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Abstract

Image registration aims to find an optimal geometric transformation to overlay two or

more images of the same scene which are taken at different times, from different per-

spectives or various sensors. As one of the most fundamental tasks in image processing,

image registration has a wide range of applications in computer vision, biological imag-

ing, remote sensing, and medical imaging.

In general, image registration involves two images, where one called template is kept

transformed, and the other one called reference is kept unchanged. To measure the

similarity between the deformed template and the reference, a fidelity term should be

chosen. However, only minimizing/maximizing the fidelity term is ill-posed in the sense

of Hadamard since it is not sufficient to ensure the uniqueness and continuity of the

solution. To overcome this difficulty, regularization is indispensable. Hence, in this

thesis, we mainly consider the variational framework.

Nowadays, there exist many kinds of different regularizers. Unfortunately, when we

solve the variational model for image registration, although we can obtain a visually

satisfied deformed template, the corresponding transformation often has foldings and

is not physically correct. Hence, over the last decade, more and more researchers have

focused on diffeomorphic image registration, whose aim is to find an accurate diffeo-

morphic mapping, namely the transformation is continuously differentiable, and it has a

continuously differentiable inverse. Here, we consider choosing the first-discretize-then-

optimize method to solve the variational model for image registration, namely, first

directly discretize the variational model and obtain a finite dimensional optimization

problem then choose suitable optimization methods to solve the resulting optimization

problem. However, in image registration, the number of variables is usually huge, and

the dimension of the resulting optimization problem is huge as well. For example, when

the size of the given images is 128× 64× 128, the number of unknowns is over 3 million.

Hence, designing an efficient and converging solver is also an important issue.

This thesis can be mainly classified into two parts: one is how to design the diffeomorphic

registration model leading to a diffeomorphic transformation, and the other one is how

to develop highly efficient and effective solvers.

ix



In the first part, we first propose a new variational model with a special regularizer,

based on the quasi-conformal theory, which can guarantee that the registration map is

diffeomorphic. Also, since the Beltrami coefficient uses complex analysis and is only

defined in 2D space, we further present two new formulations in 3D space motivated by

the Beltrami concept and then set our new registration models. We propose a converging

Gauss-Newton iterative method to solve the resulting nonlinear optimization problems

and prove its convergence. Numerical experiments can demonstrate that the new 2D

and 3D models can not only get diffeomorphic registrations even when the deformations

are large, but also possess the accuracy in comparing with the state-of-the-art models.

In the second part, we consider using the subspace method to accelerate the algorithm.

Here, we propose two simple techniques to improve the performance of the standard

multilevel Gauss-Newton algorithm. The first technique consists of the possible use of a

second step within each iteration of the Gauss-Newton method. This step is computed by

minimizing a quadratic approximation of the objective function over a two-dimensional

subspace. This subspace is spanned by the steepest descent direction and the L-BFGS

direction concerning the current point given by the Gauss-Newton step. The second

technique is a modification of the standard coarse-to-fine multilevel strategy. At each

level, instead of using the interpolated solution of the previous level directly as the initial

point, we try to find a better initial point by minimizing a quadratic approximation of

the objective function over the subspace spanned by the interpolated solutions of all

the previous levels. Numerical experiments illustrate that the subspace method can

significantly reduce the running time compared with the standard multilevel Gauss-

Newton method.

Overall, this thesis is concerned with the diffeomorphic variational models and their fast

algorithms for image registration problems.
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Chapter 1

Introduction

1.1 Introduction to Image Registration

Image registration, also called image matching, image warping or image fusion, is one of

the most fundamental tasks in image processing. It aims to find an optimal geometrical

transformation to align two or more images of the same scene which are taken at different

times, from different perspectives or from different sensors.

To use the mathematical language to express image registration, we first define image

by the following continuous model.

Definition 1.1 (Image). Let d ∈ N. We say that a continuous function I(x) : Rd → R
is a d−dimensional image if I(x) is compactly supported in Ω ⊂ Rd. Here, each spatial

position x is equal to (x1, ..., xd).

Figure 1.1: Illustration of image registration.

1
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Image registration usually involves two images, the so-called template T (x) : Ω ⊂ Rd →
R and the so-called reference R(x) : Ω ⊂ Rd → R. From Figure 1.1, we can see that

if the transformation y = (y1(x), ..., yd(x)) is given, computing the deformed image is

a forward problem but if the template and reference are given, computing the transfor-

mation to make the deformed template and reference similar is a backward problem. To

generate a plausible transformation, the conventional method is to choose a fidelity term

and measure the similarity between the deformed template and the reference. However,

only minimizing/maximizing the fidelity term is ill-posed in the sense of Hadamard since

it is not sufficient to ensure the uniqueness and continuity of the solution. For instance,

if the template is a plain white disc on a plain black background and the reference is the

same as the template, then any rotations around the center of the disc are all solutions

[110]. To overcome this difficulty, regularization is indispensable. Hence, in this thesis,

we mainly consider the variational framework.

All registration models are nonlinear but they can be classified into two main categories

according to the way deformation mapping is represented: linear registration and non-

linear registration. In linear registration, the deformation model is linear and global,

including rotation, translation, shearing and scaling [21, 91]. Although the computation

speed of a linear model is fast since it contains few variables, it is commonly used as

the preregistration for starting a more sophisticated model. This is mainly because lin-

ear models can not accommodate the local details (differences). In contrast, nonlinear

registration models inspired by physical processes of transformations [114] such as the

elastic model [9], fluid model [19], diffusion model [38], TV (total variation) model [43],

MTV (modified TV) model [22], linear curvature model [39, 40], mean curvature model

[24], Gaussian curvature model [71] and total fractional-order variation model [136] are

proposed to account for localized variation in details, by allowing many degrees of free-

dom. The particular free-form deformation models based on B-splines lying between the

above two types possess simplicity, smoothness, efficiency and ability to describe local

deformation with few degrees of freedom [106, 108, 114]. For more details about image

registration methodology, please refer to [10, 41, 67, 85, 91, 114, 138] and references

therein.

1.2 Applications of Image Registration

As one of the most fundamental tasks in image processing, image registration has a wide

range of applications in computer vision, biological imaging, remote sensing, industrial

manufacturing, robotic navigation, and medical imaging. For example, in computer vi-

sion, we can recover shape from stereo or automatically change detection for security

monitoring and in remote sensing, we can monitor the global land usage and landscape

planning. Particularly, medical image registration has attracted more and more atten-

tion in the last decade since we can fuse different modality images (such as PET/CT)

to help diagnose the diseases or monitor the growth of the tumor during the medical
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treatment. For more details about the applications of image registration, please refer to

[6, 10, 30, 45, 81, 85, 89, 90, 98, 112, 114, 138] and references therein.

1.3 Outline of This Thesis

The content of this thesis can be mainly classified into two parts: one is how to design

the diffeomorphic registration model leading to a diffeomorphic transformation, and the

other one is how to design highly efficient and effective solvers. Specifically, the work of

this thesis is organized as follows:

• Chapter 2 mainly reviews some basic mathematical tools which will be used

throughout this thesis. It includes:

– Basic definitions, theorems, and examples in normed linear spaces.

– Basic notions about the calculus of variations.

– An introduction to inverse problems and regularization.

– A discussion of the discretization and notation on the regular domain with

finite difference methods.

– A brief review of two Krylov subspace methods, conjugate gradient method

(CG) and minimal residual method (MINRES), for solving symmetric systems

of linear equations.

– A brief review of the fundamental theory of optimization methods, including

unconstrained optimization methods and constrained optimization methods.

• Chapter 3 reviews the related details in image registration. In includes:

– The variational framework of image registration.

– A brief review of the fidelity terms in image registration, including the sum of

squared differences, normalized cross correlation, normalized gradient fields,

and mutual information.

– A brief review and discussion of the regularizers in image registration, in-

cluding linear elastic regularizer, diffusion regularizer, hyperelastic regular-

izer, fluid regularizer, TV regularizer, linear curvature regularizer, Henn and

Witsch’s curvature regularizer, mean curvature regularizer, and Gaussian cur-

vature regularizer.

– A brief discussion of the general solution framework in image registration,

including first-optimize-then-discretize and first-discretize-then-optimize.

– A discussion of the cubic spline interpolation used in image registration.
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– A short introduction about the multilevel strategy in image registration.

• Chapter 4 presents a novel diffeomorphic model for image registration and its

algorithm. It includes:

– A review of the previous works about diffeomorphic registrations.

– Details of a new regularizer based on Beltrami coefficient and the proposed

new registration model.

– Details of the numerical implementation, including the discretization and the

optimization method.

– Numerical experiments showing the accuracy of our proposed new registration

model.

• Chapter 5 presents improved optimization methods for image registration prob-

lems. It includes:

– A review and discussion of the standard multilevel Gauss-Newton method.

– Details of the two-step Gauss-Newton method.

– Details of the subspace multilevel technique.

– Numerical experiments showing the effectiveness and efficiency of our pro-

posed methods compared with the standard multilevel Gauss-Newton method.

• Chapter 6 presents an efficient iterative algorithm for a generalized Beltrami

based 3D diffeomorphic model. In includes:

– A review of the related works about 3D diffeomorphic registration.

– Details of our new 3D regularizers for diffeomorphic registration and the

proposed new registration models.

– Details of the numerical implementation, including the discretization and the

optimization method.

– Numerical experiments showing the accuracy of our proposed new registration

models and the effectiveness of the proposed algorithm.

• Chapter 7 concludes this thesis and lists some possible future works.



Chapter 2

Mathematical Preliminaries

This chapter reviews some necessary mathematical tools which will be used throughout

this thesis, including normed linear spaces, the calculus of variations, inverse problems

and regularization, discretization and notation, iterative methods for solving linear sys-

tems, and optimization methods.

2.1 Normed Linear Spaces

Here, we review some basic notions, theorems, and examples in normed linear spaces.

For more details, please refer to [26, 68, 78].

Definition 2.1 (Field). Let K be a subset of the complex numbers C. We say that K

is a field if it satisfies the following conditions:

1. If x, y ∈ K, x+ y and xy are also elements of K.

2. If x ∈ K, −x is also an element of K. If furthermore x 6= 0, x−1 is also an element

of K.

3. The elements 0 and 1 are elements of K.

Example 2.1. R and C are both fields.

Definition 2.2 (Linear Vector Space). Let K be a field. We say that V is a linear

vector space over the field K if it satisfies the following conditions:

1. If u, v ∈ V, u+ v = v + u.

2. If u, v, w ∈ V, (u+ v) + w = u+ (v + w).

3. There is an element of V, denoted by 0, such that 0+u = u+0 = u for all elements

u ∈ V.

4. If u ∈ V, there exists an element −u ∈ V such that u+ (−u) = 0.

5
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5. If c ∈ K and u, v ∈ V, c(u+ v) = cu+ cv.

6. If a, b ∈ K and u ∈ V, (a+ b)u = au+ bu.

7. If a, b ∈ K and u ∈ V, (ab)u = a(bu).

8. If u ∈ V, we have 1 · u = u (here 1 is the number one).

We can notice that a linear vector space V over the field K is a set of objects which can

be added and multiplied by elements of K. In other words, the sum of two elements of

V is also an element of V and the product of an element of V by an element of K is

also an element of V.

Example 2.2. Let V = Kn be the set of n−tuples of elements of K. Then V is a linear

vector space over the field K.

Definition 2.3 (Linear Subspace). Let V be a vector space over the field K and W

be a subset of V. We say that W is a linear subspace of V if it satisfies the following

conditions:

1. If v, w ∈W, v + w is also an element of W.

2. If v ∈W and c ∈ K, cv is also an element of W.

3. The element 0 of V is also an element of W.

Example 2.3. Let V = Kn and W be the set of vectors in V whose last coordinate is

equal to 0. Then W is a linear subspace of V, which can be identified with Kn−1.

Definition 2.4 (Norm). Let V be a vector space over the field K. We say that

a nonnegative-valued scalar function ‖ · ‖ is a norm on V if it satisfies the following

conditions:

1. ‖u‖ = 0 if and only if u = 0 ∈ V.

2. ‖λu‖ = |λ|‖u‖, for all λ ∈ K and all u ∈ V .

3. ‖u+ v‖ ≤ ‖u‖+ ‖v‖, for all u, v ∈ V.

