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How Does the Stock Market View

Bank Regulatory Capital Forbearance Policies?

Abstract

During the subprime crisis, the FDIC has shown, once again, laxity in resolving and

closing insolvent institutions. Ronn and Verma (1986) call the tolerance level below

which a bank closure is triggered the regulatory policy parameter. We derive a model

in which we make this parameter stochastic and bank-specific to infer the stock market

view of the regulatory capital forbearance value. For 565 U.S. listed banks during

1990 to 2012, the countercyclical forbearance fraction in capital, most substantial in

recessions, could represent 17%, on average, of the market valuation of bank equity

and could go as high as 100%.

Keywords: Bank regulatory closure rules or policy parameter, bank insolvency, regulatory for-

bearance, market-based closure rules, financial crises

JEL classification: G17, G21, G28



How Does the Stock Market View

Bank Regulatory Capital Forbearance Policies?

1 Introduction

Using market information and discipline to improve the design and implementation of

bank regulatory policies, bank risk management, and deposit insurance has long been an

important topic in the banking literature. Notwithstanding the efficient market hypothesis

not necessarily holding and the emergence of endogenous risk (see, e.g., Danielsson et al.,

2012) especially during financial crises, Flannery (1998), Flannery (2001), Gunther et al.

(2001), Krainer and Lopez (2004), and others, do confirm that market information is useful

for ranking banks and provides incremental information for bank regulators’ supervisory

monitoring and assessment.

Taking advantage of the relatively higher liquidity and efficiency of listed bank equity

prices, our study focuses on the use of stock market information to infer the market per-

ception of the regulatory closure rules, known following Ronn and Verma (1986) as the

regulatory policy parameter. This parameter is most often driven at least in part by poli-

tics, especially in the case of systemically important financial institutions (SIFI) which will

be subject to enhanced capital requirements according to the current Basel 3 regulatory

framework. This parameter represents a (hypothetical, conjectural, or even real) limit, ex-

pressed as a percentage ρ (0 6 ρ 6 1) of the total debt value D of the bank at the time

of supervisory audit, beyond which the dissolution of assets by regulatory bodies would

be a reasonable alternative. If the value of the bank falls between ρD and D, the insur-

ing agency forbears (e.g., the Savings and Loans crisis in the 1980s), and in the case of

extreme market turmoil, the government intervenes, as witnessed during crises such as

the 2007-2009 subprime crisis via the Troubled Asset Relief Program (TARP, see Veronesi

and Zingales, 2010), infusing up to (1− ρ)D and making it equal to D. If the bank value

falls below ρD, the insuring agency steps in to dissolve the assets of the bank. A com-

pelling reason for not closing an insolvent bank is the loss of significant franchise value
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(stemming from core deposits, customer relationships, and valued personnel) that occurs

after an FDIC seizure. If the market insolvency closure rule is strictly followed, the pol-

icy parameter is equal to one, and there is regulatory capital forbearance when the policy

parameter is below one. Along with other assumptions, Ronn and Verma (1986) fix ρ at

a constant 0.97 to yield an aggregate weighted average premium of 1/12 percent for the

US deposit insurance premium. Since, in Ronn and Verma (1986)’s model, the value of

forbearance is assumed to be the value of the capital assistance, many authors call this

practice, regulatory capital forbearance.

Under the Basel 3 countercyclical capital buffer framework, bank regulators would try

to ensure that banks build up capital levels during good times so that they can run it down

in bad times (see, e.g., Drehmann et al., 2010; Hanson et al., 2011). In effect, to conduct

countercyclical capital requirements policies, regulators are compelled to adopt a time-

varying policy parameter. To the best of our knowledge, only Lai (1996) treats the policy

parameter as a stochastic process to reflect the uncertainty of the bank closure rules.1

In this paper, we extend Lai (1996)’s framework by modeling ρ as a more realistic

stochastic process that is mean-reverting and bound by zero and one. To justify this, we ar-

gue that the regulatory forbearance policy can be treated as “reduced form” and described

by a state variable. Further, the policy is constrained by economic, legal, political, regu-

latory competition, and bureaucratic considerations that are mean-reverting throughout

their respective cycles. Two main sources of uncertainty regarding the variation of bank

regulatory forbearance may be posited: (1) asymmetric information and (2) stochastic state

variables. In the first case, because of confidential information obtained from on-site exam-

inations, private information may exist that is known only to the regulator.2 For actively

stock-listed banks in efficient markets with increased disclosure, such a scenario may be

considered not as a major source of uncertainty. For closely-held banks, it is more plausi-

ble but we discard this possibility by only studying banks with available equity prices. In

1Kane (1986) treats safety-net guarantees as a two-part option: a taxpayer put and a knock-in, stop-loss
call on the firm’s assets; while Allen and Saunders (1993) model forbearance as forfeiture by the deposit
insurer of the value of its call component of the deposit insurance option.

2DeYoung et al. (2001) empirical results indicate that on-site examinations do produce value-relevant
information about the future safety and soundness of banks not reflected immediately in their debenture
prices whereas we focus on their stock prices.

2



the second situation, we suppose that while the policy of the regulator is known to all (e.g.,

the Too Big to Fail (TBTF) doctrine), it is a function of some external, hardly predictable

state variables, structural changes, or unforeseeable events. While asymmetric informa-

tion and stochastic state variables are two possible sources of regulatory uncertainty, only

the latter is explicitly modeled in this paper.3 With this justification, we develop an en-

hanced Ronn and Verma (1986) model to infer the market-based, bank-specific, and more

flexible policy parameter from the market value of bank equity.4 Then, based on the cali-

bration of our model with U.S. listed banks, by gauging the size of the capital forbearance

value and contributing to the ongoing debate on adequate bank capital, we seek answers

to the following two research questions: 1) How does the time-varying capital forbearance

portion embedded in bank equity depend on various banks’ own risk and business cycle

variables? and 2) How do banks’ market-assessed intrinsic (i.e., devoid of the forbearance

subsidy) capital ratios (or inverse leverage ratios) react to various business cycles and the

banks’ own risk variables?

Toward this end, we first develop a two-factor model, in which we model ρ as an

exponential of a negative Cox-Ingersoll-Ross (CIR) process (Cox et al., 1985) and the value

of the bank as a log normal process with a stochastic drift term. We derive a closed-

form solution for the equity represented by market capitalization (market cap), which is

viewed as a call option on the value of the bank following the structural approach of

Merton (1974). The model is then calibrated to 565 U.S. banks’ market capitalization and

total debt data from 1990-2012 by means of the Unscented Kalman Filter in conjunction

with the Quasi-Maximum Likelihood Estimate (QMLE) to obtain series of ρs and implied

asset values. Further, we derive the Forbearance Fraction of Capital, which is defined as

one minus the ratio of the market value of intrinsic equity to total equity. We estimate

3Not postulating forbearance as the outcome of a random process, political-economy theorists treat it as
a function of insurer resources and workloads and of insolvent firms’ size, complexity, and political clout.
When firms are truly too big or too many to fail, some of the insurer’s deposit insurance calls are never or
almost never going to be exercised. This allows these firms a real option to expand their balance sheets and
“gamble for resurrection”.

4To compare the current market capital-asset ratio to the current regulatory capital-asset ratio for a U.S.
sample of publicly traded bank holding companies and savings and loans associations in 1990, Cordell and
King (1995) present an approach for extending the forbearance factor to be bank and time-specific. However,
Cordell and King (1995) arbitrarily assign values for the critical value of the policy parameter and use an
interrelated approximation of what they call the conditional value of forbearance.
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bank intrinsic equity, Intrinsic Market Cap, indicative of economic capital, as a hypothetical

and counter-factual equity assuming zero capital forbearance as if the FDIC adhered to

the market closure rule.We also compute the effective policy parameter, which weighs,

not only the likelihood of a bank being insolvent, but also the likelihood of the bank not

requiring forbearance. These two novel metrics provide us relatively cleaner measures

of the market perceptions of the time-varying regulatory agencies’ implementation of the

bank closure rule.

Using Wells Fargo as a case study, we show that our model effectively captures the

market view about the regulatory capital forbearance practice. From our aggregate re-

sults, during the financial crisis period, we find that the total estimated forbearance value

surges over three years earlier than the massive liquidity provision by two crisis facilities,

namely the Term Auction Facility (TAF) and the Term Asset-Backed Securities Loan Facil-

ity (TALF). Also, throughout the financial crisis, our estimated value of capital forbearance

follows closely these facilities’ changes in the liquidity provision measured by the changes

in their outstandings.

To address our two research questions, we estimate a system of two equations using the

“Two-step System Generalized Method of Moments (2SGMM)” (Blundell and Bond, 1998),

which controls endogeneity between regression variables. In the first equation, the left-

hand-side (LHS) variable is the Forbearance Fraction of Capital computed from the filtered

policy parameters, and the right-hand-side (RHS) variables include a one-quarter-lagged

LHS variable, the business cycle proxies (GDP Growth, GDP Output Gap, and S&P 500

index), banks’ risk factors (Idiosyncratic Volatility, Asset Volatility, Systematic Beta, and

Systemic Risk measures), and other control variables (log Total Assets, Intrinsic Market

Cap to Implied Asset Value Ratio, and Implied Asset Value to Book Total Assets Ratio).

Simply, Intrinsic Market Cap / Implied Asset Value is a measure of the equity capital ratio

devoid of the regulatory forbearance value, whereas the Implied Asset Value to Book Total

Assets Ratio is a proxy for Keeley (1990)’s bank charter value. In the second equation, the

LHS variable is the Intrinsic Market Cap to Implied Asset Value ratio. The RHS variables

are the same as those in the first equation except that the Intrinsic Market Cap-to-Implied

Asset Value ratio replaces the Forbearance Fraction in Capital.
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Our regression results show that the market believes that larger banks benefit more

from capital forbearance, which suggests that the “Too Big To Fail” (TBTF) doctrine is

prevalent. Naturally, the market expects banks with strong performance and higher market-

assessed levels of owner-contributed capital to receive less forbearance. The market also

expects a bank with high market power to be given less forbearance, consistent with the

competition-stability paradigm, and an institution with high franchise value to cost less to

rescue. The stock market holds the view that, ceteris paribus, banks with higher idiosyn-

cratic risk and systemic risk will benefit from more capital forbearance, thereby leading to

higher bailout costs to taxpayers. The market expects banks to receive, in a countercycli-

cal fashion, increased forbearance in bad times and less forbearance in boom times. More

forbearance lowers the market intrinsic capital ratio (or bank owner’s contributed capital

with the forbearance subsidy removed). For our period of study and our bank sample, the

estimated annual capital forbearance subsidy amounts to 7.6 billion USD or 13.5% of the

FDIC aggregate cost of explicit deposit insurance. With an embedded mean capital for-

bearance portion amounting to 17% of the market value equity, the largest banks exhibit a

mean market capital to implied asset value ratio of 16.4% and a mean book equity to total

assets ratio of 8.9%. It appears that our framework may be useful for market assessments

and tracking of regulatory capital forbearance and may serve as an additional red flag tool

for supervisory bodies and policymakers.

The remainder of the article is organized as follows. Section 2 sets up the two-factor

model to extend the framework of Ronn and Verma (1986) and Lai (1996) and derive a

closed-form solution for the model used to extract the market view and the cost of bank

regulatory forbearance policies. Section 3 describes the procedure for model calibration

and data in detail. Section 4 contains a study case. Sections 5 and 6 present the empirical

results and discuss the findings. Section 7 concludes the paper. The Online Appendices

contain technical details and supplemental results.
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2 A model of the bank regulatory policy parameter

2.1 Pay-off function of a bank equity holder

We follow Ronn and Verma (1986)’s seminal model, as it is relatively simple and will

be amenable to econometric implementation later. In the model, the equity of a firm is a

European call option on the value of the firm, V, with the strike price being the debt face

value, D. To model the FDIC closure rules, Ronn and Verma (1986) modify the model by

simply adjusting the strike price, i.e., multiplying the debt level by the regulatory policy

parameter ρ. At supervisory examination time, if ρD 6 V 6 D, the equity holder’s pay-

off is V − ρD. In their model, the equity holder’s pay-off, when V > D, is still V − ρD.

A rational investor would not include (1− ρ)D as part of her pay-off when the bank is

solvent (V > D). Since in this case there is no forbearance, the pay-off, when V > D, is

assumed to be V − D.5 The Ronn and Verma (1986) option pricing framework for analyz-

ing bank equity valuation is parsimonious and useful, it has been employed in numerous

empirical studies by academics and practitioners alike.6 Nevertheless, we reckon that the

Ronn and Verma (1986) framework is a one-period model. To mimic a dynamic frame-

work, we assume agents keep on refreshing the expectation on the limited term capital

forbearance cash (real or conjectural) injection as new information arrives (which is how

we empirically calibrate our model). This inevitably carries some bias due to the un-

measured continuation option value as shown in Pennacchi (1987).7 To gauge the bias,

we conduct a simulation exercise described in Online Appendix A and find that the bias

5Admittedly, if one considers the sale of the bank’s equity to a third party during a period in which the
bank is not in distress and the FDIC is not stepping in to prop up the sale, the value should still reflect the
forbearance which could occur as a function of future outcomes. Alternatively, if the pay-off function simply
represents the fact that the FDIC is willing to facilitate a make-whole buyout along the lines of Wells Fargo’s
acquisition of Wachovia examined later, in our case study, it is not clear that the equity holders actually do
receive the difference between the true value and the debt. If these were the cases, we underestimate the
forbearance value.

6A large literature follows Ronn and Verma (1986) and employs a constant regulatory policy parameter
applied to all banks to estimate the two unobservable values of the bank assets and asset volatility (e.g., Flan-
nery and Sorescu, 1996; Cordell and King, 1995, among numerous others). These two inputs have been used
for many ends, for instance, to estimate the value of historical government guarantees as in Hovakimian and
Kane (2000) and Flannery (2014). A growing literature uses this methodology with constant ρ, to estimate
banks’ systemic risk; see, e.g., Lehar (2005), Hovakimian et al. (2012). There has also been a great deal of
research on the impact of this policy parameter on deposit insurance pricing; e.g., Lai (1996) and Hwang
et al. (2009) among others.

7We thank the referee for pointing out this feature with the Pennacchi (1987) reference.
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is likely to be small. Furthermore, the alternative specification presented in Online Ap-

pendix A, which models the forbearance value directly as a put option, has implications

on the interpretation of the aggregate forbearance fraction of capital in relation with some

of Fed’s emergency lending programs during the 2008 financial crisis. These are discussed

in Section 5.3.

