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Abstract

We investigate the use of Twitter data to deliver signals for syndromic surveillance in order

to assess its ability to augment existing syndromic surveillance efforts and give a better

understanding of symptomatic people who do not seek healthcare advice directly. We focus

on a specific syndrome—asthma/difficulty breathing. We outline data collection using the

Twitter streaming API as well as analysis and pre-processing of the collected data. Even

with keyword-based data collection, many of the tweets collected are not be relevant

because they represent chatter, or talk of awareness instead of an individual suffering a par-

ticular condition. In light of this, we set out to identify relevant tweets to collect a strong and

reliable signal. For this, we investigate text classification techniques, and in particular we

focus on semi-supervised classification techniques since they enable us to use more of the

Twitter data collected while only doing very minimal labelling. In this paper, we propose a

semi-supervised approach to symptomatic tweet classification and relevance filtering. We

also propose alternative techniques to popular deep learning approaches. Additionally, we

highlight the use of emojis and other special features capturing the tweet’s tone to improve

the classification performance. Our results show that negative emojis and those that denote

laughter provide the best classification performance in conjunction with a simple word-level

n-gram approach. We obtain good performance in classifying symptomatic tweets with both

supervised and semi-supervised algorithms and found that the proposed semi-supervised

algorithms preserve more of the relevant tweets and may be advantageous in the context of

a weak signal. Finally, we found some correlation (r = 0.414, p = 0.0004) between the Twitter

signal generated with the semi-supervised system and data from consultations for related

health conditions.
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1 Introduction

Surveillance, described by the World Health Organisation (WHO) as “the cornerstone of pub-

lic health security” [1], is aimed at the detection of elevated disease and death rates, implemen-

tation of control measures and reporting to the WHO of any event that may constitute a

public health emergency or international concern. Disease surveillance systems often rely on

laboratory reports. More recently some countries such as the UK and USA have implemented

a novel approach called “syndromic surveillance”, which uses pre-diagnosis data and statistical

algorithms to detect health events earlier than traditional surveillance [2]. Syndromic surveil-

lance can be described as the real-time (or near real-time) collection, analysis, interpretation,

and dissemination of health-related data, to enable the early identification of the impact (or

absence of impact) of potential human or veterinary public health threats that require effective

public health action [3]. For example, they use emergency department attendances or general

practitioner (GP, family doctor) consultations to track specific syndromes such as influenza-

like illnesses (ILI). The digital world is generating data at an astonishing rate. This generated

big data has unlocked novel solutions to the area of public health [4, 5]. The expansion in digi-

tal technology and increasing access to online user-generated content, like Twitter, has pro-

vided another potential source of health data for syndromic surveillance purposes. Expanding

access to communications and technology makes it increasingly feasible to implement syndro-

mic surveillance systems in low and middle income countries (LMIC) too and some early

examples in Indonesia and Peru have indicated reason for optimism [6].

The use of data from microblogging sites, such as Twitter, for disease surveillance has

been gaining momentum (e.g. [7–11]). This may not only complement existing surveillance

systems, but may also support the precise monitoring of disease activity in sub-groups of the

population that do not routinely seek medical help via existing healthcare services. The real-

time streaming nature of Twitter data could provide a time advantage for syndromic surveil-

lance activities aimed at early detection of disease outbreaks. In addition to this, the low cost

of utilisation of this data means that in LMIC where access to medical services may be

restricted but where the of use digital technology and social media is becoming more com-

mon, such data may support the development of cost-effective and sustainable disease sur-

veillance systems.

It is in light of this that we develop our work. Our ultimate aim is to establish the utility of

social media data, and specifically, Twitter data for syndromic surveillance.

Our first objective is to extract a reliable signal from the Twitter stream for different syn-

dromes and health conditions of interest. To achieve this, we must be able to effectively iden-

tify and extract tweets expressing discomfort or concern related to a syndrome of interest and

reflecting current events. Such symptomatic tweets are considered “relevant” for our purpose

of syndromic surveillance. In this paper, we look at asthma/difficulty breathing as our syn-

drome of interest, which has received less attention in studies using social media data than

other syndromes (e.g. ILI). Keywords such as “asthma” or other asthma-related keywords can

capture tweets such as “oh I used to have asthma but I managed to control it with will power” or

“Does your asthma get worse when you exercise?” which we consider as not relevant. On the

other hand, tweets such as “having an asthma attack atm” or “why is my asthma so bad today?”
express a person currently affected, which we would like to consider as relevant. Hence, the

problem becomes one of text classification. Other authors [11, 12] have already identified that

much of the data captured on Twitter represents chatter, concern, or awareness instead of

actual infection or suffering from symptoms of a disease, talk of past events or a reflection on

news content. Such data is therefore irrelevant as a signal for syndromic surveillance. This

irrelevant content may greatly magnify the signal and lead to incorrect results and over-
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estimation [13]. Once the signal has been extracted, we then compare it to real world syndro-

mic surveillance data to understand how well Twitter works for monitoring our syndromes.

When extracting the Twitter signal, we focus on two novel aspects of tweet classification.

Firstly, we investigate emojis in tweet classification, and show their worth in a syndromic sur-

veillance context. While there is published literature making use of emoticons in text classifica-

tion [11], there are few studies describing the use of emojis. Secondly,we compare both

supervised and semi-supervised approaches to text classification. We consider semi-supervised

methods because they enable us to use a small amount of labelled data, thereby reducing the

initial labelling effort required to build a classifier. Finally, we compare the signal we extracted

using our methods, to syndromic surveillance data from Public Health England (PHE) to

investigate the utility of Twitter for the syndromic surveillance of asthma/difficulty breathing.

2 Related work

In a survey carried out in 2015, Charles-Smith et al. [8] identified 33 articles that reported on

the integration of social media into disease surveillance with varying degrees of success. How-

ever, they reported that there is still a lack of application in practice, despite the potential iden-

tified by various studies. Many studies are retrospective as it is relatively easy to predict a

disease post-outbreak, but practical application would need to be prospective. Uses of social

media data vary from global models of disease [14] to the prediction of an individual’s health

and when they may fall ill [15].

The most commonly studied disease is influenza (or ILI) [16]. Ginsberg et al. [17] put for-

ward an approach for estimating influenza trends using the relative frequency of certain Goo-

gle search terms as an indicator for physician visits related to influenza-like symptoms. They

found that there was a correlation between the volume of specific Google searches related to

ILI and the recorded ILI physician visits reported by CDC [17]. De Quincey and Kostkova [9]

introduced the potential of Twitter in detecting influenza outbreaks. They posited that the

amount of real-time information present on Twitter, either with regards to users reporting

their own illness, the illness of others or reporting confirmed outbreaks from the media, is

both rich and highly accessible. Achrekar et al. [18] also investigated the use of Twitter for

detecting and predicting seasonal influenza outbreaks, and observed that Twitter data is highly

correlated with the ILI rates across different regions within USA. They concluded that Twitter

data can act as supplementary indicator to gauge influenza within a population and could be

useful in discovering influenza trends ahead of CDC.

In this study, our objective is to collect relevant tweets for our given syndrome. We notice

that a majority of tweets are not relevant as they do not express the required sentiment (i.e. a

person suffering from the particular ailment at the current time). We view this as a text (or

tweet) classification problem, and build models to filter relevant tweets. Several papers have

looked at the tweet classification problem using supervised learning for different applications.