Definition 2.5 (Seminorm). Let V be a vector space over the field K. We say that

a nonnegative-valued scalar function ‖ · ‖ is a seminorm on V if it satisfies the following

conditions:

1. ‖λu‖ = |λ|‖u‖, for all λ ∈ K and all u ∈ V .

2. ‖u+ v‖ ≤ ‖u‖+ ‖v‖, for all u, v ∈ V.
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Example 2.4. Let x = (x1, ..., xn) be a vector. Then well-known examples of the vector

norm are as follows:

‖x‖∞ = max
1≤i≤n

|xi|, (l∞ − norm) (2.1)

‖x‖1 =

n∑
i=1

|xi|, (l1 − norm) (2.2)

‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

, (l2 − norm). (2.3)

The above examples are special cases of lp−norm which is defined by

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

, (lp − norm). (2.4)

Example 2.5 (Lp−norm). Let f be a function defined on a domain Ω and 1 ≤ p ≤ ∞.

The Lp−norm of f on Ω is defined by

‖f‖Lp =

(∫
Ω
|f(x)|pdx

)1/p

. (2.5)

This is a generalization of the previous example. The special case when p =∞ is defined

by

‖f‖L∞ = sup
x
|f(x)|. (2.6)

Example 2.6. Let V be a vector space over the field K. ‖u‖ = 0 for all u ∈ V is a

trivial seminorm.

Definition 2.6 (Normed Linear Space). A normed linear space is a pair (V, ‖ · ‖)
where V is a vector space over the field K and ‖ · ‖ is a norm on V.

Definition 2.7 (Inner Product). Let V be a vector space over the field K. We say

that a function 〈·, ·〉 : V×V → K is an inner product on V if it satisfies the following

conditions:

1. 〈u, u〉 ≥ 0, for all u ∈ V.

2. 〈u, u〉 = 0 if and only if u = 0 ∈ V.

3. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉, for all u, v, w ∈ V.

4. 〈λu, v〉 = λ〈u, v〉, for all λ ∈ K and all u, v ∈ V.

5. 〈u, v〉 = 〈v, u〉, for all u, v ∈ V.

Example 2.7. Two examples of the inner product are as follows:
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• The Euclidean inner product on Kn is defined by

〈(w1, ..., wn), (z1, ..., zn)〉 = w1z1 + · · ·+ wnzn. (2.7)

• An inner product on the vector space of continuous real-valued functions on the

interval [−1, 1] can be defined by

〈f, g〉 =

∫ 1

−1
f(x)g(x)dx. (2.8)

Definition 2.8 (Cauchy Sequence and Completeness). We say that a sequence

{xn}∞n=1 in a normed linear space V is a Cauchy sequence if given any ε > 0, there

exists N0 ∈ N such that

|xn − xm| < ε, for all n,m > N0. (2.9)

In addition, we say that a normed linear space V is complete if every Cauchy sequence

in V converges to an element in V.

Example 2.8. V = [a, b] is complete but V = (a, b) is not complete.

Definition 2.9 (Banach Space and Hilbert Space). A complete normed linear

space is called a Banach space. A complete inner product space concerning the norm

induced by the inner product is called a Hilbert space.

Example 2.9. The space L2(Ω) with the inner product defined by

〈f, g〉L2(Ω) =

∫
Ω
f(x)g(x)dx. (2.10)

is a Hilbert space. It is also a Banach space.

Definition 2.10 (Linear Mapping). Let V and W be vector spaces over the same field

K. We say that a mapping L : V→W is linear if it satisfies the following conditions:

1. L(u+ v) = L(u) + L(v), for all u, v ∈ V.

2. L(λu) = λL(u), for all λ ∈ K and all u ∈ V.

Example 2.10. Let V = R3 and W = R2. Define a projective mapping L : V →W,

namely L(x, y, z) = (x, y). Then the mapping L is a linear mapping.

Definition 2.11 (Convex Set). Let S be a set. We say that S is a convex set if it

satisfies the following condition:

λu+ (1− λ)v ∈ S, for all λ ∈ [0, 1] and all u, v ∈ S. (2.11)
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Figure 2.1 shows an example of the convex set and nonconvex set.

(a) A convex set (b) A nonconvex set

Figure 2.1: An example of the convex set (left) and the nonconvex set (right).

Definition 2.12 (Convex Function and Strict Convex Function). Let S be a

nonempty convex set. We say that f : S → R is convex on S if it satisfies the following

condition:

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v), for all λ ∈ (0, 1) and all u, v ∈ S. (2.12)

In addition, we say that f : S → R is strictly convex on S if it satisfies the following

condition:

f(λu+ (1− λ)v) < λf(u) + (1− λ)f(v), for all λ ∈ (0, 1) and all u 6= v ∈ S. (2.13)

Example 2.11. Let S be [0, π]. Then f(x) = x2 is convex and strictly convex on S.

However, f(x) = sin(x) is not convex on S.

Example 2.12. Let S ⊂ Rn be a nonempty subset. The indicator function IS : Rn →
R ∪ {∞} is defined by

IS(x) :=

{
0 if x ∈ S,
+∞ otherwise.

(2.14)

Obviously, IS is convex if and only if S is convex.

2.2 The Calculus of Variations

A functional is a mapping from a vector space of functions into the real numbers. The

calculus of variations is concerned with finding maxima and minima of functionals. In

this section, we introduce the basic notions about the calculus of variations, such as first

variation, Euler-Lagrange equation, and the direct method to prove the existence. For

more details, please refer to [27, 28, 42, 123].
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2.2.1 First Variation and Euler-Lagrange Equation

Firstly, we define the local extrema for the functional.

Definition 2.13 (Neighborhood). The neighborhood of u ∈ U is defined by

Nε(u) = {û ∈ U|‖u− û‖ ≤ ε}. (2.15)

Definition 2.14 (Local Extrema). Let J : U → R be a functional defined on the

function space (U , ‖ · ‖). We say that J has a local maximum at u ∈ U if the following

condition is satisfied:

J (û) ≤ J (u) for all û ∈ Nε(u). (2.16)

We say that J has a local minimum at u ∈ U if u ∈ U is a local maximum for −J .

Often, U is a set of functions with certain boundary conditions.

Next, we illustrate the first variation and the Euler-Lagrange equation through a par-

ticular class of problems. Let J : C2[x0, x1]→ R be a functional defined by

J (u) =

∫ x1

x0

f(x, u, u′)dx, (2.17)

where f is a function whose partial derivatives with respect to x, u and u′ are second-

order continuous. In addition, let u0, u1 be real numbers and u(x0) = u0, u(x1) = u1.

Then

U = {u ∈ C2[x0, x1] : u(x0) = u0 and u(x1) = u1}. (2.18)

For simplifying the analysis, we set

H = {η ∈ C2[x0, x1] : η(x0) = η(x1) = 0}. (2.19)

Assume that J has a local maximum at u. Then there exists ε > 0 such that J (û) ≤
J (u) for all û ∈ Nε(u). For any û ∈ U there is an η ∈ H such that û = u+ εη. For small

ε, Taylor’s theorem implies that

f(x, û, û′) = f(x, u+ εη, u′ + εη′)

= f(x, u, u′) + ε

(
η
∂f

∂u
+ η′

∂f

∂u′

)
+O(ε2).

(2.20)

Here, we regard f as a function of the three independent variables x, u and u′ and the

partial derivatives in the above expression are all evaluated at the point x, u and u′.

Then we have

J (û)− J (u) =

∫ x1

x0

f(x, û, û′)dx−
∫ x1

x0

f(x, u, u′)dx

= ε

∫ x1

x0

(
η
∂f

∂u
+ η′

∂f

∂u′

)
dx+O(ε2).

(2.21)
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The quantity

δJ (η, u) =

∫ x1

x0

(
η
∂f

∂u
+ η′

∂f

∂u′

)
dx (2.22)

is defined as the first variation of J . For small ε, the sign of J (û)−J (u) is determined

by the sign of the first variation, unless δJ (η, u) = 0 for all η ∈ H. Since u ∈ U is a

local maximum of J , J (û) − J (u) does not change sign for any û ∈ Nε(u). Hence, if

J (u) is a local maximum then

δJ (η, u) =

∫ x1

x0

{
η
∂f

∂u
+ η′

∂f

∂u′

}
dx = 0 (2.23)

for all η ∈ H. In addition, if J has a local minimum at u ∈ U , (2.23) must also be

satisfied. If u satisfies (2.23) for all η ∈ H, we say that J is stationary at u.

Furthermore, by employing the integration by parts and boundary conditions η(x0) =

η(x1) = 0, (2.23) can be rewritten into the following formulation∫ x1

x0

η

(
∂f

∂u
− d

dx

(
∂f

∂u′

))
dx = 0. (2.24)

Then by applying the fundamental lemma of the calculus of variations [72], we conclude

the following theorem:

Theorem 2.15 (Theorem 2.2.3 in [123]). Let J : C2[x0, x1]→ R be a functional defined

by

J (u) =

∫ x1

x0

f(x, u, u′)dx (2.25)

where f has second-order continuous partial derivatives with respect to x, u and u′ and

x0 < x1. Let

U = {u ∈ C2[x0, x1] : u(x0) = u0 and u(x1) = u1}, (2.26)

where u0 and u1 are given real numbers. If u ∈ U is an extrema of J , then

∂f

∂u
− d

dx

(
∂f

∂u′

)
= 0 (2.27)

for all x ∈ [x0, x1].

(2.27) is a second-order ordinary differential equation that any extrema u must satisfy.

This differential equation is called the Euler-Lagrange equation.

Example 2.13. Consider the following functional defined by

J (u) =

∫ π

0
(u′2 − ku2)dx, (2.28)
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with boundary conditions u(0) = 0 and u(π) = 0. If u is an extrema for J , then its

Euler-Lagrange equation is

u′′ + ku = 0. (2.29)

The general solution for the Euler-Lagrange equation is

u(x) = c1cos(
√
kx) + c2sin(

√
kx). (2.30)

Combining with the boundary conditions, we get an infinite number of extrema: u(x) =

c2sin(
√
kx).

Although the Euler-Lagrange equation is the necessary condition for minimizing a func-

tional, it may lead to false conclusions when the existence of a minimizer is not estab-

lished beforehand. Next, we show the outline of the direct method in the calculus of

variations, which is used to prove the existence of the minimizer for a functional.

2.2.2 The Direct Method

The direct method introduced by Zaremba and Hilbert around 1900 provides an outline

to prove the existence of a minimizer for a given functional.

In order to ensure that the functional J has a minimizer, the necessary condition is that

the functional J must be bounded, namely,

inf{J (u)|u ∈ U} > −∞. (2.31)

Then there exists a sequence {uk}∞k=1 in U such that

lim
k→∞

J (uk) = inf{J (u)|u ∈ U}. (2.32)

Next, we list the main parts of the direct method in the calculus of variations:

1. Take a minimizing sequence {uk}∞k=1 for J ;

2. Prove that in {uk}∞k=1, there exists a subsequence {ukl}∞l=1 which converges to a

u0 ∈ U with respect to a topology τ on U ;

3. Prove that J is sequentially lower semi-continuous with respect to the topology τ .

Since the functional J is sequentially lower semi-continuous if

lim
k→∞

inf J (uk) ≥ J (u0) (2.33)

for any convergence sequence uk → u0 in U , we have the following formulation:

inf{J (u)|u ∈ V } = lim
k→∞

J (uk) = lim
l→∞
J (ukl) ≥ J (u0) ≥ inf{J (u)|u ∈ U}. (2.34)
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This means

J (u0) = inf{J (u)|u ∈ U} (2.35)

and u0 is a minimizer of J in U .

2.3 Inverse Problems and Regularization

In the last fifty years, inverse problems have been widely applied in geophysics, oceanog-

raphy, signal processing, machine learning, medical imaging and many other fields [126].

Forward problems start with the causes and calculate the results but inverse problems

start with the results and calculate the causes. For example, in image denoising, we want

to get the clean image from the observed image and in CT reconstruction, we want to

get the CT image from the data source. However, inverse problems are usually ill-posed.

The classical definition of an ill-posed problem is defined by Hadamard in 1902 [55]: if

one of the following conditions can not be satisfied:

1. the solution exists;

2. the solution is unique;

3. the solution’s behavior changes continuously with the initial conditions.

A problem is well-posed if it is not ill-posed.

