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Abstract

We study the complexity of a class of Markov decision processes and, more generally, stochastic
games, called 1-exit Recursive Markov Decision Processes (1-RMDPs) and 1-exit Recursive
Simple Stochastic Games (1-RSSGs), with strictly positive rewards. These are a class of finitely
presented countable-state zero-sum turn-based stochastic games that subsume standard finite-
state MDPs and Condon’s simple stochastic games. They correspond to optimization and game
versions of several classic stochastic models, with rewards. In particular, they correspond to the
MDP and game versions of multi-type branching processes and stochastic context-free grammars
with strictly positive rewards. The goal of the two players in the game is to maximize/minimize
the total expected reward generated by a play of the game. Such stochastic models arise naturally
as models of probabilistic procedural programs with recursion, and the problems we address are
motivated by the goal of analyzing the optimal/pessimal expected running time in such a setting.

We first show that in such games both players have optimal deterministic “stackless and
memoryless” optimal strategies. We then provide polynomial-time algorithms for computing the
exact optimal expected reward (which may be infinite, but is otherwise rational), and optimal
strategies, for both the maximizing and minimizing single-player versions of the game, i.e.,
for (1-exit) Recursive Markov Decision Processes (1-RMDPs). It follows that the quantitative
decision problem for positive reward 1-RSSGs is in NP ∩ coNP. We show that Condon’s well-
known quantitative termination problem for finite-state simple stochastic games (SSGs) which
she showed to be in NP ∩ coNP reduces to a special case of the reward problem for 1-RSSGs,
namely, deciding whether the value is∞. By contrast, for finite-state SSGs with strictly positive
rewards, deciding if this expected reward value is ∞ is solvable in P-time. We also show that
there is a simultaneous strategy improvement algorithm that converges in a finite number of steps
to the value and optimal strategies of a 1-RSSG with positive rewards.
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1. Introduction

Markov decision processes and stochastic games are fundamental models in stochas-
tic dynamic optimization and game theory (see, e.g., [33, 31, 21]). In this paper, mo-
tivated by the goal of analyzing the optimal/pessimal expected running time of prob-
abilistic procedural programs, we study the complexity of a reward-based stochastic
game, called 1-exit recursive simple stochastic games (1-RSSGs), and its 1-player ver-
sion, 1-exit recursive Markov decision processes (1-RMDPs). These form a class of
(finitely presented) countable-state turn-based zero-sum stochastic games (and MDPs)
with strictly positive rewards, and with an undiscounted expected total reward objec-
tive.

Intuitively, a 1-RSSG (1-RMDP) consists of a collection of finite-state component
SSGs (MDPs), each of which can be viewed as an abstract finite-state procedure (sub-
routine) of a probabilistic program with potential recursion. Each component proce-
dure has some nodes that are probabilistic and others that are controlled by one or the
other of the two players. The component SSGs can call each other in a recursive man-
ner, generating a potentially unbounded call stack, and thereby an infinite state space.
The “1-exit” restriction essentially restricts these finite-state subroutines so they do not
return a value, unlike multi-exit RSSGs and RMDPs in which they can return distinct
values. (We shall show that the multi-exit version of these reward games are unde-
cidable.) An example 1-RSSG with two components A and B is depicted in Figure
1. 1-RMDPs and 1-RSSGs were studied in [17] in a setting without rewards, where
the goal of the players was to maximize/minimize the probability of termination. Such
termination probabilities can be irrational, and quantitative decision problems for them
subsume long standing open problems in exact numerical computation. Here we ex-
tend 1-RSSGs and 1-RMDPs to a setting with positive rewards. Note that much of
the literature on MDPs and games is based on a reward structure. This paper is a first
step toward extending these models to the recursive setting. Interestingly, we show that
the associated problems actually become more benign in some respects in this strictly
positive reward setting. In particular, the values of our games are either rational, with
polynomial bit complexity, or∞.

The 1-RMDP and 1-RSSG models can also be described as optimization and game
versions of several classic stochastic models, including stochastic context-free gram-
mars (SCFGs) and (multi-type) branching processes. These have applications in many
areas, including natural language processing [29], biological sequence analysis ([10]),
and population biology [25, 24]. Another model that corresponds to a strict subclass of
SCFGs is “random walks with back-buttons” studied in [19] as a model of web surfing.
See [16] for details on the relationships between these various models.

A 1-RSSG with positive rewards, can be equivalently reformulated as the following
game played on a stochastic context-free grammar. We are given a context-free gram-
mar where nonterminals are partitioned into three disjoint sets: random, player-1,
and player-2. Starting from a designated start nonterminal, S init, we proceed to gen-
erate a (left-most) derivation by choosing a remaining (left-most) nonterminal, S , and
expanding it. The precise derivation law (left-most, right-most, etc.) does not effect
the game’s value in our strictly positive reward setting, but it would do so if we were
to allow 0 rewards on rules/transitions. If S belongs to random, it is expanded ran-
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Figure 1: A 1-RSSG example consisting of two components, A1 and A2. Black vertices belong to player
1, white to player 2, grey vertices to “nature” (i.e., they are random). Each box (labelled, e.g., b1:A1) has
a name (b1) and is mapped to a component (A1). Each edge has a label whose first component is ⊥ for
controlled vertices or a probability value for random ones, and the second component is the reward assigned
to this edge.

domly by choosing a rule S → α, according to a given probability distribution over the
rules whose left hand side is S . If S belongs to player-i, then player i chooses which
grammar rule to use to expand this S . Each grammar rule also has an associated strictly
positive reward for player 1, and each time a rule is used during the derivation, player
1 accumulates this associated reward. Player 1 wants to maximize the total expected
reward (which may be∞), and player 2 wants to minimize it. When we have only one
player in the game it is either a minimizing or maximizing 1-RMDP.

Let us mention another very closely related model to 1-RMDPs and 1-RSSGs,
namely (multi-type) Branching Markov Decision Processes (BMDPs) and Branching
Simple Stochastic Games (BSSGs), which constitute a natural generalization of the
purely stochastic multi-type Branching Processes ([25]), to the controlled setting of
MDPs and SSGs. These stochastic processes are heavily used in population biology
and many other areas of applied probability. They model the stochastic evolution of
a population of objects of possibly distinct types. In each generation, each object of
a given type in the population gives rise to a (possibly empty) set of offspring objects
of possibly distinct types in the next generation. In the purely probabilistic setting, the
offspring in the next generation for an object of type, t, are determined by a probability
distribution associated with the type t. In the controlled and game settings of BMDPs
and BSSGs, the players control particular types of objects and can decide between a
(finite) set of offspring choices for each object of that type in each generation. Players
can use whatever strategy they wish to optimize a given objective. See [17, 13, 14]
for more on these models. We mention that the results of this paper yield directly a
polynomial time algorithm, given a BMDP, for computing the optimal (maximum or
minimum) expected number of descendants of a given type for an object of a given
type. Speculating somewhat about the applications of such models, they could be use-
ful, for example, if the branching process represents a population of different types of
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cells, where some cell types are benign whereas other cell types are malignant. If an
adversary (say a foreign virus) can control the reproductive behavior of some cell types,
then such a model could be used to compute (in P-time), the worst-case expected total
number of malignant cells that can arise, under the worst possible adversary. Alterna-
tively, if medicines could be introduced to control the reproductive behavior of some
cell types, then such a model could be used to compute (in P-time), the expected total
number of malignant cells that would arise under the best possible medicine (and to
compute that “medicine”, i.e., an optimal strategy).

We assume strictly positive rewards on all transitions (rules) in this paper, and this
assumption is essential for our results regarding 1-RMDPs and 1-RSSGs. However,
for analyzing, e.g., the optimal expected total number of descendants of given types
for BMDPs and BSSGs, we only need the assumption that rewards are non-negative,
and all of our results would remain intact (this is essentially because BMDPs operate
under a simultaneous derivation law, unlike, e.g., context-free grammars with left-most
derivation). The assumption of strictly positive rewards is very natural for modeling
the optimal/pessimal expected running time in probabilistic procedural programs: each
discrete step of the program is assumed to cost some non-zero amount of time. Strictly
positive rewards also endow our games with a number of important robustness proper-
ties. In particular, in the above context-free grammar presentation, with strictly positive
rewards these games have the same value regardless of what derivation law is imposed.
This is not the case if we also allow 0 rewards on grammar rules. In that case, even in
the single-player setting, the game value can be wildly different (e.g., 0 or∞) depend-
ing on the derivation law (e.g., left-most, or right-most, or simultaneous). We shall
explain all this in more detail in Section 6.1, using explicit examples of such games
presented as context-free grammars.

As we shall show, none of these pathologies arise in the setting with strictly posi-
tive rewards. In this case, all derivation rules for the context-free grammar presentation
of these games yield precisely the same value. The left-most derivation rule is the one
that captures precisely 1-RMDPs and 1-RSSGs. We show that 1-RMDPs and 1-RSSGs
with strictly positive rewards have a value which is either rational (with polynomial bit
complexity) or∞, and which arises as the least fixed point solution (over the extended
reals) of an associated system of linear-min-max equations. Both players do have op-
timal strategies in these games, and in fact we show the much stronger fact that both
players have stackless and memoryless (SM) optimal strategies: deterministic strate-
gies that depend only on the current state of the running component, and not on the
history or even the stack of pending recursive calls.

We provide polynomial-time algorithms for computing the exact value for both
maximizing and minimizing 1-RMDPs with positive rewards, and for computing op-
timal strategies. The two cases of maximization and minimization are not equivalent
and require separate treatment. We show that for the 2-player games (1-RSSGs) de-
ciding whether the game has value at least a given r ∈ Q ∪ {∞} is in NP ∩ coNP. We
also describe a practical simultaneous strategy improvement algorithm, analogous to
similar algorithms for finite-state stochastic games, and show that it converges to the
game value (even if it is ∞) in a finite number of steps. A corollary is that computing
the game value and optimal strategies for these games is contained in the class PLS of
polynomial local search problems ([27]).
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We also observe that these games are “harder” than Condon’s finite-state SSG
games [7] in the following senses. We reduce Condon’s quantitative decision problem
for finite-state SSGs to a special case of 1-RSSG games with strictly positive rewards:
namely to deciding whether the game value is ∞. By contrast, if finite-state SSGs are
themselves equipped with strictly positive rewards, we can decide in P-time whether
their value is ∞. Moreover, it has been shown that computing the value of Condon’s
SSG games is in the complexity class PPAD for which the 2-player Nash Equilibrium
problem [6] (and the ≥ 3 player ε-NE problem [9]) is complete (see [18] and [28]).
The same proof however does not work for 1-RSSGs with positive rewards, and we do
not know whether these games are contained in PPAD. Technically, the problem is that
in the expected reward setting the domain of the fixed point equations is not compact,
and indeed the expected reward is potentially ∞, so the problem cannot in an obvious
way be formulated as a Brouwer fixed point problem. In these senses, the 1-RSSG re-
ward games studied in this paper appear to be “harder” than Condon’s SSGs, and yet as
we show their quantitative decision problems remain in NP ∩ coNP. Finally, we show
that the more general multi-exit RSSG model is undecidable. Namely, even for single-
player multi-exit RMDPs with strictly positive rewards, it is undecidable whether the
optimal reward value is∞.

Applications of these models to the analysis of expected running time of recursive
probabilistic programs, as in the tool PReMo ([39]), was the original motivation for
the work in this paper. The tool PReMo [39] implements a number of analyses for
RMCs, 1-RMDPs, and 1-RSSGs. In particular, the strategy improvement algorithm of
this paper was implemented and incorporated in that tool. It is worth noting that it was
shown by Friedmann [22] that essentially the same simultaneous strategy improvement
algorithm requires exponentially many steps in the worst case to compute the optimal
value for parity games and for Condon’s finite-state SSGs, and similar results were
shown by Fearnley [20] for MDPs with a total or average reward criterion. Despite this
worst-case behavior, the algorithm performs very well in practice on a wide range of
instances, including for 1-RSSGs. See [37] for some encouraging experimental results
showing how simultaneous strategy improvement outperforms some other standard it-
erative methods for computing the fixed point of max-linear equation systems.

Related work. Two (equivalent) purely probabilistic recursive models, Recursive
Markov chains and probabilistic Pushdown Systems (pPDSs) were introduced in [16]
and [11], and have been studied in several papers subsequently. These models were ex-
tended to the optimization and game setting of (1)-RMDPs and (1)-RSSGs in [17], and
studied further in [2, 3, 13, 14]. As mentioned earlier, the games considered in these
earlier papers had the goal of maximizing/minimizing termination or reachability prob-
ability, which can be irrational. Furthermore, the problems of computing an optimal
strategy, as well as quantitative decision problems regarding the optimal probability
(e.g., decide whether it exceeds a given rational bound), encounter long standing open
problems in numerical computation, even to place their complexity in NP. On the other
hand, the qualitative termination decision problem (“is the termination game value ex-
actly 1?”) for 1-RMDPs was shown to be in P, and for 1-RSSGs in NP ∩ coNP, in
[17]. These results are related to the results in the present paper as follows. If termina-
tion occurs with probability strictly less than 1 in a strictly positive reward game, then
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the expected total reward is ∞. But the converse does not hold: the expected reward
may be ∞ even when the game terminates with probability 1, because there can be
null recurrence in these infinite-state games. Thus, not only do we have to address this
discrepancy, but also our goal in this paper is quantitative computation (to compute the
optimal reward), whereas in [17] it was purely qualitative (almost sure termination).

