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Abstract

The range-minimum query (RMQ) problem is a fundamental data structuring task with
numerous applications. Despite the fact that succinct solutions with worst-case optimal
2n+o(n) bits of space and constant query time are known, it has been unknown whether such
a data structure can be made adaptive to the reduced entropy of random inputs (Davoodi
et al. 2014). We construct a succinct data structure with the optimal 1.736n+ o(n) bits of
space on average for random RMQ instances, settling this open problem.

Our solution relies on a compressed data structure for binary trees that is of independent
interest. It can store a (static) binary search tree generated by random insertions in
asymptotically optimal expected space and supports many queries in constant time. Using
an instance-optimal encoding of subtrees, we furthermore obtain a “hyper-succinct” data
structure for binary trees that improves upon the ultra-succinct representation of Jansson,
Sadakane and Sung (2012).

1 Introduction

The range-minimum query (RMQ) problem is the following data structuring task: Given an
array A[1..n] of comparable items, construct a data structure at preprocessing time that can
answer subsequent queries without inspecting A again. The answer to the query rmq(i, j),
for 1 ≤ i ≤ j ≤ n, is the index (in A) of the1 minimum in A[i..j], i.e.,

rmq(i, j) = arg min
i≤k≤j

A[k].

RMQ data structures are fundamental building blocks to find lowest common ancestors in
trees, to solve the longest common extension problem on strings, to compute suffix links
in suffix trees, they are used as part of compact suffix trees, for (3-sided) orthogonal range
searching, for speeding up document retrieval queries, finding maximal-scoring subsequences,
and they can be used to compute Lempel-Ziv-77 factorizations given only the suffix array (see
Section 1.1 and [8, §3.3] for details). Because of the applications and its fundamental nature,
the RMQ problem has attracted significant attention in the data structures community, in
particular the question about solutions with smallest possible space usage (succinct data
structures).

1 To simplify the presentation, we assume the elements in A are unique. In the general case, we fix a
tie-breaking rule, usually to return the leftmost minimum. Our data structures extend to any such
convention.
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The hallmark of this line of research is the work of Fischer and Heun [9] who describe a
data structure that uses 2n+ o(n) bits of space and answers queries in constant time.2 We
discuss further related work in Section 1.3.

The space usage of Fischer and Heun’s data structure is asymptotically optimal in the
worst case in the encoding model (i.e., when A is not available at query time): the sets of
answers to range-minimum queries over arrays of length n is in bijection with binary trees
with n nodes [10, 26], and there are 22n−Θ(logn) such binary trees. We discuss this bijection
and its implications for the RMQ problem in detail below.

In many applications, not all possible sets of RMQ answers (resp. tree shapes) are possible
or equally likely to occur. Then, more space-efficient RMQ solutions are possible. A natural
model is to consider arrays containing a random permutation; then the effective entropy
for encoding RMQ answers is asymptotically 1.736n [13] instead of the 2n bits. It is then
natural to ask for a range-minimum data structure that uses 1.736n bits on average in this
case, and indeed, this has explicitly been posed as an open problem by Davoodi, Navarro,
Raman and Rao [4]. They used the “ultra-succinct trees” of Jansson, Sadakane and Sung
[18], to obtain an RMQ data structure with 1.919n+ o(n) bits on average [4].

In this note, we close the space gap and present a data structure that uses the optimal
1.736n+o(n) bits on average to answer range-minimum queries for arrays whose elements are
randomly ordered. The main insight is to base the encoding on “subtree-size” distributions
instead of the node-degree distribution used in the ultra-succinct trees. To our knowledge,
this is the first data structure that exploits non-uniformity of a global property of trees (sizes
of subtrees) – as opposed to local parameters (such as node degrees) – and this extended
scope is necessary for optimal compression.

To obtain a data structure with constant-time queries, we modify the tree-covering
technique of Farzan and Munro [6] (see Section 6) to use a more efficient encoding for
micro trees. Finally, we propose a “hyper-succinct” data structure for trees that uses an
instance-optimal encoding for the micro trees. By asymptotic average space, this data
structure attains the limit of compressibility achievable with tree-covering.

The rest of this paper is organized as follows. We summarize applications of RMQ, its
relation to lowest common ancestors and previous work in the remainder of this first section.
In Section 2, we introduce notation and preliminaries. In Section 3, we define our model of
inputs, for which Section 4 reports a space lower bound. In Section 5, we present an optimal
encoding of binary trees w.r.t. to this lower bound. We review tree covering in Section 6
and modify it in Section 7 to use our new encoding. Hyper-succinct trees are described in
Section 8.

1.1 Applications
The RMQ problem is an elementary building block in many data structures. We discuss
two exemplary applications here, in which a non-uniform distribution over the set of RMQ
answers is to be expected.

