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Abstract: Interferometric synthetic aperture radar (InSAR) data from 6 Envisat ASAR descending
tracks; spanning the 2003–2010 period; was used to measure interseismic strain accumulation
across the Northeastern Tibetan Plateau. Mean line-of-sight (LOS) ratemaps are computed by
stacking atmospheric-corrected and orbital-corrected interferograms. The ratemaps from one track
with different atmospheric-corrected results or two parallel; partially overlapping tracks; show a
consistent pattern of left-lateral motion across the fault; which demonstrates the MERIS and ECMWF
atmospheric correction works satisfactorily for small stain measurement of this region; even with a
limited number of interferograms. By combining the measurements of InSAR and GPS; a fine crustal
deformation velocity and strain rate field was estimated on discrete points with irregular density
depending on the fault location; which revealed that the present-day slip rate on the Haiyuan fault
system varies little from west to east. A change (2–3 mm/year) in line-of-sight (LOS) deformation
rate across the fault is observed from the Jinqianghe segment to its eastern end. Inversion from
the cross-fault InSAR profiles gave a shallow locking depth of 3–6 km on the main rupture of the
1920 earthquake. We therefore infer that the middle-lower part of the seismogenic layer on the 1920
rupture is not yet fully locked since the 1920 large earthquake. Benefit from high spatial resolution
InSAR data; a low strain accumulation zone with high strain rates on its two ends was detected;
which corresponds to the creeping segment; i.e., the Laohushan fault segment. Contrary to the
previous knowledge of squeezing structure; an abnormal tension zone is disclosed from the direction
map of principal stress; which is consistent with the recent geological study. The distribution of
principal stress also showed that the expanding frontier of the northeastern plateau has crossed the
Liupan Shan fault zone; even arrived at the northeast area of the Xiaoguan Shan. This result agrees
with the deep seismic reflection profile.

Keywords: The Northeastern Tibetan Plateau; The Haiyuan fault; InSAR; GPS; velocity field; Strain
rate field

1. Introduction

Surface velocity and strain fields provide an important constraint on geodynamic models of
tectonic deformation as well as in the assessment of earthquake hazard [1]. Such velocity fields may
be determined using geodetic measurements such as GPS, but GPS observations are too sparse to
describe deformation spatial variations in the near-fault area. Increasing Synthetic Aperture Radar
(SAR) coverage allows SAR interferometry (InSAR) to be used as a complementary or alternative
means of measuring deformation of the Earth’s surface. InSAR has been successfully used to
determine coseismic deformation of many earthquakes (e.g., the 2003 Bam earthquake [2], 2011
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Yushu earthquake [3], and 2015 Nepal earthquakes [4]) and post-seismic deformation (e.g., Atzori et al.
2008 [5] and Gonzalez-Ortega et al. 2014 [6]), as well as deformation related to earthquake swarms
(e.g., Kyriakopoulos et al. 2013 [7] and Wicks et al. 2011 [8]). In recent years, InSAR has begun
to perform well in measuring the rate and distribution of interseismic strain accumulation with the
increasing satellite data volume (e.g., in Northwestern Tibet [9,10], the San Andreas fault system [11–13],
the Anatolian Fault system [1,14,15], and the Haiyuan fault system in the northeastern margin of
the Tibetan Plateau [16–19]). Satellite InSAR data provide us a chance to give an insight into the
near-fault crustal displacement caused by the fault motion, particularly for the shallow aseismic fault
slip. It has provided important information on imaging the spatial variation of interseismic coupling
on the fault plane in the upper crust. As well as benefitting from its ability to characterize both the
long- and short-wavelength deformation with a high accuracy, InSAR also provides new knowledge
for improving our understanding the processes of crustal deformation caused by interaction of faults
or blocks in some fault transferring zones and the block boundary belts.

In this paper, we focus on the northeastern margin of the Tibet Plateau, where the crustal
shortening and lateral extrusion caused by the northeastward growth of the Tibet Plateau is
accommodated by the left-lateral strike-slip Haiyuan fault and a series of arcuate structures in its
north, and the thrusting Liupan Shan fault and a few folds and thrust faults in its east (Figure 1).
Two large earthquakes occurred on the Haiyuan fault system in the last century. One (Mw > 8.0)
with a 220 km long surface rupture occurred on the eastern part of the Haiyuan fault in 1920,
resulting in 220,000 deaths [20]. The other one is the 1927 Mw 8.0 Gulang earthquake ruptured
south-dipping thrusts situated at the south-eastern end of the Qilian Shan [21]. Between these two
ruptured segments, a seismic gap with the 260 km length is identified as the Tianzhu gap with a high
seismic potential [17,21]. Here, we combined the InSAR and GPS to give refined estimates of the
amplitude and distribution of elastic strain accumulation on those boundary faults with a high spatial
resolution. We show how deformation is distributed locally along the faults in this region, what their
current strain accumulation rate is. Finally, we discussed the present-day fault kinematic behavior of
the 1920 rupture, and the tectonic response of the Tibet–Ordos transition zone to the plateau expansion.
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Figure 1. Tectonic map of the northeastern margin of the Tibetan Plateau. The major Haiyuan fault 
system is composed of several segments: LLL Leng Long Ling, JQH Jing Qiang He, MMS Maomao 
Shan, LHS Laohu Shan, JT Jing Tai, XHS-NHS Xihua Shan-Nanhua Shan, XS-TJS Xiang Shan-Tianjing 
Shan. The thick black solid lines indicate active faults in Holocene. The red solid circle represents the 
epicenter of the 1920 earthquake; the red solid lines show its surface rupture. Black rectangles show 
the coverage of Envisat ASAR data, with track numbers indicated. GPS data with respect to the 
Eurasia-fixed Reference Frame is from Gan et al. [22]. 

2. Tectonic Setting and Data Used 

2.1 Tectonic Setting 

In the northeastern margin of the Tibetan Plateau, the Haiyuan fault system is a major active 
tectonic feature, connecting the seismically active Qilian Shan in the west and the tectonically active 
Liupan Shan in the east, the latter abutting the relatively stable Ordos block (Figure 1). It is dominated 
by left-lateral strike slip faulting, which probably began in the late Pliocene or early Pleistocene, 
followed by late-stage folding and thrust faulting [23]. At its eastern end, left lateral slip on the 
N65°W striking Haiyuan fault zone is transferred into shortening on the generally north trending 
structures in the Liupan Shan. Three arcuate zones of both strike-slip and thrust faults with associated 
ramp anticlines, lie about 40–170 km north and northeast of the Haiyuan fault zone. From south to 
north, the individual structures that comprise this arcuate system are the Tianjin Shan-Mibo Shan, 
Yanton Shan, and Niushou Shan-Daluo Shan fault zones. Tectonic activity within these areas is 
generally mild in comparison with that in the Haiyuan structural zone [24].  

