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Abstract: The Bayesian FFT method has gained attention in operational modal analysis of civil 

engineering structures. Not only the most probable value (MPV) of modal parameters can be 

computed efficiently, but also the identification uncertainty can be rigorously quantified in terms 

of posterior covariance matrix. A recently developed fast algorithm for general multiple (possibly 

close) modes was found to work well in most cases, but convergence could be slow or even fail in 

challenging situations. The algorithm is also tedious to computer-code. Aiming at resolving these 

issues, an expectation-maximization (EM) algorithm is developed by viewing the modal response 

as a latent variable. The parameter-expansion EM and the parabolic-extrapolation EM are further 

adopted, allowing mode shape norm constraints to be incorporated and accelerating convergence, 

respectively. A robust implementation is provided based on the QR and Cholesky decompositions, 

so that the computation can be done efficiently and reliably. Empirical studies verify the 

performance of the proposed EM algorithm. It offers a more efficient and robust (in terms of 

convergence) alternative that can be especially useful when the existing algorithm has difficulty 

to converge. In addition, it opens a way to compute the MPV in the Bayesian FFT method for other 

unexplored cases, e.g., multi-mode multi-setup problem. 

Key words: Operational modal analysis; Bayesian inference; Expectation Maximization; Closely-

spaced modes 

 

1 Introduction 

Operational modal analysis (OMA) [1–3] aims at identifying structural modal parameters (e.g., 

modal frequencies, damping ratios and mode shapes) by using only the measured structural 

response. The identified modal parameters play an important role in structural design verification 

and retrofits [4,5], vibration control [6,7] and health monitoring [8,9]. Since OMA does not require 

specific knowledge of the input force, it has gained popularity in the dynamic testing of civil 

engineering structures, where artificial excitation is costly or in many cases impractical. 

In OMA, the input force is unknown and usually modeled as a wideband stochastic process. 

As a result, the identification process is more sophisticated compared to the input-output 

                                                 
* Corresponding author 



2 

 

identification, and proper means must be devised to extract modal information from the stochastic 

response data in the absence of loading information. During the past decades, a large variety of 

methods have been developed in literature. Early methods such as random decrement [10] and 

peak-picking [11] are simple to use but they can only provide a rough estimate of the modal 

parameters. During the 1990s, two important techniques became available: the stochastic subspace 

identification [12] and the frequency-domain decomposition [13]. They are able to estimate modal 

parameters with good accuracy in most conditions. Various algorithms [14–16] have been recently 

proposed to quantify the identification uncertainty in a frequentist sense by means of perturbation. 

For a more thorough overview of OMA methods, the reader is referred to Refs. [1–3] 

Uncertainty quantification is central to Bayesian OMA methods [17], which addresses 

simultaneously estimation and uncertainty quantification via Bayes' Theorem for given  measured 

data and modeling assumptions. It views modal identification as an inference problem, where 

identification result is encapsulated in the posterior probability density function (PDF) of modal 

parameters for given data and modeling assumptions. Based on different models and assumptions, 

several Bayesian OMA methods have been proposed, e.g., [18–20] in the time domain and [21–

27] in the frequency domain. Balancing robustness in modeling assumptions and computational 

efficiency, the Bayesian FFT (Fast Fourier Transform) method [22–26] provides a feasible strategy 

for Bayesian analysis of modal parameters. The fast algorithm developed in [25] is applicable for 

general multiple (possibly close) modes. Compared to the algorithm for well-separated modes 

[23], the theory behind and the resulting programing effort were significantly more involved. It 

was based on heuristic grouping of parameters and iterative updating until convergence. It was 

found to work well in most applications, but the convergence can be an issue in challenging 

situations, e.g., when there are three or more modes in the selected frequency band. This paper 

presents an expectation-maximization (EM) algorithm, which does not involve heuristic grouping 

and offers a more robust (in terms of convergence) alternative for efficiently computing the most 

probable value (MPV) for general multiple (possibly close) modes. 

The EM algorithm [28] is a popular tool for the maximum likelihood or maximum a posteriori 

estimation of statistical models in science and engineering. An up-to-date treatment of the theory 

and applications of this algorithm can be found in [29]. In the context of OMA, it has been applied 

in [30,31] to identify the state-space model. The EM algorithm is simple to implement and 

converges monotonically in terms of the loglikelihood or log-posterior of the latent-variable model 

[32] under mild conditions [28,33]. However, the EM algorithm is known to converge slowly in 

some situations. This important aspect has received much attention recently and many algorithms 

have been proposed to accelerate convergence while preserving algorithmic simplicity. Two such 

acceleration methods are incorporated in this work, namely, the parameter-expansion EM [34] and 

the parabolic extrapolation EM [35]. 

This paper is outlined as follow. The Bayesian FFT method is first reviewed, including the 

modeling assumptions and the Bayesian formulation. The EM algorithm and its variants are then 

briefly introduced and tailored to the Bayesian FFT method for fast computation. The closed-form 

update of the E step and M step are derived, and a robust implementation is provided. Finally, 

empirical studies based on synthetic, laboratory and field test data are presented to illustrate the 

performance of the proposed algorithm. 
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2 Bayesian FFT method 

This section reviews the Bayesian formulation for OMA using the scaled FFT of ambient vibration 

data. This involves stating the modeling assumptions, the parameters to be identified and deriving 

the likelihood function, which is practically the posterior PDF of parameters. 

Let the time history data measured at 𝑛 degrees of freedom (DoFs) of a structure under 

ambient vibration be {�̂�𝑗 ∈ ℝ𝑛: 𝑗 = 0,1, … , 𝑁 − 1}  and abbreviated as {�̂�𝑗} , where 𝑁  is the 

number of samples per data channel and 𝑛 is the number of data channels. Modeled as a stationary 

stochastic process, its scaled FFT is defined as 

 �̂�𝑘 = √Δ𝑡/𝑁 ∑ �̂�𝑗𝑒−2𝜋𝐢𝑗𝑘/𝑁
𝑁−1

𝑗=0
 (1) 

where Δ𝑡 (sec) is the sampling interval and 𝐢 is the imaginary unit. For 𝑘 ≤ 𝑁𝑞, �̂�𝑘 corresponds to 

the frequency f𝑘 = 𝑘/𝑁Δ𝑡  (Hz), where 𝑁𝑞 = int[𝑁/2]  ( int[∙]  denotes the integer part) is the 

index at the Nyquist frequency. The FFT in Eqn. (1) is scaled by the factor √Δ𝑡/𝑁  so that the 

expectation of �̂�𝑘�̂�𝑘
∗  (‘*’ denotes conjugate transpose) is equal to the two-sided power spectral 

density (PSD) matrix of the data process. 

In practice, only the FFTs on a selected frequency band with 𝑁𝑓 FFT points, denoted by {�̂�𝑘}, 

containing the mode(s) of interest are used for identification. This trades off between the 

information used for identification (the wider the better) and modeling error risk (the narrower the 

better) [36]. Within the selected band, it is assumed that 

 �̂�𝑘 = 𝓕𝑘 + 𝜺𝑘 (2) 

where 𝓕𝑘 and 𝜺𝑘 denote respectively the scaled FFT of the theoretical structural dynamic response 

and the prediction error (e.g., data noise). Suppose the selected frequency band is dominated by 𝑚 

vibration modes, referred as mode 1,2, … , 𝑚 , then 𝓕𝑘 = 𝜱𝜼𝑘  where 𝜱 = [𝝓1, 𝝓2, … , 𝝓𝑚] ∈

ℝ𝑛×𝑚 is the partial mode shape matrix confined to measured DoFs, and 𝜼𝑘 ∈ ℂ𝑚×1 is the scaled 

FFT of modal response at frequency f𝑘. Let 𝒑𝑘 ∈ ℂ𝑚×1 be the scaled FFT of the modal excitation 

at frequency f𝑘. Then 𝜼𝑘 = 𝒉𝑘𝒑𝑘 and 

 �̂�𝑘 = 𝜱𝒉𝑘𝒑𝑘 + 𝜺𝑘 (3) 

where 𝒉𝑘 = diag(ℎ1𝑘, ℎ2𝑘 , … , ℎ𝑚𝑘)  is a diagonal matrix with frequency response functions 

(FRFs) as its diagonal elements. The FRF, for mode 𝑖, is given by 

 ℎ𝑖𝑘 =
(2𝜋𝐢f𝑘)−𝑞

(1−𝛽𝑖𝑘
2 )−𝐢(2𝜁𝑖𝛽𝑖𝑘)

   𝛽𝑖𝑘 =
𝑓𝑖

f𝑘
   𝑞 = {

0,      acceleration data
1,          velocity data    
2,   displacement data

 (4) 

where 𝑓𝑖 (Hz) and 𝜁𝑖 are respectively the 𝑖th natural frequency and damping ratio. In deriving these 

equations, we assume a linear time-invariant dynamic system with the classical damping. As it is 

widely recognized, the damping mechanism is generally complex and hard to model exactly. The 

classical damping assumption provides a mathematically simple damping model, that has been 

used conventionally for analysis and design of civil engineering structures. 
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In OMA, the physical excitation is not measured. The modal excitation 𝒑𝑘  is therefore 

unknown but modeled statistically. Assuming zero-mean stationary modal excitation and long data 

(𝑁𝑓 ≫ 1), 𝒑𝑘  has a (circularly symmetric) complex Gaussian distribution and independent at 

different frequencies [37]. Its covariance (i.e., PSD of the process) is assumed to be a constant 

matrix 𝑺 ∈ ℂ𝑚×𝑚 in the selected band, i.e., 𝒑𝑘~𝒞𝒩(𝟎, 𝑺). The prediction errors 𝜺𝑘 at different 

channels are also assumed to be complex Gaussian distributed with zero mean and covariance 

matrix 𝑆𝑒𝑰𝑛  (𝑰𝑛 ∈ ℝ𝑛×𝑛  denotes the identity matrix) within the selected band, which can be 

justified based on the principle of maximum entropy [38]. Further assuming statistical 

independence between the modal excitation and prediction errors yields a jointly independent 

complex Gaussian distribution for {�̂�𝑘} with zero mean and each with a covariance matrix (or 

theoretical PSD of data) given by 

 𝑬𝑘 = 𝜱𝑯𝑘𝜱T + 𝑆𝑒𝑰𝑛 (5) 

where 𝑯𝑘 = 𝒉𝑘𝑺𝒉𝑘
∗  and ‘∙T’ denotes real transpose. The covariance matrix 𝑬𝑘 is central to OMA 

because it is the only channel through which the likelihood function is affected by the unknown 

parameters 𝜽 = {𝒇, 𝜻, 𝜱, 𝑺, 𝑆𝑒}  where 𝒇 = [𝑓1, 𝑓2, … , 𝑓𝑚]T ∈ ℝ𝑚×1  and 𝜻 = [𝜁1, 𝜁2, … , 𝜁𝑚]T ∈

ℝ𝑚×1. 