The problem of approximating the optimal termination probabilities for 1-RMDPs
(and BMDPs) was addressed in [13], which gave efficient algorithms for computing
approximately the optimal termination probabilities of 1-RMDPs within any desired
accuracy in polynomial time in the size of the given 1-RMDP and the number of bits
of precision, and for computing ε-optimal strategies. Efficient algorithms for approx-
imately optimizing the reachability probabilities of BMDPs in polynomial time were
presented in [14] (these algorithms do not apply however to reachability analysis of
1-RMDPs). Our focus in this paper however is on exact optimization, and the objective
is based on rewards rather than termination/reachability probability.

Condon [7] originally studied finite-state SSGs with termination objectives (no re-
wards), and showed that the quantitative termination decision problem, i.e. determin-
ing whether the value of the game (the optimal termination probability) is greater than
or equal to a given rational number, is in NP ∩ coNP; it is a well-known open prob-
lem whether this problem is in P. In [8] strategy improvement algorithms for SSGs
were studied, based on variants of the classic Hoffman-Karp algorithm [26]. As noted
earlier, more recently it was shown by Friedmann [22] that the simultaneous strategy
improvement method requires exponentially many steps in the worst case to compute
the optimal value for both parity games and for Condon’s finite-state SSGs.

There has been some work on augmenting purely probabilistic multi-exit RMCs
and pPDSs with rewards in [12], as well as work on analyzing the distribution of the
runtime of RMCs and pPDSs, proving effective tail bounds for it (using polynomial
space) [4]. These results however are for purely probabilistic RMCs without players.
We in fact show in Theorem 20 that the basic questions for analyzing multi-exit RMDPs
and RSSGs with positive rewards are undecidable.

An independent paper by Gawlitza and Seidl [23] considers monotone linear-min-
max equations with potentially negative constant terms (with entirely different moti-
vation coming from abstract interpretation), and studies a different kind of strategy
improvement algorithm for computing their least fixed point solution over the full ex-
tended reals. Their work is related to ours, but in subtle ways. In particular their notion
of LFP over the extended reals may yield negative values or even −∞, and they as-
sume that “strategies” (choices for the max and min operators) are memoryless, rather
than proving a (memoryless) determinacy result. Moreover, their strategy improvement
algorithm requires a particular initial strategy (otherwise, it can fail) and thus is not di-
rectly formulable as a local search. Unlike our results, their results apparently do not
yield containment in NP ∩ coNP for the relevant decision problems (only containment
in NP is known, see [23]). Nevertheless, there appear to be close connections between
their work and ours that could be explored further.

Models related to 1-RMDPs have been studied in Operations Research under the
name Branching Markov Decision Chains (a controlled version of multi-type Branch-
ing processes). These are close to Branching Markov Decision Processes with non-
negative rewards and to the single-player SCFG model, but with simultaneous deriva-
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tion law. They were studied by Pliska [32], in a related form by Veinott [36], and
extensively by Rothblum and co-authors (e.g., [34]). Besides the restriction to simul-
taneous derivation, these models were restricted to the single-player MDP case, and
to simplify their analysis they were typically assumed to be “transient” (i.e., the ex-
pected number of visits to a node was assumed to be finite under all strategies). None
of these works yield a P-time algorithm for optimal expected rewards for 1-RMDPs
with positive rewards. Although we do not directly appeal to any of these results (and
in particular to the eigenvalue characterisations they typically involve), our results are
related and further generalize a related model to a 2-player setting.

Another work [5], studies the problem of finding a strategy that minimizes the ex-
pected number of transitions taken before termination for a given one-counter Markov
Decision Process (OC-MDP). The OC-MDP model can be seen as a special subclass
of RMDPs, but it is not comparable with 1-RMDPs: there are (countable state) Markov
decision processes generated by 1-RMDPs that cannot be generated by OC-MDPs and
vice versa. It was shown in [5] that an ε-optimal strategy for the objective of mini-
mizing the expected number of transitions taken can be computed in time linear in 1/ε
and exponential in the encoding size of the OC-MDP, and that finding such a strategy
cannot be done in polynomial time unless P=NP.

Finally, the model studied in this paper has been extended to a model with time
constraints [35] and concurrent game setting in [38]. In the former, each transition
has an associated time constraint and can only be taken if this constraint is satisfied.
The results in this paper generalize well to such a setting with an exponential blow-up
in the computational complexity of the problems studied. In the latter, at each step
both players make a (possibly probabilistic) choice among the ones available to him
at the current node. The next state and reward generated by this step is dependent
on the selected pair. Such games do not belong to the class of perfect-information
games, because the choices are made currently and independently of each other. In this
concurrent setting, optimal and even ε-optimal strategy may have to be probabilistic.
Furthermore, optimal strategies may require infinite amount of memory in general,
but it was shown in [38] that both players have ε-optimal probabilistic stackless &
memoryless strategies and can be found using a natural generalization of the strategy
improvement algorithm presented in this paper. The quantitative decision questions
regarding the value of such a game as well as checking whether the value is infinite can
be answered in PSPACE and turns out to be as hard as the square root sum problem.

Organization of the paper. The rest of the paper is organized as follows. Section 2
gives basic definitions of the models and the problems studied, and presents relevant
background. It shows also how to construct from a given 1-RSSG with positive rewards
a linear min-max system of equations whose least fixed point gives the optimal rewards
for every starting vertex. Section 3 shows that both players have stackless-memoryless
optimal strategies, and also proves that a strategy improvement algorithm can be used
to compute optimal strategies. Section 4 presents polynomial-time algorithms for both
minimizing and maximizing 1-RMDPs with positive rewards. It also shows that the
problem for 1-RSSGs is in NP ∩ coNP, and furthermore the qualitative problem of
determining if the optimal reward in infinite is at least as hard as Condon’s quantita-
tive problem for finite-state SSGs. In Section 5 we show that the problem for multi-
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exit RMDPs is undecidable. Section 6 explains the close relationship of 1-RMDPs
and 1-RSSGs with positive rewards with the analogous reward models of Branching
MDPs and games (BMDPs and BSSGs) and Stochastic context-free grammar MDPs
and games.

2. Definitions and Background

Let R>0 = (0,∞) denote the positive real numbers, R≥0 = [0,∞), R = [−∞,∞],
R∞>0 = (0,∞], and R∞

≥0 = [0,∞]. The extended reals R have the natural total order. We
assume the following usual arithmetic conventions on the non-negative extended reals
R∞
≥0: a · ∞ = ∞, for any a ∈ R∞>0; 0 · ∞ = 0; a +∞ = ∞, for any a ∈ R∞

≥0. This extends
naturally to matrix arithmetic over R∞

≥0.
We first define general multi-exit RSSGs (for which basic reward problems turn out

to be undecidable). Later, we will confine these to the 1-exit case, 1-RSSGs. A visual
depiction of a RSSG is given in Figure 1 and its detailed description follows after the
formal definition.

A Recursive Simple Stochastic Game (RSSG) with positive rewards is a tuple A =

(A1, . . . , Ak), where each component Ai = (Ni, Bi,Yi, Eni, Exi, pli, δi, ξi) consists of:

• A set Ni of nodes, with a distinguished subset Eni of entry nodes and a (disjoint)
subset Exi of exit nodes.

• A set Bi of boxes, and a mapping Yi : Bi 7→ {1, . . . , k} that assigns to every box
(the index of) a component. To each box b ∈ Bi, we associate a set of call ports,
Callb = {(b, en) | en ∈ EnY(b)}, and a set of return ports, Retb = {(b, ex) | ex ∈
ExY(b)}. Let Calli = ∪b∈Bi Callb, Reti = ∪b∈Bi Retb, and let Qi = Ni ∪ Calli ∪ Reti

be the set of all nodes, call ports and return ports; we refer to these as the vertices
of component Ai.

• A mapping pli : Qi 7→ {0, 1, 2} that assigns to every vertex a player (Player 0
represents “chance” or “nature”). We assume pli(u) = 0 for all u ∈ Calli ∪ Exi.

• A transition relation δi ⊆ (Qi × (R>0 ∪ {⊥}) × Qi × R>0), where for each tuple
(u, x, v, cu,v) ∈ δi, the source u ∈ (Ni \ Exi)∪Reti, the destination v ∈ (Ni \ Eni)∪
Calli, and x is either (i) pu,v ∈ (0, 1] (the transition probability) if pli(u) = 0, or
(ii) x = ⊥ if pli(u) = 1 or 2; and cu,v ∈ R>0 is the positive reward associated
with this transition. A transition (u, x, v, cu,v) ∈ δi can be viewed as an edge
from vertex u to vertex v with label (x, cu,v), and the transition relation δi as a
set of labelled edges on the vertices of Ai (see Figure 1). We assume that for
any two vertices, u and v, there is at most one transition in δi from u to v. For
computational purposes we assume the given probabilities pu,v and rewards cu,v

are rational. Probabilities must also satisfy consistency: for every u ∈ pl−1
i (0),∑

{v′ |(u,pu,v′ ,v′,cu,v′ )∈δi}
pu,v′ = 1, unless u is a call port or exit node, neither of which

have outgoing transitions, in which case by default
∑

v′ pu,v′ = 0.

• Finally, the mapping ξi : Calli 7→ R>0 maps each call port u in the component
to a positive rational value cu = ξ(u). (This mapping reflects the “cost” of a
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function call, but is not strictly necessary. This cost can be 0 and all our results
would still hold.)

Example. The example RSSG in Figure 1 has two components A1 and A2, i.e., k = 2.
Component A1 has three entry nodes (en1, en2 and en3), two internal nodes (n1 and n2)
and one exit node ex1. Component A2 has two entry nodes (en4 and en5), one internal
nodes (n3) and one exit node ex2.

Component A1 has two boxes b1 and b2 mapped to A1 and A2, respectively. As
box b1 is mapped to A1, i.e., Y(b1) = 1, it has three entry ports ((b1, en1), (b1, en2),
(b1, en3)) and one exit port (b1, ex1). Box b2 is mapped to A2, i.e., Y(b2) = 2, and has
two entry ports ((b2, en4), (b2, en5)) and one exit port ((b2, ex2)). Component A2 has
only one box b3 mapped to A1, i.e., Y(b3) = 1, which has three entry ports ((b3, en1),
(b3, en2), (b3, en3)) and one exit port ((b3, ex1)).

We can see that nodes en2, (b1, ex1) and n3 belong to player 1, i.e., pl(en) =

pl((b1, ex1)) = pl(n3) = 1. Nodes en1 and en5 belong to player 2, i.e., pl(en1) =

pl(en5) = 2. For all other nodes x we have pli(x) = 0, i.e., they are random nodes.
An example of a probabilistic transition is (n2, 0.1, ex1, 3) ∈ δ1, which gives reward

3 to Player 1 with probability 0.1. In the figure, it is represented by an arrow from n2 to
ex1 with (0.1, 3) as its label. An example of a controlled transition is (en5,⊥, n3, 1) ∈
δ2, which gives reward 1 to Player 1 if Player 2, while at en5, decides to use it. In
the figure, it is represented by an arrow from en5 to n3 with (⊥, 1) as its label. In this
particular example ξ ≡ 0. �

We use the symbols N, B,Q, δ, etc., without a subscript, to denote the union over
all components. Thus, e.g., N = ∪k

i=1Ni is the set of all nodes of A, δ = ∪k
i=1δi the

set of all transitions, etc. Let n(u) =
{
v | (u,⊥, v, cu,v) ∈ δ

}
denote the neighbors of u

if u is a player 1 or player 2 vertex and n(u) =
{
v | (u, pu,v, v, cu,v) ∈ δ

}
otherwise. An

RSSG A defines a global denumerable simple stochastic game, with rewards, MA =

(V = V0 ∪ V1 ∪ V2,∆, pl) as follows. The global states V ⊆ B∗ × Q of MA are pairs of
the form 〈β, u〉, where β ∈ B∗ is a (possibly empty) sequence of boxes and u ∈ Q is a
vertex of A. The states V ⊆ B∗ ×Q and transitions ∆ are defined inductively as follows:

1. 〈ε, u〉 ∈ V , for u ∈ Q. (ε denotes the empty string.)

2. if 〈β, u〉 ∈ V & (u, x, v, c) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, x, 〈β, v〉, c) ∈ ∆.

3. if 〈β, (b, en)〉 ∈ V & (b, en) ∈ Callb, then 〈βb, en〉 ∈ V & (〈β, (b, en)〉, 1, 〈βb, en〉, ξ((b, en))) ∈ ∆.

4. if 〈βb, ex〉 ∈ V & (b, ex) ∈ Retb, then 〈β, (b, ex)〉 ∈ V & (〈βb, ex〉, 1, 〈β, (b, ex)〉, 0) ∈ ∆.