Figure 1. Tectonic map of the northeastern margin of the Tibetan Plateau. The major Haiyuan fault
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system is composed of several segments: LLL Leng Long Ling, JQH Jing Qiang He, MMS Maomao
Shan, LHS Laohu Shan, JT Jing Tai, XHS-NHS Xihua Shan-Nanhua Shan, XS-TJS Xiang Shan-Tianjing
Shan. The thick black solid lines indicate active faults in Holocene. The red solid circle represents
the epicenter of the 1920 earthquake; the red solid lines show its surface rupture. Black rectangles
show the coverage of Envisat ASAR data, with track numbers indicated. GPS data with respect to the
Eurasia-fixed Reference Frame is from Gan et al. [22].

2. Tectonic Setting and Data Used

2.1. Tectonic Setting

In the northeastern margin of the Tibetan Plateau, the Haiyuan fault system is a major active
tectonic feature, connecting the seismically active Qilian Shan in the west and the tectonically active
Liupan Shan in the east, the latter abutting the relatively stable Ordos block (Figure 1). It is dominated
by left-lateral strike slip faulting, which probably began in the late Pliocene or early Pleistocene,
followed by late-stage folding and thrust faulting [23]. At its eastern end, left lateral slip on the N65◦W
striking Haiyuan fault zone is transferred into shortening on the generally north trending structures
in the Liupan Shan. Three arcuate zones of both strike-slip and thrust faults with associated ramp
anticlines, lie about 40–170 km north and northeast of the Haiyuan fault zone. From south to north,
the individual structures that comprise this arcuate system are the Tianjin Shan-Mibo Shan, Yanton
Shan, and Niushou Shan-Daluo Shan fault zones. Tectonic activity within these areas is generally mild
in comparison with that in the Haiyuan structural zone [24].

The Holocene slip rate of the Haiyuan fault system, determined by measuring the offsets and ages
of morphological markers, seems to vary from west to east. The left-lateral strike-slip rates in the west
have been estimated as 19 ± 5 mm/year on the Lenglongling fault segment, and 12 ± 4 mm/year
on the Laohu Shan fault further east [25,26]. However, He et al. [27,28] and Zheng et al. [29] suggest
much slower slip rates of 4–5 mm/year on the Lenglongling fault and 4.4 ± 0.4 mm/year on the
Laohu Shan fault. The Holocene slip rate estimates along the length of the 1920 rupture (including the
Xihuan-Nanhua segment) in the east are 8 ± 2 mm/year [20] and 4.5 ± 2 mm/year [30], which are
consistent with an average Quaternary slip rate of 5–10 mm/year [22]. The rates of deformation in
the Tianjing Shan and Mibo Shan are about 1.5–2.7 mm/year, notably less than that in the south [24].
GPS profiles across the Qilian-Haiyuan fault show that the left-lateral strike-slip rates and shortening
rates from the west to the east, are 4.0 ± 1.0 mm/year and 5.6 ± 1.5 mm/year along the Lenglongling
segment, 3.6 ± 1.4 mm/year and 2.3 ± 1.2 mm/year along the Maomao Shan and Laohu Shan
segment, and 4.2 ± 1.5 mm/year and 2.6 ± 1.5 mm/year along the 1920 rupture respectively [29].
InSAR results from ERS and Envisat ASAR data give apparent slip rates of 4.2–8 mm/year [16] and
5.3 ± 1.0 mm/year [17] near the junction between the 1920 rupture and Tianzhu gap (the Maomao
Shan–Laohu Shan segment). Additionally, they highlight a strong strain concentration in the Laohu
Shan fault zone and suggest the presence of creep at shallow depths. Furthermore, the smoothed
InSAR time series reveals that the creeping rate on the Laohu Shan segment accelerated in 2007 [18].

2.2. Data

We collected the Envisat SAR stripmap images for 6 descending tracks, which cover the most part
of the northeastern margin of the Tibetan Plateau (Figure 1). Interferometric data for each track spans
the 2003–2010 period with 30 more acquisitions except for the track 247 (12 acquisitions). Interferograms
with baselines of less than 200 m were produced for each track by using JPL/Caltech ROI_PAC software.
A filled 3 arc sec (90 m) resolution Shuttle Radar Topography Mission (SRTM) digital elevation model
(DEM) [31] was used to remove the topographic contribution to the interferometric phase changes.
As we are only interested in long-wavelength features, the data were multilooked, reducing the
sampling interval to ~320 m in order to improve coherence and retain the tectonic signal near the fault.
The coherence threshold of 0.15 was used to mask out the decoherenced area for each interferograms.
Then interferograms were unwrapped using the branch-cut method [32]. The resulting unwrapped
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interferograms will be selected to construct a chain for stacking in the InSAR ratemap estimation
(Section 3.1). GPS data we used is from Gan et al. [22], which is with respect to the Eurasia-fixed
Reference Frame.

3. Method

3.1. Stacking InSAR with Atmospheric-Corrected Interferograms

The detection of slow interseismic motion using InSAR requires a combination of multiple radar
images over an extended time period to reduce the uncorrelated atmospheric effects and improve
the signal-to-noise ratio. The total tropospheric delay is often divided into a stratified delay and a
turbulent delay for InSAR applications [33]. Due to the high variability of atmospheric turbulence, the
spatial pattern of the turbulent delay is mostly random on each acquisition date and can be removed
efficiently by stacking interferograms [34] or through InSAR time series analysis [35]. Variations in
atmospheric stratification have a first order effect, with a single path LOS delay reaching ∼10 cm/km
in some areas [36]. Furthermore, unlike turbulent effects, stratified delays are not random in time
but represent seasonal fluctuations and are therefore difficult to remove by stacking or temporal
smoothing compared to turbulence, even when working with a large InSAR dataset. When we retrieve
subtle ground displacements (e.g., millimeters per year on the Haiyuan fault), it is necessary to correct
interferograms for the stratified tropospheric signals.