2.2 Model setup

Let us define a 2× 1 column vector of state variables

Xt =




x1 (t)

x2 (t)




which, under the risk-neutral measure Q, follows the stochastic differential equations

(SDE)

dXt = d


 x1 (t)

x2 (t)


 =




 κθ

µ


+


 −κ 0

ϕ 0




 x1 (t)

x2 (t)




 dt +


 σ1

√
x1 (t) 0

0 σ2


 d


 w1 (t)

w2 (t)


 . (1)

x1 follows a CIR process, and x2 follows a Wiener process with a stochastic drift term.

θ is the reversion level of x1, κ is the reversion speed of x1, σ1 is the volatility scaled by

the square root of x1, µ is the mean of x2 and σ2 is the volatility of x2. w1 (t) and w2 (t)

are independent Wiener processes under the measure Q. The correlation between x1 and

x2 is captured by ϕ. Note that we model exogenously the stochastic policy parameter as

ρt = e−x1(t), so that ρt lies between zero and one as x1 is non-negative, and ρt is mean

reverting. Since we model the value of a bank as Vt = ex2(t), the dynamic of Vt is given by,

dVt = dex2(t) = µVVtdt + σ2Vtdw2 (t)

where

µV = µ + ϕx1 (t) +
σ2

2
2

.
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For the sake of tractability, we model ρt and Vt in a reduced-form manner.8 We impose

economic structure ex-post in later empirical sections to see how ρt and Vt correlate with

various other variables (both bank-specific and macro variables).

At time t, the equity value of a bank represented by the market cap, Et, which is a call

option on Vt with maturity T, has the following pay-offs at time T:

ET =





VT − D

VT − ρTD

0

if VT > D

if ρTD 6 VT 6 D

if VT < ρTD.

(2)

The stock market assessment of the supervisory forbearance is captured by this pay-off

function with a random strike price.Then, with E
Q
t [.] denoting the expectation, under the

measure Q conditional on the information up to t, we have9

Et = Bt (T)E
Q
t (ET)

= Bt (T)E
Q
t

[
(VT − D) 1{VT>D} + (VT − ρTD) 1{ρT D≤VT≤D}

]

= Bt (T)
{

E
Q
t

[
(VT − ρTD) 1{VT>ρT D}

]
− DE

Q
t

[
(1− ρT) 1{VT>D}

]}

= Bt (T)
{

E
Q
t

[(
ex2(T) − e−x1(T)D

)+]

−DE
Q
t

[(
1− e−x1(T)

)
1{x2(T)>log D}

]}
, (3)

where Bt (T) = e−r(T−t) is the discount factor, r is the assumed-constant interest rate,

and 1{�} is an indicator function equal to one when {�} holds, and zero otherwise. In the

implementation, we set D = F/Bt (T) where F is the book value of the debt level at time t.10

8Endogenizing ρ within the model would of course yield a richer framework which might offer interest-
ing results, but we defer this challenge to a further research.

9The risk-free interest rate is assumed to be constant. As in Ronn and Verma (1986), it is also assumed
that the effects of interest rate changes are captured in the assets value and associated volatility, i.e., the
present value of assets are brought about by anticipated changes in both the investment opportunity set and
the interest rate. Unanticipated changes in interest rates are accounted for in the asset risk.

10An implicit assumption behind D = F/Bt (T) is that all debt is issued at the risk-free interest rate. As
mentioned in footnote 7 of Ronn and Verma (1986), this is no doubt valid for the insured deposits, which
for most banks represent a substantial portion of their total debt. Another implication of D = F/Bt (T) is
that Vt denotes the value of the assets net of the deposit insurance fees levied. In other words, Vt, on top of
other value drivers, includes the net value of deposit insurance provided by the FDIC (i.e., benefits minus
premiums paid).
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In sum, we offer two enhancements: (a) we employ a modified pay-off function (see

(2)) for the call option while Ronn and Verma (1986) and Lai (1996) use a pay-off that

overrates the value of forbearance (supportive evidence is provided in Section 5.5),11 and

(b) in Ronn and Verma (1986), ρ is a constant over time, whereas we model ρ as a mean

reverting stochastic process.

2.3 Market evaluation of the capital forbearance

To apply the model developed above, we propose two novel measures of the stock

market evaluation of the forbearance: the Forbearance Fraction of Capital denoted by FFC,

and the Effective Policy Parameter denoted by ρ∗.These are defined as

FFCt =
Et − Eρ=1

t
Et

and ρ∗t = EP
t

[
1{VT>D} + ρT1{VT6D}

]
,

where Eρ=1
t = Bt (T)E

Q
t

[
(VT − D)+

]
which corresponds to the value of the equity when

assuming ρt = 1, and EP
t is the expectation under the physical measure P. Eρ=1

t represents

a counter-factual valuation of the bank equity if the FDIC adheres strictly to the market

closure rule. Whether ρ is constant or stochastic, we assume the same value for Vt.12

By construction, FFC represents how forbearance is valued in terms of total equity,

and can be used to decompose the market cap into the forbearance subsidy and intrinsic

value; whereas ρ∗ represents an effective value of the policy parameter. ρ∗ is better than ρ

as a proxy for the market view of the policy parameter. This is because ρ is only relevant

when the probability of {VT 6 D} is significant, while ρ∗ also takes into account the case

of no forbearance.
11The pay-off function in Ronn and Verma (1986) and Lai (1996) adds an extra forbearance value to the

bank while in fact it should not when the bank is in healthy status. Therefore, the forbearance implied from
a calibrated Ronn and Verma (1986) model is in general higher than that resulting from a more reasonable
and non-linear pay-off function.

12Albeit subject to the Lucas critique, this assumption is intuitively sensible, Vt can be roughly rep-
resented as ρtF + Et(ρ = ρt), it is reasonable to assume (1 − ρt)F = Et(with ρ stochastic when ρ =
ρt)− Et(with ρ nonstochastic and ρ = 1). Here F is the total debt book value at time t.
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2.4 Closed-form solutions of Et, FFC, and ρ∗

Within the purview of the affine framework, we employ the techniques developed in

Duffie et al. (2000) to derive the closed-form solutions for Et and ρ∗. By PROPOSITIONS 1

and 2 in Duffie et al. (2000), we have

E
Q
t

[(
ex2(T) − e−x1(T)D

)+]
= E

Q
t

[
e[−1,0]XT

(
e[1,1]XT − D

)+]

= G[0,1],−[1,1] (D; Xt, T − t)− DG[−1,0],−[1,1] (D; Xt, T − t) , (4)

E
Q
t

[(
1− e−x1(T)

)
1{x2(T)>log D}

]
= E

Q
t

[
1{[0,1]XT>log D}

]
−E

Q
t

[
e[−1,0]XT 1{[0,1]XT>log D}

]

= G[0,0],[0,−1] (D; Xt, T − t)− G[−1,0],[0,−1] (D; Xt, T − t) , (5)

EP
t

[
1{VT>D} + ρT1{VT6D}

]
= EP

t

[
1{[0,1]XT>log D}

]
+ EP

t

[
e[−1,0]XT 1{[0,1]XT6log D}

]

= GP
[0,0],[0,−1] (D; Xt, T − t) + GP

[−1,0],[0,1]

(
D−1; Xt, T − t

)
, (6)

where [·, ·] denotes a 1× 2 row vector. Eq. (4) and Eq. (5) (multiplied by D) represent the

first and second elements in the curly brackets of Eq. (3) used to obtain Et, respectively.

Eq. (6) is for ρ∗t . Gb,d (z; Xt, τ) in these equations is defined in Online Appendix B.

Using the results from Eq. (4) to Eq. (6), we obtain the closed-form solutions for Et,

FFC, and ρ∗. Note that Eρ=1
t , which is required for the calculation of FFC, is simply given

by the Black and Scholes (1973) formula, since with ρ = 1, Vt is a geometric Brownian

motion.13 To calibrate the model, Duffee (2002)’s specification for the market price of risk

is employed to derive the dynamic of Xt under the physical measure P. That is, the relation

between the Wiener processes under the two measures is given by

w1 (t) = wP
1 (t) + λ1

∫ t

0

√
x1 (s)ds

w2 (t) = wP
2 (t) + λ2t,

13When applying Black and Scholes (1973) formula to Eρ=1
t , the volatility of V, σ2, is set at its estimate

from the full sample calibration of Et; the value of V at time t is the filtered value of Vt from the calibration;
the strike price is the debt level at time t; and the interest rate is the same as the one used to compute Et.
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where λ1 = κ−κP

σ1
and λ2 = µP−µ

σ2
. The moment conditions for Xt under the measure P used

to calibrate the model are presented in Online Appendix C. The time to the next supervi-

sory examination, T − t, is assumed to be one year in our empirical implementation.Note

that in our setup, although the volatility of Vt, σ2, is constant, the volatility of Et is stochas-

tic by construction and is closely linked to
√

x1(t). As pointed out by Duan (1994), the

widely employed Ronn and Verma (1986) estimation method that assumes constant equity

volatilities is incompatible with the Merton (1974) model. We formally address the estima-

tion problem in assuming a constant volatility of Vt in Online Appendix D. Note also that

we allow for time-varying risk premia but we do not account for liquidity in our model.

This is less critical for our equity model since stock markets are relatively much more liq-

uid than debt and credit default swap markets considered for instance by Acharya et al.

(2015) and Kelly et al. (2015) among others. Further, since we account for measurement

errors in the observed market cap, the transformed-data maximum likelihood estimation

(MLE) method developed in Duan (1994) is improper. Given the nonlinearity of the model

and the latency of the factors, to calibrate the model, we employ the QMLE in conjunction

with the UKF.14 We describe the methodology in Section 3.2 and Online Appendix E.

3 Model calibration

3.1 Data description

From the Bloomberg database, we build a sample of 23 years (from 1990 to 2012) of

both market and financial statements accounting data for 706 banks (most of these are

bank holding companies, for short, banks hereafter) as well as macroeconomic variables.

Because many banks merged or went out of business or do not have complete data during

this period, banks are not necessarily included in every year of the sample, giving an un-

14In a nutshell, since our state variables are unobservable, and the observable series of bank market caps
have a nonlinear dependence on the latent state variables, we obtain the QMLE of our model parameters
using the UKF procedure. The UKF deals with nonlinearities in the measurement equation, works through
deterministic sampling of points (sigma points) in the distribution of the innovations to the state variables,
and captures the conditional mean and variance-covariance matrix of the state variables with adequate
accuracy.
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balanced panel.15 Our resulting sample consists of 706 banking firms that appear in any

one of the 23 years.Based on their total assets, after a thorough analysis of bank size per-

centiles, we categorize, for statistical purpose, the banks into four groups as the following:

Large Banks (> 90th percentile), Big Banks (75th - 89th percentile), Medium Banks (20th

- 74th percentile), Small Banks (6 19th percentile). Following the empirical evidence on

the TBTF implication on diversification and market discipline (see, e.g., Filson and Ol-

fati, 2014; Acharya et al., 2015), we exclude Small Banks group in our analysis to focus on

sizable banks which are commonly believed to receive forbearance benefits, and replace

it with All but Small Banks, thereafter All Banks (20th - 100th percentile). This leaves us

with 565 banking firms. The average total assets of these four groups are: 149 billion, six

billion, one billion, and 18 billion, respectively.16

To filter the regulatory forbearance parameter and implied asset values, in the model

calibration we use one-year U.S. Treasury rates (used to calculate the discount factor Bt(T)

in Eq. (3)), banks’ total liabilities, and market caps. The market data are monthly (month

end observations from daily data), and the total liabilities data are quarterly. The total

liabilities data are fitted to the monthly frequency using cubic smoothing splines to match

the frequency of the market data.

3.2 State space, Quasi-Maximum Likelihood Estimates (QMLE), and Un-

scented Kalman Filter (UKF)

Basically, we set a two-factor model for the market cap of banks. The first factor is

the unobservable regulatory policy parameter, and the second is the unobservable bank

asset value. The model is cast into a state space, and then parameters are calibrated to

15We do not exclude merger and acquisition events (M&A) in our sample. A huge part of our data contains
M&A, if we stick to an M&A-free sample, two third of our sample data will be thrown away. However, our
model is robust to M&A news, for instance, information about the intention to seek for the forbearance from
the TBTF status as noted by Bijlsma and Mocking (2013) and Brewer and Jagtiani (2013).

16These averages are calculated over the past two decades and across all individual banks within these
groups. The cross-sectional averages in USD at the end of 2012 for the groups of Large, Big, Medium, and
All Banks are 393 billion, 12 billion, two billion, and 45 billion, respectively. We are aware that the Dodd-
Frank Act (DFA) enacted in 2010 has legally defined size thresholds and the DFA might impose differential
regulatory requirements for banks above specified asset size thresholds, see e.g., Bouwman et al. (2018).
However, these thresholds are defined based on the current bank size distribution and do not apply to
studies looking at historical size distributions. Therefore, we believe our percentile-based size categorization
is more robust in the sense that the number of banks in each category is stable over the different time periods.
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the observed market cap using QMLE together with the UKF method. More details of the

UKF are presented in Online Appendix E.

Our reduced-form model is similar to the term structure models in the interest rate

and credit derivatives literature. The fact that we do not have term structure data as we

reply exclusively on equity data makes certain parameters hard to pin down, for example,

θ and κP. We therefore set them to be conventional values during the model calibration. In

pretesting results, we also find that setting parameter ϕ to zero has little impact on the fil-

tered state variables, but ensures more robust model calibration by avoiding dealing with

trigonometric functions and imaginary numbers in the numerical procedure. Therefore, in

our empirical analysis, we assume that ϕ is zero. More implementation details are listed

in Online Appendix F.

To calibrate the model, we need the dynamics of the state variables under the real

measure P. We employ the essentially affine specification for the market prices of risks

(Duffee, 2002), which allows for time-varying risk premiums, to derive the dynamics un-

der measure P from the dynamics under the risk-neutral measure Q in Eq. (1). That is, the

transition equation in the state space is given by

dXt =







κθ

µP


+



−κP 0

0 0


Xt


 dt +




σ1
√

x1 (t) 0

0 σ2


 dWP

t ,

where WP
t consists of two independent Wiener processes under the measure P. The change

of measure reflects the risk premia carried by the state variables.17 Although the transition

density of the latent factor is non-Gaussian, Duan and Simonato (1999) show that the first

two moments of the latent factors can approximate the distribution of the CIR process very

well. Therefore, when employing the UKF, we assume a Gaussian transition density and

only consider the first two moments of the transition density.

