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Abstract 

Rainfall on windows and roofs of buildings, and the roofs and windscreens of 

cars can generate high levels of re-radiated sound that may adversely affect speech 

communication or other activities. This thesis concerns the prediction and 

experimental analysis of vibroacoustics of plates excited by water drop impacts.  

The impact force applied by single raindrops on both dry and wet surfaces is 

quantified experimentally. Single liquid water drops with 2 and 4.5 mm diameter 

were tested at a range of drop velocities when the plate is dry and with a shallow 

water layer. Force transducer measurements and wavelet deconvolution were used to 

measure the time-dependent force. When the response signal has a low SNR value 

(<10 dB), wavelet deconvolution becomes less robust and the sparse representation 

method was used to improve the accuracy and preserve the initial phase of the impact 

force.  

The validity of theoretical models for the impact force from a drop on a dry 

surface has been assessed through comparison with experimental data. The inability 

of these models to describe the time-dependent force provided the motivation to 

develop empirical formulae. Based on the experimental data, empirical formulae 

were developed for 2 and 4.5 mm drops falling at (a) different velocities up to and 

including terminal velocity onto a dry glass surface, (b) terminal velocity onto dry 

glass or glass with a shallow water layer up to 10 mm and (c) different velocities 

below terminal velocity onto dry glass or glass with a shallow water layer up to 

10 mm. A correction to the empirical model for drop impacts at an oblique angle was 

accounted for by using the perpendicular velocity component, which was validated 

with experiments.  

Numerical models have been validated using Statistical Energy Analysis (SEA) 

and Finite Transfer Matrix Method (FTMM) with the empirical model to estimate the 

vibration and sound radiation from a single glass plate and a multilayer plate 

represented by a plate-foam-plate system. To improve computational efficiency, an 

order reduced integral with travelling wave method for finite plate size correction of 

FTMM method has been proposed. An experiment with artificial rainfall was used to 

assess the accuracy of the numerical models for terminal velocity and the lower 

velocity (3.65 m drop height). The empirical model was used to quantify the power 

input into a plate from natural rainfall using numerical experiments.  
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1.  Introduction 

1.1.  Background and motivation 

The forces applied by liquid drops impact on dry or wet surfaces are important in 

many different areas of engineering such as blade erosion in steam turbines, soil 

splash from raindrops, and spray coating of paper (e.g. soil erosion [1-3], rain noise 

[4-7], and energy harvesting [8, 9]). For these applications, it is necessary to have 

knowledge of the force applied by a liquid drop upon impact to allow an assessment 

of erosion, damage, or the efficacy of the impact process.  

The application considered in this thesis is in the field of engineering acoustics 

where rain falls on windows and roofs of buildings, and the roofs and windscreens of 

cars. When these relatively light weight structures are excited by raindrops, they can 

then generate high levels of re-radiated sound that can adversely affect speech 

communication or other activities [10].  

Prediction of the sound and vibration resulting from the impact of raindrops on a 

plate-like surface initially requires knowledge of the time-dependent force that is 

applied to a structure when it is dry or covered with a shallow surface layer of water. 

The force arising from water drops impacting onto dry or wet surfaces is affected by 

impact velocity, drop shapes, surface texture, and environment temperature. 

However, previous work in building acoustics to predict rain noise has only 

considered models assuming a drop impacts on a dry surface [5]; hence there is a 

need to assess the effect of a wet surface.  

The present theoretical models for the liquid drop impact force only consider the 

normal impact. For automotive roofs, (such as glass panoramic roofs in cars) the 

surface is flat; whereas the windscreen can be angled. For roof glazing in buildings, 

the roof lights are in the same plane as the sloped roof. Most buildings have roof 

slopes between 5and 56, although in the UK most roofs are between 40 and 50 

[11]. For the testing of rain noise on building elements according to ISO 10140 [12] 

the standard configuration for the slope is 30. Therefore, it is necessary to be able to 

predict the impact force for impact at an oblique angle. 

With knowledge of the time dependant force from rain drop impact, the next step 

is to model the excitation that results in vibration and sound radiation from structures. 

The vibro-acoustic responses of plates with attached noise control material (e.g. 
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porous material like fibres, felts foams etc.) are classically modelled by using 

deterministic models such as the Finite Element Method (FEM) or Boundary 

Element Method (BEM), statistical models such as Statistical Energy Analysis (SEA), 

and analytical wave propagation models such as the Transfer Matrix Method (TMM). 

The accuracy and suitability of these models needs to be assessed for vibro-acoustic 

prediction of rain noise, particularly for multilayer plates. 

1.2.  Properties of rain 

Natural rain is comprised of different size drops for which the distribution of 

drop sizes depends on the rainfall rate [13]. Light rain with a rainfall rate of 1 mm/h 

will rarely give rise to significant re-radiated noise problems; hence it is of more 

interest to consider moderate to heavy rain which typically has rainfall rates from 4 

to 50 mm/h [14]. For light to heavy rain, raindrops can generally be described as 

spherical or ellipsoidal in shape by using the concept of an equivalent sphere [15]. In 

general, a drop shape is conveniently represented by the combination of two oblate 

semi-spheroids [15] although 2 mm drops at terminal velocity are approximately 

spherical (axis ratio is 0.9 [16]). In temperate climates there is rarely any need to 

consider equivalent drop diameters larger than 5 mm because such drops will break 

up into smaller drops as they fall [17]. Although natural rain contains a wide range of 

equivalent drop diameters, the structure-borne sound power it injects into a structure 

tends to be dominated by the fraction of larger diameter drops that apply a higher 

force due to their higher mass and terminal velocity [18]. The raindrop size 

distribution is typically considered to have equivalent drop diameters between 1 and 

6 mm [14]; in this thesis it is assumed that 2 mm drops represent the smallest drop 

diameter of interest for rain noise.  

1.3.  Models for the time-dependent force applied by a liquid water drop 

on a rigid surface 

Theoretical models to estimate the time-dependent force by drop impact are 

mainly based on simplified two-phase [19] impact dynamic models.  

Idealized drop shape models have previously been used to predict the time-

dependent force applied to a dry, rigid surface. Petersson [4] considered prediction 

models based on paraboloidal and cylindrical-hemispherical drop shapes for which 

comparison with measurements indicated that the former showed better agreement 
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than the latter. Photographic observations (e.g. [20]) indicate that a cylindrical-

hemispherical model could be appropriate when the drop velocity on impact is low 

(i.e. 2 m/s). The deficiencies observed with this model were attributed to the 

assumption of constant velocity in the flow phase. Petersson’s experiments appear to 

be the only published results that have attempted to quantify the force applied when 

there is a surface layer of water; however, the depth of this layer was described 

subjectively as either a ‘thin’ or ‘thick’ layer. Hence the experiments in this thesis are 

used to determine the forces for a specified range of surface water layer depths and 

different drop velocities. 

In the idealized drop shape model described above, there is no consideration of 

the spreading lamella after impact [21]. Roisman et al [22] assumed a spherical drop 

shape model to estimate the spreading and receding phenomenon for a liquid drop on 

a dry surface from which the time-dependent force was derived, but it was not 

compared with measurements. Anantharamaiah et al [23] later compared the 

calculated force from Roisman et al with their CFD simulations which showed close 

agreement for a 4.9 mm diameter water drop with a velocity of 2.34 m/s (i.e. well-

below terminal velocity). However, the 2002 Roisman et al model was noted as 

being incorrect in 2011 by Marengo et al [24]. In 2009, Roisman et al [25] 

determined an empirical curve for dimensionless pressure at the impact point from 

curve fitting of numerical predictions for a spherical liquid drop on a dry surface. 

Although Roisman et al didn’t provide an explicit calculation equation for the impact 

force; the pressure can be multiplied by the drop’s area to estimate the force.  

Philippi et al [26] studied the initial phase of a drop impact in theory and with 

simulation for a dry surface. During the initial impact phase, the extent pressure field 

is proportional to 1/√𝑡, and consequently the impact force increases with √𝑡  for 

short time as observed by Gordillo et al in experiments [27]. However, this formula 

doesn’t describe the relatively long decay of the force in the whole impact process. 

Therefore, Mitchell et al [28] combined the early-time force model for impact force 

from Philippi et al [26] and the exponential post-peak decay to give the full force 

profile. However, this model assumes a spherical drop shape which is problematic 

for large raindrops (i.e. 4.5 mm diameter drops used in this thesis). Moreover, the 

present theoretical models only consider the normal impact on a dry surface, whereas 
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the impact on building roofs and vehicle windscreens are often at an angle and with a 

thin layer of water on the surface.     

In this thesis, the aim is to avoid the problems and shortcomings of idealized 

drop shape models and models from fluid dynamics for different drop velocities by 

determining empirical formulae for the time-dependent force. 

1.4.  Experimental determination of the time-dependent force of a liquid 

drop impact       

Previous experiments to measure the time-dependent force from liquid drops 

have used a variety of approaches mainly based on the use of pressure sensors and 

force transducer discs.  

Nearing et al [2] used pressure sensors and noted that the time-dependent force 

and average pressure were not adequately predicted by theory based on 

incompressible mechanics or numerical techniques that do not account for 

compressional wave generation, surface tension, and viscosity. Nearing and Bradford 

[1] used a pressure transducer to measure the force although the sensing area was 

small with a diameter of only 6.45 mm which meant that many drops did not fall 

onto the sensor. Grinspan and Gnanamoorthy [29] used PVDF film to measure the 

impact force applied by a low velocity water drop and an oil droplet on a solid 

surface. This showed that the impact force depends on the drop velocity and liquid 

density. The main advantage of a pressure sensor is that the contact area of pressure 

sensor is large for the drop impact features that occur during impact process such as 

spreading and splashing.   

Another measurement method is based on the force transducer with a receiver 

disc. Petersson [4] used a force transducer to measure the impact force of water drops 

on dry and wet surfaces. In his experiment, a thin titanium disc was attached on top 

of the force transducer as the impact surface. It was observed that water drop impact 

on a dry surface leads to an initial sharp rise to a maximum force followed by a 

gradual decay to zero. On a wet surface, the impact force has higher energy at low 

frequencies and lower energy at high frequencies compared with a dry surface. 

However, this wet surface effect on the measured impact force was only discussed in 

frequency domain and without quantifying the water layer depth. Also, it is not 

known whether the measured force on a wet surface is relevant to a large area on a 

wet plate when measuring constrained water on top of a force transducer.  Soto et al 
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[30] used two different approaches to measure the force from a water drop: 

piezoelectric quartz and a thin glass lamella. The latter approach used mechanical 

equilibrium to determine the maximum force from the largest deformation of the 

lamella for a given impact. Li et al [31] used a force transducer to measure the 

impact force, however the measured force curve was corrupted by the structural 

resonances of the transducer disc at high frequencies (approximately 17k Hz).  

The literature indicates that piezoelectric transducers can be problematic due to 

(a) resonances of the transducer disc (e.g. [31]), (b) drop impacts outside the small 

sensor area and (c) small sensors not being well-suited to the measurement of drop 

impacts on shallow water layers. Hence, an alternative approach using inverse 

approaches based on wavelet theory for impacts on a relatively large plate is 

considered in this thesis.   

1.5.  Inverse methods to reconstruct transient force in the time domain 

This section reviews the force time history reconstruction based on time domain 

analysis approaches. Inverse methods for force reconstruction use the measured 

response signal (for example, displacement, velocity, acceleration or strain) to 

estimate the impact force indirectly [32]. However, this inverse process is often ill-

posed which consequently leads to the instability of the solution. Therefore, 

approaches to try and overcome the ill-conditioning are a key step in impact force 

reconstruction, which is commonly optimized based on regularization or 

deconvolution methods [32-35].  

One of the methods to improve the measurement of the transfer matrix (which is 

referred to the  matrix that represents the linear relation between the excitation force 

and the response signal) to make it well-posed, for example using multiple responses 

[33, 34, 36] or selection of the response locations [37]. This is because response 

sensors located at different positions may be at nodal points force some modes. 

Therefore, using multiple sensors or careful choice of positions could compensate for 

this.  

For ill-posed problems, a common approach to find a solution is deconvolution 

optimization: such as truncated singular value decomposition (TSVD [38]), l2-norm 

regularization (also known as Tikhonov regularization [38]), Wiener filter [39]. The 

l2-norm regularization method improves the estimate by reducing the effects of errors 

or noise on the small singular value of the transfer matrix.  
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Alternative techniques including state variable formulation (Kalman filter) [40, 

41], Sum of Weighted Accelerations Technique (SWAT) [42], neural networks [43] 

and genetic algorithms [44]. State variable formulation is a commonly used approach 

for force estimation especially in-situ, however this technique requires that the 

system differential equations can be described adequately, which may be problematic 

when the plate is covered with a layer of water. SWAT also has a difficulty of 

determining the weighting factors. Other new techniques using large numbers of 

processing units like neural networks have been considered for impact force 

estimation on composite plates, particularly for non-linear response [45], which is 

computationally expensive.  

Transient Statistical Energy Analysis (TSEA) has also been applied to estimate 

the time history of impact load [46] by assuming a typical half sine waveform for the 

force-time history. Hence after calculating the input energy with TSEA and obtaining 

the impact load spectrum, only two factors of the half sine waveform require 

optimization to identify the load time history. However, in general force 

identification problems, including rain drops, a priori information of the force curve 

shape is unknown, which increases the complexity of reconstructing the load time 

history.  

In 1997, Doyle [33] developed a deconvolution method using wavelets for 

impact force estimation on a beam and plate. Compared with Fourier transform based 

on the linear combination of series of sinusoidal functions with infinite duration in 

time, wavelet basis functions are finite in time and suitable for transient drop impact 

forces. Moreover, the wavelet method can overcome the ill-conditioned problem by 

selecting the optimal scale and shift factors [33]. In this thesis, Doyle’s wavelet 

method will be assessed and compared with other inverse methods in simulation and 

experiment for water drop impact force estimation. In order to assess the accuracy of 

Doyle’s wavelet method, comparisons will be made with force transducer 

measurements. 

1.6.  Prediction of sound radiation by plates excited by rainfall  

Natural rainfall has a statistical distribution of raindrop diameters that can be 

described by the Marshall-Palmer distribution [13]. This can be used to estimate the 

power input based on the rain fall rate. In laboratory investigations of the sound 
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radiation by plates under rain excitation, artificial rainfall apparatus is usually 

constructed to simulate natural rainfall [5, 7, 18, 47].  

Suga and Tachibana [5] developed an empirical model for the relationship 

between the radiated sound power and the transmission loss (TL) under artificial rain 

fall, where the TL measured for 20 lightweight roofs and the power spectrum of 

natural rainfall was estimated using the paraboloidal drop shape model from 

Petersson [4]. Suga and Tachibana [5] also used the paraboloidal drop shape model 

[4] to estimate the injected power from natural rainfall but it was only used to 

calculate the change due to different raindrop diameters by comparing theory with 

laboratory measurements. Ballagh [18] also applied the paraboloidal drop shape 

model [4] to predict the sound radiation from plates with infinite size assumption. 

However, this assumption is problematic below the critical frequency as it does not 

represent the response of finite plates.  

Numerical methods have also been applied to predict the sound radiation from 

rainfall excitation. Deterministic methods such as FEM and BEM [48] are commonly 

used in vibro-acoustic predictions. However, for broadband excitation like rainfall 

excitation, these methods become inaccurate and computationally expensive at mid- 

and high- frequencies. In contrast, SEA can be advantageous because it conveniently 

applies the statistical properties of rainfall excitation (for example, the random phase 

of raindrop impacts) and it is computationally inexpensive. Compared with 

numerical methods such as FEM and BEM, SEA provides estimates of the temporal 

and spatial average sound and vibration parameters for the components of the 

structure and allows analysis of the transmission paths between these components 

[49]. Hopkins [7] used the paraboloidal drop shape model and SEA to predict the 

radiated sound of a single sheet of glass plate which showed close agreement with 

measurements below 800 Hz and above 1.6k Hz. However, in the intermediate 

frequency range, there was a discrepancy that might be caused by the idealized drop 

shape model. Therefore, in this thesis, the idealized drop shape model will be 

assessed with other theoretical models and experimental measurement.  

 Roof structures such for cars and buildings are usually composite multilayer 

systems. SEA prediction models for multilayer structures are generally based on 

calculating an equivalent damping to account for the noise control treatment [50, 51]. 

This method includes the mass effect of the whole structure via a smeared added 



 

8 

 

mass by assuming that the layers are homogeneous [51]. However, the effects of the 

stiffness are usually neglected which can cause prediction errors at low frequencies 

[51]. An alternative method, the Transfer Matrix method (TMM) is better suited to 

sound radiation analysis for multilayer structures [50]. Similarly to SEA, TMM can 

also take advantage of the spatial and temporal incoherence of rainfall excitation, 

which can be analysed conveniently in the frequency and wavenumber domain. 

Guigou et al [10] used the TMM method combined with paraboloidal drop shape 

model to predict the rainfall noise on multilayer glazing that can be regarded as 

multilayer systems. The spatial windowing technique from Villot et al [52] has also 

been applied to account for the effect of the finite size of the plate. This thesis will 

assess the Finite Transfer Matrix Method (FTMM) for the prediction of vibration and 

sound radiation from a homogeneous and multilayer plate under rainfall excitation as 

well as using SEA for a homogeneous plate.  

1.7.  Aims and objectives  

This thesis aims to predict the vibration and sound radiation of homogeneous 

plate and multilayer plate under excitation by single and multiple raindrop impacts.  

The main objectives are as follows: 

- Experimentally quantify the time-dependent force applied by a single liquid 

water drop impacting a glass plate (at normal and oblique angles) at different drop 

velocities when the plate is dry and with a shallow water layer. 

- Assess the validity of idealized drop impact models for the time-dependent 

force through comparison with experimental data for impacts normal to the plate 

surface. 

- Create empirical models from the experimental data for drop impacts normal to 

the plate surface for a single liquid water drop on a glass plate when dry and with a 

shallow water layer. 

- Develop and validate correction terms for the empirical models so that they can 

be used to estimate the force from drop impacts on a plate at an oblique angle. 

- Experimentally validate SEA and FTMM models which incorporate the 

empirical models to predict the sound radiated by single and multilayer plates that 

are excited by artificial rainfall. 

- Simulate excitation from natural rainfall using numerical experiments. 
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1.8.  Thesis structure  

Chapter 2 reviews the physics of liquid drop impact on dry and wet surfaces, and 

the theoretical models for impact force prediction.  

Chapter 3 contains the theory of the inverse methods based on Bayesian 

approach using wavelets for impact force estimation. This chapter also contains the 

simulation of wavelet deconvolution and the sparse representation using l0-, l1-, l1/2-, 

l2-norm with dictionaries.  

Chapter 4 introduces SEA and FTMM models for the vibroacoustic analysis of a 

homogeneous plate and a multilayer plate represented by a plate-foam-plate system.  

Chapter 5 contains the experimental set-ups and the measurement methods used 

in the experimental work.  

Chapter 6 describes the measured time dependant force applied by water drops 

impacting onto a dry surface and a surface with a layer of water. The wavelet 

deconvolution estimation results are compared with the force transducer 

measurements. Sparse representation methods with l0- and l1-norm regularization is 

also used to estimate the impact force when the signal-to-noise ratio is low.  

Chapter 7 contains the empirical model to estimate the impact force from 2 and 

4.5 mm drops diameter at terminal velocity and a lower velocity onto a dry surface 

and a surface with a shallow water layer. The empirical model results are compared 

with the wavelet measurement data and the theoretical models (idealized drop shape 

model and other models). 

Chapter 8 describes the experimental validation of FTMM method for the 

prediction of rain noise with artificial rainfall. A glass plate and multilayer plate 

experimental results are compared with SEA and FTMM numerical simulation. 

Chapter 9 contains the numerical study of FTMM for the prediction of power 

input from natural rainfall on a glass plate. The Marshall-Palmer distribution is 

applied to analyse the power input associated with a range of drop diameters.   
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2.  Theoretical models of liquid drop impact 

This chapter reviews the liquid drop impact process and the force estimation 

models. The features of liquid drops impacting on dry and wet surfaces will be 

discussed in Section 2.1. Section 2.2 describes the Marshall-Palmer distribution of 

raindrop size for different rainfall rates. In Section 2.3 and Section 2.4, the shape of 

raindrops and the oscillation phenomenon will be considered. Then the force and 

pressure distribution of drop impact over the contact surface during the whole impact 

process will be described in theory using simplified idealized drop shape models 

(Section 2.5) and complex models from fluid dynamics (Section 2.6). Section 2.7 

discusses about the angled impact force. 

2.1.  Overview of liquid drop impacts on a solid dry surface and a thin 

liquid layer 

Worthington [53, 54] was one of the first researchers to investigate the impact 

dynamics of a liquid drop impact, producing many photographs of the phenomena of 

liquid drop impact on dry solid plates [53], as well as liquid drop and solid ball 

impact on deep liquid pools [54]. For more than ten decades, the physics of time-

varying drop geometry and features during the impact process has been extensively 

investigated [15, 55, 56].  

The impact phenomenon is governed by a large number of parameters. Figure 

2.1, provided by Rein [55] gives an overview of different parameters that can affect 

drop impact phenomena. At the moment of impact, a drop may be spherical or 

deformed as ellipsoidal; the impact angle may be normal or oblique; and the surface 

can be dry or covered with a layer of liquid. All these parameters can affect the 

impact force.  

This thesis mainly focuses on the structural vibration and noise radiation from 

rain drops impact on building and car roofs. Two different receiver surface 

conditions are assumed: 1) plane, smooth, unyielding dry surface, 2) a shallow flat 

layer of water.  
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Figure 2.1. Survey of parameters governing the impact of a liquid drop from Rein [55]. 

 

2.1.1.  Liquid drop impacts on dry surfaces 

According to the experiments of Rioboo et al [57], there are six possible 

outcomes of a droplet impacting a dry surface as shown in Figure 2.2. The outcomes 

depend on the impact velocity, drop size, properties of the liquid (density, viscosity, 

viscoelasticity, and other non-Newtonian effects for rheologically complex fluids), 

surface or interfacial tension, roughness and wettability of the solid surface, non-

isothermal effects (e.g., solidification and evaporation), and air entrapment [55, 58].  
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1) Deposition

2) Prompt splash

3) Corona splash

4) Receding breaking-up

5) Partial rebound

6) Complete rebound

 

Figure 2.2. Six possible outcomes for a droplet impacting a dry surface. Images from 

Rioboo et al [57]. 

 

In terms of a drop impact on a solid dry surface, it is common that high impact 

velocities yield splashing whereas deposition is obtained at low-speed impacts [55]. 

This implies the importance role of droplet kinetic energy. During the impact, the 

kinetic energy of the droplet will be mainly transferred to the surface tension. 

Therefore, the surface tension can also affect the spreading and splashing 

phenomenon. Scaling the kinetic energy by the surface energy induces the Weber 

number. Weber number expresses the ratio of the kinetic energy on impact to the 

surface energy: 

where 𝜌𝑤 is the density of water, 𝑣𝑑 is the drop velocity, D is the diameter of the 

drop, 𝜎  is the liquid surface tension. For rain drops of diameter D, at terminal 

velocity, 𝑣𝑑 where 2 m/s<𝑣𝑑<9 m/s and 1 mm<D<5 mm, the Weber number regime 

is 50<We<3500.  

The impact phenomena can be significantly affected by the wettability and 

surface roughness [55]. Wettability indicates the maximum drop spreading area and 

spreading time for a moderate Weber number regime (30 < We < 200); However for 

𝑊𝑒 = 12
𝐸k
𝐸s
= 12

𝜋𝜌w𝐷
3𝑣d

2/12

𝜋𝐷2𝜎
= 𝜌𝑤𝑣d

2𝐷/𝜎 2-1 
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a high Weber number regime (We > 200), the effect of wettability is secondary 

because capillary forces are dominated by inertial effects [24, 59]. The effect of 

wettability on spreading is not negligible for rainfall with drop diameters smaller 

than 1.2mm. 

The threshold Weber number of a water drop impact from the phenomenon of 

rebound or deposit to fragmentation is near 60 [24, 59, 60]. Below this Weber 

number, the liquid drop can deposit or rebound after impact which depends on the 

wettability as shown in Figure 2.2. At higher Weber numbers, the surface wettability 

effect is secondary, and a corona splash is usually observed as shown in Figure 2.2.  

Surface roughness also affects the spreading and splashing phenomenon [61]. In 

this thesis, smooth surfaces are considered such as metal and glass plates such that 

the surface roughness effect on the impact force can be assumed to be negligible.  

2.1.2.  Liquid drop impacts on wet surfaces 

Different phenomena occur for a liquid drop impact on a thin layer of liquid or a 

deep liquid pool. The collision of a drop with a deep liquid surface may result in 

floating, bouncing, coalescence and splashing [55] as shown in Figure 2.3. 

floating bouncing coalescence splashing

jet

vortex

ring

 

Figure 2.3. Impact of a drop on a liquid surface: floating, bouncing, coalescence and 

splashing from Rein [55].  
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Occasionally, after a liquid drop impact on a wet surface, it may float or bounce 

on the surface for several seconds and then disappear [55, 62].  

The result of a collision that does not lead to floating or bouncing can be 

classified as coalescence or splash, respectively [55]. At low drop velocities, the 

impacting drop can coalesce with the water layer without making a splash, and 

without forming a jet, but making a vortex ring [63]. In this case, a small crater is 

formed but otherwise the impacted surface is hardly disturbed and the impacting 

drop disappears quickly in to the water layer. By contrast, the target surface is greatly 

deformed in the splashing case.  

In contrast to splashing on dry surfaces where the formation of secondary 

droplets occurs, the conditions for splashing on a wet surface are not always 

consistent in literature. This is because the generation of secondary droplets can be 

different for different water layer depths.  

For a deep pool impact, the liquid ejection from the crater is defined as splashing 

with or without formation of droplets at the rim of the crown as shown in Figure 2.3 

[55]. Another example of splashing is where a droplet detaches from the central jet. 

For a drop impact on deep water (> 25 mm) with a sufficiently high drop velocity, 

the general features are the formation of a crater with a raised crown-like perimeter, 

followed by closure of the crater with a rising jet (often called the ‘Rayleigh’ or 

‘Worthington’ jet) emanating from the centre of the aforementioned crater. A drop 

(or drops) may then detach from the top of the jet  [64, 65]. The appearance of this 

central jet was used as a criterion for splashing by Rodriguez and Mesler [63]. Hobbs 

and Osheroff [65] note that for water depths less than 5 mm, the crown is more 

unstable than with impacts on deep liquid. Moreover, no drops detach from the jet 

for depths <3 mm [65]. Experimental work by Macklin and Hobbs [66] shows that 

the crater has a maximum depth of up to 3 drop diameters; hence for shallow water 

the crater depth is affected by the presence of the rigid plate which supports the water 

layer, and this flattens the bottom of the crater. When the depth of the water layer is 

approximately equal to two drop diameters, the jet height and the number of 

detached drops reaches a maximum [65, 66]. When the depth is similar to the drop 

diameter, the jet only reaches a very low height with no detaching drops [65].  

In this thesis, two different drop sizes (2 and 4.5 mm diameter) with different 

velocities are used in the experimental work. For a drop impact on deep water 
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(>25 mm), a 2 mm drop would be expected to coalesce with drop velocities <1.4 m/s 

and 4.5 mm drops with velocities <0.8 m/s [65]; however such a deep water layer is 

not relevant to the situation on most roof structures. 

a) b)

 

Figure 2.4. a) A non-splashing and b) a splashing crown of a drop impacting onto a thin 

layer of liquid from Wang and Chen [67]. 

 

In terms of drops impacting on a thin layer of liquid, the splashing phenomenon 

is usually defined by the secondary droplets generated from the rim of the crowns. 

When drops impact on a thin liquid layer with high velocities, numerous small 

secondary droplets are ejected from the free rim on top of the crowns [56], as shown 

in Figure 2.4b. At sufficiently low impact velocities the drops spread over the wall, 

taking the shape of lamellae with a visible outer rim (Figure 2.4a) [56]. At still lower 

impact velocities practically no rim is visible, which Rioboo et al [44] termed 

deposition [56].  

2.2.  Rain drop number and size distribution 

Different from the artificial rain in laboratory, natural rainfall contains different 

size raindrops. There is a statistical distribution of raindrop diameters. The raindrop 

size and number can be modelled as the exponential distribution given by Marshall 

and Palmer [13] in terms of n(D) mm
-1

m
-3

: 

where 𝐷 is the diameter of the rain drop size, 𝑅𝑟  is the rain fall rate (mm/h). 

Then the number of drops, N(D), with drop diameters between D and 𝛿𝐷 (in mm) 

that fall upon a unit area (1 m
2
) per unit time (1 s) is: 

 𝑛(𝐷) = 8000exp (−4.1𝐷𝑅𝑟
−0.21) 2-2 

 𝑁(𝐷) = 𝑛(𝐷)𝑣𝑇𝛿𝐷 2-3 
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where 𝑣𝑇 = 9.58 {1 − exp [−(
𝐷

1.77
)
1.147

]}  is the terminal velocity, 𝛿𝐷  is the 

drop diameter interval (𝛿𝐷 is assumed to be 0.03mm in this prediction model).   
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Moderate rainfall 4 mm/h

Intense rainfall 15mm/h

Heavy rainfall 40mm/h

Rainfall rate

 

Figure 2.5. Marshall-Palmer distribution of raindrop diameters for different rainfall rates. 

 

Figure 2.5 shows the number distributions of raindrop diameters for different 

rainfall rates. This emphasizes the effect from large rain drops especially for heavy 

rain fall (40mm/h). With small fraction from all the raindrops, the larger diameter 

drops apply higher forces due to the higher terminal velocity, and therefore dominate 

the power input into the collided structure. This will be discussed later in natural rain 

fall power input.  

2.3.  Drop shape  

Most of the theoretical and numerical research tends to be based on the 

assumption that liquid drops are spherical, when moving in a homogeneous, 

unlimited ambient medium, and interfacial tension and/or viscous forces are much 

more important than inertia forces [16, 55]. However, as shown in Figure 2.1, the 

drop shape is not necessarily spherical before the impact. Specifically, for high 

Reynolds number (Re>10
3
), the initial spherical drop shape becomes distorted [15], 

where the Reynolds number is given by 𝜌w𝑣d𝐷/𝜇, where 𝜇 is the viscosity of water. 

Beard et al [68] calculated the equilibrium drop shape and the surface curvatures by 

an iterative adjustment of the pressure drag around the drop to the actual drop shape. 

This model has close agreement with several experimental photographic results on 



 

17 

 

the drop shape [16, 68]. The raindrop shapes without electrical stresses are shown in 

Figure 2.6.  

 

Figure 2.6. Numerical simulations of raindrop shapes for D=1, 2 3, 4, 5, and 6mm with 

origin at the centre of mass. Dashed circles are shown for comparison [16, 68]. 

 

For heavy rain, the diameter of raindrops is assumed to be 5 mm [7], which is 

close to the artificial drop of 4.5mm used in this thesis. For this drop diameter, (see 

Figure 2.6), the bottom of the drop is flattened. This may lead to difficulty in the 

theoretical models analysis, since the theoretical models are usually based on 

spherical shape assumption. 

2.4.  Drop oscillation 

Oscillation can also affect the drop impact: 1) oscillation may be formed by the 

process of drop formation, the friction between a moving drop and the fluid 

surrounding it, and the wake of the drop, which causes the drop shape to deviate 

from the spherical shape [55], 2) oscillation can also occur when a drop spreads and 

recoils many times before coming to the rest [69]. Phase (1) is associated with a flow 

within the drop which can be affected by the surface tension [55]. Phase (2) is about 

the dynamic phenomenon due to the competition of the surface tension and inertia 

[2].  

It has been observed that when a drop detaches from a needle, the damped shape 

oscillations stop after a free fall distance of approximately 15 mm [70]. Therefore, in 

this thesis which considers much longer drop distances, the oscillation effect on drop 

shape has been ignored. 
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2.5.  Idealized drop shape model for estimation of the impact force on a 

dry surface 

The idealized drop shape model proposed by Petersson [4] assumes that the 

impact of a liquid drop upon a surface can be considered in two phases. In the initial 

impact phase the mass of the drop remains unperturbed, and in the second phase the 

mass of the drop decreases as it jets out over the surface. Since the drop shape can be 

distorted and is “inevitably uncertain” after travelling through a varying ambient 

medium [4], one approach to prediction is to adopt idealized drop shapes.  

Four idealised drop shape models are used to predict the time-dependent impact 

force on a dry surface; these correspond to paraboloidal, cylindrical-hemispherical, 

spherical and ellipsoidal shapes.  

 

Figure 2.7. Idealised drop shape: a) paraboloidal, b) cylindrical-hemispherical, c) spherical, 

d) ellipsoidal.  

