) to estimate the dynamic characteristics of real structures (e.g., natural frequencies, 

damping ratios and mode shapes) based on ambient vibration tests [1,2]. This is essential 

information that can be further applied in SHM including assessing the physical condition of 

structures or even detecting damage in structures during their service life [3–6]. Compared 

with other vibration tests like forced and free vibration tests, ambient vibration tests do not 

require artificial excitation but make full use of natural excitations such as wind, microtremor 

and traffic. Due to its high economy and efficiency in implementation, OMA has attracted 

great attention with a significant number of field tests performed [7–9].   

Various kinds of OMA methods have been developed in both non-Bayesian and Bayesian 

contexts over the past decades. Peak-picking [10] and frequency-domain decomposition [11] 

are popular non-Bayesian approaches that provide a quick estimation of the modal properties. 

Stochastic subspace identification (SSI) method [12–14] has been widely used where the 

modal parameters are estimated by standard linear regression through a state-space model. 

On the other hand, Bayesian methods view OMA as a probabilistic inference problem. 

Determining the most probable modal properties involves maximising the posterior 

probability function of modal parameters for given measured data and modelling assumptions. 

A number of approaches have been developed, including time domain method [15], 

frequency domain method based on sample power spectral density [16–18] and fast Fourier 

transform (FFT) of data [19,20]. Recent applications include [21,22] using FFT of data and 

[23,24] based on sample power spectral density. It should be noted that, among the different 

formulations, the one based on FFT is preferred for its robustness to modelling assumptions 

(as compared to time domain method) and fundamental nature (not involving averaging 

concept as in spectral density method) [2]. 

Conventional OMA methods require ‘synchronous’ data, where different data channels 

should start sampling at the same time and at the same pace thereafter. In real implementation, 

time synchronisation is a crucial issue that should be considered and planned. In one 

conventional configuration, the analogue data from different sensors are transmitted to a 

central data acquisition (DAQ) unit that controls the sampling process. This requires long 

cables in full-scale tests, which leads to additional noise in the measured data and logistics 

costs. Other time synchronisation schemes include Network Time Protocol [25], Global 
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Positioning System (GPS) [26] and wireless sensor networks [27–29] that require additional 

instruments and overheads in field deployment. Field tests can be conducted in a more 

economical and efficient manner if OMA can be performed using asynchronous ambient data. 

Asynchronisation is mainly caused by two factors, the initial time shift (start time) between 

channels and the random time drift due to different sampling clocks. The initial time shift can 

be detected and aligned using existing time delay estimation methods [30,31]. Compared to 

initial time shift, random time drift cannot be easily aligned and is the primary issue in real 

applications when multiple DAQ units are used without synchronisation. Asynchronisation 

due to random time drifts accumulates over time, which leads to the non-stationary behaviour 

in the sampled data. Recently, an asynchronous model has been proposed for OMA [32]. It 

assumes the data to be stationary within suitable time scales in order to facilitate analysis 

while capturing key asynchronous characteristics through imperfect coherence. Based on this 

model, a Bayesian OMA method has been developed assuming zero coherence among 

different synchronisation data groups [33,34]. It provides a quick estimation of modal 

parameters and associated identification uncertainties based on asynchronous ambient data. 

Inevitably, it involves extra modelling error (real asynchronous data may not have zero 

coherence among different groups) and lacks the ability of estimating the synchronisation 

degree among different groups.  

To address these challenges, this paper proposes a Bayesian OMA method based on the 

asynchronous data model with general coherence assumption. It accounts for the 

asynchronous characteristics in the measured data when making inference about the modal 

parameters and is capable of determining the MPV of coherence values among different 

synchronous data groups. The identification procedure based on the asynchronous data model 

with general coherence values turns out to be computationally non-trivial and ill-conditioned. 

Efficient strategies for numerical optimisation are developed to suppress the dimension of 

matrix involved in computation. Consequently, Bayesian modal identification can be 

performed efficiently using the proposed method based on asynchronous ambient data. The 

proposed method is illustrated using both synthetic and laboratory data. It is also applied to 

modal identification of a full-scale structure which investigates the challenges encountered 

when using asynchronous data for OMA in a practical context.  
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2. Bayesian frequency domain method 
The modal identification method proposed in this work is based on a Bayesian frequency 

domain approach using the Fast Fourier transform (FFT) of measured ambient data. The 

overall formulation is reviewed in this section. Let the measured ambient acceleration data be 

{ }N

j
n

j R
1

ˆ
=

Îx&&  with n  degrees of freedom (DOF) of the subject structure and N  sampling points 

per channel. The data are assumed to consist of structural response n
j RÎx&&  as well as 

prediction error n
j RÎε  arising from modelling error and measurement noise: 

jjj εxx += &&&&̂  (1) 

Define the scaled FFT of measured data { }jx̂&&  as: 
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corresponding to frequency ( )Hz /)1(f tNkk D-=  for  ,...1 qNk = . Here, 12 -=i ; tD is the 

sampling interval and ( ) 12/int += NNq  (int(.) denotes integer part) is the index 

corresponding to the Nyquist frequency. The power spectral density (PSD) matrix of the 

measured data at frequency kf  can be calculated as multiplying kF  by its conjugate transpose. 