The mapping pl : V 7→ {0, 1, 2} is given as follows: pl(〈β, u〉) = pl(u) if u is in
Q \ (Call ∪ Ex), and pl(〈β, u〉) = 0 if u ∈ Call ∪ Ex. The set of states V is partitioned
into V0, V1, and V2, where Vi = pl−1(i). We consider MA with various initial states of
the form 〈ε, u〉, denoting this by Mu

A. Some states of MA are terminating states and have
no outgoing transitions. These are states 〈ε, ex〉, where ex is an exit node. An RSSG
where V2 = ∅ (V1 = ∅) is called a maximizing (minimizing, respectively) Recursive
Markov Decision Process (RMDP); an RSSG where V1 ∪ V2 = ∅ is called a Recursive
Markov Chain (RMC) ([16]). A 1-RSSGs is a RSSG where every component has one
exit, and we likewise define 1-RMDPs and 1-RMCs. (The example RSSG in Figure
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1 is in fact a 1-RSSG, because each component has just one exit.) This entire paper
is focused on 1-RSSGs and 1-RMDPs, except for Theorem 20, where we show that
multi-exit RMDP reward games are undecidable.

In a (1-)RSSG with positive rewards the goal of player 1 (maximizer) is to maxi-
mize the total expected reward gained during a play of the game, and the goal of player
2 (minimizer) is to minimize this. A strategy σ for player i, i ∈ {1, 2}, is a function
σ : V∗Vi 7→ V , where, given the history ws ∈ V∗Vi of play so far, with s ∈ Vi (i.e.,
it is player i’s turn to play a move), σ(ws) = s′ determines the next move of player i,
where (s,⊥, s′, c) ∈ ∆. (We could also allow randomized strategies, but this won’t be
necessary, as we shall see.)

A special class of strategies extensively used later in this paper are Stackless &

Memoryless (SM) strategies. These are strategies that are deterministic, and depend
neither on the history of the game nor on the current call stack. In other words, these
strategies only depend on the current vertex. Such strategies, for player i, can clearly
be specified by a function σ : Vi 7→ V .

Let Ψi denote the set of all strategies for player i. A pair of strategies σ ∈ Ψ1 and
τ ∈ Ψ2 induces in a straightforward way a Markov chain Mσ,τ

A = (V∗,∆′), whose set
of states is the set V∗ of histories. Let rk,σ,τ

u denote the expected reward in k steps in
Mσ,τ

A , starting at initial state 〈ε, u〉. Formally, we can define the reward gained during
the i’th transition, starting at 〈ε, u〉 to be given by a random variable Ci. The total k-
step expected reward is simply rk,σ,τ

u = E[
∑k

i=1 Ci]. When k = 0, we of course have
r0,σ,τ

u = 0. Given an initial vertex u, let r∗,σ,τu = limk→∞ rk,σ,τ = E[
∑∞

i=1 Ci] ∈ [0,∞]
denote the total expected reward obtained in a run of Mσ,τ

A , starting at initial state 〈ε, u〉.
Clearly, this sum may diverge, thus r∗,σ,τ ∈ [0,∞]. Note that, because of the positive
constraint on the rewards out of all transitions, the sum will be finite if and only if the
expected number of steps until the run terminates is finite.

We now want to associate a “value” to 1-RSSG games. Unlike 1-RSSGs with ter-
mination probability objectives, it unfortunately does not follow directly from general
determinacy results such as Martin’s Blackwell determinacy ([30]) that these games
are determined, because those determinacy results require a Borel payoff function to
be bounded, whereas the payoff function for us is unbounded. Instead, let us de-
fine for all vertices u r∗u

.
= supσ∈Ψ1

infτ∈Ψ2 r∗,σ,τu . Also, for a strategy σ ∈ Ψ1, let
r∗,σu

.
= infτ∈Ψ2 r∗,σ,τu , and for τ ∈ Ψ2, let r∗,·,τu

.
= supσ∈Ψ1

r∗,σ,τu . Player 1’s strategy σ is
called ε-optimal if r∗,σu ≥ r∗u − ε and is optimal if it is 0-optimal; similarly for player 2’s
strategies. A game is determined if for every ε > 0 both players have ε-optimal strate-
gies and we call it SM-determined if both players have optimal SM strategies. We will
first show that r∗u = infτ∈Ψ2 supσ∈Ψ1

r∗,σ,τu , so our games are determined and r∗u is the
value of the game starting at vertex u, and later that our games are in fact also SM
determined.

We are interested in the following problem: Given A, a 1-RSSG (or 1-RMDP), and
given a vertex u in A, compute r∗u if it is finite, or else declare that r∗u = ∞. Also,
compute optimal SM strategies for both players.

In [17] we defined a monotone system of nonlinear min-max equations for the value
of the termination probability game on 1-RSSGs, and showed that its Least Fixed Point
solution yields the desired probabilities. Here we show we can adapt this to obtain
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analogous linear min-max systems in the setting of positive reward 1-RSSGs. We use
a variable xu for each unknown r∗u. Let x be the vector of all xu, u ∈ Q. The system has
one equation of the form xu = Pu(x) for each vertex u. Suppose that u is in component
Ai with (unique) exit ex. There are 5 cases based on the “Type” of u.

1. Type0: u = ex. In this case: xu = 0.

2. Typerand: pl(u) = 0 & u ∈ (Ni \ {ex}) ∪ Reti: xu =
∑

v∈n(u) pu,v(xv + cu,v).

3. Typecall: u = (b, en) is a call port: x(b,en) = xen + x(b,ex′) + cu,
where ex′ ∈ ExY(b) is the unique exit of AY(b).

4. Typemax: pl(u) = 1 and u ∈ (Ni \ {ex}) ∪ Reti: xu = maxv∈n(u)(xv + cu,v)

5. Typemin: pl(u) = 2 and u ∈ (Ni \ {ex}) ∪ Reti: xu = minv∈n(u)(xv + cu,v)

We denote the system in vector form by x = P(x). Given a 1-RSSG, we can easily
construct its associated system in linear time. For vectors x, y ∈ Rn, x ≤ y means
x j ≤ y j for every j. Let r∗ ∈ Rn denote the n-vector of r∗u’s. Let 0 denote an all 0
vector, and define x0 = 0, xk+1 = Pk+1(0) = P(xk), for k ≥ 0.

Theorem 1. 1. The map P : R
n
→ R

n
is monotone on R∞

≥0 and 0 ≤ xk ≤ xk+1 for
k ≥ 0.

2. r∗ = P(r∗).

3. For all k ≥ 0, xk ≤ r∗.

4. For all r′ ∈ R∞
≥0, if r′ = P(r′), then r∗ ≤ r′.

5. For all vertices u,
r∗u

.
= sup

σ∈Ψ1

inf
τ∈Ψ2

r∗,σ,τu = inf
τ∈Ψ2

sup
σ∈Ψ1

r∗,σ,τu .

(In other words, these games are determined.)

6. r∗ = limk→∞ xk.

Proof.

1. All equations in the system P(x) are min-max linear with non-negative coeffi-
cients and constants, and hence are monotone.

2. The proof that r∗ = P(r∗) is similar to the one for 1-RSSG termination games
from [17], but it uses in a crucial way the fact that rewards on all transitions are
strictly positive.

(a) For u = ex ∈ Type0, r∗u = 0, so it fulfills the corresponding equation xu = 0.
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(b) For u ∈ Typerand, from the definition r∗u = supσ infτ r∗,σ,τu it follows that
r∗u =

∑
v∈n(u) pu,v(r∗v + cu,v). Note that this holds even when some of the

expected rewards are infinite, because if pu,v > 0 and the game starting at v
has infinite reward value, then this is also the case starting at u.

(c) For u ∈ Typecall, where u = (b, en) is a call port. We claim that

r∗u = r∗en + r∗(b,ex′) + cu (1)

where ex′ is the unique exit of Y(b). First, for any pair of strategies σ
and τ of player 1 and 2, respectively, we define two random variables. Let
Kσ,τ be equal to the total accumulated reward until a play of the game
MA starting at u, and using strategies σ and τ, exits the box b, i.e. reaches
(b, ex′) in the same (empty) calling context (i.e., with the same (empty) call
stack), and let Lσ,τ be the total accumulated reward thereafter (if the play
never leaves b then Lσ,τ is defined to be 0). Also, let T be the event that
the game exits the box b and T ′ be its complement. Finally, let Pσ,τ(F)
be the probability of the event F occurring in the Markov chain Mσ,τ

u .
From the definition, r∗u = supσ infτ E(Kσ,τ + Lσ,τ) = supσ infτ EKσ,τ +

ELσ,τ = supσ infτ E(Kσ,τ|T ) · Pσ,τ(T ) + E(Kσ,τ|T ′) · Pσ,τ(T ′) + E(Lσ,τ|T ) ·
Pσ,τ(T )+E(Lσ,τ|T ′) ·Pσ,τ(T ′) = supσ infτ E(Kσ,τ|T ) ·Pσ,τ(T )+∞·Pσ,τ(T ′)+

E(Lσ,τ|T ) ·Pσ,τ(T ) + 0 ·Pσ,τ(T ′), because the event T ′ implies that the game
never stops and from the assumption that all rewards are strictly positive
E(Kσ,τ|T ′) has to be ∞ then. We now claim that the last expression is
in fact equal to supσ infτ E(Kσ,τ) + E(Lσ,τ|T ). This is because equality
holds if Pσ,τ(T ) = 1 and otherwise we have Pσ,τ(T ′) > 0 which implies
that both expressions are ∞ and so are equal. Now, supσ infτ E(Kσ,τ) +

E(Lσ,τ|T ) = supσ infτ E(Kσ,τ) + supσ infτ E(Lσ,τ|T ), because any pair of
player 1’s strategies σ1 and σ2 that are (ε-)optimal for infτ E(Kσ1,τ) and
infτ E(Lσ2,τ|T ), respectively, can be easily composed into a single strategy
σ that is (ε-)optimal for infτ E(Kσ,τ) + E(Lσ,τ|T ) and vice versa. Finally,
supσ infτ E(Kσ,τ) = cu + r∗en, because Kσ,τ only accumulates reward from
the moment the game enters and until it leaves box b, and the structure of
the game between these two moments is isomorphic to a game starting at
en. Similarly, supσ infτ E(Lσ,τ|T ) = r∗(b,ex′), because the event T implies that
the game reaches (b, ex′) at some point, Lσ,τ accumulates reward only from
that moment on and the structure of the game from that point is isomorphic
to a game starting at (b, ex′).

(d) For u ∈ Typemax, we know that r∗u ≥ r∗v + cu,v for any v ∈ n(u), because
otherwise the max player would be able to increase his expected reward by
taking the transition to the node v in the first step. On the other hand, we
also have that r∗u ≤ r∗v + cu,v for some v ∈ n(u), as otherwise no matter what
transition player max picks from u, the min player has a strategy such that
max would not be able to obtain the expected total reward r∗u.

(e) For u ∈ Typemin, we know that r∗u ≤ r∗v + cu,v for all v ∈ n(u), because
otherwise it would be better for the min player to take the transition leading
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to the node v and giving the max player expected reward r∗v + cu,v which is
lower than r∗u . However, for some v ∈ n(u) it has to be r∗ ≥ r∗v + cu,v, as
otherwise player max could always obtain expected reward higher than r∗u
no matter what min player does.

3. Note that P is monotonic, and r∗ is a fixed point of P. Since x0 = 0 ≤ r∗, it
follows by induction on k that xk ≤ r∗, for all k ≥ 0.

4. Consider any fixed point r′ of the equation system P(x). We will prove that
r∗ ≤ r′. Let us denote by τ∗ a strategy for the minimizer that picks for each vertex
the successor with the minimum value in r′, i.e., for each state s = 〈β, u〉, where
u belongs to player 2 (minimizer) nodes, we choose τ∗(s) = arg minv∈n(u) r′v + cu,v

(breaking ties lexicographically).

Lemma 2. For all strategies σ ∈ Ψ1 of player 1, and for all k ≥ 0, rk,σ,τ∗ ≤ r′.

Proof. Base case r0,σ,τ∗ = 0 ≤ r′ is trivial.

(a) u = ex, then rk,σ,τ∗
u = 0 = r′u for all k ≥ 0.

(b) u ∈ Typerand is a random node and after we define a strategy σ′(θ) =

σ(〈ε, u〉θ) we get:

rk+1,σ,τ∗
u =

∑
v∈n(u)

pu,v(rk,σ′,τ∗
v + cu,v) ≤

∑
v∈n(u)

pu,v(r′v + cu,v) = r′u

based on the inductive assumption and the fact that r′ is a fixed point of
P(x).

