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Opportunistic Treating Interference as Noise
Xinping Yi, Member, IEEE and Hua Sun, Member, IEEE

Abstract—We consider a K-user interference network with
M states, where each transmitter has up to M messages and
over State m, Receiver k wishes to decode the first πk(m) ∈
{1, 2, · · · ,M} messages from its desired transmitter. This prob-
lem of channel with states models opportunistic communications,
where more messages are decoded for better channel states. The
first message from each transmitter has the highest priority as it
is required to be decoded regardless of the state of the receiver;
the second message is opportunistically decoded if the state allows
a receiver to decode 2 messages; and the M -th message has the
lowest priority as it is decoded if and only if the receiver wishes to
decode all M messages. For this interference network with states,
we show that if any possible combination of the channel states
satisfies a condition under which power control and treating
interference as noise (TIN) are sufficient to achieve the entire
generalized degrees of freedom (GDoF) region of this channel
state by itself, then a simple layered superposition encoding
scheme with power control and a successive decoding scheme
with TIN achieves the entire GDoF region of the network with
M states for all KM messages.

Index Terms—Gaussian interference channel, generalized de-
grees of freedom (GDoF), opportunistic communications, treating
interference as noise (TIN).

I. INTRODUCTION

Opportunistic communication refers to the opportunistic
utilization of channel resources and the adaptation to network
dynamics for efficient data transmission. The early study in
this regard dates back to downlink multiuser scheduling in
time-varying wireless channels [1], [2]. By opportunistically
beamforming towards the user with the best channel, the
base station exploits the multiuser diversity gain [1] so as
to maximize the overall system throughput [2]. A similar idea
has also been explored in cognitive radio systems for dynamic
spectrum management [3], [4], in which the secondary users
are assisted to access the spectrum licensed to the primary users
opportunistically, in order to ensure efficient communication of
secondary users without worsening the performance of primary
users.

While existing opportunistic communication techniques are
mainly placed at the transmitter side, the focus of this work is
on opportunistic decoding at the receiver side, exploiting the
benefits of varying decoding capabilities in dynamic networks.
When the channel condition is better, we wish to take this
advantage and achieve a higher communication rate, while
if the channel condition turns out to be bad, we will lower
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the expectation but a certain basic communication rate is
still guaranteed. From the information theoretic perspective,
this problem is typically modeled as communicating several
message sets over a channel with states, where the base
message set (corresponding to the basic communicate rate)
must be transmitted successfully regardless of the state, and
the opportunistic message set (corresponding to the higher
communication rate) will also go through for a better channel
state. Such formulations have been previously studied in the
context of a broadcast strategy over a slow fading channel for
single-user multiple-antenna [5] and multiple-access communi-
cations [6], [7] from an achievable rate perspective, a single-
user slow fading channel with multiple antennas from an outage
probability perspective (diversity-multiplexing tradeoff) [8], and
a two-user bursty interference channel (where interference is
not present for the better channel state) from an approximate
capacity perspective [9]–[11].

In this work, we go beyond two users and consider a general
K-user Gaussian interference network, albeit with specific
restrictions on the channel strength. In particular, we are
interested in a broad regime where the simple and practical
strategy of treating interference as noise (TIN) has been shown
to be approximately optimal in the sense that the generalized
degrees of freedom (GDoF) region is achieved by TIN [12].
The optimality of TIN has since been explored beyond the
regular interference channel, to X message sets [13] (where
each transmitter has a message for each receiver), to the parallel
channel setting [14], [15] (where each user pair is connected by
a number of parallel channels), to the compound channel setting
[16] (where there is only one message for each user pair and the
message must be reliably decoded regardless of the realization
of the compound state), to the interfering multiple access
channel setting [17], [18] (where each receiver has multiple
paired transmitters carrying independent messages), and to the
interfering broadcast channel setting (where each transmitter
has multiple paired receivers requesting messages). Besides the
characterization of GDoF regions, another important problem
on power control has been considered in [16], [20], where a
number of low-complexity power allocation algorithms were
proposed. Inspired by the TIN optimality conditions, efficient
distributed link scheduling mechanisms were proposed in [21],
[22] for spectrum sharing in device-to-device communications,
demonstrating an interesting translation from theory to practice.

A. Motivating Example

We are inspired by the observation that TIN naturally fits
the opportunistic communication scenario, illustrated in the
following example. Consider a 3-user interference channel with
2 states, as shown in Fig. 1. In the first state, the network is fully
connected and the channel strength for each link is depicted
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(the channel strength is measured in dB scale. For a detailed
explanation, refer to the system model section). In the second
state, each receiver only sees one interfering transmitter (due
to, say, time-varying channel statistics), i.e., the red dashed
interfering links are not present (e.g., Receiver 1 is interfered
only by Transmitter 2, but not by Transmitter 3). Both states
are in the regime where TIN is optimal [12].
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Fig. 1: A 3-user interference network with 2 states where the dashed
red interfering links are not present in the second (better) state. Over
the second state, the opportunistic message set (∆W1,∆W2,∆W3)
is sent in addition to the base message set (W1,W2,W3). The
transmitted power levels of the messages and the interference power
levels are shown. At the receiver side, to the right of the blue vertical
line (labelled as S1), we have the interference power level for the
fully connected state and to the left (labelled as S2), we have the
interference power level for the partially connected state. The exposed
signal levels are exploited to send the opportunistic message set.

We wish to send 3 messages (W1,W2,W3) (Wi for the i-th
user pair) over the first state and the associated GDoF tuple for
the messages is (d1, d2, d3) = (1.5, 0.3, 0.7). A TIN scheme
that achieves this GDoF tuple is shown in Fig. 1, where the
transmit power levels and the received interference power levels
are explicitly shown (the power levels are measured in dB scale
as well). For example, W2 is sent at power level −0.2 so that it
is received at Receiver 2 at power level −0.2+1 = 0.8 (where
1 is the channel strength from Transmitter 2 to Receiver 2)
and it is received at Receiver 1 at power level −0.2 + 0.2 = 0.
From Fig. 1, it is easy to verify that the desired GDoF value
is achieved at each receiver by TIN (the interference power
level is lower than that of the desired message by the exact
amount of the GDoF value).

Next we consider the performance of the same scheme over
the second state (the better state with less interference). We
notice that because some interfering links become missing,
some signal levels that were occupied by interference are left
interference-freely. For example, consider Receiver 2, where
previously the interference power level was 0.5 (caused by
Transmitter 1). Now as the interfering link from Transmitter 1
is not present, the interference power level drops to 0 (caused
by Transmitter 3). In other words, the signal level from power
0 to 0.5 is now clean and we may naturally use this signal
level to send the opportunistic message ∆W2 to achieve the
GDoF value of ∆d2 = 0.5 (see the red tilted rectangle in Fig.

1). Note that this will not influence the base message set as
the exposed signal level is always lower than that of the base
message set and the opportunistic message will not increase
the interference power level at undesired receivers. Similarly,
Transmitter 1 will send ∆W1 with the exposed signal level
to achieve ∆d1 = 0.5 (see the red dotted rectangle in Fig. 1).
While for Receiver 3, its interference level is not decreased
even if the interfering link from Transmitter 1 disappears,
leaving no room for ∆W3 so that the opportunistic message
for Transmitter 3 will not be sent. To decode the opportunistic
message, each receiver first decodes the base message and then
successively proceeds to decode the opportunistic message,
both by TIN. To summarize, we have achieved the GDoF tuple
of (∆d1,∆d2,∆d3) = (0.5, 0.5, 0) opportunistically.

From this example, we see that the key idea of our achievable
scheme is to superpose the opportunistic message set over
the base message set, using the largest power that is not
exploited yet, to fulfill the interference-free signal level that is
opportunistically exposed due to the decrease of interference
strength. We may vary the power levels and the GDoF tuple
for the base messages arbitrarily. A natural question is: is
this scheme - superposition encoding with power control
and successive decoding with TIN - information theoretically
optimal? We answer this question in the affirmative in this
paper and explore the general channel conditions under which
the proposed scheme is optimal.

B. Main Contribution

Interestingly, the natural scheme of superposition encoding
and successive decoding with TIN is information theoretically
optimal for a broad set of channel conditions and a broad
class of message setting. Specifically, we consider a K-user
interference network with M states, where each transmitter
has up to M messages ordered by their importance (where the
first message is the most important and the M -th message is
the least important), and each receiver will decode the first
π ∈ {1, 2, · · · ,M} messages (π might differ across channel
states and across receivers).

As the main result of this work, we show that if all sub-
networks (given by the K transmitters and K receivers from
possibly different states) of the K-user interference network
satisfy the TIN-optimality condition identified in [12], then
for arbitrary realizations of π (arbitrary decoding thresholds
across the states and the receivers), the simple scheme of
layered superposition coding with TIN achieves the entire
GDoF region.