The force from idealized drop shape model can be described by the change of 

momentum over time, which is given by Petersson [4]: 

Assuming that the velocity is constant from the flow phase and the spreading 

lamella is negligible, the force can then be calculated using the residue mass-time 

function. For a spherical drop, the force can be given by: 

From Petersson [4] the time-dependent force, f(t), for a paraboloidal drop shape 

(Figure 2.7 (a)) is given by: 

where r is the drop radius, w is the density of water, v is the drop velocity. 

a)

2r

8r/3

b)

2r

2r/3

r

c)

2r

d)

2a

b1

b2

 𝑓(𝑡) =
d(𝑚𝑣d)

d𝑡
 2-4 

𝑓(𝑡) =
d𝑚

d𝑡
𝑣d =

𝜌w𝜋[𝑟
2 − (𝑟2 − 𝑣d

2𝑡2)]𝑣dd𝑡

d𝑡
𝑣d 2-5 

𝑓(𝑡) =  { 𝜌w𝜋𝑟
2𝑣𝑑

2(1 −
3𝑣𝑑𝑡

8𝑟
)         0 ≤ 𝑡 ≤ 8𝑟/3𝑣𝑑 

0                                             for all other 𝑡

} 
2-6 
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For a cylindrical-hemispherical drop shape (Figure 2.7 (b)) the force is given by 

[4] 

 

As discussed in Section 2.3, it is more realistic to assume that the drop shapes 

are spherical and ellipsoidal. Therefore two additional drop shape models have been 

derived in this thesis using the approach of Petersson [4], a spherical drop shape 

model (Figure 2.7 (c)) giving: 

and an ellipsoidal drop shape model (Figure 2.7 (d)) giving: 

The relationship between the dimensions a, b1 and b2 for the two oblate 

spheroids are [15] 

where Eo is the Eӧtvӧs number which is defined as 

in which g is the acceleration due to gravity, 0 is the density of air, D is the 

drop diameter, and  is the surface tension.  

The paraboloidal idealized drop shape model has been validated by Petersson [4], 

and other researchers [5, 7, 10, 18] that have investigated rain noise prediction. 

However, the accuracy of this model is questionable. For example, Hopkins [7] 

observed a discrepancy between the measured rain noise and the prediction in the 

intermediate frequency range (800 Hz to 1.6k Hz). Moreover, there is no 

consideration of the spreading lamella [21] in idealized drop shape models. 
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{
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Furthermore, the idealized drop shape models assume that raindrops fall on dry 

surface, which could be problematic for rain noise prediction when there is a layer of 

water over the surface during steady rainfall.  

2.6.  Theoretical models of liquid drop impact force from fluid dynamics  

The idealized drop shape models are simplified models that do not consider 

parameters that affect the impact phenomenon such as the surface tension, roughness 

or wettability of the solid surface. More importantly, the effect from the other 

features during the impact process such as spreading lamella is ignored. Therefore, 

theoretical models for liquid drop impact force estimation established by researchers 

from fluid dynamics background are introduced here and will be compared with the 

idealised drop shape models. 

In 2009, Roisman et al [25] used the volume-of-fluid method to simulate the 

pressure field during droplet impact on solid surface. The dimensionless pressure, 

𝑝̅(𝑡), at the impact point is given by: 

This dimensionless pressure can also be calculated from the Bernouilli equation 

as proposed by Marengo et al [24] where: 

Eqs. 2-13 and 2-14 are compared with the idealised drop shape models by 

converting the dimensionless pressure to force using 

where 𝑎̅(𝑡) is the dimensionless radius of the wetted spot which can be obtained 

by assuming a spherical drop:  

Theoretical and numerical models of liquid drops impact pressure have also been 

investigated by Josserand and Zaleski [71] and Eggers et al [72], who found that the 

amplitude of pressure field p(t) in this self-similar region (i.e. where the solution 

form is similar to itself if the independent and dependent variables are appropriately 

scaled) behaves like [72]: 

𝑝̅(𝑡) = 1.7exp (−3.1𝑡/(𝐷/𝑣𝑑))  2-13 

𝑝̅(𝑡) =
1

2
+

1 − 2𝑡/(𝐷/𝑣𝑑)

𝜋√𝑡/(𝐷/𝑣𝑑) − (𝑡/(𝐷/𝑣𝑑))
2

       𝑡/(𝐷/𝑣𝑑) < 0.5 
2-14 

𝑓(𝑡) = 𝑝̅(𝑡)𝑎̅(𝑡)2𝜋𝜌w𝑣𝑑
2𝐷2 2-15 

𝑎̅(𝑡) ≈ √𝑡/(𝐷/𝑣𝑑) − (𝑡/(𝐷/𝑣𝑑))2 2-16 
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where 𝜏 = 𝐷/2𝑣d. This self-similar solution is for early stages of deformation 

(up to 𝑡 = 𝜏). In 2016, Philippi et al [26] showed that the velocity and the pressure 

fields adhere to a self-similar form which is in agreement with Eq. 2-17. Furthermore, 

Philippi et al first derived the early evolution of the force, which is given by: 

Gordillo et al [27] experimentally investigated the force profiles in a Reynolds 

number range of approximately 10
-1

 < Re < 10
4
, resulting in the discovery of visco-

elastic, viscous and inertial regimes. When Re>200, self-similarity has been observed 

for all the measured force profiles in the inertial regimes. Additionally, the peak 

force is found to be approximately equal to 0.85𝜌𝑣2𝐷2. However, the prediction of 

the initial-impact self-similar theory breaks down when Re<200, where viscous 

dissipation becomes important.  

Because the model derived by Philippi et al [26] only provides the force 

evolution at early times, Mitchell et al [28] developed a model equation based on Eq. 

2-18 from Philippi et al [26] and an exponential of the form e
-t
 to describe the post-

peak decay, which is given by: 

In addition, Mitchell et al [28] illustrated the interplay between the deformed 

droplet shape in images and its corresponding force. As shown in Figure 2.8, before 

the peak force is reached, the droplet side walls near the receiver surface are curved 

inward and the projected area onto the surface is less than the maximum area of a 

circle with diameter, D. At peak force, the side walls become perpendicular to the 

receiver plate and the projected area onto the surface has the maximum area. 

Therefore, the largest amount of momentum within the bulk droplet, which is purely 

in the direction normal to the plate, results in the largest normal force occurs at this 

time. After the peak force, the side walls of the droplet curved outward along with 

the spreading lamella which leads to less momentum directed in the normal direction 

towards the plate, although the projected area is larger. This spreading lamella 

consequently generates an exponential decay phase in the time dependent force.  

𝑝(𝑡)

𝜌w𝑣d2
∝ √

𝜏

𝑡
 2-17 

𝑓(𝑡) = √27/2𝜌𝑤𝐷
3/2𝑣d

5/2√𝑡 2-18 

𝑓(𝑡) = 𝜌w𝑣d
2𝐷2√

1000𝜋𝑣d𝑡

243𝐷
𝑒−
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Figure 2.8. Impact process for a 2.9 mm diameter water drop impacting at 2.1 m/s from 

Mitchell et al [28].  

 

2.7.  Angled impact 

In studies of liquid drop impact force, it is commonly assumed that the impact 

surface is horizontal. In practice, oblique impacts also occur such as a raindrop 

falling on sloped roof elements or droplets colliding with a turbine blade surface [73]. 

The pressure from angled impact of a liquid drop onto a dry surface has been 

previously researched [73, 74] with emphasis on the impact force by Zhang et al [75]. 

Zhang et al [75] show that the perpendicular component of the impact velocity 

dominates the impact force pulse due to momentum theory, and that the tangential 

component of the impact velocity may result in slip motion of the droplet but this has 

little effect on the impact force. 
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Axis of transducer

 

Figure 2.9. Images of water drop impact on an angled plate with 50
o
, D=2.44 mm, 

vd=2.32 m/s from Zhang et al [75]. 

 

As shown in Figure 2.9, because the spreading velocity at the initial phase of the 

impact (before 800 µs in Figure 2.9 [75]) is larger than the slipping velocity 𝑣d,t of 

the drop, therefore, the impact process is similar to a horizontal surface.  After 

1100 µs in Figure 2.9, the slip motion becomes significant particularly for the lower 

side of the lamella which results in an asymmetric process. Zhang et al [75] also 

presented a fitted curve for the peak force with respect to the perpendicular velocity 

𝑣d,n. 

a 

vd

vd,n

r

z

vd,t

 

Figure 2.10. Illustration of 4.5 mm drop impact at terminal velocity 9.20 m/s on an angled 

surface. 
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Therefore, in order to account for the effect of the angle on the impact force as 

shown in Figure 2.10, only the perpendicular velocity 𝑣d,n is used: 

However, in Zhang et al’s [75] experimental study, the drop shape is spherical. 

A non-spherical drop has a time-dependent force profile that is different from a 

spherical drop. For large raindrops at terminal velocity, the drop shape can be 

ellipsoidal with a flattened bottom (discussed in Section 2.3 and Section 2.5). A large 

drop impacting on a horizontal surface has shorter momentum transfer times and the 

larger projection area than oblique impact, which consequently results in higher force 

peak. The influence of drop shape on impact force has also been discussed by Zhang 

et al [76]. For 4.5mm ellipsoidal drop impact on an angled surface, as shown in 

Figure 2.10, the maximum projection area is smaller than the horizontal situation. In 

addition the perpendicular drop velocity is also smaller than the vertical drop 

velocity, which will result in lower force peak. Furthermore, the time-varying 

irregular projection area may lead to a more complex time-dependent force profile. 

However, the aim in this thesis is only to assess the accuracy of the correction based 

on the correction to the drop velocity. 

2.8.  Conclusions 

Theoretical models for the force from a drop impact onto a horizontal surface 

that have been determined using simplified idealized drop shape or fluid dynamics 

have been reviewed in this chapter. The idealized drop shape models, which assumes 

that the drop shape is spherical, is suitable for small drops such as 2 mm drops used 

in this thesis. However this assumption is likely to be problematic for 4.5 mm drops 

that are used in this thesis to represent large raindrops, because the drop will have a 

flattened bottom at terminal velocity. Therefore, the idealized drop shape models 

based on spherical and ellipsoidal shapes are also developed. 

 Furthermore, the prediction models for the force only provide the time 

dependent force on dry surface. In practice, the assessment of first few raindrops on a 

dry roof is of less interest than the sound radiated during steady rainfall. This means 

there will be a thin water layer over the roof which can affect the impact 

phenomenon as well as the impact force. In addition, as most roof elements are 

sloped, the angled impact should also be accounted for. Therefore, this thesis focuses 

on the accuracy assessment of these theoretical models based on experiment, from 

𝑓(𝑣d, 𝑡) = 𝑓(𝑣d,n, 𝑡) = 𝑓(𝑣dcos α, 𝑡) 2-20 



 

25 

 

which an empirical model will be developed to estimate the force from drops 

impacting onto dry and wet surfaces. 
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3.  Wavelet theory used for experimental force estimation 

from a single drop impact  

3.1.  Introduction 

This chapter introduces the wavelet analysis used to quantify the force of a 

single water drop impact.  

Section 3.2 reviews the conventional time domain and frequency domain 

deconvolution methods.  

In Section 3.3, the force estimation method based on Doyle’s wavelet 

deconvolution has been interpreted using the Maximum Likelihood method from 

Bayesian Estimation theory. To improve the force estimation in terms of robustness 

towards noise, the sparse representation theory is also introduced.  

Section 3.4 describes the numerical experiments on force identification using 

wavelet deconvolution, and the sparse representation with wavelet dictionaries. The 

numerical experiments test the wavelet theory by using the force from the idealized 

paraboloidal drop shape model.    

3.2.  Inverse methods for force identification in the time and frequency 

domain 

Inverse approaches have been established (e.g. see review paper [32]) to 

estimate the impact force from measurement of the response (e.g. displacement, 

velocity, acceleration) at points on the structure when it is subjected to an impact. 

The structure is assumed to be relatively thin compared to the wavelength, and only 

bending waves are considered. For a Linear Time-Invariant (LTI) system, the 

response 𝒆(𝑡) at point A on the structure can be related to the impact force 𝒇(𝑡) 

applied at point B on the structure by a linear convolution integral where the time 

domain response can be expressed as:    

where 𝒉(𝑡) is the impulse response of the linear system measured at point A 

with excitation at point B, and 𝒏(𝑡) is the additive noise. The time domain equation 

Eq. 3-1 can be expressed in the discrete time-domain form from which the impact 

force can be calculated by solving the following equation [77]:  

 𝒆(𝑡) = ∫𝒉(𝑡 − 𝜏)𝒇(𝜏)

𝑡

0

d𝜏 + 𝒏(𝑡) 3-1 
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For an infinite structure, the response signal only consists of the forward propagating 

dispersive wave as shown in Figure 3.1 (a). For a finite structure, if the reflected 

waves can be windowed out from the incident wave in the time domain, then the 

force input can be deconvoluted straightforwardly by division, because the 

reflections contain redundant information which is already available in the incident 

wave. In practice, the reflections for a dispersive system are superimposed on the 

incident portion of the response and cannot be easily windowed out (compare Figure 

3.1(a) and Figure 3.1(b)). The calculations in Figure 3.1 used modal summations of a 

rectangular 6mm glass plate in the frequency range from 1 Hz up to 6k Hz (for 

detailed theory see Ref. [7]). Properties of the glass plate are shown in Table 3-1.  

 

Table 3-1. Properties of the glass plate 

 

 

 

 

 

 

 

 

  

 𝒆 = 𝐡𝒇 + 𝒏 → {

𝑒1
𝑒2
⋮
𝑒𝑁

}  = [

ℎ1
ℎ2 ℎ1
⋮ ⋮
ℎ𝑁 ℎ𝑁−1

⋱
… ℎ1

] {

𝑓1
𝑓2
⋮
𝑓𝑁

} + {

𝑛1
𝑛2
⋮
𝑛𝑁

} 3-2 

Density (kg/m
3
) 2500  

Thickness (mm) 6 

Dimensions (m) 1.2×1 

Young’s modulus (GN/m
2
) 74  

Poissons ratio 0.3 

Loss factor 0.003 
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In order to improve the accuracy and stability of the estimation of the inverse 

estimation, many techniques have been applied in the literature [32] such as Least 

Square Error (LSE) [35, 36, 77], l2 norm regularization methods (e.g. Truncated 

Singular Value Decomposition (TSVD) [78], and Tihkonov regularization [38]).  

 However, these time domain methods are computationally expensive to process 

the transfer matrix, such as the SVD decomposition of the transfer matrix [38, 78], or 

the iterative LSE [36]. During the development of these time-domain techniques in 

force identification problems, frequency domain methods have also been investigated. 

Compared with the time domain deconvolution or the transfer matrix decomposition, 

the frequency domain approach is computationally efficient.  

The frequency domain method uses the Fourier Transform (FT) to transfer the 

convolution in Eq. 3-1 to multiplication at each frequency:  

where the uppercase symbols represent the frequency domain symbols corresponding 

to the time domain represented with lowercase in Eq. 3-1. The discrete form of the 

frequency domain can be obtained by Fast Fourier Transform (FFT) from Eq. 3-2.  

Therefore, when the excitation and the sensing are collocated, as shown in Figure 

3.1(c), the frequency domain force can be estimated directly from division according 

to Eq. 3-3, with the knowledge of the Frequency Response Function (FRF), 𝑯(𝜔), 

which is represented with the accelerance in Figure 3.1: 

where 𝑭̂(𝜔) is the estimated frequency domain force.  

However, when the excitation and the sensing are not collocated [79], the FRF 

of the finite structure usually has smaller amplitudes at anti-resonances as shown in 

Figure 3.1(b) compared with the collocation case in Figure 3.1(c). This leads to 

missing information in the reconstructed input load and can make the division 

problematic particularly when the measurement noise in the response signal is 

significant. Additionally, the presence of sharp spectral peaks also leads to the loss of 

information as the response energy is dominant in some frequencies. Consequently, 

the deconvolution division can be problematic if there exists any mismatch between 

the response and the transfer matrix. This deconvolution method using direct division 

 𝑬(𝜔) = 𝑯(𝜔)𝑭(𝜔) + 𝑵(𝜔) 3-3 

 𝑭̂(𝜔) =
𝑬(𝜔)

𝑯(𝜔)
−
𝑵(𝜔)

𝑯(𝜔)
 3-4 



 

30 

 

was used in early research (e.g. Holzer [80]), from which it was noted that the noise 

tends to be amplified by the division of 𝑬(𝜔)/𝑯(𝜔) at high frequencies [80] such 

that a low-pass filter is required. 

With a Fourier Transform there is a leakage problem caused by the truncated 

data from the time domain. This leakage is usually reduced by exponential 

windowing which incorporates the Fourier Transform resulting in the equivalent 

Laplace transform. Inoue et al used the Tikhonov regularization in the inverse 

Laplace transform for force estimation [81, 82]. However, the parameter for the 

exponential window is difficult to choose, especially when the signal is corrupted 

with noise [81, 82]. Other deconvolution methods has also been applied to solve the 

ill-posed problem such as Wiener filter [39], LSE [83], over-detection and singular 

value rejection method [84]. 

Since the frequency domain methods have this leakage problem and the 

conventional time domain methods are computationally expensive, another time 

domain method is investigated in this thesis which uses wavelets.  

3.3.  Inverse methods for force identification using wavelets  

3.3.1.  Wavelet deconvolution 

An alternative method to solve the inverse problem for impact force 

identification is using wavelet deconvolution [85]. Impact force with finite time 

duration can be represented as a linear combination of wavelet basis functions with 

compact support (which means they are non-zero only over a limited time range). 

This is different from the Fourier transform expressed by a linear combination of 

sinusoidal functions with infinite durations. Use of the Fourier Transform requires a 

long stationary data to minimize the leakage problem and for fine resolution. This is 

likely to be problematic for non-stationary vibration such as transient excitation from 

a single water drop.  

In 1997, Doyle [33] developed a deconvolution method using wavelets for 

impact force estimation on a beam and plate, and from the comparison with the 

frequency domain method, wavelet deconvolution was shown to give a more 

accurate solution. Li et al [86] proposed Daubechies wavelet for multi-resolution 

analysis to estimate the impact and sinusoidal forces. Compared with the 

conventional frequency method, the proposed wavelet method has better 
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identification ability and was robust to noise. Qiao et al [87, 88] also used cubic B-

spline function for the basis function expansion methodology which is similar as 

wavelet deconvolution, resulting in superior estimation accuracy than TSVD. 

Therefore, in this thesis, the wavelet deconvolution method developed by Doyle [33] 

has been considered for the raindrop impact force determination. 

Assuming that the impact force can be expanded by a series of basis wavelet 

functions [33], this is given by:  

where superscript H is the Hermitian, 𝚽 is an M  N matrix of wavelet functions. 

The elements of 𝚽 given by Doyle [33] are 𝜙𝑚(𝑡𝑛) = exp [− (
𝑡𝑛−𝑚𝑡0

𝛼
)
2

], tn is the n
th

 

sample in time (subscript w indicates wavelet), m is the time shift integer (also called 

shifting factor in the thesis),  is the parameter that can determine the width of the 

wavelet function (which is dependent on the frequency range of analysis). As 

illustrated in Figure 3.2, the collection of bell shaped wavelet basis functions 𝜙𝑚(𝑡𝑛) 

is used to represent the force pulse.  

force f(t) 

ϕm(t)wavelet force
 

Figure 3.2. Illustration of wavelet functions to represent the force pulse. 

The width of a smoothed triangle wavelet or bell shaped basis function is given 

by [33]: 

In wavelet theory, α is usually chosen in the power of 2 [85], which in this 

thesis is α = 2𝑠 × 10−4, where s is the scale integer (also called scaling factor in the 

thesis) that can be chosen from the frequency content of the measured response. In 

Eq. 3-5,  𝒇w is a vector with dimension M to replace the original unknown vector 𝒇 

with dimension, N.  

 𝒇 = 𝚽H𝒇w  3-5 

 pulse width =  4α [s]  3-6 
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Doyle’s wavelet deconvolution theory [33] does not consider noise in the 

derivation of the theory; hence, substituting Eq. 3-5 into Eq. 3-2 by ignoring the 

noise gives: 

𝚿 is defined as: 

Then the unknown force is estimated according to [33]:  

 where the elements are a matrix of functions 𝜓𝑚(𝑡𝑛) = ∑ 𝑥(𝑡𝑛 −
𝑛−1
𝑘=0

𝜏𝑘)𝜙𝑚(𝜏𝑘). 

The system impulse response on a structure (e.g. plate) can be measured using 

force hammer excitation with accelerometers at several response positions. The 

unknown force applied by the real impact can then be related to the impact force, 𝒇̅, 

applied by the force hammer, and the associated acceleration signal, 𝒆̅, [36] by 

where * denotes convolution. Eqs. 3-7 or 3-9 can then be solved by substituting 

𝒆 ∗ 𝒇̅ for 𝒆 and 𝒆̅ for h. However, depending on the experimental conditions and the 

selection of parameters of the wavelet function, 𝚿𝚿H can be ill-conditioned which 

can lead to instability in the solution of Eq. 3-10. To overcome this problem, Eq. 3-7 

can be solved using the LSQR algorithm [89] to give 𝒇w. Note that the method for 

LSE solution in Eq. 3-9 is known as pseudo-inverse method, (𝚿𝚿H)−1𝚿 refers to the 

pseudo-inverse of the matrix 𝚿. 

3.3.2.  Maximum Likelihood Estimation from Bayesian theory 

Since Doyle’s approach [33] doesn’t include noise in the derivation of the theory, 

this is addressed in this thesis by introducing the Maximum Likelihood (ML) 

approach from Bayesian theory. 

Bayesian Estimation is a method that is usually used to estimate or predict a 

random process from a related observation signal, based on the prior knowledge of 

the probability distribution of the process. There are many classical estimators used 

in Bayesian philosophy such as: maximum-likelihood (ML), maximum a posteriori 

(MAP), LSE and minimum mean absolute value of error (MAVE). Under the 

 𝚿𝒆 = 𝚿𝚿𝐇𝒇w  3-7 

 𝚿 = 𝚽𝐡H  3-8 

 𝒇 = 𝚽H(𝚿𝚿H)
−𝟏
𝚿𝒆  3-9 

 𝒆 ∗ 𝒇̅ = 𝒆̅ ∗ 𝒇  3-10 
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assumption of Gaussian likelihood function, the LSE solution is the same as ML 

solution [90].  

From Eq. 3-2, the probability density function (pdf) of the vector 𝒇w  from 

wavelet expansion given an observation response signal 𝒆 can be described as [90]:  

The likelihood of the signal 𝒆 given the parameter vector 𝒇w is the pdf of the 

random noise [90]:  

Assuming that n is random noise with a Gaussian distribution of mean, 𝝁n, and a 

constant covariance σ𝑛, then the likelihood function is: 

The estimated force is obtained from maximization of the log-likelihood 

function, ln[𝑓𝐄|𝐅w(𝒆|𝒇w)], with respect to 𝒇w and is given by [90, 91]: 

and when 𝚿𝚿H is well-posed, 

If 𝝁𝐧 = 0 the added noise is white Gaussian noise with zero-mean value, Eq. 

3-15 is then equivalent to the LSE solution given by Eq. 3-9.  

3.3.3.  Maximum A Posteriori estimation from Bayesian theory 

Although Doyle’s method [33] can provide close estimates for the force, the 

transfer matrix is likely to be ill-posed as observed by Qiao et al [92] especially 

when the parameters of the basis function (e.g. scaling and shifting factors) are not 

optimally chosen. The scaling and shifting factors work in a similar way to the 

regularization parameters to supress the noise [88, 93]. Moreover, the advantage of 

wavelet deconvolution method is essentially the same as l2 regularization [88], 

regardless of the suitable finite time duration of wavelet function for the transient 

force. Selecting the optimal factors can also help to filter out the high-frequency 

components from the response and the force to improve the stability of estimation 

[86]. Unfortunately, Doyle did not provide a quantitative optimization method for 

 𝑝𝒇w|𝒆(𝒇w|𝒆) =
𝑓𝒆|𝒇w(𝒆|𝒇w)𝑓𝒇w(𝒇w)

𝑓𝒆(𝒆)
 3-11 

  𝑝𝒆|𝒇w(𝒆|𝒇w) = 𝑓𝒏(𝒏) = 𝑓𝒏(𝒆 −𝚿H𝒇w) 3-12 

𝑝𝒆|𝒇w(𝒆|𝒇w) =
1

(2𝜋𝜎𝑛)
𝑁
2

exp [−
1

2𝜎𝑛
2 (𝒆 − 𝚿

H𝒇w − 𝝁𝒏)
𝐻
(𝒆 − 𝚿H𝒇w − 𝝁𝒏)] 3-13 

 𝚿𝚿H𝒇w = 𝚿(𝒆 − 𝝁𝐧)  3-14 

 𝒇w = (𝚿𝚿H)−1𝚿(𝒆 − 𝝁
𝐧
)  3-15 
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these parameters. Furthermore, Doyle produced the wavelet only by shifting the bell-

shaped basis function, which makes the wavelets single resolution and non-

orthogonal, although it can be orthogonalized using Gram-Schmidt orthogonalization 

[33]. The selection of a wavelet basis function can also affect the estimation accuracy 

[87, 88, 94]. Therefore, according to the theory of wavelets, it is likely to be more 

computationally efficient to use multi-level orthonormal wavelet functions, and 

apply the optimized orthonormal wavelet basis.  

Gunawan et al [95, 96] used quadratic splines functions and B-splines functions 

as the basis functions to estimate the impact forces. For quadratic splines function, a 

uniform distribution of knots (the abscissas 𝜆𝑗 called nodes or knots of the B-splines 

functions control the smoothness of the profile or regularize the solution.) is assumed 

for the force identification [96]. For B-splines functions, the impact force within time 

interval [a, b] is divided into n-1 subintervals 𝑎 = 𝜆1 ≤ 𝜆2 ≤ … ≤ 𝜆𝑛 = 𝑏. Gunawan 

et al proposed two steps to optimize the knots: 1) the knots are coarsely distributed to 

the entire domain of the analysis to capture the loading and the unloading stages of 

the impact; 2) the knots along the unloading stage are deleted and new knots are 

inserted along the loading stage. 

Qiao et al  [87] simplified the two-step regularization proposed by Gunawan et 

al [95] without calculating the slope at each knot, as well as the loading stage. Qiao 

et al admitted that corresponding to choose the number of singular values for the 

TSVD-based method, a smaller level j (the level of the wavelet decomposition) leads 

to an underestimated solution; conversely, for a larger level j, the solution will be 

overestimated.  

These basis function expansion or wavelet deconvolution methods [33, 86-88, 95, 

96] select the optimal parameters to supress the effect from noise, which are 

essentially similar as l2 norm regularization parameters. Recently the sparsity 

representation algorithms based on l1 norm [92, 97, 98] or l1/2 norm [99], and 

adaptive lq norm (1<q<2) [100, 101] regularization has led to investigations on load 

identification problems. These sparsity representation methods have been extensively 

researched in image or other signal processing, compressive sensing and machine 

learning [102-106]. Sparse representation is a method of reconstructing the input data 

(also known as sparse coding) in the form of a linear combination of basic elements 

as well as those basic elements themselves. These elements are called atoms and they 
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compose a dictionary [102-106]. Sparse representation applied for load identification 

using the regularization term mainly uses two different schemes: time domain force 

history identification (e.g. [92]) and frequency domain force localization (e.g. [99]).  

This thesis mainly concerns time domain estimation of the force history from a 

water drop impact. For small water drops impacting at low velocities, the response 

signal might be corrupted with noise which results in low signal-to-noise ratios 

(SNR). Sparse representation force identification has considerable advantages for the 

sparse type solutions such as impacts, especially with low SNR [92, 97, 107]. Qiao et 

al  [92] used the SpaRSA algorithm from l1 norm regularization [108] to reconstruct 

the force from single and double impacts from highly noisy responses. Different 

basis functions like Dirac, Db6 wavelets, Sym4 wavelets, Cubic B-spline, and 

discrete cosine functions are used for representation. Compared with the traditional 

Tikhonov regularization using L-curve criterion [109], the l1 norm shows better 

identification results when the response signal is corrupted with high level noise [92]. 

Later Qiao et al [97] applied the primal-dual interior point method (PDIPM) [110] to 

solve a large-scale ill-posed inverse force identification problem. Pan et al [111] used 

a weighted l1 norm regularization to identify the moving force in the field of bridge 

structural health monitoring (SHM). In their research, both discrete trigonometric 

functions and discrete rectangular functions are used as a redundant dictionary so 

that the main features of the moving loads on the bridge are closely fitted. 

Since the l1 norm regularization tends to adjust for its sparsity-inducing effect, 

and given the condition that the prior information on the sparsity or continuity of the 

unknown force is implicit, Li and Lu [101] used a hierarchical Bayesian method to 

determine the force history, precision parameters, as well as q (in lq norm). Their 

approach was to adaptively determine q which indicated that 1<q<2 can lead to 

better reconstruction performance than other existing Bayesian methods with a pre-

determined single value q. Another method of determining the adaptive q is proposed 

in Ref. [100]. In this thesis, since the force from a water drop impact is transient 

rather than steady-state, this hierarchical Bayesian method with adaptive q is not 

considered here. 

These sparse representation methods are effectively applied to estimate the 

impact/sparse force time history in different cases, however, the time domain force 

estimation methods in the literature are based on convex optimization such as l1 norm 
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regularization [92], or lq norm [101] where 1<q<2, instead of using the nonconvex lq 

norm where 0≤q<1. A more natural sparse-inducing regularization method should be 

the l0 norm, where the number of non-zero elements is considered. Furthermore, 

using l1 norm regularization as a relaxation of the l0 norm may underestimate the 

force [112]. Moreover, most of the research focuses on force identification using low 

SNR response signal, however, the sparse representation effect on the discontinuity 

or sharp edge of the impact force has not received so much attention. Based on the 

knowledge of the force applied by a single water drop impact from the literature (i.e. 

[26, 28]), the initial phase of the liquid drop impact process has instantaneous 

velocity redirection, which results in high pressure gradient around the edge of the 

spreading as well as a sharp edge in the time dependant force during the first 

millisecond, as shown in Figure 3.3.  
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Figure 3.3. Time dependent force of liquid drop impact on a dry surface using the model 

from Mitchell et al [28] in terms of dimensionless force and dimensionless time. 

 

It is observed by some researchers that the hard thresholding referred to as the l0 

norm is usually more robust towards noise than soft thresholding (referred to as the l1 

norm) for wavelet decomposition, particularly for sharp edged signals [113]. 

Therefore, three typical sparse representation methods l0-, l1/2-, l1-norm regularization, 

have been utilized in this thesis to compare with the l2 norm regularization method to 

estimate the impact force using numerical simulation. In the actual experiment, l0 

norm regularization will be validated for force estimation of 2mm drops impacting 

on dry surface with 2.57m/s velocity in Chapter 6. (Section 6.3.2). In the following 
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contents of this section, the MAP estimation based on Bayesian theory is used to 

describe l0-, l1/2-, l1-, and l2-norm regularization. 

The MAP estimate  𝒇̂𝑀𝐴𝑃 is obtained as the parameter vector that maximises the 

posterior pdf: 

Assuming that the estimated force 𝒇 is also a Gaussian process with mean of 𝝁𝐟 

and covariance of matrix 𝜮𝒇𝒇, and 𝝁𝐧 = 0, therefore the posterior distribution can be 

obtained by substituting Eq. 3-13 into Eq.3-16: 

The MAP estimation of the impact force can then be obtained by differentiating 

the log-posterior pdf ln [𝑓𝒇|𝒆(𝒇|𝒆)] and setting the derivative to zero:  

If the covariance of the Gaussian distributed force satisfy 𝜮𝒇𝒇
−1 → 0, the Gaussian 

prior tends to a uniform prior, and then MAP estimation in Eq. 3-18 is the same as 

Eq. 3-9. On the other hand, when  𝜮𝒇𝒇
−1 → ∞, which means the covariance of the 

Gaussian distributed force decreases, the pdf of  𝒇 becomes peaked, and then the 

estimate tends towards 𝝁𝒇. 