Example 2.14. Here, we use several simple examples to illustrate the ill-posed problems

and well-posed problems. Let us consider the following system of linear equations:

Ax = b, (2.36)

where A ∈ R2×2 is a matrix and b ∈ R2×1 is a vector.

• If A =

(
3 4

3 4

)
and b =

(
2

7

)
, this problem does not exist a solution and it is

ill-posed.

• If A =

(
3 4

3 4

)
and b =

(
2

2

)
, this problem has infinite solutions x =

(
2−4k

3

k

)
, k ∈

R and it is ill-posed.

• If A =

(
2.0002 1.9998

1.9998 2.0002

)
and b =

(
4

4

)
, this problem has only one solution x =(

1

1

)
. If we add a perturbation δb =

(
2× 10−4

−2× 10−4

)
to b, the solution changes to

x̄ =

(
1.5

0.5

)
. Here, we can find that the relative error of the solution ‖x̄−x‖∞

‖x‖∞ is

10,000 times of the relative error of the right hand side ‖δb‖∞‖b‖∞ . So it is ill-posed.
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• If A =

(
3 4

5 1

)
and b =

(
7

6

)
, this problem has a unique solution x =

(
1

1

)
. The

solution depends continuously on the right hand side b and it is well-posed.

Since it is very difficult to deal with the ill-posed problem, Andrei N. Tikhonov in [120]

introduced the concept of the regularization which used a series of well-posed problems

to approximate the ill-posed problem.

Example 2.15. Let us consider the following least-square problem:

min
x
‖Ax− b‖22 (2.37)

where A ∈ Rm×n is a matrix and b ∈ Rm×1 is a vector. The normal equation of (2.37)

is

ATAx = AT b. (2.38)

If n > m, (2.38) may have no solution or infinite solutions. Here, we try to find the

solution with some properties, for example, it has the smallest 2-norm. Then we can

convert the problem (2.37) into the following problem:

min
x
‖Ax− b‖22 + α‖x‖22. (2.39)

Here, the first term is the fitting term and the second term is the regularizer. α is a

nonnegative parameter to balance the weight of these two terms. In order to minimize

(2.39), we only need to solve the following linear system:

(ATA+ αI)x = AT b. (2.40)

Since α > 0 and ATA + αI is symmetric and positive definite, (2.40) has only one

solution. Hence, (2.39) is well-posed.

In the general case, Tikhonov regularization replaces

min
u
D(u) (2.41)

by

min
u
D(u) + αR(u), (2.42)

where D(u) is a fitting term and R(u) is a regularizer which can rule out the unwanted

solutions according to the prior information.

2.4 Discretization and Notation

In the numerical implementation, we must discretize the continuous problem into the

discrete problem since the computer only deals with the discrete data. How to discretize

a continuous problem is very important because a proper discretization may affect the
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rate of the convergence and an improper discretization may lead to a bad result or even

divergence.

There exist several ways to discretize a continuous problem, including the finite element

method, the finite volume method, and the finite difference method. For image regis-

tration problem, since the domain of the image is usually rectangular and the intensity

values of the image are uniformly distributed in this domain, the natural way is to

choose the finite difference method to discretize this domain. This domain is denoted

by Ω ∈ Rd. For simplicity, in this section, we only consider the two-dimensional case,

namely, d = 2 and Ω ∈ R2, and it can be similarly extended to the three-dimensional

case. Here, we set Ω = [a, b] × [c, d]. Employing a cartesian mesh, the lengths of the

intervals in x1− and x2−direction are h1 = (b− a)/n1 and h2 = (d− c)/n2 respectively.

2.4.1 Discrete Schemes

For the discretization of the image registration problem, there are three common discrete

schemes: cell-centered discretization, staggered discretization, and nodal discretization.

Cell-Centered Discretization

In the so-called cell-centered discretization, the grids are located at the center of the

cells (Figure 2.2). There are n1 × n2 grid points and the position of the grid point (i, j)

is (a+ (i− 1
2)h1, c+ (j − 1

2)h2) for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

Figure 2.2: Cell-centered discretization of a square domain.

Staggered Discretization

In the so-called staggered discretization, the grids are located at the edge of the cells

(Figure 2.3). There are (n1 + 1)×n2 grid points and the position of the grid point (i, j)

is (a + ih1, c + (j − 1
2)h2) for 0 ≤ i ≤ n1 and 1 ≤ j ≤ n2 (Figure 2.3 (a)) or there are

n1× (n2 +1) grid points and the position of the grid point (i, j) is (a+(i− 1
2)h1, c+ jh2)

for 1 ≤ i ≤ n1 and 0 ≤ j ≤ n2 (Figure 2.3 (b)).
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(a) (b)

Figure 2.3: Staggered discretization of a square domain.

Nodal Discretization

In the so-called nodal discretization, the grids are located at the vertex of the cells

(Figure 2.4). There are (n1 + 1)× (n2 + 1) grid points and the position of the grid point

(i, j) is (a+ ih1, c+ jh2) for 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2.

Figure 2.4: Nodal discretization of a square domain.

2.4.2 Difference Schemes

In the image registration problem, our aim is to find the suitable displacement u(x) =

(u1(x1, x2), u2(x1, x2))(or transformation y(x) = x + u) which will be discussed in the

next chapter. In the implementation, we usually need to discretize the derivative of

the displacement u. Here, for u1(x1, x2), we use difference schemes to approximate its

partial derivatives:

• First order forward difference: ∂i,jx1u1 ≈
ui+1,j
1 −ui,j1

h1
;

• First order backward difference: ∂i,jx1u1 ≈
ui,j1 −u

i−1,j
1

h1
;

• Second order central difference: ∂i,jx1u1 ≈
ui+1,j
1 −ui−1,j

1
2h1

;



Chapter 2. Mathematical Preliminaries 17

• First order forward difference: ∂i,jx2u1 ≈
ui,j+1
1 −ui,j1

h2
;

• First order backward difference: ∂i,jx2u1 ≈
ui,j1 −u

i,j−1
1

h2
;

• Second order central difference: ∂i,jx2u1 ≈
ui,j+1
1 −ui,j−1

1
2h2

;

• Second order central difference: ∂i,jx1x1u1 ≈
ui+1,j
1 −2ui,j1 +ui−1,j

1

h21
;

• Second order central difference: ∂i,jx2x2u1 ≈
ui,j+1
1 −2ui,j1 +ui,j−1

1

h22
;

• Second order mixed difference: ∂i,jx1x2u1 ≈
ui+1,j+1
1 −ui+1,j−1

1 −ui−1,j+1
1 +ui−1,j−1

1
4h1h2

;

where ui,j1 = u1(xi1, x
j
2) is the value of u1 at the grid point (i, j). For the partial deriva-

tives of u2(x1, x2), we have similar results.

2.4.3 Matrix Notation

In this thesis, we usually need to discretize a variational problem and get a summation.

To simplify the formulation, by introducing the vector and matrix, we convert this

summation into a matrix-vector product. We first define the Kronecker product and

then employ a simple example to illustrate this idea.

Definition 2.16 (Kronecker Product). Let A be an m× n matrix and B be a p× q
matrix. We say that C is the Kronecker product of A and B, written C = A ⊗ B,

provided by

C =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 . (2.43)

The dimension of C is mp× nq.

Example 2.16. Let us discretize the following variational problem:

min
u

∫
Ω

2∑
l=1

|∇ul|2dx, (2.44)

where Ω = [0, 1]× [0, 1].

We employ the nodal discretization and define a spatial partition Ωh = {xi,j ∈ Ω|xi,j =

(xj1, x
j
2) = (ih, jh), 0 ≤ i ≤ n, 0 ≤ j ≤ n}, where h = 1

n and the discrete domain consists

of n2 cells of size h× h. We discretize u on the nodal grid, namely ui,j = (ui,j1 , ui,j2 ) =

(u1(xi1, x
j
2), u2(xi1, x

j
2)). Here, we use forward difference to approximate ∂x1ul and ∂x2ul

for l = 1, 2 at the grid point (xj1, x
j
2). Then we have the following approximation:

∫
Ω

2∑
l=1

|∇ul|2dx ≈ h2
2∑
l=1

n−1∑
j=0

n−1∑
i=0

(ui+1,j
l − ui,jl

h

)2

+

(
ui,j+1
l − ui,jl

h

)2
 . (2.45)
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In order to convert (2.45) into a vector inner product, according to the lexicographical

ordering, we reshape

U = (u0,0
1 , ..., un,01 , ..., u0,n

1 , ..., un,n1 , u0,0
2 , ..., un,02 , ..., u0,n

2 , ..., un,n2 )T ∈ R2(n+1)2×1. (2.46)

Set A =

(
B

C

)
, B = I2 ⊗ In+1 ⊗ ∂1,h

n , C = I2 ⊗ ∂1,h
n ⊗ In+1 and

∂1,h
n =

1

h


−1 1

−1 1

· · · · · · · · ·
−1 1

−1 1

 ∈ Rn×(n+1), (2.47)

where ⊗ denotes the Kronecker product. Then (2.45) can be reformulated as follows:

∫
Ω

2∑
l=1

|∇ul|2dx ≈ h2UATAU. (2.48)

2.5 Iterative Methods for Solving Linear Systems

In this section, we mainly introduce two Krylov subspace methods: conjugate gradi-

ent method (CG) and minimal residual method (MINRES), for solving the symmetric

systems of linear equations. For the classic iterative methods (such as Jacobi method,

Gauss-Seidel method and SOR method) and other Krylov subspace methods (such as

BICG and TFQMR), please refer to [3, 14, 66, 74, 97, 101, 121].

2.5.1 Conjugate Gradient Method

The conjugate gradient method (CG) is an iterative method for solving a system of

linear equations

Ax = b, (2.49)
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where A ∈ Rn×n is a symmetric and positive definite (SPD) matrix. The algorithm of

the CG method is summarized in Algorithm 1.

Algorithm 1: CG Method

1 Given x0;

2 Set r0 = Ax0 − b, p0 = −r0, k = 0;

3 while rk 6= 0 do

4 αk = − (rk)T rk

(pk)TApk
;

5 xk+1 = xk + αkpk;

6 rk+1 = rk + αkApk;

7 βk+1 = (rk+1)T rk+1

(rk)T rk
;

8 pk+1 = −rk+1 + βk+1pk;

9 k = k + 1;

10 end

The CG method has the following basic properties and convergent results.

Theorem 2.17 (Theorem 5.3 in [97]). Suppose that the kth iterate generated by the CG

method is not the solution point x∗. Then we have the following four properties:

(rk)T ri = 0, for i = 0, 1, ..., k − 1, (2.50)

span{r0, r1, ..., rk} = span{r0, Ar0, ..., Akr0}, (2.51)

span{p0, p1, ..., pk} = span{r0, Ar0, ..., Akr0}, (2.52)

(pk)TApi = 0, for i = 0, 1, ..., k − 1. (2.53)

In addition, the sequence {xk} converges to x∗ in at most n iterations.

Theorem 2.18 (Theorem 5.4 in [97]). If A has only r distinct eigenvalues, then the CG

method will terminate at the solution in at most r iterations.

Theorem 2.19 (Theorem 5.5 in [97]). If A has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, we

have that

‖xk+1 − x∗‖2A ≤
(
λn−k − λ1

λn−k + λ1

)2

‖x0 − x∗‖2A, (2.54)

where ‖x‖A is denoted by
√
xTAx.

From Theorem 2.18 and 2.19, we know that the rate of the convergence of the CG

method depends on the distribution of the eigenvalues of A. In order to accelerate the

CG method, we can consider solving the following linear system

(C−TAC−1)x̂ = C−T b (2.55)

where x̂ = Cx and C is a nonsingular matrix. We can choose C such that the condition

number of C−TAC−1 is much smaller than the condition number of A or the eigenvalues



Chapter 2. Mathematical Preliminaries 20

of C−TAC−1 are clustered. Then we have the preconditioned CG method and the

algorithm is summarized in Algorithm 2.