Sriram et al. [19] classified tweets to a predefined set of generic classes, such as news, events,

opinions, deals, and private messages, based on information on the tweets’ authors and

domain-specific features extracted from tweets. Dilrukshi et al. [20] applied a Support Vector

Machine (SVM) to classify tweets to different news categories. Some other papers have also

investigated tweet classification in the context of syndromic surveillance to varying degrees. As

early as 2013, Lamb et al. [11] used Twitter data to investigate influenza surveillance. They

argued that for accurate social media surveillance, it is essential to be able to distinguish

between tweets that report infection and those that express concern or awareness. To accom-

plish this, they made use of a log-linear model with word-level n-gram features extracted from

the tweets. Over the years, more sophisticated approaches to Twitter surveillance have arisen.
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Most recently, the rise in popularity of deep learning has seen it applied to social media data

and health research, yielding positive results. Hu et al. [21] used a Convolutional Neural Net-

work (CNN) to classify drug abuse behaviour in tweets. Lee et al. [22] applied a CNN to the

classification of tweets as being related to adverse drug effects or not. Dai et al. [23] made use

of deep learned distributed representations of words [24] to characterise tweets which were

then separated into two clusters—related or unrelated to a topic (e.g. influenza). Researchers

in Australia made use of Recurrent Neural Networks (RNNs) for the classification of chief

complaints to the Australian Emergency Department [25]. Chinese researchers applied RNNs

to spatio-temporal influenza data from the Shenzen Centre for Disease Control and Preven-

tion to predict flu trends [26]. SENTINEL [10] is a deep learning powered syndromic surveil-

lance system which utilises RSS news feeds in addition to Twitter, and makes use of supervised

deep learning classifiers, comparing them to Naive Bayes and SVM. It is set in the US and

looks at Influenza-like illnesses, similar to the majority of work on syndromic surveillance. We

have also previously carried out some work on the syndromic surveillance of asthma/difficulty

breathing using deep learning, making use of a deep Long Short Term Memory (LSTM) RNN

after implementing other deep architectures and comparing them [27].

One problem with the above approaches is that they rely on having a set of labelled data for

learning, i.e. a sufficient set of tweets must first be labelled as, say, relevant/irrelevant for the

learning to take place. Such labelling can be very time consuming, so it often means that

researchers do not use all of the data available, but instead use a subset of labelled data to

develop their classifiers. Since the syndromes/events we wish to study may not be mentioned

frequently in a Twitter feed, we wish to use as many tweets as possible to build our models.

Semi-supervised classification approaches try to produce models using a small set of labelled

data whilst also taking into account the larger set of unlabelled data. As such, we investigate

them next. A number of papers have looked at using semi-supervised learning for sentiment

analysis, and in particular, self-training [28, 29]. Baugh [30] proposed a hierarchical classifica-

tion system with self-training incorporated, with the goal of classifying tweets as positive,

negative or neutral. Liu et al. [31] proposed a semi-supervised framework for sentiment classi-

fication of tweets, based on co-training. They converted tweets into two kinds of distinct fea-

tures: textual and non-textual. The deep learning approaches highlighted above can also be

considered as semi-supervised, as they use unlabelled data to build vector feature representa-

tions which are subsequently used for classification. However, the classification process is still

entirely supervised. In fact, Oliver et al. [32] argue that while deep neural network tasks have

proven successful on standard benchmark tasks, these tasks are not comparable to the scarce

data scenarios for which widely-used semi-supervised classification techniques are imple-

mented. Lim et al. [33] proposed a completely unsupervised model for identifying latent infec-

tious diseases on social media. They made use of the unsupervised sentiment analysis system

SentiStrength [34] to identify positive and negative tweets. They then tried to check if the nega-

tive tweets contained mention of a relevant body part. The fully unsupervised system was

found to perform well without any human labelling at all and achieved an F1-score of 0.724.

In this paper, we build classification models for tweets based on the relevance in the context

of a specific syndrome/event which perform well in an environment with little labelled data. In

parallel work, we have been looking at deep learning methods [27]. There is an advantage in

developing methods with minimal labelled sets because they simplify the establishing of Twit-

ter data classification for new syndromes. As part of our investigation, we look into feature

representation and feature selection for text, which is an important part of text classification.

We experiment with different types of features, taking into consideration suggestions from

previous work. We consider the addition of emojis for tweet classification, and show their

worth for improving classification in a syndromic surveillance context. We compare both
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supervised and semi-supervised approaches to text classification in order to understand if, and

how, we can utilise more of the data that we collect.

3 Methods

We discuss the data collection, pre-processing and analysis of tweets in order to extract a rele-

vant signal for a given syndrome. We narrow our efforts to asthma/air pollution incidents in

this paper.

3.1 Data collection and pre-processing

We collected tweets in different periods to account for the seasonality of the syndromes under

study and to have a better chance of observing a significant episode, which is unpredictable.

This collection strategy also enables us to observe periods with no significant episodes, as a

form of control. Different periods also enable us to monitor changes in the use of Twitter as

well as in the language used on Twitter over time. We started with an Autumn period (Septem-

ber 2015 to November 2015), followed by a summer period (June 2016 to August 2016) and a

winter through to mid-summer period (January 2017 to July 2017).

Tweets were collected using the official Twitter streaming Application Programmer’s Inter-

face (API). The Twitter streaming API provides a subset of the Twitter stream free of charge.

The whole stream can be accessed on a commercial basis. Studies have estimated that using

the Twitter streaming API, users can expect to receive anywhere from 1% of the tweets to 40%

of tweets in near real-time [35]. The streaming API has a number of parameters that can be

used to restrict the tweets obtained. We extracted tweets in the English language with specific

terms that may be relevant to a particular syndrome. For this, in conjunction with experts

from Public Health England (PHE), we created a set of terms that may be connected to the spe-

cific syndrome under scrutiny, in this case asthma/difficulty breathing. We then expanded on

this initial list using various synonyms from regular thesauri as well as from the urban dictio-

nary (https://www.urbandictionary.com) as those may capture some of the more colloquial

language used on Twitter. Examples of our keywords are “asthma”, “wheezing”, “couldn’t

breathe” etc. A full list of keywords used is provided in S1 List.

The restriction on specific terms can be implemented in the Twitter API by by using the

parameter “track” followed by a comma-separated list of phrases which will be used to deter-

mine which tweets will be delivered from the stream. A phrase may be one or more terms sepa-

rated by spaces, and a phrase will match if all of the terms in the phrase are present in the

tweet, regardless of order and ignoring case. Hence in this model, commas act as logical ORs

and spaces are equivalent to logical ANDs. The tracked terms are matched against a number of

attributes of the tweet including the text attribute of the tweet, expanded_url and display_url
for links and media and screen_name for user.

We collected 10 million tweets obtained over the three collection periods. The general char-

acteristics of the collected tweets are reported in Table 1.

Table 1. Information on the data corpus collected before cleaning.

Counts

Tweets 10,702,063

URLs 2,225,155

Hashtags 177,506

Emojis 3,103,598

Number of unique users 5,861,247

Number of tweets per user 4.1

https://doi.org/10.1371/journal.pone.0210689.t001
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The anatomy of a tweet is presented in the Status Map in Fig 1. There are several attributes

associated with a tweet that are available to our analysis. We did not consider all the available

tweet attributes to be useful for our experiments, so we collected those that could help us in

our task. More specifically, we collected “tweet_Id”, “text”, “created_at”, “user_id”, “source” as

well as information that may help us establish location such as “coordinates”, “time_zone” and

“place.country”. We stored the collected tweets using MongoDB, which is an open source no-

SQL database whose associative document-store architecture is well suited to the easy storage

of the JSON Twitter responses.

3.1.1 Location filtering. Because the aim of this project is to assess the utility of Twitter

data for syndromic surveillance systems in England, we would like to exclude tweets originat-

ing from outside England. Doing this will give a realistic signal, however, inferring the location

of Twitter users is notoriously difficult. Fewer than 14% of Twitter users disclose city-level

information for their accounts and even then, some of those may be false or fictitious locations

[36]. Less than 0.5% turn on the location function which would give accurate GPS coordinate

information from mobile devices. time_zone, coordinates and place attributes, which we col-

lected, can help in the geolocation of a tweet but are not always present or even correct as is

shown in Table 2. The most reliable source of location information at the time of tweeting,

coordinates, is only present in a very small percentage of tweets.