Given strong coupling between the linear orbital ramp, long-wavelength component of
atmospheric error and long-wavelength tectonic deformation, external independent atmospheric data
(ECMWF and MERIS) were used to correct the stratified tropospheric signals firstly, which is verified
to be useful for correcting InSAR atmospheric effect [14,37]. Then a linear orbital trend was fitted and
removed from the atmospheric-corrected interferograms, using only phase measurements 30 km or
further from the fault in the north to avoid the effect of the near-fault gradient in ground deformation.
After the atmospheric and orbital corrections, the residual interferograms from independent chains of
small-baseline dataset (Figure S1) were stacked with a total timespan to create a ratemap. Only those
pixels which are coherent in all interferograms were averaged with equal weight. The flowchart for
retrieving an InSAR ratemap is showed in Figure 2.
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3.2. Velocity and Strain-Rate Field Inversion from InSAR and GPS

A variety of algorithms have been developed to invert geodetic data for strains. The traditional
subnetwork methods (e.g., [38,39]) usually generate discontinuities of the strain estimates at the
subnetwork boundaries. The geostatistical methods can tackle the discontinuity problem. However,
they assume that the deformation field is isotropic and homogeneous, and the accuracy and reliability
often depends on the spatial distribution of the data (e.g., [1,40–43]). The physics-based models
were developed to estimate the elastic and inelastic strain fields from geodetic data (e.g., [44,45]).
Shen et al. [46–48] developed a series of algorithms to model strains with reasonable weighting and
smoothing function optimally determined from observation data, which works well with unevenly
distributed data, and can deal with the nonelastic strain accumulation caused by fault creeping in
the upper crust. The surface deformation field caused by the strike-slip Haiyuan fault system, is not
homogeneous and isotropic, and would changes cross the fault boundary. Previous InSAR results
showed a creeping segment (the Laohu Shan segment) on the Haiyuan fault [17], thus the method in
Shen et al. [48] was used in our study. We realized Shen’s method in a spherical coordinate system due
to our big study area (500 × 500 km). Considering the high spatial coverage of InSAR velocity map, an
irregular grid that discretized the study area based on the location of fault, is used in InSAR and GPS
inversion, which allow us capture the strain variations near the fault.

For each node of the grid, its unknown vector can be related to the 3D velocity of its surrounding
GPS observations by the following model:

uGPS = AGPSl, (1)

where, uGPS is the vector of GPS observation, l is the unknown vector of the displacement, strain, and
rotation on each node of the grid, and AGPS is the design matrix. This observation equation can be
expanded as:
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where,
(
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)
is the vector of GPS observation;

(
Uφ Uθ Ur

)
,
(

ωr ωφ ωθ

)
and(

εφφ εφθ εθθ

)
is the 3D deformation velocity, rotation and strain components on each discrete

point; φ0 and θ0 is Latitude and longitude coordinates of the node; and r0 is the earth radius.
For InSAR observations, the observation equation can be established as:

ulos = Alosl, (3)

where, ulos is the vector of InSAR observation, Alos is the design matrix. InSAR LOS velocity can be
written by using 3D deformation components (Figure S2) as follow:

ulos =
(

cos α sin θ − sin α sin θ − cos θ
) uφ

uθ

ur

, (4)
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Then the design matrix Alos can be calculated by AGPS as:

Alos= ( cos α sin θ − sin α sin θ − cos θ
)
·AGPS, (5)

where α is the azimuth angle of InSAR, and θ is the incidence angle.
Finally, the joint observation equations for GPS and InSAR can be formed as:

u = Al, (6)

A least-squares solution can be resolved in the form of

l = (ATC′−1 A)
−1

ATC′−1u, (7)

where, C′ is the weighting factor, which is constructed by the covariance matrix C multiplying a
weighting function G. G accounts for the distance and spatial coverage dependency between the
unknown point and observation points (see Shen et al. [48] for details)

4. Construction of the InSAR Rate Map

For each Envisat ASAR track we collected, we constructed an interferometric stack composed
of several chains of small-baseline interferograms, then applied the stacking InSAR method with
atmospheric and orbital correction described in Section 3.1, to construct a deformation ratemap. Track
18 was chosen as an example to show the accuracy and reliability assessment of our results. Based
on the baseline distribution of the track 18 (Figure S1), we constructed 3 chains of small-baseline
interferograms (including 5 interferograms), which are completely composed of largely cloud-free
SAR acquisitions, in order to make sure that the atmospheric contribution in each interferogram can
be removed correctly using MERIS data (300 m spatial resolution). Following the steps mentioned
above, A MERIS-corrected ratemap is achieved (Figure 3a). A rapid increase in the line-of-sight rate
of deformation (∼2 mm/year) in a relatively narrow region across the Haiyuan fault can be seen,
qualitatively consistent with left-lateral slip. There is no clear gradient in displacement rate related
to tectonic signal on other faults north of the Haiyuan fault. GPS velocities were also projected into
the local InSAR LOS direction and agree with the InSAR observations within the errors of the two
measurements (see Figure 4). The RMS between the InSAR result and GPS is 0.6 mm/year.

In order to further validate our results using the MERIS corrections for atmospheric path delays,
we also examined the ECMWF numerical weather model results for the region. Applying the method
of Walters et al. [14], we produced atmospheric delay maps from ECMWF model results for each SAR
acquisition. We compared the wet path delay maps derived from MERIS and ECMWF for the times of
all the SAR acquisitions. A strong correlation was found between the ECMWF and MERIS-derived wet
delay maps for 10 cloud-free acquisitions (Figure S3) in this area, with a mean correlation coefficient of
0.79 (ranging from 0.52 to 0.92), and a mean RMS misfit of 1 cm. There is also a good correlation for
partially and largely cloudy acquisitions, although with a more limited number of data points. This
suggests that the ECMWF atmospheric delay is potentially an alternative to MERIS data for correcting
interferograms for atmospheric effects in this region.

In order to test the reliability and usefulness of the ECMWF data, we selected 13 interferograms
(covering a total cumulative time of 40 years, see Figure S1) not included in the MERIS chains,
and stacked 7 chains of these interferograms using the ECMWF correction for atmospheric effects.
The ECMWF-corrected result (Figure 3b) agrees well with the MERIS-corrected result.
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Figure 3. (a) Mean line-of-sight (LOS) ratemap for track 18 produced from MERIS-corrected
interferograms indicated by red line in Figure S1. A positive LOS displacement corresponds to
movement away from the satellite. A-A’ marks the profile shown in Figure 4a. GPS data with respect to
the Eurasia-fixed Reference Frame is from Gan et al. [22]. (b) Mean LOS ratemap for track 18 produced
from ECMWF-corrected interferograms indicated by green line in Figure S1. The perpendicular pair of
arrows shows the direction in which the satellite moves (Az), the satellite line-of-sight direction (los),
and the incidence angle (i) at the centre of the scene. JT: Jing Tai fault, XHS-NHS: Xihua Shan-Nanhua
Shan fault, XS-TJS: Xiang Shan-Tianjing Shan.