We begin by defining the notations.
Notations: For an integer N , we define [N ] , {1, 2, . . . , N}

when referring to an integer set, while we specify it
as the m-th state, when [m] appears in the superscript.
Given n ∈ [N ], we denote by {a(n)}n a set of a(n)
with all n for notational brevity unless otherwise spec-
ified, i.e., {a(n)}n , {a(1), a(2), . . . , a(N)}, and sim-
ilarly {a(m,n)}m,n given m ∈ [M ] and n ∈ [N ]
is a set with MN elements, i.e., {a(m,n)}m,n ,
{a(1, 1), a(1, 2), . . . , a(1, N), a(2, 1), . . . , a(M,N)}. We also
denote by a([n1 : n2]) a subset of a(n) with n1 ≤ n ≤ n2,
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i.e., a([n1 : n2]) , {a(n1), a(n1 + 1), . . . , a(n2)}. For a set
{a(n)}n, we use ({a(n)}n) to specify a tuple consisting of
the elements from the set {a(n)}n, for which the order of the
elements in the tuple does matter. For notational brevity, (·) is
omitted sometimes if no confusion is caused.

II. SYSTEM MODEL

A. Gaussian Interference Network with States

Consider the K-user single-antenna Gaussian interference
network with M states. The received signal for Receiver k
over the t-th channel use when the network falls into the m-th
state is given by

Y
[m]
k (t) =

K∑
i=1

h
[m]
ki X̃i(t) + Z

[m]
k (t), ∀k ∈ [K],∀m ∈ [M ]

(1)
where h[m]

ki is the channel coefficient from Transmitter i to
Receiver k at the m-th state, and X̃i(t) is the transmitted
signal from Transmitter i over all states. The K2-ary channel
coefficients tuple at the m-th state ({h[m]

ki }k,i) is taken from
a finite set H, and is fixed within each state but can vary
across states. The additive white Gaussian noise (AWGN) for
Receiver k over the t-th channel use Z [m]

k (t) has zero mean
and unit-variance. The AWGN processes at all receivers are
i.i.d. over time.

The set of channel coefficients H over all M states is
available at all transmitters and receivers. Over different
states, a possibly different set of messages is required to be
communicated reliably (as detailed below). An interpretation1

of this channel model with states is that the M states represent
the channel uncertainty at the transmitters. The transmitters
know that the channels could be in any one of the M states, but
otherwise has no knowledge about which state the network falls
into exactly. However, the transmitters wish to communicate
opportunistically, i.e., if the network turns out to be in a better
state, more messages are communicated. The receiver is aware
of the exact state of the network and depending on the state,
he will choose which set of messages to decode. A detailed
description of the encoding and decoding operations is as
follows.

Encoding: Each Transmitter i has a set of independent
messages {W [m]

i }Mm=1, each of which is uniformly distributed
over the message index set W [m]

i , {1, 2, . . . , d2nR
[m]
i e}.

These messages are jointly mapped to the codeword {X̃i(t)}nt=1

(abbreviated as X̃n
i ∈ Xni ) that is transmitted over n chan-

nel uses, and is subject to the average power constraint,∑n
t=1 E

[
|X̃i(t)|2

]
≤ nPi where the expectation is over all the

candidate messages. The message-to-codeword mapping for
Transmitter i (i ∈ [K]) is described by the following encoding
function,

fi :
∏M
m=1W

[m]
i 7→ Xni . (2)

Note that a single encoding mapping is used at each transmitter.

1Equivalently, this channel model with states represents a multicast scenario
where each state has a different set of K receivers and the receivers across
different states have different decoding requirements.

Decoding: Suppose the channels are at the m′-th state. For

Receiver k, the received signal {Y [m′]
k (t)}nt=1 (abbreviated as

Y nk,m′ ∈ Y
[m′]
k ) is used to produce the estimates {Ŵ [m]

k }
πk(m

′)
m=1

of the messages {W [m]
k }

πk(m
′)

m=1 . Among these messages, W [1]
k

is referred to as the basic message that must be decoded
at any state, and

{
W

[m]
k ,m ∈ {2, . . . , πk(m′)}

}
are the

additional messages to be opportunistically decoded, referred
to as “opportunistic messages”. The total number of messages
πk(m′) to be decoded by Receiver k at the m′-th state is
fixed and globally known. πk(m′) can be any number in
[M ] so that (πk(1), · · · , πk(M)) ∈ [M ]M . In other words,
at State m′, from Y nk,m′ we need to decode degraded messages

W
[1]
k ,W

[2]
k , · · · ,W [πk(m

′)]
k . Thus, the decoding function for

Receiver k (k ∈ [K]) at the m′-th state is given by

g
[m′]
k : Y [m′]

k 7→
∏πk(m

′)
m=1 W [m]

k , ∀m′ ∈ [M ]. (3)

Note that the decoding functions g[m
′]

k can be distinct for differ-
ent states m′. Fig. 2 gives an example of a 3-user network with
3 states, where for Receiver 1 π1(1) = 2, π1(2) = 1, π1(3) = 3,
for Receiver 2 π2(1) = 1, π2(2) = 2, π2(3) = 3, and for
Receiver 3 π3(1) = 3, π3(2) = 2, π3(3) = 1. For each receiver,
the basic message is always decodable at all states and in this
case (πk(1), πk(2), πk(3)) is a permutation of {1, 2, 3}.
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Fig. 2: A 3-user interference network with 3 states. Each transmitter
i has 3 messages, W [1]

i ,W
[2]
i ,W

[3]
i , to send. Over the first state,

Receiver 1 needs to decode W [1]
1 ,W

[2]
1 , Receiver 2 needs to decode

W
[1]
2 , and Receiver 3 needs to decode W [1]

3 ,W
[2]
3 ,W

[3]
3 . The messages

that each receiver needs to decode over the two remaining states are
shown in the figure.

The average probability of error is defined as follows

P (n)
e = Pr

(
M⋃

m′=1

{(
{W [1:πk(m

′)]
k }k

)
6=
(
{Ŵ [1:πk(m

′)]
k }k

)})
,

(4)

where we take the union of all M states because decoding
error of any state will result in an error event (i.e., we need
to maintain reliable communication over all states), and at
each state the error events of all basic and opportunistic
messages for this state across all users are counted. Note
here that

(
{W [1:πk(m

′)]
k }k

)
denotes the ordered message tuple

(W
[1]
1 , . . . ,W

[πk(m
′)]

1 ,W
[1]
2 , . . . ,W

[1]
K , . . . ,W

[πk(m
′)]

K ).
A rate tuple ({R[m]

k }k,m) is said to be achievable if we have
a set of encoding {fi}i and decoding functions {g[m]

k }k,m such
that P (n)

e → 0 as n→∞. The capacity region C is the closure
of the set of all achievable rate tuples.
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B. GDoF Framework

Following [12], we now translate the channel model (1) into
an equivalent normalized form to facilitate GDoF studies. For
such a purpose, we define X̃i(t) =

√
PiXi(t). Then over the

t-th channel use, the received signal for Receiver k at the m-th
state is described by

Y
[m]
k (t) =

K∑
i=1

h
[m]
ki

√
PiXi(t) + Z

[m]
k (t) (5)

=

K∑
i=1

√
Pα

[m]
ki ejθ

[m]
ki Xi(t) + Z

[m]
k (t) (6)

where
√
Pα

[m]
ki and ejθ

[m]
ki are the channel magnitude and

phase between Transmitter i and Receiver k at the m-th state,
respectively. We take P > 1 as a nominal power value, and

define2 α
[m]
ki ,

(
log
(
|h[m]
ki |2Pi

)
/logP

)+
. Now the power

constraint becomes 1
n

∑n
t=1 E

[
|Xi(t)|2

]
≤ 1. As in [12], we

call α[m]
ki the channel strength level (exponent). The equivalent

model (6) will be used in the rest of this paper.
Next, we introduce the encoding function used in this work.

Definition 1 (Simple Layered Superposition Coding). In simple
layered superposition coding, the transmitted signal is produced
by

Xi(t) =

M∑
m=1

X
[m]
i (t), ∀i (7)

where each message W
[m]
i is separately encoded by an

independent Gaussian codebook {X [m]
i (t)}t with power P r

[m]
i ,

i.e., E[|X [m]
i (t)|2] = P r

[m]
i and then the codewords are added

(superposed). Further, we assume that the transmit power
exponent r[m]

i decreases with the order of the message m,3 i.e.,
0 ≥ r[1]i ≥ r

[2]
i ≥ · · · ≥ r

[M ]
i .

The encoded messages are superposed in a layered manner
according to the power. For a power layer illustration, we put
the basic message at the top layer, followed successively by the
opportunistic messages of next orders, and the opportunistic
message of order M is layered at the bottom. Note that the
above power allocation must satisfy the sum power constraint∑M
m=1 P

r
[m]
i ≤ 1,∀i.

In this work, we consider the TIN setting and use a single
set of decoding functions for all {g[m

′]
k }m′ (with parameters

varying to conduct opportunistic decoding). We refer to this
class of decoding functions as “Opportunistic TIN”, defined
as follows.

Definition 2 (Opportunistic TIN). At the receiver side, oppor-
tunistic TIN is a successive interference cancelation based
decoding rule where opportunistically the interference is
treated as Gaussian noise. The basic message is first decoded

2As noted in [12], avoiding negative α’s, will not influence the GDoF
results.

3It is worthy noting that the message order is not the same as the state
index. Receiver k at the m-th state is able to decode messages with order up
to πk(m).

while treating the interference caused by all opportunistic
messages as Gaussian noise. As a sequel, the corresponding
signal carrying the basic message can be reconstructed
using the known channel state information at the receivers
and then subtracted from the received signal. The residual
received signal can be successively used to recover the lower
layer opportunistic messages. Such a decoding-reconstructing-
subtracting procedure repeats until the opportunistic messages
of interest at the present state are successively recovered.