The scaling factor Nt /2D  is defined such that the PSD is one-sided with respect to 

frequency in Hz.  

Let { }kF  denote the set of FFT data within a selected frequency band for modal identification 

with fN  points in the set. In the context of Bayesian inference, the measured data depends on 

the set of modal parameters θ  to be identified, which normally includes natural frequencies, 

damping ratios, mode shapes, PSD of modal force and prediction error, etc. Using Bayes 

theorem and assuming a uniform prior (justified for OMA as the likelihood function is fast-

varying compared to the prior PDF when data size is sufficiently large), the posterior PDF of 

θ  given { }kF  is proportional to the likelihood function, i.e.,  

{ }( ) { }( )θθ kk pp FF µ  (3) 

For high sampling rate and long data duration, it can be shown that { }kF  are asymptotically 

independent at different frequencies and jointly ‘complex Gaussian’ [35]. The likelihood 

function is then given by: 
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where ‘*’ denotes complex conjugate transpose and ][ * θE kkk E FF=  is the theoretical PSD 

matrix. It is convenient to work with the ‘negative log-likelihood function’ (NLLF) ( )L θ  

such that 

{ }( ) [ ])(exp θθ Lp k -µF  (5) 

where 

( ) åå -+=
k

kkk
k

kL FF 1*detln EEθ  (6) 

For sufficiently long data, the posterior PDF has a unique maximum (i.e., globally 

identifiable). The MPV of θ can then be obtained by maximising the posterior PDF, or 

equivalently minimising the NLLF in Eq. (6). 

3. Asynchronous data model in OMA 
The Bayesian FFT method for asynchronous data in this paper is developed based on the 

asynchronous data model proposed in [32], which is briefly reviewed in this section. 

Modelling asynchronous data is difficult as it is fundamentally a non-stationary process. To 

keep the identification problem tractable, it is modelled as a stationary process with imperfect 

coherence to facilitate modal identification, while capturing the key asynchronous 

characteristics within suitable time scales. Based on this model, the theoretical PSD matrix 

kE  for asynchronous data can be derived. 

Assume that the test configuration on time synchronisation is given, which is typically the 

case in real applications. Define a ‘synchronous data group’ as a set of data channels where 

the data are sampled synchronously (i.e., using the same clock). Let gn  denote the total 

number of synchronous data groups in the whole measurement array. Consider a frequency 

band dominated by a single mode. Let φ  denote the ‘global mode shape’ covering all 

measured DOFs and in
i RÎu  denote the part of φ  measured by the i th synchronous data 

group with in  DOFs, i.e. 
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Let kih&&  be the FFT of the modal acceleration ( )tih&&  associated with the i th synchronous data 

group. The FFT of the measured asynchronous data now can be modelled as: 
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The modal acceleration ( )tih&&  satisfies the modal equation of motion (assuming classically 

damped structure): 

 ( ) ( ) ( ) ( )tpttt iiii =++ hwhzwh 22 &&&  gni ,...,1=  (9) 

where fpw 2= (rad/s); f (Hz) and z are the natural frequency and damping ratio of the 

mode, respectively; ( )tpi  is the modal force associated with the i th synchronous data group. 

For synchronous data, ( )tpi  among different groups are identical and so are kih&& . This is not 

the case for asynchronous data, however. Assuming the same measurement duration for all 

the data channels (i.e., start recording at the same time with the same number of sampling 

points) while different synchronous groups sample the data asynchronously. It is then 

reasonable to assume that the measured modal force among different groups are identically 

distributed, i.e., 

 ( ) SppE kiki =*   gni ,...,1=  (10) 

such that 

 ( ) kkiki SDE =*hh &&&&   gni ,...,1=  (11) 

where S  is the modal force PSD (assuming a constant PSD within the band) and 

 ( ) ( )[ ] 1222 21
-

+-= kkkD zbb  kk f f=b  (12) 

is the dynamic amplification factor. 

Balancing relevance and simplicity, the relationship of modal acceleration among different 

synchronous groups are (empirically) modelled through imperfect coherence: 
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where Cij Îc  ( 1£ijc ) is the coherence between the i th and j th group. It is assumed to be 

constant within the selected band, which is justified when the selected band is not wide 

(typical in real applications). Modelling the prediction error as i.i.d. (independent and 

identically distributed) with a constant PSD eS  for all the data channels in the selected band, 

the resulting PSD matrix for asynchronous data now can be written as: 
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As shown in Eq.(6), minimising the NLLF for determining the MPV of modal parameters 

requires repeated evaluations of the determinant and inverse of the PSD matrix kE  for 

different values of k  and different trails of θ . It is of interest to know the characteristics of 

the determinant and inverse of kE . First rewrite kE  in Eq. (14) as 

T
k k e nSD S= +E UCU I  (15) 

where 

1
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{ } { }1 1

g gn n
i ii i

diag diag
= =

=C u χ u  (17) 