(c) If u = (b, en) is an entry en of the box b then we claim

rk+1,σ,τ∗
u ≤ max

ρ
rk,ρ,τ∗

en + max
ρ

rk,ρ,τ∗

(b,ex′) + cu (2)

where (b, ex′) is the only return port of box b. To see this, note that in any
specific trajectory, the total reward gained in k + 1 steps starting at call port
(b, en) is cu plus the remaining reward, which is split into two parts: that
gained in i steps inside box b, and the rest gained in j steps after returning
from box b, and such that i + j = k. Thus clearly the total expected reward
in k + 1 steps starting at u is no more than cu plus the expected reward in
k steps starting inside box b (i.e., starting at the entry en of Y(b)) plus the
expected gain in k steps starting at (b, ex′). We now have

max
ρ

rk,ρ,τ∗
en + max

ρ
rk,ρ,τ∗

(b,ex′) + cu ≤ r′en + r′(b,ex′) + cu = r′u (3)

by inductive assumption, and by the fact that r′ is a fixed point of P(x). So,
combining equations (2) and (3), we have rk+1,σ,τ∗

u ≤ r′u.
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(d) For u ∈ Typemax we claim

rk+1,σ,τ∗
u ≤ max

v∈n(u)
rk,σ′,τ∗

v + cu,v

because the player has to move to some neighbor v of 〈ε, u〉 in one step,
and thus it cannot gain more that rk,σ′,τ∗ , where σ′ is defined from σ in the
same way as for Typerand. Thus

rk+1,σ,τ∗
u ≤ max

v∈n(u)
rk,σ′,τ∗

v + cu,v ≤ max
v∈n(u)

r′v + cu,v = r′u

(e) For u ∈ Typemin we know that τ∗(u) = arg minv∈n(u)(r′u + cu,v) = v∗, so:

rk+1,σ,τ∗
u = rk,σ′,τ∗

v∗ + cu,v∗ ≤ r′v∗ + cu,v∗ = min
v∈n(u)

(r′v + cu,v) = r′u

2

Now by the lemma we have r∗,σ,τ
∗

u = limk→∞ rk,σ,τ∗
u ≤ r′u for every vertex u and

for any max player strategy σ, so supσ r∗,σ,τ
∗

u ≤ r′u. Thus for all vertices u:

r∗u = sup
σ

inf
τ

r∗,σ,τu ≤ inf
τ

sup
σ

r∗,σ,τu ≤ sup
σ

r∗,σ,τ
∗

u ≤ r′u (4)

5. In equation (4) above, choose r′ = r∗. Then we have, for all vertices u,

sup
σ

inf
τ

r∗,σ,τu = inf
τ

sup
σ

r∗,σ,τu .

6. We know that z = limk→∞ xk exists in [0,∞], because it is a monotonically non-
decreasing sequence (note some entries may be infinite). In fact we have z =

limk→∞ Pk+1(0) = P(limk→∞ Pk(0)), and thus z is a fixed point of the equation
P(x) = x. So from (4) we have r∗ ≤ limk→∞ xk. Since xk ≤ r∗ for all k ≥ 0,
limk→∞ xk ≤ r∗ and thus limk→∞ xk = r∗.

2

The following is a simple corollary of the proof.

Corollary 3. In 1-RSSG positive reward games, the minimizer has an optimal deter-
ministic Stackless and Memoryless (SM) strategy.

Proof. It is enough to consider the strategy τ∗, from Part 4 of Theorem 1, when we let
r′ = r∗. For then, by equation (4), we have r∗u = supσ r∗,σ,τ

∗

= infτ supσ r∗,σ,τ. 2

Note that for a 1-RMC (i.e., without players) with positive rewards, the vector
r∗ ∈ (R∞

≥0)n of expected total rewards is the LFP of a system x = Ax + b, for some
non-negative matrix A ∈ Rn×n, A ≥ 0, and a positive vector b > 0. We will exploit this
fact later in various proofs.

14



3. SM-determinacy and strategy improvement

We now prove SM-determinacy for 1-RSSGs with positive rewards, and we also
show that strategy improvement can be used to compute the values and optimal strate-
gies for 1-RSSG positive reward games. Consider the following (simultaneous) strat-
egy improvement algorithm.
Initialization: Pick some (any) SM strategy, σ, for player 1 (maximizer).
Iteration step: First compute the optimal value, r∗,σu , starting from every vertex, u, in the
resulting minimizing 1-RMDP. (We show in Theorem 8 that this can be done in P-time.)
Then, update σ to a new SM strategy, σ′, as follows. For each vertex u ∈ Typemax, if
σ(u) = v and u has a neighbor w , v, such that r∗,σw + cu,w > r∗,σv + cu,v, let σ′(u) := w
(e.g., choose a w that maximizes r∗,σw + cu,w). Otherwise, let σ′(u) := σ(u).
Repeat the iteration step, using the new σ′ in place of σ, until no further local improve-
ment is possible, i.e., stop when σ′ = σ.

Theorem 6 below shows that this algorithm always halts, and produces an optimal final
SM strategy for player 1. (The proof shows it works even if we switch any non-empty
subset of improvable vertices in each iteration.) Combined with Corollary 3, both
players have optimal SM strategies, i.e., the games are SM-determined.

Recall that for a 1-RMC (i.e., without players) with positive rewards, the vector r∗
of expected total rewards is the LFP of a system x = Ax + b, for some non-negative
matrix A ∈ Rn×n, A ≥ 0, and a positive vector b > 0. In the proof of Theorem 6 we
shall need the following basic fact about matrix inequalities.1

Lemma 4. For any x ∈ Rn
≥0, A ∈ (R∞

≥0)n×n and b ∈ (R∞>0)n, if x ≤ Ax + b then
x ≤ (

∑∞
k=0 Ak)b. This holds even if for some indices i we have bi = 0, as long as the

entries in any such row i of the matrix A are all zero.

Proof.
Let D =

∑∞
k=0 Ak and y = Db. We have to prove that x ≤ y. Some of the entries

of D can be infinite. Let R = {r1, r2, . . . , rm} be the set of indices of the rows of D that
contain at least one ∞ entry. For every r ∈ R, yr =

∑n
i=1 Dr,ibi. Since bi > 0 for all i

and Dr,i is ∞ for at least one i, we have yr = ∞ and so xr ≤ yr is trivially fulfilled for
every r ∈ R. Now let us construct a new matrix A′ by zeroing all rows of A that are
in R. Similarly, let x′ be the vector x where entries xr for all r ∈ R were zeroed. Let
D′ =

∑∞
k=0 A′k.

We will prove that x′ ≤ A′x′ + b. For entries r ∈ R, it is trivial as (A′x′)r + br =

0 + br ≥ 0 = x′r. If r < R then x′r = xr and

(A′x′)r =

n∑
i=1

A′r,ix
′
i =

∑
{
i|A′r,i>0

} A′r,ix
′
i

1Note that if we assume both that A ∈ (R≥0)n×n and that (
∑∞

k=0 Ak) converges, the lemma is trivial: we
have (I − A)−1 = (

∑∞
k=0 Ak), and thus x ≤ Ax + b ⇒ x − Ax ≤ b ⇒ (I − A)x ≤ b ⇒ x ≤ (I − A)−1b. But

we need this lemma even when (
∑∞

k=0 Ak) is not convergent.
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Proposition 5. If Ai, j > 0, and for some k we have D j,k = ∞ then Di,k = ∞.

Proof. We have that D = I + AD and so Di,k = δik +
∑n

l=1 Ai,lDl,k ≥ Ai, jD j,k = ∞.
(where δik is equal to 1 if i = k and 0 otherwise). 2

Suppose that r < R. If for some i, x′i , xi, then i ∈ R and we must have Di, j = ∞

for some j. If A′r,i > 0 then Ar,i = A′r,i, and from Proposition 5 we get that Dr, j = ∞,
which contradicts the fact that r < R. Thus for r < R, and for i such that A′r,i > 0, we
must have x′i = xi and A′r,i = Ar,i. Thus (A′x′)r + br = (Ax)r + br ≥ xr = x′r for all r < R.
Hence we can conclude that x′r ≤ (A′x′)r + br for all r.

We will now prove that limk→∞ A′k = 0. For contradiction, note that if we had
limk→∞(A′k)i, j , 0 for some i, j then it must be the case that D′i, j = ∞, because (A′k)i, j ≥

0 for all k, and for some ε > 0 and infinitely many k, (A′)k
i, j > ε. Since A′ ≤ A, we

get that A′k ≤ Ak for any k ≥ 0 and thus
∑∞

k=0 A′k ≤
∑∞

k=0 Ak. Therefore if D′i, j = ∞

then Di, j = ∞, but this means that all entries in the i-th row of A were zeroed in order
to obtain A′. However if the i-th row in A′ has only zeroes, then so does the i-th row in
A′k for any k. This would contradict the assumption that limk→∞(A′k)i, j , 0.

Now, substituting x′ by A′x′ + b in x′ ≤ A′x′ + b, we get that x′ ≤ A′x′ + b ≤
A′(A′x′+b)+b = A′2x′+ A′b+b ≤ A′2(A′x′+b)+ A′b+b = A′3x′+ (A′2 + A′+ I)b and
by iterating we can see that x′ ≤ A′l+1x′ + (

∑l
k=0(A′)k)b for any l ≥ 0. All entries of x′

are finite and limk→∞ A′k = 0, so by taking the limit l→ ∞ we get x′ ≤ (
∑∞

k=0(A′)k)b ≤
(
∑∞

k=0(A)k)b = y. This shows that also for r < R we have xr ≤ yr, which concludes the
proof that x ≤ y.

Finally, we show now that we can also handle the case when for some indices i,
bi = 0 as long as each such a i-th row in A contains only 0s. We proceed by induction
on the number, d, of indices i such that bi = 0. For the base case d = 0, the claim was
already proved. For the inductive case, suppose d > 0, and let i be the smallest such
index. Since we assume Ax + b ≥ x, it must be that xi = 0. For any matrix M, let
M′ denote the matrix obtained by removing the i-th row and the i-th column from M.
Similarly, for a vector v by v′ denote the vector v with the i-th entry removed. If xi = 0,
then M′x′ = (Mx)′ for any matrix M. Also, since the i-th row of A contains only 0s
we have that (A′)k = (Ak)′ for any k ≥ 0 and so

∑∞
k=0(A′)k = (

∑∞
k=0 Ak)′. Now, from

Ax + b ≥ x we get (Ax + b)′ ≥ x′ and so A′x′ + b′ ≥ x′. But it is easy to see that A′ and
b′ have the same property as before: if b′j = 0 then the j-th row of A′ consists of only
0s. Moreover, there are now d − 1 such indices. Thus, from the inductive hypothesis,
x′ ≤ (

∑∞
k=0(A′)k)b′ = (

∑∞
k=0 Ak)′b′ = ((

∑∞
k=0 Ak)b)′, and because the inequality is trivial

for the i-th position of x, we conclude that x ≤ (
∑∞

k=0 Ak)b. 2

Theorem 6. (1) SM-determinacy. In 1-RSSG positive reward games, both players
have optimal SM strategies (and thus by Corollary 3 these games are SM determined).
(2) Strategy Improvement. Moreover, we can compute the value and optimal SM strate-
gies using the above simultaneous strategy improvement algorithm.
(3) Computing the value and optimal strategies in these games is contained in the class
PLS.

Proof. Let σ be any SM strategy for player 1. Consider r∗,σu = infτ∈Ψ2 r∗,σ,τu . (Note
that some entries in the vector r∗,σ may be ∞.) First, note that if r∗,σ = P(r∗,σ) then
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r∗,σ = r∗. This is because, by Theorem 1, r∗ ≤ r∗,σ, and on the other hand, σ is just one
strategy for player 1, and for every vertex u, r∗u = supσ′∈Ψ1

r∗,σ
′

u ≥ r∗,σu . Now we claim
that, for all vertices u such that u < Typemax, r∗,σu satisfies its equation in x = P(x). In
other words, r∗,σu = Pu(r∗,σ). To see this, note that for vertices u of Types {0, call, rand},
no choice of either player is involved and the equation holds by definition of r∗,σ (In
particular, the expected reward value at a call u is cu plus the sum of the expected
reward values of the game starting at the entry inside the box, and the game starting at
the return port.) For nodes u ∈ Typemin, we have the equation xu = minv∈n(u) xv + cu,v.
But note that the best minimizer can do against strategy σ, starting at 〈ε, u〉, is to move
to a neighboring vertex v such that v = arg minv∈n(u)(r∗,σv +cu,v). Thus, the only equations
that may fail are those for u ∈ Typemax, xu = maxv∈n(u)(xv +cu,v). Suppose σ(u) = v, for
some neighbor v. Clearly then, r∗,σu = r∗,σv + cu,v. Thus, r∗,σu ≤ maxv′∈n(u)(r∗,σv′ + cu,v′ ).
Thus equality fails iff there is another vertex w , v, with (u,⊥,w) ∈ δ, such that
r∗,σv + cu,v < r∗,σw + cu,w.

Suppose now that the nodes (u1, u2, . . . un) are all those nodes where the SM strategy
σ is not locally optimal, i.e., for i = 1, 2, . . . , n, σ(ui) = vi, and thus r∗,σui = r∗,σvi + cui,vi ,
but there is some wi such that r∗,σvi + cui,vi < r∗,σwi + cui,wi . Let u = (u1, u2, . . . , un) and
similarly define v and w. Consider now a revised SM strategy σ′, which is identical to
σ, except that σ′(ui) = wi for all i. Next, consider a parametrized 1-exit RSSG, A(t)
where t = (t1, t2, . . . , tn), which is identical to A, except that all edges out of vertices
ui are removed, and replaced by a single probability 1 edge labeled by reward ti, to the
exit of the same component node ui is in. Fixing the value of the vector t ∈ [0,∞]n

determines an 1-RSSG, A(t). Note that if we restrict SM strategies σ or σ′ to vertices
other than those in u, then they both define the same SM strategy for the 1-RSSG A(t).
Define r∗,σ,τ,tz to be the expected total reward starting from 〈ε, z〉 in the Markov chain
Mz,σ,τ

A(t) . Now, for each vertex z, define the function fz(t) = infτ∈Ψ2 r∗,σ,τ,tz . In other words,
fz(t) is the infimum of the expected rewards, over all strategies of player 2, starting at
〈ε, z〉 in A(t). This reward is parametrized by t. Now, let tσ be a vector such that
tσui

= r∗,σui , and observe that fz(tσ) = r∗,σz for every z. This is so because any strategy
for minimizing the total reward starting from z would, upon hitting a state 〈β, ui〉 in
some arbitrary context β, be best off minimizing the total expected reward starting
from 〈β, ui〉 until that context is exited, (and unless the minimizer has a strategy that
assures the context is exited with probability 1, the expected reward will be∞).