Let us consider State m′, where Receiver k is interested in
decoding messages {W [m]

k }
πk(m

′)
m=1 while treating the remaining

opportunistic messages {W [m]
k }Mm=πk(m′)+1 as noise. The

received signal at the m′-th state for Receiver k can be rewritten
as

Y
[m′]
k (t) =

K∑
i=1

M∑
m=1

√
Pα

[m′]
ki ejθ

[m′]
ki X

[m]
i (t) + Z

[m′]
k (t). (8)

The successive interference cancellation starts with the basic
message W [1]

k where the interference from all opportunistic
messages is treated as noise. After W [1]

k is decoded, the signal
X

[1]
k is reconstructed and subtracted from the received signal.

After applying m − 1,m ≤ πk(m′) rounds of successive
interference cancellation, the messages {W [1]

k , . . . ,W
[m−1]
k }

are successively decoded and the corresponding signals are
subsequently subtracted. At the m-th round, the residual
received signal can be written as

Y
[m]

k (t)

= Y
[m′]
k (t)−

m−1∑
m′′=1

√
Pα

[m′]
kk ejθ

[m′]
kk X

[m′′]
k (t) (9)

=

√
Pα

[m′]
kk ejθ

[m′]
kk X

[m]
k (t) +

M∑
m′′=m+1

√
Pα

[m′]
kk ejθ

[m′]
kk X

[m′′]
k (t)

(10)

+

K∑
i=1,i6=k

M∑
m′′=1

√
Pα

[m′]
ki ejθ

[m′]
ki X

[m′′]
i (t) + Z

[m′]
k (t).

(11)

Thus, the signal-to-interference-and-noise (SINR) ratio for the
desired signal X [m]

k (t) is shown in (12) at the top of the next
page.

Then the achievable rate of W [m]
k is given by

R
[m]
k = min

m′: πk(m′)≥m

{
log
(
1 + SINR

[m]
k (m′)

)}
(15)

= log
(

1 + min
m′: πk(m′)≥m

{
SINR

[m]
k (m′)

})
(16)

where the min operation is to make sure W [m]
k can be reliably

decoded at all states that are supposed to decode no less than
m messages, i.e., for all m′ ∈ [M ] such that πk(m′) ≥ m.

Therefore the GDoF d
[m]
k = limP→∞

R
[m]
k

logP is given by the
equations (13)-(14) shown at the top of the next page, where
(14) follows from the fact that r[m]

k is decreasing in m. Note
that r[M+1]

k ,∀k is an auxiliary power variable introduced to
simplify the GDoF expression and it is convenient to interpret
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SINR
[m]
k (m′) =

Pα
[m′]
kk +r

[m]
k

1 +
∑
m′′∈[m+1:M ] P

α
[m′]
kk +r

[m′′]
k +

∑
i:i 6=k

∑
m′′∈[M ] P

α
[m′]
ki P r

[m′′]
i

. (12)

d
[m]
k = max

{
0, min
m′: πk(m′)≥m

{
α
[m′]
kk + r

[m]
k −max

{
0, α

[m′]
kk + r

[m+1]
k ,max

i:i 6=k
(α

[m′]
ki + r

[1]
i )
}}}

(13)

= max

{
0,min

{
r
[m]
k − r[m+1]

k , min
m′: πk(m′)≥m

{
α
[m′]
kk + r

[m]
k −max{0,max

i:i6=k
(α

[m′]
ki + r

[1]
i )}

}}}
(14)

r
[M+1]
k as a negative number in the range of (−∞, r[M ]

k ] that
represents the lowest power level used by the messages.

We define the GDoF region as

D ,
{

({d[m]
k }k,m) : d

[m]
k = lim

P→∞

R
[m]
k

logP
,

∀k ∈ [K],m ∈ [M ], ({R[m]
k }k,m) ∈ C

}
. (17)

III. MAIN RESULT

The main result of this work, stated in the following theorem,
is that simple layered superposition coding and opportunistic
TIN decoding is GDoF optimal under a broad set of channel
conditions.

Theorem 1. Consider an M -state K-user single-antenna
Gaussian interference channel with channel strength exponents
{α[m]

ij }i,j,m. If the following condition

α
[mk]
kk ≥max

j:j 6=k
{α[mj ]

jk }+ max
i:i 6=k
{α[mk]

ki },

∀k ∈ [K], ∀mk ∈ [M ] (18)

is satisfied, then power control with simple layered superposi-
tion coding at the transmitters and opportunistic TIN at the
receivers achieves the entire GDoF region, which includes all
GDoF tuples ({d[m]

k }k,m) ∈ RMK
+ satisfying

πk(m
′)∑

m=1

d
[m]
k ≤ α[m′]

kk , ∀m′ ∈ [M ], ∀k ∈ [K] (19a)

k′∑
k=1

πik
(mik

)∑
m=1

d
[m]
ik
≤

k′∑
k=1

(α
[mik

]

ikik
− α[mik

]

ikik+1
), (19b)

∀(i1, i2, . . . , ik′) ∈ Πk′ ,

∀(mi1 ,mi2 , . . . ,mik′ ) ∈ [M ]k
′
,

∀k′ ∈ [K]\{1}, (19c)

where Πk ⊆ [K] is the collection of all possible
cyclically ordered k-element subsets of user indicies
without repetition, e.g., Π2 = {(1, 2), (1, 3), (2, 3)} and
Π3 = {(1, 2, 3), (1, 3, 2)}, and [M ]k

′
is a set with

cardinality Mk′ collecting all possible k′-ary tuples,
in which each coordinate is from [M ], e.g., [2]3 =
{(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1),
(2, 2, 2)}. The number of messages decoded by Receiver k at
the m-th state πk(m) is arbitrarily chosen from [M ], and is
globally known a priori.

Remark 1. The TIN optimality condition (18) and the GDoF
region (19) have an intuitive interpretation. Let us denote by
m̃ = (m1,m2, . . . ,mK) a channel state where Receiver k
falls into State mk ∈ [M ]. In this way, we have constructed in
total MK states (in addition to the M original states defined
in the system model, we further have MK −K mixed states
where the receivers belong to different original states). As the
capacity region only depends on marginals, these additional
mixed states do not hurt the capacity (a detailed argument
appears in Lemma 3). Now (18) says that the TIN optimality
condition for regular interference channel [12] should hold for
every single one of the MK states and (19) is the collection of
inequalities that constitute the GDoF region for each individual
state. A concrete illustration appears in Example 1.

Remark 2. The compound setting studied in [16] is a special
case of ours. By letting πk(m) = 1 for all k,m, all receivers
are supposed to decode only the basic messages over all states,
and our system model reduces to the compound setting in
[16]. Setting d[m]

k = 0 for all m ≥ 2, the GDoF region in (19)
recovers that in [16].

Remark 3. A natural choice of the number of messages to
decode at a given state, πk(m′) is πk(m′) :=

∣∣∣{m ∈ [M ] :

α
[m]
kk − maxj:j 6=k{α[m]

kj } < α
[m′]
kk − maxj:j 6=k{α[m′]

kj }
}∣∣∣ + 1,

where we use
{
α
[m]
kk − maxj:j 6=k{α[m]

kj }
}

to reflect the TIN
decoding capability for Receiver k at State m.

Subject to this choice of πk(m′), the transmit power
exponents {r[m]

k }k,m can be computed as follows. Let mk :=

arg maxm∈[M ]

{
α
[m]
kk − maxj:j 6=k{α[m]

kj }
}
,∀k ∈ [K], and

consider an auxiliary interference network where Receiver
k, k ∈ [K] is statistically equivalent to that at State mk.
Next, given a feasible GDoF tuple ({d[m]

k }k,m), the optimal
power allocation exponents of the basic messages {r[1]k }k
can be obtained by applying the power control algorithms
in [16], [20] to the auxiliary interference network with the
GDoF tuple (

∑M
m=1 d

[m]
1 ,

∑M
m=1 d

[m]
2 , . . . ,

∑M
m=1 d

[m]
K ). The

power exponents of the opportunistic messages can then be
successively computed according to r[m+1]

k = r
[m]
k −d

[m]
k ,m =

1, . . . ,M − 1.

In what follows, we consider a typical example to illustrate
our result and remarks.

Example 1. We hereby consider a 3-user interference channel
with 2 states as shown in Fig. 3. For the sake of notational
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clarity, we denote by S1 and S2 two states respectively, by Wk

and dk = d
[1]
k the basic message and its GDoF, respectively,

and by ∆Wk and ∆dk = d
[2]
k the opportunistic message and

its GDoF, respectively. The transmitted signal is produced by
using simple layered superposition coding of the messages Wk

and ∆Wk with respective power exponent rk and ∆rk.

2

1

1.5

0.2

0.6

0.5

1.5
0.6

0.1

State S1

2

1

2

0.2

0.5

0.3

1
0.5

0.6

State S2

𝑋1
𝑛

𝑋2
𝑛

𝑋3
𝑛

𝑋1
𝑛

𝑋2
𝑛

𝑋3
𝑛

Fig. 3: A 3-user interference network with 2 states.

