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Abstract: Stability analysis and dominant eigenvalues computation for second-order 

linear systems with multiple time-delays are addressed by using a reduced 

characteristic function and the associated characteristic matrix comprised of measured 

open-loop receptances. This reduced characteristic function is derived from the 

original characteristic function of the second-order time delayed systems based on a 

reasonable assumption that eigenvalues of the closed-loop system are distinct from 

those of the open-loop system. Then a contour integral is used to test the stability and 

provide the stability chart with respect to different displacement and velocity feedback 

time-delays, and a Newton-type method to compute the dominant eigenvalues via this 

characteristic function. The proposed approach also utilizes the spectrum distribution 

features of the retarded time-delay systems. Finally, numerical examples are given to 

illustrate the effectiveness of the proposed approach. 
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1. Introduction 

The study of time-delay effects on active vibration control of various mechanical 

and structural systems has attracted increasing attention in the last decade. In the 

presence of delays, primarily due to the time it takes in the feedback loop to acquire 

and process the states information, and to execute the control action, the controlled 



systems may suffer from significant performance degradation or even destabilization 

[1-3]. However, time delays have also been shown to be beneficial in many cases, 

such as stabilizing effect of feedback with delay for unstable systems and using delays 

to improve existing vibration control techniques [4, 5]. Mathematically, a delay brings 

extra dynamics into the system and hence makes the control design and analysis more 

complex. 

The stability as well as the estimation of eigenvalues (or characteristic roots) of 

linear time invariant systems with time delays, modelled by first-order delay 

differential equations, has been extensively studied in the past [6], and considerable 

effort has been made to extend existing control techniques to time delayed systems, 

e.g. [7,8]. For mechanical and structural systems whose equations of motion are 

naturally formulated in the second-order setting, the time-delay effects on their 

closed-loop controlled systems are generally analysed by means of first-order 

approaches without taking advantage of the well-known benefits of the design and 

analysis directly available in second-order models [9,10]. To overcome the 

shortcomings of the above approaches, some work has been devoted to the design and 

analysis of second-order time delayed systems without using a-priori transformation 

to first-order state space models, e.g., full or partial eigenvalue assignment by the 

single input and multi-input [11-13]. However, these approaches require good 

knowledge of mass, damping and stiffness matrices, which undoubtedly involves 

errors in relation to practical systems and quite often is not available. 

Another interesting and useful scheme still in development is to use 

nonparametric models, i.e., measured receptances, which was originally developed to 

design linear vibration control [14-16]. There are some works on partial eigenvalue 

assignment of the second-order time delayed systems using the receptance method 

[17-22]. Additionally, a simple stability criterion for second-order systems with 

time-varying delay based on the receptance approach was presented in [23]. The 

proposed approach used the Small-Gain Theorem and the closed-loop receptance 

which is directly related to the open-loop one by using the 

Sherman–Morrison–Woodbury formula. 



This paper proposes a stability-testing formula and an approach of computing the 

dominant eigenvalues for second-order systems with multiple constant time-delays 

based on the open-loop receptance matrix. Firstly, the reduced characteristic function 

𝑓m 𝜆  and the associated characteristic matrix 𝐉m 𝜆  of the closed-loop system are 

derived. They have the same eigenvalues (or characteristic roots) as those of the 

closed-loop system and involve only control gains, time-delay parameters and the 

measured open-loop receptances at the sensor/actuator coordinates. Utilizing the 

spectrum distribution features of the resultant retarded time-delay systems, a 

stability-testing formula in the form of a contour integration of 𝑓m 𝜆  based on the 

Argument Principle is presented, and a root-finding algorithm of Newton-type, 

combined with a search strategy to provide an accurate initial guess, is used to 

compute the dominant eigenvalues of the closed-loop system in a rectangular region 

centred at the origin of the complex plane. Furthermore, a two-dimensional (2D) map, 

known as a stability chart, can be obtained using the testing formula. This chart 

reveals the effects of delay parameters on stability [24]. 

The paper is organized as follows. In Section 2, the system involved is described. 

A stability testing formula and the computational procedure of the dominant 

eigenvalues are presented in Sections 3 and 4, respectively. In Section 5, numerical 

examples are provided to demonstrate the proposed approach. Conclusions are finally 

drawn in Section 6. 