Algorithm 2: Preconditioned CG Method

1 Given x0, preconditioner M (M = CTC);

2 Set r0 = Ax0 − b, k = 0;

3 Solve My0 = r0 for y0;

4 Set p0 = −y0;

5 while rk 6= 0 do

6 αk = − (rk)T yk

(pk)TApk
;

7 xk+1 = xk + αkpk;

8 rk+1 = rk + αkApk;

9 Solve Myk+1 = rk+1;

10 βk+1 = (rk+1)T yk+1

(rk)T yk
;

11 pk+1 = −yk+1 + βk+1pk;

12 k = k + 1;

13 end

Example 2.17. Let us use the preconditioned CG method to solve the following linear

system:

Ax = b, (2.56)

where A is the discrete Laplacian matrix by 5-point difference scheme with Dirichlet

boundary conditions and b is a vector whose elements are all 1. From Figure 2.5, we can
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Figure 2.5: NP and ICFP represent no preconditioner and incomplete Cholesky fac-
torization preconditioner respectively.

notice that a good preconditioner can speed up the rate of the convergence significantly.1

1https://www.mathworks.com/help/matlab/ref/pcg.html
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2.5.2 Minimal Residual Method

Let us consider the following equations:

r +Ax = b, Ar = 0, (2.57)

where A ∈ Rn×n is a symmetric matrix which may be both indefinite and singular. We

want to find an approximation of x with the form Vky, where Vk ∈ Rn×k is a matrix and

its columns vi, i ∈ {1, ..., k} are linearly independent mutually. Here, we want to find yk

such that it is a stationary value to

fk(y) = (AVky − b)T (AVky − b). (2.58)

Then we can minimize ‖Ax− b‖2 by solving

V T
k A

2Vky
k = V T

k Ab, xk = Vky
k. (2.59)

If the vectors vi are computed by the Lanczos algorithm [100], we have

V T
k A

2Vk = T 2
k + β2

k+1eke
T
k , (2.60)

V T
k Ab = β1V

T
k Av1 = β1Tke1, (2.61)

where β1 = ‖b‖2, ek is a k dimensional column vector whose kth component is 1 and

remaining components are 0, and

Tk =


α1 β2

β2 α2 β3

· ·
βk αk

 . (2.62)

By using orthogonal factorization Tk = L̄kQk, we get

T 2
k + β2

k+1eke
T
k = L̄kL̄

T
k + β2

k+1eke
T
k = LkL

T
k , (2.63)

where L̄k and Lk are both lower triangular and Q is unitary. Here, we use Givens

rotation to decompose Tk:

TkQ1,2 · · ·Qk−1,k = TkQ
T
k = L̄k =


γ1

δ2 γ2

ε3 δ3 γ3

˙ ˙ ˙

εk δk γ̄k

 , (2.64)
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where Qi,i+1 is a Givens matrix whose non-zero elements are given by qi,i = −qi+1,i+1 =

ci, qi,i+1 = qi+1,i = si, qk,k = 1 for k 6= i, i+ 1. In the next step, we compute

γk = (γ̄k
2 + β2

k+1)1/2, ck = γ̄k/γk, sk = βk+1/γk. (2.65)

Now, we only need to solve the following equation:

LkL
T
k y

k = β1L̄kQke1. (2.66)

We have L̄k = LkDk, Dk = diag(1, · · · , 1, ck). Set LTk y
k = β1DkQke1 = tk and Mk =

VkL
−T
k . Then we have

xk = Vky
k = Mktk. (2.67)

2.6 Optimization Methods

In reality, many complex problems can be reformulated into optimization problems. In

this section, the fundamental theory of optimization methods, including unconstrained

optimization methods and constrained optimization methods, are presented. For more

details about the theory of optimization methods, please refer to [8, 73, 97, 115].

2.6.1 Unconstrained Optimization Methods

In this subsection, we consider the following unconstrained optimization problem:

min
x
f(x), (2.68)

where x ∈ Rn and f : Rn → R is a smooth function. The basic iterative scheme for the

unconstrained optimization methods is

xk+1 = xk + αkpk, (2.69)

where xk is the kth iterative point, αk is the step length and pk is the search direction.

Next, we first present the first-order necessary condition. Then the choices of the step

length and the search directions are briefly discussed.

First-Order Necessary Condition

First, we give the definition of the global minimizer and the local minimizer of (2.68).

Definition 2.20. We say that a point x∗ is a global minimizer of (2.68) if the following

condition is satisfied:

f(x∗) ≤ f(x) for all x. (2.70)
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In addition, we say that a point x∗ is a local minimizer of (2.68) if the following condition

is satisfied:

f(x∗) ≤ f(x) for all x ∈ N , (2.71)

where N is a neighborhood of x.

Figure 2.6 shows an example of the global minimizer and the local minimizer.
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Figure 2.6: An example of the global minimizer (left) and the local minimizer(right).

Then we present the first-order necessary condition.

Theorem 2.21. If x∗ is a local minimizer and f is continuously differentiable in an

open neighbourhood of x∗, then ∇f(x∗) = 0.

Proof. The proof can be found in [97].

Here, if ∇f(x∗) = 0, we say that x∗ is a stationary point or a critical point. Hence, any

local minimizer must be a stationary point.

Theorem 2.22. When f is convex, any local minimizer x∗ is a global minimizer of f .

In addition, if f is differentiable, any stationary point x∗ is a global minimizer of f .

Proof. The proof can be found in [97].

Armijo Condition

Assume that the search direction pk is fixed, the best choice of the step length αk should

be the global minimizer of the following function:

φ(α) = f(xk + αpk), α > 0. (2.72)

However, it is usually too expensive to find this exact value. Hence, in practice, an

inexact line search is often implemented rather than doing an exact line search. A

popular inexact line search condition should satisfy the sufficient decrease:

f(xk + αpk) ≤ f(xk) + αη(∇fk)T pk, (2.73)
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where ∇fk is the gradient of f(x) at xk and η ∈ (0, 1). Usually, η is chosen as 10−4

[73, 92]. (2.73) is also called Armijo condition. We can use the backtracking strategy

(Algorithm 3) to determine the step length αk.

Algorithm 3: Backtracking Strategy

1 Given ᾱ > 0, ρ, η ∈ (0, 1);

2 Set α = ᾱ;

3 while f(xk + αpk) > f(xk) + αη(∇fk)T pk do

4 α = ρα;

5 end

6 αk = α.

For the other inexact line search conditions, such as the Wolf condition, the strong Wolf

condition and the Goldstein condition, please refer to [97, 115].

The Steepest Descent Method

For the steepest descent method, the search direction is

pk = −∇fk. (2.74)

Hence, the iterative scheme of the steepest descent method is

xk+1 = xk − αk∇fk, (2.75)

where αk is chosen by a line search condition.

Although the steepest descent method is one of the simplest and most fundamental

methods in unconstrained optimization, the convergence rate may be very slow.

Theorem 2.23 (Theorem 3.1.5 in [115]). Consider the following unconstrained opti-

mization problem

min
x

1

2
xTGx, (2.76)

where G ∈ Rn×n is a symmetric and positive definite matrix. Let λn and λ1 be the

largest and smallest eigenvalues of G respectively. Let x∗ be the minimizer of (2.76).

Then the sequence {xk}∞k=1 generated by the steepest descent method with the exact line

search converges to x∗ and the following bound holds:

‖xk+1 − x∗‖2G ≤
(
λn − λ1

λn + λ1

)2

‖xk − x∗‖2G, (2.77)

where ‖xk − x∗‖2G = (xk − x∗)TG(xk − x∗).
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According to Theorem 2.23, we can know that the convergence rate of the steepest

descent method depends on the condition number of G (λn/λ1). If the condition number

of G is very large, the convergence rate should be very slow.

Newton Method

Let f : Rn → R be twice continuously differentiable and ∇2fk (the Hessian of f(x) at

xk) be positive definite. By using the Taylor expansion, we have

f(xk + p) ≈ qk(p) = f(xk) + (∇fk)T p+
1

2
pT∇2fkp, (2.78)

where p = x− xk. By minimizing qk(p), we have

xk+1 = xk − [∇2fk]−1∇fk, (2.79)

which is the iterative scheme of the Newton method. The following theorem shows that

the Newton method is local convergent and has the quadratic convergence rate.

Theorem 2.24 (Theorem 3.2.2 in [115]). Let f ∈ C2 and xk be close enough to the

minimizer x∗ with ∇f(x∗) = 0. If the Hessian ∇2f(x∗) is positive definite and ∇2f(x)

satisfies the Lipschitz condition

|∇2
i,jf(x)−∇2

i,jf(y)| ≤ β‖x− y‖, for some β and all i, j, (2.80)

where ∇2
i,jf(x) is the (i, j)-element of ∇2f(x), then for all k, Newton’s iteration (2.79)

is well-defined and the generated sequence {xk}∞k=1 converges to x∗ with a quadratic rate.

Remark 2.25. Although the Newton method can have the quadratic convergence rate,

it severely depends on the location of the initial point. If the initial point is far from

the minimizer, the Newton method may be not convergent.

Quasi-Newton Method

Here, we introduce the most popular quasi-Newton method, the BFGS method, which

is named after Broyden, Fletcher, Goldfarb, and Shanno. Let us consider the following

approximation of the objective function f(x) at the current iterate xk:

f(xk + p) ≈ mk(p) = f(xk) + (∇fk)T p+
1

2
pTBkp, (2.81)

where Bk ∈ Rn×n is symmetric and positive definite. By minimizing mk(p) to obtain

its minimizer pk, we have

pk = −[Bk]−1∇fk (2.82)

and the iterative scheme of the quasi-Newton method is as follows:

xk+1 = xk + αkpk, (2.83)
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where αk is chosen by a line search condition.

But how to choose Bk at kth iteration? Let us consider

mk+1(p) = f(xk+1) + (∇fk+1)T p+
1

2
pTBk+1p. (2.84)

If we assume that the gradient of mk+1 and the gradient of f at the latest two iterates

xk and xk+1 are the same, then we have the following relationships:

∇mk+1(0) = ∇fk+1,

∇mk+1(−αkpk) = ∇fk.
(2.85)

The first equation in (2.85) is obviously satisfied and the second equation in (2.85) results

in

Bk+1αkpk = ∇fk+1 −∇fk. (2.86)

By introducing sk = xk+1 − xk and yk = ∇fk+1 −∇fk, we have

Bk+1sk = yk. (2.87)

(2.87) is called secant equation. In order to let Bk+1 be a symmetric and positive definite

matrix, the curvature condition

(sk)T yk > 0 (2.88)

should also be satisfied. When condition (2.88) is satisfied, there always exist infinite

solutions Bk+1 to (2.87). We aim to find a Bk+1 which is symmetric and positive definite,

satisfies the secant equation and is closest to the current matrix Bk in some sense. So

we solve the following problem:

min
B
‖B −Bk‖ subject to B = BT , Bsk = yk, (2.89)

where sk and yk satisfies the curvature condition (2.88) and Bk is symmetric and pos-

itive definite. The matrix norm is chosen as ‖A‖W = ‖W 1/2AW 1/2‖F , where ‖ · ‖F is

Frobenius norm and W can be any matrix satisfying Wyk = sk. Then we can derive

the DFP updating formula:

Bk+1 = (I − ρkyk(sk)T )Bk(I − ρksk(yk)T ) + ρkyk(yk)T , (2.90)

where ρk = 1
(yk)T sk

.

Furthermore, let Hk be the inverse of Bk. If we solve the following problem:

min
H
‖H −Hk‖ subject to H = HT , Hyk = sk, (2.91)
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we can derive the BFGS updating formula:

Hk+1 = (I − ρksk(yk)T )Hk(I − ρkyk(sk)T ) + ρksk(sk)T . (2.92)

The algorithm of BFGS method is summarized in Algorithm 4.

Algorithm 4: BFGS Method

1 Given x0, ε > 0, initial inverse Hessian approximation H0;

2 k = 0;

3 while ‖∇fk‖ ≥ ε do

4 pk = −Hk∇fk;
5 xk+1 = xk + αkpk (αk is computed from a line search condition.);

6 sk = xk+1 − xk;
7 yk = ∇fk+1 −∇fk;
8 compute Hk+1 from (2.92);

9 k = k + 1;

10 end

Remark 2.26. At each iteration, the quasi-Newton method computes the gradient and

the matrix-vector product and does not need to solve a linear system.