For building a relevance classifier, accurate location is of relative importance. In this work,

we are not overly concerned with accurate location filtering. For the purpose of symptomatic

tweet classification for relevance filtering, location is of no importance. We collect tweets from

the whole of the UK. We employ all three geolocation fields, filtering out tweets that do not

have a UK timezone, a place in the UK or coordinates in the UK. We acknowledge that the

location filtering is not entirely accurate and may have a disruptive effect when we compare

our signal with public health data collected within England. However, we leave the task of

improving on location filtering for future work where we will extend our signal comparisons

to include longer periods of time and other syndromes.

3.1.2 Cleaning the data. The Twitter dataset contained retweets (sometimes abbreviated

to RT) which are the re-posting of a tweet; other duplicate tweets not marked as RT but con-

taining exactly the same text with different URLs appended; and users tweeting multiple times

on the same day. We removed all duplication from the final dataset in order to minimise the

detection of false signals.

In addition, we removed URLs, which are often associated with news items and blogs, and

replaced them with the token “<URL>”. This helped with identification of duplication but

also identification of “bot” posting and news items. A “bot” is the term used when a computer

program interacts with web services appearing as a human user. Tweets from bots, news and

web blogs are not relevant to syndromic surveillance so we developed algorithms to identify

them and remove them. An overview of the data after cleaning, showing a considerable reduc-

tion in volume, is shown in Table 3.

3.1.3 Labelling. 3,500 tweets from the first data collection period were manually labelled

as “relevant” or “not relevant”. A tweet was labelled as relevant if it announced or hinted at an

individual displaying symptoms pertaining to the syndrome of choice. The labelling was done

by three volunteers. A first person initially labelled the tweets. This took approximately 1 hour

per 1,000 tweets. A second person checked the labels and flagged up any tweets with labels that

they did not agree with. These flagged tweets were then sent to a third person who made the

decision on which label to use. 23% of the labelled tweets were labelled as “relevant” while 77%

were labelled as “irrelevant”. A second set of 2,000 tweets, selected at random, were later

labelled following the same procedure from the last data collection period. 32% of these tweets

were labelled as relevant and 68% were labelled as irrelevant. From the second sample of 2000
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Fig 1. Map of a tweet from the Twitter API.

https://doi.org/10.1371/journal.pone.0210689.g001
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tweets, the Inter-Rater Agreement was computed using Fleiss’ Kappa [37] which is given by

the following equation:

k ¼
�P � Pe

1 � Pe

where �P is the mean agreement between raters and Pe is the probability of agreement by

chance calculated from the observed data using the probabilities of each rater randomly label-

ling a tweet as relevant or irrelevant. The Fleiss’ kappa was chosen over other kappas due to the

fact that it is intended to be used when assessing the agreement between three or more raters

which is appropriate for this scenario. A value of 1 suggests complete agreement while a value

of 0 suggests complete disagreement. We obtained a value of 0.906 for κ.

3.1.4 Basic text classification features. We acknowledge that deep learned word vectors

are an effective avenue for text feature representation. However, as was described in section 2,

in this work, our focus is not on deep learning, but semi-supervised approaches that can be

used in an environment where labelled data is scarce. In addition, the training and deployment

of high-performant industry-grade deep learning systems with hundreds of layers can be

intensive and require considerable hardware resources such as dedicated GPUs and TPUs

[38]. A system such as ours will require no such special hardware or resources, so it will be eas-

ier for low and middle income countries (LMIC) to incorporate such systems at whatever

scale.

Classification of tweets may be challenging as they are very short and in our scenario, target

classes may share common vocabularies. That is, both relevant and irrelevant tweets could

contain the same words. Twitter has specific language and styles of communication that people

use. In particular, we found that emojis and emoticons are promising additional tokens that we

could exploit for classification:

• An emoticon is a pictorial representation of a facial expression using punctuation marks,

numbers and letters, usually written to express a person’s feelings or mood. :-) is an example

of an emoticon.

• Emojis on the other hand are miniature graphics of various objects and concepts including

facial expressions. is an example of an emoji.

Table 2. Availability of geolocation attribute in collected Twitter Data.

Data Collection Period Percentage of tweets Containing attributes

Coordinates Timezone Place

September 23, 2015—November 30, 2015 0.30% 57.90% 2.17%

June 15, 2016—August 30, 2016 0.29% 61.12% 2.10%

January 27, 2017—July 31, 2017 0.21% 59.21% 1.61%

https://doi.org/10.1371/journal.pone.0210689.t002

Table 3. Information on the data corpus collected after cleaning.

Counts

Tweets 127,145

URLs 147,102

Hashtags 23,189

Emojis 36,872

Number of unique users 115,583

Number of tweets per user 5.3

https://doi.org/10.1371/journal.pone.0210689.t003
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Emoticons have been used successfully as features to improve tweet classification perfor-

mance in sentiment analysis as well as syndromic surveillance [11]. Practically speaking, emo-

jis can be used for the same purposes as emoticons. However, emojis have seen a recent surge

in popularity, presumably due to the fact that emojis provide colourful graphical representa-

tions as well as a richer selection of symbols [39]. In fact, as Table 1 shows, there were a large

number of emojis in our corpus. Because of this, we extend existing emoticon feature tech-

niques with the inclusion of emojis. A further advantage is that while emoticon use can differ

around the world, emoji features are less variant. Take for example the crying emoticon. In

Western countries, it can be represented by:’( or:’-(. In Asian countries, “kaomoji”, which

refers to emoticons depicting faces and made from a combination of Western punctuation

characters and CJK (Chinese-Japanese-Korean) characters, are more popular than regular

emoticons [40]. An example of a popular kaomoji is “�\_(ッ)_/�”. Using the earlier example of

the crying face, we could now also expect to see (T_T) for the same concept. Emojis on the

other hand are a predefined set of unicode characters. Even though they may be rendered dif-

ferently on different devices, the underlying mapping between a concept and an emoji remains

the same. In this sense, emojis may transcend language barriers.

We believe that emoticons and emojis can help with assessing the tone of a tweet. Tweets

we are interested in will most likely have a negative tone as they reflect people expressing that

they are unwell or suffer some symptoms. This means they may contain one or more emojis/

emoticons denoting sadness, anger or tiredness, for example. On the other hand, the presence

of emojis/emoticons denoting happiness and laughter in a tweet may be an indication that the

tweet is not relevant to our context of syndromic surveillance. We also investigate more com-

plex features derived from our words or additional tokens.

3.1.5 Feature construction.

3.1.5.1 Word classes We extend our n-gram feature set with further syntactical features in

order to make up for the shortcomings words may present when applied to Twitter data.

Word classes are labels that Lamb et al. [11] found useful in the context of analysing tweets to

categorise them as related to infection or awareness. The idea is that many words can behave

similarly with regard to a class label. A list of words is created for different categories such as

“possessive words” or “infection words”. Word classes function similarly to bag of word features

in that the presence of a word from a word class in a tweet triggers a count based feature. We

manually curated a list of words and classes which are shown in Table 4. As we applied lemma-

tisation, we did not include multiple inflections of the words in our word classes.

3.1.5.2 Positive and negative word counts: We constructed two dictionaries of positive

and negative words respectively. These dictionaries are shown in S2 and S3 Lists. This feature

computes for every tweet, the number of positive words and negative words it contains. Words

that do not appear in either of our dictionaries are not counted. The classifier should then

infer a matching between ratios of positive to negative counts and tweet relevance.

3.1.5.3 Denotes laughter: This is a simple binary feature which measures the presence of a

token (emoji and/or emoticon) that might suggest laughter or positivity. We manually curated

Table 4. Our list of word classes with their member words.

Word Class Member Words

Infection sick, down, ill, infect, caught, recover

Possession have, contain, contaminated, my

Concern awful, worried, scared, afraid, terrified, fear, sad, unhappy, feel

Humour laugh, ha, haha, hahaha, lol, lmao, rofl, funny, hilarious, amused

Symptomatic runny nose, cough, spray, shots, wheezing, mucus, cold

https://doi.org/10.1371/journal.pone.0210689.t004
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and saved a list of positive emojis/emoticons for this. The usefulness of this feature was aug-

mented by also checking for the presence of a small list of more established and popular inter-

net and slang for laughter or humour such as “lol” or “lmao” which stand for “Laughing Out

Loud” and “Laughing My Ass Off” respectively. Table 5 shows this feature’s distribution over

the data.