𝒇̂𝑀𝐴𝑃 =
𝑎𝑟𝑔𝑚𝑎𝑥  

𝒇 𝑝𝒇|𝒆(𝒇|𝒆) =
𝑎𝑟𝑔𝑚𝑎𝑥  

𝒇

𝑝𝒆|𝒇(𝒆|𝒇)𝑝𝒇(𝒇)

𝑝𝒆(𝒆)
 3-16 

𝑝𝒇|𝒆(𝒇|𝒆) =
1

𝑝𝒆(𝒆)

1

(2𝜋𝜎𝑛)
𝑁
2

1

(2𝜋)
𝑁
2 |𝜮𝒇𝒇|

1
2

exp [−
1

2𝜎𝑛2
(𝒆 − 𝐡𝒇)𝐻(𝒆 − 𝐡𝒇)

−
1

2
(𝒇 − 𝝁𝒇)

𝐻
𝜮𝒇𝒇
−1(𝒇 − 𝝁𝒇)]   

3-17 

 𝒇̂𝑀𝐴𝑃 = ((𝐡𝐻𝐡 + 𝜎𝑛
2𝜮𝒇𝒇

−1)
−1
(𝐡𝐻𝒆 + 𝜎𝑛

2𝜮𝒇𝒇
−1𝝁𝒇)) 3-18 
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Figure 3.4. Examples of background vibration for three accelerometers mounted on a glass 

plate a) distribution histogram; b) QQ-plot. 

An assessment is now made of the background noise in the experimental work in 

this thesis. Three accelerometers used for measuring the response signal are mounted 

on a glass plate (later described in Chapter 5, Figure 5.2). The white Gaussian 

assumption for the background noise is reasonable as shown in Figure 3.4. However, 

the prior knowledge of the mean value or the covariance of the force is unknown; 

therefore MAP estimation in Eq. 3-18 cannot be directly used for force identification.  

The multivariate generalized Gaussian distribution [99, 114]  is chosen here to 

estimate the force. 

Substituting Eq. 3-19 into Eq. 3-16, the MAP estimate is given by: 

𝑝𝒇(𝒇) ∝ exp [−
1

2𝛴𝑓
‖𝒇‖𝑞

𝑞
] 3-19 

 𝒇̂𝑀𝐴𝑃 =
𝑎𝑟𝑔𝑚𝑖𝑛  

𝒇
{
1

2
‖𝐡𝒇 − 𝒆‖2

2 + 𝜆‖𝒇‖𝑞
𝑞} 3-20 
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where  𝜆 is known as the regularization parameter  𝜆 =
𝛴𝑓

𝜎𝑛
2, and lq-norm penalty 

function is given by ‖𝒇‖𝑞
𝑞 = ∑ |𝒇𝒊|

𝑛
𝑖=1

𝑞
. The probability distribution and the penalty 

function for different selection value of q are shown in Figure 3.5.  
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Figure 3.5. Geometric interpretation of probability distribution of (a)  exp [−
1

𝑞
‖𝒇‖𝑞

𝑞
] and 

(b) lq–norm penalty function with different values of q. 

 

When q=2, ‖∙‖𝑞
𝑞
is called the l2-norm or Euclidean norm, and the solution of Eq. 

3-20 is the same as the solution in Eq. 3-18 (if the mean value of the force 

satisfy  𝝁𝒇 = 0 ). This l2-norm regularization becomes the classical Tikhonov 

regularization which is well-known for its Gaussian smooth effect. This l2-norm 

penalty function makes the solution stable in the least squares sense at the expense of 

allowing the original Eq. 3-2 not to be satisfied exactly. The l2-norm regularization 

solution of minimizing the functional Eq. 3-20 is given by [32]: 

 𝐟𝑙2 = 𝐕𝚺†λ𝐔
𝐻𝒆 3-21 

where 𝐔 and 𝐕 are unitary matrices, 𝚺 is a diagonal matrix from the singular 

value decomposition (SVD) of the transfer matrix  

𝐡 = 𝐔𝚺𝐕𝐻, ∑  †λ is a diagonal matrix whose elements are Σi,i /(Σi,i 
2
+ λ), which is also 

known as the Tikhonov filter for supressing noise. The solution 𝐟𝑙2 is unstable if λ is 

too small while it becomes inaccurate if λ is too large. The parameter 𝜆 is usually 

determined by using the L-curve method [109]. 

When q=1, it is called the l1-norm, which describes the sum of absolute values of 

the elements of 𝒇. The l1-norm is usually used to induce sparsity in the optimal 

solution of Eq. 3-20. Another important advantage of the l1-norm regularization as 
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opposed to the l2-norm is that l1 regularization is less sensitive to outliers (e.g. sharp 

edges in image processing applications) [115] which in this thesis corresponds to the 

sharp edges at the initial phase of the impact force from a single water drop. In this 

thesis the l1-norm regularization is solved using the SpaRSA algorithm [108]. 

If the factor q is chosen as q<1, Eq. 3-20 becomes non-convex and a non-smooth 

optimization problem as shown in Figure 3.5, which is more difficult to solve. 

Moreover, to select an optimal q that can give the best estimation result is also a 

challenge. In signal processing areas such as image processing, it has been observed 

that the parameter q= ½ is a representative value for the selection of q: when 

𝑞 ∈ (
1

2
, 1], the solutions subjected to lq regularization are sparser with smaller q 

value, and no significant difference has been observed for the performance of lq 

regularization when 𝑞 ∈ (0, 0.5] [116, 117]. Therefore, q= ½ is usually chosen as the 

representative parameter for 0<q<1. In this thesis the l1/2-norm regularization is 

solved using the Half Proximal Thresholding Algorithm ([116, 117]). 

When q=0, the penalty function is formally called l0-norm, the number of non-

zero components of the vector. Therefore, minimizing the penalty function 

‖𝒇‖0 means minimizing the number of non-zero components of vector f. The l0-norm 

is probably the most intuitive and convenient for defining the sparse representation 

problem. In this thesis the Iterative Hard Thresholding (IHT [118]) is used to solve 

the l0-norm regularization, which is efficient and suitable for high-dimensional 

problems. 

 

 In this thesis, four different parameters of q are chosen to recover the impact 

force applied by a water drop from the measured response signal: q=2, q=1, q=1/2 

and q=0. Figure 3.6 shows the histogram of the impact force from 2mm and 4.5mm 

water drops impacting on a dry glass surface at terminal velocity using the 

paraboloidal drop shape model from Petersson [4]. The prior knowledge of the 

impact force distribution with centralized values of f and “heavy tails” seen in this 

figure shows that using sparse representation for l1-, l0- or l1/2-norm regularization 

should give better estimation than the l2-norm corresponding to the geometric 

interpretation in Figure 3.5.  
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Figure 3.6. Histogram of force from water drop impacting on a dry surface at terminal 

velocity using the paraboloidal drop shape model from [4] for a) 2 mm diameter drops; b) 

4.5 mm diameter drops. 

3.4.  Numerical experiments on force identification using wavelets 

This section describes the numerical experiments on force identification using 

wavelet deconvolution and sparse representation methods.  

3.4.1.  Simulation of deconvolution using Doyle’s wavelet method  

3.4.1.1 Optimal sensing position(s) 

The stability of the wavelet deconvolution method is determined by the transfer 

matrix and the SNR of the response signal. It can improve the estimation accuracy 

and stability by selecting the sensing positions for transfer matrix with small 

condition number and response signal with high SNR. Therefore, in this section, the 

optimal sensing positions for wavelet deconvolution have been assessed in 

simulation. 

Khoo et al [37] observed that the multiple impact force identification can be 

reliable and robust by using LSE method estimation (specifically pseudo-inverse 

method) for over-determined or even-determined cases when good positions are 

selected from the averaged minimum condition number. Since only the single 

raindrop impact force is estimated in this thesis and multiple sensing positions are 

available, which can be interpreted as even- or over- determined cases.  

In this simulation, the transfer matrix is obtained based on a modal summation [7] 

for a simply supported 6mm glass plate using 10000 bending mode shapes between 
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10 and 8k Hz. The excitation position is at 𝑝𝑒 (
1

3
𝐿𝑥,

1

3
𝐿𝑦) so that most of the modes 

are excited, and a 40×40 grid of different sensing positions is compared.  

The structural damping is an important factor that can influence the singular 

frequencies of the response signal as well as the conditional number of the transfer 

function. As shown in [119], applying a dynamic damper at a suitable location can 

minimise the ill-conditioned nature of the frequency response function (FRF) matrix 

especially near the resonance frequency. Therefore, with low damping, the inverse 

problem becomes more difficult. In order to assess the condition number of the 

transfer matrix in the worst case, the loss factor of the glass plate is 0.003 in this 

section, which is the lowest possible damping that could be achieved in a 

measurement [7] and that the perimeter support for the plate would increase the 

damping. Parameters of the glass plate are shown in Table 3-1. 

In order to estimate the ill-conditioning problem of the transfer function, the 

natural logarithm of the condition number is shown in Figure 3.7. Condition number 

of a matrix is defined as the ratio of the largest to smallest singular value in the 

singular value decomposition. The natural logarithm of the condition number is used 

to estimate the precision of an inverse solution. In this simulation, the transfer matrix 

is obtained using the impulse response (Eq. 3-1), which is obtained by the inverse 

Fast Fourier Transform (IFFT) from the frequency domain with summed mode shape 

functions of the plate as mentioned above.  
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Figure 3.7. Logarithm of condition number of the transfer matrix for single response points 

over the 6mm glass plate surface.  

 

As shown in Figure 3.7, the transfer matrix is well-conditioned near the 

excitation position. One reason for this can be seen by comparing Figure 3.1(b) and 

Figure 3.1(c) as discussed in Section 3.2. One possibility to obtain a well-conditioned 

matrix is to use a sensor position underneath the excitation position. However, drop 

impacts from at least a few metres do not always lead to impacts at exactly the same 

position. Hence an alternative is to choose a number of sensor positions that are 

randomly selected away from the excitation position which is the same as suggested 

by Doyle et al [33].  

3.4.1.2 Comparison between l2 norm regularization and wavelet 

deconvolution 

In this section, the l2 norm regularization is compared with the wavelet method 

for numerical determination of a transient impact force in the presence of noise in the 

response. In order to obtain the optimal value of regularization parameter, L-curve 

principle [109] has been used. L-curve principle requires plotting log-log scale l2 

norm of the regularization term (i.e. ‖𝒇‖2
2) versus the l2 norm of  the residual term 

(i.e. ‖𝒆 − 𝐡𝒇‖2
2) for different regularization parameters, as shown in Figure 3.8(a), 

which is in L-shape curve. The optimal regularization parameter is the value that 

gives the maximum curvature of the L-shape curve. In order to illustrate the 

regularization parameter conveniently, the curvature of the L- curve is also plotted in 

Figure 3.8(b) as an example.  
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Figure 3.8. L-curve method to identify the parameter for l2-norm regularization a) plot of 

the L-curve b) curvature of the L-curve versus the regularization parameter.  

 

The comparison between the idealized half-sine force and the estimation result 

using wavelet deconvolution and the l2-norm regularization is shown in Figure 3.9. 

In this simulation, the response signal is obtained by convolution between the 

impulse response (at position (0.41Lx, 0.22Ly)) and the impact force (1/3Lx, 1/3Ly). 

White Gaussian noise is added into the response signal with 30 dB SNR.  
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Figure 3.9. Comparison between the wavelet deconvolution method and the l2 norm 

regularization. 

 

The l2-norm regularization is commonly used in inverse problems, however, for 

low SNR response signal, l2 norm regularization is not reliable for the transient 

excitation because the solution is smoothed and supressed in the whole time history 

[92, 107]. As shown in Figure 3.9, combining the wavelet deconvolution method and 

the LSQR can estimate the impact force robustly against the additive noise. 

Conversely, the l2 norm regularization method is more sensitive to noise. The small 

ripples in the l2 norm regularization estimation curve occur due to high frequency 

components when the FRF is close to zero which is amplified by the added noise in 

the inverse process. Although those components can be supressed by choosing a 

larger regularization parameter, this leads to underestimation of the force, 
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particularly at low frequencies where the main energy of the impact force locates. An 

alternative solution is to filter out the high frequency components with a low-pass 

filter. However, there are two main disadvantages of using a low pass filter: 1) it will 

reduce the valid impact force components beyond the cut-off frequency, rather than 

those singular frequencies of the FRF only. Due to the Gibbs phenomenon [90] of the 

frequency domain expansion, the time history of the impact force can be 

inappropriately smoothed especially when there are sharp edges. 2) As shown in 

Figure 3.9, a low-pass filter can induce a phase shift or time delay in the impact force. 

Therefore, wavelet deconvolution is a more robust option to inversely estimate the 

force from the rain drop impact.  

3.4.1.3 Implementation of wavelet deconvolution  

As mentioned above, when the shifting factor and the scaling factor are 

optimally chosen, the system transfer matrix can be well-posed [33, 87, 88, 94, 95]. 

However, Doyle didn’t provide the quantitative method to optimize these parameters. 

Hence in this thesis, the effect of scaling factor and the shifting factor on estimation 

has been assessed.  

It is observed that when the structure is lightly damped, the wavelet 

deconvolution combined with the LSQR algorithm can improve the robustness of the 

inverse force estimation, thus in this section, two coefficients [86, 88, 95]: 

correlation coefficient and estimation relative error are utilized to assess the error of 

impact force identification using wavelet deconvolution and iterative LS algorithm.  

where cov(.) is the covariance and σ is the standard derivation.  

In this section, three main factors are concerned: the scaling factor, the shifting 

factor, and the amplitude of additive white noise corrupted into the signal (assessed 

by SNR).  

In single resolution one-dimensional wavelet deconvolution, if the scaling factor 

is chosen too small (approximately <3), the basis function will be close to a Dirac 

function, which doesn’t improve the condition number of the transfer matrix. On the 

other hand, if the scaling factor gets too large (approximately >6), the high frequency 

 Correlation coefficient =  
cov(𝐟, 𝐟)

σ𝐟σ𝐟
 3-22 

 Estimation error =  
‖𝐟 − 𝐟‖

𝟐

‖𝐟‖𝟐
 3-23 
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components of the impact force can be filtered out by the basis function. Therefore, it 

is critical to select the optimal scaling factor for the estimation accuracy. On the 

other hand, using a relatively larger shifting factor (approximately >2) can 

significantly decrease the size of the transfer function matrix, so that its condition 

number can be reduced. However, the shifting factor cannot be too large since the 

impact force may no longer be completely represented by the summation of a few 

basis functions.   

 For high SNR value, the optimal scaling factor or the pulse width of the basis 

function is selected to be relatively small, so that the solution can be more accurate 

due to the broader frequency range for calculation. As shown in Figure 3.10, a 

scaling factor around 3 is an optimal selection when the SNR is 30 dB. With a 

relatively small scaling factor, the shifting factor has an upper limit, because 

significant shifting of the single resolution wavelet basis function leads to the 

incapability of representing the force time history. In contrast, if the shifting factor is 

too small, the condition number of the transfer function cannot be reduced. 

Fortunately, when the scaling factor is small, increasing the shifting factor slightly 

can rapidly reduce the condition number, which improves the robustness of the 

solution.  
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Figure 3.10. Optimal shifting factors and scaling factors for wavelet deconvolution and LS 

method assessed using the correlation coefficient (first column), estimation error (second 

column), and the condition number of the matrix in log scale (third column) when SNR is 

30 dB. The first row shows the 3D plot and the second row shows the contour plot.  

For 30dB SNR, when the scaling factor is selected as three and the shifting 

factor is 10, then the shift of the basis function corresponds to approximately half the 

pulse width as shown in Figure 3.11, which results in the same proposal made by 

Doyle et al [33]. 
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Figure 3.11. Relation between the optimal shift and pulse width for 30dB SNR. 

 

Figure 3.12 shows the effect of these two factors on the estimation accuracy 

with 20 dB SNR for comparison with the previous 30 dB SNR. In Figure 3.12, 

although the condition number of the transfer matrix is the same as shown in Figure 

3.10, it is replotted for viewing convenience. Compared with Figure 3.10, when the 

additive noise energy increases from 30 dB to 20 dB SNR, the optimal scaling factor 

gets slightly higher (approximately 4) to suppress the noise effect, in order to 

minimize the estimation error or maximize the correlation coefficient. For high SNR 

response signal, using a scaling factor of ≈ 3 can help to reduce the condition number 

by shifting the base functions slightly, which enhances the stability of solution 

process. However, for 20 dB SNR response signal, this can lead to an estimation 

error due to the noise effect on response signal. This is one of the reasons to use the 
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iterative LSE method together with the wavelet to improve the estimation robustness. 

The optimal scaling factor can be selected to be ≈ 4, although the condition number 

is not reduced significantly.  
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Figure 3.12. Optimal shifting factors and scaling factors for wavelet deconvolution and LS 

method assessed using the correlation coefficient (first column), estimation error (second 

column), and the condition number of the matrix in log scale (third column) when SNR is 

20 dB. The first row shows the 3D plot and the second row shows the contour plot. 

 

As shown in Figure 3.13, the optimal scaling factor becomes ≈5 when the SNR 

value decreases to 10 dB. This can be explained by interpreting the filtering effect in 

the frequency domain, as the pulse width of the basis function becoming longer with 

a higher scaling factor, which can consequently filter out more high frequency 

components from the noise.  
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Figure 3.13. Optimal shifting factors and scaling factors for wavelet deconvolution assessed 

using the correlation coefficient (first column), estimation error (second column), and the 

condition number of the matrix in log scale (third column) when SNR is 10 dB. The first row 

shows the in 3D plot and the second row shows the contour plot.  

 

It should be noted that these two coefficients from Eq. 3-22 and Eq. 3-23 are 

calculated using the time interval 50 ms, which is longer than the duration of the 

impact force pulse (5 ms). Most of the references [86, 88, 95] also used the relative 

error in a larger time scale than the force pulse width. There could be three reasons 

for this: 1) the estimation result out of the impulse duration to some extend reveals 

the stability of the deconvolution method, for instance the estimation of the impact 

force becomes unstable from the end of the pulse if using only 𝐻1(𝜔) =
𝑆𝑥𝑦

𝑆𝑥𝑥
 as the 

transfer function [120]; 2) the force and the shape of the force is unknown in most 

force identification cases, which makes it difficult to define the start and end point of 

the force (although in this research the force is classified to be the impulse force 

without much ringing); 3) some specific estimation procedures can shift, dilate or 

shrink the force pulse, meaning that the relative error cannot be calculated directly at 

the interval of the pulse width. 
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Figure 3.14. Comparison between the idealized half-sine force and the estimated force using 

wavelet deconvolution and LSE method using optimal scaling factor and shifting factor for 

different SNR values when only one sensor at (0.41Lx, 0.22Ly) is used.  

 

As shown in Figure 3.14, the estimation becomes more inaccurate with higher 

noise levels, and the estimated force pulse width gets longer than expected. This is 

because the optimal scaling factor gets larger with the increasing noise level in order 

to cancel the noise at high frequencies, which induces the Gibbs phenomenon and 

extend the length of the force pulse. 

It is worth noting that wavelet deconvolution doesn’t introduce new information 

for the system at anti-resonances. The reason that Doyle’s wavelet deconvolution 

method can improve the robustness of the inverse problem is because the impact 

force has been smoothed at high frequencies by the basis function. If only one 

sensing position is measured to inversely estimate the single impact force which is 

also known as the even-determined case, the estimation using Doyle’s wavelet may 

not be stable. Therefore, Doyle [33] suggests using multiple sensing positions to 

compensate for the lack of information of anti-resonances at each sensing position. 

This is particularly important for those anti-resonances within the frequency range of 

the impact force.  

As shown in Figure 3.15, with 10 dB SNR, using three sensors at (0.41Lx, 

0.22Ly), (0.21Lx, 0.43Ly) and (0.36Lx, 0.70Ly) can improve the estimation results 

compared to only one sensor. The usage of multiple sensors compensates for the lack 

of information in the transfer matrix especially those anti-resonances.  
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Figure 3.15. Comparison between the idealized half-sine force and the estimated force using 

wavelet deconvolution and LSE method using optimal scaling factor and shifting factor for 

10 dB SNR when there are three sensors at (0.41Lx, 0.22Ly), (0.21Lx, 0.43Ly), and (0.36Lx, 

0.70Ly). 

 

3.4.1.4 Summary  

When the analysed structure is finite, the interference of reflecting waves may 

cause total loss of information at certain frequencies, i.e. at the anti-resonances in the 

frequency response function. A conventional Fourier transform can be problematic 

when the inverse calculation is implemented directly.  

The advantage of the wavelet method is that the wavelet basis functions are 

finite in time which is suitable for a transient impact signal. Doyle’s wavelet 

deconvolution [33] can be interpreted as suppressing the size of the ill-posed transfer 

matrix to reduce its condition number from the expansion on the basis functions (i.e. 

Doyle’s bell shaped function [33]).  According to Nyquist sampling principle, the 

time domain signal contains redundant information especially when the signal 

frequency range of the impact force is significantly less than the Nyquist frequency. 

Therefore, it is possible to filter off unnecessary high frequency components by 

expanding the impact force with a series of the basis function when the optimal 

scaling factor is selected. Moreover, increasing the shifting factor or decreasing the 

basis function overlap within a limited range can significantly compress the 

representation of impact force. Consequently, the condition number of the matrix 

expansion of the basis function can be significantly reduced.  
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There exist optimal scale and shift factors for the estimation process. The 

optimal scaling factor can be determined from the requirement that the frequency 

bandwidth of the basis function should exceed that of the impulse and response 

signal. The shift must correspond approximately to half of the width of the pulse 

Doyle et al [33].   

Although wavelet deconvolution helps to reduce the condition number of the 

transfer matrix, combining the wavelet deconvolution with iterative LSE method can 

be more robust towards Gaussian noise. Using multiple sensors is also necessary to 

improve the stability and accuracy for the estimation.  

3.4.2.  Simulation of sparse representation using different wavelet 

dictionaries 

In order to determine the water drop impact force with a sharp edge at the 

initial impact phase using low SNR response signal (in Chapter 6 it will be shown 

that this is particularly important for 2 mm drops impacting at a drop velocity 

2.57 m/s), sparse representation algorithms have been utilized in this section. 

Recently the sparsity representation method with dictionaries based on l1 norm [92, 

97, 98] regularization has been investigated on force time history estimation. It has 

been concluded that using the l1 norm regularization can lead to more robust 

estimation results than using l2 norm regularization especially for low SNR response. 

However, the l1 norm regularization can lead to an underestimate solution of the 

force. Existing applications of sparse representation for force time history estimation 

are based on the l1 norm regularization in literatures; hence this thesis also applies 

non-convex optimization such as l0 norm, l1/2 norm regularizations. The algorithms 

for different regularization methods using different orthogonal wavelet basis function 

(sym2, coif1 and db2) will also be shown in this section.  

3.4.3.1 Selection of the optimal wavelet dictionary 

Selecting an effective dictionary can affect the accuracy of the reconstructed 

force. In order to select an optimal dictionary, the classic result on linear 

approximation of random vector process is reviewed first. Consider a vector process 

𝑿 = [𝑿0, 𝑿1…𝑿𝑁−1]
𝑇 , where 𝑿  is an independent identically distributed (IID) 

process with zero mean 𝐸[𝑿𝑖] = 0, and the covariance 𝐸[𝑿 ∙ 𝑿𝑇] = 𝑹𝑿 , assumed 

that 𝑹𝑿 is known as a prior.  
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Consider now the linear representation of the vector process using an 

orthonormal basis or dictionary atoms, {𝒘0, 𝒘1…𝒘𝑀−1},𝑀 < 𝑁 , therefore the 

approximation of 𝑿 can be given by [121]: 

where <∙> denotes the inner product of two vectors. The approximation error 

can then be written as [121]:  

Therefore, the mean square error can be expressed as: 

Given the covariance matrix of the vector process, the best basis can be chosen 

as the set of eigenvectors of 𝐑𝑋  ordered with decreasing eigenvalues [121]. The 

geometric intuition behind this result is that the eigenvectors are the principal axes of 

the N-dimensional distribution and the best M-dimensional subspace gathering most 

energy corresponds to the principal axes with largest eigenvalues [121].  

Since the prior knowledge of the covariance matrix of the force is generally 

unknown, it is necessary to propose another method to select the optimal basis. A 

common dictionary optimization method is dictionary learning methods that is 

motivated from sparse representation, such as K-SVD algorithm [104]. However, 

unlike the application in compressive sensing of minimizing the number of atoms so 

that the data can be most effectively represented, the impact force identification 

concerns the estimation stability and accuracy. Another method to choose the 

optimal base function is proposed by Coifman and Wickerhauser [122], using an 

entropy-based algorithm to adaptively pick a single orthogonal best-basis from many 

bases function. However, when the signal is composed of a moderate number of 

highly non-orthogonal components, the method may not deliver sparse 

representations [123].  

If there is any prior information or experience of the force time history shape, 

this can be used to select the dictionary. For example, Pan et al [111] used the over-

complete dictionary that consist both of the discrete trigonometric functions and 

 𝑿̂𝑀 = ∑ < 𝒘𝑚, 𝑿 > 𝒘𝑚

𝑀−1

𝑚=0

 3-24 

 ‖𝑿 − 𝑿̂‖
2

2
= ∑ 𝒘𝑚

𝑇 𝑿𝑿𝑇𝒘𝑚

𝑁−1

𝑚=𝑀
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 𝐸 [‖𝑿 − 𝑿̂‖
2
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] = ∑ 𝒘𝑚
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𝑚=𝑀

= ∑ 𝒘𝑚
𝑇 𝐑𝑋𝒘𝑚
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discrete rectangular functions so that the main features of the moving loads on the 

bridge are closely fitted. This can be understood intuitively by selecting the 

dictionary atoms that have a similar shape to the objective force curve. Furthermore, 

the optimal basis should have the minimum direction difference to the principal axes 

of the N-dimensional vector. Because cross correlation coefficient can be interpreted 

as the cosine function of the angle between the vectors, therefore, it is reasonable to 

choose this parameter to select the optimum dictionary. For example, Singh et al 

[124] used the maximum cross correlation between an ECG signal and the selected 

wavelet filter to determine the selection of the optimal wavelet.  

In this section, the estimated impact force from Petersson’s [4] paraboloidal drop 

shape model of 4.5mm diameter drop at terminal velocity is used to calculate the 

correlation with the wavelet dictionaries. In this section, the correlation coefficient 

(using Eq. 3-22) between the estimated force and the wavelet reconstructed force 

with the largest 15 wavelet decomposition coefficients was calculated using 

orthogonal wavelet basis functions in Matlab.  As an illustration, Figure 3.16 shows 

the first order coif wavelet function, coif1 which is orthogonal with compact support.  

-0.5

0.15

0.1

0

0.05

0.5

25
20

15
100 5

0

1

 

Figure 3.16. First order basis functions of coif1  

In Figure 3.17(b), the additional information of the reconstruction error (Eq. 

3-23) is presented. The correlation coefficient achieves the maximum value using the 

first order of coif wavelet function, which corresponds to the minimum value of the 

reconstruction error. As shown in Figure 3.17, using db2 or sym2 wavelet gives 

suitable representation. Therefore, in this section, these three wavelet filters have 
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been used in simulation to assess the validity of the approach for the optimal wavelet 

function selection.  
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Figure 3.17. Cross correlation coefficient a) and the reconstruction error b) between the 

estimated impact force and the wavelet reconstructed force with the largest 15 wavelet 

coefficients.   

 

3.4.3.2 Algorithms used for sparse representation 

The algorithms of the sparse representation used in this thesis are introduced in 

this section. Since the impact force is of finite non-zero duration, which can be well 

fitted with wavelet dictionary, using the orthogonal wavelet can improve the sparsity 

than Fourier transform or the Dirac basis. In this section, the algorithms of SpaRSA 

(for l1-norm regularization), IHT (for l0-norm regularization), and half-thresholding 

(for l1/2-norm regularization) with the wavelet dictionary representation have been 

summarised in Table 3-2, Table 3-3 and Table 3-4.  
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Table 3-2. Algorithm of Sparse Reconstruction by Separable Approximation 

(SpaRSA [108]) for l1-norm regularization   

 

Table 3-3. Iterative Hard Thresholding Algorithm (IHT [118]) for l0-norm 

regularization .  

 

 

 

Task: To solve the problem 𝒇̂ = argmin
1

2
‖𝐡𝐖𝜶− 𝒆‖2

2 + 𝜆‖𝜶‖1 

Input: Response signal 𝒆, transfer matrix 𝐡, wavelet dictionary 𝐖, parameter 

𝜆 = 0.001 

Initialization: k=1, 𝐀 = 𝐡𝐖, 𝒆1 = 𝒆, 𝜏1𝐈 = 𝐀𝑇𝐀, tolerance ε = 10−5 

Iteration: 1. 𝜆𝑘 = max{0.2‖𝐀𝑇𝒆𝑘‖∞, 𝜆}. 

        2. Exploit soft shrinkage: 𝜶𝑘+1 = 𝑠𝑜𝑓𝑡(𝜶𝑘 − 𝐀
𝑇(𝐀𝜶𝑘 − 𝒆)/𝜏𝑘 , 𝜆/𝜏𝑘 )  

(where soft(𝑠𝑖, 𝜆) = sign(𝑠𝑖)max{|𝑠𝑖| − 𝜆, 0}) 

        3. Update the step size: 𝜏𝑘 =
(𝜶𝑘+1−𝜶𝑘)

𝑇(𝛁𝝑( 𝜶𝑘+1)−𝛁𝝑( 𝜶𝑘))

(𝜶𝑘+𝟏−𝜶𝑘)
𝑇(𝜶𝑘+1−𝜶𝑘)

 

        4. If 
‖𝜶𝒌+𝟏−𝜶𝒌‖

𝜶𝒌
≤ ε, go to step 5. Otherwise, return to step 2 

        5. 𝒆𝑘+1 = 𝒆 − 𝐀𝜶𝑘+1 

        6. If 𝜆𝑘 = 𝜆, stop; Otherwise k=k+1, and return to step 1. 

Output: 𝒇̂ = 𝐖𝜶𝑘 

Task: To solve the problem 𝒇̂ = argmin
1

2
‖𝐡𝐖𝜶− 𝒆‖2

2 + 𝜆‖𝜶‖0 

Input: Response signal 𝒆, transfer matrix 𝐡 , wavelet dictionary 𝐖 , step size 

𝜇 = 0.001, sparse level K 

Initialization: k=1, 𝐀 = 𝐡𝐖, 𝒆0 = 𝒆, 𝐈/τ0 = 𝐀
𝑇𝐀, tolerance ε = 10−5 

While not converged do: 

1. 𝜶𝑘+1 = ℎ𝑎𝑟𝑑(𝜶𝑘 + 𝐀
𝑇(𝒆 − 𝐀𝜶𝑘)) 

        where hard(x) is the non-linear operator that sets all but the largest (in 

magnitude) K elements of x to zero 

        2. k=k+1 

Output: 𝒇̂ = 𝐖𝜶𝑘 
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Table 3-4. Half Proximal Thresholding Algorithm ([116, 117]). 

 

3.4.3.3 Comparison between different regularization methods  

This section compares three different sparse representation methods with l2 norm 

regularization in simulation. The transfer matrix is obtained based on a modal 

summation [7] for a simply supported glass plate (the properties are shown in ) using 

10000 mode shapes between 10 to 10k Hz. An idealized transient force is used to 

simulate the drop impact excitation from a paraboloidal drop shape model [4] with a 

second order low-pass Butterworth filter (cut-off at 10k Hz).  

As shown in Figure 3.18, for high SNR response signal (30 dB SNR), sparse 

representation (with l1-norm, l0-norm and l1/2-norm) methods can lead to more 

accurate results than l2-norm regularization, especially at the sharp rising edge. 