Note that, by Corollary 3, in the 1-RSSG reward game on A(t), for any values
in vector t, and any start vertex z, minimizer has an optimal SM strategy τz,t, such
that τz,t = arg minτ∈Ψ2 r∗,σ,τ,tz . Let g(z,τ)(t) = r∗,σ,τ,tz . Note that fz(t) = minτ gz,τ(t),
where the minimum is over SM strategies. Now, note that the function gz,τ(t) is the
expected reward in a positive reward 1-RMC starting from a particular vertex, and it
is given by gz,τ(t) = (limk→∞ Rk(0))z for a linear system x = R(x) with non-negative
coefficients in R, where R(x) = Aσ,τx + bσ,τ(t), for some nonnegative matrix Aσ,τ, and
vector bσ,τ(t) which describes the average 1-step rewards from each vertex. All of
these 1-step rewards are positive, except that at positions ui the entry is the variable ti,
i.e., bσ,τui (t) = ti. (Note that for all i the ui’th row vector of Aσ,τ is all zero.) Simple
iteration then shows that gz,τ(t) = limk→∞ Rk(0)z = ((

∑∞
k=0 Ak

σ,τ)bσ,τ(t))z. (Note that
if limk→∞ Ak

σ,τ = 0, then (
∑∞

k=0 Ak
σ,τ) = (I − Aσ,τ)−1.) Now gz,τ(t) has the following

properties: it is a continuous, nondecreasing, and linear function of t ∈ [0,∞]n, and
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for t ∈ [0,∞]n, gz,τ(t) ∈ [0,∞]. Specifically, we can think of it as a function gz,τ(t) =

αz,τt + βz,τ, where αz,τ = (αz,τ
1 , αz,τ

2 , . . . , αz,τ
n ) and αz,τ

i , βz,τ ∈ [0,∞].
Let gτ(t) = (gw1,τ(t′), gw2,τ(t′), . . . , gwn,τ(t′)) where t′ = t + cu,w and let cu,w =

(cu1,w1 , cu2,w2 , . . . , cun,wn ). Note t ∈ (−cu1,w1 ,∞]×(−cu2,w2 ,∞]× . . .×(−cun,wn ,∞]. We can
represent gτ(t) as Dτt+dτ, where Dτ = [αw1,τ;αw2,τ; . . . ;αwn,τ] and dτj =

∑n
i=0 α

w j,τ

i cui,wi+

βw j,τ. Note that if dτj = 0 then it has to be αw j,τ = 0 and βw j,τ = 0, because cui,wi > 0 for
all i.

Consider function f(t) = minτ gτ(t). This is well defined, since whatever the values
in t, the min player always has, by Corollary 3, an optimal SM strategy τ∗ in A(t) such
that for any strategy σ of the max player, and any strategy τ of the min player, and all z
we have r∗,σ,τ

∗,t
z ≤ r∗,σ,τ,tz . Note that f(t) = ( fw1 (t + cu,w), fw2 (t + cu,w), . . . , fwn (t + cu,w)).

Lemma 7. If f(t) > t for some finite vector t, then for any fixed point t∗ of f, t ≤ t∗.

Proof. Suppose that t∗ is some fixed point of f. Since f(t∗) = minτ gτ(t∗), for some τ∗

we have gτ∗ (t∗) = t∗. From the fact that f(t) > t, we get that for all τ we have gτ(t) > t.
In particular we have gτ∗ (t) > t, which means that Dτ∗ t + dτ∗ > t. Now, for all i, either
dτ∗i = 0 and the i-th row in Dτ∗ is all zeroes, or dτ∗i > 0, thus from Lemma 4 we can
conclude that t ≤

∑∞
k=0(Dτ∗ )kdτ∗ . However, letting h(t) = gτ∗ (t) = Dτ∗ t + dτ∗ be the

linear operator on [0,∞]n, note that the least fixed point solution (in [0,∞]n) of h(t) is
t0 = limk→∞ hk+1(0) = limk→∞ Dτ∗hk(0) + dτ∗ =

∑∞
k=0(Dτ∗ )kdτ∗ . Thus, any other fixed

point of h has to be greater than t0 and in particular t∗ ≥ t0 ≥ t. 2

Now, we know that f(tσ − cu,w)i = fwi (tσ) = r∗,σwi > r∗,σvi + cui,vi − cui,wi = r∗,σui −

cui,wi = (tσ − cu,w)i which proves that f(tσ − cu,w) > tσ − cu,w. Therefore, by Lemma
7, any fixed point of f has to be greater or equal to tσ − cu,w. Also, if we switch
strategy σ to σ′, then tσ′ − cu,w is a fixed point of f because f(tσ′ − cu,w)i = fwi (tσ

′

) =

r∗,σ
′

wi = r∗,σ
′

ui − cui,wi = (tσ′ − cu,w)i. Thus tσ ≤ tσ′ . Since f is non-decreasing, then
r∗,σ

′

z = fz(tσ
′

) ≥ fz(tσ) = r∗,σz for any z, and for u1, u2, . . . , un the inequality is strict:
r∗,σ

′

ui − cui,wi = r∗,σ
′

wi ≥ r∗,σwi > r∗,σvi + cui,vi − cui,wi = r∗,σui − cui,wi .
Thus, switching to the new SM strategy σ′, we get r∗,σ′ which dominates r∗,σ, and

is strictly greater in some coordinates, including all the ui’s. There are finitely many SM
strategies, thus repeating this we eventually reach some SM strategy σ∗ that can’t be
improved. Thus r∗,σ∗ = P(r∗,σ∗ ), and by our earlier claim r∗,σ∗ = r∗. Thus, maximizer
has an optimal SM strategy, arrived at via simultaneous strategy improvement.

Since each local improvement step can be done in P-time and increases the sum
total reward, the problem is in PLS. 2

4. The complexity of reward 1-RMDPs and 1-RSSGs

Theorem 8. There is a P-time algorithm for computing the exact optimal value (in-
cluding the possible value ∞) of a 1-RMDP with positive rewards, in both the case
where the single player aims to maximize, or to minimize, the total reward.

We consider maximizing and minimizing 1-RMDPs separately.
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4.1. Maximizing reward 1-RMDPs

We are given a maximizing reward 1-RMDP (i.e., no Typemin nodes in the 1-
RSSG). Let us call the following LP “max-LP ”:
Minimize

∑
u∈Q xu

Subject to:
xu = 0 for all u ∈ Type0
xu ≥

∑
v∈n(u) pu,v(xv + cu,v) for all u ∈ Typerand

xu ≥ xen + x(b,ex′) + cu for all u = (b, en) ∈ Typecall; ex′ is the exit of Y(b).
xu ≥ (xv + cu,v) for all u ∈ Typemax and all v ∈ n(u)
xu ≥ 0 for all vertices u ∈ Q

We show that, when the value vector r∗ is finite, it is precisely the optimal solution
to the above max-LP, and furthermore that we can use this LP to find and eliminate
vertices u for which r∗u = ∞. Note that if r∗ is finite then it fulfills all the constraints of
the max-LP, and thus it is a feasible solution. We will show that it must then also be an
optimal feasible solution. We first have to detect vertices u such that r∗u = ∞. For the
max-linear equation system P, we define the underlying directed dependency graph G,
where the nodes are the set of vertices, Q, and there is an edge in G from u to v if and
only if the variable xv occurs on the right hand side in the equation defining variable xu

in P. We can decompose this graph in linear time into strongly connected components
(SCCs) and get an SCC DAG, S CC(G), where the set of nodes are SCCs of G, and an
edge goes from one SCC A to another B, iff there is an edge in G from some node in
A to some node in B. We will call a subset U ⊆ Q of vertices proper if all vertices
reachable in G from the vertices in U are already in U. We also use U to refer to the
corresponding set of variables. Clearly, such a proper set U must be a union of SCCs,
and the equations restricted to variables in U do not use any variables outside of U, so
they constitute a proper equation system on their own. For any proper subset U of G, we
will denote by max-LP|U a subset of equations of max-LP, restricted to the constraints
corresponding to variables in U and with the new objective

∑
u∈U xu. Analogously we

define P|U , and let x|U be the vector x with entries outside of U removed.

Proposition 9. Let U be any proper subset of vertices.
(I) The vector r∗|U is the LFP of P|U .
(II) If r∗u = ∞ for some vertex u in an SCC S of G, then r∗v = ∞ for all v ∈ S .
(III) If r′ is an optimal bounded solution to max-LP|U , then r′ is a fixed point of P|U .
(IV) If max-LP|U has a bounded optimal feasible solution r′, then r′ = r∗|U .

Proof. Part (I) follows immediately from the definitions. Part (II) follows by induction
on the length of the shortest path from any vertex v ∈ S to u. In particular, if xv =

max{xw, . . .}, and r∗w = ∞, then r∗v = ∞, and likewise for other vertex types. For part
(III), observe that for each vertex u ∈ Typemax, if r′ is an optimal bounded solution of
the max-LP, then at least one of the constraints xu ≥ xv+cu,v holds tightly, i.e., xu = xv+

cu,v. For otherwise, we could decrease the value of xu, letting xu = maxv∈n(u)(xv + cu,v),
and still satisfy all constraints. The fact that the other types of inequalities are satisfied
tightly follows similarly. For part (IV), if max-LP|U has a feasible bounded solution,
then the optimal (minimum) solution r′ is bounded. From part (III), we know r′ is a
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fixed point of P|U , but then from the objective function of max-LP|U , we know that r′
is the LFP of P|U , so we must have r′ = r∗|U . 2

Theorem 10. We can compute r∗ for the max-linear equation system P, including the
values that are infinite, in time polynomial in the encoding size of the 1-RMDP.

Proof. Build the dependency graph G of P and decompose it into SCC DAG S CC(G).
We will find the LFP solution to P, bottom-up starting at a bottom SCC, S 1. We solve
max-LP|S 1 using a P-time LP algorithm. If the LP is feasible then the optimal (mini-
mum) value is bounded, and we plug in the values of the (unique) optimal solution as
constants in all other constraints of max-LP. We know this optimal solution is equal to
r∗|S 1 , since S 1 is proper. We do the same, in bottom-up order, for remaining SCCs S 2,
. . . , S l. If at any point after adding the new constraints corresponding to the variables
in an SCC S i, the LP is infeasible, we know from Proposition 9 (IV), that at least one
of the values of r∗|S i is ∞. So by Proposition 9 (II), all of them are. We can then mark
all variables in S i as ∞, and also mark all variables in the SCCs that can reach S i in
S CC(G) as ∞. Also, at each step we add to a set U the SCCs that have finite optimal
values. At the end we have a maximal proper such set U, i.e., every variable outside of
U has value∞. We label the variables not in U with∞, obtaining the vector r∗. All of
this can be done easily in polynomial time. 2

Algorithm 1 summarizes all the steps necessary to compute the optimal solution
for maximizing 1-RMDPs with positive rewards.

4.2. Minimizing reward 1-RMDPs

Given a minimizing reward 1-RMDP (i.e., no Typemax nodes) we want to compute
r∗. Call the following LP “min-LP: ”
Maximize

∑
u∈Q xu

Subject to:

xu = 0 for all u ∈ Type0
xu ≤

∑
v∈n(u) pu,v(xv + cu,v) for all u ∈ Typerand

xu ≤ xen + x(b,ex′) + cu for all u = (b, en) ∈ Typecall; ex′ is the exit of Y(b).
xu ≤ (xv + cu,v) for all u ∈ Typemin and all v ∈ n(u)
xu ≥ 0 for all vertices u ∈ Q

Lemma 11. For any proper set U, if an optimal solution x to min-LP|U is bounded,
it is a fixed point of the min-linear operator P|U . Thus, if min-LP|U has a bounded
optimal feasible solution then r∗|U is bounded (i.e., is a real vector).

Proof. Note that if an optimal solution x to min-LP|U is bounded then for each
vertex u ∈ Typemin, for at least one of the constraints xu ≤ xv + cu,v we have equality,
i.e., xu = xv + cu,v. For otherwise, we could increase the value of xu, letting xu =

minv∈n(u)(xv + cu,v), and still satisfy all the constraints. Similarly the equality holds for
all the other types of vertices. Therefore, x is a fixed point of P|U and because we
showed r∗|U to be the least fixed point of P|U , r∗|U has to be bounded as well. 2
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Algorithm 1: An algorithm for computing the optimal expected reward in
maximizing 1-RMDP with positive rewards.

Input: A maximizing 1-RMDP with positive rewards A = (A1, . . . , Ak), where
Ai = (Ni, Bi,Yi, Eni, Exi, pli, δi, ξi) and Q = ∪iQi is the set of vertices.