 

2. Basic statement 

A linear second-order controlled system with time-delay is described by: 

𝐌𝐱  𝑡 + 𝐂𝐱  𝑡 + 𝐊𝐱 𝑡 = 𝐁𝐮 𝑡, 𝜏1, 𝜏2 + 𝐟 𝑡                (1) 

𝐮 𝑡, 𝜏1, 𝜏2 = −𝐆1𝐲 𝑡 − 𝜏1 − 𝐆2𝐲  𝑡 − 𝜏2                 (2) 

𝐲 𝑡 = 𝐃𝐱 𝑡                              (3) 

where 𝐌, 𝐂 and 𝐊 are known as the n×n mass, damping and stiffness matrices 

respectively; 𝐮 is a control force vector and 𝐟 is an external applied force vector; 𝐁 



is the n×p control input distribution matrix and 𝐃  is the m×n measurement 

distribution matrix, and they are both elementary matrices; 𝐆2 and 𝐆1 are the p×m 

velocity and displacement feedback gain matrices respectively, and p < n, m < n. 𝜏1 

and 𝜏2  are displacement and velocity feedback time-delays, respectively. 

Substituting (2), (3) into (1) gives 

𝐌𝐱  𝑡 + 𝐂𝐱  𝑡 + 𝐊𝐱 𝑡 = 𝐁 −𝐆1𝐃𝐱 𝑡 − 𝜏1 − 𝐆2𝐃𝐱  𝑡 − 𝜏2  + 𝐟 𝑡     (4) 

Laplace transform of (4) gives 

 𝑠2𝐌 + 𝑠𝐂 + 𝐊 𝐱 𝑠 = −𝐁 𝐆1𝐃e−𝑠𝜏1 + 𝑠𝐆2𝐃e−𝑠𝜏2 𝐱 𝑠 + 𝐟 𝑠       (5) 

 𝑠2𝐌 + 𝑠𝐂 + 𝐊 + 𝐁 𝐆1𝐃e−𝑠𝜏1 + 𝑠𝐆2𝐃e−𝑠𝜏2  𝐱 𝑠 = 𝐟 𝑠           (6) 

Then the n×n full receptance matrices of the open-loop and closed-loop system are 

represented by 

𝐇0 𝑠 =  𝑠2𝐌 + 𝑠𝐂 + 𝐊 −1                     (7) 

𝐇c 𝑠 =  𝐇0
−1 𝑠 + 𝐁 𝐆1𝐃e−𝑠𝜏1 + 𝑠𝐆2𝐃e−𝑠𝜏2  −1            (8) 

The closed-loop receptance matrix 𝐇c 𝑠  for the system with delay can be 

directly related to the open-loop receptance matrix 𝐇0 𝑠  by using the 

Sherman–Morrison–Woodbury formula as follows. 

𝐇c 𝑠 = 𝐇0 𝑠 − 𝐇0 𝑠  𝐁 𝐈p +  𝐆1e−𝑠𝜏1 + 𝑠𝐆2e−𝑠𝜏2 𝐃𝐇0 𝑠  𝐁 
−1

(𝐆1e−𝑠𝜏1 + 

𝑠𝐆2e−𝑠𝜏2 )𝐃𝐇0 𝑠                                             (9) 

Besides, pre- and post-multiplying both sides of (9) by 𝐃 and 𝐁, respectively, yields 

𝐇cm  𝑠 = 𝐇0m 𝑠 − 𝐇0m 𝑠  𝐈p +  𝐆1e−𝑠𝜏1 + 𝑠𝐆2e−𝑠𝜏2 𝐇0m 𝑠  
−1

(𝐆1e−𝑠𝜏1 + 

𝑠𝐆2e−𝑠𝜏2 )𝐇0m                                               (10) 

where 𝐇cm  𝑠  and 𝐇0m 𝑠  are the m×p ‘measured’ closed-loop and open-loop 

receptance matrices, respectively; 𝐇0m 𝑠 = 𝐃𝐇0 𝑠 𝐁. 