Additionally, from l2-norm regularization method, the estimation result contains 

ringing after the force pulse whereas the sparse representation results are zero. This 

is because the penalty function of l1-norm, l0-norm and l1/2-norm in Eq. 3-20 induce 

sparsity into the solution which concentrates the energy of the time-dependent force 

within a short period. However, the l2-norm regularization under the Gaussian 

Task: To solve the problem 𝒇̂ = argmin
1

2
‖𝐡𝐖𝜶− 𝒆‖2

2 + 𝜆‖𝜶‖1/2
1/2

 

Input: Response signal 𝒆,  transfer matrix 𝐡 , wavelet dictionary 𝐖 , parameter 

𝜆 = 0.001, sparse level K 

Initialization: k=1, 𝐀 = 𝐡𝐖, ε = 10−2, 𝜏 =
1−ε

‖𝐀‖2
 

While not converged do:  

    1. 𝜽(𝜶𝑘) = 𝜶𝑘 − 𝜏𝐀
𝑻(𝐀𝜶𝑘 − 𝒆) 

    2. 𝜆𝑘 =
√96

9τ
|[𝜽(𝜶𝑘)]|

3

2   

    3. The representation solution is solved by 𝜶𝑘+1 = ℎ𝑎𝑙𝑓( 𝜽(𝜶𝑘)) , where  

ℎ𝑎𝑙𝑓(𝑠𝑖) = {
 𝑔
𝜆,
1

2

(𝑠𝑖), if |𝑠𝑖| >
√54
3

4
(𝜆𝜏)

2

3

0,              otherwise              
,     𝑔

𝜆,
1

2

(𝑠𝑖) =
2

3
𝑠𝑖 [1 + cos (

2𝜋

3
−
2

3
𝑔𝜆(𝑠𝑖))] , 

 𝑔𝜆(𝑠𝑖) = arccos (
𝜆

8
(
|𝑠𝑖|

3
)
−
3

2
) 

        4. k=k+1 

Output: 𝒇̂ = 𝐖𝜶𝑘 
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distribution assumption of the force has a smoothing effect over time. This smooth 

effect results in the underestimate of the force and the ringing before and after the 

force pulse. 
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Figure 3.18. Representation of the impact force using different regularization algorithms 

with the wavelet dictionaries (a) sym2, b) coif1, c) db2 when the SNR is 30 dB.  
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In Figure 3.19, the correlation coefficient (between the idealized transient force 

and the estimated force) and the estimation error is presented. Compared to l1-norm 

regularization, l0 –norm and l1/2-norm regularization have lower estimation error, 

although the correlation coefficient of l0 -norm using the db2 dictionary is slightly 

higher than the other two sparse representation methods. The reason that the non-

convex regularization (l1/2-norm, and l0 –norm regularization) gives better estimates 

is possibly because the iteration of these algorithms is stopped when the objective 

function starts to increase so that the solution is stable.  
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Figure 3.19. Correlation coefficient and estimation error between the idealised transient 

force and the represented force using different regularization algorithms with the wavelet 

dictionaries a) sym2, b) coif1, c) db2 when the SNR is 30 dB. 
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Figure 3.20. Representation of the impact force using different regularization algorithms 

with the wavelet dictionaries (a) sym2, b) coif1, c) db2 when the SNR is 10 dB. 

When the noise becomes more significant with 10dB SNR, the result from the l2 

–norm regularization underestimates the force peak because the regularization 
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parameter was chosen by the L-curve method to compromise the trade-off of 

suppressing noise. However, sparse representation is much more robust towards 

noise, and the coif1 wavelet basis function can estimate the impact force shape with 

the lower error, which confirms its selection as an optimal wavelet. 
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Figure 3.21. Correlation coefficient and the estimation error between the idealised transient  

force and the represented force using different regularization algorithms with the wavelet 

dictionaries (a) sym2, b) coif1, c) db2 when the SNR is 10 dB. 

 

3.4.3.4 Summary 

In this section, the simulation of the sparse representation with three dictionaries 

has been implemented. The correlation coefficient between the idealized time-

dependent force and the reconstructed force using the largest 15 wavelet 



 

62 

 

decomposition coefficients has been proposed to select the optimal wavelet basis 

function for force identification, and this has been tested with an idealised 

paraboloidal drop shape model. The estimation results show that with low or high 

SNR response signal, the sparse representation estimation with l0-, l1- and l1/2-norm 

regularization using dictionaries is more robust towards noise and edge-preservation 

of a transient than using l2 norm regularization. Compared with the l1- and l1/2-norm 

regularization, the l0-norm regularization has closer agreement with the idealized 

force curve. 

3.5.  Conclusions 

This chapter describes the inverse methods for force identification used in this 

thesis. Since the conventional time domain method is computationally inefficient and 

the frequency domain method has leakage problems, the time domain method based 

on wavelet theory has been investigated.  

Doyle’s approach to wavelet deconvolution has been validated using simulation. 

The optimal sensing positions are assessed using the condition number of the transfer 

matrix which indicates that response positions away from the excitation position lead 

to similar condition numbers. Three random selected positions will be used in the 

raindrop impact force experiment. Selecting the optimal scaling factor and the 

shifting factor of the wavelet basis function can significantly improve the ill-

conditioned problem of the transfer matrix and provide superior solution than the 

Tikhonov method. Doyle’s wavelet method incorporating the LSQR algorithm will 

be used in the water drop impact force identification experiment.  

Sparse representation methods using l0-, l1- and l1/2-norm regularization with 

dictionaries have been investigated in simulation, which shows more accurate and 

robust estimation results compared with the l2-norm regularization methods 

particularly when the response signal has low SNR. Furthermore, l0-norm 

regularization gives the closest estimate for the idealized time-dependent force curve 

compared with l1- and l1/2-norm regularization. Therefore, the l0-norm regularization 

will be applied in the water drop impact force experiments for 2mm drops impacting 

at low velocity (2.57 m/s) where the SNR is the lowest. In this chapter, a method of 

maximizing the correlation coefficient has been proposed for the selection of the 

optimal wavelet function; hence the optimal wavelet basis function coif1 will be used 

for the experimental force reconstruction.  
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4.  Prediction of sound radiation from point-excited plates 

4.1.  Introduction 

In this thesis, the prediction of sound radiation from point excited plates is 

considered using SEA for an isotropic, homogeneous plate and a more flexible model, 

TMM that can be used for a multilayer plate.  

The prediction of vibration and sound radiation using SEA is described in 

Section 4.2, and in Section 4.3 using the TMM method for the specific multilayer 

plate of a plate-foam-plate structure.  

The calculation of radiated sound power from infinite plates is described in 

Section 4.4, and from finite plates in Section 4.5, where the travelling wave method 

has been used to obtain an order reduced integral that can improve computational 

efficiency.  

4.2.  SEA for vibroacoustics prediction of homogeneous isotropic plates 

SEA was introduced in the 1960s and is a framework of analysis for predicting 

the transmission of sound and vibration between coupled spaces and structures [49]. 

SEA uses a statistical approach based on temporal and spatial averages and therefore 

it doesn’t require detailed geometrical information. This approach is suitable to 

multi-modal systems, where the eigen-frequencies and eigen-functions can be 

sensitive to small perturbations in the structural geometry and material properties, 

but there is uncertainty in this information at the design stage. SEA is based on 

frequency domain analysis using spatial averaged energy as the primary variable, 

which is convenient for the analysis of temporally and spatially random excitation 

points on plates, such as with rain noise problems. In this thesis, a two-subsystem 

SEA model is required for structural vibration and sound radiation prediction as 

shown in Figure 4.1 for a plate excited by rainfall that radiates into an enclosed 

volume of air.  
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Subsystem 1

Win1

W12

W21
Subsystem 2

Wdiss1 Wdiss2

 

Figure 4.1. Two subsystem SEA model. 

 

SEA requires knowledge of the power input into the subsystems, and the fraction 

of energy transferred per radian cycle in the form of loss factors. From conservation 

of energy, the power balance equation for subsystems 1 and 2 is [49]: 

where 𝐸1 and 𝐸2 are the energies of subsystems 1 and 2, respectively. There are 

three types of loss factors to be defined: total loss factors for each subsystem (i.e. 

𝜂1 and 𝜂2), coupling loss factors between subsystems (i.e. 𝜂12 and 𝜂21), and internal 

loss factors for each subsystem (i.e. 𝜂11 and 𝜂22). Internal loss factors give rise to the 

dissipated power as shown in Figure 4.1  (i.e. 𝑊diss1 and 𝑊diss2). 

The power input 𝑊in1 represents the power injection from continuous rainfall 

excitation into subsystem 1 which represents the plate where subsystem 2 represents 

the enclosed volume of air into which the plate radiates. Equations 4-1 and 4-2 can 

be solved to determine the energy of the plate and room to give the vibration and 

sound pressure respectively.  

Assuming that the energy returning from the air volume to the vibrating structure 

is negligible  𝜔𝜂21𝐸2 = 0, and the total loss factor (𝜂1 = 𝜂11 + 𝜂12) of the plate can 

be measured, then Eq. 4-1 can be rewritten as: 

where  

where 〈𝑣2〉 denotes the mean-square velocity of the plate. Therefore, the radiated 

sound power,  𝑊12 is given by:  

 𝑊in1 + 𝜔𝜂21𝐸2 = 𝜔𝜂11𝐸1 + 𝜔𝜂12𝐸1 4-1 

 𝜔𝜂12𝐸1 = 𝜔𝜂22𝐸2 + 𝜔𝜂21𝐸2 4-2 

 𝑊in1 = 𝜔𝜂1𝐸1 4-3 

 𝐸1 = 𝑚〈𝑣
2〉  4-4 

 𝑊12 = 𝜔𝜂12𝐸1 = 𝜂12
𝑊in1

𝜂1
 4-5 
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Note that Eq. 4-5 for the radiated sound power can be derived without using 

SEA theory, since the energy returning from subsystem 2 has been ignored. The 

impedance of the source can affect the power input to the plate [7]. For excitation by 

artificial or natural rainfall, the power input into a plate with driving-point impedance 

𝑍dp is calculated by [4]: 

where 𝑁(𝐷) is the number of drops that fall on a unit area per unit time (in /m
2
s) 

given by Eq. 2-3 for natural rainfall, S is area of the plate surface, |𝐹(𝜔)|2 is the 

auto-spectrum of the single raindrop impact, 𝑍f is the flow impedance of the drop [4]: 

where𝜌w is the density of water, 𝑟 is the radius of the equivalent spherical drop 

and  𝑣d,T is the terminal velocity of the raindrops.  

For a thin plate of infinite extent, the driving-point impedance for excitation of 

bending waves is given by [7]: 

where 𝑐L is the longitudinal wave speed of the plate, 𝜌 is the density of the plate 

and ℎ is the thickness of the plate. 

The total loss factor of a plate 𝜂1 is usually obtained from measurement, and the 

coupling loss factor from a plate to the surrounding fluid on one side can be 

predicted by the radiation efficiency. The radiation efficiency, 𝜎, is defined as the 

ratio of the radiated acoustic power from the plate to that of a large baffled piston of 

radius a vibrating with the same average mean-square velocity where 𝑘0𝑎 ≫ 1 [48]. 

where 𝑊12 is the radiated sound power, 〈𝑣1
2〉 is the mean square velocity of plate 

subsystem 1, 𝜌0 is the density of the air, 𝑐0 is the phase velocity of the fluid, S is the 

surface area of the plate. Combining Eq. 4-2 and Eq. 4-4 and Eq. 4-9 gives the 

relation between the coupling loss factor and the radiation efficiency [7]:  

where 𝜌s is the surface density of the plate.  

 𝑊in1 =
𝑁(𝐷)𝑆|𝐹(𝜔)|2

𝑍dp + 𝑍f
 4-6 

 𝑍f = 𝜌w𝜋𝑟
2𝑣d,T 4-7 

 𝑍dp = 2.3𝜌𝑐Lℎ
2 4-8 

𝜎 =
𝑊12

𝜌0𝑐0𝑆〈𝑣1
2〉

 4-9 

 𝜂12 =
𝜌0𝑐0𝜎

𝜔𝜌s
 4-10 
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Maidanik [125] proposed formulae for the calculation of modal radiation 

resistance as a function of frequency and extended this to the practical situation of 

multi-modal vibration. In contrast, Wallace [126] analysed the radiation efficiency 

for individual modes of a rectangular plate based on the far-field acoustic intensity 

using Rayleigh integral. Gomperts [127, 128] investigated the boundary conditions 

effects on the modal radiation efficiency of a rectangular plate.  

The single mode radiation efficiency is not relevant when many modes of a palte 

are excited simultaneously, for which a frequency-averaged radiation efficiency [129, 

130] is appropriate. Leppington et al [129, 130] determined a frequency-average 

radiation efficiency for a rectangular plate which is based on high modal density and 

continuous wavenumber assumption. The radiation efficiency from Leppington’s 

asymptotic formula is given by [7, 129, 130]: 

where 𝐶BC is a constant for the plate boundary conditions (𝐶BC = 1 for simply 

supported boundaries, 𝐶BC = 2 for clamped boundaries), 𝐶OB  is a constant for the 

orientation of the baffle that surrounds the edges of the plate (𝐶OB = 1 when the 

plate lies within the plate of an infinite rigid baffle, 𝐶OB = 2 when the rigid baffles 

along the plate perimeter are perpendicular to the plate surface), 𝜇 = 𝑓𝑐/𝑓, and L1 

and L2 are the smaller and larger rectangular plate dimensions respectively.  

Note that the cross-modal coupling should be taken in to account for the radiated 

power if a particular force excitation position is considered [131]. As this thesis 

focuses on the sound radiation due to point force excitation over an area, this 

averages the cross-modal coupling to zero [132]. 

For multilayer structures, SEA models are generally based on calculating an 

equivalent damping to account for the noise control treatment [50, 51]. This method 

includes the mass effect of the whole structure via a smeared added mass by 

assuming that the layers are homogeneous [51]. However, the effects of the stiffness 

are usually neglected which can cause prediction errors at low frequencies [51]. An 

alternative method, the Transfer Matrix method (TMM) is better suited to sound 

radiation analysis for multilayer structures [50, 51]. Similar to SEA, TMM can also 

𝜎 =

{
  
 

  
 (0.5 −

0.15𝐿1
𝐿2

)√𝑘𝐿1                                                                             𝑓 = 𝑓𝑐

(𝐿1 + 𝐿2)

𝜋𝑆𝑘𝜇√𝜇2 − 1
[ln (

𝜇 + 1

𝜇 − 1
) +

2𝜇

𝜇2 − 1
] [𝐶BC𝐶OB − 𝜇

−8(𝐶BC𝐶OB − 1)]    𝑓 < 𝑓𝑐

1

√1 − 𝜇2
                                                                                                      𝑓 > 𝑓𝑐

 4-11 
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take advantage of the spatial and temporal incoherence of rainfall excitation, which 

can be analysed conveniently in the frequency and wavenumber domain. 

Note that SEA can also incorporate TMM as a hybrid method for vibroacoustic 

prediction [133, 134]. However, this thesis focuses on prediction of the radiated 

sound power; therefore it is feasible to consider TMM rather than hybrid SEA-TMM, 

although it might be useful for sound radiation into car cabins due to low modal 

densities in these small acoustic volumes.  

4.3.  TMM for a plate-foam-plate structure 

TMM allows calculation of sound propagation across a stratified structure such 

as a multilayer plate. Each layer of the stratified media is homogeneous, isotropic 

and laterally infinite. In 1977, Folds and Loggins [135] modelled the plane 

ultrasound waves propagation in layers of fluid and elastic solid material; this 

appears to be one of the first applications of TMM to a sound propagation problem in 

the literature. Brouard et al [136] introduced a more general theory of TMM for 

modelling acoustic fields in stratified media with not only fluid and elastic solid 

layers but also porous materials. In Allard and Atalla’s book [50], a detailed and 

complete framework of TMM method for different multilayer media is provided 

under acoustic and mechanical excitation.  

As the multilayer structure used in this thesis is a plate-foam-plate (see Figure 

4.2), only the vibration and sound propagation theory from Allard and Atalla [50] for 

thin elastic plates and a limp porous material representing the foam are shown here. 

Assuming excitation of plate 1 with distributed pressure p1, the aim is to calculate 

plate velocity v4 from which the radiated sound power can be calculated. 
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Figure 4.2. Diagram of the multilayer plate indicating the notation of the pressure and 

velocity at the boundary of each layer. 

 

4.3.1.  Modelling for the thin elastic plate 

Assuming thin plate bending wave theory, the normal velocity of the plate on 

both sides is assumed to be the same [50]. Hence taking plate 1 as an example: 

 

where [𝑇p1] = [
1 −𝑍s1
0 1

] and 𝑍s1 = 𝑖𝜔𝜌s1(1 −
𝐷1𝑘f

4

𝜔2𝜌s1
), 𝜌s1 is the surface density of 

plate 1, 𝐷1  is the bending stiffness of plate 1, and 𝑘f  is the wavenumber of the 

bending waves in plate 1.  

4.3.2.  Modelling the limp porous material 

A model for the limp porous material can be derived from Biot theory assuming 

that the stiffness of the frame is negligible, for which the equivalent fluid equation 

for limp material is given by [50]: 

where 𝜌limp is an equivalent effective density accounting for the inertia of the 

frame, given by [137]: 

[
𝑝1
𝑣1
] = [𝑇p1] [

𝑝2
𝑣2
] = [1 −𝑖𝜔𝜌s1(1 −

𝐷1𝑘f
4

𝜔2𝜌s1
) 

0 1

] [
𝑝2
𝑣2
] 4-12 

∆𝑝 +
𝜌limp

𝐾eq
𝜔2𝑝 = 0 4-13 
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where  

where 𝜙 is the porosity,  𝜌𝑙 is the density of the material, 𝜌0 is the density of air, 

and 𝜌eq is given by [50]:  

where 

and  

where σ0 is the flow resistivity of the foam, 𝑞0 = ς/σ0, with viscosity ς, and 

tortuosity  𝛼∞ , 𝜐 =
𝜍

𝜌0
, 𝜐′ =

𝜐

Pr0
2 

, Pr0  is the Prandtl number. and Λ  is the viscous 

characteristic dimension of the porous material [50].  

𝐾eq in Eq. 4-13 is the effective bulk modulus that can be represented as  𝑅/𝜙2, 

[50] 

with Λ′ representing the thermal characteristic dimension [50].  

The wavenumber in the limp porous material can be obtained from Eq. 4-13 

which is given by [50]:  

 As it is assumed that the stiffness of the limp frame is negligible, the transfer 

matrix of the limp porous layer is given by [50]: 

𝜌limp ≈
𝜌t𝜌eq − 𝜌0

2 

𝜌t + 𝜌eq − 2𝜌0
 4-14 

 𝜌t = 𝜌𝑙 + 𝜙𝜌0 4-15 

𝜌eq = [𝜙𝜌0 + 𝜌𝑎 − 𝑖𝜎0𝜙
2
𝐺(𝜔)

𝜔
] /𝜙2 4-16 

𝐺(𝜔) = √1 + (
2𝛼∞𝑞0
𝜙Λ

)
2 𝑖𝜔

𝜐′
 4-17 

𝜌𝑎 =
𝜙2𝜌0𝜐𝐺(𝜔)

𝑖𝜔𝑞0
+ 𝜙𝜌0(𝛼∞ − 1) 4-18 

𝑅 =
𝜙P0

1 −
γ − 1
γα′

 
4-19 

𝛼′ =
8𝜐′

i𝜔𝛬′2
[1 +

𝑖𝜔

𝜐′
(
𝛬′

4
)

2

]

1/2

+ 1 4-20 

𝑘𝑙 = √𝜌limp𝜔2/𝐾eq 4-21 
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Note that the limp foam model is derived from the Biot theory by assuming that 

the bulk stiffness is negligible. Doutres et al [138] proposed a criterion to identify the 

validity of modelling the porous material as limp model. In their research, a new 

parameter Frame Stiffness Influence (FSI) has been proposed to assess the influence 

of the frame-borne wave on the fluid phase displacement, which can be calculated 

from the porous material properties. Comparing the parameter FSI with a critical 

value 0.16 determined by the confidence rate of 95% from 256 simulated porous 

materials [138], the validity of the one-wave limp model can be assessed.  

4.3.3.  Transfer matrix for the plate-foam-plate system under point 

excitation over an area 

The transfer matrix [𝑇] between the input matrix [
𝑝1
𝑣1
], and the output matrix [

𝑝4
𝑣4
] 

in given by [𝑇] = [𝑇p1][𝑇𝑙][𝑇p2]: 

Combining Eq. 4-12 and Eq. 4-22, the components of  [𝑇] are given by [50]: 

𝑇11 = cos(𝑘𝑙ℎ) −
𝑖𝑍s1𝑘𝑙 sin(𝑘𝑙ℎ)

𝜔𝜌𝑙
 

𝑇12 = −𝑍s2 [cos(𝑘𝑙ℎ) −
𝑖𝑍s1𝑘𝑙 sin(𝑘𝑙ℎ)

𝜔𝜌𝑙
] − 𝑍s1 cos(𝑘𝑙ℎ) +

𝑖𝜔𝜌𝑙 sin(𝑘𝑙ℎ)

𝑘𝑙
 

𝑇21 =
𝑖𝑘𝑙 sin(𝑘𝑙ℎ)

𝜔𝜌𝑙
 

With pressure excitation 𝑓(𝑥, 𝑦, 𝑡) on plate 1, its vibration is described by: 

where 𝑤1 is the displacement. Therefore Eq. 4-23 can be rewritten as:  

[𝑇𝑙] =

[
 
 
 cos 𝑘𝑙ℎ 𝑖

𝜔𝜌limp

𝑘𝑙
sin 𝑘𝑙ℎ

𝑖
𝑘𝑙

𝜔𝜌limp
sin 𝑘𝑙ℎ cos 𝑘𝑙ℎ

]
 
 
 

 4-22 

[
𝑝1
𝑣1
] = [𝑇p1][𝑇𝑙][𝑇p2] [

𝑝4
𝑣4
] 4-23 

𝑇22 = cos(𝑘𝑙ℎ) −
𝑖𝑍s2𝑘𝑙 sin(𝑘𝑙ℎ)

𝜔𝜌𝑙
 

 
4-24 

𝐷1∇
4𝑤1 + 𝜌𝑠1

𝜕2𝑤1
𝜕𝑡2

= 𝑓(𝑥, 𝑦, 𝑡)  + 𝑝1 − 𝑝2 4-25 

[
𝑓 + 𝑝1
𝑣1

] = [𝑇] [
𝑝4
𝑣4
] 4-26 
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4.4.  Calculation of radiated sound power from infinite plates  

The radiation efficiency of an infinite plate on the emission side, 𝜎E, and the 

same as on the receiver side is 𝜎R, which is given by: 

for 𝑓 > 𝑓𝑐, where 𝑘0 = 𝜔/𝑐0. The wavenumber of the plate can be written in terms 

of the x and y wavenumber components 𝑘𝑥 and 𝑘𝑦:  

From Eq. 4-26 and 4-27, the velocity on the receiver side of the multilayer structure 

can be obtained: 

where: 

Using wave-based approach [51], the spatial domain load can be represented in 

wavenumber domain using a Fourier integral transform from: 

In order to estimate the radiated sound power from point excitation over an 

area, the input pressure or the impact force distribution is assumed as temporally 

random and spatially uncorrelated. Here it is assumed that the applied force position 

randomly varies over time so that spatial-temporal coupling can be ignored, then the 

force can be written as [139]:  

where 𝑓s(𝑥, 𝑦) and 𝑓t(𝑡) denote the spatial and temporal components of force 

loading respectively. The second assumption of the spatially uncorrelated force can 

be expressed as: 

where (𝑥0, 𝑦0) is the excitation position. Hence, the auto-spectrum of the point 

force excitation can be obtained as: 

𝜎E = 𝜎R =
𝑝1

−𝜌0𝑐0𝑣1
=

𝑝4
𝜌0𝑐0𝑣4

=
𝑘0

√𝑘0
2 − 𝑘f

2

 
4-27 

𝑘f = √𝑘𝑥2 + 𝑘𝑦2 4-28 

𝑣4 =
𝑓

𝑍TMM
 4-29 

𝑍TMM = 𝑇11𝜌0𝑐0𝜎R + 𝑇12 + 𝑇21𝜌0
2𝑐0
2𝜎E𝜎R + 𝑇22𝜌0𝑐0𝜎E 4-30 

𝐹(𝑘𝑥, 𝑘𝑦, 𝜔) = ∫ ∫ 𝑓(𝑥, 𝑦, 𝜔)

+∞

−∞

+∞

−∞

exp[−𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦)]d𝑥d𝑦 4-31 

𝑓(𝑥, 𝑦, 𝑡) = 𝑓s(𝑥, 𝑦)𝑓t(𝑡) 4-32 

𝑓s(𝑥, 𝑦) = 𝛿(𝑥 − 𝑥0)𝛿(𝑦 − 𝑦0) 4-33 

|𝐹(𝑘𝑥, 𝑘𝑦, 𝜔)|
2
= 𝑁(𝐷)𝑆|𝐹(𝜔)|2 4-34 
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where 𝑁(𝐷) is the number of raindrops per second per unit area and |𝐹(𝜔)|2 is 

the auto-spectrum of the single raindrop impact.  

According to Parseval’s theorem, the mean-square velocity of the plate 1 in the 

spatial domain is equal to the wavenumber domain average square 

velocity 𝑉1(𝑘𝑥, 𝑘𝑦), which is given by [50]:  

The radiated sound power is given by [50]: 

Substituting Eqs.4-30, 4-34 and 4-35 into Eq. 4-36, the radiated sound power of 

the plate- foam-plate structure under point force excitation can be obtained.  

The Transfer Matrix Method (TMM) is extensively used in industry to predict 

the structural borne or airborne response of a structure with attached noise control 

layers in both single- and double-walls [50, 51, 136]. However, the assumption of an 

infinite plate can lead to considerable errors in prediction at low- and mid- 

frequencies [50] because below the critical frequency, the influence of the edge 

diffraction on the sound radiation is important [52].  

4.5.  Calculation of radiated sound power from finite plates  

In order to correct the radiated sound power from a finite size plate, the radiation 

efficiency from Eq. 4-27 is usually modified by an equivalent baffled window. 

Ghinet and Atalla [140] used the travelling plane wave as the basis function to 

predict the radiation efficiency, which can be equivalently expressed as “spatial 

windowing” in the wavenumber domain by Villot et al [52]. However, these 

equations have fourth or even fifth order integrals which require considerable 

computation time. Although Atalla and his colleagues improved the integral 

analytically to reduce the integral order [141], it is still time consuming and the 

equation given in the literature didn’t always converge when used with adaptive 

integral routines. Bonfiglio et al [142] developed the integration based on Ref. [141], 

and assumes the rectangular plate is square to simplify the integration and remove 

the singularities in the equation.  

〈𝑣1
2〉 =

1

8𝜋2𝑆
∫ ∫ |𝑉1(𝑘𝑥, 𝑘𝑦)|

2
d𝑘𝑥d𝑘𝑦

+∞

−∞

+∞

−∞

 4-35 

𝑊12 =
𝜌0𝑐0
8𝜋2𝑆1

∫ ∫
|𝐹(𝑘𝑥, 𝑘𝑦, 𝜔)|

2
𝜎R(𝑘𝑥, 𝑘𝑦, 𝜔)

|𝑍TMM(𝑘𝑥, 𝑘𝑦, 𝜔)|
2 d𝑘𝑥d𝑘𝑦

+∞

−∞

+∞

−∞

 4-36 
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Davy et al [143] rewrites the integral equations for the travelling wave case that 

removes the singularities from the radiation efficiency, however it is still 

computationally costly. They proposed an approximate formula that combines the 

travelling and mode shapes method, which was shown to significantly reduce 

calculation times.  

In this thesis, the travelling wave method from Ghinet and Atalla [140] for a 

rectangular plate is considered. Based on the azimuthally averaged radiation 

impedance equation, the fifth order integration is proposed to be reduced 

significantly into single integral equation without the singularities as given in Ref. 

[141] and without the assumption of using a square plate from Ref. [142].  

4.5.1.  Spatial domain travelling wave method and wavenumber domain 

spatial windowing for radiation efficiency 

In order to calculate the radiation efficiency, there are two commonly used 

methods: integrate the far-field sound power that encloses the plate on a 

hemispherical surface; or integrate the sound power over the surface of the plate 

[132]. The second method is applied in this thesis due to the lower computational 

cost. Furthermore, the second method can provide the complex radiation impedance.  

Considering a baffled plate with dimension Lx by Ly, the radiated pressure over 

the surface of the plate can be given by [50]:  

where 𝑀(𝑥, 𝑦)  and 𝑀0(𝑥0, 𝑦0)  are the coordinates on the plate. The Green 

function is 𝐺(𝑀,𝑀0) = exp(−𝑖𝑘0𝑅) /2𝜋𝑅 , 𝑅 = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 , 𝑘0 =

𝜔/𝑐0and 𝑛  is the outward normal to the radiation surface S that points into the 

receiving domain.  

Let 𝑣 denote the normal surface velocity [50]: 

Therefore the radiated (transmitted) power can be calculated from Eq. 4-37 and 

Eq. 4-38 as given by [50]: 

𝑝rad(𝑀) = −∫
𝜕𝑝(𝑀0)

𝜕𝑛
𝐺(𝑀,𝑀0)𝑑𝑆(𝑀0)

 

𝑠

 4-37 

𝑣 = −
1

𝑖𝜔𝜌0

𝜕𝑝

𝜕𝑛
 4-38 

Wrad =
1

2
𝑅𝑒 [∫𝑝rad(𝑀)𝑣

∗(𝑀)
 

𝑆

d𝑆(𝑀)] 
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Consider a flat in-plane baffled panel that is forced to vibrate with velocity [50]: 

where 𝑘f is the bending wavenumber, 𝜑 is the geometrical angle on the vibrating 

plate as shown in Figure 4.3.  
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Figure 4.3. Geometrical angle of velocity in a) spatial and b) wavenumber domain. 

 

Assuming that |𝑣| is constant over the surface, the radiated sound power can be 

calculated from [50]: 

Therefore the radiation efficiency can be calculated from Eq. 4-9 given by [50]: 

The damping effect is ignored here. It should be noted that even if the damping 

of the plate is assumed to be relatively small, the damping effect cannot be simply 

accounted for by replacing D with 𝐷(1 + 𝑗𝜂)  where 𝜂 is the loss factor. This is 

because there is a conjugate process in Eq. 4-42, which will be discussed in Section 

4.5.3. The radiation efficiency from Eq. 4-42 can be simplified as [140]: 

=
1

2
𝑅𝑒 [∬

𝑖

𝜔𝜌0

𝜕𝑝

𝜕𝑛
(𝑀0)𝐺(𝑀,𝑀0)

𝜕𝑝∗

𝜕𝑛
(𝑀)d𝑆(𝑀0)d𝑆(𝑀)

 

𝑆

] 

=
1

2
𝑅𝑒 [𝑖𝜔𝜌0∫ ∫𝑣(𝑀0)𝐺(𝑀,𝑀0)𝑣

∗(𝑀)d𝑆(𝑀0)d𝑆(𝑀)
 

𝑆

 

𝑆

] 

4-39 

𝑣(𝑥, 𝑦) = |𝑣|exp [−𝑖𝑘f(𝑥 cos𝜑 + 𝑦 sin 𝜑)] 4-40 

Wrad =
|𝑣|2

2
𝑅𝑒 [𝑖𝜔𝜌0∫ ∫

exp[−𝑖𝑘f(𝑥0 cos𝜑 + 𝑦0 sin𝜑)]
exp(−𝑖𝑘0𝑅)

2𝜋𝑅
∙ exp[𝑖𝑘f(𝑥 cos𝜑 + 𝑦 sin𝜑)] d𝑥d𝑦d𝑥0d𝑦0

 

𝑆

 

𝑆

] 4-41 

𝜎 = 𝑅𝑒 [
𝑖𝑘0
𝑆
∫ ∫ exp[−𝑖𝑘f(𝑥0 cos 𝜑 + 𝑦0 sin𝜑)]

 

𝑆

 

𝑆

∙
exp(−𝑖𝑘0𝑅)

2𝜋𝑅
exp[𝑖𝑘f(𝑥 cos 𝜑 + 𝑦 sin 𝜑)] d𝑥d𝑦d𝑥0d𝑦0] 
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where 𝐾(𝑢, 𝑢′) =
exp [𝑖

𝑘0𝐿𝑥
2
√𝑢2+𝑢′

2
/𝑟𝐿
2]

√𝑢2+𝑢′
2
/𝑟𝐿
2

; 𝐹𝑛(𝑢, 𝑢
′) = exp [−𝑖

𝑘f𝐿𝑥

2
(𝑢 cos𝜑 +

𝑢′

𝑟𝐿
sin 𝜑)], where 𝑟𝐿 is defined as the dimensional ratio  𝑟𝐿 = 𝐿𝑥/𝐿𝑦. 

Eq. 4-42 can be implemented in the wavenumber domain, given by [52]. 

where  𝑘r  is the wavenumber variable after Fourier Transform, with the 

associated geometrical angle 𝜙. By assuming that the aspect ratio of the structure  

𝐿𝑥/ 𝐿𝑦 or 𝐿𝑦/ 𝐿𝑥 is less than 1:2, Vigran et al [144] reduced the spatial window to 

one dimension using 𝐿 = √𝐿𝑥𝐿𝑦:  

Bonfiglio et al further investigated the integration in Ref. [142], and presented a 

reduced-order integral formula to predict the radiation efficiency for a square plate: 

where 𝜉1 = tan
−1(√𝑘2/4 − 1) , 𝜉2 = tan−1(2/√𝑘2 − 4) , 𝐶 = 𝑘f𝐿𝑥/2 , and 

𝐼0(·) is the modified Bessel function of the first kind.  