Since a bank’s market cap enters into the measurement equation in our state-space

setup, we assume that the observed market caps denoted by yt are contaminated by mea-

17The specification of the market price of risk is required to model non-diversifiable risks. The risks of our
state variables are indeed non-diversifiable, here, especially the risk of the non-tradable variable ρ.
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surement errors and the noise is iid and normally distributed as expressed by

yt = Et + ζt ≡ G (Xt; Φ, D) + ζt,

where Φ is the parameter set, Et ≡ G (Xt; Φ, D) is the nonlinear function of Xt given by

Eq. (3) to Eq. (5), and

ζt ∼ IID N
(

0, v2
)

,

where v is a free parameter. The parameters are estimated by maximizing the sum of the

following log transition density over the whole sample:

ll t|t−∆t ∝ −
log
(

Pyt|t−∆t

)

2
−

(
yt|t−∆t − yt

)2

2Pyt|t−∆t
,

where Pyt|t−∆t and yt|t−∆t are estimates of the variance and mean of the measurement at

time t− ∆t. These are outputs from the UKF procedure outlined in Online Appendix E.

To sum up, given a set of market caps, total liabilities, and model parameters, the UKF

(with QMLE) procedure outputs a series of filtered forbearance factors ρs, implied asset

values Vs and a likelihood value specific to a bank. Once the model is calibrated, we can

readily compute FFC and ρ∗ from ρs and Vs.18

4 Case study: Wells Fargo

In this section, we take Wells Fargo as an example to depict the dynamics of the stock

market view of the regulatory forbearance factor manifest in a given bank.

Figure 1 illustrates the time series of the (fitted) market cap, implied firm value, smoothed

total liabilities, ρ∗, and FFC of Wells Fargo (on a monthly basis) from early 1998 to late

2012.19 Before the financial crisis, FFC was relatively lower and stable. Wells Fargo was

18We only run in-sample calibration once for all, and do not use rolling windows to update model pa-
rameters. The rolling window calibration seemingly offers time-varying property for the model parameters,
e.g., σ1 and σ2. However, this time-varying property is theoretically inconsistent with the assumption that
these parameters are constant in our framework.

19Wells Fargo in its present form is the result of a merger between San Francisco-based Wells Fargo &
Company and Minneapolis-based Norwest Corporation in 1998, so the financial and market data for Wells
Fargo in our database only starts in early 1998.
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one of the banks to receive funds from the first round of government bailout money (the

TARP) in the fall of 2008. The acquisition of Wachovia at the end of 2008 significantly

increased Wells Fargo’s total liabilities in 2009. In early 2009, when there were negative al-

legations against Wells Fargo in the media, Wells Fargo’s market cap dropped significantly.

Although it rebounded quickly, within a month, the total liabilities remained double what

they had been. FFC surged from below 10% to about 70% within a quarter, then took al-

most four years to return to 10%. The drop in the market cap and the increase in the total

liabilities in 2009 induced a significant decrease in both the Market Cap / Implied Asset

Value (from 20% to 7%) and the Instrinsic Market Cap / Implied Asset Value (from 17% to

3%). The drop in Instrinsic Market Cap / Implied Asset Value was even more dramatic.

The market was not optimistic about Wells Fargo’s future despite the huge capital injec-

tion (with equity warrants/preferred stock holdings) from the government. In contrast,

the Book Equity / Total Asset did not change much in 2009, meaning the book ratio were

almost indifferent to the market turmoil.

Our model fits the equity data very well and there is barely any difference between

the fitted Market Cap (the line with dots) and the actual Market Cap (the line with circles)

(see the upper panel of Figure 1). The great fit of the model implies that the dynamic of

our filtered implied asset values is congruent with the distribution of the observed equity

values.

[Insert Figure 1 about here]

5 Empirical analysis I: Aggregate results

5.1 FFC

The dynamics of the cross-sectional distribution of FFC over time, on a monthly basis,

are shown in Figure 2. Note that the light gray area (75th-90th percentile) covers the ma-

jority of the distribution, meaning that the distribution of FFC is highly skewed to the left

and has a heavy right tail. This pattern is more significant for larger-sized banks. While

not necessarily taking these values literally, we find that, in large banks, capital forbear-
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ance takes up on average 17% of the market value of bank equity, and can go as high as

100%. As depicted in the first panel in Figure 2, even though the medians of FFC for all

four groups started to rise around the same time during the 2008-2009 financial crisis, the

FFCs of a few mega banks show a much earlier upward trend than others. This indi-

cates that the stock market perceived large banks’ troubles long before the crisis became

widespread. Another interesting observation is that during 1998 the FFCs of most banks

were actually relatively low. Only a few large banks had very high FFCs during this pe-

riod. These large banks probably had more international exposure than the others, and

would therefore have been more affected by the 1998 Asian and Russian financial crisis.

This observation might also be related to the consequences of the Gramm-Leach-Bliley Act

of 1999 that led to deregulation toward universal banking, allowing banks to consolidate

and offer one-stop services. The aggregate pattern of the FFC very much resembles the

time series of “Government Support” shown in Fig. 1 of Correa et al. (2014).20

[Insert Figures 2 about here]

Since we assume a constant volatility for the bank asset value, one might be concerned

that the estimated ρt could pick up the time varying dynamics of the volatility of the bank

value when it is indeed stochastic.21 To assure that this is not the case, we conduct a

simulation exercise described in Online Appendix D where we show that the estimated

ρ is littly affected by the stochastic volatility of the bank asset value Vt. We do find that

under the stochastic volatility case, the estimated constant volatility σ2 for the bank asset

value, overstates the level of the actual volatility. This is similar to the observation that the

implied volatility is usually higher than the realized volatility due to the premium priced

in the option price for bearing stochastic volatility risk. Since the estimated σ2 is not used

in our empirical study, inherent bank value stochastic volatility does not alter our results.

20It may be interesting to implement this model on nonbank firms where regulatory forbearance should
not be an issue. However, since it is not straightforward to apply the Ronn and Verma (1986) framework
tailored to banks which are special and heavily regulated, to the Merton-KMV class of models used in the
pricing of corporate securities issued by the much less leveraged non-financial firms with complex capital
structure but devoid of deposits, bank services and government safety nets, we defer this experiment to a
future project.

21We thank the referee for raising this issue.
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5.2 FC

To gauge the magnitude of the market-based forbearance fraction in capital in terms

of observed market caps, we plot in Figure 3, the dynamics of the cross-sectional distri-

bution of the Forbearance (in units) of Capital (FC), which is defined as the product of

the FFC and the market cap. If there were no capital forbearance, each year the aggre-

gate owner-contributed capital of the publicly traded banks in our sample would have

been 7.6 billion USD higher. In other words, from 1990 through to 2012, the stock market

estimated that these banks saved over 100 billion USD of capital due to benefiting from

the forbearance subsidization resulting from FDIC non-adherence to the market closure

rule.22 In Figure 3, we see much cross-sectional variation in the forbearance capital. This

is, however, not surprising, given the fact that forbearance capital depends very much

on the individual equity value. It is worth noting that much cross-sectional variation in

forbearance capital does not necessary imply a very different effective policy parameter

ρ∗ (see the definition in Section 2.3), which measures the market-based forbearance treat-

ment, cross individual banks. This can be seen from Figure 4 showing that ρ∗ has much

less cross-sectional variation over time.

[Insert Figures 3 and 4 about here]

5.3 FC and crisis facilities liquidity provision

In Online Appendix A, we show that FFC from our analytical model quantitatively

resembles that of a put option with unlimited term payoffs capturing the potential capi-

tal forbearance that allows the bank to survive. This representation associates the capital

provided in emergency lending programs during the financial crisis with our metric, i.e.,

the forbearance in units of capital, FC via an option pricing framework. These are effec-

tively the put option’s potential payoffs and FC is the value of the put option. Since our

focus is the regulatory forbearance enjoyed by depository institutions, according to Bai

et al. (2018, Internet Appendix, Table IAIV), two facilities, namely the Term Auction Facil-

22The total FC at the beginning of 1990 was 5.2 billion USD, and by the end of 2012 it was 105.9 billion
USD. On average, the total FC increased annually by (105.9− 5.2)/23 = 7.6 billion USD.
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ity (TAF) and the Term Asset-Backed Securities Loan Facility (TALF) are most relevant to

our study. Time series of the aggregate FC of all banks are plotted against TAF and TALF

capitals in Panel (a) of Figure 5.23 One important observation from Figure 5 is that FC

starts surging significantly over three years earlier than the massive liquidity provided by

these facilities. This implies that if we have the right tool to dissect market information,

the stock market could be used as an effective early-warning system.

[Insert Figure 5 about here]

It is also interesting to examine how changes in the provision of these lending facilities

contemporaneously affect the market view of future capital forbearance. To this end, we

regress the monthly changes of FC with the monthly changes in the TAF + TALF outstand-

ings from July 2007 to July 2011. The two time series are plotted together in Panel (b) of

Figure 5. Specifically, we run the following regression:

∆FCt = C0 + C1∆(TAF + TALF)t + εt,

where ∆FCt is the monthly change of FCt and ∆(TAF + TALF)t is the monthly change

of (TAF + TALF)t. The OLS estimate of C1 is 0.1 with Newey-West standard error of

0.03, meaning the estimate is highly significant (P-value < 0.06%). R2 of the regression

is 9%. Therefore, the regression results confirm that our estimated FC is highly correlated

with these two facilities emergency liquidity provision during the financial crisis period,

which further indicates that our model is sensibly useful for inferring the market percep-

tion about the regulatory capital forbearance.

5.4 ICR

Following Flannery (2014), we also compute the Market Cap / Implied Asset Value

ratio, which measures the market equity capital ratio, i.e., the market-based counterpart

of the book equity ratio defined as Book Equity / Total Assets. The lower is this ratio,

23The data on TAF and TALF capitals are calculated based on the lending outstandings data used to
produce Figure 9 in Hamilton (2014). Specifically, the TAF and TALF capitals are the positive differences
between their outstandings in the current month and last month.
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the lower is the owner-contributed equity ratio, and the higher is the leverage level. By

deducting FFC from Market Cap / Implied Asset Value, we obtain the Intrinsic Capital

Ratio and denote it by ICR.24 ICR gives us a cleaner measure of the market-based equity

ratio and a more accurate measure of the leverage risk since it removes the market view of

the FFC from the bank stock market price and leaves in only the intrinsic value. Figure 6

compares the dynamics of the quarterly medians of Market Cap / Implied Asset Value,

ICR, and Book Equity / Total Assets. Notably, that of the market-based equity ratio ex-

hibits much more systematic variation than that of the book equity ratio, which tracks the

reverse of the non-risk-weighted leverage ratio. The latter contains important informa-

tion about how the market view of bank capital structure and economic capital changes

over time. During the sub-prime crisis, unsurprisingly, the book equity ratio exceeded the

market-valued equity ratios. A similar pattern is also found in Fig. 3 of Flannery (2014).

[Insert Figure 6 about here]

We find that, given the forbearance policy, ICR is much more heterogeneous than its

partially observable counterpart Market Cap / Implied Asset Value and its recorded value

Book Equity / Total Assets. The dynamics of the Book Equity to Total Assets ratio surely

reflect the banks’ book keeping and window dressing, carried out to meet regulatory cap-

ital requirements.

5.5 Comparing our model results with those obtained from the Ronn

and Verma (1986) model

To show that our results are economically different than those from the Ronn-Verma

framework, we compare our FFC values with those obtained using Ronn-Verma model.

First, we provide supportive evidence that the Ronn-Verma framework overrates (under-

rates) the value of forbearance during normal periods (crisis periods). Then, we show that

our (in-sample) model provides better probability of default estimates than those derived

from the Ronn-Verma model.
24We thank the referee for suggesting this label.
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We follow the same estimation procedure outlined in Section 3 and calibrate Ronn-

Verma’s model with our bank dataset. Using the definition in Section 2.3, we calculate

FFC based on the calibrated Ronn-Verma model. Time series of the cross-sectional aver-

age difference between Ronn-Verma FFC and ours at each month is presented in Figure 7.

The overall average of the difference is 3.1% with zero t-test p-value. In other words, this

confirms that relative to our model, the Ronn-Verma model overstates the value of for-

bearance on average by 3.1% with high statistical significance. It is also worth noting that,

as highlighted in Figure 7, Ronn-Verma derived FFC drop sharply to a level lower (nearly

4% lower) than ours during the 2008 financial crisis period while reaching a record high

relative to ours (about 10% higher) right before the crisis. This observation indicates that

with a static (constant) ρ, Ronn-Verma’s model tends to overstate (understate) forbearance

during normal periods (crisis periods) while our model is more flexible in matching the

time-varying nature of the capital forbearance dynamics.

[Insert Figure 7 about here]

Given its more flexible structure, we also expect our model to perform better than

the Ronn-Verma one, on some other dimensions, for instance, bankruptcy prediction.

To provide supportive evidence, from the FDIC’s failed bank list since October 2000 at

https://www.fdic.gov/bank/individual/failed/banklist.html, we identify 31 defaults in

our data. We use EP
t

[
1{Vt+1<ρt+1D}

]
(ρt+1 = 0.97 in Ronn-Verma’s case) to compute the

one-year probabilities of default one year before the default dates for the 31 defaulted

banks as well as another 31 randomly selected active banks. Then, we plot the Receiver

Operating Characteristic (ROC) curves and calculate the Area Under the Curve (AUC) to

compare the in-sample bankruptcy predictive performance.25 The ROCs are plotted in

Figure 8. The higher the AUC the better is the bankruptcy predictive power. The AUCs

are 85.2% and 72.8% for our model and Ronn-Verma, respectively. We also note that our

ROC is higher than the one generated by Ronn-Verma model in Figure 8. This evidence

clearly reinforces that relative to the Ronn-Verma alternative, our stochastic ρ framework

is capable to provide better bankruptcy predictions, at least from an in-sample perspective.
25The ROC is the same as the “power curve” used in Duffie et al. (2007). For a perfect predictive model,

AUC = 100%; for a model with no power at all, AUC = 50%.
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[Insert Figure 8 about here]

6 Empirical analysis II: Regression results

6.1 Variables

We use the FFC, the ICR, and V obtained from Section 5, and other focal and control

variables described below to run regressions to address our research questions.26

The LHS variables in the regressions are FFC and ICR, respectively, the latter defined

as (1− FFC)∗ Market Cap / Implied Asset Value. Recall that FFC denotes the forbear-

ance Fraction of Capital. Hence, the intrinsic capital ratio is not only market-assessed but

also devoid of the value of regulatory forbearance.