We use the choice of πk(m′) as stated in Remark 3 (Theorem
1 holds for any choice. We pick a specific choice here to
illustrate the result). That is, we compute the difference of
the desired signal strength and the strong interference strength
level for each receiver at each state, as follows.

Receiver 1: 2−max{0.2, 1} = 2−max{0.2, 1},
(20a)

Receiver 2: 1.5−max{0.6, 0.6} ≥ 1−max{0.5, 0.5},
(20b)

Receiver 3: 1.5−max{0.1, 0.5} ≤ 2−max{0.6, 0.3}.
(20c)

According to the relative strength of the two states for each
receiver, we set

π1(1) = 1, π2(1) = 2, π3(1) = 1, (21)
π1(2) = 1, π2(2) = 1, π3(2) = 2, (22)

where for example, π2(1) = 2 because for Receiver 2, the first
state is in a better condition such that we wish to decode both
the basic and the opportunistic messages.

Next, we check the TIN-optimality condition and find the
GDoF region. To this end, following Remark 1, we construct
two auxiliary states S′:,1,2 and S′:,2,1. Note that the channels to
Receiver 1 remain the same across the two states. As such, the
original and auxiliary states with respect to channel strength
exponents are given by

S1 := {2, 0.2, 1; 0.6, 1.5, 0.6; 0.1, 0.5, 1.5} (23a)
S′:,1,2 := {2, 0.2, 1; 0.6, 1.5, 0.6; 0.6, 0.3, 2} (23b)

S′:,2,1 := {2, 0.2, 1; 0.5, 1, 0.5; 0.1, 0.5, 1.5} (23c)

S2 := {2, 0.2, 1; 0.5, 1, 0.5; 0.6, 0.3, 2}. (23d)

It can be verified that the TIN-optimality condition is satisfied
for every original and auxiliary channel state, so the TIN
optimality condition (18) holds for our setting. Thus, Theorem
1 applies. According to (19), after removing the redundant
inequalities, we have the optimal GDoF region

d1 ≥ 0, d2 ≥ 0, d3 ≥ 0

∆d1 ≥ 0, ∆d2 ≥ 0, ∆d3 ≥ 0

d1 ≤ 2

d2 ≤ 1

d2 + ∆d2 ≤ 1.5

d3 ≤ 1.5

d3 + ∆d3 ≤ 2

d1 + d2 ≤ 2.3

d1 + d2 + ∆d2 ≤ 2.7

d1 + d3 + ∆d3 ≤ 2.4

d2 + d3 ≤ 1.5

d2 + d3 + ∆d2 ≤ 1.9

d2 + d3 + ∆d3 ≤ 2.2

d2 + d3 + ∆d2 + ∆d3 ≤ 2.6

d1 + d2 + d3 ≤ 2.5

d1 + d2 + d3 + ∆d2 ≤ 2.9

d1 + d2 + d3 + ∆d3 ≤ 3.2

d1 + d2 + d3 + ∆d2 + ∆d3 ≤ 3.6.

As stated in Remark 1, the above optimal GDoF region can
also be obtained by collecting the individual and sum GDoF
inequalities from the GDoF region of all original and auxiliary
states. For each state, we have

S1 :



d1 ≤ 2
d2 + ∆d2 ≤ 1.5
d3 ≤ 1.5
d1 + d2 + ∆d2 ≤ 2.7
d1 + d3 ≤ 2.4
d2 + ∆d2 + d3 ≤ 1.9
d1 + d2 + ∆d2 + d3 ≤ 2.9

S2 :



d1 ≤ 2
d2 ≤ 1
d3 + ∆d3 ≤ 2
d1 + d2 ≤ 2.3
d1 + d3 + ∆d3 ≤ 2.4
d2 + d3 + ∆d3 ≤ 2.2
d1 + d2 + d3 + ∆d3 ≤ 3.2

(24)

S′:,1,2 :



d1 ≤ 2
d2 + ∆d2 ≤ 1.5
d3 + ∆d3 ≤ 2
d1 + d2 + ∆d2 ≤ 2.7
d1 + d3 + ∆d3 ≤ 2.4
d2 + ∆d2 + d3 + ∆d3 ≤ 2.6
d1 + d2 + ∆d2 + d3 + ∆d3 ≤ 3.6

S′:,2,1 :



d1 ≤ 2
d2 ≤ 1
d3 ≤ 1.5
d1 + d2 ≤ 2.3
d1 + d3 ≤ 2.4
d2 + d3 ≤ 1.5
d1 + d2 + d3 ≤ 2.5

. (25)

It is easy to check that the collection of all above inequalities
gives us the final optimal GDoF region.
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The achievability of the above GDoF region can be
verified by checking the existence of power exponents
rk’s for all extreme points. For instance, the GDoF tuple
(d1, d2, d3,∆d2,∆d3) = (2, 0.3, 0.2, 0.4, 0.2) is one of the
nontrivial extreme points. Following Remark 3, we con-
sider the auxiliary state S′:,1,2 which has the maximum TIN
decoding capability at each receiver. Applying the power
control algorithms in [16], [20] to State S′:,1,2 with the GDoF
tuple (d1, d2 + ∆d2, d3 + ∆d3) = (2, 0.7, 0.4), we obtain
(r1, r2, r3) = (0,−0.2,−1) and (∆r2,∆r3) = (r2, r3) −
(d2, d3) = (−0.5,−1.2). It is not hard to verify that all
messages are successfully decoded with such power allocation.

In what follows, we present the proofs of the achievability
and the converse.

IV. ACHIEVABILITY

For the achievability, to illustrate the main idea, we first
take a 3-user interference channel with 2 states as an example
(see Fig. 4(a)) in Section IV-A.

A. A 3-user Example

To simplify the notation, we denote by Wk and ∆Wk

the basic and opportunistic messages, respectively. Given
a state m ∈ {1, 2}, if πk(m) = 1, then Receiver k only
needs to decode the basic message Wk, and otherwise if
πk(m) = 2, both basic and opportunistic messages are required
to be decoded. We use simple layered superposition coding
at the transmitters and opportunistic TIN at the receivers (as
introduced in Section II-B) to derive the achievable GDoF
region.

At Transmitter k, we send the superposition of the Gaussian
coded basic message Wk and the Gaussian coded opportunistic
message ∆Wk with transmit power exponents r[1]k and r

[2]
k

respectively.

Xk = P r
[1]
k Xb(Wk) + P r

[2]
k Xo(∆Wk) (26)

where

r
[m]
k − r[m+1]

k = d
[m]
k , ∀k ∈ [3], ∀m ∈ [2] (27)

and r[3]k = r
[1]
k − d

[1]
1 − d

[2]
2 is the lowest power level used by

Transmitter k.
By ignoring the max{0, ·} term in (14), we focus on the

achievable GDoF via polyhedral TIN (as done in [12]–[14],
[16], [18]), for which

d
[m]
k = min

{
r
[m]
k − r[m+1]

k , min
m′:πk(m′)≥m

{
α
[m′]
kk + r

[m]
k

−max{0, max
j:j 6=k

α
[m′]
kj + r

[1]
j }
}}
≥ 0. (28)

Thus, the achievable GDoF region P by polyhedral TIN is the
set of GDoF tuples (d

[m]
k , k ∈ [3],m ∈ [2]) for which there

exist {r[m]
k , k ∈ [3],m ∈ [2]} such that the above constraints

(28) are satisfied for all k ∈ [3] and m ∈ [2].
Denote the GDoF region in (19) by P∗. To show that P∗

is achievable by polyhedral TIN, we construct an achievable
GDoF region P ′ such that P ′ ⊆ P and P ′ = P∗.

1) Constructing P ′ ⊆ P: By imposing (27) in (28), we
have an achievable GDoF region P ′ that is a subset of P .
Plugging (27) into (28), we have

0 ≤d[m]
k ≤ min

m′:πk(m′)≥m

{
α
[m′]
kk + r

[m]
k

−max
{

0, max
j:j 6=k

α
[m′]
kj + r

[1]
j

}}
, ∀m′ ∈ {1, 2}. (29)

Specifying all possible values of m,m′, we have

d
[1]
k ≤ α

[1]
kk + r

[1]
k −max

{
0, max
j:j 6=k

α
[1]
kj + r

[1]
j

}
(30a)

d
[1]
k ≤ α

[2]
kk + r

[1]
k −max

{
0, max
j:j 6=k

α
[2]
kj + r

[1]
j

}
(30b)

if πk(1) = 2, d
[2]
k ≤ α

[1]
kk + r

[2]
k −max

{
0, max
j:j 6=k

α
[1]
kj + r

[1]
j

}
(30c)

(27)⇐⇒ d
[1]
k + d

[2]
k ≤ α

[1]
kk + r

[1]
k −max

{
0, max
j:j 6=k

α
[1]
kj + r

[1]
j

}
(30d)

if πk(2) = 2, d
[2]
k ≤ α

[2]
kk + r

[2]
k −max

{
0, max
j:j 6=k

α
[2]
kj + r

[1]
j

}
(30e)

(27)⇐⇒ d
[1]
k + d

[2]
k ≤ α

[2]
kk + r

[1]
k −max

{
0, max
j:j 6=k

α
[2]
kj + r

[1]
j

}
.