The complex Gaussian distribution for {�̂�𝑘} is supported by the theoretical result that the 

scaled FFTs of a stationary process are asymptotically independent complex Gaussian distributed 

for long data [37]. This result is robust by virtue of the Central Limit Theorem and the fact that the 

FFT, response, modal force, physical force are successively linear combinations of the next [3]. 

The above frequency-domain model only makes use of the FFT information in the selected band, 

which significantly simplifies the identification model. The PSD of the modal excitation and 

prediction error need only be flat within the selected band, relaxing the conventional white noise 

assumption and making the method more robust than time-domain methods. Other bands with 

irrelevant information or which are difficult to model are legitimately ignored, therefore avoiding 

modeling error. This does not require any signal pre-processing such as filtering or averaging. 

Using the above result for the likelihood function and adopting a uniform prior distribution, 

the posterior distribution of 𝜽 is given by  

 𝑝(𝜽|{�̂�𝑘}) ∝ 𝑝({�̂�𝑘}|𝜽) =
𝜋−𝑛𝑁𝑓

∏ |𝑬𝑘|𝑘
exp [− ∑ �̂�𝑘

∗ 𝑬𝑘
−1�̂�𝑘

𝑘

] (6) 

where |∙| denotes the matrix determinant and 𝑬𝑘 is given in Eqn. (5).  

Note that the problem is not identifiable because the external excitation is not measured and 

thus the mode shape matrix 𝜱  can be arbitrarily normalized. A conventional treatment is to 

introduce the norm constraints 𝝓𝑖
T𝝓𝑖 = 1 for 𝑖 = 1,2, … , 𝑚, which makes the problem locally 

identifiable as the sign of 𝝓𝑖 can be positive or negative but is otherwise immaterial. A second 

order Taylor approximation of the log posterior PDF at the local maximum (referred as MPV 

hereafter) leads to a Gaussian approximation of the posterior PDF: 
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 𝑝(𝜽|{�̂�𝑘}) ≈ (2𝜋)−𝑛𝜃/2|�̂�|−1/2 exp [−
1

2
(𝜽 − �̂�)

T
�̂�−1(𝜽 − �̂�)] (7) 

where �̂� is the MPV, �̂� is the covariance matrix, equal to the negative inverse of the Hessian of 

the log posterior PDF at the MPV, 𝑛𝜃 = (𝑚 + 1)2 + 𝑚𝑛 is the number of parameters in 𝜽. Both 

�̂� and �̂� depends on the FFT data {�̂�𝑘} and can be calculated when they are given. 

The computation of the MPV �̂� and the covariance matrix �̂� is not a trivial task. Brute-force 

numerical optimization is computationally prohibitive, primarily because the number of modal 

parameters 𝑛𝜃 can be large. In addition, the computation is vulnerable to ill-conditioning problems 

because the matrix 𝑬𝑘 in Eqn. (5) is almost rank-deficient when the signal-to-noise ratio is high 

(i.e., small 𝑆𝑒) and the number of modes 𝑚 is less than that of the measured DoFs 𝑛. In view of 

the computational problems, efficient algorithms have been proposed in [23,24] for well-separated 

modes and [25,26] for general multiple (possibly close) modes, which allow the MPV and 

posterior covariance matrix to be computed typically in a matter of seconds. Since these algorithms 

directly optimize the posterior distribution of 𝜽 shown in Eqn. (6), they are referred as the “direct 

method” hereafter. They have been found to work well in most applications, but convergence can 

sometimes become an issue in challenging situations, e.g., when there are three or more modes in 

the selected frequency band. In view of this, an EM algorithm is developed in this work to compute 

the MPV. With the premise of its monotonic convergence, it can provide an alternative means 

when the existing method fails to converge. Its simplicity can also significantly relieve computer 

programming effort. 

3 Expectation maximization and its variants 

Before applying to develop the proposed algorithm, we first give a brief introduction to the EM 

algorithm and its variants that will be used in the paper. The EM algorithm [28] is widely used to 

infer the statistical model that can be formulated as a latent variable model [32]. In the context of 

Bayesian FFT method, the measurement {�̂�𝑘} is the observed variable and the modal response 

{𝜼𝑘} can be regarded as the latent variable. Suppose that we have derived the conditional joint 

distribution of {�̂�𝑘, 𝜼𝑘} given 𝜽, i.e., 𝑝({�̂�𝑘, 𝜼𝑘}|𝜽). The EM algorithm computes the MPV �̂� by 

iteratively proceeding, given a starting value 𝜽(0) , between the expectation (E) step and the 

maximization (M) step: 

E step. Compute the expected complete-data log-likelihood 

 𝑄(𝜽|𝜽(𝑡)) = E{𝜼𝑘}|{�̂�𝑘},𝜽(𝑡)[𝐿(𝜽|{�̂�𝑘, 𝜼𝑘})] (8) 

where 𝐿(𝜽|{�̂�𝑘, 𝜼𝑘}) = log 𝑝({�̂�𝑘, 𝜼𝑘}|𝜽) and ‘E{𝜼𝑘}|{�̂�𝑘},𝜽(𝑡)[∙]’ is the expectation operation with 

respect to (w.r.t.) the conditional distribution of {𝜼𝑘} given {�̂�𝑘} and 𝜽(𝑡); and 

M step. Maximize 𝑄(𝜽|𝜽(𝑡)) to obtain 

 𝜽(𝑡+1) = arg max
𝜽

𝑄(𝜽|𝜽(𝑡)) (9) 
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The preceding steps are repeatedly implemented until convergence is achieved. Wu [33] provides 

conditions under which {𝜽(𝑡)} converges to the target optimum �̂�, which can be either a saddle 

point or a local maximum. The EM algorithm takes advantage of the model structure to decouple 

the optimization problem into more manageable pieces. This divide-and-conquer strategy gives a 

conceptual clarity and simplicity of the algorithm. It is particularly useful when the likelihood 

belongs to the exponential family [39]: the E step becomes the sum of expectations of sufficient 

statistics, and the M step involves maximizing a linear function. In such a case, it is usually possible 

to derive a closed-form update for each step. 

While simple to implement and stable in its convergence, depending on the problem nature 

and the choice of latent variables, the EM algorithm can converge slowly. Many variants of the 

ordinary EM algorithm have been proposed in order to overcome shortcomings that are sometimes 

seen in implementations of the ordinary method. In this paper, we adopt two acceleration methods: 

the parameter-expansion EM (PX-EM) [34] and the parabolic-extrapolation EM (P-EM) [35]. The 

PX-EM is applied here to deal with the norm constraints on mode shapes, which forbids the closed-

form update of mode shapes in the ordinary EM. By introducing an auxiliary variable, the efficient 

update of mode shapes becomes possible during PX-EM iterations. The P-EM is then employed 

to further accelerate the PX-EM algorithm. 

The PX-EM algorithm is essentially an EM algorithm but it performs inference on a larger 

full model. This model is obtained by introducing extra parameters into the complete-data model 

𝑝({�̂�𝑘, 𝜼𝑘}|𝜽) while preserving the observed-data sampling model 𝑝({�̂�𝑘}|𝜽). Suppose that the 

EM complete-data model can be embedded in a larger model 𝑝∗ ({�̂�𝑘, 𝜼𝑘}|𝜽∗, 𝜸)  with the 

expanded parameter set {𝜽∗, 𝜸}, where 𝜽∗ plays the same role as 𝜽 in 𝑝({�̂�𝑘, 𝜼𝑘}|𝜽) and 𝜸 is the 

auxiliary parameter whose value is fix at 𝜸0  in the original model. If there exists a reduction 

function 𝜽 = 𝑅(𝜽∗, 𝜸) and 𝜽 = 𝑅(𝜽, 𝜸0), the MPV can be computed via 

PX-E step. Compute 

 𝑄(𝜽∗, 𝜸|𝜽(𝑡), 𝜸0) = E{𝜼𝑘}|{�̂�𝑘},𝜽(𝑡),𝜸0
[log 𝑝∗ ({�̂�𝑘, 𝜼𝑘}|𝜽∗, 𝜸)] (10) 

PX-M step. Find 

 {𝜽∗
(𝑡+1)

, 𝜸(𝑡+1)} = arg max
𝜽∗,𝜸

𝑄(𝜽∗, 𝜸|𝜽(𝑡), 𝜸0) (11) 

and update 𝜽(𝑡+1) = 𝑅(𝜽∗
(𝑡+1)

, 𝜸(𝑡+1)). 

Since it is the ordinary EM applied to the parameter expanded complete-data model, PX-EM 

shares with EM its simplicity and stability. Liu et al. [34] established theoretical results to show 

that PX-EM can converge no slower than EM. In practice, it is observed that PX-EM converges 

much faster than EM. PX-EM may give better results for a fixed number of iterations because it 

converges faster. Different from the usual application of PX-EM to accelerate the ordinary EM, 

PX-EM is introduced here to handle the norm constraints on mode shapes by regarding the 

auxiliary parameters as vector norms. 

Unlike the PX-EM algorithm that takes advantage of the particular structure of the statistical 

model, the P-EM algorithm utilizes the generated sequence {𝜽(𝑡)} in the EM algorithm to make a 
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parabolic extrapolation to generate 𝜽(𝑡+1). From the perspective of fixed-point iteration, the EM 

algorithm, as well as the PX-EM algorithm, implicitly defines a mapping 𝐹 from the parameter 

space onto itself such that 

 𝜽(𝑡+1) = 𝐹(𝜽(𝑡)), 𝑡 ≥ 0 (12) 

and we have the property that  

 ℒ(𝜽(𝑡+1)) ≥ ℒ(𝜽(𝑡)), 𝑡 ≥ 0 (13) 

where ℒ(𝜽) = log 𝑝(𝜽|{�̂�𝑘}) . Under usual assumptions, the last property ensures that the 

sequence {𝜽(𝑡)} is convergent to some �̂�. In order to find another sequence built from 𝜽(0) by 

means of 𝐹 and ℒ with a faster rate of convergence than {𝜽(𝑡)}, the P-EM algorithm approximates 

the local curvature of the surface (𝜽, ℒ(𝜽))  by a parabola controlled by three successively 

generated values of 𝜽. The pseudo-code of the P-EM algorithm is given in Algorithm 1. Since the 

EM algorithm generally can move quickly its iterates to a neighborhood of a stationary point, the 

P-EM algorithm begins with a few iterations of EM from some starting point 𝜽(0). Tailored to our 

problem, empirical procedures are proposed in Section 4.1 to determine the initial value 𝜽(0) and 

the number of initial iterations 𝑛𝑏. In the extrapolation step, two parameters 𝑎 and 𝑏 need to be 

tuned. Good reference values of 𝑎 = 1.5 and 𝑏 = 0.1 are proposed in [35], and they are used in 

this paper. 