Range searching

A direct application of RMQ data structures lies in 3-sided orthogonal 2D range searching.
Given a set of points in the plane, we maintain an array of the points sorted by x-coordinates

2 We assume here, and in the rest of this article, that we are working on a word-RAM with word size
w = Θ(log n).
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and build a range-minimum data structure for the array of y-coordinates and a predecessor
data structure for the set of x-coordinates. To report all points in x-range [x1, x2] and
y-range (−∞, y1], we find the indices i and j of the outermost points enclosed in x-range,
i.e., the ranks of the successor of x1 resp. the predecessor of x2, Then, the range-minimum
in [i, j] is the first candidate, and we compare its y-coordinate to y1. If it is smaller than y1,
we report the point and recurse in both subranges; otherwise, we stop.

A natural testbed is to consider random point sets. When x- and y-coordinates are
independent of each other, the ranking of the y-coordinates of points sorted by x form a
random permutation, and we obtain the exact setting studied in this paper.

Longest-common extensions

A second application of RMQ data structures is the longest-common extension (LCE)
problem on strings: Given a string/text T , the goal is to create a data structure that allows
to answer LCE queries, i.e., given indices i and j, what is the largest length `, so that
Ti,i+`−1 = Tj,j+`−1. LCE data structures are a building block, e.g., for finding tandem
repeats in genomes; (see Gusfield’s book [14] for many more applications).

A possible solution is to compute the suffix array SA[1..n], its inverse SA−1, and the
longest common prefix array LCP[1..n] for the text T , where LCP[i] stores the length of the
longest common prefix of the ith and (i− 1)st suffixes of T in lexicographic order. Using an
RMQ data structure on LCP, lce(i, j) is found as LCP

[
rmqLCP

(
SA−1(i),SA−1(j)

)]
.

Since LCE effectively asks for lowest common ancestors of leaves in suffix trees, the tree
shapes arising from this application are related to the shape of the suffix tree of T . This
shape heavily depends on the considered input strings, but for strings generated by a Markov
source, it is known that random suffix trees behave asymptotically similar to random tries
constructed from independent strings of the same source [17, Cha. 8]. Those in turn have
logarithmic height – as do random BSTs. This gives some hope that the RMQ instances
arising in the LCE problem are compressible by similar means. Indeed, we could confirm the
effectiveness of our compression methods on exemplary text inputs.

1.2 Range-minimum queries, Cartesian trees and lowest common
ancestors

Let A[1..n] store the numbers x1, . . . , xn, i.e., xj is stored at index j for 1 ≤ j ≤ n. The
Cartesian tree T for x1, . . . , xn (resp. for A[1..n]) is a binary tree defined recursively as
follows: If n = 0, it is the empty tree (“null”). Otherwise it is a root whose left child is the
Cartesian tree for x1, . . . , xj−1 and its right child is the Cartesian tree for xj+1, . . . , xn where
j is the position of the minimum, j = arg mink A[k]; see Figure 2 (page 9) for an example. A
classic observation of Gabow et al. [10] is that range-minimum queries on A are isomorphic
to lowest-common-ancestor (LCA) queries on T when identifying nodes with their inorder
index:

rmqA(i, j) = noderankinorder

(
lcaT

(
nodeselectinorder(i),nodeselectinorder(j)

))
.

We can thus reduce an RMQ instance (with arbitrary input) to an LCA instance of the same
size (the number of nodes in T equals the length of the array). A widely-used reduction
from LCA on arbitrary (ordinal) trees writes down the depths of nodes in an Euler tour of
the tree. This produces an RMQ instance of length 2n for a tree with n nodes. However,
when T is a binary tree, we can replace the Euler tour by a simple inorder traversal and thus
obtain an RMQ instance of the same size.
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1.3 Related Work
Worst-case optimal succinct data structures for the RMQ problem have been presented
by Fischer and Heun [9], with subsequent simplifications by Ferrada and Navarro [7] and
Baumstark et al. [3]. Implementations of (slight variants) of these solutions are part of
widely-used programming libraries for succinct data structures, such as Succinct [1] and
SDSL [12].

The above RMQ data structures make implicit use of the connection to LCA queries in
trees, but we can more generally formulate that task as a problem on trees: Any (succinct)
data structure for binary trees that supports finding nodes by inorder index (nodeselectinorder),
computing LCAs, and finding the inorder index of a node (noderankinorder) immediately
implies a (succinct) solution for RMQ. Most literature on succinct data structures for trees
has focused on ordinal trees, i.e., trees with unbounded degree where only the order of
children matters, but no distinction is made, e.g., between a left and right single child. Some
ideas can be translated to cardinal trees (and binary trees as a special case thereof) [6, 5].
For an overview of ordinal-tree data structures see, e.g., the survey of Raman and Rao [25]
or Navarro’s book [22]. From a theoretical perspective, the tree-covering technique – initially
suggested by Geary, Raman and Raman [11]; extended and simplified in [15, 6, 4] – is the
most versatile and expressive representation. We present the main results and techniques,
restricted to the subset of operations and adapted to binary trees, in Section 6.