(30f)

Note that (30d) implies (30a) and (30f) implies (30b). Com-
bining all above inequalities, we have the compact form

πk(m
′)∑

m=1

d
[m]
k ≤ α[m′]

kk + r
[1]
k −max{0, max

j:j 6=k
{α[m′]

kj + r
[1]
j }},

∀m′ ∈ {1, 2}. (31)

That is, we have a GDoF region P ′ of the set of GDoF tuples
({d[m]

k }k,m) with respect to r[m]
k ’s

rk ≤ 0, ∀k ∈ [3] (32a)

d
[m]
k ≥ 0, ∀k ∈ [3],m ∈ [2] (32b)

d
[m]
k = r

[m]
k − r[m+1]

k , ∀k ∈ [3], m ∈ [2] (32c)
πk(1)∑
m=1

d
[m]
k ≤ α[1]

kk + r
[1]
k −max{0, max

j:j 6=k
{α[1]

kj + r
[1]
j }}, k ∈ [3]

(32d)
πk(2)∑
m=1

d
[m]
k ≤ α[2]

kk + r
[1]
k −max{0, max

j:j 6=k
{α[2]

kj + r
[1]
j }}, k ∈ [3]

(32e)

which is not larger than P because of the additional constraint
(32c), i.e., P ′ ⊆ P . For notational simplicity, we hereafter set
r
[1]
k = rk and r[2]k = ∆rk.

2) Proof of P ′ = P∗: To show P ′ = P∗, we eliminate
the rk’s in P ′, following the idea in [12].4 Specifically, we
construct a potential digraph where the lengths of the arcs
are represented only by dk’s and αij’s. Then we verify the

4Similar ideas have been applied and extended to other scenarios [12], [13],
[16], [18] to tackle different message settings and network topologies.
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existence of a potential function by imposing that the lengths
of directed circuits in the potential digraph are non-negative.

Potential Digraph: A given GDoF tuple (d
[m]
k , k ∈ [3],m ∈

[2]) ∈ R6
+ in P ′, according to (32d) and (32e), is feasible if

and only if there exist rk’s for all k ∈ [3] satisfying,

rk ≤ 0 (33a)

rk ≥
πk(1)∑
m=1

d
[m]
k − α[1]

kk (33b)

rk ≥
πk(2)∑
m=1

d
[m]
k − α[2]

kk (33c)

rk − rj ≥
( πk(1)∑
m=1

d
[m]
k − α[1]

kk

)
+ α

[1]
kj , ∀j 6= k (33d)

rk − rj ≥
( πk(2)∑
m=1

d
[m]
k − α[2]

kk

)
+ α

[2]
kj , ∀j 6= k. (33e)

In view of these inequalities, we construct a simple potential
digraph D′ = (V ′, A′), where

V ′ = {u, v[1]1 , v
[2]
1 , v

[1]
2 , v

[2]
2 , v

[1]
3 , v

[2]
3 } (34)

A′ = {(u, v, l) : u, v ∈ V ′, l ∈ R}. (35)

The arc set consists of four parts A′ = A′1 ∪ A′2 ∪ A′3 ∪ A′4,
where

A′1 = {(u, v[m]
k , l(u, v

[m]
k )) : k ∈ [3],m ∈ [2]} (36a)

A′2 = {(v[m]
k , u, l(v

[m]
k , u)) : m ∈ {1, 2}, k ∈ [3]} (36b)

A′3 = {(v[m]
k , v

[m]
j , l(v

[m]
k , v

[m]
j )) :

m ∈ {1, 2}, k, j ∈ [3], k 6= j} (36c)

A′4 = {(v[m1]
k , v

[m2]
k , l(v

[m1]
k , v

[m2]
k )) :

m1,m2 ∈ {1, 2},m1 6= m2, k ∈ [3]} (36d)

with a length l(a, b) assigned to every single arc (a, b) ∈ A′
as follows:

l(u, v
[m]
k ) = 0, ∀m = {1, 2} (37a)

l(v
[1]
k , u) = α

[1]
kk −

πk(1)∑
m=1

d
[m]
k (37b)

l(v
[2]
k , u) = α

[2]
kk −

πk(2)∑
m=1

d
[m]
k (37c)

l(v
[1]
k , v

[1]
j ) = α

[1]
kk −

πk(1)∑
m=1

d
[m]
k − α[1]

kj , ∀k 6= j (37d)

l(v
[2]
k , v

[2]
j ) = α

[2]
kk −

πk(2)∑
m=1

d
[m]
k − α[2]

kj , ∀k 6= j (37e)

l(v
[m1]
k , v

[m2]
k ) = 0, ∀m1,m2 ∈ {1, 2},m1 6= m2. (37f)

An illustrative example on the simple potential digraph when
πk(1) = 1 and πk(2) = 2 is shown in Fig. 4.

By the potential digraph, we connect the existence of rk’s
to the existence of a valid potential function for this digraph.

𝛼11
[𝑚]

𝛼12
[𝑚]

𝛼21
[𝑚]

𝛼13
[𝑚]

𝛼31
[𝑚]

𝛼22
[𝑚]

𝛼23
[𝑚]

𝛼32
[𝑚]

𝛼33
[𝑚]

𝑢

𝛼
2
2
[2
]
−

𝑑
2
+
∆
𝑑
2
−
𝛼
2
1
[2
]

0

𝛼22
[1]
− 𝑑2 𝛼33

[2]
− 𝑑3 + ∆𝑑3

𝑣1
[1]

0

𝑣1
[2]

𝑣2
[1]

𝑣2
[2] 𝑣3

[1]

𝑣3
[2]

0

0

Fig. 4: A 3-user interference network (left) with 2 states m ∈ {1, 2}
where channel strength exponents vary across two states, and a simple
potential digraph (right) corresponding to a special case when πk(1) =
1 and πk(2) = 2 for all k = {1, 2, 3}. Receiver k decodes the basic
message Wk yielding GDoF dk at State S1, and decodes at State S2

both basic and opportunistic messages Wk and ∆Wk yielding GDoF
dk and ∆dk respectively.

Lemma 1. The GDoF tuple ({d[k,m]
k }k,m) ∈ R6

+ is feasible
if and only if there exists a valid potential function for the
simple digraph D′ = (V ′, A′).

Proof. The proof is similar to that in [12]. Given a simple
digraph D = (V,A), a function p : V 7→ R is called potential
if for every arc (a, b) ∈ A with length l(a, b), it satisfies
l(a, b) ≥ p(b)− p(a).

In the simple digraph D′ = (V ′, A′), if there exists a valid
potential function p(·), then letting

p(u) = 0, p(v
[1]
k ) = p(v

[2]
k ) = rk,∀k (38)

the potential function values must satisfy the following inequal-
ities

l(v
[1]
k , v

[1]
j ) ≥ rj − rk ⇐⇒ rk − rj ≥

πk(1)∑
m=1

d
[m]
k − α[1]

kk + α
[1]
kj

(39a)

l(v
[2]
k , v

[2]
j ) ≥ rj − rk ⇐⇒ rk − rj ≥

πk(2)∑
m=1

d
[m]
k − α[2]

kk + α
[2]
kj

(39b)

l(u, v
[1]
k ) ≥ rk ⇐⇒ rk ≤ 0 (39c)

l(u, v
[2]
k ) ≥ rk ⇐⇒ rk ≤ 0 (39d)

l(v
[1]
k , u) ≥ −rk ⇐⇒ rk ≥

πk(1)∑
m=1

d
[m]
k − α[1]

kk (39e)

l(v
[2]
k , u) ≥ −rk ⇐⇒ rk ≥

πk(2)∑
m=1

d
[m]
k k − α[2]

kk (39f)

l(v
[1]
k , v

[2]
k ) ≥ rk − rk ⇐⇒ 0 ≥ 0 (39g)

l(v
[2]
k , v

[1]
k ) ≥ rk − rk ⇐⇒ 0 ≥ 0. (39h)

It can be readily verified that the nontrivial inequalities above
exactly match those in (33). Both“if” and “only if” parts hold
together.
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The above simple potential digraph consists of MK + 1 =
7 vertices for a 2-state 3-user interference channel, which
becomes involved for large M,K. Next, we simplify it to a
labeled multi-digraph.

Labeled Multi-digraph Representation : We construct a la-
beled multi-digraph D = (V,A) to represent the simple digraph
towards simplifying it. Fig. 5 gives an illustrative example on
the simplification of the potential digraph in Fig. 4.

𝑣2

𝑣1

𝑣3

𝑢

𝛼22
[1]

− 𝑑2 − 𝛼23
[1]

𝛼22
[2]

− 𝑑2 + ∆𝑑2 − 𝛼23
[2]

𝛼33
[1]

− 𝑑3 − 𝛼32
[1]

𝛼33
[2]

− 𝑑3 + ∆𝑑3 − 𝛼32
[2]

𝛼
1
1[2
]
−

𝑑
1
+
∆
𝑑
1

𝛼
1
1 [1
]
−
𝑑
1

0

Fig. 5: The labeled multi-digraph for a 3-user interference network
with 2 states simplifies the simple digraph in Fig. 4.