For globally convex problems (i.e., unique optimum) that is the case for the OMA problem 

considered in this paper, P-EM and EM converge to the same result. The P-EM algorithm keeps 

the desired convergence properties of the original algorithm (stability and monotonic increase of 

likelihood). A remarkable gain in efficiency has been observed in a broad variety of situations 

where EM converges slowly [35]. In the following, we focus on developing the PX-EM algorithm 

for the Bayesian FFT method. The application of the P-EM algorithm is critical to improving 

convergence speed and it can be incorporated easily to build the final algorithm. 
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Algorithm 1. Pseudo-code of P-EM 

1. Initialization 

Compute 𝑛𝑏  iterates 𝜽(1), …, 𝜽(𝑛𝑏) of EM or PX-EM from the starting value 𝜽(0) and set 

�̃�(0) = 𝜽(𝑛𝑏); 

2. Iterations 

𝐼𝑡𝑒𝑟 = 0; ℒ𝑜𝑙𝑑 = ℒ(�̃�(0)); �̃�(1) = 𝐹(�̃�(0)); �̃�(2) = 𝐹(�̃�(1)); 

while 𝐼𝑡𝑒𝑟 < 𝐼𝑡𝑒𝑟𝑚𝑎𝑥  % authorized maximum number of iterations 

𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 + 1; �̃�𝑏𝑒𝑠𝑡 = �̃�(2); ℒ𝑏𝑒𝑠𝑡 = ℒ(�̃�(2)); 

𝑖 = 0; 𝑐 = 1 + 𝑎𝑖𝑏;  % 𝑎 and 𝑏 are extrapolation parameters, chosen by the user 

�̃�𝑛𝑒𝑤 = (1 − 𝑐)2�̃�(0) + 2𝑐(1 − 𝑐)�̃�(1) + 𝑐2�̃�(2); ℒ𝑛𝑒𝑤 = ℒ(�̃�𝑛𝑒𝑤); 

while ℒ𝑛𝑒𝑤 > ℒ𝑏𝑒𝑠𝑡 

�̃�𝑏𝑒𝑠𝑡 = �̃�𝑛𝑒𝑤; ℒ𝑏𝑒𝑠𝑡 = ℒ𝑛𝑒𝑤; 

𝑖 = 𝑖 + 1; 𝑐 = 1 + 𝑎𝑖𝑏; 

�̃�𝑛𝑒𝑤 = (1 − 𝑐)2�̃�(0) + 2𝑐(1 − 𝑐)�̃�(1) + 𝑐2�̃�(2); 

ℒ𝑛𝑒𝑤 = ℒ(�̃�𝑛𝑒𝑤); 

endwhile 

if (ℒ𝑏𝑒𝑠𝑡 − ℒ𝑜𝑙𝑑)/(ℒ𝑏𝑒𝑠𝑡 + ℒ𝑜𝑙𝑑) < 𝜖  % authorized convergence criterion 

STOP;  % convergence achieved 

endif 

�̃�(0) = �̃�(1); �̃�(1) = �̃�(2); �̃�(2) = 𝐹(𝐹(�̃�𝑏𝑒𝑠𝑡)); ℒ𝑜𝑙𝑑 = ℒ𝑏𝑒𝑠𝑡; 

endwhile 

 

4 Expectation Maximization for Bayesian FFT method 

4.1 EM for most probable value computation 

Suppose we have measurement {�̂�𝑘 }. In this section we show how the EM algorithm can be 

applied to compute the MPV �̂�  given the probabilistic model shown in Eqns. (5) and (6). 

Following the procedure of EM, the key quantity in need is the 𝑄-function, i.e., the expectation of 

complete-data log-likelihood, which requires the conditional joint distribution of �̂�𝑘 and 𝜼𝑘 given 

𝜽 and the conditional distribution of 𝜼𝑘 given �̂�𝑘 and 𝜽. The derivation of these distributions is 

straightforward because of the property of the complex Gaussian distribution [40]. Based on the 

assumption of 𝒑𝑘~𝒞𝒩(𝟎, 𝑺), the latent variable 𝜼𝑘 = 𝒉𝑘𝒑𝑘 is also complex Gaussian distributed 

with zero-mean and a covariance matrix 𝑯𝑘 = 𝒉𝑘𝑺𝒉𝑘
∗ . Accordingly, the conditional joint 

distribution of �̂�𝑘  and 𝜼𝑘  given 𝜽, i.e., 𝑝(�̂�𝑘, 𝜼𝑘|𝜽), is again a zero-mean complex Gaussian 

distribution with the covariance matrix 

 𝜮𝑘 = [
𝜱𝑯𝑘𝜱T + 𝑆𝑒𝑰𝑛 𝜱𝑯𝑘

𝑯𝑘𝜱T 𝑯𝑘

] (14) 

Taking into account the statistical independence at different frequencies, the complete-data log-

likelihood is therefore 
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𝐿(𝜽|{�̂�𝑘, 𝜼𝑘}) = log 𝑝({�̂�𝑘, 𝜼𝑘}|𝜽) = −2𝑛𝑁𝑓 log 𝜋 − 𝑛𝑁𝑓 log 𝑆𝑒  

−𝑆𝑒
−1 ∑ [�̂�𝑘 − 𝜱𝜼𝑘]

∗
[�̂�𝑘 − 𝜱𝜼𝑘]

𝑁𝑓

𝑘=1 + ∑ log|𝑯𝑘
−1|

𝑁𝑓

𝑘=1 − ∑ 𝜼𝑘
∗ 𝑯𝑘

−1𝜼𝑘
𝑁𝑓

𝑘=1   
(15) 

In this paper, all useful formulas in matrix theory are summarized in Appendix A. The derivation 

of Eqn. (15) can be found in Appendix B. One can show (as provided in Appendix B) that the 

conditional distribution 𝑝(𝜼𝑘|�̂�𝑘, 𝜽)  is a complex Gaussian with the following mean and 

covariance: 

 E𝜼𝑘|�̂�𝑘,𝜽[𝜼𝑘] = 𝑷𝑘
−1𝜱T�̂�𝑘 (16) 

 Cov𝜼𝑘|�̂�𝑘,𝜽[𝜼𝑘] = 𝑆𝑒𝑷𝑘
−1 (17) 

where we have defined 𝑷𝑘 = 𝑆𝑒𝑯𝑘
−1 + 𝜱T𝜱. 

Based on the above results, one can evaluate the 𝑄-function by taking the expectation of Eqn. 

(15). However, if we proceed to the M step with the current 𝑄-function, it is difficult to obtain 

closed-form solution for updating the mode shape 𝜱 because they are further subject to norm 

constraints. In order to resolve this issue, we apply the PX-EM algorithm by introducing the 

auxiliary parameter 𝜸 = diag(𝛾1, 𝛾2, … , 𝛾𝑚)  (𝛾𝑖 ∈ ℝ+ , real positive) to obtain the augmented 

model 

 �̂�𝑘 = 𝜱∗𝜸𝒉𝑘𝒑𝑘 + 𝜺𝑘 (18) 

where 𝒑𝑘~𝒞𝒩(𝟎, 𝑺∗), 𝜺𝑘~𝒞𝒩(𝟎, 𝑆𝑒∗𝑰𝑛), and 𝝓∗𝑖
T 𝝓∗𝑖 = 1 for 𝑖 = 1,2, … , 𝑚. By comparing the 

original and the augmented models, it is easy to find the following many-to-one mapping 

 𝜽 = {𝒇, 𝜻, 𝜱, 𝑺, 𝑆𝑒} = 𝑅(𝜽∗, 𝜸) = {𝒇∗, 𝜻∗, 𝜱∗, 𝜸𝑺∗𝜸T, 𝑆𝑒∗} (19) 

Moreover, the original model corresponds to the augmented model when the value of 𝜸 is an 

(𝑚 × 𝑚) identity matrix, i.e., 𝜸0 = 𝑰𝑚. The above observations together justify why we can apply 

the PX-EM algorithm to infer the unknown parameters 𝜽. 

For the augmented model, we can derive the 𝑄 -function following similar steps for the 

original model to obtain 

 
𝑄(𝜽∗, 𝜸|𝜽(𝑡), 𝜸0) = −2𝑛𝑁𝑓 log 𝜋 − 𝑛𝑁𝑓 log 𝑆𝑒∗ − 𝑆𝑒∗

−1𝑄1(𝜱∗, 𝜸|𝜽(𝑡), 𝜸0) +

𝑄2(𝒇∗, 𝜻∗, 𝑺∗|𝜽(𝑡), 𝜸0)  
(20) 

where 

𝑄1(𝜱∗, 𝜸|𝜽(𝑡), 𝜸0) = ∑ �̂�𝑘
∗ �̂�𝑘

𝑁𝑓

𝑘=1 − 2tr [𝜱∗𝜸 ∑ Re(𝒘1𝑘�̂�𝑘
∗ )

𝑁𝑓

𝑘=1 ] +

tr [𝜱∗𝜸Re (∑ 𝒘2𝑘
𝑁𝑓

𝑘=1 ) 𝜸T𝜱∗
T]  

(21) 

𝑄2(𝒇∗, 𝜻∗, 𝑺∗|𝜽(𝑡), 𝜸0) = ∑ log|𝑯𝑘
−1|

𝑁𝑓

𝑘=1 − tr [∑ 𝑯𝑘
−1𝒘2𝑘

𝑁𝑓

𝑘=1 ]  (22) 

𝒘1𝑘 = E𝜼𝑘|�̂�𝑘,𝜽(𝑡),𝜸0
[𝜼𝑘]  and 𝒘2𝑘 = E𝜼𝑘|�̂�𝑘,𝜽(𝑡),𝜸0

[𝜼𝑘𝜼𝑘
∗ ] , which are the first and second 

conditional moments of 𝜼𝑘 given �̂�𝑘, 𝜽(𝑡) and 𝜸0; and they can be simply calculated from Eqns. 
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(16) and (17). Since they are evaluated at parameter values in the previous iteration, they are 

constant in the M-step. Note that 𝑄1(𝜱∗, 𝜸|𝜽(𝑡), 𝜸0) only depends on mode shapes 𝜱∗ and the 

auxiliary parameter 𝜸 , while 𝑄2(𝒇∗, 𝜻∗, 𝑺∗|𝜽(𝑡), 𝜸0)  involves only the remaining unknown 

parameters except 𝑆𝑒∗. This implies that the unknown parameters can be optimized in different 

groups. 