 The characteristic function of the second-order linear time-delay system (6) is 

given in the form 

𝑓 𝜆 = det 𝚭 𝜆  = det 𝜆2𝐌 + 𝜆𝐂 + 𝐊 + 𝐁 𝐆1𝐃e−𝜆𝜏1 + 𝜆𝐆2𝐃e−𝜆𝜏2     (11) 



where 𝚭 𝜆 = 𝜆2𝐌 + 𝜆𝐂 + 𝐊 + 𝐁 𝐆1𝐃e−𝜆𝜏1 + 𝜆𝐆2𝐃e−𝜆𝜏2  is the so-called 

dynamic stiffness matrix of the closed-loop system (6), and 𝚭 𝜆 = 𝐇c
−1 𝜆  from (8). 

𝑓 𝜆  is a transcendental function containing some exponential terms, also called 

quasi-polynomial, which has an infinite number of roots. The roots of 𝑓 𝜆  are also 

known as eigenvalues (poles or characteristic roots) of (6), whose distribution on the 

complex plane determines the stability and dynamic behaviour of (6).  

 

3. Stability testing by using contour integral evaluation 

Mikhailov-type stability criterion is based on the Argument Principle or Cauchy 

Theorem [25, 26]. Let N be the number of the characteristic roots 𝜆 of 𝑓 𝜆  that lie 

in the open right-half complex plane. Assume that 𝑓 𝜆  has no roots on the 

imaginary axis, it has been proven that N = 0 holds if and only if there is a sufficiently 

large T > 0 such that [25] 

 Re
𝑇

0
 
𝑓 ′  𝜔i 

𝑓 𝜔i 
 d𝜔 >

 2𝑛−1 π

2
                      (12) 

where Re 𝑧  represents the real part of 𝑧, 𝑓 ′ 𝜆  is the differentiation of 𝑓 𝜆  with 

respect to 𝜆. It follows from the Trace-Theorem of Devidenko [27] and (11) that 

𝑓 ′  𝜔i 

𝑓 𝜔i 
= tr 𝚭−1 𝜔i 𝚭′ 𝜔i                      (13) 

where tr( )  denotes the trace. In consideration of 𝚭 𝜔i 𝐇c 𝜔i = 𝐈  and the 

following formula 

𝚭′ 𝜔i = −𝐇c
−1 𝜔i 𝐇c

′  𝜔i 𝚭 𝜔i                 (14) 

Eq.(13) can be rewritten as 

𝑓 ′  𝜔i 

𝑓 𝜔i 
= tr −𝐇c

′  𝜔i 𝐇c
−1 𝜔i                   (15) 

Then Mikhailov-type stability criterion (12) can be reformulated in terms of the 

closed-loop receptance matrix (9) as follows. 

 Re
𝑇

0
 tr −𝐇c

′  𝜔i 𝐇c
−1 𝜔i   d𝜔 >

 2𝑛−1 𝜋

2
             (16) 

Since numerical calculations of 𝐇c
′  𝜔i  and 𝐇c

−1 𝜔i  are inconvenient when the 

size of these matrices is large, the stability criteria (16) is limited in practical use.  

 Now the reduced form of characteristic function (11) and the corresponding 



characteristic equation are presented. Without loss of generality, assume that the 

eigenvalues of the closed-loop system are distinct from those of the open-loop 

system. Suppose that A and Q are nonsingular matrices of appropriate orders. The 

following determinant formula is given as 

 𝐀 + 𝐄𝐐𝐅 =  𝐀  𝐐  𝐐−1 + 𝐅𝐀−1𝐄                 (17) 

Substituting 𝐀 = 𝜆2𝐌 + 𝜆𝐂 + 𝐊 , 𝐄 = 𝐁, 𝐅 = 𝐆1𝐃e−𝜆𝜏1 + 𝜆𝐆2𝐃e−𝜆𝜏2  and 𝐐 = 𝐈p  

into (17), then 𝑓 𝜆  in (11) can be rewritten as follows. 