Here, /i i i=u u u , { } gn

iidiag
1=

u  denotes a diagonal matrix with entries { } 1

gn
i i=

u  and χ  

denotes a gg nn ´  matrix with ( )ji, -entry ijc . Let { } 1
0 gn

i i
l

=
³  and { }

1

g
g

nn
i i

C
=

Îc  denote the 

eigenvalues and eigenvectors (with unit norm) of C , respectively. The eigenvector 

representation of C  is then given by 

*
1

gn
i i ii

l
=

= åC c c  (18) 

Substituting Eq.(18) into Eq.(15) gives: 
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where 

 i i=α Uc  gni ,...,1=  (20) 

Using the orthonormal properties of { } 1
gn

i i=
c  (i.e, * 1i i =c c  and * 0i j =c c  for i j¹ ) and 

g

T
n=U U I , an orthonormal basis { }

1

nn
i i

C
=

Îa  can be formed with i i=a α  ( gni ,...,1= ). 

Substituting *
1

n
n i ii=

= åI a a  into Eq.(19) gives the eigenvector representation of kE : 

( ) * *

1 1

g

g

n n

k k i e i i e i i
i i n

SD S Sl
= = +

= + +å åE a a a a  (21) 

The determinant of kE  then can be obtained as the product of the eigenvalues, i.e., 

( )
1

det
g

g

n
n n

k e k i e
i

S SD Sl-

=

= +ÕE  (22) 

The inverse of kE  has the same eigenvectors but reciprocal of eigenvalues: 

( ) 11 * 1 *

1 1

g

g

n n

k k i e i k e i i
i i n

SD S Sl -- -

= = +

= + +å åE a a a a  (23) 

4. Identification strategies for general coherence assumption 
As shown in Eq.(21), the eigenvalue il  and eigenvector ic  of C  depend on the norm of the 

partial mode shapes iu  associated with different synchronous groups as well as the 

coherence χ  in a non-trivial manner. It is difficult to express directly the determinant and 

inverse of kE  in analytically tractable forms. The computation of the determinant and inverse 

of kE  is also ill-conditioned. In the resonant frequency band of the mode, kE  is dominated 

by the modal response (first term in Eq.(15)) and the prediction error (second term in Eq.(15)) 

is relatively small. In this context, kE  is close to being singular with a rank of at most gn . 

Without resorting to brute-force numerical optimisation, the efficient computation of these 

quantities becomes the natural target. In this section, the identification procedure for general 

coherence are discussed and solution strategies are proposed.  
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A condensed full-ranked matrix is first proposed to facilitate computation. Define gn
k C¢ ÎE  

as 

gk k e nSD S¢ = +E C I  (24) 

Similar to the case of kE , the determinant and inverse of k¢E  then can be given by 

( )
1

det
gn

k k i e
i

SD Sl
=

¢ = +ÕE  (25) 

( ) 11 *

1

gn

k k i e i i
i

SD Sl --

=

¢ = +åE c c  
(26) 

This allows the determinant and inverse of kE  to be expressed in terms of k¢E as 

k
nn

ek
gS EE ¢= - detdet  (27) 

( )T
nne

T
kk g

S UUIIUEUE -+¢= --- 111  (28) 

The resulting NLLF then can be written as: 

( ) ( ) ( )1 * 1ln ln detg f e k e k k k
k k

L n n N S S d d- -¢ ¢ ¢ ¢ ¢= - + + - +å åθ E EF F  (29) 

where 

*
kkd FF=  (30) 

kkd FF ¢¢=¢ *  (31) 

k
T

k FF U=¢  (32) 

Compared with the initial NLLF in Eq.(6), the dimension of the matrix involved in the 

resulting NLLF (Eq.(29)) has now been suppressed to gn  (the number of synchronous data 

groups), which is much smaller than n  (the number of measured DOFs) in applications. The 

matrix k¢E  in the NLLF has full rank so its determinant and inverse are well-defined. Based 

on this NLLF, an iterative scheme will be proposed in the following sections where the modal 

parameters are optimised in groups, leveraging on the fact that changing some of the 

parameters does not significantly affect the optimal value of others. In this context, the 

dimension of the optimisation problem is further reduced. 
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5. Most probable normalised mode shape matrix U  
Using the NLLF in Eq.(29), the MPV of the normalised mode shape matrix U  is investigated 

in this section. Since the NLLF depends on U  through the last two (quadratic) terms in the 

NLLF, the MPV of U  must minimise the latter, which can be written as: 

( )
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1 * 1

1 1 * 1
g

Q e k k k
k
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e e k n e k k
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L S d d

S d S S
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¢= - -

å
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E

U I E U

F F

F F
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subjected to unit norm constraint of the partial mode shape in each synchronous group: 

 1i =u  gni ,...,1=  (34) 

It is better to swap the order of kF  and U in Eq.(33) so that the MPV of U  can be 

determined by solving eigenvalue problems. Rewrite T
kU F  as 

UFU ¢= kk
TF  (35) 

where 
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Here, ikF  ( 1,..., gi n= ) is the FFT of the measured data corresponding to the i th synchronous 

data groups. The resulting QL  can then be expressed as 

1 1 T
Q e eL S d S- - ¢ ¢= - U AU  (38) 

where 

( )* 1
gk n e k k

k
S -¢= -åA F I E F  (39) 