Following the steps mentioned above, we processed 12 Envisat ASAR acquisitions from
descending track 247, which partially overlaps with track 18. A total of 36 interferograms with
baselines of less than 200 m were produced, but only 3 of these showed good enough coherence.
Subsequent analysis was based on these 3 interferograms alone. No cloud-free MERIS data is available
for the acquisitions on track 247. But because the atmospheric correction based on the ECMWF model
works well for track 18, we applied it to the interferograms for track 247 as well. After removing the
atmospheric delays in this way and also removing an orbital ramp, we stacked the interferograms to
create a ratemap for this track (Figure 5a). Even though only 3 interferograms from track 247 were
used, the resulting ratemap agrees very well with the results from track 18. We compared the rates
of range change in the overlapping area between the two swaths (Figure 5b). The two independent
results show a very similar pattern with an offset of 2 mm/year in the LOS direction. This suggests that
it is the quality of the interferograms that matters, and it is possible to measure slow ground motion
with a very limited number of interferograms in this area, provided that appropriate corrections can
be made for atmospheric effects.
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Figure 5. (a) Mean LOS ratemap for track 18 and 247, produced by stacking the MERIS-corrected and
ECMWF-corrected interferograms respectively. The white line shows the profile centre for the profile
presented in the right panel. The black dashed box shows the overlapping area between track 18 and
247. JT: Jing Tai fault, XHS-NHS: Xihua Shan-Nanhua Shan fault, XS-TJS: Xiang Shan-Tianjing Shan
fault. (b) Rate profile for a 40 km-wide swath (black dashed box in the left panel) centered on the line
B-B’. The blue points are individual pixels from the ratemap of track 18, red points from track 247, and
the green line shows the mean velocity of the two datasets.
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From the experiments above, we can see that the stacking method with atmospheric and orbital
correction proposed in this study works well in the Haiyuan fault zone, which is shown by: (1) the
consistency between the MERIS-corrected and ECMWF-corrected ratemap (Figure 3), (2) consistency
between the results from two adjacent tracks (Figure 5), and (3) consistency between InSAR and GPS
(Figure 4). Therefore, applying this method to the other 5 tracks, we retrieved an InSAR ratemap for
the most part of the Northeastern Tibetan area (Figure 6).
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Figure 6. InSAR Mean LOS ratemap for 6 tracks covered the northeastern margin of the Tibetan Plateau,
produced by stacking the atmospheric-corrected interferograms. LLL: Leng Long Ling, JQH: Jing
Qiang He, MMS: Maomao Shan, LHS: Laohu Shan, JT: Jing Tai, XHS-NHS: Xihua Shan-Nanhua Shan,
XS-TJS: Xiang Shan-Tianjing Shan.

5. Inversion Results from InSAR and GPS

In order to obtain the detailed variations of deformation velocity near the faults, which may be
observed by the high-resolution InSAR data, the whole Northeastern Tibetan area was meshed into an
irregular grid by using the free software DistMesh [49]. Some points on the Haiyuan and other faults
in this region were extracted to be used as the fixed points in discretization. A nominal mesh spacing
of 0.05◦ was used to define the mesh density near the fault. An unstructured mesh was generated
with different mesh density varying with the distance from the fault, i.e., dense points near the fault
and sparse points far from the fault (Figure S4). Applying the algorithm presented in the Section 3,
the horizontal velocities and strain rates on each node of the mesh were inverted from InSAR and
GPS data. To avoid the effect from the nonelastic strain accumulation caused by the fault creep, we
set the creeping section (103.68◦ E, 37.11◦ N to 104.15◦ E, 37.00◦ N) of the Haiyuan fault (Laohu Shan
segment) identified by Jolivet et al. [17] as the barrier section.
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Figure 7 shows the resulting horizontal strain rate field and principal compressive /tensile stress
direction map, and Figure S5 shows the resulting velocity field. In general, the Northeastern Tibetan
Plateau rotates clockwise (Figure S5), and the velocity decreases from south to north. Compared with
the other faults in the north, the Haiyuan fault is the most active one, which demonstrates it is still
an important boundary fault for the N-NW expansion of the Tibetan Plateau. This is in agreement
with the geological research [24]. The difference between our study and geological studies [25,26] is
that the present-day slip rate on the Haiyuan fault system varies little from west to east. A change
(2–3 mm/year) in line-of-sight (LOS) deformation rate across the fault is observed from Jiangqianghe
segment to its eastern end, where the northward expansion of the Plateau is transferring into shortening
along the Liupan Shan fault due to the obstruction of the Alxa block in the north and Ordos block
in the east.
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Figure 7. Results inverted jointly by InSAR and GPS for the northeastern margin of the Tibetan Plateau.
(a) The horizontal strain rate field: the magnitude of second invariant of the strain rate tensor. The black
dashed boxes show the areas for the Figures 8 and 9. LLL: Leng Long Ling, JQH: Jing Qiang He, MMS:
Maomao Shan, LHS: Laohu Shan, JT: Jing Tai, XHS-NHS: Xihua Shan-Nanhua Shan, XS-TJS: Xiang
Shan-Tianjing Shan. (b) The principal compressive/tensile stress direction map. The short black lines
are for compressive stress and the pink lines are for the tensile stress.

From the horizontal strain rate field (Figure 7a), strain accumulation is strongly localized on the
left-lateral strike-slip Haiyuan fault zone. This is similar to the discovery of previous studies on the
Karakoram fault [10] and the Anatolia fault [1]. Wright et al. [50] suggests that strain accumulation
in inter-seismic stage is a major feature of large strike-slip faults. High strain rate regions also are
observed to follow the other faults in the north, although the magnitude is smaller than that of strain
rate on the Haiyuan fault. Benefit from high spatial resolution InSAR ratemap, some detail strain
rate variation near the fault can be detected, which can not be observed by GPS only as shown in
Li et al. [51]. In Figure 8, an interesting phenomenon caused by the fault creep is revealed clearly by
our fine strain rate field. The creeping segment reveal by our InSAR and Jolivet et al. [17] located at a
low strain accumulation zone, instead the areas next to its two ends are holding a high strain rate.
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Figure 8. The horizontal strain rate (the second invariant of the strain rate tensor) distribution in Laohu
Shan fault zone and its surrounding area. The grey lines indicate the Haiyuan fault system (JQH: Jing
Qiang He, MMS: Maomao Shan, LHS: Laohu Shan, JT: Jing Tai). The red line indicates the creeping
segment identified by Jolivet et al. [17], and GCMT focal mechanisms are given for four moderate
earthquakes occurred in this region in the past 30 years.