On the RHS, we consider the business cycle, bank risks, and some other control vari-

ables. For business cycle proxies, we use the U.S. GDP Growth, GDP Output Gap, and S&P

500 Index Returns. The latter two are used for robustness checks. For bank risks, we com-

pute the following variables. We obtain Idiosyncratic Volatility, following Shumway (2001)

and Duan et al. (2012), by first regressing the daily returns of the firm’s market cap on the

daily returns of the S&P 500 index, within a quarter, then taking the standard deviation

of the residuals of this regression. For Asset Volatility, we follow Duan et al. (2012)’s ap-

proach to estimate Distance-To-Default (DTD) for financial firms, and the Asset Volatility

is then a byproduct of DTD (see the appendix in Duan et al., 2012). Thirdly, Beta is the

coefficient of the return of the S&P 500 index in the regression for idiosyncratic volatil-

ity. Beta captures the extent to which a firm’s stock returns are sensitive to systematic

risk. Investors holding diversified stock portfolios care about systematic risk, while large

shareholders, bank managers, and regulators pay attention to idiosyncratic risk. The Asset

Volatility and Beta are used for a robustness check. For discussions on these risk metrics

in the banking literature, see, for instance, Acharya (2009), DeYoung et al. (2013).

Following Moore and Zhou (2013), Engle et al. (2014), and many others, we also include

the following control variables commonly considered in the extant banking literature:

26Given that ρ∗ exhibits much less variation, and mostly clusters around one, we use FFC, which has
more variation, in the regression analysis.
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• Implied Asset Value / Total Assets, or Market to Book Asset Value ratio: a measure of

the charter value, which is related to banks’ risk taking. It also proxies the degree of

competition or market power à la Keeley (1990).

• Log Total Assets: the natural logarithm of total assets captures the bank size.

• Total Deposits / Total Liabilities: a proxy for a bank’s funding structure.

• (Short Term Borrowing + Other Short Term Liabilities) / Total Assets: a proxy for a bank’s

funding liquidity;

• Net Income / Total Assets: the Return on Assets (ROA).

• Total Loans / Total Assets: a proxy for the extent of a bank traditional activities.

Table 1 presents these variables summary statistics (exclusive of GDP Growth and the

one-year Treasury rate). By just looking at these statistics, we do not see any significant

size effect among these variables. All four groups have similar distributions for all the

variables, except for log Total Assets which is used to discriminate between the different

groups. However, we find a significant size effect when we conduct panel data regres-

sions, as discussed later.

[Insert Table 1 about here]

6.2 Testable hypotheses

In addressing our two research questions: 1) How does the time-varying capital for-

bearance portion embedded in bank equity depend on various banks’ own risk and busi-

ness cycle variables? and 2) How do banks’ market-assessed intrinsic (i.e., devoid of the

forbearance subsidy) capital ratios (or inverse leverage ratios) react to various business

cycles and the banks’ own risk variables?, we also postulate the following hypotheses. It

is natural to expect that FFC is correlated with bank risk. The higher the risk, the big-

ger is FFC, therefore, we hypothesize that there is a positive relation between FFC and

bank risk. In light of numerous studies on TBTF, we expect FFC to be positively related
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to the size of a banking firm. Banks with relatively more deposits are costlier to save, as

bank depositors are indemnified by the FDIC. Therefore, we hypothesize that there is a

positive relation between FFC and bank reliance on deposit funding represented by the

relative size of bank deposits. Economic intuition leads us to expect FFC to be related to

the business cycle and we hypothesize that FFC is bigger in troubled times.

Intuitively, when the charter value increases, bank intrinsic market equity and implied

asset value increase by the same amount.27 Therefore, we expect there is a positive relation

between the ICR and the charter value. Strong capital typically reduces bank systemic

risk, hence, we hypothesize that the ICR is negatively associated with systemic risk.

6.3 Regression analysis

6.3.1 A system of two equations and the Generalized Method of Moments (GMM)

FFC has a positive relation with the degree of supervisory leniency, hence, the big-

ger is FFC, the higher is the expected regulatory capital forbearance. As stated earlier,

ICR gives us a clean measure of the market-based equity ratio or the leverage ratio that

excludes the forbearance subsidy. Recall that Implied Asset Value / Total Assets is our

enhanced proxy for both Tobin’s Q and the charter value.

Endogeneity exists between FFC and ICR, and the other variables, especially Implied

Asset Value / Total Assets and Idiosyncratic Volatility since the latter are obtained from

stock market data. To take into account the endogeneity between the variables, we use

27Without loss of generality, we assume that the total assets (TA) and the total liabilities (TL) remain
constant. The implied asset value (IA) has two components: market value of debt (TL∗ρ∗) and market value
of equity (MC). The MC can be decomposed into three components: non-charter (nonC), charter (C), and
forbearance capital (FC). The intrinsic market cap (IMC) consists of nonC and C. When C increases (by ∆C),
IMC and IA will both increase by ∆C, and therefore ICR will increase.

IA = TL ∗ ρ∗ + MC, MC = IMC + FC, IMC = nonC + C

C ↑∆C⇒
{

IMC ↑∆C
MC ↑∆C⇒ IA ↑∆C

}
⇒ ICR ↑ .
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system GMM to estimate the following system of two dynamic panel equations:

FFCj,t = f1




FFCj,t− 1
4
, ICRj,t,

Idios. Volatilityj,t, GDP Growtht,

Control Variables




+ εj,t, (7a)

ICRj, t = f2




ICRj,t− 1
4
, FFCj,t,

Idios. Volatilityj,t, GDP Growtht,

Control Variables




+ ε j,t, (7b)

where f1 (·) and f2 (·) are linear functions, εj,t and ε j,t are residuals, and subscripts j and t

indicate that the value is for the jth firm at time t, and the Control Variables include ICRj,t,

log Total Assetsj,t, and
Total Depositsj,t
Total Liabilitiesj,t

. One-quarter-lagged LHS variables are included on

the RHS to capture the system dynamic structure. We use quarterly FFC, Implied Asset

Value, and ICR, i.e., these variables values are taken from the last month of each quarter,

to match the frequency of the other variables. The correlation coefficients of the variables

are presented in Table 2. Consistent with intuition, FFC is strongly negatively correlated

with ICR (-0.72) and Implied Asset Value / Total Assets (-0.70) whereas these two latter

variables are positively correlated with each other (0.78).

[Insert Table 2 about here]

To avoid the “biases in dynamic models with fixed effects” pointed out in Nickell

(1981),28 we estimate Eq. (7a) to Eq. (7b) using the 2SGMM developed by Blundell and

Bond (1998). Since individual FFC and ICR are unlikely to directly affect GDP Growth,

we assume that GDP Growth is a strictly exogenous regressor. Naturally, FFC, ICR, Id-

iosyncratic Volatility, and Implied Asset Value / Total Assets are endogenous variables,

as they are all determined endogenously in our model. Although log Total Assets and

Total Deposits / Total Liabilities are not explicit in our model, their values are likely to

be affected by the market view of forbearance. Therefore, these two variables are also

potentially endogenous to FFC and ICR.

28Since the LHS variables, FFC and ICR, are both persistent processes, this bias is considered to be sig-
nificant if we use the standard fixed-effect regression.
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In the GMM estimation, GDP Growth is used to instrument itself.29 Other than GDP

Growth, all the RHS variables in Eq. (7a) to Eq. (7b) are considered to be predetermined

(lagged LHS) or endogenous. Therefore, two-quarter and longer lags of these variables are

used as GMM instruments. Since the time length of our panel data is not too short (about

36 quarters on average), we cap the lags at 9 and 20 quarters for the Large Banks and Big

Banks groups, respectively. To further limit the number of instruments at a reasonable

level relative to the number of observations, these GMM instruments are “collapsed” à

la Beck and Levine (2004) and Roodman (2009). We compute standard errors with the

Windmeijer (2005) correction. The system GMM approach handles firm fixed effects, and

we include year dummies in the regression to account for the time fixed effects.30

6.3.2 Results and discussion

We report the estimation results from Eq. (7a) in Table 3. The coefficients of the lagged

FFC are all significantly positive for all four groups, which confirms that FFC is a persis-

tent process. The coefficients of ICR for the All Banks and Medium Banks groups are sig-

nificantly negative, consistent with the belief that banks with higher intrinsic equity ratios

receive less capital forbearance. One standard deviation increase in the ICR reduces the

capital forbearance by 0.02 for all banks and 0.03 for medium banks. This increase is 11%

of the sample capital forbearance mean. Since ICR is the reverse of the (market-based)

leverage risk, the significantly negative coefficients also reflect a positive relation between

FFC and bank leveraging. This confirms our hypothesis that FFC is positively related

to the leverage risk. However, the estimated coefficients for the Large and Big banks are

statistically zero. This may be interpreted that for these mega banks FFC is not associated

with the intrinsic capital fraction since it is tiny compared to the scale of forbearance and

bailout contemplated by the market.

[Insert Table 3 about here]
29Results are robust even with GDP Growth as an endogenous variable. However, to limit the number of

instruments, we use GDP Growth as an exogenous variable.
30We do not include quarter dummies because we have a quarterly macro variable GDP Growth in our

regression, which makes coefficients of quarter dummies unidentifiable. Year dummies are, nevertheless,
identifiable.
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The significantly positive coefficient of Idiosyncratic Volatility indicates that the market

believes, ceteris paribus, that banks with higher non-diversifiable risk will be given more

forbearance. We find that one standard deviation in Idiosyncratic Volatility leads to 0.022

increase in FFC (13.75% the sample average capital forbearance). This effect is higher

for big banks in absolute terms. This result is robust to the two other bank specific risk

measures: Asset Volatility and Beta. This is in line with the hypothesis that regulatory

forbearance rises with higher idiosyncratic risk.

Although we do not observe a significant size effect on FFC from the summary statis-

tics presented in Table 1, we do find formal confirmation of a significant size effect in

Table 3. This is confirmed by the significantly positive coefficients of log Total Assets for

the All but Small Banks group. This positive size effect on FFC indicates that the market

believes that larger banks benefit from more forbearance and cost more to rescue. Since we

use log Total Assets to proxy for bank size, we also capture to some degree the nonlinear-

ity in the relation between FFC and Total Assets. Judging from the coefficient estimates

in Table 3, the nonlinearity implies that the size effect is unnoticeable when banks become

large. This feature explains why the coefficients for the Large Banks and Big Banks groups

are insignificant. This is consistent with the hypothesis about the positive size effect on

the forbearance value.

A high ratio of Total Deposits / Total Liabilities means banks draw mainly from de-

posits and rely much less on wholesale funding. The significantly positive relation be-

tween FFC and Total Deposits / Total Liabilities in Table 3 implies that it is costlier for the

government to forbear in the case of banks that depend on deposits. This is again in line

with our hypothesis that since deposits are insured, the FDIC has a heavier obligation to

fully payoff depositors of banks having relatively more deposits.

The coefficients of GDP Growth reveal the relation between FFC and the business

cycle. The coefficients for All but Small Banks, Large Banks and Big Banks are significantly

negative. Obviously, the market expects banks to benefit from more forbearance or more

likely to be rescued in bad times, and to be less prone to requiring financial assistance

during booms. FFC is countercyclical as we hypothesize. The results are robust to the

other two proxies for the business cycle: GDP Output Gap and S&P Index. To save space,
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their results are not presented. In Online Appendix G, we show that the countercyclical

nature of forbearance is also confirmed in time-series analysis. Lai et al. (2018) also show

that the market views on the banking industry are useful for forecasting economic growth.

The estimation results from Eq. (7b) are presented in Table 4. Again, we find that ICR,

our proxy for the inverse of the bank’s leverage ratio (market-based), is a persistent process

as the coefficients of the lagged value of ICR are all significantly positive. The significantly

negative coefficients of FFC confirm the hypothesized positive relation between FFC and

the leverage risk. Given the coefficient estimates of FFC for All but Small Banks group,

we can see that a 10 basis point increase in FFC contemporaneously decreases ICR by

0.23 basis points. Further, the marginal contribution of forbearance (FFC) to the intrinsic

bank net worth ratio (ICR) appears almost identical in all three size-based subsamples

of banks. This interesting result suggests that, for the sake of valuating bank adequate

capital, the marginal impact of FFC on the intrinsic capital ratio is the same regardless of

the bank size. The significantly negative coefficients of Idiosyncratic Volatility indicate a

positive relation between bank idiosyncratic volatility and the leverage ratio.

[Insert Table 4 about here]

We observe a significantly positive relation between ICR and Implied Asset Value /

Total Assets. On average, a standard deviation increase in the Implied Asset Value /

Total Assets leads to 0.008 increase in the ICR. This increase amounts to 6.35% of the

average value of the ICR. Recall that our proxy for Tobin’s Q, Implied Asset Value /

Total Assets, which is based on the market valuation, measures the charter value more

accurately so as to underscore the disciplining impact of the charter value on leverage.

This result is consistent with our hypothesis about the positive relation between ICR and

the charter value. This also indicates that the higher is the charter value, the less is the

bank’s leverage, but the disciplining effect is smaller for bigger banks. Unlike the case of

FFC, we do not observe a significant size effect on ICR, as only the coefficient for Large

Banks is significant among the four groups. We find a statistically significant negative

relationship between ICR and Total Deposits / Total Liabilities for the full sample of 565

banks which appears to be driven by the Large Banks subsample.
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In Online Appendix H, we report results obtained using additional control variables

such as a funding-liquidity measure (Short-Term Borrowing & Other Short-Term Liabil-

ities to Total Assets Ratio), a performance measure (ROA), and a traditional banking ac-

tivities measure (Total Loans to Total Assets Ratio). The main messages above remain

unchanged. In unreported exercises, we replace Idiosyncratic Volatility (GDP Growth)

with Asset Volatility and Beta (GDP Output Gap and S&P 500 Index), then rerun the same

regressions. We also exclude data from the crisis period and rerun the same regressions.

The results, available from the authors upon request, deliver the same stories as discussed

above.

6.3.3 Results with systemic risk

Finally, we provide additional results on how our FFC and ICR are related to the

systemic risk of a bank. As discussed in more detail in Moore and Zhou (2013), Laeven

et al. (2014), Engle et al. (2014), and many others in this growingly large literature, the

systemic risk is most relevant for large banks and macro-prudential governance. There-

fore, for compactness, here we only consider the Large Banks group consisting of banks

with Total Assets of at least 7.4 billion USD and with average Total Assets of 149 billion

USD. Using the U.S. banks’ daily stock returns data, we calculate the commonly adopted

systemic risk proxy, the Marginal Expected Shortfall (MES) proposed by Brownlees and En-

gle (2012), which utilizes the GARCH and Corrected Dynamic Conditional Correlation

(CDCC) methods to better capture correlations between the stock returns of individual

banks and the stock index returns. The MES, which captures the marginal exposure of a

banking firm to a system-wide collapse, is defined as the negative mean net equity return

of a bank conditional on the U.S. S&P 500 index experiencing extreme downward move-

ments. We follow the mechanics with all the assumptions summarized in Annex 4 of

Laeven et al. (2014) to estimate our two metrics of systemic risk MES and SRISK. Technical

details are presented in Online Appendix I.