Once the 𝑄-function is derived, we can then proceed to the PX-M step, i.e., to maximize 

𝑄(𝜽∗, 𝜸|𝜽(𝑡), 𝜸0) w.r.t. 𝜽∗ and 𝜸. Since 𝜱∗ and 𝜸 in 𝑄1 (and hence 𝑄) always appear together, we 

can combine them into 𝜱′ = 𝜱∗𝜸 so that it is free from norm constraints. After 𝜱′  has been 

updated, 𝜱∗ and 𝜸 can be readily recovered by noting that the diagonal elements of 𝜸 are simply 

the norm of columns of 𝜱′ and 𝜱∗ = 𝜱′𝜸−1. To obtain the optimal value of 𝜱′, taking the partial 

derivative of 𝑄(𝜽∗, 𝜸|𝜽(𝑡), 𝜸0) in Eqn. (20) w.r.t. 𝜱′ gives 

𝜕𝑄(𝜽∗,𝜸|𝜽(𝑡),𝜸0)

𝜕𝜱′ = 𝑆𝑒∗
−1 [2 ∑ Re(�̂�𝑘𝒘1𝑘

∗  )
𝑁𝑓

𝑘=1 − 2𝜱′ ∑ Re(𝒘2𝑘)
𝑁𝑓

𝑘=1 ]  (23) 

Setting it to zero and solving for 𝜱′ yields 

 𝜱′ = ∑ Re(�̂�𝑘𝒘1𝑘
∗ )

𝑁𝑓

𝑘=1 [∑ Re(𝒘2𝑘)
𝑁𝑓

𝑘=1 ]
−1

  (24) 

As can be seen, the introduction of auxiliary parameter γ in the PX-EM algorithm allows an 

analytical update of mode shape matrix, which can bring great saving in mathematical derivation 

and numerical computation compared to the Lagrange method used for the identification of 

closely-spaced modes [25], where the numerical optimization method has to be used. For the case 

of well-separated modes, since the analytical update of mode shape vector exists in the Lagrange 

method [23], no apparent advantage is given by the PX-EM algorithm, except that it provides a 

conceptually consistent solution for both cases. 

Similarly, we can derive the analytical update for 𝑆𝑒∗ from 𝑄 in Eqn. (20) and 𝑺∗ from 𝑄2 in 

Eqn. (22) as 

 𝑆𝑒∗ =
1

𝑛𝑁𝑓
tr [∑ Re(�̂�𝑘�̂�𝑘

∗ )
𝑁𝑓

𝑘=1 − 𝜱′ ∑ Re(𝒘2𝑘)
𝑁𝑓

𝑘=1 𝜱′T
]  (25) 

 𝑺∗ =
1

𝑁𝑓
∑ 𝒉𝑘

−1𝒘2𝑘𝒉𝑘
−∗𝑁𝑓

𝑘=1   (26) 

and the detailed derivation is given in Appendix B. 

For 𝒇∗ and 𝜻∗, an analytical update has not been found (as is typical), and one has to rely on 

numerical optimization. Since the dimension ( 2𝑚 ) is not high, the MATLAB function 

‘fminsearch’ [41] can provide an efficient solution using the simplex search method [42]. 

As a remark, if the algorithm is developed using 𝒑𝑘 instead of 𝜼𝑘 as the latent variable, the 

only change to the updating procedure is that 𝒘1𝑘 is replaced by 𝒉𝑘E𝒑𝑘|�̂�𝑘,𝜽(𝑡),𝜸0
[𝒑𝑘] and 𝒘2𝑘 is 

replaced by 𝒉𝑘E𝒑𝑘|�̂�𝑘,𝜽(𝑡),𝜸0
[𝒑𝑘𝒑𝑘

∗ ]𝒉𝑘
∗ , where E𝒑𝑘|�̂�𝑘,𝜽(𝑡),𝜸0

[𝒑𝑘] = 𝒉𝑘
−1𝑷𝑘

−1𝜱T�̂�𝑘  and 

E𝒑𝑘|�̂�𝑘,𝜽(𝑡),𝜸0
[𝒑𝑘𝒑𝑘

∗ ] = 𝑆𝑒𝒉𝑘
−1𝑷𝑘

−1𝒉𝑘
−∗  should be calculated based on parameter values in the 
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previous iteration. The difference therefore only lies in the amount of information used in the 

previous iteration to update the parameters in the present iteration. In particular, when 𝒑𝑘 is used 

as the latent variable the values of natural frequencies and damping ratios in the current iteration 

also affect the updated values of mode shapes through the term 𝒉𝑘. The reverse is true for the 

modal force PSD matrix, however, whose value no longer depends on the values of frequencies or 

damping ratios in the current iteration. Intuitively, it is more preferred to use 𝜼𝑘  as the latent 

variable because modal force PSD is more related with damping ratios than mode shapes. 

Numerical experiments reveal that performance is somewhat similar and so that case is not further 

pursued. 

The other issue remaining is the selection of appropriate parameter values to initialize the 

iteration. This is crucial for the EM algorithm, because it is a local optimization algorithm in nature. 

In this paper, we generally follow the initialization procedure proposed in [25] for 𝒇∗, 𝜻∗, 𝜱∗, and 

𝑆𝑒∗ using high signal-to-noise (s/n) asymptotics results. In addition, when the s/n is high, 𝑷𝑘 =

𝑆𝑒𝑯𝑘
−1 + 𝜱T𝜱~𝜱T𝜱, from which the second moment 𝒘2𝑘 can be calculated directly from 𝜱. 

Eqn. (26) is then used to provide an initial guess for 𝑺∗. 

Though closed-form updates of modal parameters (except modal frequencies and damping 

ratios) are available in the PX-EM algorithm, experience during development of algorithm reveals 

that it can take a large number of iterations to converge in challenging situations, e.g., closely-

spaced modes, which motivates us to further apply the P-EM algorithm to the derived PX-EM 

algorithm, resulting in the final algorithm denoted as P2X-EM. As indicated in Algorithm 1, the 

PX-EM algorithm should run 𝑛𝑏  steps to initiate. To adaptively select the parameter 𝑛𝑏 , the 

convergence of the prediction error PSD 𝑆𝑒 is checked in each iteration. This is motivated from 

the observation that 𝑆𝑒  often converges quickly and can be used as an index for preliminary 

convergence. 

 

4.2 Robust implementation 

As an iterative algorithm, the EM algorithm is subject to accumulated numerical errors, which 

could destroy the monotonic convergence of the algorithm. For instance, the covariance matrices 

in Eqn. (17) calculated in the E step must be kept symmetric and positive semidefinite. Therefore, 

a robust and efficient implementation is desired to improve the performance of the proposed 

algorithm. For this purpose, an implementation of the PX-EM algorithm is introduced here based 

on the QR and Cholesky decompositions. 

In the initialization, we require the square-root of a symmetric and positive semi-definite 

matrix, e.g., 

 𝑺 = 𝑺1/2𝑺∗/2, 𝜱T𝜱 = 𝜱T/2𝜱1/2 (27) 

which can be done by the Cholesky decomposition. Then, we apply the QR decomposition for the 

PX-E step, 

 [
𝜱1/2 𝜱−T/2𝜱T�̂�𝑘

√𝑆𝑒𝑺−1/2𝒉𝑘
−1 𝟎𝑚×1

] = �̃� [
�̃�11 �̃�12

𝟎𝑚 �̃�22

] (28) 
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Taking advantage of the unitary nature of �̃�, one can verify that 

 E[𝜼𝑘|�̂�𝑘, 𝜽(𝑡)] = �̃�11
−1�̃�12, Cov[𝜼𝑘|�̂�𝑘, 𝜽(𝑡)] = 𝑆𝑒�̃�11

−1�̃�11
−T, (29) 

For the PX-M step, we perform the Cholesky decomposition 

 [
𝓗 𝓙T 𝟎𝑚

𝓙 𝓚 𝟎𝑛×𝑚

𝟎𝑚 𝟎𝑚×𝑛 𝓢
] = [

�̃�11 𝟎𝑚×𝑛 𝟎𝑚

�̃�21 �̃�22 𝟎𝑛×𝑚

𝟎𝑚 𝟎𝑚×𝑛 �̃�33

] [

�̃�11
T �̃�21

T 𝟎𝑚

𝟎𝑛×𝑚 �̃�22
T 𝟎𝑛×𝑚

𝟎𝑚 𝟎𝑚×𝑛 �̃�33
∗

]  (30) 

where  

 
𝓗 = 𝑁𝑓

−1 ∑ Re(𝒘2𝑘)
𝑁𝑓

𝑘=1 , 𝓙 = 𝑁𝑓
−1 ∑ Re(�̂�𝑘𝒘1𝑘

∗ )
𝑁𝑓

𝑘=1 , 

𝓚 = 𝑁𝑓
−1 ∑ Re(�̂�𝑘�̂�𝑘

∗ )
𝑁𝑓

𝑘=1 , 𝓢 = 𝑁𝑓
−1 ∑ 𝒉𝑘

−1𝒘2𝑘𝒉𝑘
−∗𝑁𝑓

𝑘=1  
(31) 

By equating submatrices, we have 

 𝜱′ = �̃�21�̃�11
−1, 𝑆𝑒∗ = 𝑛−1tr[�̃�21�̃�21

T ], 𝑺∗ = �̃�33�̃�33
∗  (32) 

The above QR and Cholesky decompositions provide an efficient and robust way to perform 

the PX-EM algorithm. The main procedures are summarized in Algorithm 2. 