From the direction of principal stress (Figure 7b), the Haiyuan fault system is dominated by a
strike-slip motion with a relatively small thrust component (please note that the pink E-W strike-slip
components is covered by the black thrusting components), which is consistent with the focal
mechanism of the moderate earthquakes happened on it in recent decades (Figure S6). An abnormal
tension zone can be see along the Daluo Shan fault, which is contrary to the previous knowledge of
squeezing structure. Recent geological study [52] confirm that there exists a normal faulting component
in the junction between the Niushou Shan fault and Daluo Shan fault. The regional seismicity map also
shows that a Mw 5.3 earthquake with normal faulting occurred nearby on 10 August 1987 (Figure S6).
We also note that the southern part of the Liupan Shan fault shows a dominating extension that is out
of our expectation. That is because local GPS observation dominates the inversion result in absence of
high-coherenced InSAR data in this region, where one of GPS velocity in the west of the fault is small
than the ones in the east (Figure S7), thus caused a tensional stress zone.

6. Discussion

6.1. The Present-Day Kinematics for the Rupture of the 1920 Earthquake

To study the present-day fault movement of the 1920 rupture, we constructed fault-perpendicular
profiles across the atmospheric-corrected ratemaps from the track 18 covered the 1920 rupture. We
projected all LOS velocities onto this profile, then a conventional screw dislocation arctan model [53]
was used to invert for the best-fitting slip rate and locking depth. The minimum misfit corresponds to
a best-fitting model with slip rate of 5.9 mm/year and locking depth of 3 km shown by the dashed red
line in Figure 4a for the MERIS-corrected ratemap. The inversion for the ECMWF-corrected ratemap
gives a similar result (Figure 4b: a slip rate of 5 mm/year with a locking depth of 6 km). Our InSAR
results are consistent with the GPS velocity of 4.2 ± 1.5 mm/year given by Zheng et al. [29], and
Holocene slip rate of 4.5 ± 2 mm/year given by Li et al. [30].

A shallow locking depth is often linked to creep at shallow depths. This kind of creep
might be disconnected from the steadily slipping section below the seismogenic depth [16]. Such
creeping behavior has been observed on the western end of the 1920 rupture, i.e., the Laohu Shan
segment [16–18]. Our inversions show a shallow locking depth (3–6 km) for the main rupture zone
of the 1920 earthquake. Our InSAR profiles (Figures 4 and 5) also show that the LOS velocities vary
rapidly in a relative narrow zone across the fault, but not as sharp as in the Laohu Shan segment
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(~5 km) showed in Jolivet et al. [17]. We therefore infer that the middle-lower part of the seismogenic
layer on the 1920 rupture is not yet fully locked since the 1920 large earthquake, which may explain
why no moderate earthquakes have ever occurred here since 1920. The question remains whether it is
caused by the creep or by the post-seismic afterslip, which may be answered by more observations in
future decades.

6.2. Expansion Frontier of the Northeastern Tibet Plateau

Previous studies suggested that the northeastern Tibet is expanding laterally since the late
Cenozoic (20–10 Ma), which is partly accommodated by the left-lateral strike-slip along the East
Kunlun and Haiyuan faults and crustal shortening of the Tibet–Ordos transition zone [54]. It is
still controversial about the route and scale of lateral motion caused by the outward growth of the
Northeastern Tibetan Plateau. Some studies suggested that the Plateau is extruding laterally along the
EW trending Qinling tectonic zone [55,56], but some results argued that the ENE lateral expansion
of the plateau has being penetrating into the southern margin of Ordos Block or even its interior due
to spatial differences in the internal lithosphere structure of the Ordos [57–59]. From the distribution
of principal stress (Figure 9) we achieved here, the expanding front of the northeastern plateau has
crossed the Liupan Shan fault zone, even arrived at the northeast area of the Xiaoguan Shan. This
is also revealed by deep seismic reflection profile. The deep crustal “architecture” suggests that the
Xiaoguan Shan to the east of the Liupan Shan fault zone has been affected by the northeastward growth
of the plateau [60].
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7. Conclusions

We used InSAR, combined with two different estimates of atmospheric path delays, to estimate
the interseismic strain accumulation across the Northeastern Tibetan Plateau. The results show that the
MERIS-based and ECMWF-based corrections both work well in removing the atmospheric delays and
retrieving the interseismic deformation, even when stacking with a smaller number of interferograms.
The combination of InSAR and GPS observations has given refined estimates of the deformation
velocity and strain rate field with a high spatial resolution in this region. It revealed the strain variation
near the fault in great detail. Such a fine strain field enabled us to gain new insights about the
present-day kinematics of the 1920 rupture and the lateral expansion of the northeastern Tibet Plateau.
With more and more new satellites being operated, the combination of multi-satellites data with a
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timespan of a few decades will allow us to investigate time-dependent slip behavior of the fault, which
enable us to discriminate different deformation mechanism.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/4/435/s1,
Figure S1: spatial and temporal baseline plot of 34 Envisat SAR acquisitions for the descending track 18 covering
the eastern part of the Haiyuan fault, Figure S2: 3D and planar geometry for InSAR observation, Figure S3:
comparison of wet delay maps from MERIS and ECMWF for 4 largely cloud-free acquisitions, Figure S4: the results
for the regional discretization, Figure S5: the fine horizontal velocity field inverted jointly by InSAR and GPS for
the northeastern margin of the Tibetan Plateau. Figure S6: Regional seismicity map with 19 moderate earthquake
since 1986, and Figure S7: The GPS velocity field from Gan et al. for the northeastern margin of the Tibetan Plateau.

Author Contributions: Conceptualization, X.S. (Xiaogang Song) and X.S. (Xinjian Shan); Data curation, X.S.
(Xiaogang Song) and Y.J.; Formal analysis, X.S. (Xiaogang Song), Y.J. and X.S. (Xinjian Shan); Investigation, X.S.
(Xiaogang Song); Methodology, X.S. (Xiaogang Song) and Y.J.; Software, Y.J.; Supervision, X.S. (Xinjian Shan) and
C.Q.; Validation, X.S. (Xiaogang Song); Visualization, X.S. (Xiaogang Song)and Y.J.; Writing—original draft, X.S.
(Xiaogang Song); Writing—review and editing, W.G.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (No. 41204027
and 41874020), UK Natural Environment Research Council and the Basic Scientific Funding of Institute of Geology,
China Earthquake Administration (No. IGCEA1810). InSAR ratemaps for track 18 and 247 were obtained when
Xiaogang Song visited University of Oxford in 2013. Xiaogang’s collaborating supervisor, Barry Parsons in Oxford,
is highly appreciated for his help and advice, for his support in data provision, and for his constructive criticism
of the part of this work. We are also grateful to Richard Walters (now in Durham University), John Elliott (now in
Leeds University) and Yu Zhou (now in Sun Yat-sen University) for their helps in InSAR data processing when
Xiaogang stayed in Oxford. All Envisat data were provided and are copyrighted by the European Space Agency.
ECMWF ERA-Interim data were provided by the British Atmospheric Data Centre. We are grateful to JPL/Caltech
for use of the ROI_PAC software. Most figures were made using the public domain Generic Mapping Tools.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Walters, R.J. Geodetic Observation and Modelling of Continental Deformation in Iran and Turkey.
Ph.D. Thesis, University of Oxford, Oxford, UK, 2012.