We replace Idiosyncratic Volatility in Eq. (7a) and Eq. (7b) with MES, and also exclude

log Total Assets from both equations in light of the previous finding on the insignificant
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size effect of Large Banks on FFC and ICR.31 Specifically, we estimate the following two

equations

FFCj,t = f1




FFCj,t− 1
4
, ICRj,t,

MESj,t, GDP Growtht,

Control Variables




+ εj,t, (8a)

ICRj,t = f2




ICRj,t− 1
4
, FFCj,t,

MESj,t, GDP Growtht,

Control Variables




+ ε j,t, (8b)

where the Control Variables include
Implied Asset Valuej,t

Total Assetsj,t
and

Total Depositsj,t
Total Liabilitiesj,t

. To perform the

regressions, we use the 2SGMM as described before. The results are reported in Table 5.

[Insert Table 5 about here]

We find a significantly positive relation between FFC and MES, while there is a sig-

nificantly negative relation between ICR and MES. These results are in accordance with

our hypotheses. Bank systemic risk is positively associated with capital forbearance. The

lower is the bank capital, the higher is the bank’s exposure to systemic risk. This finding

is robust to an alternative systemic risk measure proposed by Acharya et al. (2012), SRISK,

the capital shortfall, defined as a bank’s contribution to the deterioration of the capitaliza-

tion of the whole financial system (the dominant U.S. stock market) during a crisis.

31To better identify the coefficients we keep all the instrumental variables (both IV and GMM types) intact
while adding MES as a GMM type instrument.
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7 Conclusion

Ronn and Verma (1986) call the tolerance level below which the closure of a large,

complex and interconnected insolvent bank is triggered the regulatory policy parameter.

In this paper, we develop a two-factor model with Ronn and Verma (1986)’s bank regu-

latory policy parameter being stochastic and bank-specific. The model is calibrated using

565 U.S. banks’ market capitalization and total liabilities data to infer the market impres-

sion about the regulatory closure rules for the period from 1990 to 2012. In accordance

with economic intuition, the resulting forward-looking bank regulatory policy parame-

ters show that the market expectation on the capital forbearance is significantly driven by

bank-specific risk variables and business cycles. We find that the capital forbearance sub-

sidy present in the largest banks could amount to 17% of the market value of equity and

could go as high as 100% of a bank’s stock value. The market believes in the “Too Big to

Fail” paradigm and expects that banks with lower equity capital ratios will receive more

capital forbearance or government assistance, congruent with the banking regulatory au-

thority containing rescue costs. In effect, the market expects a strongly performing bank

to receive less capital forbearance, and one with a high charter value and enjoying greater

market power to cost less to bail out. Regarding idiosyncratic risk, the market believes that

banks with higher volatility will benefit from more forbearance. The market expects banks

to benefit from increases in capital forbearance during recessions. The market expectation

of forbearance is also a positive function of banks’ systemic risk, consistent with the ex-

pectation that banks with higher systemic risk will receive more capital forbearance from

the government. Applying the model to the setting of fair market deposit insurance pre-

miums would be a natural next step in future research. By means of the enhanced Ronn

and Verma (1986) developed in this paper, one may study, for instance, the interaction

between regulatory forbearance and market discipline in terms of equity valuation.
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Figure 1: Individual bank regulatory policy parameters time series: The case of Wells
Fargo

This figure presents the results of the case study of Wells Fargo. The upper panel in this figure shows the time
series of the actual market cap, fitted market cap, implied asset value, and smoothed total liabilities (y-axis
is in billions of USD); the middle panel shows the time series of the Policy Parameter (ρ), the Effective Policy
Parameter (ρ∗), and the Forbearance Fraction of Capital (FFC); the lower panel shows the time series of the
Intrinsic Cap Ratio (ICR) and Book Equity / Total Assets (i.e., 1 - Smoothed Total Liabilities / Smoothed
Total Assets). The Intrinsic Market Cap is the market cap net of the capital forbearance value, and the
Implied Asset Value is one of the state variables in our model, and represents the market-based asset value
of a bank. The time series are from early 1998 to late 2012, and the data frequency is monthly.
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Figure 2: Forbearance Fraction of Capital (FFC) cross-sectional distribution dynamics

This figure shows the dynamics (from 1990 to 2012, monthly data) of the cross-sectional distributions of
the Forbearance Fraction of Capital (FFC) for the four categories: Large Banks, Big Banks, Medium Banks,
and All but Small Banks. The black line indicates the median over time, and the dark and light gray bands
indicate the 25th to 75th and 10th to 90th percentile intervals, respectively.
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Figure 3: Forbearance Capital Value (FC) cross-sectional distribution dynamics

This figure shows the dynamics (from 1990 to 2012, monthly data) of the cross-sectional distributions of the
Forbearance Capital Value (FC) (in billions of USD) for the four categories: Large Banks, Big Banks, Medium
Banks, and All Banks. All the y-axes are in billions of USD. The black line indicates the median over time,
and the dark and light gray bands indicate the 25th to 75th and 10th to 90th percentile intervals, respectively.
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Figure 4: Effective Policy Parameter (ρ∗) cross-sectional distribution dynamics

This figure shows the dynamics (from 1990 to 2012, monthly data) of the cross-sectional distributions of
the Effective Policy Parameter (ρ∗) for the four categories: Large Banks, Big Banks, Medium Banks, and All
Banks. The black line indicates the median over time, and the dark and light gray bands indicate the 25th to
75th and 10th to 90th percentile intervals, respectively.
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Figure 5: Forbearance Capital Value (FC) v.s. TAF and TALF Capitals

Panel (a) in this figure shows the monthly dynamics (from January 2002 to June 2010) of FC (left y-axis)
in contrast with the timing and magnitude of the TAF/TALF capitals (right y-axis). Panel (b) in this figure
shows the monthly changes (from July 2007 to July 2011) of FC in contrast with the monthly changes of the
TAF+TALF outstandings. All the y-axes are in billions of USD. Data source of TAF/TALF capitals: Hamilton
(2014).
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Figure 6: ICR v.s. Book Equity / Total Assets

This figure shows the dynamics of the cross-sectional mean values of ICR (Intrinsic Mkt Cap/Implied Asset
Value) and Book Equity / Total Assets for the four different groups from the beginning of 1990 to the end
of 2012. The data frequency is quarterly. The results for Large Banks, Big Banks, Medium Banks, and All
Banks are shown in panels (a), (b), (c), (d), and (e) respectively.
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Figure 7: Time series of FFC differences

This figure shows the monthly dynamics (from February 1990 to April 2013) of the difference between FFC

of Ronn and Verma (1986) and ours using our data. The 2008 financial crisis period is highlighted in gray
(according to the NBER business cycle reference dates).
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Figure 8: Receiver Operating Characteristic (ROC) Curve and Area Under the Curve
(AUC)

This figure plots and compares the ROCs and AUCs of our model (Lai-Ye) and Ronn-Verma using the one-
year in-sample probabilities of default. The data are based on 31 recorded defaults and 31 randomly selected
active banks in our data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Lai-Ye, AUC = 85.2%

Ronn-Verma, AUC = 72.8%

42



Table 1: Summary statistics of the variables

This table reports summary statistics for the Forbearance Fraction of Capital (FFC), Mkt Cap / Implied
Asset Value (MC/IA), ICR, Book Equity / Total Assets (BE/TA), Idiosyncratic Volatility (Idio-Vol), Implied
Asset Value / Total Assets (IA/TA), log Total Assets (log(TA)), Total Deposits / Total Liabilities (TD/TL),
Short-Term Borrowing + Short-Term Other Liabilities / Total Assets (STB/TA), Net Income / Total Assets
(ROA), and Total Loans / Total Assets (TLoan/TA) for all banks as well as three categories: Large Banks, Big
Banks, and Medium Banks. Each variable is winsorized at 99% and 1%. The Mean, Standard Deviation (Std),
Maximum (Max), 90%, 75%, 50%, 25%, 10% and Minimum (Min) of each category are reported. Note:Total
Assets are in millions of USD and results for ROA are reported in percentages to avoid rounding imprecision.
Summary statistics are calculated on a quarterly basis. For FFC, MC/IA, and ICR, the data of the last
months in quarters are used.

Mean Std Max 90% 75% 50% 25% 10% Min

All Banks

FFC 0.16 0.28 1.00 0.66 0.15 0.04 0.01 0.00 0.00

MC/IA 0.14 0.06 0.37 0.22 0.18 0.14 0.10 0.07 0.02

ICR 0.12 0.07 0.38 0.21 0.17 0.13 0.08 0.02 0.00

BE/TA 0.09 0.03 0.24 0.12 0.10 0.09 0.08 0.06 0.04

Idio-Risk 0.02 0.02 0.12 0.04 0.03 0.02 0.01 0.01 0.01

IA/TA 0.97 0.14 1.28 1.12 1.06 1.00 0.91 0.80 0.47

log(TA) 7.62 1.54 14.68 9.67 8.31 7.23 6.52 6.08 5.47

TD/TL 0.83 0.16 0.99 0.96 0.93 0.87 0.78 0.68 0.11

STB/TA 0.07 0.08 0.42 0.16 0.10 0.05 0.02 0.01 0.00

ROA(%) 0.24 0.24 0.63 0.41 0.34 0.27 0.19 0.08 -1.45

TLoan/TA 0.64 0.12 1.07 0.78 0.72 0.66 0.58 0.49 0.05

Sample Size 23908

Continued on the next page
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Table 1 –continued from the previous page

Mean Std Max 90% 75% 50% 25% 10% Min

Large Banks

FFC 0.17 0.28 1.00 0.71 0.14 0.04 0.01 0.00 0.00

MC/IA 0.16 0.07 0.37 0.27 0.20 0.15 0.11 0.08 0.02

ICR 0.14 0.08 0.38 0.24 0.19 0.14 0.08 0.03 0.00

BE/TA 0.09 0.03 0.24 0.12 0.10 0.08 0.07 0.06 0.04

Idio-Risk 0.02 0.01 0.12 0.03 0.02 0.01 0.01 0.01 0.01

IA/TA 0.99 0.16 1.28 1.16 1.09 1.01 0.91 0.80 0.47

log(TA) 10.75 1.30 14.68 12.64 11.37 10.46 9.74 9.39 8.91

TD/TL 0.73 0.15 0.99 0.88 0.83 0.75 0.68 0.60 0.11

STB/TA 0.15 0.10 0.42 0.29 0.19 0.12 0.08 0.04 0.00

ROA(%) 0.29 0.18 0.63 0.45 0.37 0.32 0.25 0.14 -1.45

TLoan/TA 0.61 0.15 0.90 0.75 0.71 0.65 0.57 0.40 0.05

Sample Size 3121

Big Banks

FFC 0.16 0.28 1.00 0.68 0.12 0.04 0.01 0.00 0.00

MC/IA 0.16 0.06 0.37 0.24 0.20 0.15 0.12 0.09 0.02

ICR 0.14 0.07 0.38 0.23 0.18 0.14 0.09 0.03 0.00

BE/TA 0.09 0.03 0.24 0.12 0.10 0.09 0.08 0.07 0.04

Idio-Risk 0.02 0.01 0.12 0.04 0.02 0.02 0.01 0.01 0.01

IA/TA 0.99 0.15 1.28 1.14 1.08 1.01 0.92 0.81 0.47

log(TA) 8.52 0.51 10.01 9.20 8.89 8.53 8.13 7.82 7.44

TD/TL 0.81 0.15 0.99 0.94 0.91 0.85 0.77 0.69 0.11

STB/TA 0.09 0.08 0.42 0.18 0.12 0.07 0.04 0.02 0.00

ROA(%) 0.26 0.23 0.63 0.43 0.36 0.29 0.23 0.11 -1.45

TLoan/TA 0.62 0.12 1.07 0.75 0.70 0.64 0.56 0.46 0.06

Continued on the next page
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Table 1 –continued from the previous page

Mean Std Max 90% 75% 50% 25% 10% Min

Sample Size 4861

Medium Banks

FFC 0.17 0.27 1.00 0.64 0.16 0.04 0.01 0.00 0.00

MC/IA 0.14 0.06 0.37 0.21 0.17 0.13 0.10 0.06 0.02

ICR 0.12 0.07 0.38 0.20 0.16 0.12 0.07 0.02 0.00

BE/TA 0.09 0.03 0.24 0.12 0.10 0.09 0.08 0.06 0.04

Idio-Risk 0.03 0.02 0.12 0.05 0.03 0.02 0.02 0.01 0.01

IA/TA 0.97 0.13 1.28 1.11 1.05 0.99 0.91 0.80 0.47

log(TA) 6.81 0.64 8.67 7.69 7.28 6.77 6.31 5.96 5.47

TD/TL 0.85 0.16 0.99 0.97 0.94 0.89 0.82 0.72 0.11

STB/TA 0.05 0.06 0.42 0.13 0.07 0.03 0.01 0.00 0.00

ROA(%) 0.22 0.25 0.63 0.40 0.33 0.26 0.18 0.07 -1.45

TLoan/TA 0.66 0.11 0.95 0.80 0.73 0.66 0.59 0.51 0.15

Sample Size 15330
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Table 2: Correlation coefficients of the variables

This table reports the correlation coefficient matrix of the following variables: the Forbearance Fraction of
Capital (FFC), Intrinsic Cap Ratio (ICR), Idiosyncratic Volatility (Idio-Vol), Implied Asset Value / Total
Assets (IA/TA), log Total Assets (logTA), Total Deposits / Total Liabilities (TD/TL), GDP Growth (GDPG),
(Short-Term Borrowing + Other Short-Term Liabilities) / Total Assets (STB/TA), Net Income / Total Assets
(ROA), and Total Loans / Total Assets (TLoan/TA). The correlation coefficients are computed in a pairwise
manner using quarterly data.

FFC ICR Idio Risk GDPG IA/TA logTA TD/TL STB/TA ROA TLoan/TA

FFC 1

ICR -0.72 1

Idio Risk 0.24 -0.30 1

GDPG -0.07 0.19 -0.23 1

IA/TA -0.70 0.78 -0.29 0.21 1

logTA 0.02 0.05 -0.21 -0.09 -0.04 1

TD/TL -0.03 0.05 0.08 0.09 0.04 -0.32 1

STB/TA 0.00 0.03 -0.10 0.01 0.05 0.44 -0.50 1

ROA -0.29 0.48 -0.43 0.23 0.46 0.03 0.04 0.06 1

TLoan/TA -0.02 -0.01 0.10 -0.13 -0.07 -0.14 0.16 -0.32 -0.07 1
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Table 3: System GMM estimates of different groups of banks for Eq. (7a) with the LHS
variable being the Forbearance Fraction of Capital (FFC)

This table reports the regression results for Eq. (7a).