Output: For all u ∈ Q, x∗u = r∗u, which is the optimal value from 〈ε, u〉 in A.
1 Construct the dependency graph, i.e., the digraph G = (V, E) that has nodes

V = Q (the set of vertices of A), and edges E consisting of
{(u, v) | u ∈ Q, v ∈ n(u)} (the edges of A) and for each call port u = (b, en) we
also include edges (u, en) and (u, (b, ex′)) where ex′ is the exit of Y(b).

2 Find a bottom-up SCC decomposition of G and denote it by (V1, . . . ,Vl).
3 for i = 1, . . . , l do
4 if there is an edge from a node of Vi to a node v ∈ V j, j < i where x∗v = ∞

then
5 set x∗u = ∞ for all u ∈ Vi

6 else
7 Solve the following linear program in variables xu, u ∈ Vi; for all

occurrences below of xv, v ∈ V j with j < i we substitute the
previously computed values x∗v.
Minimize

∑
u∈Vi

xu

Subject to:
xu = 0 for all u ∈ Type0 ∩ Vi

xu ≥
∑

v∈n(u) pu,v(xv + cu,v) for all u ∈ Typerand ∩ Vi

xu ≥ xen + x(b,ex′) + cu for all u = (b, en) ∈ Typecall ∩ Vi

where ex′ is the exit of Y(b).
xu ≥ (xv + cu,v) for all u ∈ Typemax ∩ Vi and all v ∈ n(u)
xu ≥ 0 for all vertices u ∈ Vi

8 If the above program is infeasible then set x∗u = ∞ for all u ∈ Vi.
Otherwise set the values of x∗u for all u ∈ Vi to the just found optimal
solution.
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From min-LP we can remove variables xu ∈ Type0, by substituting their occur-
rences with 0. Assume, for now, that we can also (efficiently) find all variables xu such
that r∗u = ∞. By removing these variables, and eliminating appropriately their occur-
rences in all the constraints where they occur, we obtain a new operator P′, and a new
LP, min-LP′.

Lemma 12. If ∞ and 0 nodes have been removed, i.e., if r∗ ∈ (0,∞)n, then r∗ is the
unique optimal feasible solution of min-LP′.

Proof. By Corollary 3, player 2 has an optimal SM strategy, call it τ, which yields
the finite optimal reward vector r∗. Once strategy τ is fixed, we can define a new
equation system P′τ(x) = Aτx + bτ, where Aτ is a nonnegative matrix and bτ is a vector
of average rewards per single step from each node, obtained under strategy τ. We then
have r∗ = limk→∞(P′τ)

k(0), i.e., r∗ is the LFP of x = P′(x).

Proposition 13. (I) r∗ = (
∑∞

k=0 Ak
τ)bτ.

(II) If r∗ is finite, then limk→∞ Ak
τ = 0, and thus (I − Aτ)−1 =

∑∞
i=0(Aτ)i exists (i.e., is a

finite real matrix).

Proof. (I): r∗ = limk→∞(P′τ)
k+1(0) = limk→∞ Aτ(P′τ)

k(0) + bτ = limk→∞(
∑k

i=0(Aτ)k)bτ.
(This holds regardless of whether r∗ is finite. We shall use this fact in a subsequent
proof.)
(II): since r∗ = P′τ(r∗), we have, for any k ≥ 0, r∗ = Ak

τr∗ + (I + Aτ + A2
τ + . . .+ Ak−1

τ )bτ.
The second part of the right hand side, in the limit, is equal to r∗, thus Ak

τr∗ in the limit
is an all-zero vector. It follows that the limit of Ak

τ is an all-zero matrix since all the
entries/rewards in r∗ are positive (we have already removed 0 entries). 2

Now pick an optimal SM strategy τ for player 2 that yields the finite r∗. We know that
r∗ = (I − Aτ)−1bτ. Note that r∗ is a feasible solution of the min-LP′. We show that for
any feasible solution r to min-LP′, r ≤ r∗. From the LP we can see that r ≤ Aτr + bτ
(because this is just a subset of the constraints) and in other words (I − Aτ)r ≤ bτ. We
know that (I − Aτ)−1 exists and is non-negative (and finite), so multiply both sides by
(I − Aτ)−1 to get r ≤ (I − Aτ)−1bτ = r∗. Thus r∗ is the optimal feasible solution of
min-LP′. 2

For u ∈ Q, consider the LP: Maximize xu, subject to: the same constraints as
min-LP, except, again, remove all variables xv ∈ Type0. Call this u-min-LP′.

Theorem 14. In a minimizing 1-RMDP, for all vertices u, value r∗u is finite iff u-min-
LP′ is feasible and bounded. Thus, combined with Lemma 12, we can compute the
exact value (even if∞) of minimizing reward 1-RMDPs in P-time.

We first need some preliminary claims. Let W be the set of vertices u such that
u-min-LP′ is bounded and let S be the minimum proper set such that W ⊆ S . From
min-LP remove all the constraints for variables outside of the set S and remove the
variables of Type0 in the same way as before. Call this set of constraints LPS .

Proposition 15. For any two vectors x = [x1, x2, . . . , xn], y = [y1, y2, . . . , yn] and
vector z = max(x, y) = [max(x1, y1),max(x2, y2), . . . ,max(xn, yn)], and subset A ⊆
{1, 2, . . . , n}, and constants pi j ≥ 0, ci, j ≥ 0 we have that:
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1. if vectors x, y fulfill a linear constraint x̃i ≤
∑

j∈A pi j(x̃ j + ci, j) then so does z

2. if vectors x, y fulfill a constraint x̃i ≤ min j∈A(x̃ j + ci, j) then so does z

Proof.

1. Function max is monotonic, hence if xi ≤ x j and yi ≤ y j, then max(xi, yi) ≤
max(x j, y j). Thus max(xi, yi) ≤ max

(∑
j∈A pi j(x j + ci, j),

∑
j∈A pi j(y j + ci, j)

)
based

on the fact that they fulfill the underlying constraint. However we know that
for all j we have that x j ≤ max(x j, y j) = z j and y j ≤ max(x j, y j) = z j, hence∑

j∈A pi j(x j + ci, j) ≤
∑

j∈A pi j(z j + ci, j) and
∑

j∈A pi j(y j + ci, j) ≤
∑

j∈A pi j(z j + ci, j),
which means that zi = max(xi, yi) ≤ max

(∑
j∈A pi j(x j +ci, j),

∑
j∈A pi j(y j +ci, j)

)
≤∑

j∈A pi j(z j + ci, j)

2. Again we know that max(xi, yi) ≤ max
(

min j∈A(x j+ci, j),min j∈A(y j+ci, j)
)

and for
all j we have x j +ci, j ≤ z j +ci, j and y j +ci, j ≤ z j +ci, j. We also know that the min
function is monotonic, hence min j∈A(x j + ci, j) ≤ min j∈A(z j + ci, j) ≥ min j∈A(y j +

ci, j). This means that zi = max(xi, yi) ≤ max
(

min j∈A(x j+ci, j),min j∈A(y j+ci, j)
)
≤

min j∈A(z j + ci, j).

2

Corollary 16. For any two feasible solutions x, y to LPS we have that z = max(x, y) =

[maxi(xi, yi)] (vector with entries being the maximum of the respective entries in x and
y) is a feasible solution to LPS as well.

Proof. (of Theorem 14.)
(⇒) First let us show that for any u if r∗u is finite, then u-min-LP′ has to be feasible

and bounded. Feasibility is easy as an all zero vector 0 fulfills all the constraints in
u-min-LP′.

Now pick the optimal SM strategy τ for the min player that yields the optimal
reward vector r∗ and take any feasible vector x. From the u-min-LP′ we can see that
x ≤ Aτx + bτ (because this is just a subset of the constraints). Since we removed all
zero reward nodes, i.e., exits of components, then all entries of bτ are positive and from
Lemma 4 we can get that x ≤ (

∑∞
k=0 Ak

τ)bτ. However by Proposition 13 (I) (which holds
regardless of whether r∗ is finite) this means that x ≤ r∗ for any feasible x.

For contradiction, assume u-min-LP′ was feasible but unbounded. Then there
would exist a sequence of feasible vectors x0, x1, x2, . . . such that limk→∞ xk

u = ∞.
But we know that xk ≤ r∗ for all k, thus r∗u would have to be infinite, contradicting our
assumption.

(⇐) Now let us show that if u-min-LP′ is feasible and bounded then r∗u has to be
finite. Consider an LP with LPS constraints and with the objective: Maximize

∑
u∈W xu.

Call it W-min-LP and for any optimal solution x∗ denote by x∗ the vector filled with
values from x∗ for u ∈ W and ∞ for all u ∈ S \ W. Notice that x∗ is unique, because
if the value of two optimal vectors x and x′ differ at an entry u ∈ W, then max(x, x′) is
also feasible thanks to Corollary 16, and this would contradict their optimality.
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Lemma 17. The vector x∗ is a fixed point of P|S .

Proof. Since for every xu, u ∈ W, u-min-LP′ is bounded, and we removed from u-min-
LP′ only the constraints that these variables do not depend on (even in a transitive way),
the maximum value of xu cannot possibly increase after we remove these constraints,
because that would mean xu could have been assigned a higher value in u-min-LP′.
Hence the LP W-min-LP is feasible and bounded.

Now we show that for an optimal solution x∗, no constraint with a variable xu,
u ∈ W, on the left hand side can hold tightly (i.e., with equality) when there is a variable
xv, v ∈ S \W, on the right hand side. Let us take some optimal solution x∗ to W-min-
LP. Notice that S \ W = {v1, v2, . . . , vn} is the set of vertices whose corresponding
variables are unbounded, i.e., vi-min-LP is unbounded. We know that for each of them
there is a sequence of feasible solutions xvi

1 , x
vi
2 , x

vi
3 , . . . to vi-min-LP (the bold subscripts

denote the position in this sequence, not inside the vector), such that the value of entry
xvi in this sequence of vectors is nondecreasing and becomes arbitrarily large. If we
project this sequence onto the variables in S then xvi

1 |S , x
vi
2 |S , x

vi
3 |S , . . . is a sequence of

feasible solutions to W-min-LP, such that xvi becomes arbitrarily large. Now construct
a sequence of vectors x′i = max(x∗, xv1

i |S , x
v2
i |S , . . . , x

vn
i |S ). By Corollary 16 we know

that all vectors in this sequence are feasible solutions to W-min-LP. We also know that
all of them are optimal solutions, because we always take the maximum of the entries,
including the ones in the optimal solution x∗. So we obtain as high a value of the
objective function

∑
u∈W xu as before, and we cannot improve this value as it would

contradict the assumption that x∗ was optimal. Now notice three things:

1. Since every variable xu, u ∈ W, is bounded, at some point in this sequence, we
will reach a point such that the r.h.s. of any constraint which involves some
variable xv, v ∈ S \ W, will be larger than the highest possible value of all
variables corresponding to vertices in W. This means that at that point there
cannot be a constraint that holds with equality such that xu, u ∈ W, is the l.h.s.
and where there is a variable xv, v ∈ S \W, on the r.h.s.

2. For all k, for every xu, u ∈ W, there has to be some constraint with xu on the l.h.s.
such that x′k satisfies this constraint tightly, with equality, because otherwise we
could increase the value of xu without altering the value of any other variables,
to obtain a larger value for the objective, which would contradict the optimality
of x′k.

3. All variables xv, v ∈ S \ W, become arbitrarily large in this sequence, thus it
cannot be the case that there are only variables corresponding to vertices in W
on the r.h.s. in any constraint with xv on the l.h.s. (that would force this variable
to be bounded).

Using these facts, we can see that for a large enough k, from the vector x′k we can
construct a vector x∗ which a fixed point of P|S . We do so by setting the value of all
variables xv, v ∈ S \W to∞, and leaving the value of all variables xu, u ∈ W, unchanged
in x′k. The claim that x∗ is a fixed point of P|S follows because for every variable xu,
u ∈ W, of type Typerand or Typecall, x′k satisfies the correlated constraint with xu on
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the l.h.s. with equality, and this can only be the case if the r.h.s. of that constraint
contains only variables corresponding to vertices in W, and thus x∗ also satisfies this
constraint with equality. Likewise, for variables xu, u ∈ W, of type Typemin, for x′k all
constraints such that xu is the l.h.s. and there is at least one variable corresponding to
a vertex in S \W on the r.h.s., must hold with strict inequality. Hence, since equality
must hold in x′k for one of the constraints involving xu on the l.h.s., there must exist one
such constraint such that the r.h.s. only involves variables corresponding to vertices in
W. Thus, equality also holds for these constraints for x∗ for these variables. Thus x∗

satisfies the corresponding min equation in P|S . Also for variables in xv, v ∈ S \ W,
all the equations in P|S will clearly be fulfilled after setting their values to ∞, because
both sides of the equations where xv occurs have at least one variable corresponding to
a vertex in S \W, and that makes the value of both sides of this equation∞. 2

Now finally we can finish the proof of Theorem 14, using the previous lemma.
Since we know that r∗|S is the LFP of the operator P|S , it must be that r∗|S ≤ x∗, which
means that for all u ∈ W we have that r∗u|S ≤ x∗u = x∗u, which is finite. 2

Algorithm 2 summarizes the steps needed to compute the optimal values in a min-
imizing 1-RMDP with positive rewards. Note that the variables equal to 0 are not
removed as this is not really needed. Also note that the linear programs are feasible:
x = 0 is a feasible solution. As compared with Algorithm 1, Algorithm 2 has to solve
more and larger linear programs unless the dependency graph G of P is strongly con-
nected.