 

Algorithm 2. The robust PX-EM algorithm for MPV computation in Bayesian FFT method 

1. Initialization 

Set 𝒇(0), 𝜻(0), 𝑆𝑒
(0)

, 𝜱(0), 𝑺(0) and 𝜸0 = 𝑰𝑚 

𝜱1/2,(0) = chol(𝜱(0),T𝜱(0)); 𝑺−1/2,(0) = chol(𝑺(0),−1),  

2. PX-EM iteration 

𝑡 = 0; 

while 𝑡 < 𝐼𝑡𝑒𝑟𝑚𝑎𝑥1 (authorized maximum number of iterations) 

2.1 Robust PX-E step 

for 𝑘 = 1 to 𝑁𝑓 

�̃� = qr ([
𝜱1/2,(𝑡) 𝜱−1/2,(𝑡)𝜱(𝑡),T�̂�𝑘

√𝑆𝑒
(𝑡)

𝑺−1/2,(𝑡)𝒉𝑘
(𝑡),−1 𝟎𝑚×1

])  

�̃�′ = �̃�11
−1 [√𝑆𝑒

(𝑡)
𝑰𝑚 �̃�12

]; 

𝒘1𝑘 = �̃�′(: , 𝑒𝑛𝑑); 𝒘2𝑘 = �̃�′�̃�′T ; 

endfor 

2.2 Robust PX-M step 

�̃� = chol ([
𝓗 𝓙T 𝟎𝑚

𝓙 𝓚 𝟎𝑛×𝑚

𝟎𝑚 𝟎𝑚×𝑛 𝓢
]); 

𝜱′(𝑡+1) = �̃�21�̃�11
−1; 𝜸∗

(𝑡+1)
= diag (|𝜱′(𝑡+1)|

col
) ; 𝜱∗

(𝑡+1)
= 𝜱′(𝑡+1)𝜸∗

(𝑡+1),−1
; 
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5 Empirical Studies 

In order to validate the performance of the proposed EM algorithm for the MPV estimation in the 

Bayesian FFT method, empirical studies are presented here with synthetic, laboratory, and field 

test data. The synthetic data example is used to evaluate the consistency of algorithm. The second 

(laboratory) and the third (field) examples illustrate performance in controlled and operation 

condition, respectively. In addition to the EM algorithm, the results calculated by the direct method 

[23,25] are also provided for comparison. Since we do not develop the EM algorithm to compute 

posterior covariance matrix, all the uncertainty information is calculated based on the direct 

differentiation algorithm proposed in Ref. [26]. 

5.1 Synthetic data 

Consider synthetic data generated with three closely-spaced modes and three measurement 

channels. The data are generated at 100 Hz by 

 �̂�𝑗 = 𝝓1�̈�1(𝑡𝑗) + 𝝓2�̈�2(𝑡𝑗) + 𝝓3�̈�3(𝑡𝑗) + 𝒆(𝑡𝑗) (33) 

where �̈�𝑖(𝑡) (𝑖 = 1,2,3) is the modal acceleration response, satisfying the governing equation 

 �̈�𝑖(𝑡) + 2𝜁𝑖𝜔𝑖�̇�𝑖(𝑡) + 𝜔𝑖
2𝜂𝑖(𝑡) = 𝑝𝑖(𝑡) (34) 

with natural frequencies 𝜔𝑖  =  2𝜋𝑓𝑖  𝑟𝑎𝑑/𝑠𝑒𝑐, 𝑓1 = 0.98 𝐻𝑧, 𝑓2 = 1.00 𝐻𝑧, and 𝑓3 = 1.02 𝐻𝑧; 

and damping ratios 𝜁1 = 0.8%, 𝜁2 = 1.0%, and 𝜁3 = 1.2%; The modal excitations 𝑝𝑖(𝑡) (𝑖 =

1,2,3) are modeled as stationary Gaussian white noises with PSD 𝑆11 = 𝑆22 = 𝑆33 = 1 (𝜇𝑔)2/𝐻𝑧 

(1 𝜇𝑔 =  9.81 × 10−6 𝑚/𝑠𝑒𝑐2), cross PSD 𝑆12 = 0.5𝑒𝐢𝜋/4 (𝜇𝑔)2/𝐻𝑧 and zeros elsewhere;  

 𝝓1 = [1,2,2]T/3, 𝝓2 = [2,1, −2]T/3, 𝝓3 = [1, −2,2]T/3 (35) 

𝒆(𝑡) represents the measurement error, modeled by a stationary Gaussian white noise process with 

PSD 𝑆𝑒𝑰3 and 𝑆𝑒  =  10 (𝜇𝑔)2/𝐻𝑧. The resulting modal signal-to-noise (s/n) ratio, defined as the 

PSD ratio of response to noise at the natural frequency, is around 𝛾𝑖 = 𝑆𝑖𝑖/4𝑆𝑒𝜁𝑖
2 = 250 for all 

modes. This quality of data can be readily achieved in typical ambient vibration tests. The PSD 

and singular value (SV) spectrum calculated using 5000 𝑠𝑒𝑐 of data is shown in Figure 1. The SV 

𝑆𝑒∗
(𝑡+1)

= 𝑛−1tr[�̃�21�̃�21
T ]; 𝑺∗

−1/2,(𝑡+1)
= �̃�33

−1; 

Obtain 𝒇∗
(𝑡+1)

 and 𝜻∗
(𝑡+1)

 using simplex search method; 

𝒇(𝑡+1) = 𝒇∗
(𝑡+1)

; 𝜻(𝑡+1) = 𝜻∗
(𝑡+1)

; 𝑆𝑒
(𝑡+1)

= 𝑆𝑒∗
(𝑡+1)

; 

𝜱(𝑡+1) = 𝜱∗
(𝑡+1)

; 𝜱1/2,(𝑡+1) = chol(𝜱(𝑡+1),T𝜱(𝑡+1)); 

𝑺−1/2,(𝑡+1) = 𝜸∗
(𝑡+1),−1𝑺∗

−1/2,(𝑡+1)
; 𝜸0 = 𝑰𝑚 

𝑡 = 𝑡 + 1; 

if |𝑆𝑒∗
(𝑡)

− 𝑆𝑒∗
(𝑡−1)

|/(𝑆𝑒∗
(𝑡)

+ 𝑆𝑒∗
(𝑡−1)

) < 𝜖1 (authorized convergence criterion) 

STOP; (convergence achieved) 

endif 

endwhile 
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spectrum plots the eigenvalues of the PSD matrix, giving a rough idea of natural frequencies and 

the quality of data. 

 
Figure 1: PSD and SV spectrum, synthetic data. 

Bracket: frequency band used for modal identification. 

 

By observing the SV spectrum of Figure 1, the frequency band is selected to be [0.87,1.15] 𝐻𝑧 

where the top SV spectrum line (which reflects modal response) almost meets the second top line 

in the flat region (which reflects prediction error). See also Examples 12.2 and 12.3 on p.378-381 

of [3] for investigation on the choice of bandwidth on results. Both the EM and direct methods are 

applied to identify the modal parameters. The results are summarized in Table 1 for the data 

duration of 5000 𝑠𝑒𝑐. As can be seen, the identified parameters are close to their exact values. The 

modal frequencies have a coefficient of variation (c.o.v.) of only about 0.07%. The damping ratios 

have a c.o.v. of about 7%, which is similar to the c.o.v. of the modal force PSDs. Since the MPVs 

of 𝑆23 and 𝑆31 are small, large c.o.v. values are yielded. The most probable and the exact mode 

shapes are close, evidenced by the modal assurance criterion (MAC) ≈ 1. The mode shape c.o.v., 

defined as the trace of posterior covariance matrix [43], is of the same order of magnitude. The 

EM and direct method give identical results, counter-checking each other. Since we applied a strict 

criterion to determine the convergence of the algorithms, i.e., the maximal relative change of modal 

parameters in two successive iterations is less than 10−5, the two methods yield the same values 

up to the third decimal place. 
 

Table 1: Modal identification results, synthetic data 

Parameter  Mode 1 Mode 2 Mode 3 

Frequency 𝑓𝑖 [Hz] Exact 0.980 1.000 1.020 

EM 0.980 (0.056) 1.000 (0.066) 1.020 (0.069) 

Direct 0.980 (0.056) 1.000 (0.066) 1.020 (0.069) 

Damping ratio 𝜁𝑖  [%] Exact 0.800 1.000 1.200 

EM 0.828 (7.1) 1.038 (6.4) 1.156 (6.6) 

Direct 0.828 (7.1) 1.038 (6.4) 1.156 (6.6) 

Mode shape MAC EM 1.000 (3.3) 0.999 (4.7) 1.000 (3.6) 

Direct 1.000 (3.3) 0.999 (4.7) 1.000 (3.6) 

Modal force PSD 𝑆𝑖𝑖  

[(𝜇𝑔)2/𝐻𝑧] 

Exact 1.000 1.000 1.000 

EM 0.985 (5.2) 1.015 (6.1) 1.006 (5.5) 

Direct 0.985 (5.2) 1.015 (6.1) 1.006 (5.5) 

Exact 0.350 0.000 0.000 
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Cross PSD, real part of 

𝑆12, 𝑆23, 𝑆31 [(𝜇𝑔)2/𝐻𝑧] 

EM 0.349 (2.7) 0.084 (46) 0.011 (839) 

Direct 0.349 (2.7) 0.084 (46) 0.011 (839) 

Cross PSD, imaginary 

part of 𝑆12 ,  𝑆23 , 𝑆31 

[(𝜇𝑔)2/𝐻𝑧] 

Exact 0.350 0.000 0.000 

EM 0.347 (0.67) 0.044 (44) -0.057 (27) 

Direct 0.347 (0.67) 0.044 (44) -0.057 (27) 

Prediction error PSD 𝑆𝑒 

[(𝜇𝑔)2/𝐻𝑧] 

Exact 10.00 

EM 10.36 (6.2) 

Direct 10.36 (6.2) 

Note: MPV with c.o.v. (coefficient of variation) in parenthesis (units: %) are used; the MAC (modal assurance 

criterion) is calculated based on the MPV of identified mode shapes and the exact ones. 

 

   
Figure 2: Performance comparison of the EM and direct methods, synthetic data 

 

The iteration process and computation time of two variants of EM algorithms and the direct 

method are provided in Figure 2 for a further comparison. For this example, the P2X-EM algorithm 

takes 93 iterations to converge, which is more than the direct method (25 iterations). However, it 

is computationally faster than the direct method, because closed-form expressions are available in 

updating unknown parameters except frequencies and damping ratios. P2X-EM and the direct 

method spend respectively 20.4 𝑠𝑒𝑐  and 133.8 𝑠𝑒𝑐  averaged over 100 successive trials on a 

Digital Storm laptop with Intel® Core™ i7 CPU @2.50 𝐺𝐻𝑧 and RAM 16.0 𝐺𝐵. The PX-EM 

algorithm takes 337 iterations and 47.0 𝑠𝑒𝑐 to converge. A large saving has been achieved both 

in the number of iterations and computation, demonstrating the benefit of the P2X-EM algorithm. 

To illustrate the consistency of the algorithm, as an example, the identified results of the first 

mode are shown in Figure 3 for different data lengths. The dashed line denotes the exact value of 

the modal parameter that generated the data. The identified result for each data length is shown 

with a dot at the posterior MPV and an error bar covering two posterior standard deviations. It is 

seen that as the data length increases the error bar generally narrows. There is no evidence of bias, 

as reflected by the fact that the error bar covers the exact value regardless of data length. 
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Figure 3: Identified first modal parameters, synthetic data. 

Dot: MPV; error bar: ±two standard deviations; dashed line: actual value. 