In order to apply the unit norm constraint in Eq.(34), it is better to express iu  in terms of ¢U  

to facilitate analysis. Define a selection matrix nn
i

iR ´ÎL  such that 
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ULu ¢= ii  (40) 

where the ( )kj, -entry of iL  is equal to 1 if DOF k  is measured by the j th channel in the i

th synchronous group, and zero otherwise. The Lagrangian for this constrained optimisation 

problem is then given by 

( )1 1

1
1

gn
T T T

e e i i i
i

J S d S q- -

=

¢ ¢ ¢ ¢= - + -åU AU U L L U  (41) 

where { } 1
gn

i i
q

=
 are the Lagrange multipliers that enforce the norm of ( )1...,i gi n=u  to be 1. 

The gradient of J  with respect to ¢U  is given by 

1

1
2 2

gn
T

e i i i
i

J S q-
¢

=

¢ ¢Ñ = - + åU AU L L U  (42) 

The MPV of ¢U  now can be obtained by solving J¢Ñ =U 0 , or equivalently 

1

1

gn
T

e i i i
i

S q-

=

¢ ¢= åAU L L U  (43) 

This is not a standard eigenvalue problem and evaluating the MPV of ¢U  directly involves 

solving nonlinear equations. In view of this, the MPV of ¢U  are updated in terms of iu  in 

each synchronous group separately by assuming other ju  ( i j¹ ) to be constant. Eq.(43) then 

can be written as: 

 
( )1

gn

ii i ij j i i
j j i

q
= ¹

+ =åA u A u u  gni ,...,1=  (44) 

where i jn n
ij C ´ÎA  is the corresponding ( ),i j  partition matrix of A . It now becomes a 

‘constrained eigenvalue problem’ [36]. It can be shown that the MPV of iu  can be obtained 

by taking the first half of the eigenvectors of iD  with largest eigenvalue and normalised to 

unit norm: 



 12 / 30 
 

ú
ú
û

ù

ê
ê
ë

é
=

iin

iiii
i

i
AI
bbA

D
*

 (45) 

( )1

gn

i ij j
j j i= ¹

= åb A u  (46) 

6. Most probable value of spectral parameters 
The MPV of spectral parameters can be obtained through numerical optimisation of the 

NLLF in Eq.(29) with the constraints: 

2

1
1

gn

i
i=

=å u  (47) 

due to the unit norm of the global mode shape and 

1ijc £  (48) 

Without resorting to brute-force numerical techniques, it is more efficient to adopt a 

parameterisation that automatically takes care of these constraints. For the constraints in 

Eq.(47), the square norm of the partial mode shapes can be transferred to the scaling of the 

modal force PSD so that the resulting variable is unconstrained. Specifically, define 

 i iS S= u  gni ,...,1=  (49) 

which now become unconstrained variables. The condensed PSD matrix k¢E  then can be 

expressed as: 

{ } { }
gneiikk SSdiagSdiagD IχE +=¢  (50) 

In order to automatically satisfy the constraint in Eq.(48), ijc  is parameterised through the 

angles ( ), 1,..., ;n
ij ij gu v R i n j iÎ = <  such that 

( ) ( )sin expij ij iju vc = i  (51) 

Using the foregoing representations, the unconstrained parameters iS  and { },ij iju v  can be 

used for optimisation in place of S , { }iu and { }ijc . Once the MPV of iS  and { },ij iju v  have 

been found, the MPV of S , { }iu and { }ijc  can be recovered. Specifically 
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where a hat ‘^’ denotes MPV. 

7. High signal-to-noise asymptotics 
In this section, the asymptotic behaviour of some parameters is investigated under high 

signal-to-noise (s/n ratio) condition, i.e., the modal signal is much larger than the prediction 

error, which is often met in well-controlled field tests. It turns out that the asymptotic MPVs 

of { }iu , eS  and iS  can be obtained directly based on the measured data, which can also 

provide good initial guesses for the iterative procedure to be proposed in the next section. 

7.1 Asymptotic MPV of { }iu  

The high s/n ratio condition for A  in Eq.(39) here refers to the case when 

1
g gn e k nS -¢-I E I∼  (54) 

In this case 

*
k k

k
åA F F∼  (55) 

which becomes a constant matrix with off-diagonal partitions equal to zero. This implies that 

there is no cross term between iu  and ju  for i j¹  in Eq.(44), which can be expressed as: 

 ii i i il=A u u  gni ,...,1=  (56) 

The asymptotic MPV of iu  now can be obtained by solving a standard eigenvalue problem. 

It follows that the eigenvector of iiA  with the largest eigenvalue is the MPV of iu  

(normalised to unit norm).  