Algorithm 2: An algorithm for computing the optimal expected reward in
minimizing 1-RMDP with positive rewards.

Input: A minimizing 1-RMDP with positive rewards A = (A1, . . . , Ak), where
Ai = (Ni, Bi,Yi, Eni, Exi, pli, δi, ξi), and Q = ∪iQi is the set of vertices.

Output: For all u ∈ Q, x∗u = r∗u, which is the optimal value from 〈ε, u〉 in A.
1 for w ∈ Q do
2 Solve the following linear program.

Maximize xw

Subject to:
xu = 0 for all u ∈ Type0
xu ≤

∑
v∈n(u) pu,v(xv + cu,v) for all u ∈ Typerand

xu ≤ xen + x(b,ex′) + cu for all u = (b, en) ∈ Typecall

where ex′ is the exit of Y(b).
xu ≤ (xv + cu,v) for all u ∈ Typemax and all v ∈ n(u)
xu ≥ 0 for all vertices u ∈ Q

3 If the above program is unbounded then set x∗w = ∞ and otherwise set x∗w
to be the optimal value of its objective.

4.3. Complexity of (1-)RSSGs with positive rewards
Theorem 18. Deciding whether the value r∗u of a given 1-RSSG positive reward game
is ≥q for a given q ∈ [0,∞], is in NP ∩ coNP.
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Figure 2: Standard 1-RMC gadget used in proof of Theorem 19

Proof. Both the membership in NP and membership in coNP follow from the P-time
upper bounds for 1-RMDPs and SM-determinacy: For membership in NP, guess a SM
strategy for the maximizing player, compute the value for the resulting minimizing 1-
RMDP and verify that it is ≥ q. For membership in coNP, guess a SM strategy for
the minimizing player, compute the value for the resulting maximizing 1-RMDP and
verify that it is <q. 2

We will show now that the qualitative problem of testing whether the maximizing
player can achieve infinite reward in a 1-RSSG is at least as hard as Condon’s quantita-
tive decision problem for finite SSGs. Recall that in Condon’s problem, we are given a
finite SSG, without any rewards, with a designated starting state u and target terminal
state t. The objective of the maximizing player is to maximize the probability that the
trajectory starting at u eventually reaches state t, and the objective of the minimizing
player is to minimize this probability. The quantitative problem is, given finite SSG
G and rational number q, is the value of the game ≤ q? It is well-known (and easy to
see) that the problem is polynomially equivalent to the special case that q = 1/2. The
problem is in NP ∩ coNP, and it is a long-standing open question whether it is in P or
not [7].

Theorem 19. Condon’s quantitative termination problem for finite SSGs reduces in
P-time to the problem of deciding whether r∗u = ∞.

Proof. Consider the standard 1-RMC from [16], depicted in Figure 2. From the entry,
en, this 1-RMC goes with probability p1 to a sequence of two boxes labeled by the
same component and with probability p2 goes to the exit. We assume p1 + p2 = 1. As
shown in ([16], Theorem 3), in this 1-RMC the probability of termination starting at
〈ε, en〉 is = 1 if and only if p2 ≥ 1/2.

Now, given a finite SSG, G with a starting node u and target terminal node t, do
the following: First “clean up” G by removing all nodes where the min player (player
2) has a strategy to achieve probability 0 of the trajectory reaching t. We can do this
in polynomial time. If u is among these nodes, we would already be done, so assume
it is not. The revised SSG will have two designated terminal nodes, the old terminal
node t, labeled ”1”, and another new terminal node labeled ”0”. From every node v
in the revised SSG which does not carry full probability on its outedges, we direct
all the “residual” probability to “0”, i.e., we add an edge from v to “0” and assign
probability pv,“0” = 1 −

∑
w pv,w to it, where the sum is over all remaining nodes w
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in the SSG. In the resulting finite SSG, we know that if the max player plays with an
optimal memoryless strategy (which it has), and the min player plays arbitrarily with
a memoryless strategy, there is no bottom SCC in the resulting finite Markov chain
other than the two designated terminating nodes “0” and “1”. In other words, all the
probability exits the system, as long as the maximizing player plays optimally. Note
also that, importantly, the “expected time” that it takes for the probability to exit the
system when max player plays optimally is finite (because there are no “null recurrent”
nodes in a finite Markov chain).

Another way to put this fact is as follows: consider the resulting SSG to be a finite
reward SSG with reward 1 on each transition, and switch the role of the max and min
player, and now the goal of the max player is to maximize the total reward before
termination (at either exit), and that of the min player is to minimize it. Translating the
above to this setting, the “cleaned up” SSG has the property that the min player has a
memoryless strategy using which, no matter what the maximizer does, the total reward
will be finite: we will terminate, at “0” or at “1”, in finite expected time (because there
are no “null recurrent” nodes in finite Markov chains, and both players have optimal
memoryless strategies).

Now, take the remaining finite SSG, call it G′. Just put a copy of G′ at the entry of
the component A1 of the 1-RMC, identifying the entry en with the initial node, u, of
G′. Take every edge that is directed into the terminal node “1” of G′, and instead direct
it to the exit ex of the component A1. Next, take every edge that is directed into the
terminal “0” node and direct it to the first call, (b1, en) of the left box b1. Both boxes
map to the unique component A1. Call this 1-RSSG A.

We now claim that q∗u ≤ 1/2 in the finite SSG G′ for terminating at the terminal “1”
iff r∗u = ∞ for expected reward value in the resulting reward 1-RSSG, A (recall: with
the role min and max reversed, and with all transitions having reward 1).

The reason is as follows: we know that in A the minimizer has at least one SM
strategy that obtains finite reward inside any copy of G′, and it must play one such
strategy each time it goes through G′ if it wants to avoid payoff∞.

Now, there are only a finite number of SM strategies for minimizer inside G′ which
yield a finite expected reward (after an optimal response by the maximizer). Let D ∈
[0,∞) be the maximum finite expected reward among those SM strategies. Also, no
matter what the two players do, we know we will earn reward at least 1, each time we
go through G′. So, each time going through G′ we accumulate a reward D′ ∈ [1,D].
Therefore, from the point of view of trying to make sure the total expected reward is
finite, it is really of no relevance what the specific value of D′ is when we go through
G′. Rather, what is important is whether we “visit” a copy of G′, i.e., a copy of the
entry u, infinitely often.

Now, to make sure that the expected number of times u is visited is finite, the min-
imizer must in fact maximize the probability of terminating at “1”, and thus minimize
the probability of termination at “0”. In addition, the minimizer must also make sure
that the expected reward inside G′ is finite, but this we know it can do while maximiz-
ing the probability of terminating at “1”. Thus, the total reward r∗u = ∞ precisely when
the value of the SSG termination game G′ is ≤ 1/2. 2

By contrast, for finite-state SSGs with strictly positive rewards, we can decide in P-
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Figure 3: Multi-exit reward RMDP: undecidability

time whether the value is ∞, because this is the case iff the value of the corresponding
termination game is not 1. This is basically because null-recurrence is not possible in
finite state spaces. Deciding whether an SSG termination game has value 1 is in P-time
(see, e.g., [17]).

5. Multi-exit RMDPs with positive rewards

In this section we show undecidability for multi-exit minimizing reward RMDPs.

Theorem 20. For a given multi-exit positive reward minimizing RMDP, it is undecid-
able to distinguish whether the infimum expected total reward value starting at a given
node is finite or∞.

Proof. We will use the construction of a component named A in the proof of Theo-
rem 10.2 in [17]. This single-entry n-exit component relates RMDPs with n exits with
Probabilistic Finite Automata (PFA) with n states. More precisely the supremum prob-
ability of termination at the n-th exit starting at the entry of A is equal to the supremum
probability with which the correlated PFA accepts some word. It was proved in [1] that
deciding whether a given PFA with 46 states accepts any word with probability greater
than 1

2 is undecidable. This means it is undecidable to resolve whether the supremum
probability of termination at the n-th exit (n = 46) in the correlated RMDP A is greater
than 1

2 .
To prove that it is also undecidable to resolve whether the infimum expected total

reward starting from a given node in a RMDP with positive rewards is finite or ∞, we
will combine the RMDP A with a gadget 1-RMDP C, as can be seen at Figure 3. Let us
denote by p the supremum probability of termination at the n-th exit of the component
A labeling box b0. We will argue that p > 1/2 iff the infimum expected total reward
for the reward 1-RMDP C is finite.

To consider A inside a reward RMDP, we will place the same positive reward, say
1, on all transitions inside the component A.

We will need several observations about the component A from the proof of Theo-
rem 23 in [17]. Firstly, one property of A is the following: for any strategy that yields
probability > 0 of exiting from the n-th exit of component A, it must be the case that
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the total probability of exiting from one of the exits of component A is 1. It is easy to
verify this fact based on the structure of component A given in [17].

Now, first suppose p > 1/2. It follows from the previously mentioned fact that in
the reward game the minimizer has a strategy with which to exit from A with probability
1, and simultaneously to exit from the n-th exit with probability > 1/2. Therefore,
note that component C, under an optimal strategy played inside box b0, acts like the
previously used gadget from Figure 2, in which the probability of exiting directly is p.
For this gadget, if p > 1/2, we know that the resulting expected time until termination
is finite.

Moreover, the component A from [17] has the following additional property: if
p > 1/2, then the corresponding PFA accepts a finite word w with probability p > 1/2,
and we can furthermore use the word w as a strategy σw in A such that starting at the
entry of A, the strategy σw will exit A with probability 1, and will exit from the n-the
exit with probability p > 1/2, and will exit from A in finite expected time 2|w|. Thus
the expected time taken until termination inside A, i.e., inside the box b0, is finite and
hence the total expected time until termination starting at the entry of C is also finite.

Next suppose that p ≤ 1/2. Then in C we either stay inside a copy of b0 (A) with
non-zero probability, in which case the total reward is infinite, or else we exit from the
n-th exit of every copy of A with probability ≤ 1/2 and we exit from the other exits
with probability ≥ 1/2. It follows easily from the properties of the gadget in C that the
expected termination time is infinite in such a case. Thus if we can decide whether the
infimum expected total reward starting at the entry of C is finite or not, we can also
decide whether the supremum termination probability p at the n-th exit of A is greater
than 1

2 , which we know is undecidable. 2

Theorem 20 leaves open whether it is undecidable to determine whether the supre-
mum expected total reward for a given multi-exit positive reward maximizing RMDP is
infinite.

A natural approach to attempt to prove such an undecidability result is to use the
undecidability result established in [17] for determining whether the minimum termina-
tion probability for a multi-exit RMDP is = 1. However, there is a technical difficultly
with attempting to adapt the proof of that result to the setting of maximizing positive
reward RMDPs, which we have not been able to overcome.

We conjecture that indeed determining whether the supremum expected total re-
ward for a given multi-exit positive reward maximizing RMDP is∞ is undecidable, but
we leave this as an open problem.

6. BSSGs, SCFG games with positive rewards, and equivalence to 1-RSSGs with
positive rewards

In this section we explain the close relationship between 1-RMDPs and 1-RSSGs
with positive reward, and MDP and stochastic game extensions of context-free gram-
mars and branching processes, with both positive and non-negative rewards.

A stochastic context-free grammar (SCFG) game, is given by G = (V,R, Xstart),
where V = V0 ∪ V1 ∪ V2 is a set of nonterminals, which is partitioned into three
disjoint sets: V0 are the probabilistic nonterminals (controlled by nature), V1 and V2,
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the nonterminals controlled by players 1 and 2, respectively. Xstart ∈ V is the start
nonterminal. R is a set of rules, where each rule r ∈ R has the form r = (X, pr, cr,Zr),
where X ∈ V , and if X ∈ V0 then pr ∈ [0, 1] is a (rational) probability, otherwise,
if X ∈ Vi, i > 0, then pr = ⊥, cr ∈ Q≤0 is a rational positive reward (or non-negative
reward, if we allow 0 reward), and Zr ∈ V∗ is a (possibly empty) string of nonterminals.

A rule r = (X, pr, cr,Zr) is often written also as X
(pr ,cr)
→ Zr, where X is the left-hand

side, Zr the right-hand side, and (pr, cr) the label of the rule. For each nonterminal, X,
let RX ⊆ R denote the set of rules that have X on the left hand side. For each X ∈ V0
we have

∑
r=(X,pr ,cr ,Zr)∈RX

pr = 1.
The (countable) set of states of the game is a subset of V∗, i.e., strings of non-

terminals. The precise game depends on the specific derivation law we use for the
grammar, e.g., left-most, right-most, or simultaneous. The derivation rule that captures
1-RMDPs and 1-RSSGs exactly is the left-most derivation law, so we first describe the
game corresponding to left-most derivation.2 Again, states of the game are sequences
of nonterminals. The game begins in the state Xstart. In each round, if the state is
S = X1 . . . Xk, then we proceed, by using a left-most derivation law, as follows: choose
a rule r = (X1, pr, cr,Zr) ∈ RX1 . If X1 ∈ V0 the rule r is chosen probabilistically among
the rules r in RX1 , according to the probabilities pr. If X1 ∈ Vi, i ∈ {1, 2}, then the
rule r is chosen by player i. After the choice is made, the play moves to the new state
ZrX2 . . . Xk. The reward gained in that round by player 1 is cr. The game continues until
(and unless) we reach the empty-string state S = ε. The total reward gained by player
1 is the sum total of the rewards over every round. A strategy for player d ∈ {1, 2} is a
mapping that, given the history of play ending in state XW ∈ V∗, where X ∈ Vd, maps
it to a rule r ∈ RX .3 Fixing strategies for the two players, we obtain a (denumerable)
reward Markov chain whose states are (a subset of) V∗, the total reward is a random
variable defined over the trajectories (runs) of this Markov chain. Player 1’s goal is to
maximize the expected total reward, and player 2’s goal is to minimize it.