 

5.2 Laboratory data 

An example with laboratory data is next presented to illustrate the performance of the proposed 

algorithm on identifying closely-spaced modes with experimental data. Ambient vibration data 

was collected from a three-story aluminium frame with an added mass that models the presence of 

the tuned mass damper (TMD), shown in Figure 4a. The main frame measures 30 𝑐𝑚 ×  30 𝑐𝑚 

in plan with a uniform story height of 25 𝑐𝑚. The height of the TMD is 27 𝑐𝑚. Due to the similar 

layout of mass and stiffness in the two horizontal directions and the existence of TMD, multiple 

closely-space modes are expected. The four corners of each floor and the bottom of TMD were 

instrumented with a biaxial piezoelectric accelerometer measuring the horizontal x- and y- 

directions. The TMD was instrumented with a triaxial piezoelectric accelerometer measuring the 

vibration in the x-, y- and z- directions, giving a total of 29 measured DoFs (Figure 4b). Ambient 

data was recorded for 3600 𝑠𝑒𝑐  at 2048 𝐻𝑧  and then decimated to 256 𝐻𝑧  for analysis. The 

measured time history at DoFs 1 and 2 are shown in Figure 5a. The PSD and SV spectra of data 

are shown in Figure 5b, which also depicts the selected bands, initial guess of frequencies and 

number of modes in case where more than 1 mode is recognized. By reading peaks in the spectra, 

six frequency bands are selected for frequencies less than 35 𝐻𝑧, including 2 bands with 3 modes, 

1 band with 2 modes and 3 bands with a single mode, yielding 11 modes in total. 
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a) Photo      b) Measured DoFs 

Figure 4: Laboratory shear frame. 

 

In the modal analysis, we first separated the full-length data into 6 non-overlapping segments 

of equal length, i.e., each with a duration of 600 𝑠𝑒𝑐. This is more than 2000 cycles of fundamental 

mode, typically long enough for a reliable estimation. The identified 11 modes by the EM 

algorithm are listed in Table 2 for the first data set. The MPVs of identified mode shapes are plotted 

in Figure 6 and named according to their nature, e.g., TX1 for the first translational mode along 

the x-direction; R1 for the first torsional mode. Based on lumped mass structural dynamics, the 

main frame theoretically has nine modes, comprising three translational modes in the x- and y-

direction, and three rotational modes. The bending of the TMD in the x- and y-direction introduces 

two new modes, whose frequencies are close to the first and the third pairs of translational modes, 

respectively. The frequency is associated with small posterior uncertainty, indicating a reliable 

estimation. The posterior c.o.v. tends to decrease with the mode number. This is partly because the 

effective data length (data duration/natural period) is longer for higher modes with higher 

frequencies. All damping ratios except for the 10th mode are less than 0.5%, and their posterior 

c.o.v.s are all around or less than 10%. The MPVs of the modal force of the first three modes are 

much larger than the remaining ones. The MPV of prediction error PSD tends to decrease with the 

mode number. This is consistent with the spectra in Figure 5b. By observing the mode shapes, the 

translation of TMD is much larger than that of the main frame for modes TX1/TX2 and TY3/TY4, 

which is typical. We have not shown the results identified by the direct method, because it gives 

almost identical values as the EM algorithm. 
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a) Measured time history at DoFs 1 and 2 (detrended) 

 

  
b) PSD and SV spectrum (Bracket: frequency bands used in the Bayesian FFT method) 

Figure 5: Measured data, laboratory shear frame. 

 

 
Table 2: Modal identification results, laboratory shear frame. 

Mode Frequency Damping ratio Modal force PSD Prediction error PSD Mode shape 

 
MPV 

[Hz] 

c.o.v. 

[‰] 

MPV 

[%] 

c.o.v. 

[%] 

MPV 

[(𝜇𝑔)2/𝐻𝑧] 

c.o.v. 

[%] 

MPV 

[(𝜇𝑔)2/𝐻𝑧] 

c.o.v. 

[%] 
Characteristics 

c.o.v. 

[%] 

1 3.734 0.54 0.418 5.5 14.25 4.1 7.88 0.65 TX1 1.1 

2 3.926 0.56 0.427 8.9 3.47 6.8 7.88 0.65 TY1 6.9 

3 3.995 0.55 0.425 5.7 16.68 6.3 7.88 0.65 TX2 1.8 

4 6.947 0.45 0.462 10 0.77 5.3 4.71 0.85 R1 1.1 

5 11.141 0.34 0.448 7.8 0.81 3.0 2.59 0.51 TX3 2.1 

6 11.308 0.28 0.310 9.3 0.53 3.0 2.59 0.51 TY2 6.4 

7 16.995 0.27 0.421 6.7 0.13 3.6 1.85 0.52 TX4 2.1 

8 17.222 0.25 0.358 7.3 0.10 3.5 1.85 0.52 TY3 2.7 

9 17.739 0.22 0.261 8.4 0.08 3.3 1.85 0.52 TY4 1.5 

10 19.612 0.38 0.850 5.2 0.17 3.6 1.68 0.51 R2 1.2 

11 29.920 0.21 0.420 5.5 0.02 3.4 1.05 0.47 R3 1.5 
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Figure 6: Identified modal shapes, laboratory shear frame. 

 

The posterior c.o.v. tells the identification uncertainty of parameters given each data set but it 

does not tell the potential variability of results over different data sets, which can be due to change 

in the structure, environment, or merely modeling error. In order to investigate the variability of 

identified modal parameters for different data sets, we provide the results for modes 2 and 3 as an 

example, shown in Figure 7. The frequency, damping ratio and prediction error PSD show small 

variability. Their MPVs do not change much and the posterior uncertainties are basically the same. 

The modal force PSD of the 3rd mode fluctuates over different sets, indicating the change of 

excitation with time. 

 
Figure 7: Identified modal parameters for different data sets, laboratory shear frame. 
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5.3 Field data 

The third example is the Guangzhou New TV Tower (GNTVT), which is a structural health 

monitoring benchmark building for high-rise structures [44,45]. In the benchmark study, 24-hour 

field measurements of the structural acceleration time histories and the corresponding ambient 

conditions (temperature and wind) were provided. Twenty uni-axial accelerometers were installed 

along the tower, to measure the structural dynamic response. Figure 8 shows two typical time 

series measured from 2:00 to 3:00 on Jan. 20, 2010, as well as the corresponding PSD and SV 

spectrum. The selected frequency bands are also marked in the SV spectra, including one three-

mode band, one two-mode band and seven single-mode band. Various methods have been applied 

to identify the modal parameters of GNTVT in the literature, e.g., stochastic subspace 

identification method [46,47], enhanced frequency domain decomposition [46,47], Bayesian 

spectral density approach [48] and Bayesian FFT method [49]. For the objectives in this paper, we 

do not intend to compare our method with these approaches, so their results are not provided in 

this paper. Generally speaking, our results are consistent with these previous studies. Interested 

readers may refer to the cited papers. As for the difference with the study in [49], multi-mode 

frequency bands are used in the current analysis, while only single-mode bands are applied in [49]. 

 
a) Measured time history at two locations 

 
b) PSD and SV spectrum (Bracket: frequency bands used in the Bayesian FFT method) 

Figure 8: Measured data, Guangzhou New TV Tower (Jan-20-2010). 

Before the analysis, we first divide each one-hour data into non-overlapping time windows at 

20-min intervals, which is about 1300 cycles of fundamental mode, and found to be long enough 
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for a good estimation. Though longer durations could reduce the posterior uncertainty of identified 

parameters, it also increases the risk of violating the stationary assumption. Regardless of whether 

this is explicitly recognized or not, this risk applies to many OMA methods as the assumption is 

quite common. 

Table 3 shows the modal parameters of the first twelve modes, identified by the EM algorithm, 

for the first 20-min of the data given in Figure 8a, i.e., 2:00-2:20. The fundamental mode is less 

than 0.1Hz, representing a highly flexible structure, because the GNTVT is as high as 610𝑚. 

Again, the frequency is identified with a good precision, reflected by the small posterior c.o.v.. 

Damping ratios are all less than 1%, which may be due to the small amplitude in the ambient 

vibration condition. The posterior uncertainties associated with damping ratios are much larger 

than those of frequencies, implying that damping ratios are more difficult to identify precisely. 

The modal force PSD represents the modal participation of external forces. MPVs of of the first 

two modes are significantly greater than the remaining ones. The prediction error includes the 

measurement error and possibly modeling error due to the truncation of neighbored modes in band 

selection. The decreasing trend of the MPV of prediction error PSD is consistent with the SV 

spectrum shown in Figure 8b. In addition, the mode shapes with their characteristics are provided 

in Figure 9 in terms of their projections in the x- and y-direction. Ten translatonal modes and two 

rotational modes are recognized, and the rotational mode shapes have relatively larger posterior 

c.o.v.s. Similar to the last example, the results identified by the direct method are not given, 

because they are identical to the values in the EM algorithm. 

 
Table 3: Modal identification results, Guangzhou New TV Tower. 

Mode Frequency Damping ratio Modal force PSD Prediction error PSD Mode shape 

 
MPV 

[Hz] 

c.o.v. 

[‰] 

MPV 

[%] 

c.o.v. 

[%] 

MPV 

[(𝜇𝑔)2/𝐻𝑧] 

c.o.v. 

[%] 

MPV 

[(𝜇𝑔)2/𝐻𝑧] 

c.o.v. 

[%] 
Characteristics 

c.o.v. 

[%] 

1 0.094 2.5 0.441 75 131.01 27 276.57 6.1 TY1 3.0 

2 0.139 2.6 0.618 45 106.36 24 173.22 5.3 TX1 2.5 

3 0.366 1.4 0.439 34 6.54 20 52.37 4.2 TY2 2.9 

4 0.423 1.4 0.480 36 2.69 29 65.09 5.3 TX2 5.0 

5 0.475 0.65 0.141 40 20.48 11 34.57 3.0 TY3 0.77 

6 0.506 0.82 0.246 35 1.36 14 34.57 3.0 R1 7.9 

7 0.523 0.87 0.272 25 5.40 13 34.57 3.0 TX3 2.9 

8 0.796 0.68 0.244 30 2.54 16 32.74 3.5 TY4 1.8 

9 0.965 0.49 0.156 33 0.91 15 22.86 3.5 TX4 1.8 

10 1.152 0.34 0.096 36 0.69 12 17.36 2.8 TY5 1.5 

11 1.192 0.41 0.131 31 0.44 13 17.36 2.8 TX5 2.5 

12 1.251 0.51 0.181 41 0.13 38 24.18 4.9 R2 4.9 

 

To investigate the temporal variability of modal parameters, the EM algorithm was applied to 

all 72 data sets. The identification results are plotted in Figure 10, with solid line representing the 

MPV and shaded area covering two standard deviations. The frequencies change slightly with time, 

while the damping ratios have a larger variation but still are in the same order of magnitude. The 

negative values of damping ratios in the plot is immaterial, merely due to the Gausssian distribution 

approximation and the large c.o.v.. By comparing the sample c.o.v. and the posterior c.o.v. (median 

of c.o.v. of all 72 data sets) in Table 4, the posterior uncertainty is consistent with the ensemble 

variability of their MPVs and therefore the Bayesian and frequentist perspectives roughly agree 

[50]. In addition, the posterior c.o.v. tends to be smaller than the sample c.o.v., because the sample 

c.o.v. has incorporated the uncertainties due to the environmal effects, e.g., temperature, wind. 
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Figure 9: Identified modal shapes, Guangzhou New TV Tower. 
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a) Frequency 

 
b) Damping ratio 

Figure 10: Identified modal parameters for different time, Guangzhou New TV Tower. 