Given the simple potential graph D′ = (V ′, A′), we
merge the vertices v

[1]
k and v

[2]
k into a single one vk,

and the arcs in A′ are labeled as follows: (1) the arcs
{(u, v[m]

k , l(u, v
[m]
k )) : m = {1, 2}} are merged as a single

arc (u, vk, l(u, vk)); (2) the arcs between {v[m]
k : m = {1, 2}}

are removed; (3) the arcs from v
[m]
k to u are relabeled as

(vk, u,m, l
[m](vk, u)); (4) the arcs (v

[m]
k , v

[m]
j , l(v

[m]
k , v

[m]
j ))

are relabeled as (vk, vj ,m, l
[m](vk, vj)).

In particular, the labeled multi-digraph D = (V,A) is such
that

V = {u, v1, v2, v3} (40)
A = {(u, v,m, l) : u, v ∈ V,m ∈ {1, 2}, l ∈ R} (41)

where m specifies the label of an arc and l = l[m](u, v) is the
length between u, v ∈ V with label m. The arc set consists of
three parts A = A1 ∪A2 ∪A3, where

A1 = {(u, vk, , l(u, vk)) : k ∈ [3]} (42a)

A2 = {(vk, u,m, l[m](vk, u)) : m ∈ {1, 2}, k ∈ [3]} (42b)

A3 = {(vk, vj ,m, l[m](vk, vj)) : m ∈ {1, 2}, k, j ∈ [3], k 6= j}
(42c)

with a length l[m](a, b) assigned to every single arc (a, b) ∈ A
as follows:

l(u, vk) = 0 (43a)

l[1](vk, u) = α
[1]
kk −

πk(1)∑
m=1

d
[m]
k (43b)

l[2](vk, u) = α
[2]
kk −

πk(2)∑
m=1

d
[m]
k (43c)

l[1](vk, vj) = α
[1]
kk −

πk(1)∑
m=1

d
[m]
k − α[1]

kj (43d)

l[2](vk, vj) = α
[2]
kk −

πk(2)∑
m=1

d
[m]
k − α[2]

kj . (43e)

This multi-digraph representation simplifies the description
of the potential graph, due to the following lemma.

Lemma 2. The labeled multi-digraph D inherits two properties
from the single digraph D′: (1) the potential function in D′ is
valid in D; (2) for every circuit in D′ there is a corresponding
circuit in D with the same length.

Proof. In the labeled multi-digraph D = (V,A), using the
same potential function p(·) as in D′, we assign the following
values

p(u) = 0, p(vk) = rk,∀k. (44)

As the potential function values satisfy the same set of
inequalities,

l[1](vk, vj) ≥ rj − rk ⇐⇒ rk − rj ≥
πk(1)∑
m=1

d
[m]
k − α[1]

kk + α
[1]
kj

(45a)

l[2](vk, vj) ≥ rj − rk ⇐⇒ rk − rj ≥
πk(2)∑
m=1

d
[m]
k − α[2]

kk + α
[2]
kj

(45b)
l(u, vk) ≥ rk ⇐⇒ rk ≤ 0 (45c)

l[1](vk, u) ≥ −rk ⇐⇒ rk ≥
πk(1)∑
m=1

d
[m]
k − α[1]

kk (45d)

l[2](vk, u) ≥ −rk ⇐⇒ rk ≥
πk(2)∑
m=1

d
[m]
k − α[2]

kk, (45e)

we conclude that the potential function in D′ works in D.
For the correspondence of directed circuits in D′ and D, we

illustrate some of the typical ones in Table I at the top of the
next page. Note that the list therein is not exhaustive.

Thus, we conclude that we can count the directed circuits
in the labeled multi-graph D to verify the existence of the
potential function.

GDoF Region Identification: Now, operating on the poten-
tial digraphs, we are able to eliminate rk’s in P ′ such that
only {d[m]

k }k,m remain.
According to Lemma 1, a GDoF tuple ({d[m]

k }k,m) in P ′
is feasible if and only if there exists a potential function
for the simple directed graph D′. According to the potential
theorem [23, Th. 8.2], the potential function exists if and only
if each directed circuit in D′ has a non-negative sum-length.
By Lemma 2, it suffices to impose that the directed circuits
on the labeled multi-digraph D are non-negative. In this way,
we are able to identify P ′ without involving rk’s. Next, we
divide the directed circuits into the following classes.
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TABLE I: The correspondence of directed circuits between D and D′.

D′ D Length

(u, v
[1]
1 , u) or (u, v[1]1 , v

[2]
1 , u) (u→ v1

[1]−−→ u) l[1](v1, u)

(u, v
[1]
1 , v

[1]
2 , u) (u→ v1

[1]−−→ v2
[1]−−→ u) l[1](v1, v2) + l[1](v2, u)

(u, v
[1]
1 , v

[2]
1 , v

[2]
2 , u) (u→ v1

[2]−−→ v2
[2]−−→ u) l[2](v1, v2) + l[2](v2, u)

(u, v
[1]
1 , v

[1]
2 , v

[2]
2 , u) (u→ v1

[1]−−→ v2
[2]−−→ u) l[1](v1, v2) + l[2](v2, u)

(v
[1]
1 , v

[1]
2 , v

[1]
1 ) (v1

[1]−−→ v2
[1]−−→ v1) l[1](v1, v2) + l[1](v2, v1)

(v
[1]
1 , v

[1]
2 , v

[2]
2 , v

[1]
2 , v

[1]
1 ) (v1

[1]−−→ v2
[2]−−→ v1) l[1](v1, v2) + l[2](v2, v1)

(v
[1]
1 , v

[1]
2 , v

[1]
3 , v

[1]
1 ) (v1

[1]−−→ v2
[1]−−→ v3

[1]−−→ v1) l[1](v1, v2) + l[1](v2, v3) + l[1](v3, v1)

(v
[1]
1 , v

[1]
2 , v

[2]
2 , v

[2]
3 , v

[2]
1 , v

[1]
1 ) (v1

[1]−−→ v2
[2]−−→ v3

[2]−−→ v1) l[1](v1, v2) + l[2](v2, v3) + l[2](v3, v1)

(u, v
[1]
1 , v

[1]
2 , v

[2]
2 , v

[2]
3 , u) (u→ v1

[1]−−→ v2
[2]−−→ v3

[2]−−→ u) l[1](v1, v2) + l[2](v2, v3) + l[2](v3, u)

• Class I: Directed circuits in the form of (u −→ vk
[m]−−→ u)

for all m ∈ [2] and k ∈ [3].

α
[1]
kk −

πk(1)∑
m=1

d
[m]
k ≥ 0⇔

πk(1)∑
m=1

d
[m]
k ≤ α[1]

kk (46a)

α
[2]
kk −

πk(2)∑
m=1

d
[m]
k ≥ 0⇔

πk(2)∑
m=1

d
[m]
k ≤ α[2]

kk. (46b)

• Class II: Directed circuits in the form of (vk
[m1]−−−→

vj
[m2]−−−→ vk) for all k 6= j ∈ [3] and

(m1,m2) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. For instance,
when (m1,m2) = (1, 2), we have

α
[1]
kk −

πk(1)∑
m=1

d
[m]
k − α[1]

kj + α
[2]
jj −

πj(2)∑
m=1

d
[m]
j − α[2]

jk ≥ 0

(47a)

⇔
πk(1)∑
m=1

d
[m]
k +

πj(2)∑
m=1

d
[m]
j ≤ α[1]

kk + α
[2]
jj − α

[1]
kj − α

[2]
jk .

(47b)

• Class III: Directed circuits in the form of (u −→
vk

[m1]−−−→ vj
[m2]−−−→ u) for all k 6= j ∈ [3] and

(m1,m2) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. For instance,
when (m1,m2) = (1, 2), we have

α
[1]
kk −

πk(1)∑
m=1

d
[m]
k + α

[2]
jj −

πj(2)∑
m=1

d
[m]
j )− α[2]

jk ≥ 0 (48a)

⇔
πk(1)∑
m=1

d
[m]
k +

πj(2)∑
m=1

d
[m]
j ≤ α[1]

kk + α
[2]
jj − α

[2]
jk , (48b)

which are implied by (47), because α
[m]
jk ≥ 0 for all

j, k ∈ [3] and m ∈ [2].

• Class IV: Directed circuits in the form of (vk
[m1]−−−→

vj
[m2]−−−→ vi

[m3]−−−→ vk) for all (m1,m2,m3) ∈ [2]3 and
for either (k, j, i) = (1, 2, 3) or (k, j, i) = (1, 3, 2). For
instance, when (m1,m2,m3) = (1, 2, 2), we have

α
[1]
kk −

πk(1)∑
m=1

d
[m]
k − α[1]

kj + α
[2]
jj −

πj(2)∑
m=1

d
[m]
j − α[2]

ji

+ α
[2]
ii −

πi(2)∑
m=1

d
[m]
i − α[2]

ik ≥ 0 (49a)

⇔
πk(1)∑
m=1

d
[m]
k +

πj(2)∑
m=1

d
[m]
j +

πi(2)∑
m=1

d
[m]
i

≤ α[1]
kk + α

[2]
jj + α

[2]
ii − α

[1]
kj − α

[2]
ji − α

[2]
ik . (49b)

• Class V: Directed circuits in the form of (u
[m1]−−−→ vk

[m2]−−−→
vj

[m3]−−−→ vi, u) for all (m1,m2,m3) ∈ [2]3 and for either
(k, j, i) = (1, 2, 3) or (k, j, i) = (1, 3, 2). Similarly, the
resulting sum GDoF inequalities are implied by those in
(49).