7.2 Asymptotic MPV of prediction error 
For high s/n ratio condition, k¢E  in Eq.(24) is dominated by the modal response (i.e., the first 

term) and hence asymptotically independent of the prediction error eS . In this context, the 
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NLLF only depends on eS  through the first and third term in Eq.(29). Rewrite these two 

terms as: 

( ) ( ) ( ) ( ) ( ){ }1 1ln ln /g f e e g f e e g fn n N S S d d n n N S S d d n n N- - é ù¢ ¢- + - = - + - -ë û  (57) 

which are of the form ln /x c x+ . This form has a unique minimum of 1 ln c+  at x c= . The 

high s/n asymptotic MPV of eS  can now be obtained as: 

( ) ( )ˆ /e g fS d d n n N¢- -∼  (58) 

7.3 Asymptotic MPV of iS  

The asymptotic MPV of iS  cannot be directly obtained from the NLLF in Eq.(29) under high 

s/n ratio condition as the determinant of k¢E  depends non-trivially on χ  (see Eq.(50)). In this 

context, its analytical form still cannot be explicitly expressed in terms of iS . However, the 

asymptotic MPV of iS  can be estimated by making use of the fact that the data in different 

groups share the same modal force PSD. When analysing the data of different groups 

separately, the identified value of modal force PSD in each group is scaled by the squared 

norm of the partial mode shape measured by this group (as the partial mode shape is 

normalised to have unit norm). Since the data channels in each group are synchronised, its 

asymptotic value can be obtained based on an existing fast Bayesian formula that assumes 

synchronous data [37]. Specifically,  

1 1 *

1

ˆ ~
fN

T
i f i k ik ik i

k
S N D- -

=
åu uF F  (59) 

for 1,..., gi n= . 

8. Summary of procedure 
Based on the foregoing analysis, an iterative procedure for determining the MPV of modal 

parameters is summarised in this section. Instead of optimising all the parameters 

simultaneously, the proposed method optimises them in groups (given the remaining 

parameters) and iterates until convergence. Different groups have been investigated (details 

omitted here) and it is found that optimising { },ij iju v ,{ },f z ,{ }iS , eS , { }iu  sequentially and 



 15 / 30 
 

iteratively leads to a good modal identification algorithm balancing robustness and efficiency. 

The optimisation scheme is summarised as follows: 

Step I. Initial Guess 

1) Calculate the FFT of measured data. 

2) Select the frequency band for the mode of interest. 

3) Pick the initial guess of f  from the singular value spectrum and set the initial guess 

of z as 1% (say). 

4) Take the initial guess of iu  ( )gni ,...,1=  as the eigenvector with the largest eigenvalue 

of iiA  in Eq.(56).  

5) Calculate the initial guess of eS  using Eq.(58). 

6) Calculate the initial guess of iS  ( )gni ,...,1=  using Eq.(59). 

7) The angles { },ij iju v  can be nominally assigned as 0.1. 

Step II. Iteration Phase 

In the following, parameters that are not updated are kept at their current value during 

iteration. 

1) Update { },ij iju v  by minimising L  in Eq.(29) with respect to { },ij iju v . 

2) Update { }z,f  by minimising L  in Eq.(29) with respect to { }z,f . 

3) Update { }iS  by minimising L  in Eq.(29) with respect to { }iS . 

4) Update eS  by minimising L  in Eq.(29) with respect to eS . 

5) Update iu  ( )gni ,...,1=  as the first half of the eigenvectors of iD  in Eq.(45) with the 

largest eigenvalue and normalised to unit norm. 

Repeat Steps 1) to 5) until convergence. 

Step III. MPV of S and φ  

1) Obtain the MPV of S  using Eq.(52). 
2) Obtain the MPV of { }iu  using Eq.(53). 

3) Obtain the MPV of global mode shape φ  by 
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where ( )1 1,...,i gs i n= ± =  is the sign of the relative direction between partial mode shapes. It 

should be noted that swapping the sign of the coherence value and the partial mode shapes 

gives the same kE  and hence the NLLF. Without additional assumptions on the sign of 

coherence (e.g., the coherence value may be positive in the low frequency range when the 

synchronisation degree between two synchronous data groups are high), the relative direction 

between partial mode shapes cannot be directly identified. This is one fundamental limitation 

when dealing with asynchronous ambient data. In real implementation, the relative direction 

among partial mode shapes can be either determined intuitively based on spatial continuity or 

an empirical analysis of the coherence among different groups.  

9. Illustrative examples 
Three examples are presented in this section to illustrate the proposed method and its 

practical application. The first example is based on synthetic data, which serves to verify 

consistency of the algorithm. The proposed method is applied to modal identification of 

laboratory data in the second example, which investigates the applicability to real 

asynchronous data under well controlled environment. In the third example, a full-scale 

ambient vibration test based on asynchronous data is presented. It illustrates the feasibility of 

the proposed method to asynchronous ambient data measured under field test conditions, 

where complications and practical issues are naturally reflected in the data. The identification 

results based on the proposed method are also compared with the ones identified based on 

synchronous data and asynchronous data using the previously developed Bayesian method 

that assumes zero coherence among synchronous data groups in the laboratory and field test 

examples.  