However, the inverse Hessian approximation Hk will be in general not sparse and it

is very difficult to store and compute a matrix-vector product Hk∇fk. From (2.92),

Hk∇fk can be computed by doing a sequence of inner products and vector summation

involving ∇fk and the pairs {si, yi}. Hence, we just store a fixed number m of the

vector pairs {si, yi} to store a modified version of Hk implicitly. The oldest vector pair

in {si, yi} will be deleted and replaced by the new pair after the new iterate. Then the

limited-BFGS approximation Hk satisfies the following formula:

Hk =((V k−1)T · · · (V k−m)T )H0(V k−m · · · V k−1)

+ ρk−m((V k−1)T · · · (V k−m+1)T )sk−m(sk−m)T (V k−m+1 · · · V k−1)

+ ρk−m+1((V k−1)T · · · (V k−m+2)T )sk−m+1(sk−m+1)T (V k−m+2 · · · V k−1)

+ · · ·

+ ρk−1sk−1(sk−1)T .

(2.93)
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where V k = I − ρkyk(sk)T and H0 is the initial inverse Hessian approximation. From

(2.93), we can summarize Algorithm 5 to compute Hk∇fk efficiently.

Algorithm 5: L-BFGS recursion

1 q = ∇fk;
2 for i = k − 1, k − 2, ..., k −m do

3 αi = ρi(si)T q ;

4 q = q − αiyi;
5 end

6 r = H0q;

7 for i = k −m, k −m+ 1, ..., k − 1 do

8 β = ρi(yi)T r;

9 r = r + si(αi − β);

10 end

11 Stop with result Hk∇fk = r.

Based on Algorithm 5, the L-BFGS method is summarized in Algorithm 6.

Algorithm 6: L-BFGS Method

1 Given x0, ε > 0, integer m > 0, initial inverse Hessian approximation H0;

2 k = 0;

3 while ‖∇fk‖ ≥ ε do

4 pk = −Hk∇fk (Apply Algorithm 5);

5 xk+1 = xk + αkpk (αk is computed from a line search condition.);

6 if k > m then

7 Delete the vector pair {sk−m, yk−m} from storage;

8 end

9 sk = xk+1 − xk;
10 yk = ∇fk+1 −∇fk;
11 k = k + 1;

12 end

Gauss-Newton Method

Let us consider the following unconstrained optimization problem:

min
x
f(x) =

1

2

m∑
j=1

r2
j (x), (2.94)
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where each rj : Rn → R is a smooth function. Set r(x) = (r1(x), ..., rm(x))T and then

f(x) can be rewritten as f(x) = 1
2‖r(x)‖22. The gradient and Hessian of f are as follows:

∇f(x) = J(x)T r(x), (2.95)

∇2f(x) = J(x)TJ(x) +
m∑
j=1

rj(x)∇2rj(x), (2.96)

where

J(x) =

[
∂rj
∂xi

]
j = 1, ...,m

i = 1, ..., n

(2.97)

is the Jacobian of r(x) and ∇2rj(x) is the Hessian of rj(x). For (2.94), in order to find

the search direction pk, the Gauss-Newton method just solves the following equation

(Jk)TJkp = −∇fk (2.98)

instead of solving the Newton equation ∇2fkp = −∇fk.

The Gauss-Newton method has several advantages: firstly, we only need to compute the

Jacobian of r(x) and avoid to compute ∇2rj(x). In practice, it can save significant time.

Secondly, (Jk)TJk is usually much more important than the second order term when

‖r(x)‖ or ‖∇2rj(x)‖ is small. Finally, when Jk is full rank, (Jk)TJk is positive definite

and if ∇fk is nonzero, (2.98) can lead to a descent direction.

2.6.2 Constrained Optimization Methods

In this subsection, we consider the following constrained optimization problem:

min
x
f(x) subject to

{
ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

(2.99)

where f, ci : Rn → R are all smooth functions and E and I are both finite sets of

indices. Here, we first present the first-order necessary condition (KKT condition). Then

we mainly focus on two methods: the quadratic penalty method and the augmented

Lagrangian method.

First-Order Necessary Condition

Before giving the first-order necessary condition of (2.99), we first give the definition of

the global minimizer and the local minimizer of (2.99).

Definition 2.27. We say that a point x∗ ∈ Ω is a global minimizer of (2.99) if the

following condition is satisfied:

f(x∗) ≤ f(x) for all x ∈ Ω. (2.100)
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In addition, we say that a point x∗ ∈ Ω is a local minimizer of (2.99) if the following

condition is satisfied:

f(x∗) ≤ f(x) for all x ∈ N ∩ Ω. (2.101)

Here, Ω is the feasible set defined by

Ω = {x|ci(x) = 0, i ∈ E ; ci(x) ≥ 0, i ∈ I} (2.102)

and N is a neighborhood of x.

Then the Lagrangian of the constrained optimization problem (2.99) is defined by the

following formulation:

L(x, λ) = f(x)−
∑
i∈E∪I

λici(x). (2.103)

Now, we present the first-order necessary condition.

Theorem 2.28. Suppose that x∗ is a local solution of (2.99) and the linear independence

constraint qualification holds at x∗. Then there exists a Lagrangian multiplier vector λ∗,

with components λ∗i , i ∈ E ∪I, such that the following conditions are satisfied at (x∗, λ∗)

∇xL(x∗, λ∗) = 0, (2.104)

ci(x
∗) = 0, for all i ∈ E , (2.105)

ci(x
∗) ≥ 0, for all i ∈ I, (2.106)

λ∗ ≥ 0, for all i ∈ I, (2.107)

λ∗i ci(x
∗) = 0, for all i ∈ E ∪ I. (2.108)

Here, the linear independence constraint qualification (LICQ) is that the set of active

constraint gradients {∇ci(x∗), i ∈ A(x∗)} is linear independent, where the active set

A(x∗) is E ∪ {i ∈ I|ci(x∗) = 0}.

Proof. The proof can be found in [97].

This first-order necessary condition is also called Karush-Kuhn-Tucker (KKT) condi-

tions.

Quadratic Penalty Method

In this section, we focus on the following optimization problem with equality constraints:

min
x
f(x) subject to ci(x) = 0, i ∈ E . (2.109)

The quadratic penalty method is to minimize a sequence of quadratic penalty functions:

Q(x;σk) = f(x) +
1

2σk

∑
i∈E

c2
i (x), (2.110)
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where σk is the penalty parameter and limk→∞ σ
k = 0. Set xk as the minimizer of

Q(x;σk). When σk → 0, Q(x;σk) can penalize the constraints and xk can approximate

the minimizer x∗ of (2.109). In addition, since Q(x;σk) is smooth, we can use the

above mentioned unconstrained optimization methods to solve this quadratic penalty

function. In practice, xk can be set as the initial guess for minimizing Q(x;σk+1).

Then the algorithm of the quadratic penalty method is summarized in Algorithm 7.

Algorithm 7: Quadratic Penalty Method

1 Given σ0, ε0 > 0, initial guess x0,s;

2 for k = 0, 1, 2, ... do

3 minimize Q(x;σk) with initial guess xk,s to find an approximated minimizer

xk and the stopping criteria is ‖∇Q(x;σk)‖ ≤ εk;
4 if the final convergence test is satisfied then

5 Exit and find the approximated solution xk;

6 end

7 Set the penalty parameter σk+1 ∈ (0, σk);

8 Set the initial guess xk+1,s = xk;

9 Set the tolerance εk > 0;

10 end

For the quadratic penalty method, we have the following convergence theorem:

Theorem 2.29 (Theorem 17.2 in [97]). If the tolerance εk in Algorithm 7 satisfy

limk→∞ ε
k = 0 and the penalty parameters σksatisfy limk→∞ σ

k = 0, then for all limit

point x∗ of the sequence {xk} at which the constraint gradient ∇ci(x∗) are linearly inde-

pendent, we have that x∗ is a KKT point for the problem (2.109). For such points, we

have the infinite subsequence K such that limk∈K x
k = x∗ and

lim
k∈K
−ci(xk)/σk = λ∗i , for all i ∈ E , (2.111)

where λ∗ is multiplier vector that satisfies the KKT conditions.

Augmented Lagrangian Method

From (2.111), we know that the approximated minimizer xk of Q(x;σk) can not satisfy

the equality constraints ci(x) = 0, i ∈ E unless σk is very small. In order to make

the approximated minimizer satisfy the constraints easily and avoid decreasing σk to 0,

the augmented Lagrangian method was studied by Hestenes [65] and Powell [105]. The

augmented Lagrangian is defined by

LA(x, λ;σ) = f(x)−
∑
i∈E

λici(x) +
1

2σ

∑
i∈E

c2
i (x). (2.112)
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Differentiating (2.112) with respect to x, we get

∇xLA(x, λ;σ) = ∇f(x)−
∑
i∈E

[λi − ci(x)/σ]∇ci(x). (2.113)

Here, we can deduce that

λ∗i ≈ λki − ci(xk)/σk, for all i ∈ E . (2.114)

Then we have ci(x
k) ≈ −σk(λ∗i − λki ) for all i ∈ E . If λki is close to λ∗i , ‖ci(xk)‖ can be

much smaller than σk rather than the multiple of σk shown in (2.111). Obviously, λk+1
i

can be updated by (2.114):

λk+1
i = λk+1

i − ci(xk)/σk, for all i ∈ E . (2.115)

Then the algorithm of the augmented Lagrangian method is summarized in Algorithm 8.

Algorithm 8: Augmented Lagrangian Method

1 Given σ0, ε0 > 0, initial guess x0,s and λ0;

2 for k = 0, 1, 2, ... do

3 minimize LA(x, λk;σk) with initial guess xk,s to find an approximated

minimizer xk and the stopping criteria is ‖∇xLA(x, λk;σk)‖ ≤ εk;
4 if the final convergence test is satisfied then

5 Exit and find the approximated solution xk;

6 end

7 Use (2.115) to update λk+1;

8 Set the penalty parameter σk+1 ∈ (0, σk);

9 Set the initial guess xk+1,s = xk;

10 Set the tolerance εk > 0;

11 end

Alternating Direction Method of Multipliers

Here, we review the alternating direction method of multipliers (ADMM) which is a

variant of the augmented Lagrangian method that partially updates the dual variables.

Consider the following constrained problem:

min f(x) + g(z)

s.t. Ax+Bz = c
(2.116)

with x ∈ Rn×1, z ∈ Rm×1, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp×1. Its corresponding

augmented Lagrangian function is defined by the following formulation:

LA(x, z, λ, σ) = f(x) + g(z) + λT (Ax+Bz − c) +
1

2σ
‖Ax+Bz − c‖2, (2.117)
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where λ is the Lagrangian multiplier and σ > 0 is the penalty parameter. Then ADMM

consists of the following iterations

xk+1 :=argmin LA(x, zk, λk, σ),

zk+1 :=argmin LA(xk+1, z, λk, σ),

λk+1 := λk +
1

σ
(Axk+1 +Bzk+1 − c).

(2.118)

ADMM can be viewed as a Gauss-Seidel pass over x and z instead of updating x and z

simultaneously. By considering the structures of f and g, we can design effective solves

for subproblem x and subproblem z respectively and reduce the computational time

significantly. Besides, ADMM can have excellent properties of the convergence under

suitable assumptions, and for more details, please refer to [7, 13, 57, 70].

Bregman Iteration

Here, we introduce the Bregman iteration, which is one of the most popular methods in

image processing and first used by Osher et al. in [99] to solve the ROF model for TV

denoising. We consider the following constrained optimization problem:

min
x
f(x) subject to Ax = b, (2.119)

where A is a linear operator and b is a vector. We use the quadratic penalty method to

convert (2.119) into the following unconstrained optimization problem:

min
x
f(x) +

1

2σ
‖Ax− b‖22. (2.120)

Then the basic iterative scheme of the Bregman iteration is as follows:

xk+1 = argmin f(x) +
1

2σ
‖Ax− bk‖22, (2.121)

bk+1 = bk + b−Axk+1. (2.122)

In [133], Yin et al. point out that the Bregman iteration is equivalent to the augmented

Lagrangian method when the constriants are linear. More relevant details can be found

in [36, 46, 102].





Chapter 3

Mathematical Models for Image

Registration

In this chapter, we present the general variational framework for image registration.

Firstly, the variational framework for image registration is established, and fidelity terms

and regularizers are discussed. Then, the general solution scheme is considered, including

first-optimize-then-discretize and first-discretize-then-optimize. Some other details, such

as cubic spline interpolation and multilevel strategy, are also illustrated.