2. Funning, G.J.; Parsons, B.; Wright, T.J.; Jackson, J.A.; Fielding, E.J. Surface displacements and source
parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery.
J. Geophys. Res. 2005, 110, B09. [CrossRef]

3. Li, Z.; Elliott, J.R.; Feng, W.; Jackson, J.A.; Parsons, B.; Walters, R.J. The 2010 Mw 6.8 Yushu (Qinghai, China)
earthquake: Constraints provided by InSAR and body wave seismology. J. Geophys. Res. 2011, 116, B10302.
[CrossRef]

4. Elliott, J.; Jolivet, R.; González, P.; Avouac, J.-P.; Hollingsworth, J.; Searle, M.; Stevens, V. Himalayan
megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat. Geosci. 2016, 9,
174–180. [CrossRef]

5. Atzori, S.; Manunta, M.; Fornaro, G.; Ganas, A.; Salvi, S. Postseismic displacement of the 1999 Athens earthquake
retrieved by the Differential Interferometry by Synthetic Aperture Radar time series. J. Geophys. Res. 2008, 113,
B09309. [CrossRef]

6. Gonzalez-Ortega, A.; Fialko, Y.; Sandwell, D.; Alejandro Nava-Pichardo, F.; Fletcher, J.; Gonzalez-Garcia, J.;
Lipovsky, B.; Floyd, M.; Funning, G. ElMayor-Cucapah (Mw7.2) earthquake:Early near-field postseismic
deforma-tion from InSAR and GPS observations. J. Geophys. Res. Solid Earth 2014, 119. [CrossRef]

7. Kyriakopoulos, C.; Chini, M.; Bignami, C.; Stramondo, S.; Ganas, A.; Kolligri, M.; Moshou, A. Monthly
migration of a tectonic seismic swarm detected by DInSAR: Southwest Peloponnese, Greece. Geophys. J. Int.
2013, 194, 1302–1309. [CrossRef]

8. Wicks, C.; Thelen, W.; Weaver, C.; Gomberg, J.; Rohay, A.; Bodin, P. InSAR observations of aseismic slip
associated with an earthquake swarm in the Columbia River flood basalts. J. Geophys. Res. 2011, 116, B12304.
[CrossRef]

9. Elliott, J.R.; Biggs, J.; Parsons, B.; Wright, T.J. InSAR slip rate determination on the Altyn Tagh Fault, northern
Tibet, in the presence of topographically correlated atmospheric delays. Geophys. Res. Lett. 2008, 35, L12309.
[CrossRef]

http://www.mdpi.com/2072-4292/11/4/435/s1
http://dx.doi.org/10.1029/2004JB003338
http://dx.doi.org/10.1029/2011JB008358
http://dx.doi.org/10.1038/ngeo2623
http://dx.doi.org/10.1029/2007JB005504
http://dx.doi.org/10.1002/2013JB010193
http://dx.doi.org/10.1093/gji/ggt196
http://dx.doi.org/10.1029/2011JB008433
http://dx.doi.org/10.1029/2008GL033659


Remote Sens. 2019, 11, 435 14 of 16

10. Wang, H.; Wright, T. Satellite geodetic imaging reveals internal deformation of western Tibet. Geophys. Res. Lett.
2012, 39, L07303. [CrossRef]

11. Tong, X.; Sandwell, D.T.; Smith-Konter, B. High-resolution interseismic velocity data along the San Andreas
fault from GPS and InSAR. J. Geophys. Res. 2013, 118, 369–389. [CrossRef]

12. Jin, L.; Funning, G.J. Testing the inference of creep on the northern Rodgers Creek fault, California, using
ascending and descending persistent scatterer InSAR data. J. Geophys. Res. 2017, 122, 2373–2389. [CrossRef]

13. Xu, W.; Wu, S.; Materna, K.; Nadeau, R.; Floyd, M.; Funning, G.; Chaussard, E.; Johnson, C.W.; Murray, J.R.;
et al. Interseismic ground deformation and fault slip rates in the greater San Francisco bay area from two
decades of space geodetic data. J. Geophys. Res. 2018, 123, 8095–8109. [CrossRef]

14. Walters, R.J.; Holley, R.J.; Parsons, B.; Wright, T.J. Interseismic strain accumulation across the North Anatolian
Fault from Envisat InSAR measurements. J. Geophys. Res. 2011, 38. [CrossRef]

15. Kaneko, Y.; Fialko, Y.; Sandwell, D.T.; Tong, X.; Furuya, M. Interseismic deformation and creep along the
central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state
friction properties. J. Geophys. Res. 2013, 118, 316–331. [CrossRef]

16. Cavalié, O.; Lasserre, C.; Doin, M.-P.; Peltzer, G.; Sun, J.; Xu, X.; Shen, Z.-K. Measurement of interseismic
strain across the Haiyuan fault (Gansu, China), by InSAR. Earth Planet. Sci. Lett. 2008, 275, 246–257.
[CrossRef]

17. Jolivet, R.; Lasserre, C.; Doin, M.-P.; Guillaso, S.; Peltzer, G.; Dailu, R.; Sun, J.; Shen, Z.-K.; Xu, X. Shallow
creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry. J. Geophys. Res. 2012, 117,
B06401. [CrossRef]

18. Jolivet, R.; Lasserre, C.; Doin, M.-P.; Peltzer, G.; Avouac, J.-P.; Sun, J.; Dailu, R. Spatio-temporal evolution
of aseismic slip along the Haiyuan fault, China: Implications for fault frictional properties. Earth Planet.
Sci. Lett. 2013, 377, 23–33. [CrossRef]

19. Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M.P.; Barbot, S.; Tapponnier, P.; Peltzer, G.; Socquet, A.; Sun, J.
Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by
InSAR. Geophys. J. Int. 2016, 205, 536–547. [CrossRef]

20. Zhang, P.; Molnar, P.; Burchfiel, B.C.; Royden, L.; Wang, Y.; Deng, Q.; Song, F.; Zhang, W.; Jiao, D. Bounds on
the Holocene slip rate of the Haiyuan fault, north-central China. Quat. Res. 1988, 30, 151–164.