A typical property of succinct data structures is that their space usage is determined only
by the size of the input. For example, all of the standard tree representations use 2n+ o(n)
bits of space for any tree with n nodes, and the same is true for the RMQ data structures
cited above. This is in spite of the fact that for certain distributions over possible tree shapes,
the entropy can be much lower than 2n bits [20].

There are a few exceptions. For RMQ, Fischer and Heun [9] show that range-minimum
queries can still be answered efficiently when the array is compressed to kth order empirical
entropy. For random permutations, the model studied in this article, this does not result
in significant savings, though. Barbay, Fischer and Navarro [2] used LRM-trees to obtain
an RMQ data structure that adapts to presortedness in A, e.g., the number of (strict) runs.
Again, for the random permutations considered here, this would not result in space reductions.
Recently, Jo, Mozes and Weimann [19] designed RMQ solutions for grammar-compressed
input arrays resp. DAG-compressed Cartesian trees. The amount of compression for random
permutation is negligible for the former; for the latter it is less clear, but in both cases, they
have to give up constant-time queries.

In the realm of ordinal trees, Jansson, Sadakane and Sung [18] designed an “ultra-succinct”
data structure by replacing the unary code for node degrees in the DFUDS representation
by an encoding that adapts to the distribution of node degrees. Davoodi et al. [4] used the
same encoding in tree covering to obtain the first ultra-succinct encoding for binary trees
with inorder support. They show that for random RMQ instances, a node in the Cartesian
tree has probability 1

3 to be binary resp. a leaf, and probability 1
6 to have a single left resp.

right child. The resulting entropy is H( 1
3 ,

1
3 ,

1
6 ,

1
6 ) ≈ 1.91 bit per node instead of the 2 bit for

a trivial encoding.
Golin et al. [13] showed that 1.736n bits are (asymptotically) necessary and sufficient to

encode a random RMQ instance, but they do not present a data structure that is able to
make use of the encoding. The constant in the lower bound also appears in the entropy of
BSTs build from random insertions [20], for reasons that will become obvious in Section 3.
Similarly, the encoding of Golin et al. has independently been described by Magner, Turowski
and Szpankowski [21] to compress trees (without attempts to combine it with efficient access
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to the stored object). There is thus a gap left between the lower bound and the best data
structure with efficient queries, both for RMQ and for representing binary trees.

2 Notation and Preliminaries

We write [n..m] = {n, . . . ,m} and [n] = [1..n] for integers n, m. We use lg for log2 and leave
the basis of log undefined (but constant); (any occurrence of log outside an Landau-term
should thus be considered a mistake). Tn denotes the set of binary trees on n nodes, i.e.,
every node has a left and a right child (both potentially empty / null). For a tree t ∈ Tn and
one of its nodes v ∈ t, we write stt(v) for the subtree size of v in t, i.e., the number of nodes
w (including w = v) for which v lies on the path from the root to w. When the tree is clear
form the context, we shortly write st(v).

2.1 Bit vectors
We use the data structure of Raman, Raman, and Rao [24] for compressed bitvectors. They
show the following result; we use it for two more specialized data structures below.

I Lemma 1 (Compressed bit vector). Let B be a bit vector of length n, containing m 1-bits.
In the word-RAM model with word size Θ(lgn) bits, there is a data structure of size

lg
(
n

m

)
+ O

(
n log logn

logn

)
≤ nH

(m
n

)
+ O

(
n log logn

logn

)
= m lg

( n
m

)
+ O

(
n log logn

logn +m

)
bits that supports the following operations in O(1) time, for any i ∈ [1, n]:

access(V, i): return the bit at index i in V.
rankα(V, i): return the number of bits with value α ∈ {0, 1} in V[1..i].
selectα(V, i): return the index of the i-th bit with value α ∈ {0, 1}.

2.2 Variable-cell arrays
Let o1, . . . , om be m objects where oi needs si bits of space. The goal is to store an “array”
O of the objects contiguously in memory, so that we can access the ith element in constant
time as O[i]; in case si > w, we mean by “access” to find its starting position. We call such
a data structure a variable-cell array.

I Lemma 2 (Variable-cell arrays). There is a variable-cell array data structure for objects
o1, . . . , om of sizes s1, . . . , sm that occupies∑

si + m lg(max si) + 2m lg lgn + O(m)

bits of space.