FFCj,t = f1




FFCj,t− 1
4
, ICRj,t,

Idios. Volatilityj,t, GDP Growtht,

Control Variables




+ εj,t,

where the Control Variables include
Implied Asset Valuej,t

Total Assetsj,t
, log Total Assetsj,t, and

Total Depositsj,t
Total Liabilitiesj,t

. The LHS vari-
able in the regression is the FFC, where the Implied Asset Value is one of the state variables in our model,
and represents the market-based asset value of a bank. The first column contains all the RHS variable names,
the second column reports the coefficients of the variables for all but small banks, and the third to sixth
columns report those for the four categories: All but Small Banks, Large Banks, Big Banks, and Medium
Banks. Sample sizes and instrument counts are also reported in the last two rows. Quarterly data are used
in the regressions. Windmeijer (2005) corrected standard errors are in parentheses; *, **, and *** denote sta-
tistical significance at the 10%, 5%, and 1% levels, respectively. Time fixed effects are controlled by including
year dummies in the regressions.

VARIABLES All Large banks Big banks Medium banks

Lagged FFC
0.780∗∗∗ 0.824∗∗∗ 0.735∗∗∗ 0.778∗∗∗

(0.017) (0.038) (0.046) (0.023)

ICR
−0.229∗∗ −0.080 −0.081 −0.392∗∗∗

(0.100) (0.243) (0.220) (0.151)

Idio Risk
1.111∗∗∗ 0.948∗∗∗ 1.501∗∗∗ 0.834∗∗∗

(0.190) (0.349) (0.439) (0.241)

Implied Asset Value
Total Assets

−0.074 −0.050 −0.057 −0.066

(0.045) (0.119) (0.117) (0.069)

log Total Assets
0.012∗∗∗ 0.006 −0.000 0.015∗∗

(0.004) (0.009) (0.013) (0.007)

Total Deposit
Total Liability

0.073∗∗∗ 0.117 0.089∗ 0.073∗∗

(0.024) (0.107) (0.051) (0.029)

GDP Growth
−0.568∗∗∗ −0.845∗∗ −0.819∗ −0.368

(0.203) (0.406) (0.420) (0.264)

Instrument
Count

569 77 143 533

Sample Size 23908 3100 4857 15520
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Table 4: System GMM estimates of different groups of banks for Eq. (7b) with the LHS
variable being the Intrinsic Cap Ratio (ICR)

This table reports the regression results for Eq. (7b).

ICRj,t = f2




ICRj,t− 1
4
, FFCj,t ,

Idios. Volatilityj,t, GDP Growtht,

Control Variables




+ ε j,t,

where the Control Variables include
Implied Asset Valuej,t

Total Assetsj,t
, log Total Assetsj,t, and

Total Depositsj,t
Total Liabilitiesj,t

. The LHS vari-
able in the regression is ICR, where the Implied Asset Value is one of the state variables in our model, and
represents the market-based asset value of a bank. The first column contains all the RHS variable names,
the second column reports the coefficients of the variables for all but small banks, and the third to sixth
columns report those for the four categories: All but Small Banks, Large Banks, Big Banks, and Medium
Banks. Sample sizes and instrument counts are also reported in the last two rows. Quarterly data are used
in the regressions. Windmeijer (2005) corrected standard errors are in parentheses; *, **, and *** denote sta-
tistical significance at the 10%, 5%, and 1% levels, respectively. Time fixed effects are controlled by including
year dummies in the regressions.

VARIABLES All Large banks Big banks Medium banks

Lagged ICR
0.584∗∗∗ 0.682∗∗∗ 0.607∗∗∗ 0.618∗∗∗

(0.022) (0.058) (0.048) (0.030)

FFC
−0.023∗∗∗ −0.024∗∗ −0.021∗∗∗ −0.019∗∗∗

(0.003) (0.011) (0.008) (0.004)

Idio Risk
−0.397∗∗∗ −0.350∗∗∗ −0.571∗∗∗ −0.420∗∗∗

(0.041) (0.122) (0.118) (0.051)

Implied Asset Value
Total Assets

0.109∗∗∗ 0.061∗∗ 0.073∗∗∗ 0.093∗∗∗

(0.010) (0.025) (0.027) (0.014)

log Total Assets
−0.001 0.003 0.001 −0.003

(0.001) (0.003) (0.003) (0.002)

Total Deposit
Total Liability

−0.008∗∗ −0.046∗∗ 0.010 0.001

(0.004) (0.022) (0.012) (0.004)

GDP Growth
0.059 0.320∗∗ 0.120 0.081∗

(0.040) (0.126) (0.100) (0.048)

Instrument Count 569 77 143 533

Sample Size 23908 3100 4857 15520
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Table 5: System GMM estimates of the Marginal Expected Shortfall (MES) regressions
Eq. (8a) and Eq. (8b), based on the Large Banks’ data with the LHS variables being the
FFC and ICR

This table reports the regression results of the Marginal Expected Shortfall (MES) regressions Eq. (8a) and
Eq. (8b).

FFCj,t = f1




FFCj,t− 1
4
, ICRj,t,

MESj,t, GDP Growtht,

Control Variables


+ εj,t,

ICRj,t = f2




ICRj,t− 1
4
, FFCj,t,

MESj,t, GDP Growtht,

Control Variables


+ ε j,t,

where the Control Variables include
Implied Asset Valuej,t

Total Assetsj,t
and

Total Depositsj,t
Total Liabilitiesj,t

. The LHS variables in the regres-
sion are the Forbearance Fraction of Capital (FFC) and the Intrinsic Cap Ratio (ICR), where the Implied
Asset Value is one of the state variables in our model, and represents the market-based asset value of a bank.
The first column contains all the RHS variable names, the second and third columns report the results for
FFC and ICR, respectively. Sample sizes and instrument counts are also reported in the last two rows.
Quarterly data are used in the regressions. Windmeijer (2005) corrected standard errors are in parentheses;
*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. Time fixed effects are
controlled by including year dummies in the regressions.

VARIABLES FFC ICR

Lagged FFC
0.811∗∗∗

–(0.043)

Lagged ICR –
0.615∗∗∗
(0.059)

FFC –
−0.035∗∗∗

(0.010)

ICR
−0.142

–(0.238)

MES
0.534∗∗ −0.179∗∗∗
(0.239) (0.045)

GDP Growth
−0.792∗ 0.208∗
(0.461) (0.115)

Implied Asset Value
Total Assets

−0.021 0.091∗∗∗
(0.095) (0.020)

Total Deposits
Total Liabilities

0.172 −0.031
(0.114) (0.020)

Instrument Count 79 79
Sample Size 3100 3100
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A Alternative FFC estimate by simulation

In this appendix, we model the Forbearance Fraction of Capital FFC directly by defin-

ing the presumed FDIC payoffs/payments to the bank various constituencies at audit

dates. In the numerical analysis, we estimate the forbearance value by simulation. The

simulation results are then compared with those obtained from our analytical model.

The two state variables, ρt and Vt are specified in Model setup section in the main text.

Similar to Pennacchi (1987)’s unlimited term deposit insurance case, the regulatory for-

bearance can be modeled as a put option with unlimited term payoffs at audit dates as

long as Vt > ρtDt. We model whether the FDIC has to meet the payoff to save the bank by

way of Λ(p), a binary random variable with probability of p being 1. The payoff Ft (where

t is an audit date) and the total debt Dt are modeled respectively as follows:1

Ft =





0

(Dt −Vt)Λ(p)

0

if Vt > Dt

if ρtDt 6 Vt 6 Dt

if Vt < ρtDt.

(A1)

Dt+ =





Dt

Dt − (Dt −Vt)Λ(p)

0

if Vt > Dt

if ρtDt 6 Vt 6 Dt

if Vt < ρtDt.

(A2)

When Vt > Dt the bank does not require forbearance; when ρtDt 6 Vt 6 Dt, the

FDIC will potentially have to settle the payoff to lower the bank debt level to keep it alive;

when Vt < ρtDt, the put option terminates and the insured bank is closed and all its

debt liabilities will be indemnified by the FDIC. Regarding Λ(p), it is reasonable to con-

jecture that p is small as the FDIC makes the payment only when debt holders request

it. Normally, bank depositors do not withdraw their deposits unless there is a high like-

lihood of a bank run. Ideally, p should be time-varying and a function of Dt, Vt, and ρt,

however, for simplicity, we assume p a constant. Given Eq. (A1) and Eq. (A2), the for-

1 Dt is assumed to grow at the rate of r in each simulated path. It shifts downwards at an audit date to Vt
whenever Λ(p) = 1 & ρtDt 6 Vt 6 Dt, and to zero whenever Vt < ρtDt.

1



bearance value is FVt = E
Q
t

{
∑∞

s=t+1 Fse[−r(s−t)]
}

where r is interest rate, the equity value

Et = Vt + FVt − Dt, and FFC = FVt/Et.

The value of FVt is obtained by simulating under the risk neutral measure ρt and Vt.

Specifically, 1000 paths of 200 audit dates are simulated for the two variables, and the

present values of the payoffs at these dates are aggregated to obtain the value of FVt.2 Once

FVt is calculated, Et and FFC can also be calculated. For the simulations, the parameters

are specified as follows : D = 15, 000, V0 = 20, 000, κ = 0.17, µ = r − σ2
2/2, r = 0.04,

σ1 = 0.2, and σ2 = 0.15. To capture the impact of ρ on FFC, θ is set to be − log
(

0.9+ρ
2

)
.

These figures are in line with the average parameter estimates from our empirical analysis

to yield plausible results. Also, to capture the estimation uncertainty, we perform 300 sets

of the above simulation.

To conduct the comparative analysis using our analytical model of FFC, we have to

specify p, the probability of the FDIC settling the payment at audit dates when the value

of Vt lies within [ρtDt, Dt]. As mentioned earlier, to keep the bank open, the FDIC does

not have to fill the shortfall of Dt − Vt all the times, hence indemnification frequency is

likely very low. We show that our analytical model is consistent with the simulation when

p = 0.004. This means that the FDIC settle the required payment roughly one out of 250

cases. Although estimating p empirically is desirable, it is out of the scope of this paper.

The comparative results are shown in Figure A1. Note that our analytical model esti-

mation of FFC sits well within the 95% confidence interval of the simulated values. Com-

paring the analytical FFC with the simulation mean, we also find that the analytical FFC

is more linear with respect to ρt than is the simulated FFC mean. Due to the nonlinear-

ity of the simulation mean, the analytical FFC slightly overstates the forbearance value

when ρt is within [0.4, 0.9] (on average around 0.4% higher than the simulated mean) and

understates when ρt < 0.4 (in average around 0.3% lower) or > 0.9 (in average around

0.05% lower). As these biases are all within the confidence interval, they are deemed to be

insignificant. Therefore, in our simulation exercise, we find that given the low frequency

that the FDIC have to indemnify, the bias in using our analytical model of FFC is insignif-

2 For each path, 200× 20 points are simulated, then Ft is calculated at all audit dates, i.e., Ft every 20
points.
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icant.

[Insert Figure A1 about here]

B Definition of G function

Gb,d (z; Xt, τ) is defined as follows:

Gb,d (z; Xt, τ) =
ψ (b, Xt, τ)

2
− 1

π

∫ ∞

0

Im
[
ψ (b+ isd, Xt, τ) zis]

s
ds, (A3)

where b and d are 1× 2 row vectors. GP has the same functional form as G, but all the

parameters are under the measure P, Im(·) denotes the imaginary part of ·, i =
√
−1,

and for any 1× 2 row vector u = [u1, u2] (where u1 and u2 can be complex numbers), the

transform function ψ is 3

ψ (u, Xt, τ) = exp (α (τ) + β (τ) x1 (t) + u2x2 (t)) ,

where α and β satisfy the ordinary differential Riccati equations (ODEs)

∂β (τ)

∂τ
= −κβ (τ) +

1
2

σ2
1 β (τ)2

∂α (τ)

∂τ
= κθβ (τ) + µu2 +

1
2

σ2
2 u2

2

β (0) = u1

α (0) = 0.

3 The function ψ is defined via the Fourier-Stieltjes transform of Gb,d (·; Xt, τ), i.e.,

ψ (b+ isd, Xt, τ) =
∫ ∞

0
eiszdGb,d (z; Xt, τ) = Et

(
e(b+isd)Xt+τ

)
.

3



When u2 6= 0 and ϕ 6= 0 4

β (τ) =
κ − ΥΩ

σ2
1

α (τ) =

−κθ

(
−κτ + 2 log σ1 + log

(
2κu1−u2

1σ2
1−2ϕu2

(κ2−2ϕu2σ2
1)(1+Υ2)

))

σ2
1

+

(
σ2

2 u2
2

2
+ u2µ

)
τ

Υ = tan

(
−1

2
τΩ + arctan

(
κ − u1σ2

1
Ω

))

Ω =
√

2ϕu2σ2
1 − κ2.

Otherwise

β (τ) =
2κu1

σ2
1 (1− eκτ) u1 + 2κeκτ

α (τ) = −
2κθ log

(
1 + u1σ2

1
e−κτ−1

2κ

)

σ2
1

+

(
σ2

2 u2
2

2
+ u2µ

)
τ.

C Moment conditions

Assume Xt follows a system of stochastic differential equations (SDE) under the (real)

physical probability measure P as follows:

dXt =







κθ

µP


+



−κP 0

0 0


Xt


 dt +




σ1
√

x1 (t) 0

0 σ2


 dWP

t .

This assumption implies that the above SDE dynamics are derived from Eq. (A4)

dXt = d


 x1 (t)

x2 (t)


 =




 κθ

µ


+


 −κ 0

ϕ 0




 x1 (t)

x2 (t)




 dt +


 σ1

√
x1 (t) 0

0 σ2


 d


 w1 (t)

w2 (t)


 (A4)

4 Note that the results hold even when 2ϕu2σ2
1 < κ2 if we allow Ω to take values that are imaginary

numbers. This is due to the fact that

tan(x) =
e2xi − 1

i
(
e2xi + 1

) , arctan =
1
2

i log
(

1− xi
1 + xi

)
.

Regardless of whether Ω is an imaginary number or not, β (τ) and α (τ) are always real for any τ > 0.

4



by employing the essentially affine market prices of risks specification of Duffee (2002) for

Xt. This specification allows compensations for risks of Xt to vary independently of Xt.

C.1 The conditional expectation

The conditional expectation under measure P satisfies a system of ordinary differential

equations (ODE) (s > t)

dEt (Xs)

ds
=




κθ

µP


+



−κP 0

0 0


Et (Xs)

with the initial condition

Et (Xt) = Xt.