3.1.5.4 Negative emojis/emoticons: This is similar to the Denotes Laughter feature but this

time looking at the presence of an emoji or emoticon that can be associated with an illness or

the symptoms that it may bring., i.e. negative emotions. We decided to include this feature

because we discovered the ubiquity of emojis on Twitter and wanted to investigate their poten-

tial. Table 5 shows this feature’s distribution over the data. We find that this feature may be the

most discriminative of the two emoji-based features. Of the instances with a positive value, a

high percentage belong to the “relevant” class and of the instances with a negative value, a high

percentage belong to the “not relevant” class.

We experimented with two other features—Contains Asthma-Verb Conjugate and Indicates
Personal Asthma Report but found that they underperformed compared to the other features

so we do not report on them. We also constructed features from the tweets collected in the lat-

est time period in order to see how the features generalised across time periods. The distribu-

tions of the non-continuous features from the latest time period are shown in Table 6.

For each tweet, we appended all of the above features together to form one feature vector.

Each tweet Ti is therefore represented by an f dimensional vector, where f is a sum of the num-

ber of terms, n, in the constructed vocabulary, and the dimensionality of our custom features

C (Word Classes, Positive and Negative Word Counts, Denotes Laughter and Negative Emojis/
Emoticons). This gives us

Ti ¼ fti1; ti2; :::; ting [ fC
1

i g [ fC
2

i g [ fC
3

i g [ fC
4

i g

where tij represents the weight of the j-th vocabulary term in the i-th tweet and Ck
i represents

the value of the k-th custom feature in the i-th tweet. The feature vectors are represented in

code by dictionary (or hashmap) objects which allows them to contain different types of values

(i.e.. binary, continuous and categorical).

Table 5. Distribution of some constructed features and classes across the dataset.

Feature Value Distribution Class Distribution

Relevant Not Relevant

Denotes Laughter TRUE 3.9% 31.8% 68.2%

FALSE 96.3% 24.2% 75.8%

Negative Emojis/Emoticons TRUE 5.5% 74.8% 25.2%

FALSE 94.5% 21.6% 78.4%

https://doi.org/10.1371/journal.pone.0210689.t005

Table 6. Distribution of constructed features and classes across tweets from a different time period 2 years apart from our that of our investigated dataset.

Feature Value Distribution Class Distribution

Relevant Not Relevant

Denotes Laughter TRUE 4.0% 13.9% 86.1%

FALSE 96.0% 32.5% 67.5%

Negative Emojis/Emoticons TRUE 14.4% 41.3% 58.7%

FALSE 85.6% 30.2% 69.8%

https://doi.org/10.1371/journal.pone.0210689.t006
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3.2 Text classification

A classification algorithm for text can be used to automatically classify tweets, in this case, to

the categories of relevant/not relevant. We first applied a variety of popular and powerful

supervised classification algorithms to the data namely—Naive Bayes, Decision Trees, Logistic

Regression, Support Vector Machines (SVMs) and Multilayer Perceptron (MLP) neural net-

works. We used the Python implementations found in the Natural Language ToolKit (NLTK)

and Sci-Kit Learn [41].

As per our objective, we also implemented a semi-supervised approach which is suited to

small to medium sized datasets [32]. Semi-supervised learning attempts to make use of the

combined information from labelled and unlabelled data to exceed the classification perfor-

mance that would be obtained either by discarding the unlabelled data and applying super-

vised learning or by discarding the labels and applying unsupervised learning. Our intention is

to extend the labelling in a semi-supervised fashion. We make use of the heuristic approach to

semi-supervised learning and employ a self-training iterative labelling algorithm. We then

extend this work by using a form of co-training.

3.2.1 Self-training model. We adopted an Iterative Labelling Algorithm for semi-super-

vised learning [42]. Iterative labelling algorithms are closely related to and are essentially

extensions of the Expectation-Maximization (EM) algorithm put forward by Dempster et al.

[43]. The iterative labelling algorithm is a sort of meta-algorithm which uses a data set S of

labelled instances L, unlabelled instances U, and a supervised learning algorithm A with

S ¼ fL [ Ug

An iterative learning algorithm aims to derive a function f which provides a mapping from S
to a new dataset S0:

f ðS;AÞ ¼ S0 $ fL0 [ U 0 g j jU 0j � jUj; jL0j � jLj

Such an algorithm can be defined simplistically as an iterative execution of three functions:

Choose-Label-Set(U, L, A) selects and returns a new set, R, of unlabelled examples to be

labelled; Assign-Labels(R, S, A) generates labels for the instances selected by Choose-Label-Set
(U, L, A); Stopping-Condition(S, S0) dictates when the algorithm should stop iterating.
Algorithm Iterative labelling Algorithm
function ITERATIVELABELLING(U, L, A)
repeat
R  Choose-Label-Set(U, L, A)
R  Assign-Labels(R, S, A)
U  Replace-Instances(U, R)

until Stopping-Condition(S, S0) = True

For our choice of supervised learning algorithm, we selected the MLP classifier after experi-

menting with different supervised models and finding it to perform best. We used the trained

MLP classifier’s predictions to label unlabelled instances in the Assign-Labels function. We set

our stopping condition such that the iteration stops when either all the unlabelled data is

exhausted or there begins to be a continued deterioration in performance as more data is

labelled. Along with the class of an applied instance, we also compute the model’s confidence

in its classification. Our algorithm, inspired by Truncated Expectation-Maximization (EM)

[44], then grows L based on the confidence of our model’s classification. When an instance

from R is classified, if the confidence of the classification is greater than some set threshold θ,

the instance is labelled. Considering this, our algorithm falls within the confidence-based cate-

gory of iterative labelling or self-training algorithms because it selects instances for which the

trained classifier has a high confidence in its predictions.
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Confidence-based iterative labelling algorithms can tend toward excessively conservative

updates to the hypothesis, since training on high-confidence examples that the current hypoth-

esis already agrees with will have relatively little effect [44]. In addition, it has been proven that

in certain situations, many semi-supervised learning algorithms can significantly degrade the

performance relative to strictly supervised learning [45, 46].

3.2.2 Co-training model. To address the problems of self-training, we take some ideas

from co-training [47] to try to improve our algorithm. Co-training requires different views

of the data so that multiple classifiers can be maintained for the purpose of labelling new

instances. Recall that each tweet can be represented as a feature vector Ti with various features.

We now distinguish two representations. The first is a concatenation of our n-grams, Word
Classes, Denotes Laughter and Negative Emojis/Emoticons features. We represent this feature

space as X1. The second kind of feature vector is a concatenation of our n-grams, Positive and
Negative Word Counts, Denotes Laughter and Negative Emojis/Emoticons features. We repre-

sent this feature space as X2. We can think of X1 as the taxonomical feature space as is charac-

terised by its inclusion of the Word Classes feature while X2 can be the sentimental feature

space and this is characterised by its inclusion of the Positive and Negative Word Counts fea-

ture. As such, X1 and X2 offer different, though overlapping, views of the dataset. Each tweet is

then represented as a feature vector from each of these spaces.

We now maintain two separate classifiers trained on different views of the data. During the

iterative labelling process, we only label instances for which at least one of the classifiers has a

high confidence in its prediction and take the result of that classification as the label. Similar to

self-training, at the end of each iteration, the newly labelled data is incorporated into each of

the classifiers to update their hypotheses. Once the iterative labelling process is completed, the

prior training examples for both classifiers as well as the newly labelled examples are joined

together and used to train a new classifier using all the features which will then be applied in

practice. The benefit of co-training is that the examples labelled by one classifier are also pre-

sented to the other classifier to update the hypothesis on the complementary view. Thus, the

examples, as represented in each view, receive at least some of their labels from a source other

than the classifier that will be updated with them [42].