𝑓 𝜆 = det 𝜆2𝐌 + 𝜆𝐂 + 𝐊 det 𝐈p +  𝐆1e−𝜆𝜏1 + 𝜆𝐆2e−𝜆𝜏2 𝐇0m 𝜆      (18) 

with 𝐇0m 𝜆 = 𝐃𝐇0 𝑠 𝐁 = 𝐃 𝜆2𝐌 + 𝜆𝐂 + 𝐊 −1𝐁. The formula (18) holds for any 

𝜆 except for finite eigenvalues 𝜆0𝑖  (i=1,2,...,2n) of the open-loop system. Thus the 

characteristic roots of (18), i.e. eigenvalues of the closed-loop system (6), satisfy the 

following reduced characteristic equation 

𝑓m 𝜆 = det 𝐈p +  𝐆1e−𝜆𝜏1 + 𝜆𝐆2e−𝜆𝜏2 𝐇0m 𝜆  = 0          (19) 

with the following reduced characteristic matrix 

𝐉m 𝜆 = 𝐈p +  𝐆1𝑒
−𝜆𝜏1 + 𝜆𝐆2𝑒

−𝜆𝜏2 𝐇0m 𝜆               (20) 

Solving eigenvalues of (6) now become finding roots of 𝑓m 𝜆  in the complex plane, 

and this can also be considered a nonlinear eigenvalue problem of 𝐉m 𝜆  which 

depends nonlinearly on a single scalar parameter 𝜆. Either of them is a non-trivial 

task. It is impossible and unnecessary to determine every root of 𝑓m 𝜆  due to its 

transcendental nature. Nonetheless, for retarded time-delay systems (the majority of 

vibration suppression problems of closed-loop control systems belong to this category, 

e.g. (1)-(3)), their spectrum distributions have the following ‘nice’ features [3,28,29]: 

if there exists a sequence  𝜆𝑘  of eigenvalues of the systems such that lim
𝑘→∞

 𝜆𝑘  →

+∞, then lim
𝑘→∞

Re 𝜆𝑘 → −∞, and thus there are only a finite number of eigenvalues 

in any given right-half complex plane. This also implies that the eigenvalues with 

high frequencies tend to be far off the imaginary axis in the left half complex plane. 

Furthermore, the dominant eigenvalues (i.e. the rightmost characteristic roots in some 

sense) which lie closest to the imaginary axis have the small modulus and low 



frequencies, and the overall dynamics and the stability of the retarded system is 

mainly dominated by these eigenvalues. This is a very interesting property which has 

consequences in the following stability investigation. 

When the open-loop system is stable, the poles of 𝐇0m 𝜆  all lie in the left half 

complex plane. In the finite size region of the right half complex plane, 𝑓m 𝜆  can be 

considered to have no poles within it in view of (19) and (20). Assume also that 

𝑓m 𝜆  has no roots on the imaginary axis. Therefore, using the same formulas as (13) 

and the argument principle based on Cauchy’s theorem, a stability testing formula 

based on the contour integration in terms of the open-loop measured receptance 

matrix 𝐇0m 𝜆  yields 

𝑁 =  2πi −1  tr 𝐉m
−1 𝜆 𝐉m

′  𝜆  
∂𝐶

d𝜆                (21) 

where ∂𝐶 is the closed semicircle centred at the origin with a proper radius R in the 

right half complex plane, as shown in Fig.1. 𝐉m
′  𝜆  has the following form 

𝐉m
′  𝜆 =  𝐆2e−𝜆𝜏2 − 𝜏1𝐆1𝑒

−𝜆𝜏1 − 𝜆𝜏2𝐆2e−𝜆𝜏2 𝐇0m 𝜆 + 

                    𝐆1𝑒
−𝜆𝜏1 + 𝜆𝐆2𝑒

−𝜆𝜏2 𝐇0m
′  𝜆                       (22) 

 

 

Fig.1. The integral contour ∂𝐶 

 

The testing formula (21) can determine the number 𝑁  of unstable dominant 

eigenvalues within contour ∂𝐶, which can be calculated simply by using common 

numerical integration formulas. If the closed-loop system without delays (i.e. 

𝜏1 = 𝜏2 = 0) and with feedback gains 𝐆1 and 𝐆2 is stable (this is not a necessary 



premise to use (21)), then some stable dominant eigenvalues would cross the 

imaginary axis to become the unstable dominant eigenvalues (if any) as the values of 

time-delays of the closed-loop system increase. Therefore, the testing formula (21) 

can capture the unstable dominant eigenvalues (if any) with small moduli and low 

frequencies provided a properly chosen radius R is determined. Besides, when 𝑁 in 

(21) is zero, no unstable dominant eigenvalues exist within contour ∂𝐶 and the 

closed-loop system with the specific time-delays and the feedback gains 𝐆1 and 𝐆2 

can be deemed to be stable. Obviously, the correct determination of radius R is a 

crucial factor in using the testing formula (21). As a rule of thumb, radius R can be 

chosen to be slightly larger than the largest modulus among dominant eigenvalues of 

the open-loop system. 