Therefore

Et (x1 (s)) = x1 (t) e−κP(s−t) +
(

1− e−κP(s−t)
) κθ

κP

Et (x2 (s)) = µP (s− t) + x2 (t)

i.e.,

Et (Xs) =




e−κP(s−t) 0

0 1


Xt +




(
1− e−κP(s−t)

)
κθ
κP

µP (s− t)


 (A5)

C.2 The conditional variance-covariance

Let us consider Et
(
x2

1 (s)
)
, Et

(
x2

2 (s)
)
, and Et (x1 (s) x2 (s)) :

dEt
(

x2
1 (s)

)

ds
= −2κPEt

(
x2

1 (s)
)
+
(

2κθ + σ2
1

)
Et (x1 (s))

dEt
(
x2

2 (s)
)

ds
= 2Et (x2 (s)) µP + σ2

2

dEt (x1 (s) x2 (s))
ds

= µPEt (x1 (s)) + κθEt (x2 (s))− κPEt (x1 (s) x2 (s))

5



with initial conditions

Et

(
x2

1 (t)
)

= x2
1 (t)

Et

(
x2

2 (t)
)

= x2
2 (t)

Et (x1 (t) x2 (t)) = x1 (t) x2 (t) .

Then

Et

(
x2

1 (s)
)

= x2
1 (t) e−2κP(s−t) +

(
2κθ + σ2

1

) ∫ s

t
Et (x1 (τ)) e−2κP(s−τ)dτ

= x2
1 (t) e−2κP(s−t)

+
(

2κθ + σ2
1

)
e−2κP(s−t)

∫ s−t

0
f (x1 (t) , v) e2κPvdv

Et

(
x2

2 (s)
)

= x2
2 (t) + 2µP

∫ s

t
Et (x2 (τ)) dτ + σ2

2 (s− t)

= x2
2 (t) +

∫ s−t

0
g (x1 (t) , x2 (t) , v) dv + σ2

2 (s− t)

Et (x1 (t) x2 (t)) = x1 (t) x2 (t) e−κP(s−t)

+
∫ s

t

(
µPEt (x1 (τ)) + κθEt (x2 (τ))

)
e−κP(s−τ)dτ

= x1 (t) x2 (t) e−κP(s−t)

+e−κP(s−t)
∫ s−t

0
m
(

x2
1 (t) , x1 (t) , x2 (t) , v

)
eκPvdv

where

f (x1 (t) , v) = Et (x1 (t + v))

g (x1 (t) , x2 (t) , v) = 2Et (x2 (t + v)) µP

m
(

x2
1 (t) , x1 (t) , x2 (t) , v

)
= µPEt (x1 (t + v)) + κθEt (x2 (t + v)) .

Hence

Vart (Xs) =




Et
(
x2

1 (s)
)

Et (x1 (t) x2 (t))

Et (x1 (t) x2 (t)) Et
(
x2

2 (s)
)


−




E2
t (x1 (s)) Et (x1 (t))Et (x2 (t))

Et (x1 (t))Et (x2 (t)) E2
t (x2 (s))




(A6)
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D ρ and the stochasticity of the volatility of Vt

To test whether ρt estimated from the data is contaminated by the uncontrolled stochas-

tic volatility of the bank value if any, we conduct a simulation exercise in which our model

is calibrated with the data generated from a stochastic volatility option model with a con-

stant ρ. Specifically, we use a Heston (1993) type of stochastic volatility model to artifi-

cially generate bank equity values. Therefore, these bank equity values by design carry

both stochastic volatility information and premium but no ρ premium. Then, we calibrate

our model with these values and estimate ρt and σ2. Obviously, this is a distorted exper-

iment where we purposefully fit a wrong model to some controlled data. However, this

also serves as a stress test for our model. If our model is robust, we would expect that

most of the bank equity value stochastic volatility impact will be subsumed into σ2 while

the estimated ρt’s fluctuate around the true constant ρ.

In Heston (1993) model, the variance of the bank asset value is modelled as a CIR

process:

dVart = κVar (θVar −Vart) dt + σVar
√

VartdWVar,t.

For simplicity, Vart is set to be independent of the bank asset value Vt. In our simulation,

the following parameter values are used for Heston (1993) model: D = 1, 500, V0 = 2, 000,

κVar = 1, θVar = 0.01, and σVar = 0.1.5 A constant ρ = 0.95 is also added in the model ac-

count for a constant policy parameter. 24 months of Vt are first generated. To focus on the

impact of the bank asset value stochastic volatility on ρt estimation, for each simulation,

we only re-simulate Vart but fix Vt’s at their values initially generated and combine them

to generate bank equity values using the Heston model. Also, we assume Vt, κ = 0.17,

µ = r − σ2
2/2, r = 0.04, and σ1 = 0.2 are known and only estimate σ2, θ, and ρt in the

calibration.

In total, 100 rounds of simulations and estimations are conducted. Based on these

results, the nonparametric density functions of the estimated ρt and estimated σ2 are cal-

culated and plotted in Figure A2. The true level of the bank asset value stochastic volatility

and the true value of the constant ρ are also plotted for comparison. The results coincide

5 These values are consistent with the numerical examples in Heston (1993).
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very much with our expectation. From Panel (a) in Figure A2, we see that even we fit our

model, which has a constant volatility σ2, to the bank equity values generated by Heston’s

stochastic volatility model, the estimated ρt is always close to the true value. From Panel

(b) in Figure A2, we see that the impact of the bank asset stochastic volatility is absorbed

in the estimated σ2 which is much higher than the true level of the simulated stochastic

volatility. This echoes the observation that the implied volatility is usually higher than the

realized volatility as the constant volatility parameter has to match the stochastic volatility

premium implicit in the option price.

[Insert Figure A2 about here]

To further ensure that the estimated time series of ρt does not pick up the dynamic

of the bank asset value stochastic volatility, we compute the time series correlations be-

tween the 24 stochastic volatilities and the 24 estimated ρt’s in all 100 simulations then

average them. The average level (first difference) correlation is 0.05 (-0.01). This correla-

tion combined with the results in Figure A2 Panel (a) confirms that the estimated ρt is not

a proxy of the uncontrolled bank value stochastic volatility. One might be curious that

where the time variation of the bank asset value stochastic volatility goes if it is not cap-

tured by either σ2 or ρt. To resolve this curiosity, we turn to the estimation errors. Similar

to the above correlation computation, we compute the time series correlations between

the 24 stochastic volatilities and the 24 absolute values of the percentage estimation errors

(model equity value/simulated equity value - 1) in all 100 simulations then average them.

The average correlation is -0.51. Therefore, it is clear that the time variation of the bank

asset value stochastic volatility when present will be left in the estimation errors (even

though the magnitude of the estimation errors is only as low as 1-2%) but not contaminate

the ρt estimates.

E Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is a well-developed technique, widely applied in

state estimation, neural networks, and nonlinear dynamic systems (see, e.g., Haykin et al.,

8



2001 and Simon, 2006). Since, in this paper, the measurement equations in the state space

formulae are highly nonlinear, the UKF is the natural choice for our estimation procedure.

The state space (ω-dimensional transitions and m-dimensional measurements) is given by

the following system (for notational clarity, we normalize the time interval to one):

Transition equation

Xt = T Xt−∆t + Θ +
√

Vtet, et ∼ N (0ω×1, Iω×ω)

where T and Θ are given by Eq. (A5), Vt is given by Eq. (A6), and I is an identity

matrix.

Measurement equation

yt = G (Xt) + ζt, ζt ∼ N (0m×1,Sm×m) ,

where S is a diagonal covariance matrix with positive and distinct elements on the

diagonal.

The essence of the UKF (Chow et al., 2007) used in this paper can be summarized briefly

as follows. For each measurement occasion t, a set of deterministically selected points,

termed sigma points, is used to approximate the distribution of the current state6 estimated

at time t using a normal distribution with a mean vector Xt|t−∆t, a covariance matrix that

is a function in the state covariance matrix, PX,t−∆t|t−∆t, and conditional covariance Vt.

Sigma points are specifically selected to capture the dispersion around Xt|t−∆t, and are

then projected using the measurement function G (·), weighted, and then used to update

the estimates in conjunction with the newly observed measurements at time t to obtain

Xt|t and PX,t|t .

Next we outline the detailed algorithm of UKF:

6 In the typical UKF setting, both transition and measurement equations are nonlinear. Hence, to compute
the ex ante predictions of the state variables’ mean and variance, sigma points are needed to approximate
the distribution of previous state estimates. However, in our paper, the transition equations are linear, so we
can directly compute the ex ante predictions as in the classic Kalman Filter, and do not need sigma points at
this stage.
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1. Initialization7

X0|0 = Constants

P0|0 = V∗

2. Ex ante predictions of states

Xt|t−∆t = T Xt−∆t|t−∆t + Θ

PX,t|t−∆t = T PX,t−∆t|t−∆tT ′ + Vt

3. Selecting sigma points

Given a ω × 1 vector of ex ante predictions of states Xt|t−∆t, a set of ω × (2ω + 1)

sigma points are selected as follows:

χt|t−∆t =

[
χ0,t−∆t χ+,t−∆t χ−,t−∆t

]

where

χ0,t−∆t︸ ︷︷ ︸
ω×1

= Xt|t−∆t

χ+,t−∆t︸ ︷︷ ︸
ω×ω

= 11×ω ⊗ Xt|t−∆t +
√
(ω + ϑ)

(
T
√

PX,t−∆t|t−∆t +
√

Vt

)

χ−,t−∆t︸ ︷︷ ︸
ω×ω

= 11×ω ⊗ Xt|t−∆t −
√
(ω + ϑ)

(
T
√

PX,t−∆t|t−∆t +
√

Vt

)
.

The term ϑ is a scaling constant and given by

ϑ = η2 (ω + $)−ω

where η and $ are user-specified constants in this paper, with η = 0.001, and $ =

3 − ω. Since the values of these constants are not critical in our case, we omit a
7 Refer to item 7 in Appendix F.
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detailed description for the sake of saving space. Readers are referred to Chow et al.

(2007) or Chapter 7 in Haykin et al. (2001) for further details.

4. Transformation of sigma points by way of the measurement function (predictions of

measurements)

χt|t−∆t is propagated through the nonlinear measurement function G (·)

Yt|t−∆t = G
(

χt|t−∆t

)
,

where the dimension of Yt|t−∆t is m× (2ω + 1). Then define the set of weights for

covariance estimates as

W(c) = diag


 ϑ

ω+ϑ + 1− η2 + 2 , 1
2(ω+ϑ)

, · · · , 1
2(ω+ϑ)︸ ︷︷ ︸

2ω



(2ω+1)×(2ω+1)

;

obtain weights for the mean estimates as follows:

W(m) =




ϑ
ω+ϑ

1
2(ω+ϑ)

...

1
2(ω+ϑ)



(2ω+1)×1

.

The predicted measurements and associated variance and covariance matrices are

computed as follows:

yt|t−∆t = Yt|t−∆tW
(m)

Pyt|t−∆t =
[
Yt|t−∆t − 11×(2ω+1) ⊗ yt|t−∆t

]
W(c)

[
Yt|t−∆t − 11×(2ω+1) ⊗ yt|t−∆t

]′
+ S

PXt,yt =
[
χt|t−∆t − 11×(2ω+1) ⊗ Xt|t−∆t

]
W(c)

[
Yt|t−∆t − 11×(2ω+1) ⊗ yt|t−∆t

]′

5. Kalman gain and ex-post filtering state update

With the output from Step 4, actual observations are finally brought in and the dis-
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crepancy between the model’s predictions and the actual observations is weighted

by a Kalman gain Ξt function to yield ex-post state and covariance estimates as fol-

lows:

Ξt = PXt,yt P
−1
yt|t−∆t

Xt|t = Xt|t−∆t + Ξt

(
yt − yt|t−∆t

)

PX,t|t = PX,t|t−∆t − ΞtPyt|t−∆tΞ
′
t

yt|t = G
(

Xt|t
)

.

F Technical details and assumptions of the model calibra-

tion

All the assumptions we make below are for purpose of either tractability or model

identification. We emphasize that our empirical results are not at all driven by any of

the assumptions here. In other words, relaxing or altering the assumptions makes model

estimation tougher but has no material impact on our empirical results.

1. ϕ is assumed to be zero for the sake of stable calibration.

2. The numerical integration in Eq. (A3) is performed by way of the Gauss-Kronrod

quadrature and truncated at 50. Given the data and parameters, it proves to be fast,

accurate, and reliable for our calibration.

3. To apply the filtering techniques, we assume under the physical measure (measure

P) that Xt follows

dx1 (t) =
(

κθ − κPx1 (t)
)

dt + σ1

√
x1 (t)dwP

1 (t)

dx2 (t) = µPdt + σ2dwP
2 (t) .

This is equivalent to assuming essentially affine market prices of risks (Duffee, 2002)

for Xt.
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4. The drift term µV of Vt under measure Q is set to 0.04, which is roughly the sample

average of the risk-free interest rate. Therefore, µ is set at 0.04− σ2
2
2 . Consistent with

Merton (1974), we assume the bank asset to be tradable so that its drift term under

measure Q is the risk-free interest rate.

5. Although the dynamics of x1 are different for each individual bank, it is reasonable

to assume that the parameters of x1, {κ, κP, θ, and σ1}, reflect common market views

of characteristics of the forbearance provider, the government. Therefore {κ, κP, θ,

and σ1} are assumed to be common to all banks.

6. θ and κP are hard to pin down, and are set to − log(0.9) and log(0.9)
log(0.97)κ, respectively.

This means that the long term mean of x1(t) is − log(0.9) under the measure Q and

− log(0.97) under the measure P. Roughly speaking (ignoring Jensen’s inequality),

this also means that the long-term mean of ρ is 0.9 under the measure Q and 0.97

under the measure P. This assumption implies that there is a negative risk premium

associated with x1(t), meaning bank equity holders regard downward movements

in ρ as unfavorable shocks to the investment opportuity. This is consistent with the

risk premium identified for interest rates and default risk factors in the literature

(see, e.g., Jarrow et al., 2010; Filipović and Trolle, 2013). Unlike the studies of interest

rates and credit risk, we do not have term structure data here. This might be the

reason behind the non-identifiability of θ and κP.

7. The initial values for x1 and x2 used to start up the UKF are, respectively,− log(0.97)

and the log of the individual market cap at the first data point. The initial covariance

V∗ is given by 

− log(0.97)σ2

1 ∆t 0

0 σ2
2 ∆t




where ∆t = 1/12.

8. σ1 and κ are calibrated using the average time series of market cap and total liabilities

across all banks. When calibrating {µP, σ2} of x2 for each individual bank, {κ, κP, θ,

and σ1} of x1 are fixed.

