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Abstract

Singham (2019) [Singham, D.I. (2019). Sample Average Approximation for the Continuous Type Principal-

Agent Problem. European Journal of Operational Research, Volume 275, Issue 3, 16 June 2019, Pages 1050-1057]

proposed an important advance in the numerical solution of continuous type principal-agent problems using

Monte Carlo simulations from the distribution of agent “types” followed by bootstrapping. In this paper, we

propose a Bayesian approach to the problem which produces nearly the same results without the need to rely

on optimization or lower and upper bounds for the optimal value of the objective function. Specifically, we cast

the problem in terms of maximizing the posterior expectation with respect to a suitable posterior measure. In

turn, we use efficient Markov Chain Monte Carlo techniques to perform the computations.
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1 Introduction

In principal-agent problems (Laffont and Martimort, 2009), an agent has a “type” which is given by a random

variable θ with finite support, say
[
θ, θ

]
. The “type” of the agent is, in this paper, the demand of the agent for a

given product offered by the principal. The probability density function (pdf) of θ is f(θ) . We assume that this

density (across different “types” or agents) is known to both the agent the principal. However, the precise value of

θ is unknown to the principal. The principal’s problem is to maximize expected profit by offering the agent q units

of the product at total price τ . In the continuous version of the problem, the principal offers the agent contract

functions q(θ) and τ(θ). In turn, the agent chooses the quantity and price option depending on his / her private

demand. Singham (2019) provides a method for bounding the optimal profit and finding solution estimates for

the continuous version of the principal-agent problem. This method can also be used when the density f(θ) is not

simple enough to yield analytical solutions, or even when f(θ) is not available but can be estimated using a sample

of random numbers from the corresponding distribution. For an example in principal-agent problems, see Singham

and Cai (2017) where a sample-average approximation is used (in the context of an example). More general models

are considered in Singham (2019).

The principal’s objective is to offer the agent a contract {q(θ), τ(θ)} which specifies a quantity q(θ) to be

delivered at total price τ(θ) for each given demand. This contract maximizes agent’s expected profit E[τ(θ)−σ(q(θ))]

with respect to random variable θ, where σ(q(θ)) is principal’s cost (increasing function of q). The agent has a

value function v(q, θ) for receiving q units of the product when his/her demand or “type” is θ. We denote the

excess utility to the agent by ∆(θ) = v(q(θ), θ) − τ(θ), where τ(θ) is total cost for demanding θ. We can rewrite

the decision variables for the principal using {q(θ),∆(θ)} instead of {q(θ), τ(θ)}.1 Singham (2019) proposed the

following principal-agent problem originally formulated in Appendix 3.1 of Laffont and Martimort (2009):

max
{q(θ),∆(θ)},θ∈

[
θ,θ

] � θ

θ
{v (q(θ), θ)−∆(θ)− σ (q(θ))} f(θ)dθ

s.t ∆(θ) = 0, (IR)

∆(θ) ≥ ∆(θ′) + v (q(θ′), θ)− v (q(θ′), θ′) , θ ≥ θ′, θ, θ′ ∈
[
θ, θ

]
, (IC)

q(θ) ≥ q(θ′), θ ≥ θ′, θ, θ′ ∈
[
θ, θ

]
. (MON)

(1)

In this problem, (IR) is the individual rationality constraint, (IC) is the incentive compatibility constraint,

and (MON) is the monotonicity constraint. Singham (2019) observed that if
{
θ(m),m = 1, ...,M

}
is a random

1Standard assumptions are: v(q, θ) is nonnegative, twice differentiable, concave in q, increasing in q and θ, v(0, θ) = 0, the single-
crossing property holds, and ∂v(q, θ)/∂q is increasing in θ. Moreover, Singham (2019) assumes that v(q, θ) and s(q) are bounded over
q and θ ∈

[
0, θ

]
.
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sample from the distribution whose pdf is f(θ), and θ(1) ≤ . . . ≤ θ(M), an approximation to the problem in (1) is:

max
{qm,∆m}m=1,...,M

M−1
∑M

m=1

{
v(qm, θ(m))−∆m − σ(qm)

}
s.t ∆1 = 0,

∆m ≥ ∆m−1 + v(qm−1, θ
(m))− v(qm−1, θ

(m−1)), m = 2, ...,M,

qm ≥ qm−1, m = 2, ...,M.