𝜎 = 𝑅𝑒 [
𝑖𝑘0
4𝜋

𝐿𝑦∫ ∫ (2 − u)(2 − u′)𝐾(𝑢, 𝑢′)𝐹𝑛(𝑢, 𝑢
′)d𝑢d𝑢′

2 

0

2 

0

] 4-43 

𝜎 =
𝐿𝑥𝐿𝑦

2𝜋3
∫ ∫ ∫

1 − cos[(𝑘r cos 𝜙 − 𝑘f cos𝜑)𝐿𝑥]

[(𝑘r cos𝜙 − 𝑘f cos𝜑)𝐿𝑥]2

2𝜋

0

𝑘0

0

2𝜋

0

 

                                     ·
1−cos[(𝑘r sin𝜙−𝑘f sin𝜑)𝐿𝑦]

[(𝑘r sin𝜙−𝑘f sin𝜑)𝐿𝑦]
2 ·

𝑘0𝑘f

√𝑘0
2−𝑘f

2
d𝜙d𝑘rd𝜑    
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𝜎 =
𝐿𝑘0
2𝜋

∫
sin2 [(𝑘r − 𝑘f)

𝐿
2]

[(𝑘r − 𝑘f)
𝐿
2]
2

√𝑘0
2 − 𝑘r2

d𝑘r

𝑘0

0
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𝜎 = 𝑅𝑒{
𝑖𝑘0
4𝜋

𝐿𝑦 {∫ 𝑒𝑖𝑘𝐴
2 

0

(4𝜉 −
𝑘2 cos2 𝜉

2
+ 2𝑘 cos 𝜉 − 2𝑘 sin 𝜉)|

 
𝜋
2

 0
 

· 𝑅𝑒{𝐼0(𝑖𝐶𝑘)}d𝑘

+∫ 𝑒𝑖𝑘𝐴 (4𝜉 −
𝑘2 cos2 𝜉

2
+ 2𝑘 cos 𝜉 − 2𝑘 sin 𝜉)|

 𝜉2

 𝜉1

2√2

2

· 𝑅𝑒{𝐼0(𝑖𝐶𝑘)}d𝑘}} 
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4.5.2.  Order reduction of radiation efficiency integral 

In this section, an order reduction of the finite plate size correction integral is 

proposed for TMM based on the travelling wave method. From Eq. 4-42, the azimuth 

average can be derived: 

Assuming that 𝑥̃ = 𝑥 − 𝑥0 = 𝑅 cos 𝜗 , 𝑦̃ = 𝑦 − 𝑦0 = 𝑅 sin 𝜗, the heading 

averaged geometrical radiation efficiency, 𝜎, is now analytically calculated, instead 

of implementing the spatial integral as in other literature [50, 142, 143]:  

Considering the symmetry of first order Bessel function 𝐽0(𝑘f𝑅) and the Green 

function 𝐺(𝑅), the order of integration in Eq. 4-48 can be reduced: 

Accordingly, Eq. 4-49 can be rewritten as  

𝜎(𝑘f, 𝜑) = 𝑅𝑒 {
𝑖𝑘0
𝑆
∫ ∫𝐺(𝑥, 𝑦; 𝑥0, 𝑦0)

 

𝑆

 

𝑆

∙ exp{𝑖𝑘f[ (𝑥 − 𝑥0) cos𝜑 + (𝑦 − 𝑦0) sin𝜑]} d𝑥d𝑦d𝑥0d𝑦0} 

4-47 

𝜎(𝑘f) = 𝑅𝑒 {
1

2𝜋
∫ 𝜎(𝑘f,𝜑)d𝜑

2𝜋

0

} 

= 𝑅𝑒 {
𝑖𝑘0
2𝜋𝑆

∫ ∫𝐺(𝑅)d𝑥d𝑦d𝑥0d𝑦0

 

𝑆

 

𝑆

∫ exp{𝑖𝑘f[𝑥̃ cos𝜑 + 𝑦̃ sin𝜑]} d𝜑

2𝜋

0

} 

= 𝑅𝑒 {
𝑖𝑘0
2𝜋𝑆

∫ ∫𝐺(𝑅)d𝑥d𝑦d𝑥0d𝑦0

 

𝑆

 

𝑆

∫ exp{𝑖𝑘f[𝑅 cos 𝜗 cos𝜑

2𝜋

0

+ 𝑅 sin 𝜗 sin𝜑]} d𝜑} 

= 𝑅𝑒 {
𝑖𝑘0
2𝜋𝑆

∫ ∫𝐺(𝑅)d𝑥d𝑦d𝑥0d𝑦0

 

𝑆

 

𝑆

∫ exp[𝑖𝑘f𝑅 cos(𝜃 − 𝜑)] d𝜑

2𝜋

0

} 

= 𝑅𝑒 {
𝑖𝑘0
𝑆
∫ ∫𝐽0(𝑘f𝑅)𝐺(𝑅)d𝑥d𝑦d𝑥0d𝑦0

 

𝑆

 

𝑆

} 
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∫ ∫ ∫ ∫ 𝑓(|𝑥 − 𝑥0|, |𝑦 − 𝑦0|)d𝑥d𝑦d𝑥0d𝑦0

𝐿𝑥

0

𝐿𝑦

0

𝐿𝑥

0

𝐿𝑦

0
 
⇔4∫ ∫(𝐿𝑥 − 𝑥̃)(𝐿𝑦

𝐿𝑥

0

𝐿𝑦

0

− 𝑦̃)𝑓(𝑥̃, 𝑦̃)d𝑥̃d𝑦̃ 
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𝜎(𝑘f) = 𝑅𝑒 {
4𝑖𝑘0

𝑆
∫ ∫ (𝐿𝑥 − 𝑥̃)(𝐿𝑦 − 𝑦̃)𝐽0(𝑘f𝑅)𝐺(𝑅)d𝑥̃d𝑦̃

𝐿𝑥

0

𝐿𝑦

0
}  4-50 
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Figure 4.4. Diagram of integration districts. 

 

Without losing the generality, it is assumed that 𝐿𝑥 > 𝐿𝑦 , therefore the 

integration of the rectangular plate can be divided into three parts as shown in Figure 

4.4. Eq. 4-50 is rewritten as:  

This can be simplified to:  

𝜎̅(𝑘f) = 𝑅𝑒{
4𝑖𝑘0
𝑆

∫ ∫(𝐿𝑥 − 𝑅 cos 𝜃) (𝐿𝑦 − 𝑅 sin 𝜃)𝐽0(𝑘f𝑅)𝐺(𝑅)𝑅d𝑅d𝜃

𝜋
2

0

𝐿𝑦

0

 

+
4𝑖𝑘0
𝑆

∫ ∫ (𝐿𝑥 − 𝑅 cos 𝜃) (𝐿𝑦 − 𝑅 sin𝜃)𝐽0(𝑘f𝑅)𝐺(𝑅)𝑅d𝑅d𝜃

arcsin
𝐿𝑦
𝑅

0

𝐿𝑥

𝐿𝑦

 

+
4𝑖𝑘0
𝑆

∫ ∫ (𝐿𝑥 − 𝑅 cos 𝜃) (𝐿𝑦 − 𝑅 sin𝜃)𝐽0(𝑘f𝑅)𝐺(𝑅)𝑅d𝑅d𝜃

arcsin
𝐿𝑦
𝑅

arccos
𝐿𝑥
𝑅

√𝐿𝑥
2+𝐿𝑦

2

𝐿𝑥

}  
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𝜎̅(𝑘f) = 𝑅𝑒{
2𝑖𝑘0
𝜋𝑆

∫ (
𝐿𝑥𝐿𝑦𝜋

2
− 𝐿𝑦𝑅 − 𝐿𝑥𝑅 +

𝑅2

2
) 𝐽0(𝑘f𝑅)𝑒

−𝑖𝑘0𝑅d𝑅

𝐿𝑦

0

 

+
2𝑖𝑘0
𝜋𝑆

∫ (𝐿𝑥𝐿𝑦arcsin
𝐿𝑦

𝑅
 −
𝐿𝑦
2

2
+ 𝐿𝑥√𝑅

2 − 𝐿𝑦
2 − 𝐿𝑥𝑅)𝐽0(𝑘f𝑅)𝑒

−𝑖𝑘0𝑅d𝑅

𝐿𝑥

𝐿𝑦

 

4-52 
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Up until this step, the fifth order integration in Eq. 4-47 has been reduced to a 

single integral. Taking the same assumption from Vigran et al [144] that the aspect 

ratio of the structure  𝐿𝑥/ 𝐿𝑦  or 𝐿𝑦/ 𝐿𝑥  is less than 1:2 and defining 𝐿 = √𝐿𝑥𝐿𝑦 

allows the integral of the radiation efficiency to be simplified into a single integral as: 

Substituting the radiation efficiency in Eq. 4-52 or Eq. 4-53 into Eq. 4-36 gives the 

prediction of finite size corrected sound power from a rectangular plate.  

  

+
2𝑖𝑘0
𝜋𝑆

∫ [𝐿𝑥𝐿𝑦 (arcsin
𝐿𝑦

𝑅
− arccos

𝐿𝑥
𝑅
) + 𝐿𝑦√𝑅

2 − 𝐿𝑥
2 + 𝐿𝑥√𝑅

2 − 𝐿𝑦
2

√𝐿𝑥
2+𝐿𝑦

2

𝐿𝑥

−
𝐿𝑥
2 + 𝐿𝑦

2 + 𝑅2

2
] 𝐽0(𝑘f𝑅)𝑒

−𝑖𝑘0𝑅d𝑅}  

  

𝜎(𝑘f) = 𝑅𝑒 {
4𝑖𝑘0

𝜋𝑆
[∫ (

𝜋

4
𝐿2 − 𝐿𝑅 +

1

4
𝑅2)

𝐿

0
𝐽0(𝑘f𝑅)𝑒

−𝑖𝑘0𝑅d𝑅 +

∫ (
𝜋−2

4
𝐿2 − 𝐿2 arccos

𝐿

𝑅
−
1

4
𝑅2 + 𝐿√𝑅2 − 𝐿2)

√2𝐿

𝐿
𝐽0(𝑘f𝑅)𝑒

−𝑖𝑘0𝑅d𝑅]}  
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Figure 4.5. Comparison between different radiation efficiency calculation methods of a 

6 mm thick glass plate with dimensions 1.5 m×1.25 m. 

 

In the spatial domain integration such as Eq. 4-42 and Eq. 4-43, there is a 

singular point in the Green function term 𝐺(𝑅) =
exp(−𝑖𝑘0𝑅)

2𝜋𝑅
  when  𝑅 = 0. In the 

wavenumber domain calculation using Eq. 4-44 or Eq. 4-45, there is also a singular 

point at 𝑘𝑟 = 𝑘0. Using the adaptive quadrature integration from Matlab, the singular 

point can make the calculation time-consuming and occasionally it does not converge.  

A comparison of the different radiation efficiency calculations is shown in 

Figure 4.5, Atalla’s method overlaps with Eq. 4-52 calculated by adaptive algorithm 

(function integral2 in Matlab). Bonfiglio et al’s method has 2 to 3 dB differences 

from the proposed method using Eq. 4-52, since the plate is not square. Additionally, 

the error can be even more significant when the ratio of the plate dimensions is 

significantly different to one.  

It should be noted that the difference between the travelling wave case (Ghinet 

and Atalla) and the modal approach (Leppington et al ) is ≈ 3 dB from 100 to 1k Hz, 

which corresponds to Davy et al’s conclusion in Ref. [143]. 
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Table 4-1. Computation time using different calculation methods (operated on 

Intel(R) Core (TM) i3-4130 CPU 3.4GHz): 

 

The proposed method gives the same results as Ghinet and Atalla’s method but 

without the computational cost. In addition, compared to Bonfiglio et al or Vigran et 

al ’s methods, Eq. 4-52 is not limited to a square plate.  

4.5.3.  Additional factors that influence the radiation efficiency 

4.5.3.1. Angled baffle correction 

Since the baffle conditions in buildings or car roofs are not usually represented 

by a planar baffle in the same plane as the plate, a correction factor for angled baffle 

conditions can be estimated using the geometry shown in Figure 4.6, where 𝑄ψ in 

Figure 4.7 is the correction factor when 𝑐B ≪ 𝑐0 [145, 146], and 𝜓 is the baffle angle. 

Note that the angled baffle correction factor is based on the assumption that the 

rectangular plate has the same baffle angle at all four edges. In this thesis the baffle 

angle at four edges are not identical, therefore, the averaged 𝜓 is used. 

. 

Lx

x

y

O

Ly

y

y

 

Figure 4.6. Rectangular plate placed in a rigid angled baffle. 

Methods for radiation efficiency calculations 
Computation time (s) 

Ghinet and Atalla [140]  >3600  

Vigran et al [144] 0.79  

Bonfiglio et al [142] 2.12  

Leppington et al [129, 130] 0.008  

Eq. 4-53 for square plate 1.9  

Eq. 4-52 for rectangular plate   2.8  
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Figure 4.7. Radiation efficiency: correction factor for different angles where 𝜋  radian 

represents the in-plane baffle. 

 

4.5.3.2. Plate boundary conditions 

 The effect of boundary conditions effect on the vibro-acoustic response of the 

panel has been investigated using a modal approach [129, 130, 145, 147-149]. The 

correction for simply supported or clamped plate is shown in Eq. 4-11. However, in 

TMM, the finite correction approach using spatial windowing or the travelling wave 

method neglects the modal behaviour of the structure. An alternative method is 

developed by hybrid modal-TMM approach [133, 150, 151], assuming that the 

rectangular plate structure is simply supported, so that the plate radiation efficiency 

can be calculated at each mode using the mode-shape dependent wavenumber (i.e. 

[150]). In this thesis, the plate is assumed as simply supported so that the correction 

term of the boundary condition is one. 

4.5.3.3 Nearfield radiation  

In Section 4.5.1 and Section 4.5.2, the damping is assumed to be negligible. In 

this thesis, the Perspex plate used in the multilayer plate has an internal loss factor 

of ≈ 0.075. For this reason, it may be necessary to consider the effect of damping on 

the radiation efficiency. Kou et al [152] reported that when a plate has 5% to 10% 

loss factor, the radiation efficiency from the undamped plate could increase by 4 to 

6 dB below the critical frequency. However, this was not validated experimentally. 
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Xie et al [132] accounted for the damping effect by using the equivalent 

radiation efficiency from the nearfield of a point force, which can be expressed as:  

Hence the overall radiation efficiency of a damped point-excited plate can be 

given by:  

where 𝜎0 is the radiation efficiency without damping.  
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Figure 4.8. Radiation efficiency of a Perspex plate with or without damping.  

 

In Figure 4.8, the effect of the loss factor on radiation efficiency has been 

assessed using Eq. 4-55. The radiation efficiency without damping effect is 

calculated using the Leppington et al formula [7, 129, 130]  from Eq. 4-11, and the 

travelling wave method using Eq. 4-52. Properties of the Perspex plate are shown in 

Table 5-6; but to assess the effect of damping, different loss factors are used in 

Figure 4.8. The difference between the Leppington et al formula and travelling wave 

method without damping has about 3 dB difference over the frequency range from 50 

to 6k Hz, which is similar to the result for glass plate (refer back to Section 4.5.2). 

However, with the 0.075 loss factor considered, the difference between these two 

methods is <1 dB from 100 to 6k Hz, because the nearfield radiation becomes 

𝜎𝑛 =
4𝑓

𝜋𝑓𝑐
𝜂           for 𝑓 < 𝑓𝑐 4-54 

𝜎 = 𝜎0 + 𝜎𝑛           for 𝑓 < 𝑓𝑐 4-55 
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significant compared with the non-damped radiation efficiency. These results show 

that the loss factor on Perspex is likely to affect the rain noise prediction frequency 

range 20 to 6k Hz; hence it is included in the calculation in Chapter 8. 

4.6.  Conclusions 

In this chapter, the theory of SEA and FTMM has been presented for the 

prediction of radiated sound from plates undergoing point excitation. The theory of a 

two subsystem SEA model has been introduced to predict the sound radiation from a 

homogenous glass plate. However, SEA is less well-suited to accurate modelling of 

multilayer plates. Therefore, the TMM method is used for both a homogeneous glass 

plate and a multilayer plate. To improve computational efficiency, an order reduced 

integral with travelling wave method for finite plate size correction of TMM (FTMM) 

has been proposed to calculate the radiation efficiency. This is significantly more 

efficient than the equation from Ghinet and Atalla [140], and unlike the equations 

from Bonfiglio et al [142] and Vigran et al [144], it applies to non-square plates. 

Using artificial rain excitation on a glass plate and a multilayer plate in Chapter 8 

will allow a comparison of radiation efficiency formulae from FTMM developed in 

this thesis and the formulae from Leppington et al. In order to account for the 

damping effect on radiation efficiency from a Perspex plate, nearfield radiation from 

the point force excitation is considered. Other factors that affect the radiation 

efficiency such as the angled baffle condition are also considered as these are 

necessary to model practical situations.  



 

84 

 

5.  Experimental set-ups and procedures 

5.1.  Introduction 

This chapter describes the experimental set-ups for single drop impact force 

estimation and the vibroacoustic measurement of rectangular plates under rainfall 

excitation.  

Section 5.2 describes the general setup for impact force measurement from a 

single water drop using a force transducer, the wavelet deconvolution method and the 

sparse representation method. This section includes the details on general system 

setup, generation of the water drops, and signal processing in force transducer 

measurement.  

Section 5.3 describes the experimental setups for artificial rain noise 

measurement using a glass plate and a multilayer plate. The properties of these two 

plates are described in Section 5.4.  

Section 5.5 describes measurement of the total loss factor of the glass plate using 

structural reverberation times and Morlet wavelet filter approach.  

5.2.  Experimental setup to measure the impact force for a single water 

drop  

Doyle’s wavelet method [33] and the sparse representation method are used to 

determine the impact force from the response signal on the plate. In the experiment, a 

matrix of transfer accelerances, h, is determined by applying an impact force at the 

excitation position, pe, using a force hammer with a 3 mm diameter steel tip (Brüel & 

Kjær Type 8203). The acceleration at sensing positions, p1(0.41Lx, 0.22Ly), 

p2(0.21Lx, 0.43Ly), and p3(0.36Lx, 0.70Ly)), was measured using three accelerometers 

(Brüel & Kjær Type 4375) fixed with cyanoacrylate glue to the underside of the 

glass plate at randomly located positions. Ten hits were averaged to give each 

transfer accelerance value. As shown in Figure 5.1, the auto-spectrum of the force 

hammer excitation on a glass plate is flat up to 8k Hz which covers the analysed 

frequency range of raindrop impact (up to 6k Hz [7]).  
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Figure 5.1. Force auto-spectrum of the force hammer excitation on a glass plate. 

 

When the drop impacts upon the plate, Eqs. 3-9 and 3-15 are used to calculate 

the time-dependent forces from the acceleration measured at the same three 

accelerometer positions that are used to determine the matrix h. Impacts from eight 

drops are averaged in the time-domain. Note that for the glass with a surface water 

layer, the underside of the glass was used to apply the force and to fix the 

accelerometers. A piezoelectric force transducer (Brüel & Kjær Type 8200) is also 

used to determine the force. 

The experimental set-ups used for force transducer and wavelet measurements 

are shown in Figure 5.2 (a) and Figure 5.2 (b) respectively. In both set-ups the drops 

are released from a burette. Apart from drops travelling at terminal velocity (15 m 

falling height), each drop travels inside rigid plastic tubing (up to 7 m in length, 

200 mm diameter) to minimise any influence from any air movement in the 

laboratory. The lower end of the tubing was 0.4 m above the point of impact and 

was grounded through its supporting connections. The tubing improved the 

repeatability of both the drop velocity on impact and the drop position on impact. It 

was not possible to support a long length of tubing for the 15m height used for 

terminal velocity. 
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Figure 5.2. Measurement set-ups: (a) force transducer disc, (b) glass plate used for wavelet 

deconvolution. 

 

The force transducer set-up (Figure 5.2 (a)) uses a 6 mm thick glass disc fixed 

with cyanoacrylate glue to a 8 mm thick steel disc to ensure that the surface 

condition is identical in terms of wettability and roughness to the wavelet 

deconvolution measurements. The maximum spreading diameter can be predicted by 

a semi-empirical equation provided by [153]: 

where Oh is the Ohnesorge number (= 𝑊𝑒1/2𝑅𝑒−1). Therefore, for D=5 mm, 

𝑣𝑑=7 m/s raindrop, the maximum spreading diameter is calculated to be 34 mm. The 

force transducer disc has a 30mm diameter to minimize the ringing effect and 

support the spreading water flow. The steel disc is screwed to a force transducer 

which is mounted on an isolated 20 kg mass to reduce the background vibration. 

In the experimental set-up for wavelet deconvolution (Figure 5.2 (b)), the drops 

impact upon a plate of 6 mm thick glass (1.2 m × 1 m). Glass typically has an 

internal loss factor of 0.006 [7]; hence, to increase the overall damping of the plate 

(up to a loss factor of 0.05), 50 mm wide strips of 13 mm thick Sylomer SR55 are 

 𝐷max = 0.61 (
𝑊𝑒

𝑂ℎ
)
0.166

 5-1 
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positioned on both sides of the glass around the entire perimeter with the upper layer 

of Sylomer compressed under a static load applied by 13 mm thick steel.  

For the glass with water layers, the following water depths, d, are used: 1, 2, 4, 6, 

8, and 10 mm. The variation of the water depth over the surface is estimated to be at 

most 0.5 mm. For the force transducer measurement, thin plastic tape is wrapped 

around the perimeter of the glass disc to contain the water on top of the disc. Before 

each measurement, all glassware was cleaned and dried.  

During all experiments the temperature was between 21 and 25
o
C, with relative 

humidity between 40 and 60% to minimize their effect on surface tension.   

5.2.1.  Drop generation 

Liquid water drops are formed from reverse osmosis water to minimize the 

effect from dissolved substances on surface tension. A burette produces 4.5 mm 

diameter drops, to which a needle is attached to produce 2 mm diameter drops. To 

ensure repeatable drops of approximately constant weight, Guigon et al [9] used 

relatively slow drop formation times ranging from 10 to 60 s; in this thesis, times 

ranging from 10 to 30 s are used. To achieve a range of drop velocities up to terminal 

velocity, the fall heights were 0.41, 0.81, 1.63, 3.25, 6.5 and 15 m.  

5.2.2.  Drop shape 

For 2mm diameter drops, the drop shape can be assumed to be approximately 

spherical (refer back to Figure 2.6). For artificial “heavy rain” with a drop diameter 

typically assumed to be 5 mm [7], this thesis used 4.5mm artificial drops. These 4.5 

mm drops travelled at 8.2 m/s which is slightly slower than their terminal velocity of 

9.0 m/s. However, assuming that their shape would be similar to those at terminal 

velocity, their shape was estimated by combining two halves of different oblate 

spheroids according to [15].  
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Figure 5.3. Estimated drop shape for a 4.5 mm water drop from [15] at terminal velocity of 

9.0 m/s (white line), and an actual drop captured by high speed camera in the experiments 

with a velocity of 8.2 m/s. 

Figure 5.3 shows a photograph of the 4.5 mm drop captured by high-speed 

camera and the estimated shape by combining two different oblate spheroids; they 

are slightly different which is attributed to the slightly different velocities. The axis 

ratio is defined as the ratio of the largest vertical and horizontal chords of the drop 

commonly used to describe the equilibrium drop shape [15]. According to [19], the 

axis ratio of 2 mm drops at terminal velocity is about 0.91, which is approximately 

spherical. Therefore, in these experiments only the axis ratios for 4.5 mm drops are 

shown in Table 1. For drop heights of 0.41, 0.81 and 1.63 m (corresponding to drop 

velocities of 2.69, 3.77, 5.18 m/s) the drops are approximately spherical (within 

experimental error and variation due to drop oscillations), but the underside of the 

drop becomes increasingly flattened at heights of 3.25 and 6.5 m (corresponding to 

6.73 and 8.20 m/s). 

 

Table 5-1. Axis ratio of 4.5mm drops (average of seven measurements) at different 

drop heights, H. 

 

5.2.3.  Signal capture and signal processing 

Force and acceleration signals are recorded using a Brüel & Kjær PULSE 

Analyser with a sampling rate of 131k Hz, and low-and high-frequency cut-offs of 

 H = 0.41m H = 0.81m H = 1.63m H = 3.25m H = 6.5m 

Mean axis ratio  0.98 0.96 0.95 0.86 0.79 

Standard deviation 0.072 0.034 0.039 0.045 0.064 

Maximum axis ratio 1.08 1 1.06 0.93 0.93 

Minimum axis ratio 0.93 0.93 0.93 0.81 0.73 
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10 and 10k Hz respectively (although the high-frequency cut-off is extended to 

100k Hz in the Nexus when measuring bubble entrainment). The frequency 

resolution is 0.5 Hz for the FFT data after zero-padding in time domain and these 

narrow bands are used for the comparison of measured data. However, to determine 

and assess the empirical formulae the narrow bands are combined into one-third 

octave bands because (a) the smoother curves in the frequency domain are better 

suited to curve fitting and (b) these bands are typically used to assess human 

response to noise.  

For the force transducer, the first structural mode of the transducer-disc system 

causes ringing between 7.5k and 8.5k Hz. Hence a second-order, band-stop 

Butterworth filter (low- and high-frequency cut-off at 7k and 9k Hz respectively) is 

used to remove the ringing without significantly changing the measured force below 

6k Hz.  

Li et al [154] used a low-pass filter to try and remove the ringing signal from the 

transducer disc. However, there are two problems in using the low pass filter with the 

force transducer: 1) The resonance is around 8k Hz, so higher frequency data will be 

lost, and using high order low pass filter can induce the Gibbs phenomenon in the 

filtered signal. 2) A low pass filter could also remove the high frequency components 

from the original force pulse.  

Instead of using low-pass filter, two different notch or band stop filters have 

been tested in this thesis. These have been compared to wavelet deconvolution 

measurements which are assumed to be more accurate. The band stop filter is a 2
nd

 

order Butterworth filter with a cut-off frequency at 𝑓𝑐1 = 6k Hz, and 𝑓𝑐2 = 12k Hz. 

As shown in Figure 5.5, using a band stop filter can reduce the effect of the 

resonance significantly without changing the low frequency components, and high 

frequency components of the force pulse are preserved. An alternative filter is the 

adaptive notch filter. In this thesis, the adaptive notch filter as shown in Figure 5.4 is 

designed using the LMS (Least Mean Square) algorithm [155]. The centre frequency 

is set to 8k Hz which corresponds to the ringing resonance of the steel-glass disc and 

force transducer system. The convergence factor 𝜇 is determined by the notch band 

width 𝜇𝐶2Ω/𝜋 [155], which is equal to 0.18. 
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Figure 5.4. Frequency response function of adaptive notch filter. 

 

As shown in Figure 5.5 (a), the adaptive notch filter in this thesis leads to over 

estimation of the force peak, and in the frequency domain, the adaptive notch filter 

increases the low frequency energy of the impact force pulse by about 1 dB. This is 

possibly because the adaptive filter is slightly slow to adjust the notch to remove the 

ringing signal. The resonance of the transducer disk not only induces a ringing signal 

around 8k Hz, but also increases the mid-frequency energy below the ringing centre 

frequency (3k to 6k Hz). Although this ringing signal can be cancelled by the 

adaptive filter, the stiffness effect cannot be filtered out. Combining an adaptive 

notch filter with a low-pass filter can cope with this stiffness effect as shown in 

Figure 5.5 (b). However the adaptive notch increases the ESD curve by 1dB at low 

frequencies. This is possibly because the ringing signal is so strong that the 

convergence parameter is slightly too large to suppress the resonance.  



 

91 

 

1 1.2 1.4 1.6 1.8 2

Time (ms)

-1

0

1

2

3

4

F
or

c
e

 (
N

)

1 2000 4000 6000 8000 10000 12000 14000

Frequency (Hz)

-120

-110

-100

-90

-80

-70

-60

E
S

D
 (

d
B

 r
e

1
N

2
/

s
)

Unfiltered

10th order low-pass filter (7k Hz)

Adaptive notch filter

Adaptive notch with 1st order low-pass filter (6k Hz)

Band-stop filter

Wavelet measurement

Force transducer measurements:

H
z

 

Figure 5.5. Effect of filtering on force transducer measurement: (left) time domain and 

(right) frequency domain. 

 

The band-stop filter is applied in this thesis as the results are closest to the 

wavelet results up to 6k Hz. The reason for using the second order filter is because 

higher order filter may also reduce the components from the true force signal and 

generate ripples in the force curve. In this thesis, the ripples before the force pulse 

which are caused by the Gibbs phenomenon are zero-padded before carrying out FFT 

analysis.  

5.2.4.  Drop diameter measurement 

The drop diameter is measured using two different approaches: (1) calibrating 

the pixel dimension of a high-speed camera (Lambda Mega Speed HHC X2) to 

capture an image of the drop just before impact, and (2) measuring the total mass of 

200 drops and calculating the diameter. The difference between the drop diameter 

determined using these two methods is <0.05 mm; however, the quoted drop 

diameters in this thesis correspond to those measured with the high-speed camera. 

The measurement of the drop diameter, D, from the high-speed camera uses the 

calculation [61]: 
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where  𝑅ℎ  and  𝑅𝑣  are the horizontal and vertical radius of the droplet 

respectively. 

5.2.5.  Drop velocity measurement 

The drop velocity on impact is measured using a high-speed camera (Lambda 

Mega Speed HHC X2). In order to determine the physical frame dimension and the 

frame number for the velocity calculation, the velocity calculation error is estimated 

based on the empirical velocity equation provided by Range and Feuillebois [61]: 

where H is fall height of the drop, 𝑐𝑓 is the friction coefficient which in this 

formula (for high Reynolds numbers) has been taken to be 𝑐𝑓 = 0.796 [61], and 

𝑅0 is the equivalent radius of the droplet, which can be obtained from the diameter 

using Eq. 5-2. 

The maximum frame rate of the available high-speed camera is 2000 frame/s; 

therefore, the time interval is Δt = 0.5 ms. Considering a drop at the velocity of 

v=9 m/s, the distance, Δs ,that the drop travels during this time interval  is 4.5 mm. 

The distance that the water drop travels in the digital image is measured with 

reference to a ruler in the image. Because of the limitation of ruler’s scale, Δs has an 

error of Δserror=± 0.5 mm, assuming that there are n frames captured for drop velocity 

calculation, which gives the error in the velocity as: 

 Therefore increasing the number of frames can reduce the measurement error. 

However, when the water drop is not at terminal velocity, the drop velocity during 

the n frames cannot be regarded as constant according to Eq. 5-3. The drop velocity 

is related to the falling height, which gives the estimated error in the velocity as: 

 𝐷 = 2(𝑅ℎ
2𝑅𝑣)

1/3
 5-2 

𝑣𝑑 = √
𝑔

𝐴
(1 − exp (−2𝐴𝐻)) 5-3 

𝐴 =
3𝑐𝑓𝜌𝑎𝑖𝑟

8𝜌𝑑𝑟𝑜𝑝𝑅0
 5-4 

 𝑣d,error1 =  Δ𝑠error/ 𝑛Δ𝑡 =  1/n m/s      5-5 

𝑣d,error2 = 𝑣d,measure − 𝑣𝑑 

=
∑ √

𝑔

𝐴
(1−exp(−2𝐴(𝐻−𝑢0𝑖∆𝑡)))

𝑛
𝑖=0

𝑛+1
 − √

𝑔

𝐴
(1 − exp(−2𝐴𝐻))  

5-6 
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Combining Eq. 5-5 and Eq. 5-6, the total error of the measured velocity is 

estimated using: 

In Figure 5.6, the error in the drop velocity measurement from two different 

water drops with different velocities is assessed. As shown in Figure 5.6, the number 

of frames can be chosen to minimize by minimizing the velocity measurement error. 

For the same drop size, higher velocity leads to lower estimation error because the 

acceleration is small when water drops get close to the terminal velocity. 

With the optimal camera frame dimension, the estimated velocity error can be 

limited to 3%.  
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Figure 5.6. Error in the drop velocity measurement for different number of frames. 

 

The drop velocity just before impact is measured using the high-speed camera 

with an average velocity calculated from ten drops at each fall height. The frame rate 

is 2000 frames/s for which the drop velocity on impact is estimated using between 10 

and 20 frames up to the last frame before impact. The total error in the velocity is 

estimated to be <5%. 

The drop velocity results determined for different fall heights are shown in Table 

5-2. These can be compared with the empirical equation from Range and Feuillebois 

[61]. 

𝑣d,error = 𝑣d,error1 + 𝑣d,error2 5-7 
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The friction coefficient used in Eq. 5-4 is given by Serafini’s equation [156] and 

is a function of the Reynolds number but this equation is only valid over a limited 

range where Re<1000; hence for a range of fall heights from 0.25 to 1.75 m, Range 

and Feuillebois [61] adjusted the friction coefficient to fit their measurements with 

3.6 mm diameter drops which resulted in cf=0.796. For the range of fall heights in 

the present experiment where 350<Re<892 for 2 mm drops and 824<Re<2808 for 

4.5 mm drops, the mean-square error was minimised to give cf=0.533 for which the 

empirical equation is compared with measured data in Figure 5.7. Additional 

measurements were carried out without a tube around the 4.5 mm drops with fall 

heights between 0.42 and 5.5 m. These confirm the use of cf=0.533 and demonstrate 

that the presence of the tube has negligible effect on the drop velocity. The reason for 

the difference compared with cf from Range and Feuillebois is likely to be due to the 

wider range of fall heights and the two different drop sizes considered in the current 

experiment.  