3.2.3 Correcting the class imbalance. We started with an initial set of manually labelled

data contained 3,500 tweets. This consisted of 23.7% tweets that were labelled as relevant and

76.3% labelled as irrelevant. Imbalanced data causes well known problems to classification

models [48]. We initially tried both oversampling and undersampling techniques to create a

balanced training dataset as well as just using the unbalanced data. We found no major differ-

ence between the balancing approaches, but they gave some advantage over the unbalanced

data, so we opted for over sampling. The class distribution over the balanced training set had

47% of tweets as relevant and 53% as irrelevant. The test set was not balanced.

3.2.4 Performance metrics. Another important aspect of imbalanced data and of classifi-

cation in general is having the right performance metric for assessment of classification model

[49]. Overall accuracy is a misleading measure [50] as it may only be reflecting the prevalence

of the majority class. This is called the accuracy paradox, i.e. we could get high accuracy by

classifying all tweets as irrelevant. That would, however, not improve our signal. The aim of

our endeavour is to identify tweets which might suggest an increase of cases for a particular

syndrome (asthma/difficulty breathing) for the purpose of syndromic surveillance. Our signal

for some syndromes is quite weak as not many cases may occur at a national level and even

less may be talked about on Twitter. Because of this, we are very concerned with identifying

and keeping instances of the positive class (relevant tweets). We would like to reduce the num-

ber of irrelevant tweets but not at the expense of losing the relevant tweets. This means that for

our classifier, errors are not of equal cost. Relevant tweets that are classified as irrelevant, also
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known as False Negative (FN) errors, should have a higher cost and hence be minimised; we

can have more tolerance of irrelevant tweets classified as relevant, also known as False Positive

(FP) errors. Those subtleties are well captured by alternative measures of model performance

such as recall, the probability that a relevant tweet is identified by the model and precision, the

probability that a tweet predicted as relevant is actually relevant [51]. Precision and recall are

often trading quantities. A measure that combines precision and recall is the F-measure or F-

score [52]. We primarily make use of the F2 measure which weighs recall higher than precision

and may be more suited to our purpose.

3.2.5 Assessment of features and key words. We also assessed the discriminative ability

of each of our features by performing feature ablation experiments [53]. We evaluated the per-

formance of a given classifier when using all our features, and then again after removing each

one of these features. The difference in the performance is used as a measure of the importance

of the feature. We chose to use the difference in F1 metric over F2 in this analysis because we

wanted to convey how the features performed in the general task of tweet classification.

We also performed some analysis on the word (i.e. n-gram) features to learn which words

in our vocabulary were the best indicators of relevant tweets. We analysed the n-gram compo-

nent of our compound feature vectors in order to calculate the informativeness, or information
gain of each word unigram. The information gain of each feature pair is based on the prior

probability of the feature pair occurring for each class label. A higher information gain (hence,

a more informative feature,) is a feature which occurs primarily in one class and not in the

other. Similarly, less informative features are features which occur evenly in both classes. The

information gain idea is pivotal to the decision tree algorithm but generalises to others and

was adapted in the NLTK package for use in a broader sense. In NLTK, informativeness of a

word w was calculated as the highest value of P(w = feature_value|class) for any class, divided

by the lowest value of P(w = feature_value|class) [41]. This informativeness I, is summarised

below:

I ¼
8c 2 C : maxðPðfeature ¼ feature valuejcÞÞ
8c 2 C : minðPðfeature ¼ feature valuejcÞÞ

where C is the set of all classes and c is a possible class.

Recall that to collect tweets, we made use of Twitter’s streaming API which allowed us to

specify keywords to restrict the data collection to tweets containing those specific terms. We

measured the usefulness of the keywords we selected. To do this, we assessed their information

retrieval performance. Specifically, we used the precision-recall metric. In an information

retrieval context, precision and recall are defined in terms of a set of retrieved documents and

their relevance. We use our original set of labelled tweets for this assessment (i.e. the set of

3500 tweets). In our scenario, the labelled tweets make up the set of retrieved documents and

the tweets labelled as belonging to the “relevant” class make up the set of relevant documents.

In this context, recall measures the fraction of relevant tweets that are successfully retrieved

while precision measures the fraction of retrieved tweets that are relevant to the query.

4 Results

4.1 Classifiers

The results of our fully-supervised and semi-supervised classification are presented in Table 7.

The original data was divided into a 70:30 training and test split through random sampling

and the results presented are measures obtained from the test data. Of the fully-supervised

classifiers, Logistic Regression, SVM and MLP are very sensitive to hyper-parameters. The val-

ues for these hyper-parameters were found using grid-search with a hold-out validation
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setup. 90% of the training data (70% of the labelled set) was used to build the classifiers and the

remaining 10% was used to optimise the hyper-parameters. In the following evaluation, we use

the discovered optimal hyper-parameters according to the grid-search. For Logistic regression,

we used L2 regularisation with a regularisation strength C of 0.00001. For the SVM, we used a

Radial Basis Function kernel and C of 0.01. For the MLP, we used 2 hidden layers, each with

128 neurons, a learning rate of 0.001, a regularisation α of 0.0001, a batch size of 200 and

trained for 100 epochs. The Adam optimiser [54] was used in minimising the loss function.

For the iterative labelling experiments, we varied and tuned the confidence thresholds until we

found the best results and reported those. Below, we also discuss in more detail how the confi-

dence threshold affected the iterative labelling performance as it is a key aspect of the algo-

rithms. The best fully-supervised approach according to a combination of the F1 and F2 scores

was the MLP, which achieved an F2 score of 0.888 on the test data. This equated to an overall

prediction accuracy of 95.5%. The best semi-supervised approach, which was the co-training

algorithm (using the best fully-supervised classifier—MLP as its base), achieved an F2 score of

0.929 on the test data, also with a predictive accuracy of 95.5%. Overall, the semi-supervised

approach achieves higher F scores. To confirm what we concluded from the results, we applied

a paired t-test to test the difference in F2 scores between the fully-supervised MLP algorithm

and the co-training algorithm. Before carrying out this test, we confirmed that the data satis-

fied the assumptions necessary for the paired t-test to be relevant—continuous, independent,

normally distributed data without outliers. This resulted in a t-statistic of 7.7 and a p-value of

1.7 × 10− 13 which suggests that the difference between the F2 scores of the two algorithms was

not due to chance.

We also computed the precision, recall and F-score for the best fully-supervised approach

and best semi-supervised approach on the minority class, i.e. the relevant tweets. The results of

this experiment are presented in Table 8. The semi-supervised approach produces both a

stronger F1 and F2 score on the minority class. To give a better understanding of how the dif-

ferent measures manage to balance the number of FP and FN, we also present the confusion

Table 7. Results of relevance classification on the test data. Naive Bayes (NB), Decision Tree (DT), Logistic Regression (LR), Support Vector Machine (SVM) and Multi-

layer Perceptron (MLP) algorithms are reported together with the self-training and co-training iterative labelling algorithms.

Supervised

Algorithms

Precision Recall Accuracy F1 Score F2 Score

NB 0.636 0.804 84.2% 0.710 0.764

DT 0.915 0.629 89.7% 0.554 0.671

LR 0.885 0.739 91.5% 0.805 0.764

SVM 0.864 0.722 90.6% 0.787 0.747

MLP 0.928 0.878 95.5% 0.903 0.888

Semi-Supervised

Algorithms

Precision Recall Accuracy F1 Score F2 Score

Self-training 0.897 0.924 95.6% 0.910 0.919

Co-training 0.881 0.942 95.5% 0.910 0.929

https://doi.org/10.1371/journal.pone.0210689.t007

Table 8. Performance results of the best fully-supervised approach and best semi-supervised approach on the minority class—“relevant.”