To sum up, after removing the redundant inequalities,
we are left with (46b) for all k ∈ [3], (47) for all
(k, j) ∈ {(1, 2), (2, 3), (1, 3)}, and (49) for all (k, j, i) ∈
{(1, 2, 3), (1, 3, 2)}. A concise expression is shown at the top
of the next page. A more compact form of the last two sets of
inequalities is

k′∑
k=1

πik
(mik

)∑
m=1

d
[m]
ik
≤

k′∑
k=1

(α
[mik

]

ikik
− α[mik

]

ikik+1
), (51)

∀(i1, i2, . . . , ik′) ∈ Πk′ ,

∀(mi1 ,mi2 , . . . ,mik′ ) ∈ [2]k
′
, ∀k′ ∈ {2, 3}.

(52)

It can be verified that, when k′ = 2, we have (i1, i2) ∈
Π2 = {(1, 2), (2, 3), (1, 3)} and (mi1 ,mi2) ∈ [2]2 =
{(1, 1), (1, 2), (2, 1), (2, 2)}, and thus the inequalities in
(51) correspond to those in Class II; when k′ = 3,
we have (i1, i2, i3) ∈ Π3 = {(1, 2, 3), (1, 3, 2)} and
(mi1 ,mi2 ,mi3) ∈ [2]3 = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}, and thus the inequalities
in (51) correspond to those in Class IV.

Finally, note that the inequalities in (50) match exactly those
in P∗. Therefore P ′ = P∗ and the achievability proof is
complete.

B. The General Proof

By simple layered superposition coding and opportunistic
TIN decoding, the achievable GDoF value of the message
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πk(m
′)∑

m=1

d
[m]
k ≤ α[m′]

kk , ∀k ∈ [3], ∀m′ ∈ [2] (50a)

πk(m1)∑
m=1

d
[m]
k +

πj(m2)∑
m=1

d
[m]
j ≤ (α

[m1]
kk − α[m1]

kj ) + (α
[m2]
jj − α[m2]

jk ),

∀(k, j) ∈ Π2, ∀(m1,m2) ∈ [2]2 (50b)
πk(m1)∑
m=1

d
[m]
k +

πj(m2)∑
m=1

d
[m]
j +

πi(m3)∑
m=1

d
[m]
i ≤ (α

[m1]
kk − α[m1]

kj ) + (α
[m2]
jj − α[m2]

ji ) + (α
[m3]
ii − α[m3]

ik ),

∀(k, j, i) ∈ Π3, ∀(m1,m2,m3) ∈ [2]3. (50c)

W
[m]
k via polyhedral TIN, with the max{0, ·} term ignored in

(14), is given by

d
[m]
k = min

{
r
[m]
k − r[m+1]

k , min
m′: πk(m′)≥m

{
α
[m′]
kk + r

[m]
k

−max{0,max
i:i 6=k

(α
[m′]
ki + r

[1]
i )}

}}
,

∀k ∈ [K], ∀m ∈ [M ]. (53)

Thus, the polyhedral TIN achievable GDoF region P will be
the set of GDoF tuples ({d[m]

k }k,m) ∈ RMK
+ , for which there

exist {r[m]
k }k,m ∈ RMK

− , such that all equations in (53) are
satisfied. In general, the polyhedral TIN region can only shrink
the achievable GDoF region of TIN [12]. We aim to show that,
when the TIN optimality condition (18) is satisfied, polyhedral
TIN incurs no loss, and achieves the optimal GDoF region P∗
in (19).

In what follows, we first impose a constraint on (53) to
construct an achievable GDoF region P ′ ⊆ P , and then by
identifying P ′ and showing that it is the same as P∗, we
complete the achievability proof.

1) Constructing P ′ ⊆ P: By imposing the following
constraint

d
[m]
k = r

[m]
k − r[m+1]

k , ∀k ∈ [K], m ∈ [M ], (54)

(53) reduces to

d
[m]
k ≤ min

m′: πk(m′)≥m

{
α
[m′]
kk + r

[m]
k

−max{0,max
i:i 6=k

(α
[m′]
ki + r

[1]
i )}

}
,

∀k ∈ [K], ∀m ∈ [M ], (55)

which further expands to

d
[m]
k ≤ α[m′]

kk + r
[m]
k −max{0,max

i:i6=k
(α

[m′]
ki + r

[1]
i )}, (56)

= α
[m′]
kk + r

[1]
k −

m−1∑
m′′=1

d
[m′′]
k

−max{0,max
i:i 6=k

(α
[m′]
ki + r

[1]
i )},

∀m′ ∈ [M ], s.t. πk(m′) ≥ m,
∀k ∈ [K], ∀m ∈ [M ], (57)

due to

r
[m]
k = r

[1]
k −

m−1∑
m′′=1

d
[m′′]
k . (58)

Rearranging (57), we have
m∑

m′′=1

d
[m′′]
k ≤ α[m′]

kk + r
[1]
k −max{0,max

i:i 6=k
(α

[m′]
ki + r

[1]
i )},

∀m ≤ πk(m′), ∀k ∈ [K], ∀m′ ∈ [M ]. (59)

With respect to m, the inequality with m = πk(m′) is the
dominant one and implies others with m < πk(m′), because
of the non-negativity of {d[m]

k }k,m.
Hence, we have constructed P ′ with respect to

({d[m]
k }k,m) ∈ RMK

+ (for some properly chosen parameters
({r[m]

k }k,m)), defined by the following inequalities.

r
[m]
k ≤ 0, ∀k ∈ [K], ∀m ∈ [M ] (60a)

d
[m]
k ≥ 0, ∀k ∈ [K], ∀m ∈ [M ] (60b)

d
[m]
k = r

[m]
k − r[m+1]

k , ∀k ∈ [K], ∀m ∈ [M ] (60c)
πk(m

′)∑
m=1

d
[m]
k ≤ α[m′]

kk + r
[1]
k −max{0,max

i:i6=k
(α

[m′]
ki + r

[1]
i )},

∀k ∈ [K], ∀m′ ∈ [M ], (60d)

where the additional constraint (54) makes P ′ no larger than
P , i.e., P ′ ⊆ P .

2) Proof of P ′ = P∗: Next, we eliminate {r[m]
k }k,m in P ′

and show that it becomes P∗.
Due to the imposed power relation in (54), {r[m]

k ,m ≥ 2}k
can be recursively computed and we only need to focus on the
existence of {r[1]k } (for the basic messages) with regard to

πk(m
′)∑

m=1

d
[m]
k ≤ α[m′]

kk + rk −max{0, max
j:j 6=k

(α
[m′]
kj + rj)},

∀k ∈ [K],∀m′ ∈ [M ] (61)

where we set r[1]k = rk for the sake of notational brevity.
A given GDoF tuple ({d[m]

k }k,m) ∈ RMK
+ is feasible in P ′

if and only if there exist {rk}k’s satisfying

rk ≤ 0, (62a)
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rk ≥
πk(m

′)∑
m=1

d
[m]
k − α[m′]

kk , ∀m′ ∈ [M ] (62b)

rk − rj ≥
πk(m

′)∑
m=1

d
[m]
k − α[m′]

kk + α
[m′]
kj , ∀m′ ∈ [M ], ∀j 6= k.

(62c)

Similarly to the 3-user example, to verify the existence of
{rk}k, we construct a potential digraph to ensure the existence
of a valid potential function. For the simplicity of presentation,
we only focus on the labeled multi-digraph. For the general
K-user interference channel with M states, the labeled multi-
digraph D = (V,A) is such that

V = {u, v1, v2, . . . , vK} (63)
A = {(u, v,m′, l) : u, v ∈ V,m′ ∈ [M ], l ∈ R} (64)

where m′ specifies the label of an arc and l = l[m
′](u, v) is the

length between u, v ∈ V with label m′. The arc set consists
of three parts A = A1 ∪A2 ∪A3, where

A1 = {(u, vk, , l(u, vk)) : k ∈ [K]} (65a)

A2 = {(vk, u,m′, l[m
′](vk, u)) : m′ ∈ [M ], k ∈ [K]} (65b)

A3 = {(vk, vj ,m′, l[m
′](vk, vj)) :

m′ ∈ [M ], k, j ∈ [K], k 6= j} (65c)

with a length l[m
′](a, b) assigned to every single arc (a, b) ∈ A

as follows:

l(u, vk) = 0 (66a)

l[m
′](vk, u) = α

[m′]
kk −

πk(m
′)∑

m=1

d
[m]
k , ∀m′ ∈ [M ] (66b)

l[m
′](vk, vj) = α

[m′]
kk −

πk(m
′)∑

m=1

d
[m]
k − α[m′]

kj , ∀m′ ∈ [M ]

(66c)

According to the potential theorem [23, Th. 8.2], by imposing
that the lengths of the shortest directed circuits in the labeled
multi-digraph D are non-negative, the existence of a potential
function is guaranteed. The imposed non-negativity lends itself
to the identification of P ′ without involving {rk}k.

• Class I: Directed circuits in the form of (u −→ vk
[m′]−−→ u)

for all m′ ∈ [M ] and k ∈ [K].