 

Table 5-2. Drop velocity on impact estimated from high-speed camera 

measurements for the different fall heights. 

 

  Fall height (m) 

Drop 

diameter 

(mm) 

 0.41 0.81 1.63 3.25 6.5 15 

2 

Mean velocity 

(m/s) 
2.57 3.49 4.62 5.71 This 

height 

was not 

measured 

6.55 

Standard 

deviation 

(m/s) 

0 0.04 0.18 0.18 0.15 

4.5 

Mean velocity 

(m/s) 
2.69 3.77 5.18 6.73 8.20 9.17 

Standard 

deviation 

(m/s) 

0.01 0.01 0.05 0.07 0.15 0.25 
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Figure 5.7. Comparison of measured and calculated drop velocity at different fall heights: 

(a) 2 mm drops, (b) 4.5 mm drops. 

5.3.  Artificial rainfall experiment 

The artificial rainfall is generated from a rain box that is made from PVC plastic 

plates and plastic nozzles. The size of the rain box is 1.3 m×1.25 m as described in 

the standard rain noise measurement setup from ISO 10140-5 [12].  

1300 mm 1250 mm

200 mm

 

Figure 5.8. Artificial rain box. 

 

As shown in Figure 5.8, the rain box is suspended using a hoist crane and two 

horizontal steel bars for stabilization. Since the rainfall rate is determined by the head 

of water which provides the pressure for raindrop generation, it is critical to control 

the water supply so that the water flow is stable over time. The water supply is 

connected to the tap water with controlled flow rate that can be instantaneously 
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measured by flow meter. For heavy rain fall (40 mm/h), the required water flow rate 

is 1.07 l/min. However, as the size of the nozzle hole is small (with 0.5 mm diameter 

see Figure 5.9), dirt/dust particles can block the holes during the experiments which 

resulted in a lower rainfall rate. For this reason the water flow rate was monitored 

during the experiment. There are 169 nozzles which were designed and tested in 

isolation to generate 4.6 mm diameter rain drops with the required rainfall rates see 

Figure 5.9. 

3mm

1.5mm

0.5mm

2mm

10mm

6mm

2mm

 

Figure 5.9. Design of the nozzle to generate 4.6 mm water drops. 

 

The rain noise system is installed in a tower, so that the terminal velocity can be 

achieved with an average falling height of 11.4 m as shown in Figure 5.11 (a). A 

lower falling height around 3.65 m as proposed in ISO 10140-5 [12] is also used for 

measurements (Figure 5.11 (b)).  

A glass plate and a multilayer plate rest upon a “baffle box” (see Appendix. A 

for the diagrams) with a 30
o
 slope. Flanking transmission was minimized by a layer 

of resilient foam attached to the top of the baffle box. The box is constructed from a 

double layer of 18mm thickness chipboard with a 12 mm air gap between them to 

reduce extraneous background noise inside the box see Figure 5.10b.  

Both of the plates are fixed into frames as shown in Figure 5.10, with silicone 

sealant to minimize water penetration into the wooden frame (see Figure 5.10b). For 

the multilayer plate, two layers of the silicone sealant were applied between the plate 

and the frame gap to minimize flanking transmission via the frame. 
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Figure 5.10. (a) Wooden frame for a glass plate and a multilayer plate, (b) detailed showing 

fixing of the multilayer plate into the frame that rests on the baffle box. 

 

The plate vibration and the radiated sound power have been measured after 

measuring the background vibration and noise. The vibration of the plate has been 

measured using six accelerometers (DELTA TRON Type 4517) that were located 

randomly over the plate surface. The sound radiation from the plate has been 

measured using a sound intensity probe (B&K Type 3519 and 4183 phase matched 

microphones) positioned on a grid of discrete points based on ISO 9614-1 [157]. The 

measured frequency range is from 40 to 5.7 kHz, to cover one third octave bands 

from 50 to 5k Hz.  
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Figure 5.11. Artificial rain noise measurement system showing the two different drop 

heights. 

 

5.4.  Glass plate and multilayer plate structure  

A single sheet of glass with properties shown in Table 5-3, has been used for the 

artificial rainfall experiment at both 11.4 and 3.65 m drop heights.   

The multilayer plate is three-layer laminate plate constructed from aluminium 

plate, foam and Perspex plate as shown in Figure 4.2. The three layers are superglued 

together to avoid any air gaps. The foam was a high density open cell foam from 

Acefoam [158]. The material properties of the foam were measured by Matelys 

(France), and are shown in Table 5-4. A criterion of the limp model proposed by 

Doutres et al [138] has been applied to assess the validity of limp model. The 

parameter Frame Stiffness Influence (FSI) [138], based on the porous material 

properties, has been calculated to be smaller than the critical value 0.16 (determined 

by the confidence rate of 95% from 256 simulated porous materials [138]) as shown 

in Figure 5.12. Therefore, the one-wave limp model can be used for this foam as 

described in Section 4.3.2 instead of the poro-elastic Biot model. 
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Figure 5.12. FSI curve and critical value  

 

Table 5-3. Properties of the glass plate 

 

 

 

 

 

 

 

 

Table 5-4. Properties of the foam 

 

 

 

 

 

 

 

 

 

 

Thickness (mm) 6 

Dimension (m) 1.53×1.28 

Density (kg/m
3
) 2500  

Young’s modulus ( GN/m
2
) 74  

Poisson ratio (-) 0.3 

Internal loss factor (-) 0.003 

Thickness (mm) 11.4 

Porosity (-) 0.98 

Flow resistivity (Ns/m
4
) 2900 

Tortuosity (-) 1.26 

Viscous characteristic length (μm) 195 

Thermal characteristic length (μm) 197 

Density(kg/m
3
) 79 

Young’s Modulus (N/m
2
) 1079400 

Poisson  ratio (-) 0.45 

Internal Loss factor (-) 0.35 
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Table 5-5. Properties of the aluminium plate 

 

 

 

 

 

 

 

 

Table 5-6. Properties of the Perspex plate 

 

 

 

 

 

 

 

The material properties of Aluminium are taken from measurements in the 

literature [159], and are shown in Table 5-5. For Perspex, the Young’s modulus and 

the internal loss factor are experimentally determined using the method described in 

ISO/PAS 16940:2004 for glass specimens [160]. The point input impedance at the 

centre of a strip specimen made from the material as shown in Figure 5.13. 

 

Thickness (mm) 1.5 

Dimension (m) 1.51×1.26 

Density (kg/m
3
) 2700 

Young’s modulus ( GN/m
2
) 34.8  

Poisson ratio (-) 0.34 

Internal loss factor (-) 0.0009 

Thickness (mm) 2.9 

Dimension (m) 1.526×1.276 

Density (kg/m
3
) 1218  

Young’s modulus ( GN/m
2
) Shown in Figure 5.14 

Poisson ratio (-) 0.3 

Loss factor (-) 0.073 (shown in Figure 5.15) 
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Figure 5.13. Experimental setup for the measurement of the impedance of a beam sample. 

 

The resonance frequencies of different lengths of beam can be used to calculate 

the bending stiffness for a plate of the same material [7]. The relationship between 

the bending stiffness and the resonance frequencies is given by [160]: 

where L is the length of the beam, 𝜌𝑠  is the surface density, and 𝑓𝑖  is the i
th

 

resonant frequency, 𝐶𝑖  is a parameter given by: C1=1.87510, C2=4.69410, 

C3=7.85476 and C4=10.99554. The measurement results from different resonances of 

0.1, 0.2, 0.25 and 0.3 length beams are shown in Figure 5.14. Because the Young’s 

modulus varies with frequency, therefore the fitted curve is used for the Young’s 

modulus in this thesis.  

The internal loss factor is estimated from the half power bandwidth [7]: 

where ∆𝑓3dB,𝑖  is the 3 dB bandwidth associated with each resonant peak. As 

shown in Figure 5.15, the damping has been averaged to give a frequency-

independent value.  

 𝐵𝑝,𝑖 = 𝜌𝑠 (
𝜋𝐿2𝑓𝑖

2𝐶𝑖
2 )

2

 5-8 

 𝜂𝑖 =
∆𝑓3dB,𝑖
𝑓𝑖

 5-9 
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Figure 5.14. Experimentally determined Young’s modulus and the fitted curve for Perspex 

plate. 
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Figure 5.15. Experimentally determined internal loss factor and the fitted curve for Perspex 

plate.  

5.5.  Measurement of the total loss factor of glass fixed in a frame 

The glass plate is fixed into a wooden frame with silicone sealant which affects 

the damping; hence measurement of the total loss factor is needed for the SEA and 

TMM models.  

The structural damping can be calculated from the reverberation time using the 

equation given by [7]: 

 𝜂 =
2.2

𝑓𝑇60
 5-10 
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 The integrated impulse response method described in ISO 3382 [161] is used to 

determine the structural reverberation time. This method was introduced by 

Schroeder [162] to estimate the vibrational energy decay using reverse-time 

integration of an impulse response. To carry out this method, a Maximum Length 

Sequence (MLS) is generated internally using B&K DIRAC system. This signal is 

then fed into a shaker (LDS Type 406) via a power amplifier (B&K Type 2706) to 

excite the plate, and the response is measured with an accelerometer (B&K Type 

4375). The impulse response is then obtained from the cross-correlation between the 

excitation signal which is pseudo-random white noise and the response signal. After 

the one-third octave or octave band filtering, the impulse response is integrated in the 

time domain and results in a time-decaying curve representing of the vibration levels. 

As a result, the reverberation time can be estimated using straight line regression 

over the initial part of the decay curve. 

As a filter also has its own impulse response, the decay time of the filter must be 

shorter than the actual structural decay time to avoid filter affecting the decay curve 

[7]. Jacobsen [163] proposed using the 𝐵𝑇60 product to assess the effect of the filter 

on the decay curve, where B is the filter bandwidth, and 𝑇60  is the actual 

reverberation time. ISO 3382 [161] requires that B𝑇60>8 in order to ensure that the 

measured decay curve is unaffected by the impulse response filter. As the bandwidth 

of a filter varies with band centre frequency, fc, for one-third octave bands, the 

bandwidth B=0.236fc.  

In order to minimize the distortion induced by the filter, Lee [164] proposed the 

continuous band wavelet transform (CWT) method for the impulse response 

decomposition. The third-octave wavelet filter bank used in their method is the 

modified Morlet wavelet, whose envelope decays exponentially and has significantly 

less “ringing” in the tail than a typical Butterworth bandpass filter.  
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Figure 5.16. (a) impulse response of the 6
th
 order Butterworth one-third octave bandpass 

filter with centre frequency at 100 Hz; (b) impulse response of the Morlet wavelet filter with 

centre frequency at 100 Hz; (c) frequency response of these two filters for comparison with 

the ANSI Class II limits.  
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Figure 5.16 shows a comparison between the one-third octave band 6
th

 order 

Butterworth filter and the Morlet wavelet filter.  The Morlet wavelet is modulated 

from the Gaussian function [164]. As shown in Figure 5.16, the Morlet wavelet has 

no “ringing” in the tail after the exponential decay. In the frequency domain, the 

slope of the Morlet filter has different attenuation compared with the Butterworth 

filter. Note that the shape of the Morlet wavelet filter is slightly out of the range of 

the ANSI Class II recommendation. 

The effects of both filters are analysed using an idealized impulse response of 

the structural system which is defined as: 

where T60  is the actual reverberation time, σ is the standard deviation of the 

white Gaussian noise.  

Figure 5.17 shows the resulting energy decay analysis using a one-third octave 

band Butterworth filter and Morlet wavelet filter. The plot of the decay curve 

associated with the filter itself is shown alongside the plot of the decay curves for the 

idealized impulse response with B𝑇60 = 1.5. When the reverberation time is shorter 

than the length of the filters, those ripples from the impulse response of the 

Butterworth filter also appear in the filtered energy decay curve. In order to obtain an 

acceptable decay curve using the Butterworth filter, 𝐵𝑇60 should be at least 8 [161]. 

However, this distortion phenomenon can be significantly reduced using the wavelet 

filter bank even when 𝐵𝑇60 is less than 4 [164].  
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Figure 5.17. Energy decay curve calculated by one-third octave band Butterworth filter and 

the wavelet filter with BT=1.5. (a) standard deviation of background white Gaussian noise is 

0.001; (b) standard deviation of background white Gaussian noise is 0.01. 

𝑥(𝑡) = {
cos(2𝜋𝑓𝑡) exp (−

3𝑡ln10

𝑇60
) + 𝜎𝑛(𝑡)      for 𝑡 > 0

0                                                               for all other 𝑡

} 5-11 
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Measurements on the glass plate used two excitation positions and three 

accelerometer positions per excitation position. Figure 5.18 shows the comparison 

between the measured damping using B&K DIRAC system and the wavelet filter. 

The main differences are at 100 and 200 Hz. The mean value of the total loss factor 

from six measurements over the frequency range from 100 to 5k Hz  using the 

wavelet filter is ≈0.022.  
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Figure 5.18. Comparison between the measured total loss factor from Dirac and the 

wavelet filter method for the glass plate. 

 

5.6.  Conclusions 

This chapter described the experimental set-ups for the single water drop and 

artificial rainfall experiments.  

For single drops, a wide range of falling heights has been used to estimate a new 

friction coefficient that can be used to estimate the drop velocity; this coefficient has 

wider applications to situations involving raindrops than previous work.  

The force from a liquid drop impact measured by a force transducer disc is 

corrupted by ringing due to a resonance of the sensor system near 8k Hz. Although 

this ringing signal can be filtered by a band-stop filter, drops may fall outside the 

small sensor area, therefore small force sensors are not well-suited to the 

measurement of drop impacts on shallow water layers. For this reason, wavelet 

deconvolution method will be assessed for the force estimation and compared against 

the force transducer where possible.  
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In order to measure the total loss factor of the glass plate, Morlet wavelet filter 

has been applied to determine the structural decay time instead of using a typical 

Butterworth one-third octave band filter. 

For the artificial heavy rainfall experiment, a rain box for 4.6mm diameter drops 

has been designed along with a baffle box to support a glass plate and multilayer 

plate. Two different drop heights have been implemented to obtain approximately 

terminal velocity and a lower drop velocity measurement required for artificial rain 

noise measurements according to ISO 10140-3.   
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6.  Experimental results for the force from a single drop 

impact on dry and wet surfaces 

6.1.  Introduction 

This chapter describes the experimental results for the force from a single drop 

impact on dry and wet surfaces.  

Section 6.2 assesses the vibration signal-to-noise ratio (SNR) from a single drop 

impact on dry glass plate. 

Section 6.3 compares the impact force estimation on a dry glass plate using force 

transducer measurements with wavelet measurement methods including the wavelet 

deconvolution from Doyle’s method and the sparse representation methods.  

Section 6.4 describes the impact force estimation from water drops on a shallow 

water layer using wavelet deconvolution and force transducer measurement.  

6.2.  SNR for vibration from a single drop impact on a dry glass plate 

The SNR can affect the accuracy and the stability in force estimation using 

wavelets. The SNR of the response signal with 2 and 4.5 mm drops impacting on a 

dry glass plate at different drop velocities is shown in Figure 6.1. A Hanning window 

has been used for SNR calculation which covers the response pulse and ends when 

the amplitude of signal is approximately the same amplitude as the noise. Only the 2 

mm drop with the lowest velocity (2.57 m/s) has <10 dB SNR over the frequency 

range from 10 to 6k Hz. All the other signals have a SNR>10 dB; hence it is 

expected that the estimation result from the wavelet deconvolution and sparse 

representation will be approximately the same. For this reason it is only the 2 mm 

drop at 2.57 m/s drop velocity that is likely to benefit from using the sparse 

representation approach. 

When a 2 mm drop at drop velocity 2.57 m/s impacts on different water layer 

depths ranging from 1 to 10mm, the SNR of the response signal is >10 dB at low 

frequencies (10 to 3k Hz) as shown in Figure 6.2. However, the SNR is <10 dB at 

high frequencies (3k to 6k Hz) for d≤4mm.  
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Figure 6.1. SNR for the vibration signal on a dry glass plate for 2 and 4.5 mm drops with 

different drop velocities. 

0 1000 2000 3000 4000 5000 6000

Frequency (Hz)

-10

-5

0

5

10

15

20

25

30

35

40

S
N

R
 (

d
B

)

d  = 0mm

d  = 1mm

d  = 2mm

d  = 4mm

d  = 6mm

d  = 8mm

d  = 10mm

 

Figure 6.2. SNR for the vibration signal for a 2 mm drop impacting at velocity 2.57 m/s on 

a glass plate with a dry surface (d=0 mm) and different water layer depths ranging from d=1 

to 10 mm.  
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6.3.  Impact force from water drops on a dry surface 

6.3.1.  Comparison between wavelet deconvolution and force transducer 

measurements 

Wavelet deconvolution describes the method using Eq. 3-9 from Doyle’s method 

[33] in Section 3.3.1 and is compared with force transducer measurements. 

a)

b)

Solid line: Wavelet deconvolution

Dotted line: Force transducer

H
z

 

Figure 6.3. Measured force using the wavelet deconvolution approach and the force 

transducer for 2 mm drops with different drop velocities impacting a dry glass surface: (a) 

time-dependent force (b) ESD.  

 

For 2 and 4.5mm drops, Figure 6.3 and Figure 6.4 show wavelet deconvolution 

and force transducer measurements for a dry glass surface in terms of the time-

dependent force and the corresponding Energy Spectral Density (ESD) in the 

frequency domain. Note that force transducer measurements were not possible at 
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terminal velocity due to the variability in the position of the drop impact. This was 

not problematic for the wavelet approach because the impact position on the glass 

could be marked after the drop had impacted to allow subsequent accelerance 

measurements for the transfer matrix. 

a)

b)

Solid line: Wavelet deconvolution

Dotted line: Force transducer

H
z

 

Figure 6.4 Measured force using the wavelet deconvolution approach and the force 

transducer for 4.5 mm drops with different drop velocities impacting a dry glass surface: (a) 

time-dependent force (b) ESD. 

 

In the time domain, the peak force increases, and the pulse width decreases with 

increasing drop velocity. In the frequency domain, the differences between wavelet 

and force transducer measurements are <1.6 dB except for 2 mm drops at the lowest 

velocity where the former is up to 3.7 dB lower than the latter above 4.5k Hz. These 



 

112 

 

small differences are likely to be caused by the modal response of the force 

transducer-disc system even though a band-stop filter was used to minimise any 

effect. Another possible reason for this disagreement is that wavelet deconvolution is 

less robust for low SNRs. This is because of the compromise between noise 

cancellation and estimation accuracy when selecting the optimal scaling factor. 

In general, the close agreement between the wavelet deconvolution approach and 

the force transducer measurement provides validation of the wavelet deconvolution 

approach. However, for the 2 mm drops at 2.57 m/s velocity, there is the potential to 

use a more robust method based on sparse representation. 

6.3.2.  Sparse representation methods based on l1- and l0-norm 

regularizations 

Sparse representation methods based on l1 norm [92] or lp norm (1<p<2) [100, 

101] have been validated for time history force estimation under low SNR conditions. 

However, l0 norm regularization does not seem to have been applied for time history 

force identification. Therefore, this section discusses the validation of l0 norm 

regularization method, compared with the l1- and l2-norm regularization. 

Note that the selection of dictionary can affect the estimation accuracy [87, 88, 

94], however Doyle’s theory only used the bell-shaped wavelet with single resolution 

based on their experience in the force. In this thesis, an optimization method for the 

dictionary selection is proposed by the maximization of the cross correlation between 

the paraboloidal drop shape model and the wavelet filters, as discussed in Section 

3.4.2. The sparse representation method based on l1 norm and l0 norm regularization 

applies the level 5 coif1 wavelet as the basis function.  

For a 2 mm drop at a drop velocity of 2.57m/s, the estimation results using 

wavelet deconvolution for 13 drop impacts are shown in Figure 6.5. As discussed in 

Section 3.4.1, a decrease in the SNR for the response signal can lead to a lower value 

of the scaling factor so that the noise can be filtered by the basis function. However, 

this filtering effect can possibly cancel the valid high frequency components of the 

force which consequently causes underestimation of the peak force.  In addition, the 

sharp edge in the rising force curve can also be inaccurate. This can be explained by 

a lower value of the scaling factor having a smaller valid frequency range that can 

filter off the high frequency components of the noise, but also induce the Gibbs 
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phenomenon to the force signal. As shown in Figure 6.5(a), this Gibbs phenomenon 

is associated with ringing before the force pulse.  
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Figure 6.5. Results of the time dependent force for a 2 mm drop at a drop velocity of 

2.57 m/s from 13 drop impact force estimations (thin dashed lines) and the time averaged 

result (solid black line) using a) wavelet deconvolution, b) l1 norm regularization with 𝜆 = 3, 

c) l1 norm regularization with 𝜆 = 10, d) l0 norm regularization.  

 

Figure 6.5 (b) shows the estimation result of using l1 norm regularization based 

on SpaRSA algorithm [75] with 𝜆 = 3. Compared with the wavelet deconvolution, l1 

norm regularization shows better edge-preservation. Moreover, the estimation error 

after the initial impact has been significantly reduced. This error can be suppressed 

by increasing the regularization parameter, so that the sparsity level can be increased. 

As shown in Figure 6.5 (c), the error has been significantly suppressed by using a 

higher regularization parameter (𝜆 = 10). However, the shape edge of the initial 

impact has been smoothed which results in an underestimate of the peak force and a 

negative component before the force pulse.  
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Therefore, l1 norm regularization can help improve the estimation robustness 

compared to the wavelet deconvolution method, especially when the regularization 

parameter is relatively high. However, there still exists a trade-off between the 

estimation accuracy on the sharp edge and noise suppression.  

As shown in Figure 6.5 (d), l0 norm regularization has better edge-preservation 

at the initial impact phase, and also supresses the noise over the whole processing 

time interval.  

The calculation time of wavelet deconvolution is more than 1 minute for each 

impact, whereas the l1 norm using SpaSRA takes about 30 seconds for each impact, 

and l0 norm regularization using the IHT algorithm takes only 1 second. 

The results for the 2 mm drop impact on a dry surface at a 2.57 m/s drop velocity 

using wavelet deconvolution, sparse representation based on l1 norm and l0 norm 

regularization, and force transducer measurement are shown in Figure 6.6 and in 

Figure 6.7 with and without zero-padding respectively. All these curves are averaged 

from 13 impacts. Compared with wavelet deconvolution, sparse representation based 

on l1 norm and l0 norm regularization gives closer agreement with force transducer 

measurement, particularly at high frequencies. Furthermore, using sparse 

representation, the parameters of the wavelet basis function can be optimized in the 

algorithms without selecting the shifting and scaling factors.  

In Figure 6.6, the sparse representation using l0 norm regularization has the 

lowest ringing level in time domain and the smoothest curve in the frequency domain. 

The agreement between the force transducer and the l0 norm regularization result 

below 6k Hz validates the use of l0 norm regularization. l1 and l0 norm regularization 

estimation have similar result, except that the peak force from l1 norm is lower and 

there is more ringing before and after the initial force pulse. Compared with l0 norm 

regularization results, wavelet deconvolution methods also overestimate the peak 

force which increases the ESD at low frequencies.  

 

 

 



 

115 

 

-0.5 0 0.5 1 1.5 2 2.5 3

Time (ms)

-0.01

0

0.01

0.02

0.03

F
o

rc
e

 (
N

)

1000 2000 3000 4000 5000 6000

Frequency (Hz)

-135

-130

-125

-120

-115

-110

-105

-100

-95

E
S

D
 (

d
B

 r
e

1
N

2
/s

)

Force transducer

Wavelet deconvolution

l
1

 norm regularization

l
0

 norm regularization

10

 

Figure 6.6. 2mm drop at a drop velocity of 2.57m/s: time domain (left) and frequency 

domain (right) estimation results of the impact force from different methods without zero-

padding.  

 

As shown in Figure 6.7, the sparse representation methods using l1 and l0 norm 

regularization provide steeper rising edge at the force pulse. This steep rising edge 

contains high frequency components which conversely have been filtered off by the 

wavelet deconvolution method. Therefore, using Doyle’s wavelet deconvolution for 

this low SNR situation can lead to problematic estimation, particularly at high 

frequencies. This is because when the SNR is low, the values of scaling factors of the 

bell-shaped basis function tend to be larger so that the high-frequency noise can be 

significantly averaged and filtered out. This may also result in the cancelling of the 

high frequency components of the force signal.  
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Figure 6.7. 2mm drop at a drop velocity of 2.57m/s: time domain (left) and frequency 

domain (right) estimation results of the impact force from different methods with zero-

padding. 
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Figure 6.8 shows the comparison between the impact force of 2 mm drop 

impact on a dry glass plate with different velocities between the wavelet 

deconvolution, force transducer measurement and the l0 norm regularization. It is 

observed that these three methods have less than 1.6 dB difference between them 

from 1 to 6k Hz, except for the lowest velocity in this experiment.  
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Figure 6.8. Comparison of 2 mm drop impact force on dry surface at different velocities 

from wavelet deconvolution, force transducer measurement and l0 norm regularization with 

zero-padding.  

 

6.4.  Impact force from water drops on a shallow water layer  

6.4.1.  Analysis of the drop impact 

For drops falling on a shallow water layer, the forces applied after the initial 

impact are not all applied at the same position. After the crater in the water layer has 

reached its maximum diameter, capillary waves propagate outwards over the water 

layer and these can be expected to exert low-level forces over a wide area. To 

illustrate the various phenomena that occur with different water layers and drop 

velocity, high-speed camera images are now analysed alongside the forces measured 

using the wavelet approach.  
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Figure 6.9. 2 mm drop impacting a water layer on glass with velocity 5.71 m/s: force 

measurements using the wavelet approach with a dry glass surface (d=0 mm) and different 

water layer depths on the glass ranging from d=1 to 10 mm (average of ten drops). 
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Figure 6.10. 2 mm drop impacting a water layer on glass with velocity 5.71 m/s: high-speed 

camera images of a 2 mm drop impact on a water layer depth of (a) 1 mm, (b) 2 mm, (c) 4 

mm, (d) 6 mm, (e) 8 mm, (f) 10 mm. Time is shown in milliseconds after impact. White 

image scale bar is 6mm long. 
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Figure 6.11. 4.5 mm drop impacting a water layer on glass with velocity 8.2 m/s: (a) Force 

measurements using the wavelet approach with different water layer depths on the glass 

ranging from d=1 to 10 mm (average of ten drops). High-speed camera images of a single 

example of a 4.5 mm drop impact on a water layer depth of (b) 1 mm and (c) 2 mm. Time is 

shown in milliseconds after impact. White image scale bar is 10mm long. 

 

For the 2 and 4.5 mm drops shown in Figures 6.9, 6.10, and Figure 6.11 

respectively there are distinct features relating to the splash that occur with relatively 

high drop velocities. During the formation of the raised crown-like perimeter after 

the initial impact, a negative force occurs as the water moves upwards, and drops 

detach from the tines around the perimeter of the crown (see Figures 6.9, 6.10). The 

crown diameters are 15 mm and 31 mm for the 2 and 4.5 mm drops respectively. 

Between 15 and 40 ms when the crater is formed, there is a slight peak in the force 

that occurs at different times depending on the depth of the water layer. Another 

feature occurs with the 4.5 mm drop that has a drop velocity of 8.2 m/s. For a 1 mm 

water depth, Figure 6.11 (b) shows a large bubble starting to form although it never 
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makes a complete hemisphere. However, for depths between 2 and 10 mm, a large 

hemispherical bubble is formed above the crater with a diameter between 40 and 50 

mm; an example is shown in Figure 6.11 (c) for a 2 mm layer as the images are 

similar for thicker water depths. These large bubbles tend to rupture after 180 ms; 

hence whilst this is an interesting feature relating to a single drop, these bubbles are 

less likely to form with real rainfall due to motion of the water layer from other 

nearby drop impacts, and other drops falling into and breaking the surface of the 

bubble. 



 

121 

 

0 5 10 15 20 25 30 35 40
Time (ms)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Fo
rc

e
 (N

)

a) b)

0 5 10 15 20 25 30 35 40
Time (ms)

-0.1

-0.05

0

0.05

0.1

0.15

Fo
rc

e
 (N

)

(1)  

Impact 

and 

formation 

of crater

(2)  Oscillating 

bubble

d  = 6mm d  = 8mm d  = 10mm

c)

d)

e)

f)

g)

h)

d  = 0mm d  = 1mm d  = 2mm d  = 4mm

 

Figure 6.12. 2 mm drop impacting a water layer on glass with velocity 2.57 m/s. Force 

measurements using the wavelet approach (a) with a dry glass surface (d=0 mm) and water 

layer depths on the glass of d=1, 2 and 4 mm (average of ten drops) and (b) with water layer 

depths on the glass of d=6, 8 and 10 mm (average of ten drops). High-speed camera images 

of a single example of a 2 mm drop impact on a water layer depth of (c) 1mm, (d) 2 mm, (e) 

4 mm, (f) 6 mm, (g) 8 mm, (h) 10 mm. Time is shown in milliseconds after impact. Time is 

shown in milliseconds after impact. White image scale bar is 5mm long. 
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For a 2 mm drop with a relatively low velocity of 2.57 m/s, the impacting drop 

coalesces without a splash. The measured forces are shown on Figure 6.12(a) and (b) 

depending on whether there are bubbles that are regularly entrained in the water layer   

[58]. In the centre of the crater a hemispherical dome is produced for 1mm and 2 mm 

water layer depths, whereas a short jet is produced for 4, 6, 8 and 10 mm depths 

although no drops detach from these jets. For 2 mm drops falling on 6, 8, and 10 mm 

water layers, bubbles are regularly entrained underneath the surface which are 

pinched off from the bottom of the crater. For lower depths, the water layer is not 

deep enough to allow complete formation of a crater, so bubbles are not entrained at 

the bottom of the crater. As shown in Figure 6.12(b), the oscillating bubble acts as an 

exponentially decaying high-frequency sinusoid that can produce significantly higher 

forces than the initial impact. The importance of the force applied by the oscillating 

bubble compared to the initial impact is assessed by windowing and zero padding (a) 

the initial impact, and (b) the pulse associated with the oscillating bubble. This gives 

the ESD for the initial impact and the bubble as shown in Figure 6.13. Below 200 Hz 

the force from the initial impact tends to be at least 9, 7 and 20 dB higher than the 

bubble-induced force for the 6, 8 and 10 mm water layers respectively. However, 

above 700 Hz the bubble-induced force tends to become significantly higher than 

that from the initial impact with high peak levels at 6.5k, 8.3k and 18.8k Hz 

corresponding to the bubbles generated for the 6, 8 and 10 mm water layers 

respectively. The frequencies, acoustic pressure and the directivity of sound radiation 

generated by these drops depends on the bubble size and their proximity to the 

surface of the water and the glass [58]. 

Note that the force hammer has a flat spectrum up to 8k Hz (refer back to 

Figure 5.1), therefore the initial impact force is reliable below 8k Hz. At higher 

frequencies up to 20k Hz, the transfer matrix is measured by normalizing the 

acceleration over the force, therefore, the force can still be determined when the SNR 

of the acceleration and force signals is sufficient.  
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Figure 6.13. Comparison between the ESD of the initial impact force and the bubble induced 

force: 2 mm drop with velocity of 2.57 m/s impacting onto a 6 mm water layer (average of 

the response from 10 drops), 8 mm water layer (average of the response from 10 drops), and 

10 mm water layer (one drop). 

 

6.4.2.  Validity of the wavelet approach for forces applied after the initial 

impact 

For the initial impact the force transducer and wavelet approach give similar 

results (which will be seen in Section 6.4.3). After the initial impact it is evident that 

trying to contain a shallow water layer over a small area will introduce errors in the 

force that is measured during the formation of the crown up to the point that 

rebounding drops from the jet return to make impact. This partly occurs because the 

diameter of the glass disc on the force transducer is 30 mm, which is similar to the 

largest diameter of the crown or crater. It is also because the water that is displaced is 

constrained and capillary waves are not able to propagate freely away from the 

impact zone, they are reflected from the tape around the perimeter which is used to 

contain the water layer above the force transducer. In fact, sometimes water spills 

over the edge of the tape. This provides reasons to consider the validity of the inverse 

method after the initial impact. 