Algorithms Metric on Relevant Class

Precision Recall F1 Score F2 Score

Fully-supervised 1.000 0.835 0.910 0.864

Semi-supervised 0.839 1.000 0.912 0.963

https://doi.org/10.1371/journal.pone.0210689.t008
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matrices for both the best performing fully-supervised and semi-supervised methods on the

test data. These confusion matrices are shown in Tables 9 and 10 respectively. From the confu-

sion matrices, we see that the semi-supervised approach performs better for the purpose of

syndromic surveillance as it yields only 17 false negatives even though it also yields 37 false

positives. Considering that our aim is to develop a filtering system to identify the few relevant

tweets in order to register a signal for syndromic surveillance, it is critical to have high recall,

hopefully accompanied by high precision, and therefore high accuracy. The semi-supervised

method is able to identify and retain relevant tweets more often, while also being able to iden-

tify irrelevant tweets to a reasonable degree. Hence, even with a shortage of labelled data, the

semi-supervised algorithms can be used to filter and retain relevant tweets effectively.

Fig 2 shows how the performances of the semi-supervised systems change as the confidence

threshold changes. The confidence threshold controls how conservatively the semi-supervised

system assimilates unlabelled instances as it represents how confident the semi-supervised sys-

tem needs to be in its classification before assimilating the instance to inform future decisions.

We observed co-training with MLP to perform best. We also observed that for lower confi-

dence thresholds between 0.1 and 0.5, self-training performance is usually lower and does not

change much between thresholds. Co-training on the other hand, appears to be less sensitive

to this parameter. Fig 2 also reiterates what we learned from Table 7 that the MLP is our stron-

gest fully-supervised model. In addition, while the logistic regression classifier does not per-

form as well as the MLP, it appears to be robust to different confidence thresholds when used

in an iterative labelling context. We hypothesise that this advantage arises because the logistic

regression classifier has considerably less hyper-parameters to optimise. This means that if a

set of hyper-parameters, which is impactful on performance, is not optimal for a certain

threshold, such a set would be less of a hinderance to the logistic regression model.

The main issue with iterative labelling algorithms is that, because the classifiers are not

perfect and do not have 100% accuracy, we cannot be sure that the unlabelled instances

that they label for assimilation are always correct. This means that their initial performance

before any labelling iterations is vital. Consider a classifier, initially of poor performance

(with an accuracy of 0.2 for example). When classifying unlabelled instance with which to

train itself, 80% of its classifications will be wrong, so it will assimilate false hypotheses, which

will in turn make its performance in the next iteration even worse and so on. Conversely, if the

initial accuracy is high, it is more likely to correctly classify unlabelled instance and be less

resistant to the drop in performance from assimilating false hypotheses. We conducted an

experiment to measure the quality of the automatically labelled instances assimilated by our

Table 9. Confusion matrix for MLP fully-supervised classification on the test data.

Actual True Actual False Total

Predicted True TP (256) FP (20) 276

Predicted False FN (35) TN (891) 926

Total 291 911 N = 1202

https://doi.org/10.1371/journal.pone.0210689.t009

Table 10. Confusion matrix for Co-training semi-supervised algorithm on the test data.

Actual True Actual False Total

Predicted True TP (274) FP (37) 311

Predicted False FN (17) TN (874) 891

Total 291 911 N = 1202

https://doi.org/10.1371/journal.pone.0210689.t010
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Fig 2. Graph of F2 performance of Iterative Labelling using different confidence thresholds.

https://doi.org/10.1371/journal.pone.0210689.g002
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semi-supervised classifiers. For this exercise, we used the second set of labelled tweets from a

different time period as the “unlabelled” set with to which the iterative labelling is applied to.

The same training set as in our other experiments was used for the initial training stage. The

self-training and co-training processes were initiated, applying these classifiers to the alterna-

tive set of labelled data (around 2000 instances) in steps of 200. Fig 3 shows a plot of the pro-

portion of correctly classified instances that the iterative labelling process assimilated. The co-

training approach had a higher rate of being correct when making new additions. This was in

fact the aim of adopting co-training with its multiple different views of the same data. The pro-

portion of correct assimilations of both the self-training and co-training methods rises as more

data is assimilated, due to the fact that the systems are getting more intelligent. Although we

could not test beyond 2000 instances (because of our limited labelled data), we believe that the

proportion of correct assimilations will increase until a certain point, after which it will pla-

teau. We expect this plateau due to the fact that at a certain point, the iterative learning classifi-

ers will have nothing new to learn from new data after having been exposed to so much.

Fig 3. Graph showing how many correct assimilations the iterative labeling algorithms make per iteration using labelled data from a different time period.

https://doi.org/10.1371/journal.pone.0210689.g003
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As with the features constructed, we tested how the classifiers would perform for new data

collected at a different time period to assess if shifts in language and colloquialisms could have

an impact on performance. Our classifiers were built on data from the first collection period

(see Table 2). For a simple assessment, we applied our trained model to tweets collected in the

most recent collection period, which had a time gap of two years from the original data. Our

semi-supervised approach based on co-training achieved a precision of 0.418 and a recall of

0.587 on the 2,000 labelled tweets from the most recent collection period. This means an F1

score of 0.488 and more importantly, an F2 score of 0.543. For comparison purposes, we also

applied the fully-supervised MLP algorithm to the data from this new time period. This yielded

a precision of 0.420 and a recall of 0.410. This meant an F1 score of 0.415 and an F2 score of

0.412. In both cases, we observe a deterioration in performance when introduced to tweets

from a different time period. This poses an important issue to consider about how language

online changes moving forward. Although it changes very gradually, after a period of one or

two years, the changes are substantial enough to render the natural language-based models less

effective.

4.2 Feature analysis

Table 11 shows the results of the feature ablation experiments. Our central feature was the n-

gram. Without it, we see the performance of our systems drop by around 0.2. We also found

that our supporting features yield some additional improvements in performance on top of

the n-gram features. For each of these supporting features, their omission results in a drop in

performance of around 0.1. Of our additional features, we found that Negative Emojis/Emoti-
cons were the most discriminative, followed by the Denotes Laughter feature in the supervised

approach, which also captures emojis as well as colloquialisms, and Positive/Negative Word
Count in the semi-supervised approach. All three of these features capture the mood of a

tweet.

Table 12 shows the words found to be most informative. For example, the table shows that,

of the tweets containing the word chest, 96% are relevant and only 4% are irrelevant. The train-

ing data is used for this calculation. A surprising negative predictor was the word health.

When health appeared in a tweet, the tweet was irrelevant 94% of the time. The word pollution
shows a similar trend. This suggests that when Twitter users are expressing health issues, they

may not use precise or formal terms, opting for simple symptomatic and emotional words

such as chest, cold or wow. The more formal terms may be more often associated with news

items or general chat or discussion. Using this information, we could include some of the

more relevant but perhaps unexpected keywords as keywords when collecting streaming

tweets from Twitter in order to better target and collect relevant tweets.

We also investigated which emojis were most prevalent in our data set as well as how often

each emoji appeared in tweets for each class. Fig 4 shows the frequency with which each emoji

Table 11. F1 scores after feature ablation.

Ablated Feature Supervised F1 Score Semi-supervised F1 Score

None 0.710 0.714

Denotes Laughter 0.628 0.643

Negative Emojis/Emoticons 0.627 0.620

Word Classes 0.677 0.637

Positive/Negative Word Count 0.648 0.625

n-grams 0.561 0.596

https://doi.org/10.1371/journal.pone.0210689.t011
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occurred in the labelled tweets. It shows that only a few emojis appear very frequently in tweets

collected in our context. This means that only a few important emojis were needed for deter-

mining tweet relevancy as opposed to monitoring for the full emoji dictionary. Fig 5 shows a

list of some emojis and the distribution of classes that tweets belonged to whenever they con-

tained said emoji. Overall, it can be seen that each of these emojis tends to lean heavily toward

one class. This suggests that they could be quite discriminative and useful indicators of class

membership and hence, helpful features.