9.1 Synthetic example 
Consider a six-storey shear building with a uniform inter-storey stiffness of 2000kN/mm and 

floor mass of 500 tons. The resulting natural frequencies of the first four modes are 2.427Hz, 

7.139Hz, 11.436Hz and 15.069Hz, respectively. The damping ratios of these modes are 
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assumed to be 1%. The structure is subjected to i.i.d. Gaussian white noise excitation with a 

PSD of 9.81N/ Hz  in the lateral direction of each floor, which is typical in ambient 

vibration tests. Assume two synchronous data groups in this test, measuring the vibration 

responses of 1/F to 3/F and 4/F to 6/F, respectively. Figure 1 shows the schematic diagram of 

this example. To simulate the asynchronous data, the coherences of the modal excitations 

among these two groups are taken to be 0.8, 0.6, 0.6, 0.5 for the first four modes, respectively. 

The measurement noise is taken to be i.i.d. Gaussian white noise with a (root) PSD of 

3μg Hz  for all data channels, which is the typical noise level of force-balanced 

accelerometers. The acceleration response for 20 minutes with a sampling rate of 100Hz is 

assumed to be available for modal analysis.  

Figure 2 shows the root singular value spectrum of the data. Modal identification of the first 

four modes was conducted using the proposed method. The selected initial guesses of natural 

frequencies and the associated frequency bands for modal identification are shown with 

symbols ‘o’ and ‘[-]’ in the figure, respectively. An additional peak can be found in each 

frequency band of the mode of interest, which is due to the asynchronous nature of the data. 

Table 1 summaries the MPV of modal parameters as well as their exact values that generated 

the data. It can be seen that the identified modal parameters are very close to their exact 

values, verifying the consistency of the proposed method. The MPV of prediction error PSD 

tends to be larger than the assumed values for higher modes, which is mainly due to 

modelling error from the contribution of the non-resonant part of lower modes. The mode 

shape MPVs and exact values agree well with each other with MAC (modal assurance 

criterion) values between these two extremely close to 1 (up to 4 decimal points). The 

identified coherence values for Mode 1, Mode 2 and Mode 4 agree well with the exact ones. 

Small discrepancies can be found in the phase of coherence MPV for Mode 3. This can be 

due to the contribution of Mode 2 and Mode 4 (since there are not well apart from Mode 3) as 

well as the measurement noise.  
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Figure 1. Schematic Diagram, Synthetic Data Example 

 

Figure 2. Root Singular Value Spectrum, Synthetic Data Example 

Table 1. Identified Modal Parameters (MPV), Synthetic Data Example 

Mode 
(Hz)f  ( )%z  ( )μg/ HzS  ( )μg/ HzeS  c  

MPV Exact MPV Exact MPV Exact MPV Exact MPV Exact 
1 2.427 2.427 0.99 1.00 2.00 2.00 2.98 3.00 0.81 0.80 
2 7.143 7.139 1.07 1.00 2.03 2.00 3.19 3.00 0.61 0.60 

3 11.432 11.436 1.04 1.00 1.95 2.00 3.67 3.00 0.56-
0.24i 0.60 
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4 15.071 15.069 1.01 1.00 1.88 2.00 4.49 3.00 0.50 0.50 
 

9.2 Laboratory example 
A four-storey laboratory shear frame (shown in Figure 3) is considered, measuring 

30cm 20cm´  in plan with a uniform storey height of 25cm . It is considered before in 

Section 9.2 of [33]. Six piezoelectric accelerometers distributed at the centre of each storey 

are used to measure the vibration response of the structure in the horizontal direction (i.e., 

one data channel for each sensor). Channel 1 to 4 are synchronised using one DAQ unit and 

Channel 5 & 6 are synchronised using another. These two DAQ units are controlled to start 

and finish measuring at the same time but use their own clocks for data sampling. 

Thirty minutes of ambient vibration response were measured with a sampling rate of 2048Hz  

(later decimated to 256Hz for analysis) for all data channels. The data measured by channel 1  

to 4 are combined and referred to as the synchronous data set while the data measured by 

channel 1,2,5,6 are combined and referred to as the asynchronous data set. Modal 

identification for the synchronous data set has been conducted using the fast Bayesian FFT 

method for synchronous data [37] and that for the asynchronous data set has been conducted 

using the proposed method. The identification results based on the synchronous data set are 

used as the reference values in this example.  

Figure 4 shows the root singular value spectrum of the asynchronous data set. The first five 

modes shown in the spectrum are selected for modal analysis. Similar to the synthetic data 

example, the initial guesses of natural frequencies and selected bands are shown in the figure 

with symbols ‘o’ and ‘[-]’, respectively. The identified modal parameters from the 

synchronous data, the asynchronous data using method based on zero coherence assumption 

[33] and the proposed method are listed Table 2. It can be seen that the MPVs of modal 

parameters determined by the proposed method based on the asynchronous data set almost 

coincide with the synchronous counterparts. The identification results illustrate that the 

proposed method provides a good estimation of the modal parameters based on real 

asynchronous data. The method with zero coherence assumption [33] could also provide a 

precise estimation of modal parameters. The proposed method is capable of quantifying the 

coherence values among synchronous data groups but does not have a significant 

improvement in the identification accuracy of modal parameters compared to the method 

with zero coherence assumption.    
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Figure 3. Four-storey Shear Frame 