Solid line: MPV, shaded area: ±two standard deviations. 
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Table 4: Time variability of modal parameters, Guangzhou New TV Tower. 

Mode 1 2 3 4 5 6 7 8 9 10 11 12 

Frequency c.o.v. 

[‰] 

Sample 4.4 2.7 1.9 1.2 0.90 1.2 1.0 1.4 1.4 0.61 0.48 1.1 

Posterior 3.1 2.3 1.1 0.91 0.63 0.78 0.85 0.71 0.68 0.41 0.39 0.45 

Damping ratio 

c.o.v. [%] 

Sample 67 55 39 51 54 48 51 34 39 41 38 42 

Posterior  57 52 39 46 45 39 33 33 29 32 32 31 

Note: posterior c.o.v. represnts the median of c.o.v.s of all 72 data sets. 

 

6 Conclusions 

This paper has presented an EM algorithm for the MPV computation in the Bayesian FFT method. 

Regarding the modal response as a latent variable, the Bayesian FFT model is formulated as a 

latent variable model, where the EM algorithm can be applied to maximize the log-posterior. In 

order to free up the norm constraints on mode shapes, the PX-EM is introduced, allowing the 

closed-form analytical update of all parameters except the frequency and damping ratio. The P-

EM algorithm is further adopted to accelerate the convergence when there are two or more modes 

in the selected band. Further robustness for accurate computation is introduced based on the QR 

and Cholesky decompositions. The proposed EM algorithm has been verified and applied with 

synthetic, laboratory and field test data. 

The EM algorithm gives almost identical results as the direct method for all the examples 

considered. Though more iterations are needed, it takes less computation time to achieve the same 

MPV, because, except for frequencies and damping ratios, all modal parameters can be updated 

analytically. For the same reason, the derivation is more systematic and elegant than the direct 

method. The algorithm offers a more efficient and robust (in terms of convergence) alternative that 

can be especially useful when the direct method has difficulty to converge. It should be mentioned 

that the EM algorithm does not provide a convenient way to compute the posterior covariance 

matrix, which can be seen as a drawback of the proposed approach. Application of the EM 

algorithm to other cases, e.g., multi-modes multi-setups and complex modes, is being explored. 

 

7 Acknowledgments 

Most of the work in this paper was performed when the first author was a research associate and 

the second author was a professor at the University of Liverpool. The financial support from the 

UK Engineering and Physical Sciences Research Council (EP/N017897/1) is gratefully 

acknowledged. The start-up fund from Zhejiang University (130000-171207704/018) is also 

acknowledged. 

 

8 Appendix A. Useful results in matrix theory 

This appendix summarizes the results in linear algebra that are useful in the development of the 

paper. A good reference can be found in [51]. 

1. Matrix inversion lemma 

For any complex matrices 𝑨, 𝑪, 𝑼, and 𝑽 of appropriate size, with 𝑨 and 𝑪 invertible, 
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 (𝑨 + 𝑼𝑪𝑽)−1 = 𝑨−1 − 𝑨−1𝑼(𝑪−1 + 𝑽𝑨−1𝑼)−1𝑽𝑨−1 (A. 1) 

 (𝑨 + 𝑼𝑪𝑽)−1𝑼𝑪 = 𝑨−1𝑼(𝑪−1 + 𝑽𝑨−1𝑼)−1 (A. 2) 

2. Matrix determinant theorem 

For any complex matrices 𝑨, 𝑪, 𝑼, and 𝑽 of appropriate size, with 𝑨 and 𝑪 invertible, 

 |𝑨 + 𝑼𝑪𝑽| = |𝑨||𝑪||𝑪−1 + 𝑽𝑨−1𝑼| (A. 3) 

3. Derivatives of trace 

For any complex matrices 𝑨, 𝑩 and 𝑪 of appropriate size, 

 
𝜕

𝜕Re(𝑨)
tr(𝑨𝑩) = 𝑩T, 

𝜕

𝜕Im(𝑨)
tr(𝑨𝑩) = 𝐢𝑩T (A. 4) 

𝜕

𝜕Re(𝑨)
tr(𝑨𝑩𝑨∗𝑪) = 𝑪𝑨𝑩 + 𝑪T�̅�𝑩T, 

𝜕

𝜕Im(𝑨)
tr(𝑨𝑩𝑨∗𝑪) = −𝐢(𝑪𝑨𝑩 − 𝑪T�̅�𝑩T) (A. 5) 

When 𝑨 and 𝑩 are both Hermitian 

 
𝜕

𝜕Re(𝑨)
tr(𝑨𝑩) = 2Re𝑩 − Re𝑩 ∘ 𝑰, 

𝜕

𝜕Im(𝑨)
tr(𝑨𝑩) = 2Im𝑩 (A. 6) 

where ‘∘’ represents matrix elements product. 

3. Derivatives of log determinant 

For any complex matrix 𝑨, 

 
𝜕

𝜕Re(𝑨)
log|𝑨| = 𝑨−T, 

𝜕

𝜕Im(𝑨)
log|𝑨| = 𝐢𝑨−T (A. 7) 

Especially, when 𝑨 is Hermitian, 

 
𝜕

𝜕Re(𝑨)
log|𝑨| = 2Re𝑨−1 − Re𝑨−1 ∘ 𝑰, 

𝜕

𝜕Im(𝑨)
log|𝑨| = 2Im𝑨−1 (A. 8) 

9 Appendix B. Proof of equations 

In this appendix, we will provide proofs for various equations which appear in Section 0. 

1. Proof of Eqn. (15) 

Recall �̂�𝑘 = 𝜱𝜼𝑘 + 𝜺𝑘 . Given 𝜽  and 𝜼𝑘 , the first term 𝜱𝜼𝑘  is deterministic and so the 

uncertainty of �̂�𝑘 comes from the noise term 𝜺𝑘. Since the modal force and noise are assumed to 

be independent, knowing 𝜼𝑘  does not provide additional information for 𝜺𝑘  beyond that by 𝜽. 

Consequently, 𝜺𝑘 is still complex Gaussian with zero mean and covariance matrix 𝑆𝑒𝑰𝑛, and so  

 E�̂�𝑘|𝜼𝑘,𝜽[�̂�𝑘] = 𝜱𝜼𝑘 (B. 1) 

 Cov�̂�𝑘|𝜼𝑘,𝜽[�̂�𝑘] = 𝑆𝑒𝑰𝑛 (B. 2) 

Knowing 𝜼𝑘|𝜽~𝒞𝒩(𝟎, 𝑯𝑘), we can compute the complete-data log-likelihood 

𝐿(𝜽|{�̂�𝑘, 𝜼𝑘}) = log 𝑝({�̂�𝑘, 𝜼𝑘}|𝜽) = ∑ log 𝑝(�̂�𝑘, 𝜼𝑘|𝜽)
𝑁𝑓

𝑘=1   (B. 3) 
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= ∑ log[𝑝(�̂�𝑘|𝜼𝑘, 𝜽)𝑝(𝜼𝑘|𝜽)]
𝑁𝑓

𝑘=1 = ∑ log 𝑝(�̂�𝑘|𝜼𝑘 , 𝜽)
𝑁𝑓

𝑘=1 + ∑ log 𝑝(𝜼𝑘|𝜽)
𝑁𝑓

𝑘=1   

= −2𝑛𝑁𝑓 log 𝜋 − 𝑛𝑁𝑓 log 𝑆𝑒 − 𝑆𝑒
−1 ∑ [�̂�𝑘 − 𝜱𝜼𝑘]

∗
[�̂�𝑘 − 𝜱𝜼𝑘]

𝑁𝑓

𝑘=1 + ∑ log|𝑯𝑘
−1|

𝑁𝑓

𝑘=1 −

∑ 𝜼𝑘
∗ 𝑯𝑘

−1𝜼𝑘
𝑁𝑓

𝑘=1   

2. Proof of Eqns. (16) and (17) 

Given 𝜽 and �̂�𝑘, it is clear that the distribution of 𝜼𝑘 is still complex Gaussian. Its conditional 

mean and covariance matrix can be obtained by using standard results in multivariate complex 

Gaussian distribution. In particular, let 𝑿1 and 𝑿2 be two zero mean jointly complex Gaussian 

vectors. Given 𝑿1, the conditional mean and covariance matrix of 𝑿2 are respectively 𝑪21𝑪11
−1𝑿1 

and 𝑪22 − 𝑪21𝑪11
−1𝑪12, where 𝑪𝑖𝑗 denotes the (𝑖, 𝑗)-partition of the covariance matrix of {𝑿1, 𝑿2}. 

Applying this result with 𝑿1 = �̂�𝑘 and 𝑿2 = 𝜼𝑘, and using their covariance matrix in Eqn. (14), 

the conditional mean and covariance matrix of 𝜼𝑘 are given by 

 
E𝜼𝑘|�̂�𝑘,𝜽[𝜼𝑘] = 𝑯𝑘𝜱T[𝜱𝑯𝑘𝜱T + 𝑆𝑒𝑰𝑛]−1�̂�𝑘  

= 𝑆𝑒
−1(𝑯𝑘

−1 + 𝑆𝑒
−1𝜱T𝜱)−1𝜱T�̂�𝑘 = (𝑆𝑒𝑯𝑘

−1 + 𝜱T𝜱)−1𝜱T�̂�𝑘  
(B. 4) 

where we have used the property of Eqn. (A. 2) in deriving the second equation; 

 
Cov𝜼𝑘|�̂�𝑘,𝜽[𝜼𝑘] = 𝑯𝑘 − 𝑯𝑘𝜱T[𝜱𝑯𝑘𝜱T + 𝑆𝑒𝑰𝑛]−1𝜱𝑯𝑘 

= (𝑯𝑘
−1 + 𝑆𝑒

−1𝜱T𝜱)−1 = 𝑆𝑒(𝑆𝑒𝑯𝑘
−1 + 𝜱T𝜱)−1 

(B. 5) 

where the matrix inversion lemma Eqn. (A. 1) has been applied in deriving the second equation. 