Proof. Let n =
∑
si be the total size of all objects and denote by s = min si, S = max si

and s̄ = n/m the minimal, maximal and average size of the objects, respectively. We store
the concatenated bit representation in a bitvector B[1..n] and use a two-level index to find
where the ith object begins.

Details: Store the starting index of every bth object in an array blockStart[1..dm/be]. The
space usage is m

b lgn. In a second array blockLocalStart[1..m], we store for every object its
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starting index within its block. The space for this is m lg(bS): we have to prepare for the
worst case of a block full of maximal objects.

It remains to choose the block size; b = lg2 n yields the claimed bounds. Note that
blockStart is o(n) (for b = ω(lgn/s̄)), but blockLocalStart has, in general, non-negligible
space overhead. The error term only comes from ignoring ceilings around the logarithms; its
constant can be bounded explicitly. J

2.3 Compressed piecewise-constant arrays
Let A[1..n] be a static array of objects of size w bits each. The only operation is the standard
read-access A[i] where i ∈ [n]. Let m be the number of indices i with A[i] 6= A[i− 1], i.e., the
number of times we see the value in A change in a sequential scan. We always count i = 1 as
a change, so m ≥ 1. Between two such change indices, the value in A is constant. We hence
call such arrays piecewise-constant arrays. We can store such arrays in compressed form.

I Lemma 3 (Compressed piecewise-constant array). Let A[1..n] be a static array with m value
changes. There is a data structure for storing A that allows constant-time read-access to A[i]
using mw +m lg n

m +O
(
n lg lgn

lgn +m
)
bits of space.

Proof. We store an array V [1..m] of the distinct values in the order they appear in A, and a
bitvector C[1..n] where C[i] = 1 iff A[i] 6= A[i− 1]. We always set C[1] = 1. Since C has m
ones, we can store it in compressed form using Lemma 1. Then, A[j] is given by V [rank1 (C, j)],
which can be found in O(1). The space is mw for V and m lg n

m + O(m + n lg lgn/ lgn)
for C. J

This combination of a sparse (compressed) bitvector for changes and an ordinary (dense)
vector for values was used in previous work, e.g., [11, 4], without giving it a name. We feel
that a name helps reduce the conceptual and notational complexity of later constructions.
I Remark (Further operations). Without additional space, the compressed piecewise-constant
array data structure can also answer the following query in constant time using rank and
select on the bitvector: runlen(i), the number of entries to the left of index i that contain
the same value; runlen(i) = max{` ≥ 1 : ∀i− ` < j < i : A[j] = A[i]}.

3 Random RMQ and random BSTs

We consider the random permutation model for RMQ: Every (relative) ordering of the
elements in A[1..n] is considered to occur with the same probability. Without loss of
generality, we identify these n elements with their rank, i.e., A[1..n] contains a random
permutation of [1..n]. We refer to this as a random RMQ instance.

Let Tn ∈ Tn be (the random shape of) the Cartesian tree associated with a random RMQ
instance (recall Section 1.2). We will drop the subscript n when it is clear form the context.
We can precisely characterize the distribution of Tn: Let t ∈ Tn be a given (shape of a) binary
tree, and let i be the inorder index of the root of t. The minimum in a random permutation
is located at every position i ∈ [n] with probability 1

n . Apart from renaming, the subarrays
A[1..i− 1] and A[i+ 1..n] contain a random permutation of i− 1 resp. n− i elements, and
these two permutations are independent of each other conditional on their sizes. We thus
have

P[Tn = t] =
{

1, n ≤ 1;
1
n · P[Ti−1 = t`] · P[Tn−i = tr], n ≥ 2,

(1)
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where t` and tr are the left resp. right subtrees of the root of t. Unfolding inductively yields

P[Tn = t] =
∏
v∈t

1
st(v) , (2)

where the product is understood to range over all nodes v in t. Recall that st(v) denotes the
subtree size of v. The very same distribution over binary trees also arises for (unbalanced)
binary search trees (BSTs) when they are build by successive insertions from a random
permutation (“random BSTs”). Here, the root’s inorder rank is not given by the position of
the minimum in the input, but by the rank of the first element. That means, the Cartesian
tree for a permutation is precisely the BST generated by successively inserting the inverse
permutation. Since the inverse of a random permutation is itself distributed uniformly at
random over all permutations, the resulting tree-shape distributions are the same.