(2)

Here, qm ≡ q(θ(m)) and ∆m ≡ ∆(q(θ(m)) are decision variables defined as discrete points in the contract

function. Singham (2019) proposed a bootstrapping approximation based on lower and upper bounds for the

objective function and showed that the algorithm works well in practice. In this paper, we cast the problem in terms

of Bayesian inference and show that use of the bootstrap as in Singham (2019) can be avoided. Implementation of

Bayesian inference is based on simple Markov Chain Monte Carlo (MCMC) methods using an appropriate likelihood

function of the problem in (1). The Bayesian approach delivers posterior standard deviations and marginal posterior

densities of highest posterior density (HPD) intervals for the parameters of interest which, in this instance, are qm

and ∆m. The HPD interval is defined, here, as the 95% Bayes probability interval which is, by definition, an interval

that contains the parameter(s) with posterior probability 95%.

2 Proposed method

Assume F : X → R , where X ⊆ Rn, and F (x) is a continuous function that has a global maximum at x∗ ∈ X.

Then by Pincus (1968) we know that

x∗ = lim
h→∞

�
X
x exp {hF (x)} dx

�
X
exp {hF (x)} dx

. (3)

Therefore, if p(x;h) = exp{hF (x)}�
X

exp{hF (x′)}dx′ , we have x∗ = limh→∞ E(X), when the pdf of X is given by p(x;h),

and E(·) denotes expectation with respect to the distribution whose density is p(x;h). In turn, to estimate the

global optimum we can proceed as follows.

• First, fix a value for h.

• Second, draw a number of samples from p(x;h), denoted by
{
x
(s)
h , s = 1, ..., S

}
.

• Third, average these samples to estimate the global optimum, viz. x∗ = limh→∞ limS→∞ S−1
∑S

s=1 x
(s)
h .

Here, we propose a different approach relative to Singham (2019). Specifically, we provide a general Bayesian ap-

proach to the problem using Markov Chain Monte Carlo (MCMC) to provide statistical inferences. Let
{
θ̃1, ..., θ̃M

}
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be a partition of
[
θ, θ

]
with θ̃1 = θ ≤ . . . ≤ θ̃M = θ. Notice that this is not a random sample from the distribution

whose density is p(x;h). Using the Pincus (1968) approximation to (2), the objective function is the expectation

corresponding to the density:

p(∆, q;h) ∝
M∏

m=1

exp
{
h [vm −∆m − σ(qm)] f(θ̃m)

}
∑M

m′=1 exp
{
h [vm′ −∆m′ − σ(qm′)] f(θ̃m′)

} · p(∆, q), (4)

where ∆ = [∆m,m = 1, ...,M ],2 q = [qm,m = 1, ...,M ], vm = v(qm, θ̃m),m = 1, ...,M . Here, ∆ and q are parameters

of the problem, viz. they are the unknowns in (2) with respect to which we optimize. We adopt the following prior:

p(∆, q) ∝ I ((∆, q) ∈ R) , (5)

where R is the space of restrictions defined by (2), and I(·) is the indicator function.

Two important points: i) We do not actually need approximations, say ∆̂(·) and q̂(·) as ∆ and q are treated

as parameters, ii) we use a partition
{
θ̃1, ..., θ̃M

}
and, therefore, we do not need to draw a large number of samples

from f(θ) to solve (2). Since f(θ̃m) and σ(qm) and the summation in the denominator of (4) are constant, we define

fm = f(θ̃m) and σm = σ(qm). Moreover, let us define the parameter vector Θ = [∆′, q′]′ (where ∆1 = 0) so that

the problem simplifies to:

p(Θ;h) ∝
M∏

m=1

{exp {h [vm −∆m − σm]} fm} · p(Θ). (6)

The problem then becomes to draw a number of (not necessarily iid) samples, say
{
Θ(s), s = 1, ..., S

}
from

the distribution of parameters in Θ whose non-normalized density is given by (6). To proceed, we use a Hit-and-Run

Markov Chain Monte Carlo (MCMC) algorithm to draw a large sample
{
Θ(s), s = 1, ..., S

}
. We have to keep in

mind that the first element of ∆(s), say ∆
(s)
1 = 0 ∀s = 1, ..., S.

The purpose of Algorithm 1 is to generate posterior samples for the parameters in Θ. Specifically, we use

a Hit-and-Run Markov Chain Monte Carlo (MCMC) algorithm to draw a large sample
{
Θ(s), s = 1, ..., S

}
. The

Hit-and-Run algorithm relies on the idea that one can obtain candidates that are uniformly distributed in the set

defined by the restrictions. For more details on the Hit-and-Run algorithm, we refer to Belisle et al. (2013) and

Chen and Schmeiser (1996). Our MCMC implementation is described in Algorithm 1.