13



G Time-series analysis of the countercyclical nature of bank

regulatory capital forbearance

The results in Results and discussion section show that FFC is countercyclical with cross-

reference to the GDP growth. In this appendix, we show that this countercyclical nature

is also detected in the time series of the aggregate FFC. Countercyclical forbearance im-

plies that bank regulators try to ensure that banks build up capital buffers during good

times so that they can draw it down in bad times. If this is true, a time series analysis

of the aggregate forbearance should reveal that relatively high capital forbearance in bad

times predicts relatively low capital forbearance in better times. To test this prediction, we

construct two time series using the average FFC and GDP growth and run a time series

regression.

Specifically, the two time series are the relative levels of average FFC at bad times,

FFCBT
t , and good times, FFCGT

t . They are defined as:

FFCBT
t =





FFCt −FFCt−∆t if FFCt > FFCt−∆t and GDPGt < GDPGt−∆t

0 otherwise

FFCGT
t =





FFCt−∆t −FFCt if FFCt < FFCt−∆t and GDPGt > GDPGt−∆t

0 otherwise

where FFCt (GDPGt) is the average FFC (the GDP growth) at period t, and FFCt (GDPGt)

is the moving average of the average FFC (the GDP growth) up to period t, and ∆t is one

quarter. These moving averages are brought in to define the relative level. We then run

the following regression:

FFCGT
t = C0 + C1FFCBT

t−∆t + εt.

The OLS estimate of C1 is −0.2 with Newey-West standard error of 0.06, meaning the

estimate is highly significant (P-value = 0.5%). R2 of the regression is 6%. A negative and

significant C1 indicates that a higher relative level of average FFC at bad times tends to
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lead to a lower relative level of average FFC at good times in the next period. This verifies

the prediction and confirms the countercyclical nature of regulatory capital forbearance.

H Results of regression specifications with additional con-

trol variables

In this appendix, in addition to the results presented in the main text, we present results

from other regression specifications: Specifications (S2), (S3), and (S4). In (S2) we add

Funding Liquidity (STB/TA) to the RHS of Eq. (A7a) and Eq. (A7b),

FFCj,t = f1




FFCj,t− 1
4
, ICRj,t,

Idios. Volatilityj,t, GDP Growtht,

Control Variables




+ εj,t, (A7a)

ICRj, t = f2




ICRj,t− 1
4
, FFCj,t,

Idios. Volatilityj,t, GDP Growtht,

Control Variables




+ ε j,t, (A7b)

in (S3) we add STB/TA and ROA, and in (S4) we add STB/TA, ROA, and Total Loans /

Total Assets. STB/TA is defined as the ratio (Short-Term Borrowing + Other Short-Term

Liabilities) / Total Assets and ROA is the ratio Net Income / Total Assets. The results are

reported in Table A1 and Table A2.

I Technical details on estimating the systemic risk

We confine the usual notations defined herein to this appendix only. That is, some no-

tations might be used elsewhere in this paper, but these described here apply exclusively

to this appendix and should not be confused with the same notations employed elsewhere

in the paper.

Following Brownlees and Engle (2012), the Marginal Expected Shortfall, MES, is ex-

pressed as a function of volatility, correlation and tail expectations of the standardized
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innovations distribution

MESi,t = σi,tρi,tE(εm,t|εm,t < p) + σi,t

√
1− ρ2

i,tE(εi,t|εm,t < p)

where εm,t =
rm,t
σm,t

, εi,t =
ri,t
σi,t

; and σi,t is the conditional volatility of ith bank at time t; rm,t

and ri,t are daily returns of S&P 500 index and ith bank’s market cap at time t, respec-

tively; ρi,t is the conditional correlation between the returns of ith bank and those of S&P

500 index; E(εi,t|εm,t < p) is the tail expectation of ith bank’s standardized innovations

of return given the standardized innovation of returns of S&P 500 index is less than p;

E(εm,t|εm,t < p) is the tail expectation of S&P 500 index’s standardized innovation of re-

turns conditional on it is less than p. As in Brownlees and Engle (2012), we set p to the 5th

percentile of the empirical unconditional distribution of εm,t in the whole sample.

σm,ts and σi,ts are estimated using the Threshold ARCH (TARCH) specification (Rabem-

ananjara and Zakoïan, 1993). ρi,ts are estimated using the Corrected Dynamic Conditional

Correlation (CDCC) approach, which is a Dynamic Conditional Correlation (DCC) frame-

work of Engle (2002) enhanced by Aielli (2013). The tail expectations are computed as the

averages of the two standardized innovations in all cases that satisfy the condition (εm,t is

less than the 5th percentile of the empirical unconditional distribution of εm,t in the whole

sample).

Given the MES, we follow Acharya et al. (2012), and define the SRISK as

SRISKi,t = k
TL
TA i,t

+ (1− k)e−18 MESi,tMCi,t,

where TL
TA i,t is ith bank’s total liabilities to total assets ratio at time t; MCi,t is the market

value of equity for ith bank at time t, which is represented by market cap; as in Acharya

et al. (2012), we set k to 8%.
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Figure A1: Simulated FFC v.s. analytical FFC

This figure shows comparison between the simulated FFC and the analytical FFC at different level of ρt
(from 0.3 to 0.95 with increment of 0.05). The parameters are specified as follows in the simulation: κ = 0.17,
µ = r − σ2

2/2, r = 0.04, σ1 = 0.2, σ2 = 0.15, p = 0.004, and θ = − log
(

0.9+ρ
2

)
. The lower and upper dash

lines capture the 95% confidence interval of the simulated FFC, the dash-dot line is the simulation mean of
FFC, and the dash line with triangles is the analytical FFC.
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Figure A2: Estimated ρt and σ2 v.s. their true levels

This figure shows the nonparametric density functions of the estimated ρt (Panel a) and estimated σ2 (Panel
b) based on the results of the 100 simulations conducted in Appendix D. The true level of the stochastic
volatility and the true value of the constant ρ are also plotted in the graphs for comparison.
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Table A1: System GMM estimates of additional regression specifications for the Forbearance Fraction of Capital (FFC)

This table reports the regression results of specifications (S2), (S3), and (S4) for FFC. The first column contains all the variable names; from the second to the last
column, the table reports the coefficients of the variables for all four groups. Each group has three regressions, which are labelled (S2), (S3), and (S4). Sample
sizes and instrument counts are also reported in the last two rows. Quarterly data are used in the regressions. Windmeijer (2005) corrected standard errors are in
parentheses; *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. Time fixed effects are controlled by including year dummies
in the regressions.

VARIABLES
All Large banks Big banks Medium banks

(S2) (S3) (S4) (S2) (S3) (S4) (S2) (S3) (S4) (S2) (S3) (S4)

Lagged FFC
0.77∗∗∗ 0.77∗∗∗ 0.77∗∗∗ 0.82∗∗∗ 0.82∗∗∗ 0.83∗∗∗ 0.73∗∗∗ 0.73∗∗∗ 0.73∗∗∗ 0.76∗∗∗ 0.76∗∗∗ 0.76∗∗∗

(0.02) (0.02) (0.02) (0.04) (0.06) (0.06) (0.05) (0.05) (0.05) (0.03) (0.02) (0.02)

ICR
−0.17 −0.10 −0.29∗∗ 0.08 −0.41 −0.36 −0.10 −0.03 −0.01 −0.34∗∗ −0.33∗∗ −0.53∗∗∗
(0.11) (0.11) (0.13) (0.25) (0.26) (0.25) (0.30) (0.30) (0.30) (0.16) (0.16) (0.17)

Idio Risk
0.98∗∗∗ 1.09∗∗∗ 1.36∗∗∗ 0.70 1.25∗ 1.44∗ 1.36∗∗∗ 0.79 0.67 0.82∗∗∗ 0.80∗∗∗ 1.01∗∗∗

(0.21) (0.24) (0.24) (0.46) (0.71) (0.87) (0.40) (0.54) (0.62) (0.27) (0.28) (0.29)

Implied Asset Value
Total Assets

−0.15∗∗∗ −0.23∗∗∗ −0.14∗ −0.16 −0.06 −0.11 −0.09 −0.27 −0.27 −0.14∗ −0.17∗ −0.07
(0.06) (0.07) (0.08) (0.15) (0.15) (0.17) (0.17) (0.20) (0.21) (0.08) (0.09) (0.09)

log Total Assets
0.01∗∗∗ 0.02∗∗∗ 0.04∗∗∗ 0.01 0.01 0.01 −0.00 0.03 0.02 0.02∗∗∗ 0.02∗∗∗ 0.05∗∗∗

(0.00) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01)

Total Deposit
Total Liability

0.09∗∗∗ 0.12∗∗∗ 0.13∗∗∗ 0.13 0.08 0.02 0.13∗ 0.21∗ 0.21∗ 0.09∗∗∗ 0.09∗∗∗ 0.11∗∗∗
(0.03) (0.04) (0.04) (0.13) (0.19) (0.19) (0.07) (0.12) (0.12) (0.03) (0.04) (0.04)

GDP Growth
−0.44∗∗ −0.42∗ −0.76∗∗∗ −0.79∗ −0.52 −0.47 −0.80 −0.58 −0.56 −0.19 −0.24 −0.67∗∗

(0.21) (0.22) (0.25) (0.43) (0.62) (0.64) (0.60) (0.49) (0.52) (0.28) (0.28) (0.31)

Liquidity
0.39∗∗∗ 0.31∗∗ 0.29∗∗ 0.44 −0.02 −0.04 0.05 −0.30 −0.31 0.43∗∗ 0.28∗∗ 0.26∗

(0.14) (0.14) (0.14) (0.28) (0.41) (0.44) (0.30) (0.40) (0.41) (0.17) (0.13) (0.14)

ROA –
0.74 1.14

–
8.46 9.26

–
−3.01 −3.39

–
0.90 1.64

(1.85) (1.82) (9.83) (10.13) (5.30) (5.39) (2.04) (2.07)

Total Loan
Total Assets – –

−0.29∗∗∗
– –

0.14
– –

0.07
– –

−0.35∗∗∗
(0.09) (0.32) (0.22) (0.11)

Instrument Count 569 536 536 77 77 77 143 143 143 533 530 530
Sample Size 23646 20537 20527 3096 2483 2483 4815 4065 4065 15311 13618 13608
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Table A2: System GMM estimates of additional regression specifications for the Intrinsic Cap Ratio (ICR)

This table reports the regression results of specifications (S2), (S3), and (S4) for ICR. The first column contains all the variable names; from the second to the last
column, the table reports the coefficients of the variables for all four groups. Each group has three regressions, which are labelled (S2), (S3), and (S4). Sample
sizes and instrument counts are also reported in the last two rows. Quarterly data are used in the regressions. Windmeijer (2005) corrected standard errors are in
parentheses; *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. Time fixed effects are controlled by including year dummies
in the regressions.

VARIABLES
All Large banks Big banks Medium banks

(S2) (S3) (S4) (S2) (S3) (S4) (S2) (S3) (S4) (S2) (S3) (S4)

Lagged ICR
0.56∗∗∗ 0.54∗∗∗ 0.49∗∗∗ 0.68∗∗∗ 0.61∗∗∗ 0.61∗∗∗ 0.60∗∗∗ 0.56∗∗∗ 0.56∗∗∗ 0.59∗∗∗ 0.59∗∗∗ 0.55∗∗∗

(0.02) (0.02) (0.03) (0.06) (0.08) (0.07) (0.06) (0.06) (0.06) (0.03) (0.03) (0.03)

FFC
−0.02∗∗∗ −0.02∗∗∗ −0.02∗∗∗ −0.02∗ −0.04∗∗ −0.05∗∗∗ −0.02∗∗ −0.02∗ −0.02∗ −0.02∗∗∗ −0.02∗∗∗ −0.02∗∗∗

(0.00) (0.00) (0.00) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.00) (0.00) (0.01)

Idio Risk
−0.36∗∗∗ −0.31∗∗∗ −0.18∗∗∗ −0.24∗∗ 0.09 0.27 −0.54∗∗∗ −0.44∗∗∗ −0.41∗∗∗ −0.42∗∗∗ −0.35∗∗∗ −0.30∗∗∗

(0.04) (0.05) (0.06) (0.11) (0.33) (0.30) (0.13) (0.13) (0.14) (0.05) (0.05) (0.07)

Implied Asset Value
Total Assets

0.13∗∗∗ 0.15∗∗∗ 0.18∗∗∗ 0.08∗∗∗ 0.08∗∗ 0.09∗∗ 0.09∗∗ 0.13∗∗∗ 0.13∗∗∗ 0.11∗∗∗ 0.12∗∗∗ 0.14∗∗∗
(0.01) (0.01) (0.02) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) (0.01) (0.02) (0.02)

log Total Assets
−0.00 −0.00 0.00 0.00 0.00 0.00 0.00 −0.00 −0.00 −0.00 −0.01∗∗∗ −0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Total Deposit
Total Liability

−0.01∗∗∗ −0.03∗∗∗ −0.02∗∗∗ −0.05∗∗ −0.04 −0.03 −0.01 −0.04 −0.04 −0.00 −0.00 −0.00
(0.01) (0.01) (0.01) (0.02) (0.04) (0.04) (0.02) (0.03) (0.03) (0.00) (0.01) (0.01)

GDP Growth
−0.01 −0.07 −0.19∗∗∗ 0.32∗∗ 0.08 0.14 0.05 −0.15 −0.16 0.04 0.00 −0.09
(0.05) (0.05) (0.06) (0.14) (0.13) (0.15) (0.13) (0.15) (0.15) (0.05) (0.05) (0.06)

Liquidity
−0.13∗∗∗ −0.17∗∗∗ −0.16∗∗∗ −0.09∗∗ −0.06 −0.02 −0.14∗ −0.13 −0.13 −0.07∗∗ −0.00 −0.01

(0.03) (0.03) (0.03) (0.04) (0.09) (0.10) (0.08) (0.09) (0.09) (0.03) (0.03) (0.03)

ROA –
1.13∗∗∗ 1.20∗∗∗

–
5.46 5.16∗

–
3.05∗∗ 3.08∗∗

–
0.61∗ 0.72∗∗

(0.39) (0.40) (4.01) (2.90) (1.23) (1.30) (0.32) (0.35)

Total Loan
Total Assets – –

−0.11∗∗∗
– –

−0.10
– –

−0.02
– –

−0.07∗∗
(0.02) (0.07) (0.04) (0.03)

Instrument Count 569 536 536 77 77 77 143 143 143 533 530 530
Sample Size 23646 20537 20527 3096 2483 2483 4815 4065 4065 15311 13618 13608
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