4 Lower bound

Since the sets of answers to range-minimum queries is in bijection with Cartesian trees,
the entropy Hn of the distribution of the shape of the Cartesian tree gives an information-
theoretic lower bound for the space required by any RMQ data structure in the encoding
model. For random RMQ instances, we find from Equation (1) and the decomposition rule
of the entropy that Hn fulfills the recurrence

H0 = H1 = 0 (3)

Hn = lgn+ 1
n

n∑
i=1

(Hi−1 +Hn−i), (n ≥ 2). (4)

We decompose the entropy of the choice of the entire tree shape into first choosing the root’s
rank (entropy lgn since we uniformly choose between n outcomes) and adding the entropy
for choosing the subtrees conditional on the given subtree sizes. The above recurrence is very
related with recurrences for random binary search trees or the average cost in quicksort, only
with a different “toll function”. Kieffer, Yan and Szpankowski [20] show3 that it solves to

Hn = lg(n) + 2(n+ 1)
n−1∑
i=2

lg i
(i+ 2)(i+ 1)

∼ 2n
∞∑
i=2

lg i
(i+ 2)(i+ 1)

≈ 1.7363771n

(Note that Kieffer et al. use n for the number of external leaves, where we count (internal)
nodes, so there is an off-by-one in the meaning of n.) The asymptotic approximation is
actually a fairly conservative upper bound for small n, see Figure 1.

3 Hwang and Neininger [16] showed earlier that Equation (4) can be solved exactly for arbitrary toll
function, and lg n is one such.
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Figure 1 Hn/n (blue) and its limit limn→∞ Hn/n ≈ 1.736 (yellow) for n ≤ 100.

5 An optimal encoding: subtree-size code

The formula for P[Tn = t], Equation (2), immediately suggests a route for an optimal
encoding: We can rewrite the lower bound, Hn, as

Hn = −
∑
T∈Tn

P[T ] · lg(P[T ])

=
∑
T∈Tn

P[T ] ·
∑
v∈t

lg
(
st(v)

)
︸ ︷︷ ︸
Hst(t)= E[Hst(T )]. (5)

That means, an encoding that spends Hst(t) bits to encode tree t ∈ Tn has optimal expected
code length! In a slight abuse of the term, we will call the quantity Hst(t) =

∑
v∈t lg

(
st(v)

)
the subtree-size entropy of a binary tree t.

Expressed for individual nodes, Equation (5) says we may spend lg s bits for a node whose
subtree size is s. Now, what can we store in lg s bits for each node that uniquely describes
the tree? One option is the size of each node’s left subtree. If a node v has subtree size
st(v) = s, then its left subtree has size ls(v) = st(left(v)) ∈ [0..s− 1] (“left size”), a quantity
with s different values. Moreover, for random BSTs, each if these s values is equally likely.

The encoding of a tree T stores n, the number of nodes followed by all left subtree sizes of
the nodes in preorder, which we compress using arithmetic coding [27]. To encode ls(v), we
feed the arithmetic coder with the model that the next symbol is a number in [0..st(v)− 1]
(all equally likely). Overall we then need Hst(T ) + 2 bits to store T when we know n. (Recall
that arithmetic coding compresses to the entropy of the given input plus at most 2 bits of
overhead.) Taking expectations over the tree T to encode, we can thus store a binary tree
with n nodes using Hn +O(logn) ≈ 1.736n+O(logn) bits on average.

We can reconstruct the tree recursively from this code. Since we always know the subtree
size, we know how many bins the next left tree size uses, and we know how many nodes we
have to read recursively to reconstruct the left and right subtrees. Since arithmetic coding
uses fractional numbers of bits for individual symbols (left tree sizes), decoding must always
start at the beginning. This of course precludes any efficient operations on the encoding
itself, so a refined approach is called for.
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Figure 2 Example of the Cartesian tree T for an array of 20 numbers. Each node shows the
inorder number (in the node, coincides with the array index), its preorder index (above the node)
and the sizes of left subtree and its total subtree (blue, below the node). We have Hst(T ) ≈ 28.74,
slightly below the expectation H20 ≈ 29.2209. The arithmetic code for the preorder sequence of
left tree sizes is 111011010111101011110101011111, i.e., 30 bits. This compares very favorably to a
typical balanced parenthesis representation which would use 40 bits.

5.1 Bounding the worst case
Although optimal in the average case, the above encoding needs Θ(n logn) bits in the worst
case: in a degenerate tree (an n-path), the subtree sizes are n, n− 1, n− 2, . . . , 1 and hence
the subtree-size entropy is

∑n
i=1 lg i ∼ n lgn. For such trees, we are better off using one

of the standard encodings using 2n + O(1) bits on any tree, for example Zak’s sequence
(representing each node by a 1 and each null pointer by a 0). We therefore prefix our encoding
with 1 extra bit to indicate the used encoding and then either proceed with the average-case
optimal or the worst-case optimal encoding. That combines the best of both worlds with
constant extra cost (in time and space). We can thus encode any tree t ∈ Tn in

2dlgne + min
{
Hst(t) + 3, 2n+ 2

}
bits,

where the first summand accounts for storing n (in Elias code). Since we store n alongside
the tree shape, this encoding can be used to store any tree with maximal size n in the given
space.