 

Figure 4. Root Singular Value Spectrum of Asynchronous Data Set, Laboratory Example 

Table 2. Identified Modal Parameters (MPV), Laboratory Example 

Modal parameters Mode 
1 2 3 4 5 

(Hz)f  
Syn. 3.260 9.559 13.108 14.496 18.128 

Asyn. (Zero Coh.) 3.260 9.560 13.108 14.496 18.128 
Asyn. (Gen. Coh.) 3.260 9.560 13.108 14.496 18.128 

( )%z  Syn. 0.07 0.15 0.04 0.15 0.22 
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Asyn. (Zero Coh.) 0.08 0.15 0.04 0.15 0.23 
Asyn. (Gen. Coh.) 0.08 0.14 0.04 0.15 0.22 

( )μg/ HzS  
Syn. 0.89 0.76 1.03 1.21 0.83 

Asyn. (Zero Coh.) 0.97 0.74 1.05 1.21 0.83 
Asyn. (Gen. Coh.) 0.97 0.73 1.05 1.21 0.82 

( )μg/ HzeS  

Syn. 54.1 28.1 25.1 23.5 22.0 

Asyn. (Zero Coh.) 
54.1 

50.1 

28.9 

27.8 

22.9 

23.8 

20.5 

22.9 

22.7 

21.1 
Asyn. (Gen. Coh.) 52.3 28.3 23.4 21.8 22.0 

φ (MAC) 
Syn. N/A N/A N/A N/A N/A 

Asyn. (Zero Coh.) 0.9995 0.9998 0.9975 0.9998 0.9999 
Asyn. (Gen. Coh.) 0.9998 0.9999 0.9974 0.9999 0.9999 

c  Asyn. (Gen. Coh.) 0.77-
0.63i 

0.37+ 

0.93i 

0.90+ 

0.45i 

0.98+ 

0.17i 
0.85-
0.52i 

 

9.3 Field test example 
The instrumented structure in this example is Brodie Tower at the University of Liverpool, 

which was previously considered in Section 4.4 of [34] for the illustration of the Bayesian 

OMA method with zero coherence assumption. It is an eight-storey reinforced-concrete 

building with a height of approximately 25m. The ground floor of the building is connected 

to another office building with a shape close to a rectangle, see Figure 5. The remaining 

floors are T-shaped measuring 25m 28m´ in plan.  

Four force-balanced accelerometers were deployed to measure the ambient vibration response 

of the structure on the sixth floor. The test focused on the lateral modes of the building, 

where biaxial acceleration data at four locations are used for analysis. Figure 5 shows the 

plan view of the building with measurement locations marked as squares. Asynchronous data 

were first measured where each accelerometer used its own clock for sampling. After 

obtaining the asynchronous data, the sensors were synchronised using GPS and the 

synchronous data were measured. Twenty minutes of ambient data were collected with a 

sampling rate of 50Hz for both asynchronous and synchronous data. Within the frequency 

range of interest, the overall channel noise is in the order of 0.5μg/ Hz .  

The root singular value spectrum of the measured asynchronous data is shown in Figure 6. 

Modal identification focuses on the first six modes marked in the figure. The initial guesses 

of natural frequency (hand-picked) and selected frequency bands are also indicated in the 

figure. Modal identification for asynchronous data has been conducted using the Bayesian 

method that assumes zero coherence [33] and the proposed method with general coherence 
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assumption, respectively. The modal parameters for synchronous data are identified using the 

Bayesian FFT method that assumes synchronous data [37]. Identification results are 

summarised in Table 3. For asynchronous data, the identified modal parameters based on the 

proposed method almost coincide with those based on the Bayesian method with zero 

coherence assumption. They are also close to the synchronous counterparts. Small 

discrepancies can be found. These are mainly due to environmental variations as 

asynchronous and synchronous data were measured at different time periods.  

 

Figure 5. Plan View with Measurement Locations 

 

Figure 6. Root Singular Value Spectrum of Asynchronous Data Set, Field Test Example 
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Table 3. Identified Modal Parameters (MPV), Field Test Example 

Modal parameters Mode 
1 2 3 4 5 6 

(Hz)f  
Syn. 2.428 2.698 3.751 7.379 7.983 9.441 

Asyn. (Zero Coh.) 2.418 2.678 3.714 7.419 7.932 9.391 
Asyn. (Gen. Coh.) 2.417 2.679 3.714 7.420 7.932 9.390 

( )%z  
Syn. 1.14 0.94 0.78 2.43 3.20 2.33 

Asyn. (Zero Coh.) 1.32 1.08 0.90 2.21 2.41 1.97 
Asyn. (Gen. Coh.) 1.18 1.16 0.89 2.20 2.16 1.95 

( )μg/ HzS  
Syn. 1.10 1.01 0.80 0.22 0.32 0.80 

Asyn. (Zero Coh.) 1.28 1.32 1.05 0.24 0.27 0.77 
Asyn. (Gen. Coh.) 1.20 1.37 1.05 0.24 0.25 0.77 