3.1 Variational Framework for Image Registration

The aim of image registration is to find a plausible transformation y(x) : Ω ⊂ Rd → Rd

such that the deformed template

(T ◦ y)(x) = T (y(x)) (3.1)

is similar with the reference R(x). At the same time, we define u(x) = (u1(x), ..., ud(x))

is the displacement which shows how much T moves. So y(x) = x + u(x) and solving

y(x) or u(x) is equivalent.

In order to measure the difference between the deformed template T (x + u) and the

reference R, a suitable fidelity term D(T (x + u), R) should be introduced. Hence, the

image registration problem can be formulated by minimizing the following functional:

min
u
D(T (x+ u), R). (3.2)

However, it is well known that only minimizing (3.2) is ill-posed in the sense of Hadamard

since it is not sufficient to ensure the uniqueness and continuity of the solution. In order

to overcome this difficulty, regularization is indispensable [11, 23, 32, 33, 59, 86, 87, 129].

Combining the fidelity term and the regularization, the image registration problem can

35
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be well-posed as minimizing the following joint functional:

min
u
D(T (x+ u), R) + αR(u), (3.3)

where α is a positive parameter to balance these two terms, R(u) is the regularizer to

rule out the irregular and unwanted solutions based on prior information and u belongs

to a specified feasible set.

3.2 Fidelity Terms

In image registration, how to measure the difference between the deformed template

and the reference is one of the most basic tasks. For different applications, different

fidelity terms should be considered. In this section, we present several commonly used

choices for the fidelity terms, including the sum of squared differences, normalized cross

correlation, normalized gradient fields, and mutual information.

3.2.1 Sum of Squared Differences (SSD)

In the mono-modal image registration, where the intensities of the given images are

comparable, the most widely used fidelity term should be the so-called sum of squared

differences (SSD) [91, 92] defined by:

DSSD(T (x+ u), R) =
1

2

∫
Ω

(T (x+ u)−R)2dx. (3.4)

When T (x+ u) = R, (3.4) can reach its minimal value.

3.2.2 Normalized Cross Correlation (NCC)

When the intensities of the given images are not comparable, SSD can not be an appro-

priate fidelity term. In order to overcome this drawback, the normalized cross correlation

(NCC) is proposed [92]:

DNCC(T (x+ u), R) = 1− 〈T (x+ u), R〉2

‖T (x+ u)‖2‖R‖2
, (3.5)

where ‖·‖ =
√
〈·, ·〉. Here, we can find that when T (x+u) and R are linearly dependent,

(3.5) can reach its minimal value.

3.2.3 Normalized Gradient Fields (NGF)

In the multi-modal image registration, although the given images can be captured from

different devices, such as CT and MRI, the reference image and the template image

usually have similar shapes and features but different intensities. This phenomenon can

be expressed by the fact that the changes of the intensities at corresponding positions

are similar. Hence, introducing the information of the gradients of the images into
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the fidelity term should be a good choice. Based on this idea, Haber and Modersitzki

proposed the normalized gradient fields (NGF) [51, 54]:

DNGF(T (x+ u), R) =

∫
Ω

1− (∇nT (x+ u) · ∇nR)2dx, (3.6)

where ∇nT (x + u) is defined by ∇T (x + u)/|∇T (x + u)| (assuming ∇T (x + u) 6= 0).

(3.6) gives its minimal value 0 when the normalized gradients of the reference and the

deformed template are linearly dependent.

3.2.4 Mutual Information (MI)

Mutual Information (MI) derived from the theory of information was introduced by

Maes et al. [84] and Viola et al. [125] independently. There are several ways to define

Mutual Information [104]. Here, we introduce the definition related to the Kullback-

Leibler distance. For two distributions p and q, the Kullback-Leibler distance is defined

as ∫
Ω
p(x) log

p(x)

q(x)
dx. (3.7)

It is a measure of the distance between two distributions. Analogous to the Kullback-

Leibler measure, Mutual Information of the two images is defined by the following for-

mulation:

DMI(T (x+ u), R) = −
∫
R2

pT,R(t, r) log
pT,R(t, r)

pT (t)pR(r)
dtdr, (3.8)

where pT , pR are probability distributions of the grey values in T and R and pT,R is

the joint probability distribution of the grey values. It is a measure of dependence

between two images. In practice, we can use either a histogram-based density estimator

or a Parzen-Window-based density estimator to estimate the joint probability pT,R [92].

Note that when T and R are independent, DMI is 0. Hence, minimizing (3.8) can

maximize the similarity between the given images.

Remark 3.1. There are still many kinds of fitting terms for multi-modality registra-

tion, for instance, the normalized gradient field (NGF) [69, 76, 109], edges sketching

registration [2], and normalized gradient fitting (GT) [69, 117]. Recently [16] proposed

a cross-correlation similarity measure based on reproducing kernel Hilbert spaces and

found advantages over Mutual Information.

3.3 Regularizations

As mentioned before, only minimizing the fidelity term is ill-posed in the sense of

Hadamard. To overcome this difficulty, regularization is indispensable, which can rule

out irregular results according to prior information. In this section, we review some

classic regularizers commonly used in image registration.
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3.3.1 Linear Elastic Regularizer

The linear elastic regularizer proposed by Broit [9] in 1981 is defined by the following

formulation:

RLelas(u) =

∫
Ω

µ

4

d∑
l,m=1

(∂xlum + ∂xmul)
2 +

λ

2
(∇ · u)2dx, (3.9)

where µ and λ denote the so-called Láme constants [37]. Especially, this regularizer can

penalize the linear affine deformation.

3.3.2 Diffusion Regularizer

Modersitzki and Fischer [38] proposed the diffusion regularizer based on W 1,2 semi-norm:

RDiff(u) =
1

2

∫
Ω

d∑
l=1

|∇ul|2dx, (3.10)

which aims to control the smoothness of the displacement. In reality, the diffusion

regularizer is a special case of the linear elastic regularizer: when µ and λ in (3.9)

are 1 and −1 respectively, the linear elastic regularizer can degenerate to the diffusion

regularizer.

3.3.3 Hyperelastic Regularizer

In 2004, Droske and Rumpf [33] first applied the hyperelastic regularizer to image reg-

istration. They consider a polyconvex energy functional:

RHyper1(y) :=

∫
Ω
αl‖∇y‖22 + αs‖cof∇y‖22 + αvφ1(det(∇y))dx, (3.11)

where φ1(v) = α1v
2 − α2 ln v and cof∇y is the cofactor. Then RHyper1(y) penalizes

volume shrinkage and growth.

In 2013, Burger et al. [11] also used a polyconvex regularization term:

RHyper2(y) :=

∫
αllength(y) + αssurface(y) + αvvolume(y)dx. (3.12)

Here,

length(y) = φl(∇y), φl(X) = ‖X − Id‖22,

surface(y) = φc(cof∇y), φc(X) = max{‖X‖22 − 3, 0}2,

volume(y) = φ2(det(∇y)), φ2(v) = ((v − 1)2/v)2.

Here, since φ2(v) also goes to ∞ when v goes to 0 or ∞ and φ2(v) = φ2(1/v), φ2(v)

controls the volume such that shrinkage and growth have the same price. Hence, RHyper2
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also restricts the Jacobian determinant of the transformation y close to 1 which is too

strong in some 2D applications [135].

This hyperelastic regularizer can help to get a diffeomorphic transformation since when

det(∇y) → 0, RHyper(y) → ∞. For more details about the theory of hyperelastic

material, please refer to [25, 26].

Remark 3.2. Here, we regularize the transformation y. And when d = 2, the hyperelastic

regularizer only involves length term and volume term.

3.3.4 Fluid Regularizer

Christensen et al. [18] proposed an effective viscous fluid model characterized by a

spatial smoothing of the velocity field. For the viscous fluid model, the deformation is

governed by the Navier-Stokes equation:

η∆v + (λ+ η)∇(∇ · v) + F = 0. (3.13)

Here, η and λ are the viscosity coefficients, the term ∇2v constraints the velocity field

to vary smoothly, the term ∇(∇·v) allows structures in the template to change in mass

and F is the nonlinear deformation force field, which can be defined by (T (x + u) −
R)∇T (x+u). In the Eulerian frame, to account for the difference between the velocity

v and the time rate of change of the deformation u here, we use material derivative to

provide the time rate of change:

v = ∂tu+ v · ∇u. (3.14)

In [18], the condition | det(∇y)| ≥ 0.5 is checked at each iteration and if not satisfied,

restarting the numerical solver is initiated so that a diffeomorphic transformation is

obtained.

3.3.5 Total Variation Regularizer

The total variation technique was firstly used in image processing by Rudin, Osher, and

Fatemi [107]. In [43], the total variation regularizer is extend to image registration:

RTV(u) =

∫
Ω

d∑
l=1

|∇ul|dx. (3.15)

This regularizer allows steep gradients and discontinuities in the displacement field rather

than the smooth displacement field derived by the diffusion regularizer (3.10).
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3.3.6 Linear Curvature Regularizer

The linear curvature regularizer proposed by Fischer and Modersitzki [39, 40] is the first

one of the curvature-type regularizers for image registration. The formulation of the

linear curvature regularizer is as follows:

RLcurv(u) =

∫
Ω

d∑
l=1

|∆ul|2dx. (3.16)

Note that RLcurv has a non-trivial kernel which contains affine linear displacements.

Hence, using this linear curvature regularizer does not penalize affine linear transforma-

tions and does not need an additional affine linear pre-registration step.

3.3.7 Henn and Witsch’s Curvature Regularizer

Henn and Witsch [59–61] modified the linear curvature regularizer and proposed the

following curvature regularizer:

RHWcurv(u) =

∫
Ω

2∑
l=1

(∆ul − 2(∂x1x1ul∂x2x2ul − ∂x1x2ul∂x2x1ul))2dx. (3.17)

The kernel of this regularizer only contains the affine linear displacement and hence, this

regularizer is invariant under planar rotation and translation.

3.3.8 Mean Curvature Regularizer

The mean curvature regularizer is given by the following formulation:

RMcurv(u) =
1

2

∫
Ω

2∑
l=1

|κM (ul)|2dx, (3.18)

which is proposed by Chumchob et al. [24] and κM (ul) = ∇· ∇ul√
1+|∇ul|2

. If we assume that

ul, l = 1, 2 is a surface represented by (x1, x2, ul(x1, x2)), κM (ul) is the mean curvature of

the surface ul. In addition, there is a link between the linear curvature regularizer and the

mean curvature regularizer: when ∇ul ≈ 0, κM (ul) ≈ ∆ul and RMcurv(u) ≈ RLcurv(u).

3.3.9 Gaussian Curvature Regularizer

In 2015, Ibrahim et al. [71] proposed the Gaussian curvature regularizer:

RGcurv(u) =

∫
Ω

2∑
l=1

|κG(ul)|dx, (3.19)

where κG(ul) =
∂x1x1ul∂x2x2ul−∂x1x2ul∂x2x1ul

(|∇ul|2+1)2
. In theory, this Gaussian curvature reg-

ularizer has advantages over the total variation regularizer and the mean curvature
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regularizer and in numerical experiments, it can outperform the linear curvature reg-

ularizer and the mean curvature regularizer. In addition, when ∇ul ≈ 0, κG(ul) ≈
∂x1x1ul∂x2x2ul−∂x1x2ul∂x2x1ul. So Henn and Witsch’s curvature regularizer can be con-

sidered as an approximation of the sum of the squared principal curvatures κp1(ul) and

κp2(ul):

κ2
p1(ul) + κ2

p2(ul) =

(
∇ · ∇ul√

1 + |∇ul|2

)2

− 2
∂x1x1ul∂x2x2ul − ∂x1x2ul∂x2x1ul

(|∇ul|2 + 1)2

≈ (∆ul)
2 − 2(∂x1x1ul∂x2x2ul − ∂x1x2ul∂x2x1ul).

(3.20)

Remark 3.3. Here, we can find that the linear elastic regularizer, the diffusion regular-

izer, the hyperelastic regularizer, the fluid regularizer, the total variation regularizer,

and the linear curvature regularizer are all suitable for 2D and 3D image registration.

However, Henn and Witsch’s curvature regularizer, the mean curvature regularizer and

the Gaussian curvature regularizer are only applied to 2D image registration.

3.4 General Solution Framework

In the previous section, the image registration problem has been formulated as a vari-

ational problem (3.3). How to solve this variational problem (3.3) efficiently and effec-

tively is always a difficult issue.