The above encoding immediately generalizes to, and gives optimal space for, a more
general family of distributions over tree shapes: We only need that the distribution of the
size of the left subtree of a node v depends only on the size of v’s subtree (but is conditionally
independent of the shapes of v’s subtrees and the shape of the tree above v). In the case of
random BSTs, this distribution is uniform (so our encoding is best possible), but in general,
we can adapt the encoding of our trees to any family of left-size distributions, in particular
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to the empirical distributions found in any given tree. This yields better compression for
skewed tree shapes.

6 Tree Covering

In this section, we review the tree-covering (TC) technique for succinct tree data structures.
The idea of tree covering was introduced by Geary, Raman and Raman [11] (for ordinal
trees) and later simplified by Farzan and Munro [6]; He, Munro and Rao [15] added further
operations for ordinal trees and Davoodi et al. [4] designed inorder support. Tree covering
has predominantly been used for ordinal trees, and it can be extended to support updates,
but our presentation is geared towards succinctly storing static binary trees.

6.1 Trees, mini trees, micro trees
The main idea of TC is to partition the nodes of a tree into subsets that form contiguous
subtrees. These subtrees are then (conceptually) contracted into a single node, and a second
such grouping step is applied. We then represent the overall (binary) tree as a (binary) tree
of mini trees, each of which is a (binary) tree of micro trees, each of which is a (binary) tree
of actual nodes:

nodes

micro treemini treeoverall tree

The number of nodes in micro trees is kept small enough so that an encoding of the
local topology of each micro tree fits into less than one word, say 1

2 lgn bits. The number of
(original) nodes in one mini tree is polylogarithmic (usually lg2 n), so that the overall tree (the
green level) has few enough nodes to fit a non-succinct (e.g., pointer-based) representation
into o(n) bits of space. The O(n/ log2 n) mini trees can similarly be stored with pointers by
restricting them to the polylogarithmic range inside a given mini tree. More generally, we
can afford to store the overall tree (of mini trees, a.k.a. tier-1 macro tree) and the mini trees
(of micro trees, a.k.a. tier-2 macro trees) using any representation that uses O(n logn) bits
for an n-node tree.

For the micro trees, we use the so-called “Four Russian trick”: The type, i.e., the
local topology, for each micro tree is stored in an array, and used as index into a large
precomputed lookup table to answer any micro-tree-local queries. Since there are only
2lgn/2 =

√
n different micro-tree types, this lookup table occupies o(n) bits of space even

with precomputed information for any pair of nodes.

6.2 Tree decomposition
We left open how to find a partition of the nodes into subtrees. A greedy bottom-up approach
suffices to break a tree of n nodes into O(n/B) subtrees of O(B) nodes each [11]. However,
more carefully designed procedures yield additionally that any subtree has only few edges
leading out of this subtree [6]. While originally formulated for ordinal trees, we note that on
binary trees, the decomposition algorithm of Farzan and Munro [6] always creates a partition
of the nodes, i.e., there are no subtrees sharing a common root:
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I Lemma 4 ([6, Theorem 1] for binary trees). For any parameter B ≥ 1, a binary tree with
n nodes can be decomposed, in linear time, into Θ(n/B) pairwise disjoint subtrees of ≤ 2B
nodes each. Moreover, each of these subtrees has at most three connections to other subtrees:

an edge from a parent subtree to the root of the subtree,
an edge to another subtree in the left subtree of the root,
an edge to another subtree in the right subtree of the root.

In particular, contracting subtrees into single nodes yields again a binary tree.

The decomposition scheme of Farzan and Munro additionally guarantees that (at least)
one of the edges to child subtrees emanates from the root; we do not exploit this property in
our data structure, though.

We found that it simplifies the presentation to assume that each subtree contains a copy
of the root of its child subtrees, i.e., all subtree roots (except for the overall root) are present
in two subtrees: once as root of the subtree and once as a leaf in the parent subtree. We
refer to the copy in the parent as the portal of the (parent) subtree (to the child subtree).
(An equivalent point of view is that we partition the edges of the tree and a subtree contains
all nodes incident to those edges.) By Lemma 4, each subtree has at most one left portal
and one right portal.