Let us consider the games corresponding to other derivation laws. Specifically,
the game with right-most derivation law is simply the mirror image of the one with
left-most derivation: states are sequences of nonterminals, and in each round the re-
maining right-most nonterminal in the current derivation state S is expanded, either
by the choice of the player who controls it, or probabilistically according to the given
distribution, if it is a random nonterminal.

Finally, let us note that the game corresponding to the simultaneous derivation law
is a bit different. Again, a state is a sequence of nonterminals. However, in the case of
simultaneous derivation, in each round all remaining nonterminals in the current state
S are expanded, by letting the player who controls each nonterminal choose a corre-
sponding rule (or by choosing the rule randomly according to the given distribution, if
that nonterminal is random).

It is worth pointing out that these games with the simultaneous derivation law are

2The game with left-most derivation is also equivalent to a BPA stochastic game with rewards; see, e.g.,
[2] and [3] where qualitative questions about BPA games without rewards were considered.

3We could more generally define strategies that can yield probability distributions on the next rule, but this
won’t be necessary, since indeed deterministic “stackless and memoryless” strategies are already optimal.

30



essentially equivalent to a Branching Simple Stochastic Game (BSSG), as defined and
considered in [17], but with non-negative rewards and a total reward objective (as op-
posed to the objective of optimizing extinction probability). Note that, unlike left-most
and right-most derivation, this definition of the game with simultaneous derivation law
does not immediately yield a perfect information game (because the two players are
not aware of each others’ choices in each round). Nevertheless, just like 1-RMDPs and
1-RSSGs, these games have a value that arises as the LFP of a max-min-linear mono-
tone system of equations (which are basically the corresponding Bellman equations in
the 1-player BMDP case), and this is so even when 0 rewards are allowed.

Thus, the value for the 1-player MDP version of these simultaneous expansion
games on SCFGs can be computed in P-time, even when 0 rewards are allowed. Fur-
thermore, both players in these games have static optimal strategies meaning they have
optimal strategies that are deterministic and which, irrespective of history or context,
always expand any specific nonterminal N belonging to the given player using the same
rule. Static strategies are the moral equivalent of deterministic stackless memoryless
strategies for 1-RSSGs. The proofs of the above facts, which we will not provide in
detail here, are fairly simple variations on the proofs of Theorems 1, 6, 8, and 18 re-
garding 1-RMDPs and 1-RSSGs with positive rewards.

For 1-RMDPs and 1-RSSGs, the only place where we used in a crucial way the fact
that there are only strictly positive rewards on transitions, was in the proof of Theorem
1, establishing the correspondence between the values starting at each vertex of the
1-RSSG reward game and the LFP solution of the corresponding system of max-min-
linear equations (see, e.g., part (2.c.) of that proof).

The reason why we do not require strictly positive rewards on grammar rules to
establish such a correspondence in the setting with simultaneous derivation law is
because, regardless whether some rules have reward 0 or not, with the simultaneous
derivation law the total reward value obtained starting from a particular nonterminal
controlled, e.g., by the maximizing player, will indeed equal the maximum over all
rules associated with that nonterminal, of the sum total reward of values starting at the
nonterminal occurrences on the right hand side of that rule.

However, if we were using left-most derivation, with 0 rewards on rules the corre-
spondence to the LFP of the equations would in general fail.

Let us now explain why 1-RSSGs with positive rewards (non-negative rewards,
respectively) are basically equivalent to SCFG games with left-most derivation law and
with positive rewards (non-negative rewards, respectively). The proof is similar to
the proof of equivalence between 1-RMCs and SCFGs with respect to probability of
termination in [16], Theorem 2.3.

Given a SCFG game G with positive rewards we can construct a 1-RSSG A such
that there is a correspondence between the states and strategies of the players, and
such the two games have the same value. The 1-RSSG A has one component Ai for
every nonterminal Xi of G, the component Ai has one entry eni and one exit exi, the
entry eni has the same type 0, 1, or 2 as the corresponding nonterminal Xi. For each
rule r = (Xi, pr, cr,Zr) of each nonterminal Xi in G, the corresponding component Ai

contains a path from the entry eni to the exit exi consisting of a sequence of a boxes
that are mapped in order to the nonterminals in Zr. That is, if Zr = Xi1 . . . Xik , then the
path contains k boxes b1, . . . , bk, where b j is mapped to Ai j for j = 1, . . . , k, the entry
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node eni has a transition to the call port of box b1 with label (pr, cr/(k + 1)), and the
return port of each box b j has a transition to the call port of the next box b j+1 (or the
exit exi if j = k) with label (1, cr/(k + 1)); if k = 0, i.e., if Zr = ε, then there is a direct
transition eni → exi with label (pr, cr). The starting state of the 1-RSSG A is the entry
of the component corresponding to the starting nonterminal Xstart of the SCFG game
G.

Conversely, given a 1-RSSG A with positive rewards, we can construct an equiv-
alent SCFG game G as follows. For each vertex u of A that is not an exit, there is a
corresponding nonterminal Xu in G which has the same type 0, 1, or 2 as the vertex
u. For every transition u → v of A, there is a corresponding rule Xu → Xv in G if
v is not an exit, or Xu → ε if v is an exit; the label of the rule is the same as the
label of the transition. For every call port u = (b, en) of A, where b is a box that is
mapped to a component Ai with exit exi, the SCFG game G contains a corresponding

rule X(b,en)
(1,cu)
→ XenX(b,exi). Considering the equation system x = P(x) for the 1-RSSG

A (see Theorem 1) it is easy to see that the value of the 1-RSSG A starting at any ver-
tex is equal to the value of the SCFG game starting at the corresponding nonterminal,
and there is also a correspondence between the players’ optimal strategies in the two
games.

6.1. Some illustrative examples formulated as SCFG games, and further explanation
of the role of 0 rewards.

We now describe some examples of 1-RSSG games using the simple (and expres-
sively equivalent) formulation of these games as SCFG games.

We first use some examples formulated as SCFG games with left-most derivation
to illustrate, as discussed in the introduction, that the condition of strictly positive re-
wards on rules/transitions is essential to avoid various pathological cases arising in
such infinite-state games with rewards.

Indeed, consider the purely deterministic context-free grammar given by the rules:

{X
(⊥,0)
7→ XY ; X

(⊥,0)
7→ ε ; Y

(⊥,7)
7→ ε }, where X and Y are nonterminals belonging to the

maximizing player, player 1. The notation is as follows: the pair (p, c) of quantities
labelling a rule denotes the probability, p, of that rule firing, and the reward, c, accu-
mulated for each use of that rule during a derivation, but when the nonterminal belongs
to player 1 or 2, instead of a probability p we have the label ⊥. In this example all
nonterminals belong to player 1. Suppose the start nonterminal is X. If the determin-
istic game proceeds by left-most derivation, it is easy to see that there is no optimal
strategy for maximizing player 1’s total payoff. Indeed, there aren’t even any ε-optimal

strategies, because the supremum is ∞. In fact, if player 1 uses the rule X
(⊥,0)
7→ XY , n

times, to expand the left-most X in the derivation, and then uses X
(⊥,0)
7→ ε, and finally

uses Y
(⊥,7)
7→ ε, n times to expand all n remaining Y nonterminals, the total reward is 7∗n.

But no single strategy will gain a total reward of∞. Note in particular that any “stack-
less and memoryless” strategy, which always picks one fixed rule for each nonterminal,
regardless of the history of play and the remaining nonterminals (the “stack”), is the
worst strategy possible: its total reward is 0. By contrast, if we require simultaneous
expansion of all remaining nonterminals in each round, then there is a single “stackless
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and memoryless” strategy that gains infinite reward, namely: in each round expand

every copy of X using X
(⊥,0)
7→ XY , and (simultaneously) expand every copy of Y using

its unique rule. Clearly, after n ≥ 1 rounds we accumulate 7 ∗ (n − 1) reward by doing
this. Thus the total reward will be∞.

Similarly, consider the simple grammar {X
(⊥,0)
7→ XY ; Y

(⊥,1)
7→ Y }, where, again,

both nonterminals X,Y are controlled by the maximizing player, and X is the start
nonterminal. Under the left-most derivation law, clearly the maximum reward is 0,
whereas under the right-most or simultaneous derivation law, the total reward is∞. So,
the supremum total (expected) reward is not robust with respect to the derivation law,
and can wildly differ depending on the derivation law, when 0 rewards are allowed on
rules.

This is not the case when only strictly positive rewards are allowed on rules: in that
case all derivation laws yield the same value for the resulting game.

Now let us consider a basic example with strictly positive rewards: consider the

SCFG with rewards given by the following grammar rules: {X
(1/3,3)
7→ XX ; X

(2/3,2)
7→

ε}. Here X is the only nonterminal. Consider now a random left-most derivation of
this grammar, starting from the nonterminal X. What is the expected total reward
accumulated during the entire derivation? It is not hard to see that if we let x denote
the total expected reward, then x must satisfy the following equation: x = (1/3 ∗ (3 +

(x + x))) + (2/3∗2) = (2/3)x + (7/3). Therefore, the total expected reward is the unique
solution to this equation, namely x∗ = 7. Note that, in general, such a derivation
may not terminate with probability 1, and that the expected reward need not be finite

(consider the same grammar with modified probabilities: {X
(2/3,3)
7→ XX ; X

(1/3,2)
7→ ε}).

As we have just seen, for 1-RMDPs (i.e., context-free MDPs with left-most deriva-
tion law), if we allow 0 rewards, then there may not even exist any ε-optimal strategies.
Furthermore, even in a purely probabilistic setting without players (1-RMCs), with 0
rewards the expected total reward can be irrational. This follows from the fact that for
1-RMCs and SCFGs the total probability of termination can be irrational (see [16]),
combined with the fact that we can easily use 0 rewards (in the left-most derivation
setting for SCFGs) to encode the total probability of termination as the expected total
reward. To do this, we simply do the following: add a new start nonterminal, S ′, to the
grammar, as well as a new nonterminal Y . If the old start nonterminal was S , add the
new rule S ′ → S Y to the grammar, with probability 1 and reward 0, and also add a rule
Y → ε, with probability 1 and reward 1. Assign reward 0 to every rule of the old gram-
mar. It is easy to check that the expected total reward for such a SCFG, using left-most
derivation, and starting at the new start nonterminal S ′, is precisely the probability of
eventual termination in the original SCFG.

When 0 rewards are allowed in the left-most derivation setting, even the decid-
ability of determining whether the supremum expected reward for 1-RMDPs is greater
than a given rational value is open, and subsumes other simpler open decidability ques-
tions, e.g., for the supremum reachability probability in non-reward 1-RMDPs. It is not
even known whether it is decidable whether this supremum reachability probability is
1 (see [17]), whereas it was shown in [2] that it is decidable, in fact in polynomial time,
whether there exists some strategy which achieves probability of termination equal to
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1. (See also [3], where the two-player stochastic game version of qualitative reachabil-
ity problems was considered.) We remark that in the case of BMDPs, the supremum
reachability probability is 1 if and only if there is a strategy that achieves it, and this
can be decided in polynomial time [14]. However, note that the equivalence between
1-RMDP and BMDP with respect to the extinction probability does not carry over to
the reachability probability, for essentially the same reason that it does not hold in the
reward model with 0 rewards.

Let us now explain further the reason why 0 rewards play a crucial role in the set-
ting with left-most derivation (and thus for 1-RMDPs and 1-RSSGs). If we consider a
derivation tree of the context-free grammar associated with such a game with rewards,
then if we allow 0 rewards on rules it is entirely possible that a non-terminating infi-
nite subtree (branch) of the derivation tree may nevertheless yield finite total reward.
This however can not happen when all rules have strictly positive rewards associated
with them: in that case any infinite derivation tree must yield ∞ as its total reward.
Thus, in that setting all derivations that yield the same tree yield the same total reward,
regardless of the derivation law.

If we instead adopt the simultaneous derivation law, where we expand all remaining
nonterminals in each step of the derivation, then no pathologies arise as a result of 0 re-
wards on rules, and all of our results hold. In particular, the least fixed point solution of
the corresponding max/min-linear equations, directly analogous to those described in
Section 2 for 1-RMDPs and 1-RSSGs, characterizes the values of such a game starting
at each nonterminal. The simultaneous derivation law corresponds naturally to the set-
ting of Branching Markov Decision Processes (BMDPs) and BSSGs (see [17, 13]), and
thus as already explained at the beginning of this section, the analogues of Theorems
1, 6, 8, and 18 hold also for BMDPs and BSSGs with non-negative rewards (including
0 rewards).
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