The wavelet approach requires measured transfer accelerances with point 

excitation at the same position as the drop impact. These measurements used a force 

hammer with a 3 mm diameter tip, which is approximately mid-way between the 2 

and 4.5 mm drop diameters. Hence the accelerance measurements are considered 

valid for the initial impact force because the excited areas are very similar. However, 
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the forces that occur after the initial impact are not all applied at the same position. 

The features that occur after the initial impact such as the formation of the crater 

apply forces over the perimeter of a circle with a diameter up to 7 mm, whereas the 

crown or vortex ring would apply forces over the perimeter of a circle with diameters 

between 15 and 31 mm. The jet emanates from a point that is close to the drop 

impact position; hence any forces associated with it should be reasonably estimated 

with point excitation. Some, but not all of the rebounding drops emanating from this 

jet will fall within the maximum crater diameter.  

 

To make an assessment of the potential error in the forces applied after the initial 

impact it is assumed that in-phase forces are applied around the perimeter of a circle. 

Assuming an infinite plate, the driving-point accelerance with a response point at a 

distance, R0, can be calculated for in-phase forces around the perimeter of a circle 

with radius, rc, and for point excitation. The ratio of these two accelerances is given 

by 

where kB is the wavenumber for bending waves, H0
(1)

 represents the Hankel 

function of the first kind and 

a)               b) 

 

Figure 6.14. Ratio of accelerance for a circle of in-phase force with radius, r, to point 

excitation (a) magnitude and (b) phase. 

 

∫ 𝐻0
(1)
(𝑘B𝑅(𝜃))−𝐻0

(1)(𝑖𝑘B𝑅(𝜃))
2𝜋

0
d𝜃

2𝜋 [𝐻0
(1)
(𝑘B𝑅0)−𝐻0

(1)(𝑖𝑘B𝑅0)]
 

6-1 

 

  𝑅(𝜃) = √(𝑅0 + 𝑟c cos 𝜃 )2 + 𝑟c
2 sin2 𝜃  6-2 
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Results from Eq. 6-2 are shown in Figure 6.14 that can be interpreted in the light 

of expected measurement errors. For the magnitude, it is reasonable to assume that 

the maximum measurement uncertainty in narrow band accelerance would be 1 dB 

and that for the phase the variation between different accelerometers would be <0.4 

[7]. On this basis, an error of 1 dB in the accelerance would give an error in the 

impact force of 1 dB below 6k Hz. For this reason, it is concluded that after the 

initial impact the wavelet approach can still be used to estimate the forces (within 

1 dB) that are applied by the crater, crown, jet, vortex ring, or oscillating bubbles. 

However, rebounding drops can fall at many different positions on the plate and 

therefore it is difficult to assess the accuracy for these forces. The low-level forces 

applied by capillary waves propagating away from the crater will not be correctly 

estimated by the wavelet approach. For rebounding drops these forces tend to be 

negligible in comparison with the initial impact and the oscillating bubble, but this 

may not always apply to the capillary waves. For this reason, the focus in 

Section 6.4.3 will be on comparing force transducer and wavelet approaches for the 

initial impact on different depths of water layer and then developing an empirical 

formula for the initial impact based on measurements using the wavelet approach in 

Chapter 7. 

6.4.3.  Comparison of initial impact forces 

As discussed above in Figure 6.8, using the wavelet deconvolution and l0 norm 

regularization has very similar estimation result for high SNR value response signal 

in terms of the dry surface condition.  

For a wet surface with 1, 2, 4, and 6 mm water layers, the difference between 

wavelet deconvolution and l0 norm regularization is <2 dB over the frequency range 

from 10 to 1k Hz as shown in Figure 6.15. This is because the water layer increases 

the initial energy of the impact force which results in higher response signal. 

Therefore, the SNR is sufficient for the force identification problem when there is 

water layer at low frequencies (<1k Hz). At high frequencies (>3k Hz), the energy of 

the impact force with water layer is lower than the dry surface situation, which may 

result in -1 dB<SNR<10 dB as shown in Figure 6.2. Therefore, due to the 

significance of noise, the high frequency signal cannot be cancelled from the filter-

bank based on wavelet basis, which consequently presents the small amplitude 

ripples in the time dependant force curves and significant difference at high 
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frequencies, as shown in Figure 6.15. However, the difference of the estimation 

result from wavelet deconvolution and l0 norm regularization is <±2.5 dB which can 

be considered negligible.  
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Figure 6.15. Comparison between the wavelet deconvolution and the l0 norm regularization 

for 2mm drops impact on 1, 2, 4, and 6 mm water layers with a 2.57 m /s drop velocity.  

 

Figure 6.16 and Figure 6.17 allow comparison of the initial impact forces 

determined using the force transducer and wavelet approach with and without a 

water layer for 2 and 4.5 mm drops respectively. This is carried out by zero padding 

the time signal after the initial impact. Note that for terminal velocity, there is 

significant variation in the drop impact position which prevents use of the force 

transducer disc due to too many ‘misses’; however, the wavelet approach can be used 

because the excitation point can be identified after each impact. With a water layer, 

there are differences between the force transducer and wavelet approach in terms of 

the peak force and pulse width in the time domain but these only result in differences 

less than 3 dB between 10 and 2k Hz in the frequency domain.  The differences 

between the force transducer and wavelet approach are more apparent with deeper 

water depths. Considering the errors due to the modal response of the force 

transducer-disc system and the effect of artificially constraining a water layer on the 

30 mm disc, the wavelet approach is considered to be more accurate and is the only 

one discussed in the remainder of this section. 
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Figure 6.16. Measured time dependent force (a) and ESD (b) for 2 mm drops with different 

drop velocities impacting the dry glass surface (d=0 mm) and different water layer depths on 

the glass from d=1 mm to d=10 mm. Force measurements use the wavelet approach (solid 

line) and force transducer (dotted line). 
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Compared with dry glass, water drops impacting the various water layers apply 

higher forces below 500 Hz. For drops at terminal velocity, just a 1 mm water layer 

increases the force by 7 dB for 2 mm drops and 5 dB for 4.5 mm drops; the 

general trend is that as the water layer becomes deeper, the peak force decreases and 

the pulse width broadens. This results in higher forces at low frequencies; for drops 

at terminal velocity this increase is up to 15 dB for 2 mm drops and 12 dB for 

4.5 mm drops. Below terminal velocity the presence of a water layer also increases 

the force at low-frequencies; however, in the time-domain the presence of a water 

layer can either increase or decrease the peak force. Petersson [4] also noted that a 

water layer could increase the force at low frequencies and attributed it to the energy 

of the drop being transferred to the water layer on the surface. However, this 

explanation does not seem to be sufficient to explain the differences in the peak force 

(time-domain) with different drop velocities because it takes no account of the effect 

of drop velocity on coalescence with different water layer depths and the area over 

which the force is applied on the glass. At high frequencies there is evidence that, 

compared with dry glass, the water layer gives lower forces above 2k Hz. However, 

this change is not as significant as the increase that is observed at low frequencies 

which has practical implications for noise control from rain on the roof in buildings 

because roofs and roof glazing will have a surface water layer during the rainfall 

period, albeit a moving layer of water. 
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Figure 6.17. Measured data for (a) time dependent force and (b) ESD for 4.5 mm drops with 

different drop velocities impacting the dry glass surface (d=0 mm) and different water layer 

depths on the glass from d=1 mm to d=10 mm. Force measurements use the wavelet 

approach (solid line) and force transducer (dotted line).  
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6.5.  Conclusions 

The impact force applied by 2 and 4.5 mm liquid water drops impacting on an 

elastic plate with or without a still shallow water layer at a range of drop velocities 

has been determined using wavelet deconvolution.  

For drops on dry glass, the peak force increases and the pulse width of the 

impact force decreases with increasing drop velocity. Wavelet deconvolution was 

validated by its close agreement with force transducer measurements in the 

frequency domain.  

For drops on a shallow water layer, high-speed camera images were used to 

identify distinct features relating to the splash that apply forces on the plate that 

occur after the initial impact, such as the crater, crown, and jet as well as bubble 

entrainment underneath the surface of the water. This leads to measurement 

problems when using a force transducer with a constrained water layer because some 

features of the splash such as crater formation and outgoing capillary waves are no 

longer representative of the natural phenomena with a large area of surface water. 

Analysis of the measurement errors indicates that the wavelet approach can be used 

to estimate forces applied by the crater, crown, jet, vortex ring, or oscillating bubbles 

within 1 dB. However, there will be some low-level forces that cannot be accurately 

determined such as those from rebounding drops falling far from the original impact 

position, or capillary waves propagating away from the crater; fortunately their low-

level makes them of little interest for the purpose of noise control. For 2 mm drops 

falling on 6, 8, and 10 mm layers, bubbles are regularly entrained in the water layer. 

Whilst the force from the initial impact tends to be significantly higher than the 

bubble-induced force below 200 Hz, the bubble-induced force above 700 Hz tends to 

become significantly higher than the initial impact with high peak levels at or above 

6.5k Hz. Whilst these high forces from entrained bubbles are noteworthy, they are 

less critical when evaluating rain noise because water layers on roof elements are 

typically <6 mm deep and the radiated sound only tends to be assessed at frequencies 

below 6.5k Hz. 

When the response signal has low SNR value (<10 dB), wavelet deconvolution 

becomes less robust and results in significant estimation error, which only occurs for 

the 2 mm drop at the lowest drop velocity. However, it is possible to use the sparse 

representation method to improve the estimation accuracy and meanwhile preserve 
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the shape edge at initial phase of the impact force from water drop. It is shown that l0 

norm regularization is better in the edge-preserving and noise suppression than l1 

norm regularization for single drop impact when the optimal wavelet basis has been 

selected (coif1 in the thesis).  

When SNR >15 dB, wavelet deconvolution, sparse representation and the force 

transducer measurement have <1.6 dB difference for the initial impact force 

estimation on the dry surface.  
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7.  Development and assessment of empirical models for the 

force from a single drop impact on dry and wet surfaces 

7.1.  Introduction  

In this chapter, the experimental data are used to create empirical models for the 

time-dependent force on dry and wet surfaces. At present, there are only theoretical 

models for drop impact on a dry surface; hence, the validity of these models is 

assessed through direct comparison with measured data and the empirical models.  

Section 7.2 describes the approach used to determine empirical models for the 

impact force on a dry surface. 

Section 7.3 compares the dry surface results between the measured time-

dependent force, empirical formulae, and theoretical models.  

Section 7.4 describes the empirical formulae determined from the wavelet 

deconvolution measurement for the drop impact force on a glass plate with and 

without a shallow water layer. 

Section 7.5 assesses whether the use of sparse representation methods for the 

2 mm drop at a drop velocity of 2.57 m/s changes the empirical model developed 

using wavelet deconvolutions. 

In Section 7.6, an angle-corrected empirical model is developed for oblique 

angle impacts, which is assessed by comparison with measurements. 

7.2.  Empirical formulae for the dry surface 

In the previous chapter the wavelet approach was validated by the agreement 

with the force transducer, however, because the transducer-disc system can be 

adversely affected by ringing from the first structural mode, only the wavelet 

approach is used to determine the empirical formulae.   

Based on the shape of the measured force profiles, the following empirical 

formula is proposed for the time-dependent force which is dependent on three 

parameters, C, ,  :  

The absolute error (2-norm) between this formula and the wavelet approach is 

minimized to give optimized parameters C, ,  in the frequency domain to cover 

one-third octave bands between 12.5 and 5k Hz using: 

𝐹(𝑡) = 𝐹(𝑡; 𝐶,, )  =  𝐶 exp[−(ln(1000𝑡) + )2/2] 7-1 
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A least squares approach is then used to give a linear relationship between the 

parameters ln(C), ,  and drop velocity, vd, where 

The empirical formula for the time-dependent force is given by Eq. 7-1, where 

for 2 mm drops with drop velocities between 2.57 and 6.55 m/s, and  

for 4.5 mm drops with drop velocities between 2.69 and 9.17 m/s. 

7.3.  Comparison of measurements with the empirical formulae and 

idealized drop shape models for the dry surface 

For 2 and 4.5 mm drops, Figure 7.1 shows a time domain comparison of the 

measured forces in Figure 7.1 (a) with empirical formulae in Figure 7.1 (b), and 

idealized drop shape models in Figure 7.1 (c) and the models from Roisman et al, 

Marengo et al and Mitchell et al in Figure 7.1 (d). To facilitate the comparison of 

these results, dimensionless force, f(t)/(wv
2
D

2
), and dimensionless time, t/(D/v), are 

used as described by Zhang et al [165]. In the frequency domain the difference 

between the measured one-third octave band ESD and the empirical formulae, 

idealized drop shape models and the model from Roisman et al, Marengo et al and 

Mitchell et al are shown in Figure 7.2 . 

In the time domain there is close agreement between measurements and the 

empirical formula, which justifies the shape chosen in Eq. 7-1. In the frequency 

domain, Figure 7.2 (a) shows that the difference between the wavelet measurements 

and the empirical formula is <±1 dB between 12.5 and 250 Hz, and <±4 dB between 

315 and 5k Hz. For most noise control applications the empirical models can be 

considered to provide suitable accuracy. 

  
argmin

 𝐶,,
‖𝐹(𝑓; 𝐶,, ) − 𝐹wavelet(𝑓)‖2

 
 7-2 

ln(𝐶) = 𝑣d𝑎𝐶 + 𝑏𝐶 7-3 

 = 𝑣d𝑎 + 𝑏 7-4 

     = 𝑣d𝑎 + 𝑏 7-5 

ln(𝐶) = 0.4507𝑣d –  4.7951 7-6 

 = 0.1848𝑣d + 1.3576 7-7 

 = –0.0447𝑣d + 1.2157  7-8 

ln(𝐶) = 0.449𝑣d –  3.0538 7-9 

 = 0.3386𝑣d+ 0.2325 7-10 

 = 0.0417𝑣d+ 1.1023 7-11 
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Zhang et al [75] showed that dimensionless force and time resulted in a 

universal curve for the time-dependent force when Re>230 (described as an ‘inertia-

dominated zone’ for the impact force). However, they used low drop velocities 

between 1.36 and 2.99 m/s (water drop diameters between 2.7 and 3.53 mm) whilst 

this thesis mainly considers higher drop velocities. The results in Figure 7.1(a) 

indicate that the concept of a universal curve is reasonable for all the 2 mm drops up 

to terminal velocity but only up to a drop velocity of 5.18 m/s for 4.5 mm drops. For 

4.5 mm drops it is seen that at velocities up to terminal velocity (6.73, 8.20, and 

9.17 m/s) the dimensionless force differs significantly from the other curves. This 

might be caused by the flattened underside of the drop which occurs at high 

velocities, and would be a topic for further research.  

 

The idealised drop shape models in Figure 7.1(c) tend to show less agreement 

with the measured force than the empirical formulae. In the time domain, the force 

increases rapidly when the water drop hits the surface of the glass, then decreases as 

the liquid begins to spread outward. The initial rapid rise in the force is approximated 

by the paraboloidal, cylindrical-hemispherical, and ellipsoidal drop shape models. 

However, the measured peak force for 4.5 mm drops is significantly higher than all 

the drop shape models with the three highest drop velocities (9.17, 8.20 and 6.73 m/s) 

although it is a reasonable estimate for lower drop velocities (5.18, 3.77 and 

2.69 m/s). For 2.5 mm drops the measured peak force is reasonably estimated by the 

models for the four highest drop velocities (6.55, 5.71, 4.62, 3.49 m/s) but not for the 

lowest drop velocity (2.57 m/s). Note that these seemingly large errors in the time 

domain tend to be relatively insignificant in the frequency domain (i.e. < ±2 dB) at 

low-frequencies (i.e. below 200 Hz) - see Figure 7.2(b) and Figure 7.2(c).  

The models from Roisman et al and Marengo et al (see Figure 7.2(d)) have an 

offset error of ≈5 dB below 200 Hz which is significantly larger than the error with 

the idealised drop shape models. Above 1k Hz the agreement with measurements is 

no better than the idealised drop shape models. The model from Mitchell et al (see 

Figure 7.2(d)) has better agreement with the measurement data compared with other 

theoretical models, (e.g. <±2 dB) below the 1k Hz. Above 3k Hz, Mitchell et al’s 

model also has >5 dB error in the force prediction. This is because the 4.5mm drop 
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with high velocities has a flattened bottom, which is different from the spherical drop 

shape assumption made by Mitchell et al. 

The motivation to develop empirical formulae comes from the fact that the 

idealised drop shape models, the Roisman et al, and Marengo et al model are not 

able to reproduce the measured spectrum to <±1 dB up to 250 Hz. 
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Figure 7.1. Comparison of dimensionless force between measurements using the wavelet 

deconvolution and different models for 2 and 4.5 mm drops with the different drop velocities 

impacting a dry glass surface. (a) wavelet measurement (b) empirical model (c) idealized 

drop shape model (d) Roisman et al (2009), Marengo et al (2011) and Mitchell et al (2019) 

models. 

 

In the time domain there is close agreement between measurements and the 

empirical formula. In the frequency domain, the difference between measurements 

and the empirical formula is typically <2 dB for 2 and 4.5 mm drops, with the larger 

differences occurring above 800 Hz. 
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Figure 7.2. Difference in the ESD (one-third octave bands) between (a) the wavelet 

deconvolution measurement and the empirical formula for different drop velocities, (b) the 

wavelet deconvolution and idealised drop shape models for 2 mm drops in terms of the upper 

and lower limit from different drop velocities, (c) the wavelet measurement and idealised 

drop shape models for 4.5 mm drops in terms of the upper and lower limit from different 

drop velocities, and (d) the wavelet deconvolution measurement and Roisman et al (2009), 

Marengo et al (2011) and Mitchell et al (2019) models in terms of the upper and lower limit 

from different drop velocities for the 2 and 4.5 mm drops 
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7.4.  Empirical formulae for the glass plate with and without a shallow 

water layer 

In Sections 7.2 and 7.3, empirical formulae were determined for 2 and 4.5 mm 

drops on dry glass for the full range of measured drop velocities. This section 

determines one set of empirical formulae with a practical application to rainfall 

where the drops impact at terminal velocity, and another set for lower drop velocities 

(between 2.57 and 5.71 m/s for 2 mm drops, and between 2.69 and 8.20 m/s for 

4.5 mm drops). The advantage of this approach is that it is possible to minimise the 

errors for the practical application to rainfall at terminal velocity. 

 

Table 7-1. Empirical formulae constants for 2 mm drops at terminal velocity. 

 

For 2 mm drops falling at terminal velocity onto a glass plate with or without a 

water layer, Eq. 7-1 is used with the empirical constants (C, , and ) in Table 7-1. 

For 4.5 mm drops falling at terminal velocity onto a glass plate with or without a 

water layer, the following equation is used:  

where the empirical constants Ci, i, i ; i=1,2 are given in Table 7-2. 

 

 

 

 

 

Water depth, d (mm) C   

0 0.1389 2.5912 0.9867 

1 0.1504 2.0231 1.1196 

2 0.1553 1.6889 1.1136 

4 0.1504 1.5910 1.2567 

6 0.1496 1.4639 1.3171 

8 0.1534 1.4308 1.3934 

10 0.1447 1.3864 1.3251 

𝐹(𝑡) =  𝐶1 exp [−
(ln(1000𝑡) + 1)

2


1
2 ]

+ 𝐶2 exp[−(ln(1000𝑡) + 2)
2/2

2
] 

7-12 
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Table 7-2. Empirical formulae constants for 4.5 mm drops at terminal velocity. 

 

For 2 and 4.5 mm drops falling at velocities lower than terminal velocity onto a 

glass plate with or without a water layer, the empirical constants (𝑎𝐶 , 𝑏𝐶 , 𝑎, 𝑏, 𝑎, 

𝑏) are given in Table 7-3 and Table 7-4 respectively to determine C,   and  as 

described by Eqs. 7-3, 7-4 and 7-5. 

 

Table 7-3. Empirical formulae constants for 2 mm drops at drop velocities that are 

lower than terminal velocity.  

 

 

 

 

 

 

Water depth, 

d (mm) 
C1 C2 1 2 1 2 

0 2.7186 0 3.3367 0 1.5027 0 

1 1.7168 1.5693 2.0703 2.8439 1.3129 0.4645 

2 1.7673 1.2078 1.8683 2.8984 1.4361 0.509 

4 1.7673 1.2220 1.6663 2.8479 1.5391 0.4787 

6 1.7067 1.1250 1.5653 2.7873 1.5371 0.4403 

8 1.6885 1.1008 1.4139 2.7408 1.5391 0.4726 

10 1.6663 0.9756 1.3129 2.5934 1.3916 0.4141 

Water depth, 

d (mm) 

aC bC a b a b 

0 0.5088 –5.001 0.1748 1.3930 –0.0727 1.3148 

1 0.4728 –4.7645 0.2003 0.5220 0.0270 0.9816 

2 0.4402 –4.5871 0.2266 0.1213 0.0584 0.9180 

4 0.4654 –4.6779 0.2605 0.0738 0.0082 1.1615 

6 0.4976 –4.8194 0.1749 0.2685 0.0918 0.9180 

8 0.6225 –5.1825 0.2988 –0.3846 0.1187 0.7678 

10 0.5801 –5.0568 0.3165 –0.5613 0.1493 0.5681 
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Table 7-4. Empirical formulae constants for 4.5 mm drops at drop velocities that are 

lower than terminal velocity. 

 

 

 

Water depth, 

d (mm) 

aC bC a b a b 

0 0.4616 –3.1084 0.3391 0.2307 0.0381 1.1176 

1 0.4227 –2.9358 0.3672 –0.7840 0.1314 0.5461 

2 0.4153 –2.9193 0.3703 –0.9777 0.1392 0.4741 

4 0.4035 –2.8740 0.3112 –0.9527 0.1106 0.5509 

6 0.4011 –2.8439 0.2451 –0.7966 0.0654 0.8094 

8 0.4023 –2.7031 0.2691 –0.9317 0.0796 0.8505 

10 0.3947 –2.8019 0.2508 –0.8405 0.0875 0.8845 
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Figure 7.3. (a) Measured time dependent force and (b) difference in the ESD between 

wavelet deconvolution measurements and the empirical model for 2 mm drops with different 

drop velocities impacting the dry glass surface (d=0 mm) and different water layer depths on 

the glass from d=1 mm to d=10 mm. 
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Figure 7.4. Measured (a) time dependent force and (b) difference in the ESD between 

wavelet deconvolution measurements and the empirical model for 4.5 mm drops with 

different drop velocities impacting the dry glass surface (d=0 mm) and different water layer 

depths on the glass from d=1 mm to d=10 mm.  

 

For comparison with the empirical formulae, the time-dependent forces and ESD 

measured with the wavelet approach are shown on Figure 7.3 and Figure 7.4 for 2 

and 4.5 mm drops respectively. At terminal velocity the empirical formulae for 
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frequencies up to 1k Hz give an error <0.5 dB for the dry surface (NB This is a lower 

error than was achieved with the empirical formula in section 4.2.3) and <2 dB for 

the shallow water layers. For drop velocities below terminal velocity, the error is 

typically <5 dB below 1kHz but this increases significantly at higher frequencies due 

to the empirical formula not accounting for ripples in the shallow water layer in the 

time-domain that contain high-frequency energy. 

7.5.  Empirical model determined by the sparse representation estimation  

In Section 3.4, the sparse representation methods were shown to be more robust 

and accurate for the impact force estimation when the response signal has a low 

SNR. The SNR assessment in Section 6.2 shows that for a 2 mm drop impacts on a 

dry surface with a drop velocity of 2.57 m/s, the acceleration signal has <10 dB SNR, 

which results in the estimation error of wavelet deconvolution (refer back to Figure 

6.7). Since the sparse representation method results in better estimation accuracy in 

low SNR situation, an empirical model based on the sparse representation results has 

also been developed to compare with the empirical model obtained from wavelet 

deconvolution.  

The empirical model from these two methods have similar time dependant 

curves (see Figure 6.7), and as shown in Figure 7.5, the empirical model determined 

from the sparse representation estimation has less than 0.4 dB difference from the 

empirical model by wavelet deconvolution over the frequency range from 10 Hz to 6 

kHz. Therefore any improvement by using sparse representation estimation method 

compared with the wavelet deconvolution can be considered to be negligible. 
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Figure 7.5. Empirical model difference determined from wavelet deconvolution and the l0 

norm regularization of 2 mm drop impact on dry surface with 2.57 m/s: a) in the time 

domain and b) in the frequency domain and c) the ESD difference.  
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7.6.  Angle-corrected empirical model  

The validated empirical model for drop impacts on a horizontal plate now needs 

to be adapted to allow oblique angle drop impacts.  

In terms of the angled impact, the force pulse is mainly applied by the 

perpendicular component of the velocity according to the momentum theory (see 

Section 2.7). However, since the shape of a 4.5 mm drop at terminal velocity is not 

spherical (see Section 2.3 and Section 5.2.2) but has a flattened bottom, the force 

measured on the flat glass plate needs to be corrected to apply to oblique angles. As 

discussed in Section 2.7 the projection area of the oblique impact is smaller than in 

the horizontal situation, which results in lower peak force in the time domain. 

Moreover, the irregular projection area of the drop can also delay the occurrence 

time of the force peak.  

The correction of the angled impact force is calculated using the perpendicular 

drop velocity as given by Eq. 2-20. Therefore the angle-corrected empirical model 

for 4.5 mm drops can be calculated by substituting the perpendicular drop velocity 

into Eqs. 7-9, 7-10 and 7-11.  Figure 7.6(a) shows that the peak force in the time 

domain estimated by the angle-corrected empirical model is similar to the measured 

force and the impact force from the angle-corrected empirical model is in close 

agreement with the measured force (<4 dB difference over the frequency range 

10 Hz to 6k Hz). 

When the drop velocity increases to 9.08 m/s, the angle-corrected empirical 

model tends to overestimate the high-frequency energy (above 2k Hz) and 

underestimate the low-frequency energy (below 200 Hz) of the angled drop impact 

force as shown in Figure 7.6(b). This becomes more significant when the drop 

impact is at terminal velocity in Figure 7.6(c). The drop has a flattened bottom and 

therefore the projection area is smaller than the horizontal situation; hence, the force 

peak estimated using the angle-corrected empirical model gives rise to this error.  



 

144 

 

0o

30o

45o

60o

Solid line: measurement

Dashed line: angle-corrected 
empirical model

0 0.5 1 1.5 2

Time (ms)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

F
or

c
e

 (
N

)

12.5 100 1000 5000

One-third octave band

centre frequency (Hz)

-115

-105

-95

-85

-75

-65

E
S

D
 (

d
B

 r
e

 1
N

2
/s

)

12.5 100 1000 5000

One-third octave band

centre frequency (Hz)

-5

-4

-3

-2

-1

0

1

2

3

4

5

D
if

fe
re

n
c

e
 (

d
B

)

0o

30o

45o

60o

Solid line: measurement

Dashed line: angle-corrected 
empirical model

0 0.5 1 1.5 2

Time (ms)

0

0.5

1

1.5

2

2.5

3

3.5

F
o

rc
e

 (
N

)

12.5 100 1000 5000

One-third octave band

centre frequency (Hz)

-110

-100

-90

-80

-70

-60

E
S

D
 (

d
B

 r
e

 1
N

2
/s

)

12.5 100 1000 5000

One-third octave band

centre frequency (Hz)

-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

D
if

fe
r
e

n
c

e
 (

d
B

)

0o

30o

45o

60o

Solid line: measurement

Dashed line: angle-corrected 

empirical model

0 0.5 1 1.5 2

Time (ms)

0

0.5

1

1.5

2

2.5

3

F
o

rc
e

 (
N

)

12.5 100 1000 5000

One-third octave band

centre frequency (Hz)

-110

-100

-90

-80

-70

-60

E
S

D
 (

d
B

 r
e

 1
N

2
/s

)

12.5 100 1000 5000

One-third octave band

centre frequency (Hz)

-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

D
if

fe
r
e

n
c

e
 (

d
B

)

a)

b)

c)

 

Figure 7.6. Effect of oblique angle impacts: comparison of the impact force from 

measurement using wavelet deconvolution (solid line) and the angle-corrected empirical 

model (dashed line) by 4.5 mm drops with different drop velocities: (a) 7.03 m/s (b) 9.08 m/s 

(c) 9.31 m/s impacting on a dry glass plate with different angles. The first column contains 

the time-dependent zero-padded initial impact force, the second column contains the ESD in 

narrow bands, the third column contains the difference between the ESD from wavelet 

deconvolution and the angle-corrected empirical formula.  

 

Compared with the horizontal plate shown in Figure 7.2(a), the errors of the 

empirical model for an oblique angle plate in Figure 7.6 are not significantly larger 

below 1k Hz. Figure 7.6 shows that the difference between the wavelet measurement 

and the empirical formula is <±2 dB between 12.5 and 250 Hz, and <±10 dB 

between 315 and 5k Hz. 

In order to predict the rain noise from artificial rainfall with 4.5mm drops at 

velocities of 9.08 and 7.03 m/s (corresponding to 11.4 and 3.65 m drop heights in 
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Figure 5.11), the corrected empirical model for 30
o
 oblique plate can lead to 

prediction errors which increase at high frequencies up to approximately 5 dB and 

2 dB at 5k Hz for drop heights of 11.4 and 3.65 m, respectively. This angle corrected 

empirical model will be used in Chapter 8 for the prediction of artificial rainfall. 

7.7.  Conclusions 

Using the measured force for water drops at different drop velocities, an 

assessment was made of the validity of theoretical models for the water drop impact 

force on a dry glass surface. At relatively high velocities (including terminal velocity) 

the measured peak force is significantly higher than predicted by the paraboloidal, 

cylindrical-hemispherical, spherical, and ellipsoidal drop shape models, and the 

model from Roisman et al (which takes the lamella into account) gives no significant 

improvement in the predicted force particularly for 4.5 mm drops. The inability of 

these prediction models to describe the time-dependent force provided the motivation 

to develop empirical formulae. 

For a horizontal glass plate, empirical formulae have been developed for 2 and 

4.5 mm drops falling at (a) different velocities up to and including terminal velocity 

onto a dry glass surface, (b) terminal velocity onto dry glass or glass with a shallow 

water layer up to 10 mm and (c) different velocities below terminal velocity onto dry 

glass or glass with a shallow water layer up to 10 mm. This allowed the errors to be 

minimised for different applications. For drops on dry glass, the empirical formulae 

are only strictly applicable to a glass plate or a composite layered plate with a glass 

surface, although they apply to any other thickness of plate. All the empirical 

formulae can reasonably be applied to any plate material with a similar surface 

roughness and wettability.  

The empirical model determined from the sparse representation measurement 

had <0.4 dB difference when compared with the empirical model from the wavelet 

deconvolution measurement data. This difference is not considered significant; hence, 

the empirical formulae from the wavelet deconvolution measurement will be applied 

in Chapter 8 for artificial rainfall prediction. 

For oblique angle impacts, an empirical model correction is accounted for by 

using the perpendicular velocity component. Comparison of the differences between 

the wavelet measurements for 30
o
, 45

o
 and 60

o
 angles and the angle-corrected 

empirical formulae are not significantly larger than with empirical formulae for the 
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horizontal plate below 1k Hz. For 4.5 mm drop impacts at terminal velocity on a 

plate with 30
o
 slope, the error of the angle-corrected empirical model is <±1 dB 

between 12.5 to 2k Hz, and <±5 dB between 2k to 5k Hz.  
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8.  Experimental validation and numerical simulation results 

with artificial rainfall 

8.1.  Introduction  

This chapter uses the angle-corrected empirical model for the drop impact force 

with FTMM to predict vibration and sound radiation under artificial rain excitation.  

Section 8.2 describes the experimental and numerical results for the vibration 

and sound radiation from a glass plate at an angle of 30
o
 under artificial rainfall at 

two different drop heights (including terminal velocity). The numerical models are 

validated using SEA and FTMM which incorporate the angle-corrected empirical 

model.   

In Section 8.3, FTMM is used to predict the vibration and sound radiation from a 

multilayer plate (plate-limp porous material-plate) under artificial rainfall excitation 

at terminal velocity.  

8.2.  Glass plate at 30
o
 angle 

8.2.1.  Using SEA and FTMM to predict the plate vibration 

The vibration of a plate at a 30
o
 angle is predicted using the force from the 

angle-corrected empirical model for two different drop heights, 11.4 m and 3.65 m. 