21. Gaudemer, Y.; Tapponnier, P.; Meyer, B.; Peltzer, G.; Guo, S.; Chen, Z. Partitioning of crustal slip between
linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on
the western Haiyuan fault, Lanzhou (China). Geophys. J. Int. 1995, 120, 599–645. [CrossRef]

22. Gan, W.; Zhang, P.; Shen, Z.-K.; Niu, Z.; Wang, M.; Wan, Y.; Zhou, D.; Cheng, J. Present-day crustal motion
within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. 2007, 112, B08416. [CrossRef]

23. Burchfiel, B.; Zhang, P.; Wang, Y.; Zhang, W.; Song, F.; Deng, Q.; Molnar, P.; Royden, L. Geology of the
Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the
northeastern margin of the Tibetan Plateau. Tectonics 1991, 10, 1091–1110. [CrossRef]

24. Zhang, P.; Burchfiel, B.; Molnar, P.; Zhang, W.; Jiao, D.; Deng, Q.; Wang, Y.; Royden, L.; Song, F. Late Cenozoic
tectonic evolution of the Ningxia-Hui autonomous region, China. Geol. Soc. Am. Bull. 1990, 102, 1484–1498.

25. Lasserre, C.; Morel, P.-H.; Gaudemer, Y.; Tapponnier, P.; Ryerson, F.; King, G.; Métivier, F.; Kasser, M.;
Kashgarian, M.; Liu, B.; et al. Postglacial left slip rate and past occurrence of M ≥ 8 earthquakes on the
Western Haiyuan Fault, Gansu, China. J. Geophys. Res. Solid Earth 1999, 104, 17633–17651. [CrossRef]

26. Lasserre, C.; Gaudemer, Y.; Tapponnier, P.; Mériaux, A.-S.; Van der Woerd, J.; Daoyang, Y.; Ryerson, F.J.;
Finkel, R.C.; Caffee, M.W. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault,
Qinghai, China. J. Geophys. Res. 2002, 107, 2276. [CrossRef]

27. He, W.; Liu, B.; Lu, T.; Yuan, D.; Liu, J.; Liu, X. Study on the segmentation of Laohushan fault zone.
Northwest. Seismol. J. 1994, 16, 66–72.

28. He, W.; Liu, B.; Yuan, D.; Yang, M. Research on slip rates of the Lenglongling active fault zone.
Northwest. Seismol. J. 2000, 22, 90–97.

29. Zheng, W.J.; Zhang, P.Z.; He, W.G.; Yuan, D.Y.; Shao, Y.X.; Zheng, D.W.; Ge, W.P.; Min, W. Transformation
of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau:
Evidence from decadal GPS measurements and late Quaternary slip rates on faults. Tectonophysics 2013, 584,
267–280. [CrossRef]

http://dx.doi.org/10.1029/2012GL051222
http://dx.doi.org/10.1029/2012JB009442
http://dx.doi.org/10.1002/2016JB013535
http://dx.doi.org/10.1029/2018JB016004
http://dx.doi.org/10.1029/2010GL046443
http://dx.doi.org/10.1029/2012JB009661
http://dx.doi.org/10.1016/j.epsl.2008.07.057
http://dx.doi.org/10.1029/2011JB008732
http://dx.doi.org/10.1016/j.epsl.2013.07.020
http://dx.doi.org/10.1093/gji/ggw028
http://dx.doi.org/10.1111/j.1365-246X.1995.tb01842.x
http://dx.doi.org/10.1029/2005JB004120
http://dx.doi.org/10.1029/90TC02685
http://dx.doi.org/10.1029/1998JB900082
http://dx.doi.org/10.1029/2000JB000060
http://dx.doi.org/10.1016/j.tecto.2012.01.006


Remote Sens. 2019, 11, 435 15 of 16

30. Li, C.; Zhang, P.; Yin, J.; Min, W. Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern
margin of the Tibetan Plateau. Tectonics 2009, 28, TC5010. [CrossRef]

31. Farr, T.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.;
Roth, L.; et al. Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [CrossRef]

32. Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite radar interferometry—Two-dimensional phase
unwrapping. Radio Sci. 1988, 23, 713–720. [CrossRef]

33. Hanssen, R.F. Radar Interferometry: Data Interpretation and Analysis; Kluwer Academic: New York, NY, USA,
2001; pp. 130–148.

34. Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric effects in interferometric synthetic aperature radar
surface deformation and topographic maps. J. Geophys. Res. 1997, 102, 7547–7564. [CrossRef]

35. Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens.
2001, 39, 8–20. [CrossRef]

36. Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C. Corrections of stratified tropospheric delays in
SAR interferometry: Validation with global atmospheric models. J. Appl. Geophys. 2009, 69, 35–50. [CrossRef]

37. Li, Z.; Muller, J.P.; Cross, P.; Albert, P.; Fischer, J.; Bennartz, R. Assessment of the potential of MERIS near
infrared water vapour products to correct ASAR interferometric measurements. Int. J. Remote Sens. 2006, 27,
349–365. [CrossRef]

38. Frank, F.C. Deduction of Earth strains from survey data. Bull. Seismol. Soc. Am. 1966, 56, 35–42.
39. Brunner, F.K.; Coleman, R.; Hirsch, B. A comparison of computation methods for crustal strains from geodetic

measurements. Tectonophysics 1981, 71, 281–298. [CrossRef]
40. Haines, A.J.; Holt, W.E. A procedure for obtaining the complete horizontal motions within zones of

distributed deformation from the inversion of strain rate data. J. Geophys. Res. 1993, 98, 12057–12082.
[CrossRef]

41. Holt, W.E.; Chamot-Rooke, N.; LePichon, X.; Haines, A.J.; Shen-Tu, B.; Ren, J. Velocity field in Asia inferred
from quaternary fault slip rates and global positioning system observations. J. Geophys. Res. 2000, 105,
19185–19209. [CrossRef]

42. Kreemer, C.; Holt, W.E.; Haines, A.J. An integrated global model of present-day plate motions and plate
boundary deformation. Geophys. J. Int. 2003, 154, 8–34. [CrossRef]

43. Wessel, P.; Becker, J.M. Interpolation using a generalized Green’s function for a spherical surface spline in
tension. Geophys. J. Int. 2008, 174, 21–28. [CrossRef]