Remarks: (i) the dimension of 𝐉m 𝜆  and 𝐇0m 𝜆  may be significantly smaller 

than the dimension of the original system, n. (ii) the stability or instability of the 

closed-loop system can be determined directly by using the testing integral (21), and 

its implementation does not become more complex in the presence of multiple 

time-delay parameters. (iii) 𝐇0m
′  𝜆  in 𝐉m

′  𝜆  of the testing integral (21) can be 

approximated by using numerical difference methods in practice. To reduce 

computational cost and yet keep high computational accuracy, 8–16 contour points 

suffice for the numerical integration of (21) using a high-order numerical integration 

scheme such as Gauss–Legendre quadrature. 

 

4. Computing dominant eigenvalues based on 𝑓m 𝜆   

For a given initial guess 𝜆 0 , Newton’s method can be used to find the roots of 

the reduced characteristic equation 𝑓m 𝜆  in any subregion of the complex plane as 

follows. 

𝜆 𝑘+1 = 𝜆 𝑘 −
𝑓m  𝜆 𝑘  

𝑓m
′  𝜆 𝑘  

 , 𝑘 = 0,1,2, …                (23) 

where 𝑓m 𝜆 = det 𝐉m 𝜆   in (20). Directly using the reduced characteristic matrix 

𝐉m 𝜆  in each iteration step, several algorithmic variants have been developed for 

(23), including, e.g., the Newton-trace iteration [30] and the Newton-QR iteration [31]. 



The former rewrites the Newton iteration (23) as 

𝜆 𝑘+1 = 𝜆 𝑘 −
1

tr 𝐉m
−1 𝜆 𝑘  𝐉m

′  𝜆 𝑘   
 , 𝑘 = 0,1,2, …               (24) 

Note that only the diagonal entries of 𝐉m
−1 𝜆 𝑘  𝐉m

′  𝜆 𝑘   are need in each iteration.  

The Newton-type method is an efficient and accurate method for roots-finding 

provided that good initial guesses 𝜆 0  are made. To make good initial guesses for the 

simple roots of 𝑓m 𝜆  located in the complex plane region ⅅ with the boundaries 

min < Re(ⅅ) < max and ωmin < Im(ⅅ) < ωmax , a search strategy for good initial 

guesses is given as follows. 

Algorithm 3.1. Searching good initial guesses 

1. a regular mesh grid covering the region ⅅ is presented as 

Π =  

0 + 𝜔0i ⋯ 𝑘𝑚𝑎𝑥
+ 𝜔0i

⋮ 𝑘 + 𝜔𝑙 i ⋮
0 + 𝜔𝑙𝑚𝑎𝑥

i ⋯ 𝑘𝑚𝑎𝑥
+ 𝜔𝑙𝑚𝑎𝑥

i
            (25) 

𝑘 = 𝑚𝑖𝑛 + 𝑘𝛥 , 𝑘 = 0, 1, … , 𝑘𝑚𝑎𝑥 , 𝜔𝑙 = 𝜔𝑚𝑖𝑛 + 𝑙𝛥 , 𝑙 = 0, 1, … , 𝑙𝑚𝑎𝑥  

with a grid step 𝛥. 

2. The absolute values  Re(𝑓m 𝜆𝑘𝑙  )  and  Im(𝑓m 𝜆𝑘𝑙 )  at each grid point of 

(25) are evaluated. If  Re(𝑓m 𝜆𝑘𝑙  ) < and  Im(𝑓m 𝜆𝑘𝑙  ) < (a given 

constant, 0.0 < < 1.0), then the location of the point  𝑘 , 𝜔𝑙  is labelled in 

an indexing matrix 𝐈 𝑘, 𝑙  with  𝑓m 𝜆𝑘𝑙    being its entry, else with 1 being 

its entry.  

3. The region ⅅ is partitioned by centring the minimum values in the different 

position of indexing matrix 𝐈 𝑘, 𝑙 . The grid points in each subdivision region 

of the region ⅅ can be randomly chosen as multi-starting guesses for 

finding roots of 𝑓m 𝜆  in the subregion by using a Newton-type method such 

as (24).  