6.3 Node ids: τ -names
For computations internal to the data structure, we represent nodes by “τ -names”, i.e., by
triples (τ1, τ2, τ3), where τ1 is the (preorder number of the) mini-tree, τ2 is the (mini-tree-local
preorder number of the) micro tree and τ3 is the (micro-tree-local preorder number of the)
node. Geary, Raman and Raman [11] show that the triple fits in O(1) words and we can find
a node’s τ -name given its (global) preorder number, and vice versa, in constant time using
additional data structures occupying o(n) bits of space; we sketch these because they are
typical examples of TC index data structures.

preorder 7→ τ -name: nodeselectpreorder

We store τ1 and τ2 for all nodes in preorder in two piecewise-constant arrays. Since mini
resp. micro trees are complete subtrees except for up to two subtrees that are missing, any
tree traversal visits the nodes of one subtree in at most three contiguous ranges, so the above
arrays change their values only O(n/ log2 n) resp. O(n/ logn) times and can thus be stored
in o(n) bits of space by Lemma 3. In a third piecewise-constant array, we store the τ3-value
for the first node in the current micro-tree range; we obtain the τ3-value for any given node
by adding the result of the runlen operation (Remark 2.3).

τ -name 7→ preorder: noderankpreorder

The inverse mapping is more complicated in [11] since subtrees can have many child subtrees
using their decomposition scheme. With the stronger properties from Lemma 4, computing a
node’s preorder is substantially simpler. We store for each mini resp. micro tree the following
information:

the preorder index of the root
(in micro trees: local to the containing mini tree),
the (subtree-local) preorder index of the left and right portals
(in mini trees: these indices are w.r.t. actual nodes, not micro trees),
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the subtree size of the portal’s subtrees
(in micro trees: local to the containing mini tree).

For mini trees, these numbers fit in O(logn) bits each and can thus be stored for all
O(n/ log2 n) mini trees in o(n) space. For micro trees, we store information relative to the
surrounding mini tree, so the numbers fit in O(log logn) bits each, again yielding o(n) extra
space overall.

To compute the preorder index for node v with τ -name (τ1, τ2, τ3), we start with the
(mini-tree-local) preorder index of τ2’s root within τ1 and we add the subtree size of τ2’s left
(right) portal if τ3 is larger than the left (right) portal’s micro-tree-local preorder index. The
result is the preorder index τ ′3 of v within τ1 (in terms of nodes, not in terms of micro trees).
Applying the same computation, but using τ1’s portal information and starting with τ ′3, we
obtain v’s global preorder index.

6.4 Lowest common ancestors
He, Munro and Rao [15] use known O(n logn)-bit-space representations of ordinal trees that
support constant-time lowest-common-ancestor queries to represent the tier-1 and tier-2
macro trees, and they give a (somewhat intricate) O(1)-time algorithm to compute lca based
on these representations.

A conceptually simpler option is to use a O(n)-bit data structure for (static, ordinal) trees
that supports lca queries by preorder indices, e.g., the one of Navarro and Sadakane [23].
Note that for lca queries and preorder numbers, the distinction in binary trees between unary
nodes with only a left resp. only a right child is irrelevant. We construct the tree TB of all
micro-tree roots by contracting micro trees into single nodes, (ignoring the mini-tree level),
and store TB using the compact ordinal-tree data structure.

Using similar data structures as for noderankpreorder , we can compute the preorder number
of a micro-tree root in the micro-tree-root tree TB, denoted by noderankmicroRoot(τ1, τ2).
The inverse operation, nodeselectmicroRoot , is similar to nodeselectpreorder .

To find the LCA of two nodes u and v in the tree, we first find ku = noderankmicroRoot(u)
and kv = noderankmicroRoot(v). If ku = kv, both nodes are in the same micro tree and so is
their LCA, so we use the (micro-tree-local) lookup table to find the (precomputed) LCA.

Otherwise, when ku 6= kv, we determine k = lca(TB , ku, kv), the LCA of the micro-tree
roots in TB. If ku 6= k 6= kv, then the paths from ku and kv first meet at micro-tree root k
and we return lca(u, v) = nodeselectmicroRoot(k).

The remaining case is that the LCA is one of ku or kv; w.l.o.g. say k = ku. This means
that the micro-tree root r = nodeselectmicroRoot(ku) of u’s micro-tree root is an ancestor of v.
Since v is not in r’s micro tree, but in r’s subtree, it must be in the subtree of one of the
portals. We find the right one by selecting the portal p that fulfills p = lca(TB , p, v). (If TB
supports ancestor queries more efficiently, we can also ask whether p is an ancestor of v.)
Finally, as in the intra-micro-tree case, we find the lca of u and p within the micro tree.

6.5 Inorder rank and select
Davoodi et al. [4] describe o(n) bit data structures that allow to map preorder to inorder
and vice versa. For computing the inorder of a node v, they use the equation inorder(v) =
preorder(v) + ls(v)− rightdepth(v), where rightdepth(v) is the the number of right-edges on
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the path from the root to v, i.e., the depth where only following right-child pointers counts.4
Storing the global right depth of each mini-tree root, the mini-tree-local right depth of each
micro-tree root and micro-tree-local right-depth info in the lookup table, we can obtain the
right-depth of any node by adding up these three quantities.