44. Noda, A.; Matsu’ura, M. Physics-based GPS data inversion to estimate three-dimensional elastic and inelastic
strain fields. Geophys. J. Int. 2010, 182, 513–530. [CrossRef]

45. Kreemer, C.; Blewitt, G.; Klein, E.C. A geodetic plate motion and global strain rate model. Geochem. Geophys.
Geosyst. 2014, 15, 3849–3889. [CrossRef]

46. Shen, Z.-K.; Jackson, D.D.; Ge, B.X. Crustal deformation across and beyond the Los Angeles basin from
geodetic measurements. J. Geophys. Res. 1996, 101, 27957–27980. [CrossRef]

47. Shen, Z.-K.; Jackson, D.D.; Kagan, Y.Y. Implications of geodetic strain rate for future earthquakes, with a
five-year forecast of M 5 earthquakes in southern California. Seismol. Res. Lett. 2007, 78, 117–120. [CrossRef]

48. Shen, Z.K.; Wang, M.; Zeng, Y.; Wang, F. Optimal interpolation of spatially discretized geodetic data.
Bull. Seismol. Soc. Am. 2015, 105, 2117–2127. [CrossRef]

49. Persson, P.O.; Strang, G. A simple mesh generator in MATLAB. SIAM Rev. 2004, 46, 329–345. [CrossRef]
50. Wright, T.J.; Elliott, J.R.; Wang, H.; Ryder, I. Earthquake cycle deformation and the Moho: Implications for

the rheology of continental lithosphere. Tectonophysics 2013, 609, 504–523. [CrossRef]
51. Li, Y.; Shan, X.; Qu, C.; Zhang, Y.; Song, X.; Jiang, Y.; Zhang, G.; Nocquet, J.M.; Gong, W.; Gan, W.; et al.

Elastic block and strain modeling of GPS data around the Haiyuan-liupanshan fault, northeastern Tibetan
Plateau. J. Asian Earth Sci. 2017, 150, 87–97. [CrossRef]

52. Lei, Q.Y. The Extension of the Arc Tectonic Belt in the Northeastern Margin of the Tibet Plateau and the
Evolution of the Yinchuan Basin in the Western Margin of the North China. Ph.D. Thesis, Institute of Geology,
China Earthquake Administration, Beijing, China, 2016.

53. Savage, J.C.; Burford, R.O. Geodetic Determination of Relative Plate Motion in Central California. J. Geophys. Res.
1973, 78, 832–845. [CrossRef]

http://dx.doi.org/10.1029/2008TC002302
http://dx.doi.org/10.1029/2005RG000183
http://dx.doi.org/10.1029/RS023i004p00713
http://dx.doi.org/10.1029/96JB03804
http://dx.doi.org/10.1109/36.898661
http://dx.doi.org/10.1016/j.jappgeo.2009.03.010
http://dx.doi.org/10.1080/01431160500307342
http://dx.doi.org/10.1016/0040-1951(81)90072-X
http://dx.doi.org/10.1029/93JB00892
http://dx.doi.org/10.1029/2000JB900045
http://dx.doi.org/10.1046/j.1365-246X.2003.01917.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03829.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04611.x
http://dx.doi.org/10.1002/2014GC005407
http://dx.doi.org/10.1029/96JB02544
http://dx.doi.org/10.1785/gssrl.78.1.116
http://dx.doi.org/10.1785/0120140247
http://dx.doi.org/10.1137/S0036144503429121
http://dx.doi.org/10.1016/j.tecto.2013.07.029
http://dx.doi.org/10.1016/j.jseaes.2017.10.010
http://dx.doi.org/10.1029/JB078i005p00832


Remote Sens. 2019, 11, 435 16 of 16

54. Yuan, D.Y.; Ge, W.P.; Chen, Z.W.; Li, C.Y.; Wang, Z.C.; Zhang, H.P.; Zhang, P.Z.; Zheng, D.W.; Zheng, W.J.;
Craddock, W.H.; et al. The growth of northeastern Tibet and its relevance to large scale continental
geodynamics: A review of recent studies. Tectonics 2013, 32, 1358–1370. [CrossRef]

55. Tapponnier, P.; Xu, Z.Q.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Jingsui, Y. Oblique stepwise rise
and growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [CrossRef]

56. Zuza, A.V.; Yin, A. Continental deformation accommodated by non-rigid passive bookshelf faulting:
An example from the Cenozoic tectonic development of northern Tibet. Tectonophysics 2016, 677–678,
227–240. [CrossRef]

57. Wang, C.Y.; Sandvol, E.; Zhu, L.; Lou, H.; Yao, Z.; Luo, X. Lateral variation of crustal structure in the Ordos
block and surrounding regions, North China, and its tectonic implications. Earth Planet. Sci. Lett. 2014, 387,
198–211. [CrossRef]

58. Tang, Y.; Zhou, S.; Chen, Y.J.; Sandvol, E.; Liang, X.; Feng, Y.; Jin, G.; Jiang, M.; Liu, M. Crustal structures
across the western Weihe Graben, North China: Implications for extrusion tectonics at the northeast margin
of Tibetan Plateau. J. Geophys. Res. 2015, 120, 5070–5081. [CrossRef]

59. Li, Y.H. Study on the Lateral Motion of Northeastern Tibetan Plateau. Ph.D. Thesis, Institute of Geology,
China Earthquake Administration, Beijing, China, 2017.

60. Guo, X.Y.; Gao, R.; Wang, H.; Li, W.; Keller, G.R.; Xu, X.; Li, H.; Encarnacion, J. Crustal architecture beneath
the Tibet-Ordos transition zone, NE Tibet, and the implications for plateau expansion. Geophys. Res. Lett.
2015, 42, 10631–10639. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/tect.20081
http://dx.doi.org/10.1126/science.105978
http://dx.doi.org/10.1016/j.tecto.2016.04.007
http://dx.doi.org/10.1016/j.epsl.2013.11.033
http://dx.doi.org/10.1002/2014JB011210
http://dx.doi.org/10.1002/2015GL066668
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Tectonic Setting and Data Used 
	Tectonic Setting 
	Data 

	Method 
	Stacking InSAR with Atmospheric-Corrected Interferograms 
	Velocity and Strain-Rate Field Inversion from InSAR and GPS 

	Construction of the InSAR Rate Map 
	Inversion Results from InSAR and GPS 
	Discussion 
	The Present-Day Kinematics for the Rupture of the 1920 Earthquake 
	Expansion Frontier of the Northeastern Tibet Plateau 

	Conclusions 
	References