Note that (3.3) is an infinite-dimensional optimization problem. In general, this type of

problem cannot be solved analytically, requiring, therefore, the use of numerical schemes.

There are two main numerical approaches to solve infinite-dimensional optimization

problems. The first approach, referred as first-optimize-then-discretize, consists of differ-

entiating the objective function (3.3) to obtain its continuous Euler-Lagrange equation,

discretizing these equations, and then solving the resulting finite-dimensional equations

numerically. The second approach, referred as first-discretize-then-optimize, consists of

discretizing the objective function (3.3) and then solving the resulting finite-dimensional

optimization problem by some optimization algorithm.

3.4.1 First-Optimize-Then-Discretize

For the first-optimize-then-discretize, we try to find the solution of the Euler-Lagrange

equation of (3.3):

f(u) + αA(u) = 0 (3.21)

subject to the appropriate boundary conditions. Here, the term f and the term A are

usually derived from the Gâteaux derivative of the fidelity term D and the Gâteaux

derivative of the regularizer term R respectively. In addition, f can be viewed as the

external forces to match the given images and A can be viewed as the internal forces to

remove the undesired deformation field u.
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As an example, let us consider the following classical diffusion model:

min
u

1

2

∫
Ω

(T (x+ u)−R)2dx+
α

2

∫
Ω

d∑
l=1

|∇ul|2dx, (3.22)

where the fidelity term is SSD and the regularizer is the diffusion regularizer. Its corre-

sponding Euler-Lagrange equation is as follows:

(T (x+ u)−R)∇uT (x+ u)− α∆u = 0 (3.23)

subject to the natural boundary condition 〈∇ul,n〉 = 0 on ∂Ω and l = 1, ..., d. Compared

with (3.21), the term f in (3.23) is (T (x+u)−R)∇uT (x+u) and the term A in (3.23)

is −∆u. Particularly, there exists a fast implementation based on the so-called additive

operator splitting (AOS) scheme [91, 127]. In [20], a fast solver was also developed for

this model.

For solving (3.21), if f is nonlinear and A is linear, the semi-implicit time marching

scheme can be defined by the following formulation:

u(tk+1)− u(tk)

τ
= f(u(tk)) + αA(u(tk+1)), (3.24)

where τ is the time step length, k ∈ N0 and u(t) = u(x, t). For more details, refer to

[38–40, 59, 64, 91]. If f and A are both nonlinear, we can define the following fixed

point iteration:

f(uk) + αA[uk](uk+1) = 0 (3.25)

where f and A are both linearized at the current approximation uk and k ∈ N0. For

more details, please refer to [43, 62].

3.4.2 First-Discretize-Then-Optimize

For the first-discretize-then-optimize, the first step is to discretize (3.3) to get a finite

dimensional optimization problem:

min
U
J(U). (3.26)

The standard iterative scheme of the optimization method is given by the following

formulation:

Uk+1 = Uk + θkδUk, (3.27)

where Uk is the current iteration point, θk is the step length and δUk is the search

direction. Here, how to choose a good search direction δUk is very crucial. In the

following chapters, we will give more details about the Gauss-Newton direction and

several strategies to further speed up the optimization algorithm. For more details,

please refer to [48, 49, 52, 58, 62, 63].
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3.5 Cubic Spline Interpolation

In image registration, the evaluation of the deformed template image T (x + u) must

involve interpolation because x + u does not in general correspond with pixel points.

Nearest neighbour interpolation is the easiest interpolation, but it leads to a function

whose derivative may not be defined. In this thesis, the main solver algorithm is based

on the first-discretize-then-optimize, and a continuously differentiable interpolation is

necessary. Linear interpolation is continuous but not differentiable at the grid points.

Cubic spline interpolation is twice continuously differentiable and satisfies our require-

ments. Hence, in this section, we present the details about cubic spline interpolation.

Let K = {x0, ..., xn} be a set containing n+ 1 knots with a = x0 < · · · < xn = b.

Definition 3.4 (Cubic Spline Interpolation). We say that a function s ∈ C2[a, b]

is a cubic spline on [a, b] if in each interval [xi, xi+1], s is a cubic polynomial si, i ∈
{0, ..., n− 1}. In addition, we say that it is a cubic spline interpolation if s(xi) = yi for

given values yi.

Based on the Definition 3.4, a cubic spline interpolation s is a piecewise cubic polynomial:

s(x) =



a0 + b0(x− x0) + c0(x− x0)2 + d0(x− x0)3 if x0 ≤ x ≤ x1,

...
...

ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3 if xi ≤ x ≤ xi+1,

...
...

an−1 + bn−1(x− xn−1) + cn−1(x− xn−1)2 + dn−1(x− xn−1)3 if xn−1 ≤ x ≤ xn.
(3.28)

and it should satisfy the following conditions:

1. s(xj) = yj for j = 0, ..., n,

2. sj(xj+1) = sj+1(xj+1) for j = 0, ..., n− 2,

3. s′j(xj+1) = s′j+1(xj+1) for j = 0, ..., n− 2,

4. s′′j (xj+1) = s′′j+1(xj+1) for j = 0, ..., n− 2.

Here, we notice that s(x) have 4n unknowns and 4n − 2 conditions. In order to find

these 4n unknowns, we need two extra conditions. There exist two boundary conditions

often used in the spline interpolation: one is called free or natural boundary conditions:

s′′(x0) = s′′(xn) = 0 and the other one is called clamped boundary conditions: s′(x0) =

y′(x0) and s′(xn) = y′(xn).
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Figure 3.1: An example of a cubic spline interpolation with natural boundary condi-
tions.

Example 3.1. Figure 3.1 shows a cubic spline interpolation passing through (5, 5), (7, 2)

and (9, 4) with natural boundary conditions. The formula of this cubic spline interpola-

tion is as follows:

s(x) =


5− 17

8
(x− 5) +

5

32
(x− 5)3 if 5 ≤ x ≤ 7,

2− 1

4
(x− 7) +

15

16
(x− 7)2 − 5

32
(x− 7)3 if 7 ≤ x ≤ 9.

(3.29)

Another way to build a spline interpolation is to use B-splines and this idea can be easily

extended to high dimensional cases. B-splines of order n are basis functions for spline

functions of the same order defined over the same knots. B-splines of order n can be

generated by the Cox-de Boor recursion formula [29]:

Bi,n :=
x− xi

xi+n−1 − xi
Bi,n−1(x) +

xi+n − x
xi+n − xi+1

Bi+1,n−1(x), (3.30)

where the B-spline of order 1 is defined by:

Bi,1(x) =

{
1 if xi ≤ x ≤ xi+1,

0 otherwise.
(3.31)

Then for a cubic spline interpolation s(x), we can write it as a linear combination of

B-splines of order 4 (cubic B-splines Figure 3.2):

s(x) =
n∑
i=0

ciBi,4(x). (3.32)

According to the conditions s(xi) = yi, we can solve a linear system to get the coefficients

ci.

For high dimensional cases, we only consider 2D case here and other high dimensional

cases can be extended similarly. LetK = {(x1,0, x2,0), ...(x1,n1 , x2,n2)} be a set containing
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Figure 3.2: B-spline of Order 4 (cubic B-spline).

(n1 + 1)× (n2 + 1) knots. In order to find a cubic spline interpolation to pass through

these (n1 + 1) × (n2 + 1) knots, this cubic spline interpolation can be written into the

following formulation:

s(x1, x2) =

n2∑
j=0

n1∑
i=0

ci,jBi,4(x1)Bj,4(x2). (3.33)

Set Bn1 = [Bi,4(x1,k)]
n1
k,i=0, Bn2 = [Bj,4(x2,k)]

n2
k,j=0 and B = Bn2 ⊗Bn1 , where ⊗ denotes

the Kronecker product. Then we can get the coefficients ci,j by solving the following

linear system:

Bc = y, (3.34)

where c and y are the vector forms of [ci,j ]
i=n1,j=n2
i,j=0 and [yi,j ]

i=n1,j=n2
i,j=0 according to the

lexicographical ordering.

3.6 Multilevel Strategy

In practice, the multilevel strategy is often used in the image registration problem [52,

92]. We firstly coarsen the template T and the reference R by several levels. In the finest

level, we set TL = T and RL = R and in the coarsest level, we set Tl = T and Rl = R.

Then we solve the image registration problem on the coarsest level to get a solution. By

using an interpolation operator on the solution of the coarsest level, we get an initial

guess for the next level. We repeat this process and obtain the final registration on the

finest level. This multilevel strategy has several advantages: in the coarse level, only

important patterns can be considered, and it is a standard technique used in order to

avoid getting trapped into a meaningless local minimum; the computational speed is

very fast because of fewer variables than on the fine level; the solution on the coarse

level can be a good initial guess for the fine level.
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In order to coarsen the given images, we average the adjacent cells: for 2D images, the

each pixel (i, j) of the image I`, ` ∈ {l, ..., L− 1} on the coarse level is

1

4
(I2i−1,2j−1
`+1 + I2i−1,2j

`+1 + I2i,2j−1
`+1 + I2i,2j

`+1 ); (3.35)

for 3D images, the each pixel (i, j, k) of the image I`, ` ∈ {l, ..., L−1} on the coarse level

is

1

8
(I2i−1,2j−1,2k−1
`+1 + I2i−1,2j,2k−1

`+1 + I2i,2j−1,2k−1
`+1 + I2i,2j,2k−1

`+1

+ I2i−1,2j−1,2k
`+1 + I2i−1,2j,2k

`+1 + I2i,2j−1,2k
`+1 + I2i,2j,2k

`+1 ).
(3.36)

As an illustration, Figure 3.3 shows the multilevel representation of a pair of the template

T and the reference R.1

T(level=7), m=[ 128 128]

R(level=7), m=[ 128 128]

T(level=6), m=[ 64 64]

R(level=6), m=[ 64 64]

T(level=5), m=[ 32 32]

R(level=5), m=[ 32 32]

T(level=4), m=[ 16 16]

R(level=4), m=[ 16 16]

T(level=3), m=[ 8 8]

R(level=3), m=[ 8 8]

Figure 3.3: An example of the multilevel representation of a pair of 2D images.

3.7 Conclusion

In this chapter, we build the variational framework for image registration, and the

relevant details are reviewed, including fidelity terms, regularizers, numerical algorithm,

interpolation, and multilevel strategy.

However, when the deformation is large, many variational models, including the popular

diffusion model, cannot ensure diffeomorphism. One common observation is that the

fidelity error appears small while the obtained transformation is incorrect by way of

mesh folding. Hence, recently, more and more researchers have focused on diffeomorphic

1https://github.com/C4IR/FAIR.m
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image registration where the derived transformation is continuously differentiable, and

it also has a continuously differentiable inverse. In the next chapter, we will propose a

novel technique to ensure the diffeomorphism motivated by the Beltrami coefficient.





Chapter 4

A Novel Diffeomorphic Model for

Image Registration and Its

Algorithm

In this chapter, we first propose a new variational model with a special regularizer,

based on the quasi-conformal theory, which can guarantee that the registration map is

diffeomorphic [135]. We then propose an iterative method to solve the resulting nonlinear

optimization problem and prove the convergence of the method. Numerical experiments

can demonstrate that the new model can not only get a diffeomorphic registration even

when the deformation is large, but also possess the accuracy in comparison with the

current best models.

4.1 Introduction

Over the last decade, more and more researchers have focused on diffeomorphic image

registration where folding measured by the local invertibility quantity det(∇y) is reduced

or avoided. Here, y denotes the transformation in the registration model and det(∇y)

is the Jacobian determinant of y. Under desired assumptions, obtaining a one-to-one

mapping is a natural choice as reviewed in [114].

In 2004, Haber and Modersitzki [50] proposed an image registration model imposing

volume preserving constraints, by ensuring det(∇y) is close to 1. Although volume

preservation is critical in some applications where some underlying (e.g., anatomical)

structure is known to be incompressible [114], it is not required or reasonable in others.

In a later work, the same authors [53] relaxed the constraint to allow det(∇y) to lie in a

specific interval. Yanovsky et al. [132] applied the symmetric Kullback-Leibler distance

to quantify det(∇y) to achieve a diffeomorphic mapping. Burger et al. [11] designed a

49
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volume penalty term ensured that shrinkage and growth had the same cost in their vari-

ational functional. The constrained hierarchical parametric approach [94] ensures that

the mapping is globally one-to-one and thus preserves topology in the deformed image.