Instead of directly mapping from inorder to preorder (as done in [4]), we can adapt the
above strategy for mapping inorder to τ -name. Storing τ1 and τ2 for all nodes in inorder
works the same as above. We cannot store τ3 directly in a piecewise constant array (it
changes to often), but we can store the micro-tree-local inorder index, τ in

3 . Finally, we use
the lookup table to translate τ in

3 to τ3.

7 Entropy trees

The dominating contribution (in terms of space) in TC comes from the array of micro-tree
types. All other data structures – for storing overall tree and mini trees, as well as the
various index data structures to support queries – fit in o(n) bits of space. Encoding micro
trees using one of the 2n-bit encodings for Tn (e.g., BP, DFUDS, or Zaks’ sequence), the
combined space usage of the types of all micro trees is 2n+ o(n) bits.

The micro-tree types are solely used as an index for the lookup table; how exactly the
tree topology is encoded is immaterial. It is therefore possible to replace the fixed-length
encoding by one that adapts to the actual input. Using variable-cell arrays (Lemma 2), the
dominant space is the sum of the lengths of the micro-tree types.

Davoodi et al. [4] used the “ultra-succinct” encoding proposed by Jansson, Sadakane
and Sung [18] for micro trees to obtain a data structure that adapts to the entropy of the
node-degree distribution. This approach is inherently limited to non-optimal compression
since it only depends on the local order of a fixed number of values in the input array. Using
our new encoding for binary tree we can overcome this limitation.

Combining the tree-covering data structure for binary trees described in Section 6 with
the (length bounded) subtree-size code for binary trees from Section 5 yields the following
result.

I Theorem 5 (Entropy trees). Let t ∈ Tn be a (static) binary tree on n nodes. There is a
data structure that occupies min{Hst(t), 2n}+ o(n) bits of space and supports the following
operations in O(1) time:

find the node with given pre- or inorder index,
find the pre- and inorder index of a given node,
compute the lca of two given nodes.

Proof. The correctness of operations and size of supporting data structures directly following
from the previous work on tree covering (see Section 6) and the discussion above. It remains
to bound the sum of code lengths of micro-tree types. Let µ1, . . . , µ` denote the micro trees

4 Davoodi et al. use Ldepth for this because they consider the path from v to the root. We found “right
depth” (corresponding to the direction from root to node) more compatible with widespread convention.
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resulting from the tree decomposition. We have

∑̀
i=1
|type(µi)| ≤

∑̀
i=1

∑
v∈µi

(
stµi(v) + 2

)

≤
∑̀
i=1

∑
v∈µi

stt(v) + O

(
n

logn

)
≤

∑
v∈t

stt(v) + O

(
n

logn

)
= Hst(t) + O

(
n

logn

)
.

Moreover, |type(µi)| ≤ 2|µi|+O(1), so also
∑`
i=1 |type(µi)| ≤ 2n+O

(
n

logn
)
. J

By using this data structure on the Cartesian tree of an array, we obtain a compressed
RMQ data structure.

I Corollary 6 (Average-case optimal succinct RMQ). There is a data structure that supports
(static) range-minimum queries on an array A of n (distinct) numbers in O(1) worst-case
time and which occupies Hn + o(n) ≈ 1.736n+ o(n) bits of space on average over all possible
permutations of the elements in A. The worst case space usage is 2n+ o(n) bits.

Further operations

Since micro-tree types are only used for the lookup table, all previously described index data
structures for other operations are not affected by swapping out the micro-tree encoding.
Entropy trees can thus support the full range of (cardinal-tree) operations listed in [6,
Table 2].

8 Hyper-succinct trees

The subtree-size code yields optimal compression for random BSTs, but is not a good choice
for certain other shape distributions. However, we obtain instance-optimal compression by
yet another encoding for micro trees: By treating each occurring micro-tree type as a single
symbol and counting how often it occurs when storing a given tree t, we can compute a
(length-bounded) Huffman code for the micro-tree types. We call the resulting tree-covering
data structure “hyper succinct” since it yields better compression than ultra-succinct trees.
Indeed, it follows from the optimality of Huffman codes that no other tree-covering-based
data structure can use less space.

It is, however, quite unclear how good the compression for a given tree is; note in particular
that the set of micro trees is a mixture of subtrees at the fringe of t and subtrees from the
“middle” of t where one or two large subtrees have been pruned away. How repetitive this set
of shapes is will depend not only on t, but also on the tree-decomposition algorithm and the
size of micro trees.
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