4.3 Keyword analysis

Table 13 shows the results of the assessment of keywords used in tweet collection from an

information retrieval point of view. We found that asthma, pollution and air pollution were the

keywords that yielded the most results at 1313, 757 and 509 out of a total of 3500. Wheezing,

fumes and inhaler were next with 219, 132, 121 tweets respectively. The remaining keywords

return very few results (below 40) or no results. In an information retrieval scenario, precision

refers to the fraction of retrieved results that are relevant to the query while recall refers to the

fraction of relevant results that are successfully retrieved. Asthma had the highest recall but not

very high precision so most of its results were irrelevant. Wheezing, inhaler, wheeze, cannot
breathe, can’t breathe, difficulty breathing and short of breath have good precision although

their recall is not that high. Some of those keywords express direct symptoms of the syndrome

under investigation, hence, we expect good precision. Tight chest and pea souper have very

high precision but only appeared in two tweets each. Of the keywords used, wheezing was the

most useful in that it brought in a lot of results, most of which were relevant. We included a

common misspelling of asthma, the keyword with the highest recall power—asma. We found

that asma only appeared in 4 tweets. We hypothesise that this is due to the fact that most users

of Twitter post from devices capable of autocorrect hence it may not be necessary to worry

about misspelling of keywords.

The informativeness, I, was calculated when the keywords were also features in the classifi-

ers and is presented in Table 14. Most of the keywords were not informative from a feature

selection point of view, with an information gain ratio of 1:1 for relevant:irrelevant tweets so

Table 12. Most informative words measured by their Informativeness and their relevant:irrelevant prior probabilities.

Word I (Relevant:Irrelevant) Relevant Prior Probability Irrelevant Prior Probability

chest 22/4 0.96 0.04

throat 17/1 0.95 0.05

wow 17/1 0.95 0.05

health 1/17 0.06 0.94

cold 16/1 0.94 0.06

moment 15/1 0.94 0.06

forecast 1/14 0.07 0.93

awake 13/1 0.93 0.07

awful 13/1 0.93 0.07

sick 13/1 0.93 0.07

cough 12/1 0.92 0.08

pollution 1/12 0.08 0.92

bed 11/1 0.91 0.09

hate 11/1 0.91 0.09

watch 10/1 0.91 0.09

https://doi.org/10.1371/journal.pone.0210689.t012
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they are not included. We found that some of the keywords used for collecting tweets were

also informative in the model, although not always associated with the relevant class. For

example, pollution, which was a keyword, appeared in the ranking of top 15 most informative

words associated with the irrelevant class. Similarly fumes also associates with the irrelevant

class more. On the other hand wheezing had good information retrieval performance and asso-

ciated with relevant tweets.

4.4 Syndromic surveillance comparisons

As we discussed earlier, the purpose of our relevance filtering is a syndromic surveillance

application. After constructing and evaluating our semi-supervised filtering systems, we

assessed their utility for syndromic surveillance purposes by retrospectively applying them to

Twitter data and comparing the results against data for existing syndromic indicators from the

Public Health England (PHE) Real-time Syndromic Surveillance Service. For this experiment,

Fig 4. Bar chart showing emoji frequency in labelled data.

https://doi.org/10.1371/journal.pone.0210689.g004
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Fig 5. Most frequent emojis in labelled data and their distributions.

https://doi.org/10.1371/journal.pone.0210689.g005

Table 13. Assessment of the quality of the search keywords from an information retrieval perspective. Precision is the fraction of retrieved tweets that are relevant to

the query. Recall is the fraction of the relevant tweets that are successfully retrieved.

Keyword Precision Recall Keyword Precision Recall

asthma 0.174 0.475 poor air quality 0.000 0.000

pollution 0.009 0.015 murk 0.000 0.000

air pollution 0.008 0.008 can’t breathe 0.556 0.010

wheezing 0.406 0.185 difficulty breathing 0.125 0.002

fumes 0.030 0.008 short of breath 0.333 0.004

inhaler 0.198 0.050 respiratory disease 0.000 0.000

smog 0.023 0.002 asma 0.000 0.000

gasping 0.025 0.002 tight chest 0.500 0.002

puffing 0.033 0.002 pea souper 0.500 0.002

wheeze 0.138 0.008 itchy eyes 0.000 0.000

panting 0.043 0.002 could not breathe 0.000 0.000

cannot breathe 0.412 0.015 coudn’t breathe 0.000 0.000

trouble breathing 0.100 0.002 chest tightness 0.000 0.000

sore eyes 0.100 0.002 acid rain 0.000 0.000

https://doi.org/10.1371/journal.pone.0210689.t013

Table 14. Information gain or keyword Informativeness I of keywords, conceptualised as the ratio relevant:

irrelevant.

Streaming Keyword I Relevant Prior Probability Irrelevant Prior Probability

pollution 1/12 0.08 0.92

wheezing 5/1 0.84 0.16

fumes 1/3 0.24 0.76

panting 1.6/1.0 0.62 0.38

https://doi.org/10.1371/journal.pone.0210689.t014
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we made use of unlabelled tweets from our second collection period, June to August 2016. Syn-

dromic surveillance data on the proportion of daily GP Out-of-Hours (GPOOH) calls for

asthma, wheezing or difficulty breathing and tele-health calls (NHS 111) for difficulty breath-
ing for the period June to August 2016 were compared to the signal detected from our Twitter

data using our semi-supervised and fully-supervised filtering systems. As a sense check, we

also compared our detected Twitter signal time series against non-respiratory syndrome data

in the form of NHS 111 calls for diarrhoea. This was to provide some form of control which

should not correlate with the Twitter signal.

The resulting time series shows the daily proportion of relevant symptomatic tweets and

consultations/calls as observed on Twitter and recorded by PHE (Figs 6 and 7). The signals

were smoothed using a 7-day moving average to remove the fluctuations in daily activity for

GPOOH data as that service receives more usage over the weekends. We also included a time

series showing the Twitter signal without any filtering for further perspective. We see that the

time series plots of the self-training and co-training filtering follow a similar trend to the GP

data time series. Also, the time series for the Twitter data without any filtering has lots of spuri-

ous peaks in relation to the ground truth data (i.e. the syndromic surveillance data). Both of

these observations together suggest that Twitter data might mirror the health activity of a pop-

ulation and that relevance filtering is useful in reducing noise and obtaining a clearer picture

of such activity. Additionally, we see that while the unfiltered Twitter signal does not match

well with the asthma/wheeze/difficulty breathing or difficulty breathing signal, it still seems to

match better than that of the diarrhoea signal.

Fig 6. Time series plots comparing GP asthma/wheeze/difficulty breathing data to signals from supervised and semi-supervised Twitter analysis and unrelated

diarrhoea.

https://doi.org/10.1371/journal.pone.0210689.g006
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To further evaluate the quality of our detected signal, we calculated the Pearson correlation

coefficient to determine the strength and direction of any monotonic relationship between the

indicators (Table 15). We observed a weak but statistically significant correlation between the

Twitter signals and the asthma and difficulty breathing syndromic surveillance data. The signal

produced by the co-training method achieved a stronger correlation than that the signal pro-

duced by the best fully-supervised method—the MLP. For the diarrhoea syndrome, there was

no statistically significant correlation with the Twitter time series. To corroborate this, it can

be seen from the time series that the plots for our detected Twitter signals and GP data follow a

similar downward trend but the diarrhoea signal does not. This further suggests that our semi-

supervised system can detect activity similar to that detected by traditional syndromic surveil-

lance systems recording GP visits and NHS 111 calls. This suggests that they could potentially

be further explored as an additional form of syndromic surveillance, even in an environment

with scarce labelled data.

Fig 7. Time series plots comparing NHS 111 difficulty breathing data to signals from supervised and semi-supervised Twitter analysis and unrelated diarrhoea.

https://doi.org/10.1371/journal.pone.0210689.g007

Table 15. Pearson correlations and P-Values for detected signals with syndromic surveillance signals.