It is known that MCMC converges under quite mild conditions, namely that the posterior is continuous and

positive everywhere (Mengersen and Tweedie, 1996). Therefore, the selection of initial values Θ(0) is not essential.

In our application, we draw Θ(0) from the prior. We verify convergence by drawing 100 different initial conditions

and running Algorithm 1 starting from these values.
2Notice that ∆1 = 0 from the statement of (2).
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Algorithm 1 MCMC

1. Let
{
θ̃1, ..., θ̃M

}
be a partition of

[
θ, θ

]
with θ̃1 = θ ≤ . . . ≤ θ̃M = θ.

2. Let ∆ = [∆m,m = 2, ...,M ], q = [qm,m = 1, ...,M ], vm = v(qm, θ̃m),m = 1, ...,M . Also define Θ = [∆′, q′]′.
For s = 1, 2, ..., S, do:
3. Suppose Θ(0) is given. Generate a candidate Θc drawn uniformly in R using the Hit-and-Run algorithm:

3a. Generate a direction δ from a uniform distribution on the surface of the unit sphere.
3b. Draw λ uniformly in the set {λ ∈ R|Θc + λδ ∈ R}.
3c. Set Θc = Θ(s) + λδ.
3d. Accept the candidate with the Metropolis-Hastings probability: min

{
1, p(Θc;h)

p(Θ(s);h)

}
, and set Θ(s+1) =

Θc. Otherwise, set Θ(s+1) = Θ(s).
next s.

The optimal contract is approximated using the MCMC draws, viz:

qm = S−1
S∑

s=1

q(s)m , ∆m = S−1
S∑

s=1

∆(s)
m ∀m = 1, ...,M, (7)

where
{
q
(s)
m ,∆

(s)
m , s = 1, ..., S

}
is the available MCMC sample for all m = 1, ...,M . From (4) or (6) the objective

function is computed, for each MCMC draw, as:

O(s)
m ≡ v(s)m −∆(s)

m − σ(s)
m ∀m = 1, ...,M, s = 1, ..., S. (8)

Taking the average across MCMC samples, we obtain the final value of the objective function:

Om = S−1
S∑

s=1

O(s)
m ∀m = 1, ...,M. (9)

Provided the problem has a global maximum, it is easy to show that the posterior is finitely integrable as

the likelihood is bounded and the prior is proper. Therefore, (7) and (9) converge to the actual values by a law of

large numbers. These approximations can be made arbitrarily accurate provided S increases.

3 Illustration

We consider the second example in Singham (2019). We have:

v(q, θ) = αθ(1− e−q), σ(q) = βq2 − γq, (10)

where α = 10, β = 5, γ = 3 and f(θ) is a triangular distribution with minimum θ = 0.3, maximum θ = 1 and

mode at 0.8. We partition the support
[
θ, θ

]
using M = 10 points in total (the endpoints being 0.3 and 1). We use
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Figure 1: Optimal contract (M = 10)
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Notes: Dotted lines represent 95% Bayes probability intervals which are computed point-wise for each value.

S = 150, 000 iterations of MCMC omitting the first 50,000 to mitigate the impact of possible start-up effects. After

some initial experimentation, we set h = 103 as increasing the value of h produces identical results for all quantities

of interest (optimal contract and objective function) to at least three decimal places. Moreover, we examined the

optimal contract and the objective function when starting MCMC from 100 different, randomly chosen, sets of

initial conditions. Results were the same with those reported here, to at least three decimal places indicating that

MCMC converges very fast and explores the posterior in a thorough way.

The results for the optimal contract (q(θ),∆(θ)) are reported in Figure 1 and they are quite similar to those

reported in Figure 2 of Singham (2019).3

The optimal value of the objective function is 2.113 which is well within the range [2.111, 2.115] of lower and

upper bounds provided by Singham (2019) in Table 2 when 10,000 Monte Carlo simulations are used. Our posterior

standard error is 0.0068 which is quite close to 0.007 reported by Singham (2019). The total execution time on a

desktop PC (Intelr CoreTM i9-7900X CPU @ 3.30 GHz, Windows 10) running fortran77 was less than a minute,

with the bulk of the computation falling on rejection sampling for step 3b of Algorithm 1. No parallelization was

used in this case.

In Figure 2, we report the optimal contract when M = 150, along with 95% Bayes probability intervals (also

known as HPD intervals in this instance. These intervals contain the parameter with posterior probability 95%.