( )μg/ HzeS  
Syn. 1.94 2.28 1.07 0.96 0.88 1.01 

Asyn. (Zero Coh.) 3.04 3.27 1.49 1.10 1.07 0.96 
Asyn. (Gen. Coh.) 3.04 3.27 1.49 1.10 1.09 0.96 

 

Figure 7 to Figure 9 show the identified mode shapes (MPV) based on synchronous data, 

asynchronous data using Bayesian method with zero coherence assumption and the proposed 

method, respectively. The dashed line and the solid line denote the undeformed and deformed 

modes shapes, respectively. The squares represent the measurement locations (corresponding 

to the ones shown in Figure 5). Using the mode shape MPVs based on the synchronous data 

set as reference values, Table 4 shows the MAC values of the ones identified based on the 

proposed method and the zero coherence method, respectively. It can be seen that the 

identified mode shapes using the proposed method based on asynchronous data agree well 

with those based on the synchronous data. They are also close to those identified using the 

Bayesian method that assumes zero coherence. It can be seen that the MAC values based on 

these two methods are extremely close to 1, suggesting good quality in the identified mode 

shapes for both methods.  

Table 5 shows the computational time for determining the MPVs of modal parameters in this 

example. It can be seen that modal identification based on asynchronous data takes more time 

than synchronous data. This is especially so for the proposed method. This is reasonable as 

compared to the other two methods, the dimension of matrix involved in the proposed 

method equals to the number of synchronous data groups (which is four in this example).  

The foregoing results show that the proposed method can provide a good estimation quality 

of modal parameters based on asynchronous data. Compared to the previously developed 

Bayesian method that assumes zero coherence, the proposed method does not have a 
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significant improvement in the precision of modal parameter MPVs. It also takes longer time 

for the optimisation procedure. Nevertheless, the proposed method provides a feasible means 

for determining the MPVs of modal parameters where the asynchronous model is strictly 

obeyed. It can also investigate the time synchronisation degrees among different 

synchronisation data groups quantitatively by identifying the coherence values among the 

groups. Computations can be done in the order of minutes for the proposed method, which is 

still acceptable even for on site implementation. 

Table 4. Mode Shape MAC values, Field Test Example 

 Mode 
1 2 3 4 5 6 

MAC Values Asyn. (Zero Coh.) 0.9994 0.9995 0.9994 0.9373 0.9794 0.9988 
Asyn. (Gen. Coh.) 0.9994 0.9995 0.9993 0.9345 0.9817 0.9988 

 

Table 5. Computaional Time, Field Test Example 

 Mode 
1 2 3 4 5 6 

Computational 
Time (s) 

Syn. 1.2 1.0 0.9 3.5 4.1 2.8 
Asyn. (Zero Coh.) 3.4 3.2 3.4 26.6 31.8 27.7 
Asyn. (Gen. Coh.) 384.8 303.1 181.2 445.9 377.9 468.9 

 

Figure 7. Mode Shape MPVs, Brodie Tower Synchronous Data 
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Figure 8. Mode Shape MPVs, Brodie Tower Asynchronous Data (Zero Coh.) 

 

 

Figure 9. Mode Shape MPVs, Brodie Tower Asynchronous Data (Gen. Coh.) 
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10. Conclusions 
A Bayesian frequency domain modal identification method for asynchronous ambient 

vibration data has been proposed in this work. It is developed based on an asynchronous data 

model that assumes imperfect coherence among different synchronisation data groups. 

Computational difficulties have been addressed and efficient strategies have been developed 

to determine the most probable value of model parameters as well as the coherence values. 

The NLLF is written in a condensed form where the matrix involved in computation has full 

rank with dimension equal to the number of synchronisation groups. The computational effort 

is thus significantly suppressed compared to that of the original formulation. The consistency 

of the proposed method has been demonstrated by the synthetic and laboratory data examples. 

An application with field data has also been presented. The study reveals that the proposed 

method provides a good identification quality of modal parameters using asynchronous 

ambient data.  

Compared to the previously developed Bayesian OMA method with zero coherence 

assumption, the proposed method in this paper provides a feasible means to identify the 

modal parameters as well as coherence values from asynchronous data where the 

asynchronous model is strictly obeyed without extra modelling error involved. It should be 

noted that the proposed method does not lead to a significant improvement in the 

identification accuracy of modal parameters compared to the method with zero coherence 

assumption since the latter can already provide a good identification quality. In practice, the 

method with zero coherence assumption is preferred to avoid additional computational cost if 

one is not interested in quantifying the synchronisation degrees among different data groups.  

This work mainly focuses on determining the MPV of modal parameters as well as the 

coherence values. The associated identification uncertainty shall be investigated in future 

work. It should be noted that although a condensed PSD matrix has been proposed in this 

paper to facilitate computation, the determinant and inverse of the theoretical PSD matrix are 

still not analytically tractable, which may lead to difficulties in deriving the posterior 

covariance matrix for uncertainty quantification. Asynchronisation in OMA is currently a 

challenging issue and it is hoped that this work provides some understanding on this problem 

and inspirations for further development of modal identification methods based on 

asynchronous ambient data. 
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