Syndrome Relevance Filtering Algorithm

Self-Training Co-Training MLP Neural Network

Asthma/Wheezing/DB 0.249(p = 0.04) 0.414(p = 0.0004) 0.255(p = 0.03)

Difficulty Breathing 0.228(p = 0.04) 0.424(p = 0.0002) 0.214(p = 0.07)

Diarrhoea −0.01(p = 0.9) 0.04(p = 0.7) 0.05(p = 0.7)

https://doi.org/10.1371/journal.pone.0210689.t015
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5 Discussion

Twitter is a noisy data source for syndromic surveillance but through data processing and

tweet classification, we have been able to identify relevant tweets among the noisy data for a

specific syndrome or incident (asthma/difficulty breathing). This in turn allowed us to extract

a signal of potential use for syndromic surveillance that correlated positively with real-world

public health data. Using a semi-supervised method of classification for filtering tweets, we

achieve an accuracy of 95.5% and F1 and F2 scores of 0.910 and 0.929 respectively. We argued

that recall is very important for us because we want to keep all the relevant tweets so that we

can have some signal, even if amplified by some misclassified irrelevant tweets. The best recall,

obtained by the semi-supervised algorithm equated to retaining over 90% of the relevant

tweets after classification. Also, the semi-supervised approach allowed us to use 8000 previ-

ously unlabelled tweets before it started to see a deterioration in performance. This allowed us

to make more use of the data collected.

Tweet classification using supervised learning has received a lot of attention [19, 20, 55–57]

and gave us good results with F1 and F2 scores of 0.910 and 0.919 respectively for the MLP neu-

ral network. Tweet labelling, required for supervised classification, is time consuming, how-

ever, so often researchers do not use all of the data available to build the model. Semi-

supervised methods for tweet classification have been used for sentiment analysis [58, 59].

They can enable more of the collected data to be used for training the classifier bypassing some

of the labelling effort. Johnson el al. [60] used a method called label propagation and reported

accuracy of 78%. Baugh [30] proposed a hierarchical classification system with self-training

and reported accuracy of 61% and an F1 score of 0.54. We have implemented an iterative label-

ling semi-supervised approach which seems to have competitive performance and also enables

us to use more of the training data without the effort of labelling. Furthermore, we get an

improvement on recall over the supervised method, which is important given that the signal

we are trying to preserve for syndromic surveillance may be weak. We compare our semi-

supervised system to others above but we acknowledge that applications in different domains

might weaken the comparison. Baugh [30] also applied semi-supervised systems to tweet clas-

sification but not for syndromic surveillance so this comparison might be of more value.

We have also identified strong and novel features in the context of tweet classification: emo-

jis. We have hinted at the growing use of emojis [39] and their importance in establishing the

tone of at tweet which in turn is important to relevance classification. Emojis cross language

boundaries and are often used by people expressing conditions of interest to syndromic sur-

veillance. Our custom features constructed based on Twitter colloquialisms including emojis

proved effective in improving classification performance. Of all our custom features, the one

that stood out most was the Negative Emojis/Emoticons feature. Emoticons have been used pre-

viously [11]. Emojis work even better than emoticons and their uniformity is a real advantage.

A smile emoticon could be illustrated in the form “:-D” or “:D”. However, because emojis are

actually unicode encoded pictographs with a set standard [61], there exist no variants of the

same emoji. In a learning scenario, this reduces fragmentation or duplication of features mak-

ing them more ideal as features than emoticons.

In terms of geolocation of tweets, we have found that most of the obvious location indica-

tors are not well populated, and those that are, may not be accurate. Hence, future work must

tackle geolocation as a real part of the problem for establishing a proper signal from Twitter.

After comparing our extracted Twitter signal to real world syndromic surveillance data, we

found a positive, albeit weak correlation. This suggests that there is a relationship between

asthma related Twitter activity and syndromic surveillance data for asthma and breathing-

related incidents. While the actual correlation value indicates a weak relationship, it still
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suggests that we can detect relevant activity on Twitter which is similar or complementary to

that which is collected by traditional means. The strength of the correlation might be affected

by the weak location filtering that we have been able to perform. As we discussed, the syndro-

mic surveillance data relates to England but the Twitter data has only been located (not accu-

rately) to the UK. As future work, we plan to assess the full detection capability of Twitter by

repeating this analysis prospectively over a longer time period, and for different syndromes,

allowing us to determine whether Twitter can detect activity that is of potential benefit to syn-

dromic surveillance.

We also found that “what to collect” is problematic as the data collection of tweets by key-

words requires a carefully chosen list of keywords. Furthermore, our experimentation with dif-

ferent type of features like emojis also tell us that the vocabulary used in Twitter is different to

expression in other settings (e.g. as part of a medical consultation). Hence we may need to

widen our data collection terms to include emojis, emoticons and other types of informal

expressions. We may also need to develop adaptive systems in which the set of data collection

keywords is dynamically updated to collect truly relevant tweets. So an idea for future research

is to begin with a set of keywords, collect tweets, perform relevance analysis and then update

the keyword/token list to reflect those that associate with the most relevant tweets, eliminating

any keywords/tokens that are not performing adequately.

We saw also that vocabulary and use of tokens change over time. Negative emojis/emoticons
appeared more often in the second time period, up from 5.5% to 14.4% of labelled tweets con-

taining them. This could suggest that over the past two years, the use of emojis as a form of

expression has grown. However their prevalence in each class also changed, which may explain

the classification performance showing some marked deterioration in precision. We per-

formed our research on data collected within a two year period, but further data collection and

experimentation would be beneficial to understand the temporality of models generated as

Twitter conversations change over time.

Supporting information

S1 List. Appendix. Twitter data collection keywords. Pollution, smog, poor air quality,

wheeze, wheezing, difficulty breathing, asthma, inhaler, air pollution, itchy eyes, sore eyes,

trouble breathing, cannot breathe, could not breathe, can’t breathe, coudn’t breathe, asma,

short of breath, tight chest, chest tightness, respiratory disease, pea souper, murk, fumes, acid

rain, gasping, puffing, panting.

(TXT)

S2 List. Appendix. Positive Word Dictionary. Adore, adorable, accomplish, achievement,

achieve, action, active, admire, adventure, agree, agreeable, amaze, amazing, angel, approve,

attractive, awesome, beautiful, brilliant, bubbly, calm, celebrate, celebrating, charming, cheery,

cheer, clean, congratulation, cool, cute, divine, earnest, easy, ecstasy, ecstatic, effective, effec-

tive, efficient, effortless, elegant, enchanting, encouraging, energetic, energized, enthusiastic,

enthusiasm, excellent, exciting, excited, fabulous, fair, familiar, famous, fantastic, fine, fit, for-

tunate, free, fresh, friend, fun, generous, genius, glowing, good, great, grin, handsome, happy,

hilarious, hilarity, lmao, lol, rofl, haha, healthy, ideal, impressive, independent, intellectual,

intelligent, inventive, joy, keen, laugh, legendary, light, lively, lovely, lucky, marvel, nice, okay,

paradise, perfect, pleasant, popular, positive, powerful, pretty, progress, proud, quality, refresh,

restore, right, smile, success, sunny, super, wealthy, money, cash, well, wonderful, wow, yes,

yum.

(TXT)
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S3 List. Appendix. Negative Word Dictionary. Abysmal, adverse, alarming, angry, rage,

annoy, anxious, anxiety, attack, appalling, atrocious, awful, bad, broken, can’t, not, cant, can-

not, cold, collapse, crazy, cruel, cry, damage, damaging, depressed, depression, dirty, disease,

disgust, distress, don’t, dont, dreading, dreadful, dreary, fail, fear, scare, feeble, foul, fright,

ghastly, grave, greed, grim, gross, grotesque, gruesome, guilty, hard, harm, hate, hideous, hor-

rible, hostile, hurt, icky, ill, impossible, injure, injury, jealous, lose, lousy, messy, nasty, nega-

tive, never, no, nonsense, crap, shit, fuck, fukk, fuxk, nausea, nauseous, pain, reject, repulsive,

repulse, revenge, revolting, rotten, rude, ruthless, sad, scary, severe, sick, slimy, smelly, sorry,

sticky, stinky, stormy, stress, stuck, stupid, tense, terrible, terrifying, threaten, ugly, unfair,

unhappy, unhealthy, unjust, unlucky, unpleasant, upset, unwanted, unwelcome, vile, wary,

weary, wicked, worthless, wound, yell, yucky.

(TXT)
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