The results are, essentially, the same as those reported in Figure 1. Total execution time was slightly over 1.5

minutes when parallel computing was used after translating software programs to fortran90.4

3The choice of a small M would only work with linear interpolation in cases where the optimal contracts could be approximated in
a piece-wise linear way and the value of M chosen at key points to match potential non-smooth points. As computations can be easily
carried out using parallel programming, considering large values of M is not prohibitive.

4We have used F77_TO_F90 which is a fortran90 program which can convert fortran77 codes to fortran90 format. See
https://people.sc.fsu.edu/~jburkardt/f_src/f77_to_f90/f77_to_f90.html
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Figure 2: Optimal contract (M = 150)

θ

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q(
θ
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θ

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∆
(θ

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Notes: Dotted lines represent 95% Bayes probability intervals which are computed point-wise for each value.

4 Illustration: Carbon capture

We consider the first example in Singham (2019) which has an analytical solution and is, therefore, useful to examine

the effect of the number of MCMC draws on the optimal contract. This is an implementation based on Singham

and Cai (2017), see also Singham et al. (2015). In their description: “[T]he agent is a power plant who emits CO2

into the atmosphere and demands the service of the principal, who is a CO2 storage operator. The principal offers

a menu of options to the agent, with each option corresponding to a different demand value from a continuous

distribution. The agent demands units of CO2 storage based on his anticipated power usage. If the agent does

not choose to store any carbon, he will pay a penalty p(x) = α
2 x

2, x ≥ 0 and p(x) = 0, x < 0 for emitting x units

of CO2 to the atmosphere. If the agent participates and purchases q units of storage, he has a linear cost γq to

capture CO2 emissions before sending them to storage”. The value function of the agent is given as:

v(q, θ) = p(θ)− p(θ − q)− γq, (11)

which is the penalty avoided by participating, minus the penalty actually paid on excess emissions over the amount

stored, and minus the capture cost. The principal has a linear cost σ(q) = βq corresponding to q units of CO2

storage. We set α = 286, β = 13, γ = 45 (after taking account of the units of measurement), and f(θ) is a uniform

distribution in the interval [θ, θ] where θ = 0.3, and θ = 1. We partition the support
[
θ, θ

]
using M = 150 points

in total (the endpoints being 0.3 and 1). After careful examination, we set h = 103 as increasing the value of h

produces identical results for all quantities of interest (optimal contract and objective function) to at least three

decimal places. We used 100 different initial conditions to check convergence and robustness. The number of draws

is set to 100 or 10,000 based on a burn-in phase of 100 MCMC passes.
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Figure 3: Carbon capture optimal contract
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Notes: In panels (a) and (b) we reported optimal values of q and ∆ using M = 150 points in the support of θ. In panels (c) and (d) reported
are the results for q and ∆, respectively, using 100 draws, along with 95% HPD interval.

The results for the optimal contract (q(θ),∆(θ)) are reported in panels (a) and (b) of Figure 3 (for M = 150

but different number of MCMC draws) and they are quite similar to those reported in Figure 1 of Singham (2019).

The optimal posterior mean contract along with 95% HPD intervals, are reported in panels (c) and (d) of Figure 3.

The optimal value of the objective function is 17.2489 which is quite close to the exact solution (17.25).

Our posterior standard error is 0.057 which is quite close to 0.059 reported by Singham (2019) in her Table 1 for

N = 100, 000. The total execution time on a desktop PC (Intelr CoreTM i9-7900X CPU @ 3.30 GHz, Windows

10) running fortran77 was less than two minutes, with the bulk of the computation falling on rejection sampling

for step 3b of Algorithm 1.
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Concluding remarks

In this work, we follow Singham (2019) to cast the continuous principal-agent problem in terms of maximizing the

posterior expectation with respect to a suitable posterior measure. We propose the use efficient Markov Chain

Monte Carlo (MCMC) techniques to perform the computations, improving on the bootstrapping / Monte Carlo

approach of Singham (2019) providing almost the same results at a fraction of time. Moreover, we do not need

random draws from the distribution of “types” followed by optimization to deliver upper and lower values for the

objective function. The required number of draws is close to 10,000 as Singham (2019) has shown. With the same

number of draws from the posterior measure and a fixed number of points in the support of the distribution of

“types”, MCMC provides almost the same results with those reported in Singham (2019, Example 2, Section 4.2).

Part of the attraction of MCMC is that Bayes probability intervals are available for the objective function as well

as the optimal contract.
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