It should be noted that the proposed gridding procedure here is similar to that of 

the QPmR mapping algorithm [32]. The QPmR finds roots by locating intersection 

points on the zero level curves Re(𝑓m 𝜆𝑘𝑙  ) = 0  and Im(𝑓m 𝜆𝑘𝑙  ) = 0  and 

Newton’s iteration method is applied to increase the accuracy of each root. In this 

paper, however, the gridding procedure is applied to find basins of convergence for 



Newton-type methods based on  Re(𝑓m 𝜆𝑘𝑙  ) < and  Im(𝑓m 𝜆𝑘𝑙  ) <. It was also 

suggested [32] that the grid step 𝛥 =
𝜋

10max
 would guarantee a sufficiently dense 

grid (max  is the maximal value among multiple time-delays) and a grid adaptation 

rule was presented. Additionally, the deflation procedure may be necessary when 

there are regions with very close roots, in order to prevent the Newton iteration 

converging to an already computed root [33]. 

The dominant roots of 𝑓m 𝜆 , i.e. the dominant eigenvalues of the closed-loop 

system (1)-(3), in only the upper quadrant of the rectangular region ⅅ centred at the 

origin of the complex plane need to be computed because complex roots form 

conjugate pairs. It is also worth mentioning that solving the nonlinear eigenvalue 

problem of the reduced characteristic matrix 𝐉m 𝜆  provides an alternative 

approaches for computation of the dominant eigenvalues. This could be done by using 

the contour integration approach and sampling via rational interpolation approach. For 

details, one can refer to [34,35] and references therein. 

 

5. Numerical examples 

 An example is considered with the following system matrices [12], 

𝐌 =  
10 0 0
0 10 0
0 0 10

 , 𝐂 =  
5 0 0
0 2.5 0
0 0 0.5

 , 𝐊 = 100  
15 −5 0
−5 6 −1
0 −1 1

 . 

Let 𝐁 = 𝐈3×2  and 𝐃 = 𝐈3×3 . Its open-loop eigenvalues are: 0.0344±2.6775i, 

0.1366±6.3592i  and 0.2290±13.1266i. 

Case 1: 𝐆1 and 𝐆2 are taken from [12] except that the original entry 6.2047 is 

changed to 6.1047 in 𝐆1 and 0.4836 to 0.5836 in 𝐆2. The reason for the slight 

changes on feedback matrices of [12] is that the original feedback matrices are 

determined from the algorithm of partial eigenvalue assignment, but concerned major 

assumption in this paper is that eigenvalues of the closed-loop system are distinct 

from those of the open-loop system. Then feedback matrices 𝐆1 and 𝐆2 are given 

by 



𝐆1 =  
2.0078 6.1142 22.7881
6.1047 18.8949 70.4229

 , 𝐆2 =  
−0.5836 −1.3621 −4.6610
−1.4946 −4.2094 −14.4039

 . 

The time delay in the displacement and velocity feedback loop is taken as 𝜏1 = 𝜏2 =

0.1. Fig.2 and Table 1 show part of the closed-loop eigenvalues and the dominant 

eigenvalues (in this and the following figures, (o) denotes a root that is obtained from 

a spectral method [36], and (+) the one that further be corrected using a Newton 

iteration). They are determined from a Matlab package for computing all the 

characteristic roots of delay differential equations in a given right half plane using the 

spectral method, which requires the knowledge of system matrices. There are a pair of 

unstable dominant eigenvalues 0.2818±2.9699i in this case.  

 Now the testing formula (21) is used to check the stability of this case. The radius 

of the integral contour R = 7.0, which is slightly larger than the modulus of the second 

pair of open-loop eigenvalues 0.1366±6.3592i. The result is 𝑁 = 2.0012 −

0.0000i , which indicates a pair of unstable eigenvalues within the contour. This 

result is in good agreement with Fig.2. 

 Fig.3 and Table 1 show part of the closed-loop eigenvalues and the dominant 

eigenvalues for 𝜏1 = 1.0, 𝜏2 = 0.5 . There are a pair of unstable dominant 

eigenvalues 0.2861±2.2977i too. The testing formula with R = 7.0 gives 𝑁 =

2.0024 − 0.0000i. The two sets of results are also consistent. 