3. Proof of Eqn. (20) 

Similar to the proof of Eqn. (15), we have �̂�𝑘|(𝜼𝑘, 𝜽∗, 𝜸)~𝒞𝒩(𝜱∗𝜸𝜼𝑘, 𝑆𝑒∗𝑰𝑛)  and 

𝜼𝑘|𝜽∗~𝒞𝒩(𝟎, 𝑯𝑘) for the augmented model. The complete-data log-likelihood is then given as 

𝐿(𝜽∗, 𝜸|{�̂�𝑘, 𝜼𝑘}) = log 𝑝({�̂�𝑘, 𝜼𝑘}|𝜽∗, 𝜸)  

= ∑ log 𝑝(�̂�𝑘|𝜼𝑘, 𝜽∗, 𝜸)
𝑁𝑓

𝑘=1 + ∑ log 𝑝(𝜼𝑘|𝜽∗)
𝑁𝑓

𝑘=1   

= −2𝑛𝑁𝑓 log 𝜋 − 𝑛𝑁𝑓 log 𝑆𝑒∗ − 𝑆𝑒∗
−1 ∑ [�̂�𝑘 − 𝜱∗𝜸𝜼𝑘]

∗
[�̂�𝑘 − 𝜱∗𝜸𝜼𝑘]

𝑁𝑓

𝑘=1 +

∑ log|𝑯𝑘
−1|

𝑁𝑓

𝑘=1 − ∑ 𝜼𝑘
∗ 𝑯𝑘

−1𝜼𝑘
𝑁𝑓

𝑘=1   

(B. 6) 

Taking the expectation of the above equation w.r.t. the distribution of 𝜼𝑘 conditioning on �̂�𝑘, 𝜽(𝑡), 

and 𝜸0, one can evaluate the 𝑄-function as 

𝑄(𝜽∗, 𝜸|𝜽(𝑡), 𝜸0) = E{𝜼𝑘}|{�̂�𝑘},𝜽(𝑡),𝜸0
[𝐿(𝜽∗, 𝜸|{�̂�𝑘, 𝜼𝑘})] 

= −2𝑛𝑁𝑓 log 𝜋 − 𝑛𝑁𝑓 log 𝑆𝑒∗ − 𝑆𝑒∗
−1 ∑ E𝜼𝑘|�̂�𝑘,𝜽(𝑡),𝜸0

{[�̂�𝑘 − 𝜱∗𝜸𝜼𝑘]
∗
[�̂�𝑘 −

𝑁𝑓

𝑘=1

𝜱∗𝜸𝜼𝑘]} + ∑ log|𝑯𝑘
−1|

𝑁𝑓

𝑘=1 − ∑ E𝜼𝑘|�̂�𝑘,𝜽(𝑡),𝜸0
[𝜼𝑘

∗ 𝑯𝑘
−1𝜼𝑘]

𝑁𝑓

𝑘=1   

= −2𝑛𝑁𝑓 log 𝜋 − 𝑛𝑁𝑓 log 𝑆𝑒∗ − 𝑆𝑒∗
−1 ∑ E𝜼𝑘|�̂�𝑘,𝜽(𝑡),𝜸0

{�̂�𝑘
∗ �̂�𝑘 − �̂�𝑘

∗ 𝜱∗𝜸𝜼𝑘 −
𝑁𝑓

𝑘=1

𝜼𝑘
∗ 𝜸T𝜱∗

T�̂�𝑘 + 𝜼𝑘
∗ 𝜸T𝜱∗

T𝜱∗𝜸𝜼𝑘} + ∑ log|𝑯𝑘
−1|

𝑁𝑓

𝑘=1 − ∑ E𝜼𝑘|�̂�𝑘,𝜽(𝑡),𝜸0
[tr(𝜼𝑘𝜼𝑘

∗ 𝑯𝑘
−1)]

𝑁𝑓

𝑘=1   

(B. 7) 
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= −2𝑛𝑁𝑓 log 𝜋 − 𝑛𝑁𝑓 log 𝑆𝑒∗ − 𝑆𝑒∗
−1𝑄1(𝜱∗, 𝜸|𝜽(𝑡), 𝜸0) + 𝑄2(𝒇∗, 𝜻∗, 𝑺∗|𝜽(𝑡), 𝜸0)  

where 

𝑄1(𝜱∗, 𝜸|𝜽(𝑡), 𝜸0) = ∑ �̂�𝑘
∗ �̂�𝑘

𝑁𝑓

𝑘=1 − 2tr [𝜱∗𝜸 ∑ Re(𝒘1𝑘�̂�𝑘
∗ )

𝑁𝑓

𝑘=1 ] +

tr [𝜱∗𝜸Re (∑ 𝒘2𝑘
𝑁𝑓

𝑘=1 ) 𝜸T𝜱∗
T]  

(B. 8) 

𝑄2(𝒇∗, 𝜻∗, 𝑺∗|𝜽(𝑡), 𝜸0) = ∑ log|𝑯𝑘
−1|

𝑁𝑓

𝑘=1 − tr [∑ 𝑯𝑘
−1𝒘2𝑘

𝑁𝑓

𝑘=1 ]  (B. 9) 

𝒘1𝑘 = E𝜼𝑘|�̂�𝑘,𝜽(𝑡),𝜸0
[𝜼𝑘], 𝒘2𝑘 = E𝜼𝑘|�̂�𝑘,𝜽(𝑡),𝜸0

[𝜼𝑘𝜼𝑘
∗ ] (B. 10) 

4. Proof of Eqn. (25) 

To obtain the optimal value of 𝑆𝑒∗, taking the partial derivative of 𝑄(𝜽∗, 𝜸|𝜽(𝑡), 𝜸0) in Eqn. (20) 

w.r.t. 𝑆𝑒∗
−1 gives 

𝜕𝑄(𝜽∗,𝜸|𝜽(𝑡),𝜸0)

𝜕𝑆𝑒∗
−1 = 𝑛𝑁𝑓𝑆𝑒∗ − 𝑄1(𝜱∗, 𝜸|𝜽(𝑡), 𝜸0)  (B. 11) 

Setting it to zero and solving for 𝑆𝑒∗ yields 

 𝑆𝑒∗ =
1

𝑛𝑁𝑓
𝑄1(𝜱∗, 𝜸|𝜽(𝑡), 𝜸0)  (B. 12) 

Substituting Eqn. (24) into Eqn. (21) gives 

𝑄1(𝜱∗, 𝜸|𝜽(𝑡), 𝜸0) = tr [∑ Re(�̂�𝑘�̂�𝑘
∗ )

𝑁𝑓

𝑘=1 ] −

2tr [∑ Re(�̂�𝑘𝒘1𝑘
∗ )

𝑁𝑓

𝑘=1 [∑ Re(𝒘2𝑘)
𝑁𝑓

𝑘=1 ]
−1

∑ Re(𝒘1𝑘�̂�𝑘
∗ )

𝑁𝑓

𝑘=1 ] +

tr [∑ Re(�̂�𝑘𝒘1𝑘
∗ )

𝑁𝑓

𝑘=1 [∑ Re(𝒘2𝑘)
𝑁𝑓

𝑘=1 ]
−1

∑ Re(𝒘1𝑘�̂�𝑘
∗ )

𝑁𝑓

𝑘=1 ]  

= tr [∑ Re(�̂�𝑘�̂�𝑘
∗ )

𝑁𝑓

𝑘=1 ] − tr [∑ Re(�̂�𝑘𝒘1𝑘
∗ )

𝑁𝑓

𝑘=1 [∑ Re(𝒘2𝑘)
𝑁𝑓

𝑘=1 ]
−1

∑ Re(𝒘1𝑘�̂�𝑘
∗ )

𝑁𝑓

𝑘=1 ]  

= tr [∑ Re(�̂�𝑘�̂�𝑘
∗ )

𝑁𝑓

𝑘=1 − 𝜱′ ∑ Re(𝒘2𝑘)
𝑁𝑓

𝑘=1 𝜱′T
]  

(B. 13) 

Therefore, 

 𝑆𝑒∗ =
1

𝑛𝑁𝑓
tr [∑ Re(�̂�𝑘�̂�𝑘

∗ )
𝑁𝑓

𝑘=1 − 𝜱′ ∑ Re(𝒘2𝑘)
𝑁𝑓

𝑘=1 𝜱′T
]  (B. 14) 

4. Proof of Eqn. (26)  

Before proceeding to the derivation, we first rewrite Eqn. (22) as 

𝑄2(𝒇∗, 𝜻∗, 𝑺∗|𝜽(𝑡), 𝜸0) = ∑ log|𝒉𝑘
−1𝒉𝑘

−∗|
𝑁𝑓

𝑘=1 + 𝑁𝑓 log|𝑺∗
−1| − tr (𝑺∗

−1 ∑ 𝒉𝑘
−1𝒘2𝑘𝒉𝑘

−∗𝑁𝑓

𝑘=1 )  (B. 15) 

Using Eqns. (A. 6) and (A. 8), we have the partial derivative 
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𝜕𝑄(𝜽∗,𝜸|𝜽(𝑡),𝜸0)

𝜕Re(𝑆∗
−1)

= 𝑁𝑓[2Re(𝑺∗) − Re(𝑺∗) ∘ 𝑰] − [2Re (∑ 𝒉𝑘
−1𝒘2𝑘𝒉𝑘

−∗𝑁𝑓

𝑘=1 ) −

Re (∑ 𝒉𝑘
−1𝒘2𝑘𝒉𝑘

−∗𝑁𝑓

𝑘=1 ) ∘ 𝑰]  
(B. 16) 

and setting it to zero gives 

 Re(𝑺∗) =
1

𝑁𝑓
Re (∑ 𝒉𝑘

−1𝒘2𝑘𝒉𝑘
−∗𝑁𝑓

𝑘=1 )  (B. 17) 

Similarly, we can derive 

 Im(𝑺∗) =
1

𝑁𝑓
Im (∑ 𝒉𝑘

−1𝒘2𝑘𝒉𝑘
−∗𝑁𝑓

𝑘=1 )  (B. 18) 

and combining Eqn. (B. 17) yields 

 𝑺∗ =
1

𝑁𝑓
∑ 𝒉𝑘

−1𝒘2𝑘𝒉𝑘
−∗𝑁𝑓

𝑘=1   (B. 19) 
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