For the 11.4 m height in Figure 8.1, the prediction of the mean-square velocity from 

a glass plate using SEA and FTMM are the same to within ±0.1 dB. At low 

frequencies (up to 500 Hz), the prediction models with 1 mm water layer over-

estimated the vibration energy, whereas dry surface model results in closer 

agreement with the measurement (<5 dB difference). At high frequencies (from 2k to 

5k Hz), the predicted vibration has higher energy (<3dB difference) than the 

measurement for 4.5mm drops at terminal velocity, because of the error of the angle-

corrected empirical model (refer back to Figure 7.6). However, with the 3.65m 

height in Figure 8.2, the empirical model has closer agreement with the measurement 

data at high frequencies (from 1k to 5k Hz).  
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Figure 8.1. Comparison between the plate velocity prediction using SEA and FTMM (one-

third octave bands) and measurement (narrow bands and one-third octave bands) of a glass 

plate under artificial rainfall from 11.4 m.  
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Figure 8.2. Comparison between the plate velocity prediction using SEA and FTMM (one-

third octave bands) and measurement (narrow bands and one-third octave bands) of a glass 

plate under artificial rainfall from 3.65 m. 

 

The difference in the power input applied by the artificial rainfall at two 

different heights is shown in Figure 8.3. The empirical model for the dry surface 

shows better agreement with the measured mean-square velocity than the empirical 

model for a 1 mm water layer. The agreement between the measurement and the 

prediction using the dry surface angle-corrected empirical model is less than 1 dB 

between 63 and 3.15k Hz. At 4k and 5k Hz, the error is due to the empirical model 

(refer back to Figure 7.6). The finding that it is possible to predict the change in 

power input for different drop heights has practical implications for ISO 10140 [12] 

which uses a drop height of ≈3.5 m and therefore does not provide terminal velocity 

as would occur with natural rainfall. This model would allow measured data to be 

adjusted to represent artificial rain at terminal velocity. 

The measured oblique impact force (30
o
 slope) from wavelet deconvolution has 

also been used to calculate the difference in power input, which is within 1 dB of the 
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measured plate velocity difference. This confirms that for a 40 mm/h rainfall rate and 

4.5 mm drops, it is reasonable to predict the power input into 30
o
 angled glass by 

assuming a dry surface.  
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Figure 8.3. Comparison of the difference between the power input applied by artificial 

rainfall at two different falling heights (11.4 m and 3.65 m) with the difference in the 

measured mean-square velocity (spatial average). 

 

8.2.2.  Radiated sound power 

The radiated sound power has been predicted using (a) SEA with Leppington et 

al’s frequency-average radiation efficiency from Eq. 4-11, and (b) the FTMM 

method from Eq. 4-36. As discussed in Section 4.5.2, Leppington et al’s formula 

leads to ≈3 dB higher values of radiated sound power below the critical frequency 

compared to the travelling wave method (see Figure 4.5). This difference between 

the SEA and FTMM predictions is seen in Figure 8.4.  
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Figure 8.4. Comparison between the prediction of the radiated sound power from a glass 

plate using FTMM method and SEA method, and the measurement for artificial rainfall from 

11.4 m.  

 

In Figure 8.4, the prediction of the radiated sound power using the dry surface 

angle-corrected empirical model in SEA shows close agreement (<2 dB difference) 

with measurements over the frequency range from 315 to 1k Hz. The FTMM 

prediction based on the travelling wave method underestimated the radiated sound 

power below 1k Hz (<4 dB difference compared with the measurement). From 1.25k 

to 2.5k Hz (which includes the critical frequency at 2k Hz), both SEA and FTMM 

overestimate the radiated sound power assuming a dry or 1 mm water layer surface. 

Above the critical frequency from 3.15k to 5k Hz, the angle-corrected dry surface 

empirical model leads to 3 dB higher values than the measurement which is expected 

due to the error in the empirical model discussed in Section 4.5.2.  

 



 

152 

 

50 80 125 200 315 500 800 1250 2000 3150 5000

One third octave band frequency (Hz)

30

35

40

45

50

55

60

R
a

d
ia

te
d

 s
o

u
n

d
 p

o
w

e
r

 (
d

B
 r

e 
1

0
-1

2 
W

)

SEA: Angled-corrected empirical model-dry surface

SEA: Angled-corrected empirical model-1mm water layer

SEA: Measured force on 30
o
 plate-dry surface

FTMM: Angled-corrected empirical model-dry surface

FTMM: Angled-corrected empirical model-1mm water layer

FTMM: Measured force on 30
o
 plate-dry surface

Measurement  

Figure 8.5. Comparison between the prediction of the radiated sound power from a glass 

plate using FTMM method and SEA method, and the measurement for artificial rainfall from 

3.65 m. 

 

Figure 8.5 allows comparison of the predicted radiated sound power using 

FTMM and SEA and the measurement with artificial rainfall at a drop height of 3.65 

m. Below the critical frequency, the SEA model using the dry surface empirical 

model shows closer agreement with the measurement than FTMM. However, both 

SEA and FTMM overestimates the radiated sound power at the critical frequency by 

≈5 dB. Between 3.15k and 5k Hz, SEA and FTMM were similar and had <3 dB 

difference compared with the measurement. 

 Figure 8.4 and Figure 8.5 show the discrepancy between the measurement and 

prediction of the radiated sound power around the critical frequency (2k Hz). This is 

mainly due to the error of the predicted radiation efficiency as shown in Figure 8.6. 

During the measurement, the sound intensity probe was perpendicular to the glass 

surface with 150mm distance. However, sound propagates through this gap to the 

wall of the baffle box with sound absorption materials can cause the measurement 

error of the radiated sound power. Furthermore, the empirical model, damping, water 
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layer, or other possible measurement uncertainties can also cause some error in the 

predicted vibration and sound radiation of the plate.  
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Figure 8.6. Comparison of radiation efficiency of the glass plate between the prediction 

using FTMM and Leppington et al formula and the measurement using the measured 

vibration and radiated sound power.  

8.3.  Multilayer plate at 30
o
 angle 

8.3.1.  Sensitivity function and the FTMM model 

This section describes the measurement of the sensitivity function of the 

multilayer plate to assess the nearfield vibration phenomenon under point force 

excitation.  

The sensitivity function is defined here as the frequency-domain transfer 

function from point force excitation on the source side (aluminium) of the multilayer 

plate to the mean-square velocity on the receiving side (Perspex) of the plate. The 

sensitivity function has been measured using a point force at five randomly chosen 

positions to a grid of accelerometer positions (125 mm grid spacing).  

The nearfield vibration can affect the sound radiation prediction, as discussed in 

Section 4.5.3.3. To account for the point force acting over a finite circular contact 

area with radius, r, the radiated power from the nearfield can be represented by 

radiation from a piston with a radius 𝑟 + 𝜆𝐵/4 [48, 166], where 𝜆𝐵 is the bending 

wavelength. The near field radiation (also referred to as the damping effect in sound 

power radiation) can be taken into account in the radiation efficiency [132], where 
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this phenomenon is mainly significant below the critical frequency (refer back to 

Figure 4.8). The critical frequency of the Perspex plate is about 10 kHz. 

Contour plots of the velocity on the receiving side of the multilayer plate 

(Perspex) are shown for 100, 1k and 5k Hz in Figure 8.7, Figure 8.8 and Figure 8.9, 

respectively.  
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Figure 8.7. Contour plot of the velocity level (dB re 10
-9

m/s)  at 100 Hz of the receiving 

side of the multilayer plate (Perspex) with unit force excitation at the positions indicated by 

red * on the source side of the plate (aluminium).  

 

The Perspex plate is highly damped by the foam layer, such that the vibration 

energy tends to be concentrated around the excitation position at and above 1k Hz 

(rather than at 100 Hz as seen in Figure 8.7). Therefore, it is necessary to consider 

the nearfield effect in the prediction of the sound radiation between 1k Hz and 6 kHz. 
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Figure 8.8. Contour plot of the velocity level (dB re 10
-9

m/s) at 1k Hz of the receiving side 

of the multilayer plate (Perspex) with unit force excitation at the positions indicated by red * 

on the source side of the plate (aluminium).  
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Figure 8.9. Contour plot of the velocity level (dB re 10
-9

m/s)  at 5k Hz of the receiving side 

of the multilayer plate (Perspex) with unit force excitation at the positions indicated by red * 

on the source side of the plate (aluminium). 
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Figure 8.10. Comparison of the sensitivity function from FTMM and measurement of the 

multilayer plate for mean-square velocity at the receiving side (Perspex) and excitation on 

the source side of the plate (aluminium). 

 

Figure 8.10 shows comparison of the averaged transfer mobility measurement 

from five point force excitation and prediction of the sensitivity function by FTMM 

method. The difference between the prediction and the measured data is less than 

3 dB between 50 to 6k Hz, which provides validation of the FTMM model.  

8.3.2.  FTMM for the prediction of plate vibration  

In Figure 8.11, the angle-corrected empirical model with a dry surface or a 

surface with 1 mm water layer has been applied to FTMM to predict the vibration of 

the plate. The dry surface model prediction shows close agreement with the 

measurement within <4 dB. At high frequencies, the predicted vibration is expected 

to be higher than the measurement due to the error of the empirical model discussed 

in Section 4.5.2. However, for this multilayer plate, FTMM slightly overestimates 

the sensitivity function from 315 to 2k Hz and underestimates the vibration above 

4.5k Hz as shown in Figure 8.10. Therefore, there is a cancellation of errors which 

results in closer agreement between the measurement and FTMM prediction in 

Figure 8.11.  
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Figure 8.11. Comparison between the prediction of the mean-square velocity of the 

multilayer plate using FTMM incorporating the angle-corrected empirical model and 

measurements with artificial rainfall from 11.4 m.  

 

8.3.3.  Radiated sound power  

The radiated sound power from the multilayer plate is assessed using the 

measured velocity and radiation efficiency from Leppington et al formula (Eq. 4-11) 

and FTMM radiation efficiency (Eq. 4-52). These two methods are within 3.5 and 

2 dB of each other with and without consideration of the nearfield radiation 

respectively. The nearfield radiation is accounted for in the radiation efficiency as 

discussed in Section 4.5.3.3 (refer back to Eq. 4-55, where 𝜎0  is the radiation 

efficiency without nearfield that can be calculated using Leppington et al formula 

(Eq. 4-11) or the travelling wave method in FTMM (Eq. 4-52)).  

From Figure 8.12, the prediction models using Leppington et al formulae with or 

without nearfield radiation and FTMM radiation with nearfield radiation show close 

agreement with the measurement at low frequencies (within 4 dB between 80 and 

800 Hz).  When nearfield radiation is not included, the radiated sound power 

predicted using these two formulae is underestimated above 800 Hz, where the 

nearfield radiation becomes significant as discussed in Section 8.3.1.  

There is <3 dB difference between the measurement and the radiated sound 

power from the prediction model using FTMM radiation efficiency with 
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consideration of the nearfield radiation. Leppington et al formulae (Eq. 4-11) 

overestimate the radiated sound power by ≈3.5 dB over the frequency range between 

200 and 1.25k Hz.  
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Figure 8.12. Comparison of the radiated sound power from the multilayer plate between the 

measurement with artificial rainfall at 11.4 m height and the prediction using measured 

velocity and the radiation efficiency calculated from Leppington’s formula and the FTMM 

travelling wave method.  

 

Figure 8.13 shows the prediction using FTMM with the angle-corrected 

empirical model for a dry surface and surface with 1 mm water layer. The measured 

radiated sound power lies between the dry surface model and the wet surface model 

with 1 mm water layer, and it shows closer agreement with the dry surface model 

between 200 and 3.15k Hz. However, the radiated sound power is overestimated by 

≈2.5 dB from 3.15k to 5k Hz, because of the error of the angle-corrected empirical 

model at terminal velocity for 4.5 mm drops (discussed in Section 7.6).  
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Figure 8.13. Comparison of the radiated sound power from the FTMM prediction and the 

measurement with artificial rainfall at 11.4 m height.  

 

8.4.  Conclusions 

This chapter validated vibro-acoustic prediction models using SEA and FTMM 

which incorporate the empirical model to estimate the structure-borne sound power 

input into a single glass plate and a multilayer plate system from artificial rainfall. 

The angle-corrected empirical model for a dry surface shows closer agreement with 

the measurement data than for a model assuming 1 mm surface water layer.  This 

justifies the approach in the literature for rain noise which does not account for water 

on a roof surface when predicting the power input. However, for artificial rainfall at 

terminal velocity, the dry surface model overestimates the vibration and sound 

radiation of the glass plate at high frequencies (above 3.15 Hz). This is due to the 

error of the angle-corrected empirical model generated from the irregular shape of 

4.5 mm drops. 

The FTMM and SEA predictions for the vibration of a glass plate under artificial 

rainfall excitation are similar. However, the radiated sound power, the measured data 

lies between the SEA model prediction using Leppington et al formula for radiation 

efficiency and the FTMM model using spatial windowing for the radiation efficiency 

(Eq. 4-52).  
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The FTMM method is used for the prediction of vibration and sound radiation 

from a multilayer plate under artificial rainfall at terminal velocity, which is within 

2.5 dB of measurement data between 200 and 4k Hz.     

The main finding for the prediction of artificial (and natural) rainfall is that it is 

reasonable to use the angle-corrected empirical model for a dry surface rather than a 

1 mm surface water layer. This is only validated for a glass plate at a 30
o
 angle, but 

importantly this will allow measured data from laboratory measurements to ISO 

10140 at drop velocities lower than terminal velocity to be corrected to the level that 

would be expected for terminal velocity. 
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9.  Numerical experiments to simulate natural rainfall 

9.1.  Introduction 

In this chapter, the rain drop size distribution for natural rainfall has been used 

with the empirical model to calculate power injection to a horizontal glass plate 

assuming terminal velocity.  

In Section 9.2, the empirical model of impact force from 2 and 4.5 mm drops is 

extended to a distribution of raindrop sizes from 0.1 mm up to 6 mm diameter.   

In Section 9.3, the power input from natural rainfall on dry and wet glass plates 

is calculated and assessed.  

9.2.  Empirical model for different size rain drops at terminal velocity 

The empirical model from Chapter 7 cannot be used directly to estimate the 

natural raindrop impact forces because it was derived for two specific drop diameters. 

In this section, the empirical model is extended to a range of drop sizes from 

0.03 mm up to 6 mm diameter based on the factor 𝑣d
2𝐷2.   

The empirical formula for different drop diameter is assumed as a combination 

of two exponential functions: 

The first term at the right side of Eq. 9-1 has the dominant energy in the 

empirical force model, and the second term is for large rain drops correction due to 

the effect of ellipsoidal drop shape with flatten bottom. The amplitude of the force 

pulse is strongly related to the dimensionless force 𝜌w𝑣d
2𝐷2 as discussed in Section 

2.6; hence, it is reasonable to assume that the extension of the parameter C1 is a 

second order polynomial function with respect to 𝑣d
2𝐷2.  

Therefore, C1 is given by a piecewise function according to the drop diameter, 

and the terminal velocity of raindrops is used: 

where vT is the terminal velocity, which is given by an empirical equation [167]: 

𝑓(𝑡) =  𝐶1 exp [−
(ln(1000𝑡) + 1)

2

1
2 ] + 𝐶2 exp [−

(ln(1000𝑡) + 2)
2

2
2 ] 9-1 

𝐶1 = {
𝐶𝑎1(𝑣𝑇

2𝐷2)2 + 𝐶𝑎2(𝑣𝑇
2𝐷2) + 𝐶𝑎3               for 0 ≤ 𝐷 < 2 mm

𝐶𝑏1(𝑣𝑇
2𝐷2)2 + 𝐶𝑏2(𝑣𝑇

2𝐷2) + 𝐶𝑏3        for 2 mm ≤ 𝐷 ≤ 6 mm
 9-2 

𝑣T = 9.58{1 − exp [− (
𝐷

1.77
)
1.147

]} 9-3 
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where D is the drop diameter in millimetres. 

From the empirical model given by Eq. 7-1 and Eq. 7-12, the parameter C is 

given for 2 and 4.5 mm drop diameters with different falling velocity (including the 

terminal velocity). Additionally, for 0mm drops, the amplitude of the impact force is 

set to zero 𝐶1|𝐷=0 = 0.  The empirical formula can now be extended to all drop sizes 

up to 6mm diameter from the 0, 2 and 4.5 mm drops formulae. As shown in Figure 

9.1, the blue and red solid lines correspond to 2 and 4.5 mm drops respectively using 

the empirical models at different velocities (see Table 7-1 and Table 7-3 for 2 mm 

drops, Table 7-2 and Table 7-4 for 4.5 mm drops). Black dashed-dotted and dashed 

lines correspond to the second order polynomial curve fit of C1 respected to 𝑣𝑑
2𝐷2 

from 2 and 4.5 mm drops respectively.  

10-5 10-4 10-3 10-2

v2D2

10-2

10-1

100

101

102

C
1

(-
)

d

Blue line: C1(vd
2D2) 

from 2mm drops

Red line: C1(vd
2D2) 

from 4.5mm drops

Black dashed line: 

0.5490×10-6 (vd
2D2)2+0.8130×10-3(vd

2D2)

Black dashed-dotted line: 

0.8124×10-6 (vd
2D2)2+0.2436×10-3(vd

2D2)

 

Figure 9.1. Determination of parameter C1 for the dry surface. 

 

1  and 
1

 can also be determined using the same process as 𝐶1  using the 

empirical model from 2 and 4.5 mm drops by a linear regression respected with D:   

 The correction term in Eq. 9-1 is concerned for large drops (𝐷 > 2.5 mm in 

this section) 

1 = 0.2982𝐷 + 1.9948 


1
= 0.2064𝐷 + 0.573 

9-4 
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Due to the lack of data for drop diameters above 4.5 mm, 𝐾4.5, 2 and 
2
 use 

the empirical model for 4.5 mm drops at terminal velocity (see Table 7-2). The 

parameters of Eq. 9-1 are given in Table 9-1. 

 

Table 9-1. Parameters of the empirical model for the impact force of any raindrop 

diameter at terminal velocity. 

 

From Eq. 9-1 and the parameters in Table 9-1, the impact force for a dry surface 

can be obtained as shown in Figure 9.2. The highest dimensionless force for a 3 mm 

water drop is slightly lower than the 2 mm drops. This is because of the slight 

overestimation of 2 mm drop impact force from the empirical model. However, the 

highest dimensionless force for a 2 mm drop is 0.9±0.2 according to [168]; hence it 

is assumed to be a reasonable representation. 
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Figure 9.2. Dimensionless impact force applied by different size rain drops at terminal 

velocity from the empirical model and the paraboloidal drop shape model. 

 𝐶2 = {
0                                               for 0 ≤ 𝐷 < 2.5 mm

𝐾4.5
𝑣𝑇

2𝐷2|
𝐷=4.5

−𝑣𝑇
2𝐷2|

𝐷=2.5

𝑣𝑇2𝐷2|𝐷=4.5−𝑣𝑇2𝐷2|𝐷=2.5
           for 2.5 mm ≤ 𝐷 ≤ 6 mm

 9-5 

Water depth, 

d (mm) 

Ca1 Ca2 Ca3 Cb1 Cb2 Cb3 𝐾4.5 2 2 

0 5.49E-07 8.13E-04 0 8.12E-07 2.44E-04 0.1107 0 0 0 

1 2.87E-07 8.77E-04 0 3.24E-07 7.29E-04 0.0125 1.5693 2.8439 0.4645 

2 -4.45E-08 9.03E-04 0 3.52E-07 6.36E-04 0.0362 1.2078 2.8984 0.509 

4 -7.84E-08 9.60E-04 0 3.51E-07 5.75E-04 0.0559 1.222 2.8479 0.4787 

6 1.96E-07 9.64E-04 0 3.13E-07 6.38E-04 0.0454 1.125 2.7873 0.4403 

8 9.38E-07 1.26E-03 0 2.31E-07 9.29E-04 0.0045 1.1008 2.7408 0.4726 

10 3.96E-07 1.20E-03 0 2.87E-07 6.61E-04 0.0457 0.9756 2.5934 0.4141 



 

164 

 

9.3.  Power input from natural rainfall 

This section assessed the power input from natural rainfall to a horizontal dry 

glass plate with the same rainfall rate as the artificial rainfall described in [7, 12]. 

The natural rainfall has a statistical distribution of raindrop diameters by Marshall 

and Palmer [13] as discussed in Section 2.2. Using the raindrop diameter distribution 

and the force equations from the empirical model, the power input can be calculated. 

Figure 9.3 shows the power input from rain drops at three different rainfall rates 

(heavy, intense and moderate rainfall according to [12]) impacting on a horizontal 

dry 6 mm glass plate using the empirical model and the idealized paraboloidal drop 

shape model and the Mitchell et al model. As shown in Figure 9.3, all three models 

are within 1.5 dB of each other below 1.6k Hz. The empirical model has less low 

frequency energy for moderate and intense natural rainfall than the paraboloidal 

model and Mitchell et al model. This is possibly because the small drops dominates 

the impact energy and the empirical model for small drops has less low-frequency 

energy than the paraboloidal drop shape model and Mitchell et al model.  

However, at high frequencies, the empirical model predicts a higher power input 

than the paraboloidal drop shape model and the Mitchell et al model. This is because 

the high frequency energy introduced by large raindrops is underestimated by the 

paraboloidal drop shape model as it does not consider the spreading lamella effect. 

Although the Mitchell et al model was seen to give a reasonable representation of the 

time domain force (refer back to Figure 7.1), the spherical drop shape is assumed in 

their theory which is not suitable for large raindrops at terminal velocity with a 

flattened bottom (as discussed in Section 2.6 and 7.3). At high frequencies, the 

difference between the empirical model, paraboloidal drop shape model or the 

Mitchell et al model increases when the rainfall rate increases, because the energy 

from larger drops becomes dominant when the rainfall rate increases.  
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Figure 9.3. Power input from rain drops with different natural rainfall rates onto a 

horizontal dry glass plate.  

 

Figure 9.4 shows the power input from rain drop impact at different rainfall rates 

on a glass plate with different depths of water layer. The water layer can increase the 

low frequency component of the power input and decrease the high frequency 

component, as discussed in Chapter 4. Note that with the water layer, lower rainfall 

rates can reach and even exceed the power input level from higher rainfall rates at 

low frequencies (i.e. below 500 Hz).  

Note that the simulation results of wet surfaces shown in Figure 9.4 consider the 

initial impact power and not features after the initial impact such as ripples, splash, 

and bubble entrainment (as discussed in Section 6.4).  
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Figure 9.4. Power input from different natural rainfall rates a) heavy rain, b) intense rain 

and c) moderate rain, onto a glass plate with different water layer depths. 
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The distribution of power input from different raindrop sizes is estimated by 

calculating the power input ratio density using the empirical model. In this estimation, 

the power input ratio density is defined as the ratio of power input by a number of 

raindrops within a chosen diameter step 𝛿𝐷 (𝛿𝐷 is assumed to be 0.03mm in this 

prediction model): 

 The power input distribution varies for different frequencies, different rainfall 

rates and different water layer depths. In Figure 9.5, 50 and 5k Hz are used to assess 

the low frequency and high frequency power input distribution respectively. It is seen 

that the power input from raindrops with diameter D<1 mm is negligible for these 

three different rainfall rates with or without consideration of water layer. For heavy 

natural rainfall, the combined power input from the large raindrops (3 mm<D<6 mm) 

is dominant at both 50 and 5k Hz with or without water layer (1 and 2 mm) 

compared to small raindrops (D<3 mm), although the number of large raindrops is 

less than the small ones; whereas for moderate rain, small raindrops introduce more 

power than large raindrops, as shown in Figure 9.5. 

On a dry surface, the power input distribution at 50 Hz is similar to 5k Hz for the 

three different rainfall rates. For moderate rainfall, the power input is mainly 

determined by a range of raindrops with 1.5 to 3.5 mm diameters. When the rain fall 

is intense or heavy, the number of large drops (D>3 mm) increases significantly to 

dominate the power input to the structure.  

The existence of a 1 or 2 mm water layer on the glass surface gives rise to 

different power input distributions at 50 and 5k Hz. At 5k Hz, power is dominated by 

2.5 to 4 mm drops for moderate rainfall. The reason that the distribution curve shifts 

to larger drop size is because the water layer reduces the high frequency power for 

smaller drops.  

ℛ𝑊 =
𝑊in,𝛿𝐷

𝛿𝐷𝑊in,total
 9-6 
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Figure 9.5. Power input ratio density distribution for different size drops and different water 

layer depth. 

 

9.4.  Conclusions 

This chapter described numerical experiments to quantify the power input from 

natural rainfall. The empirical model based on the measurement of 2 and 4.5 mm 

drops with different velocities was modified to account for drop sizes ranging from 

0mm to 6mm diameter. The empirical model has been used to predict the power 

input of natural rainfall at three different rainfall rates (heavy, intense and moderate 

rainfall) onto a horizontal glass plate with or without water layer.  

For the dry surface, the empirical model prediction has <1.5 dB difference below 

1.25k Hz compared with the paraboloidal drop shape model and Mitchell et al model. 

At higher frequencies above 1.6k Hz, the empirical model has higher power input 

prediction than the other two models, especially for heavy rainfall due to neglecting 

the lamella effect in the paraboloidal drop shape model and the inaccuracy of the 

assumption of a spherical drop shape in the Mitchell et al model.  
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A thin layer of water gives rise to increased power input from natural rainfall at 

low frequencies (<500 Hz), and decreased power input at high frequencies.   

For heavy, intense or moderate natural rainfall, the power input from raindrops 

with diameter D<1 mm is negligible with or without a water layer. For heavy natural 

rainfall, the power input from the large raindrops (3 mm<D<6 mm) is dominant at 

both 50 and 5k Hz with or without water layer (1 and 2 mm) compared to small 

raindrops (D<3 mm); whereas for moderate rain, small raindrops introduce more 

power than large raindrops. 
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10.  Conclusion and further work 

10.1.  Conclusions 

The time-dependent force applied by a liquid water drop with 2mm and 4.5mm 

diameter impacting a glass plate (at normal and oblique angles) at a range of drop 

velocities when the plate is dry and with a shallow water layer has been 

experimentally quantified using wavelet deconvolution of accelerometer signals in 

order to overcome limitations of other measurement techniques.  

For drops on dry glass, the peak force increases and the pulse width of the 

impact force decreases with increasing drop velocity. Wavelet deconvolution was 

validated by its close agreement with force transducer measurements in the 

frequency domain. For drops on a shallow water layer, high-speed camera images 

were used to identify distinct features relating to the splash that apply forces on the 

plate that occur after the initial impact, such as the crater, crown, and jet as well as 

bubble entrainment underneath the surface of the water. This leads to measurement 

problems when using a force transducer with contained water layer because some 

features of the splash such as crater formation and outgoing capillary waves are no 

longer representative of the natural phenomena. Analysis of the measurement errors 

indicates that the wavelet approach can be used to estimate forces applied by the 

crater, crown, jet, vortex ring, or oscillating bubbles within 1 dB. However, there will 

be some low-level forces that cannot be accurately determined such as those from 

rebounding drops falling far from the original impact position, or capillary waves 

propagating away from the crater; fortunately their low-level makes them of little 

relevance for the purpose of noise control in cars and buildings. For 2 mm drops 

falling on 6, 8, and 10 mm layers, bubbles are regularly entrained in the water layer. 

Whilst the force from the initial impact tends to be significantly higher than the 

bubble-induced force below 200 Hz, the bubble-induced force above 700 Hz tends to 

become significantly higher than that from the initial impact with high peak levels at 

or above 6.5k Hz. Whilst these high forces from entrained bubbles are noteworthy, 

they are less critical when evaluating rain noise because water layers on roof 

elements are typically <6 mm deep and the radiated sound only tends to be assessed 

at frequencies below 6.5k Hz. 

When the response signal has low SNR value (<10 dB), wavelet deconvolution 

becomes less robust and results in a significant estimation error. This occurred for 



 

171 

 

the 2mm drop at the lowest drop velocity (2.57 m/s). To overcome this problem, the 

sparse representation method was used to improve the estimation accuracy and 

preserve the shape edge in the initial phase of the impact. It is shown that the l0-norm 

regularization is better in edge-preserving and noise suppression than l1-norm 

regularization for single drop impact when the optimal wavelet basis has been 

selected (coif1). When there is a sufficiently high SNR (>15 dB), the wavelet 

deconvolution, sparse representation and the force transducer measurement have 

<1.6 dB difference for the initial impact force estimation on a dry surface.  

The validity of theoretical models has been assessed through comparison with 

experimental data for the water drop impact force prediction on a dry surface. At 

relatively high velocities (including terminal velocity) the measured peak force is 

significantly higher than predicted by all the paraboloidal, cylindrical-hemispherical, 

spherical, and ellipsoidal drop shape models, and the model from Roisman et al 

which takes the lamella into account gives no significant improvement in the 

predicted force particularly for 4.5 mm drops. The inability of these prediction 

models to describe the time-dependent force provided the motivation to develop 

empirical formulae.  

Empirical formulae were developed for 2 and 4.5 mm drops falling at (a) 

different velocities up to and including terminal velocity onto a dry glass surface, (b) 

terminal velocity onto dry glass or glass with a shallow water layer up to 10 mm and 

(c) different velocities below terminal velocity onto dry glass or glass with a shallow 

water layer up to 10 mm. This allowed the errors to be minimised for different 

applications. For drops on dry glass, the empirical formulae are only strictly 

applicable to a glass plate or a composite layered plate with a glass surface, although 

they apply to any other thickness of plate. All the empirical formulae can reasonably 

be applied to any plate material with a similar surface roughness and wettability. The 

empirical model determined from the sparse representation measurement has < 0.4dB 

difference compared with the model from the wavelet deconvolution measurement 

data. Therefore, the empirical formulae from the wavelet deconvolution 

measurement can be used for rain noise prediction. The empirical model correction 

for the impact of a drop on an angled plate is accounted by using the perpendicular 

velocity component. The difference between the wavelet measurements and the 

angle-corrected empirical formulae are not significantly larger than the flat plate 
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below 1k Hz. For 4.5mm drops impact at terminal velocity on a plate with 30
o
 slope, 

the error of the angle-corrected empirical model is <±1 dB between 12.5 and 2k Hz, 

and <±5 dB between 2k and 5k Hz.  

Numerical models have been validated via experiments using SEA and FTMM 

which incorporate the empirical model to estimate the vibration and sound radiation 

from a glass plate and a multilayer plate (plate-limp porous material-plate). The 

angle-corrected empirical model for a dry surface showed closer agreement with 

measurements than the wet surface model, apart from high-frequencies (above 3.15k 

Hz) due to the non-spherical shape of 4.5 mm drops at terminal velocity. FTMM 

prediction for the vibration prediction of a glass plate under artificial rainfall 

excitation was similar to the SEA model. However, for the radiated sound power 

prediction, the measured data is between the SEA model prediction using Leppington 

et al’s formula for radiation efficiency and the FTMM model using the spatial 

windowing for radiation efficiency. The FTMM method is also used for the 

prediction of vibration and sound radiation from a multilayer plate under artificial 

rainfall at terminal velocity, which is within 2.5 dB of measurements between 200 

and 3.15k Hz.     

Natural rain noise has been assessed using numerical experiments. The empirical 

model based on the measurement of 2 and 4.5 mm drops with different velocities has 

been developed for natural rain drop sizes from 0.03 to 6 mm diameter. The 

Marshall-Palmer distribution has been used to predict the power input from natural 

rainfall into a 6mm glass plate. This shows that the water layer can significantly 

increase the power input at low frequencies and reduce the high frequency power 

input. It also allows an assessment of what raindrop diameters are responsible for 

injecting the most power at different frequencies. 

10.2.  Further work 

10.2.1.  Force applied by raindrops with a horizontal velocity component 

For raindrops impacting on car windscreens when the car is in motion and wind 

driven rainfall impacting on the facade of a building, the impact force will be 

affected by the horizontal velocity component that could also determine the drop 

shape. Building on the work in this thesis, laboratory experiments could also use 

the wavelet approach for drops released under horizontal airflow. However, the 
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experimental validation of wind driven rain under different wind speeds could 

be challenging if the airflow generated by a fan caused signal to noise problems on 

the plate  

10.2.2.  Energy harvesting of raindrops 

Energy Harvesting (EH) is a process whereby energy is derived from external 

sources (such as solar, wind or other means) captured and stored for micro to macro 

level applications. EH from the impact of raindrops has attracted significant research 

interest over recent years, and the potential still has not been fully unlocked. To the 

author’s knowledge, the maximum output reached experimentally using Piezoelectric 

devices is 12 mW as detailed in [9], which is less than 1% of the raindrop kinetic 

energy. Using the energy harvesting equipment could capture clean and renewable 

energy from raindrops, but could also reduce the vibration level of the structure by 

applying the damping to the structure essentially. The empirical model proposed in 

this thesis can help estimate the efficiency of EH and optimize the properties of the 

structure (e.g. glass plate) to compromise the trade-off between the harvested energy, 

the structural vibration and noise radiation.   
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11.  Appendices  

Appendix A: baffle box diagrams 

The baffle box is made of chipboard with 18mm thickness. The air gap between 

the internal and external box is 12mm.  
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