α
[m′]
kk −

πk(m
′)∑

m=1

d
[m]
k ≥ 0⇔

πk(m
′)∑

m=1

d
[m]
k ≤ α[m′]

kk . (67)

• Class II: For all k′ ∈ [K]\{1} and (i1, i2, . . . , ik′) ∈
Πk′ , directed circuits in the form of (vi1

[mi1
]

−−−→

vi2
[mi2 ]−−−→ . . .

[mi
k′−1

]

−−−−−→ vi′k
[mi

k′
]

−−−−→ vi1) for all
(mi1 ,mi2 , . . . ,mik′ ) ∈ [M ]k

′
.

k′∑
k=1

α[mik
]

ikik
−
πik

(mik
)∑

m=1

d
[m]
k − α[mik

]

ikik+1

 ≥ 0 (68a)

⇔
k′∑
k=1

πik
(mik

)∑
m=1

d
[m]
k ≤

k′∑
k=1

(
α
[mik

]

ikik
− α[mik

]

ikik+1

)
.

(68b)

• Class III: For all k′ ∈ [K]\{1} and (i1, i2, . . . , ik′) ∈ Πk′ ,

directed circuits in the form of (u −→ vi1
[mi1

]
−−−→

vi2
[mi2

]
−−−→ . . .

[mi
k′−1

]

−−−−−→ vi′k
[mi

k′
]

−−−−→ u) for all
(mi1 ,mi2 , . . . ,mik′ ) ∈ [M ]k

′
.

k′−1∑
k=1

α[mik
]

ikik
−
πik

(mik
)∑

m=1

d
[m]
k − α[mik

]

ikik+1


+

α[mi
k′

]

ik′ ik′
−
πi

k′
(mi

k′
)∑

m=1

d
[m]
k′

 ≥ 0 (69a)

⇔
k′∑
k=1

πik
(mik

)∑
m=1

d
[m]
k ≤

k′∑
k=1

(
α
[mik

]

ikik
− α[mik

]

ikik+1

)
+ α

[mi
k′

]

ik′ i1

(69b)

which is implied by (68).
It is not hard to verify that apart from the circuits above

mentioned, there are no other shortest directed circuits. By far,
we have simplified P ′ such that it is represented with respect
only to {d[m]

k }k,m. Collecting the inequalities of (67) and (68),
we find that P ′ = P∗, when the TIN optimality condition (18)
is satisfied. The achievability proof is thus complete.

V. CONVERSE

For the converse, instead of starting from Fano’s inequality
and upper-bounding the sum rate, we cast our problem to a
set of regular interference channels for which the optimal
GDoF regions under TIN-optimality conditions have been
characterized in [12]. In this way, we directly collect the sum
GDoF constraints therein to form our GDoF region outer bound.
In doing so, the converse proof can be significantly simplified.

We use the set of channel coefficients to indicate different
states, i.e.,

State m: H[m] ,
{

({h[m]
ki }i,k)

}
⊆ CK

2

(70)

where at State m, Receiver k wishes to recover messages
{W [l]

k }
πk(m)
l=1 . Further, we define m̃ = (mi1 , . . . ,miK ) and

introduce

State m̃: H̃[m̃] ,
{
H[mi1 ]

1 ,H[mi2 ]
2 , . . . ,H[miK

]

K

}
⊆ CK

2

(71)

where m̃ ∈ [M ]K , H[mik
]

k ,
{

({h[mik
]

ki }i)
}

and at State m̃,

Receiver k wishes to recover messages {W [l]
k }

πk(mik
)

l=1 . Appar-
ently, H[m] is a realization of H̃[m̃] when m̃ = (m,m, . . . ,m).

According to the construction of the states, besides M
original states, we also introduce MK −M auxiliary states.
We make the following statement.

Lemma 3. Any message set in the M -state Gaussian inter-
ference channel (GIC) defined by {H[m]}m can be decoded
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lim
n→∞

Pr
(
{{W [m]

k }
πk(mik

)

m=1 }k 6= {{Ŵ [m]
k }

πk(mik
)

m=1 }k
)

(72)

= lim
n→∞

Pr
(
{{W [m]

k }k}
πk(mik

)

m=1 6= {{Ŵ [m]
k }k}

πk(mik
)

m=1

)
(73)

≤ lim
n→∞

Pr
(
{{W [m]

k }k}
maxk πk(mik

)

m=1 6= {{Ŵ [m]
k }k}

maxk πk(mik
)

m=1

)
(74)

= lim
n→∞

Pr
(
{{W [m]

k }
maxk πk(mik

)

m=1 }k 6= {{Ŵ [m]
k }

maxk πk(mik
)

m=1 }k
)

(75)

(77)
= 0. (76)

if and only if the same message set can be decoded in the
MK-state GIC defined by {H̃[m̃], m̃ ∈ [M ]K}.

Proof. The “if” part is readily obtained, because the states
{H[m]}m are a subset of the states {H̃[m̃], m̃ ∈ [M ]K}. Thus,
the messages decoded in the latter can be decoded in the
former.

For the “only if” part, we need to show that, if the messages
are decodable in the M -state GIC, these messages are also
decodable in all the auxiliary states. Consider State m′ ∈ [M ]

in the M -state GIC such that the message set {W [m]
k }

πk(m
′)

m=1 at
every receiver k can be decoded. Then the average probability
of error satisfies

lim
n→∞

Pr
((
{W [1:πk(m

′)]
k }k

)
6=
(
{Ŵ [1:πk(m

′)]
k }k

))
= 0,

for all m′ ∈ [M ] (77)

given the encoding and decoding mappings X̃i(t) =

fi({W [m]
i }m) for all i ∈ [K] and {Ŵ [m]

k }
πk(m

′)
m=1 =

g
[m′]
k (Y nk,m′) for all k ∈ [K].

Without loss of generality, we focus on a specific auxiliary
state m̃ = (mi1 , . . . ,miK ) in the MK-state GIC, where the
input-output relation is as follows:

Ȳ
[mik

]

k (t) =

K∑
i=1

h
[mik

]

ki X̄i(t) + Z̄
[mik

]

k (t). (78)

We impose that X̄i(t) = X̃i(t) = fi({W [m]
i }m) for all i ∈

[K], i.e., the input X̄i(t) in the MK-state GIC has the same
encoding mapping applied at each transmitter as used in the
M -state GIC. Thus, the received signal for Receiver k can be
rewritten as

Ȳ
[mik

]

k (t) =

K∑
i=1

h
[mik

]

ki X̃i(t) + Z̄
[mik

]

k (t) (79)

∼
K∑
i=1

h
[mik

]

ki X̃i(t) + Z
[mik

]

k (t) = Y
[mik

]

k (t) (80)

where A ∼ B means that A and B are statistically equivalent.
So the received signal in the MK-state GIC is statistically
equivalent to that in the M -state GIC. Applying the same
decoding mapping g

[mik
]

k as that in State mik of the M -state
GIC, we have the equations at the top of this page. Therefore
the messages can indeed be decoded at the auxiliary states.
This completes the proof.

Whether the messages can be decoded at a receiver is
determined by the marginal distribution associated to this
receiver if there is no receiver cooperation. Thus the same
message set can be decoded in both the M -state GIC and
the MK-state GIC as the receivers in the two networks see
the same marginal channel transition probabilities. Similar
statements have been used extensively in network information
theory literature (e.g., [24, Lemma 5.1], [25, Proposition 2]).

By Lemma 3, we conclude that the achievable rate tuple
({R[m]

k }m,k) in the M -state GIC should satisfy the sum
rate constraints in the MK-state GIC. Given a state m̃ =
(mi1 , . . . ,miK ), we treat the set of messages {W [m]

ik
}πik

(mik
)

m=1

as a single virtual message W̃ik . Let dik be the GDoF of W̃ik .
As such, we have dik :=

∑πik
(mik

)

m=1 d
[m]
ik

. Such a state is a
regular interference channel with messages {W̃ik}k and here
the TIN optimality condition is satisfied (refer to (18)), so by
Theorem 1 of [12] the GDoF tuple ({dik}k) should satisfy

dik ≤ α
[mik

]

ikik
, ∀k (81a)

k′∑
k=1

dik ≤
k′∑
k=1

(α
[mik

]

ikik
− α[mik

]

ikik+1
), (81b)

∀(i1, i2, . . . , ik′) ∈ Πk′ ,∀k′ ∈ [K]\{1}. (81c)

Collecting all inequalities for all possible states
(mi1 ,mi2 , . . . ,mik′ ) ∈ [M ]k

′
, we have that the constraints

of (81a) for all possible states are equivalent to (19a). For a
specific state (mi1 ,mi2 , . . . ,mik′ ) ∈ [M ]k

′
, the constraints

(81b) match exactly those in (19b). The outer bound proof is
thus complete.

VI. CONCLUSION

Motivated by the need to communicate with a higher rate
when channels are in better conditions (i.e., opportunistic
communications), we consider a K-user interference network
with multiple channel states and degraded message sets, where
each transmitter has a set of messages (ordered by their
priorities) and each receiver will decode a number of messages
up to a pre-determined threshold on the message order,
depending on the channel state. For this channel with states,
we show that if each sub-network (comprised of receivers from
possibly distinct states) satisfies a TIN-optimality condition,
then simple layered superposition encoding and successive
cancelation based opportunistic TIN decoding achieves the
entire GDoF region, for all possible decoding thresholds at
each receiver.
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