

Figure 1

For each sample,
$s=1, \ldots, S$, a list
containing CDR3
amino acid sequences from the t cell receptor repertoire, \mathbf{x}_{s}.

The parameter value of k; on current data sets this has been optimised at $k=5$.

Value of parameter \mathbf{p}; on current data sets this has been optimised as $\mathbf{p}=2,3,4$, note the first prinicipal component is excluded since this captures between batch variability.

The lists $\mathbf{x}_{1}, \ldots, \mathbf{x}_{S}$ will contain repeat sequences and will vary in length, whereas \mathcal{K} contains only unique substrings of length k contained in $\mathbf{x}_{1}, \ldots, \mathbf{x}_{S}$

Scale the number of times the k-mer is observed in the sample by the total number of k-mers observed in that sample, this accounts for different sequencing depths per sample.

Transforms the data onto a new coordinate system, whereby the first principal component contains the greatest variance

Only using the subset of the PCs given by \mathbf{p} to reduce dimensionality whilst retaining the main variation. This clustering method builds up a tree of clusters by iteratively merging those which have the smallest increased variance.

Figure 2a

Identify the set of all k-mers contained in x_{1}, \ldots, x_{S}; this set has K elements and is denoted $\mathfrak{K}=\left\{k_{1}, \ldots, k_{K}\right\}$

Calculate the $S \times K$ k-mer frequency matrix, M, where for subject i, and k mer $j, M_{i j}$ is the number of times k-mer j appears in $\boldsymbol{x}_{\boldsymbol{i}}$, scaled by the total number of k-mers in $\boldsymbol{x}_{\boldsymbol{i}}$:

$$
M_{i j}=\frac{\sum_{l} I_{x_{i l}=k_{j}}}{\sum_{l} \sum_{m} I_{x_{i l}=k_{m}}}
$$

and I is the indicator function.

Figure 2 b

Figure 2c

Figure 3a

Tissue_CD_N_kmers_4_TRG_with_DQ PCs 4 to 8 Score 0.58

Figure 3b

Figure 3c

Tissue_CD_N_kmers_6_TRG_with_DQ PCs 4 to 8 Score 0.77

Figure 3d

Figure 3e

Figure 3 f

All Combined_kmers_12_TRG_thirds PCs 4 to 8

Figure 3g

Figure 4a

Tissue_CD_N_kmers_5_TRG_with_DQ PCs 6 to 7 Score 0.79

Figure 4b
kmer_matrix_5mers PCs 4 to 8

Figure 5

All Combined_kmers_5_TRG PCs 4 to 8

Figure 6a

Figure 6b

PC_6_7_kmerMatrix_B_Filtered_4mers

Figure 7a

Figure 7b

Figure 7c

3mers PCs 1 to 2_0.85

Figure 7d

Tissue_CD_N_kmers_5_TRG_with_DQ PCs 5 to 7 Score 0.65

Figure 8

Figure 9

Figure 10

Figure 11a.

IBD_N_kmers_6_TRG PCs 3 to 5_0.93

Figure 11b

Figure 11c

IBD_N_kmers_5_TRB PCs 8 to 9_0.83

Figure 12

Figure 13

Figure 14

Figure 15.

Principal components	Score (kmers without positional annotation)	New sample prediction accuracy (without positional annotation)	Overall Accuracy (k-mers without positional annotation)	Score (kmers with positional annotation)	New sample prediction accuracy (with positional annotation)	Overall Accuracy (k-mers with positional annotation)
1 to 2	0.778	1.00	0.806	0.815	1.00	0.839
1 to 3	0.833	1.00	0.855	0.833	1.00	0.855
1 to 4	0.870	1.00	0.887	0.833	1.00	0.855
1 to 5	0.815	1.00	0.839	0.852	1.00	0.871
1 to 6	0.889	1.00	0.903	0.889	1.00	0.903
1 to 7	0.926	1.00	0.935	0.889	1.00	0.903
1 to 8	0.926	1.00	0.935	0.907	1.00	0.919
1 to 9	0.889	1.00	0.903	0.907	1.00	0.919
1 to 10	0.907	1.00	0.919	0.907	1.00	0.919
2 to 3	0.759	1.00	0.790	0.796	1.00	0.823
2 to 4	0.796	1.00	0.823	0.833	1.00	0.855
2 to 5	0.796	1.00	0.823	0.852	1.00	0.871
2 to 6	0.852	1.00	0.871	0.870	1.00	0.887
2 to 7	0.889	1.00	0.903	0.870	1.00	0.887
2 to 8	0.926	1.00	0.935	0.907	1.00	0.919
2 to 9	0.926	1.00	0.935	0.907	1.00	0.919
2 to 10	0.926	1.00	0.935	0.907	1.00	0.919
3 to 4	0.759	1.00	0.790	0.759	1.00	0.790
3 to 5	0.815	1.00	0.839	0.852	1.00	0.871
3 to 6	0.852	1.00	0.871	0.833	1.00	0.855
3 to 7	0.889	1.00	0.903	0.852	1.00	0.871
3 to 8	0.926	1.00	0.935	0.926	1.00	0.935
3 to 9	0.926	1.00	0.935	0.907	1.00	0.919
3 to 10	0.944	1.00	0.952	0.907	1.00	0.919
4 to 5	0.796	1.00	0.823	0.852	1.00	0.871
4 to 6	0.870	1.00	0.887	0.852	1.00	0.871
4 to 7	0.870	1.00	0.887	0.852	1.00	0.871
4 to 8	0.944	1.00	0.952	0.926	1.00	0.935
4 to 9	0.926	1.00	0.935	0.926	1.00	0.935
4 to 10	0.907	1.00	0.919	0.907	1.00	0.919
5 to 6	0.796	1.00	0.823	0.815	1.00	0.839
5 to 7	0.833	1.00	0.855	0.815	1.00	0.839
5 to 8	0.907	1.00	0.919	0.907	1.00	0.919
5 to 9	0.907	1.00	0.919	0.907	1.00	0.919
5 to 10	0.907	1.00	0.919	0.926	1.00	0.935
6 to 7	0.833	1.00	0.855	0.852	1.00	0.871
6 to 8	0.907	1.00	0.919	0.907	1.00	0.919
6 to 9	0.907	1.00	0.919	0.907	1.00	0.919
6 to 10	0.889	1.00	0.903	0.889	1.00	0.903
7 to 8	0.833	1.00	0.855	0.852	1.00	0.871
7 to 9	0.852	1.00	0.871	0.889	1.00	0.903
7 to 10	0.852	1.00	0.871	0.852	1.00	0.871
8 to 9	0.815	1.00	0.839	0.852	1.00	0.871
8 to 10	0.852	1.00	0.871	0.833	1.00	0.855
9 to 10	0.796	1.00	0.823	0.796	1.00	0.823

Figure 16.

Figure 17a.

Figure 17b.

Figure 17c.

Figure 17d.

Figure 18