Case 2: 𝐆1  and 𝐆2  are taken as 𝐆1 = 5 × 𝐈2×3 , 𝐆2 = 2 × 𝐈2×3 . For  𝜏1 = 1.0,

𝜏2 = 0.5, the testing formula with R = 7.0 gives 𝑁 = −0.0036 + 0.0000i, which 

means no eigenvalues within the contour. Fig.4 and Table 1 confirm this result. 

Case 3: A stability chart can be obtained with respect to two delay parameters, 𝜏1 

and 𝜏2 using the testing formula (20), as shown in Fig.5 (a). The time delay axis 

partition in computing the chart is 𝜏1 and 𝜏2 =  0.0: 0.05: 3.0  . 𝐆1 and 𝐆2 here 

are taken as the same as in Case 1. Fig.5 (b) is obtained from a Matlab package using 

the spectral method mentioned above. In spite of some subtle differences, they reveal 

nearly identical stable/unstable regions.  

Case 4: 𝐆1 and 𝐆2 here are taken as the same as in Case 1. 𝜏1 = 1.0, 𝜏2 = 0.5. 

The dominant roots of 𝑓m 𝜆  in the following region of the complex plane are to be 



searched and determined. 

ⅅ= 𝜆 ∈ ℂ: − 5 ≤ Re 𝜆 ≤ 5, −15 ≤ Im 𝜆 ≤ 15    

The search parameters are taken to be: grid step 𝛥 = 0.02 and  = 0.7. Fig.6 shows 

five pairs of possible convergence basins in the region ⅅ (marked by red arrows) that 

as initial guesses could allow solution of the roots of 𝑓m 𝜆  using the Newton 

iteration. The subsequent computation exactly yields the corresponding five pairs of 

eigenvalues, i.e., 0.2861±2.2977i, 0.1534±6.3348i, 0.2244±13.1255i, 2.6994

±5.6284i, 4.2480±11.5231i, as shown in Fig.7.  

 

 

(a) part of closed-loop eigenvalues. 

 

(b) a zoomed-in view of dominant eigenvalues of (a). 



Fig.2. The closed-loop eigenvalues (Case 1 for  𝜏1 = 𝜏2 = 0.1). 

 

 

(a) part of closed-loop eigenvalues. 

 

(b) a zoomed-in view of dominant eigenvalues of (a). 

Fig.3. The closed-loop eigenvalues (Case 1 for 𝜏1 = 1.0, 𝜏2 = 0.5). 

 



 

(a) part of closed-loop eigenvalues. 

 

(b) a zoomed-in view of dominant eigenvalues of (a). 

Fig.4. The closed-loop eigenvalues (Case 3).  

 

 



(a)                                  (b) 

Fig.5. A stability chart with respect to two delay parameters, 𝜏1 and 𝜏2 (Case 3). 

Yellow regions: unstable;  Dark blue regions: stable. (a) using the testing formula 

(21); (b) using a spectral method [36]. 

 

 

Fig.6. Five pairs of basins that provide good initial guesses of dominant eigenvalues 

in the region ⅅ (Case 4). 

 

 

Fig.7. Five pairs of eigenvalues in the region ⅅ (Case 4). 

 

 



Table 1.  

 First three pairs of closed-loop eigenvalues and the contour integration 

Case               Dominant eigenvalues          𝑁 (Rounding off) 

1.                  0.2818 ± 2.9699i                 2 

𝜏1 = 𝜏2 = 0.1            0.1362± 6.3585i  

                     0.2278±13.1227i 

1.                   0.2861± 2.2977i                  2 

𝜏1 = 1.0, 𝜏2 = 0.5          0.1534± 6.3348i 

                     0.2244±13.1255i 

2.                  0.0397± 2.6871i                 0 

𝜏1 = 1.0, 𝜏2 = 0.5           0.1909± 6.4440i 

                      0.2380± 13.2337i 

  

6. Conclusions 

 The present paper proposes an approach for testing stability and computing the 

dominant eigenvalues of second-order linear systems with multiple time-delays. It is 

based on a reduced characteristic function and the associated characteristic matrix, 

and measured open-loop receptances (hence there is no need to know the system 

matrices). This approach has other advantages such as fast convenience in 

computation and easy implementation. Based on the current work, further will be 

directed to developing a more rigorous formula for stability test and the feedback 

control design, e.g., via assignment of dominant eigenvalues of retarded systems. 
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