Sdika [111] introduced a regularizer to penalize the non-invertible transformation. In

[124], Vercauteren et al. proposed an efficient non-parametric diffeomorphic image regis-

tration algorithm based on Thirion’s demons algorithm [118]. In addition, a framework

called Large Deformation Diffeomorphic Metric Mapping (LDDMM) can generate the

diffeomorphic transformation for image registration [4, 34, 88, 122]. An entirely dif-

ferent framework proposed by Lam and Lui [77] obtains diffeomorphic registrations by

constraining Beltrami coefficients of a quasi-conformal map f = y1(x) + iy2(x), instead

of controlling the map y(x) directly.

In this chapter, we aim to reformulate the Lam and Lui’s Beltrami measure as a direct

regularizer for controlling det(∇y) and to assess the effectiveness of the resulting vari-

ational models; though the idea applies to any commonly used models, we apply it to

the diffusion model as one simple example. Our contributions are two-fold:

• We propose a new Beltrami coefficient based regularizer that is explicitly expressed

in terms of det(∇y). This establishes a link between the Beltrami coefficient of

the transformation and the quantity det(∇y).

• An effective, iterative scheme is presented, and numerical experimental results

show that the new registration model has a good performance and produces a dif-

feomorphic mapping while remaining competitive to state-of-the-art models from

non-Beltrami frameworks.

We remark that several interesting works that are concerned with reversible transfor-

mations (such as [17, 131]) may also benefit from this study.

The rest of the chapter is organized as follows. Section 4.2 briefly reviews how to get a

diffeomorphic transformation for image registration. In Section 4.3, we propose a new

regularizer and a new registration model. The effective discretization and numerical

scheme are discussed in Section 4.4. The results of numerical experiments are shown in

Section 4.5, and finally a summary is concluded in Section 4.6.

4.2 Diffeomorphic Transformation

In Section 3.1, we have built the variational framework for image registration:

min
u
J (u) = D(T (x+ u), R) + αR(u), (4.1)

where D(T (x+u), R) is the distance measure, R(u) is the regularizer and α is a positive

parameter to balance these two terms.
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However, if we just solve (4.1) when D is SSD (3.4) and R is the diffusion regularizer

(3.10), the obtained solution u or y is mathematically correct but often incorrect physi-

cally. This is due to no guarantee of mesh non-folding which is measured by det(∇y) > 0,

i.e., a positive determinant of the local Jacobian matrix ∇y of the transformation y.

To achieve det(∇y) > 0, one can find several recent works that impose this constraint in

some direct way. We review a few of such models before we present our new constraint.

In the form of (4.1), the idea is to choose R1(·) as a penalty or a soft constraint to

control det(∇y) in the following (note y = x+ u)

min
u
J (u) = D(T (x+ u), R) + αR(u) + βR1(y). (4.2)

Volume Control. In 2004, Haber and Modersitzki [50] used volume preserving con-

straint (area in 2D) for image registration, namely

det(∇y) = 1.

As a consequence, we can ensure that the transformation is diffeomorphic. However,

volume preservation is not desirable when the anatomical structure is compressible in

medical imaging.

Slack Constraint. Improving on [53], the constraint det(∇y) = 1 is relaxed and a

slack constraint is proposed

a ≤ det(∇y) ≤ b,

where a positive interval [a, b] is provided by the user as prior information in the specific

application e.g. [a, b] = [0.1, 2].

Unbiased Transform. In [132], according to information theory, det(∇y) is controlled

by the symmetric Kullback-Leibler distance∫
Ω

(det(∇y)− 1) log(det(∇y))dx.

It can help to get an unbiased diffeomorphic transformation. This idea was tested with

the fluid regularizer (first order).

Optimal Mass Transport. Let Ω0 and Ω1 be two subdomains of Rd, with smooth

boundaries, each with a positive density function, σ0 and σ1, respectively. Assume that∫
Ω0

σ0 =

∫
Ω1

σ1 (4.3)

so that the same total mass is associated with Ω0 and Ω1. Consider a diffeomorphism y

from Ω0 to Ω1 which maps one density to the other in the sense that

σ0 = (det(∇y))σ1 ◦ y, (4.4)
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which is called the mass preservation (MP) property. In order to find the optimal MP

map, [56] defines the Lp Kantorovich-Wasserstein metric as follows:

min
y∈MP

∫
Ω0

‖y − x‖pσ0dx. (4.5)

An optimal MP map, when it exists, is an MP map which minimizes (4.5). Here,

we notice that if the density is 1, the MP problem degenerates to the VP (volume

preservation) problem.

Balance of Shrinkage and Growth. Geometrically det(∇y) = 1 implies volume

preservation. Similarly det(∇y) < 1 implies shrinkage while det(∇y) > 1 implies

growth. A function that treats the cases of shrinkage and growth identically is φ(v) =

((v − 1)2/v)2 since φ(1/v) = φ(v). A volume penalty

∫
Ω

(
(det(∇y)− 1)2

det(∇y)

)2

dx (4.6)

is used in the hyperelastic model [11], which ensures that shrinkage and growth have the

same price.

LDDMM Framework. The variational formulation of large deformation diffeomorphic

metric mapping (LDDMM) [4, 34, 88, 114, 122] is defined by:

min
T ,v
D(T (·, 1), R) + αR(v)

s.t. ∂tT (x, t) + v(x, t) · ∇T (x, t) = 0 and T (x, 0) = T,
(4.7)

where v : Ω × [0, 1] → Rd is the velocity and T : Ω × [0, 1] → R is a series of images.

Here, LDDMM regularizes the velocity v and we can compute its corresponding trans-

formation y by using the information of v. When v is sufficiently smooth, it can lead

to a diffeomorphic transformation y, namely det(∇y) > 0. However, since LDDMM in-

volves the transport equation, the time t is introduced, and the dimension of the original

problem is increased. Hence, designing an efficient solver for LDDMM is very difficult.

Diffeomorphic Demons (DDemons). [124] presents an efficient non-parametric dif-

feomorphic image registration algorithm based on Thirion’s demons algorithm [118]. The

basic idea is to adopt the optimization procedure underlaying the demons algorithm to

a space of diffeomorphic transformations. Its iterations are as follows:

1. Given the current transformation y, compute a correspondence update field u by

minimizing ‖T (y(exp(u)))−R‖2 +
σ2
i
σ2
x
‖y − y(exp(u))‖2with respect to u.

2. For a fluid-like regularization let u ← Kfluid ? u. The convolution kernel will

typically be a Gaussian kernel.

3. Let c← y(exp(u)).
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4. For a diffusion-like regularization let y ← Kdiff?c (else let y ← c). The convolution

kernel will also typically be a Gaussian kernel.

Beltrami Indirect Control. In 2014, Lam and Lui [77] presented a novel approach

in a Beltrami framework to obtain diffeomorphic registrations with large deformations

using landmark and intensity information via quasi-conformal maps. Before introducing

this model, we first describe some fundamental theories about the quasi-conformal map

and Beltrami coefficient.

A complex map z = x1 +ix2 7−→ f(z) = y1(x1, x2)+iy2(x1, x2) from a domain in C onto

another domain is quasi-conformal if it has continuous partial derivatives and satisfies

the following Beltrami equation:

∂f

∂z̄
= µ(f)

∂f

∂z
, (4.8)

for some complex-valued Lebesgue measurable µ [5] satisfying ‖µ‖∞ < 1. Here µ =

µ(y) ≡ fz̄/fz is called the Beltrami coefficient explicitly computable from y since
fz =

∂f

∂z
≡ 1

2

( ∂f
∂x1
− i ∂f

∂x2

)
=

(y1)x1 + (y2)x2
2

+ i
(y2)x1 − (y1)x2

2
,

fz̄ =
∂f

∂z̄
≡ 1

2

( ∂f
∂x1

+ i
∂f

∂x2

)
=

(y1)x1 − (y2)x2
2

+ i
(y2)x1 + (y1)x2

2
,

(4.9)

where (y1)x1 = ∂y1/∂x1. Conversely y = yµ can be computed for a given µ through

solving µ(y) = µ.

A quasi-conformal map is a homeomorphism (in particular one-to-one) and its first-

order approximation takes small circles to small ellipses of bounded eccentricity [44]. As

a special case, µ = 0 means that the map f is holomorphic and conformal, characterized

by fz̄ = 0 or y1, y2 satisfying the Cauchy-Riemann equations (y1)x1 = (y2)x2 , (y1)x2 =

−(y2)x1 . For more details about quasi-conformal theory, please refer to [1, 44, 80].

Thus in the context of image registration, enforcing ‖µ‖∞ < 1 provides the control

for the transformation y and ensures homeomorphism. The quasi-conformal hybrid

registration model (QCHR) in [77] is

min
y

∫
Ω
|∇µ|2 + α

∫
Ω
|µ|2 + β

∫
Ω

(T (y)−R)2 (4.10)

subject to y = (y1, y2) satisfying

1). µ = µ(y);

2). y(pj) = qj for 1 ≤ j ≤ m (landmark constraints);

3). ‖µ(y)‖∞ < 1 (bijectivity);
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which indirectly controls det(∇y) via the Beltrami coefficient, where µ(y) is the Beltrami

coefficient of the transformation y. The above model is solved by a penalty splitting

method. It minimizes the following functional:∫
Ω
|∇ν|2 + α

∫
Ω
|ν|p + σ

∫
Ω
|ν − µ|2 + β

∫
Ω

(T (yµ)−R)2 (4.11)

subject to the constraints that ‖ν‖∞ < 1 and yµ is the quasi-conformal map with

Beltrami coefficient µ satisfying yµ(pj) = qj for 1 ≤ j ≤ m. Then in each iteration, it

needs to solve the following two subproblems alternately:

µn+1 = arg minσ

∫
Ω
|µ− νn|2 + β

∫
Ω

(T (yµ)−R)2

s.t. yµ(pj) = qj for 1 ≤ j ≤ m
(4.12)

and

νn+1 = arg min

∫
Ω
|∇ν|2 + α

∫
Ω
|ν|p + σ

∫
Ω
|ν − µn+1|2. (4.13)

In addition, it also solves the equation µ(y) = µ by the linear Beltrami solver (LBS)

[83] to find y and ensure that y matches the landmark constraints.

Thus, instead of controlling the Jacobian determinant of the transformation directly,

controlling the Beltrami coefficient is also a good alternative providing the same but in-

direct control. However, since their algorithm [77] has to deal with two main unknowns

(the transformation y and its Beltrami coefficient µ), and one auxiliary unknown (the

coefficient ν) in a non-convex formulation, the increased cost, practical implementation,

and convergence are real issues; for challenging problems, one cannot observe conver-

gence and therefore, the full capability of the model is not realized.

We are motivated to reduce the unknowns and simplify their algorithm. Our solution

is to reformulate the problem in the space of the primary variable y or u, not in the

transformed space of variables µ, ν. We make use of the explicit formula of µ = µ(y).

Working with the primal mapping y enables us to introduce the advantages of minimizing

a Beltrami coefficient to the above reviewed variational framework (4.1), effectively

unifying the two frameworks.

Hence, we propose a new regularizer based Beltrami coefficient and, in the numerical

part, we can find that it is easy to be implemented. Moreover, the reformulated control

regularizer can potentially be applied to a large class of variational models.

4.3 The Proposed Image Registration Model

In this section, we aim to present a new regularizer based on Beltrami coefficient, which

can help to get a diffeomorphic transformation. Then combining the new regularizer
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with the diffusion model (3.22), we present a novel model. Of course, combining with

other models may be studied as well since the idea is the same.

For f(z) = y1(x1, x2) + iy2(x1, x2), according to the Beltrami equation (4.8) and the

definitions (4.9), we have

µ(f) =
∂f

∂z̄

/∂f
∂z

=
((y1)x1 − (y2)x2) + i((y2)x1 + (y1)x2)

((y1)x1 + (y2)x2) + i((y2)x1 − (y1)x2)
, (4.14)

|µ(f)|2 =
((y1)x1 − (y2)x2)2 + ((y2)x1 + (y1)x2)2

((y1)x1 + (y2)x2)2 + ((y2)x1 − (y1)x2)2
=
‖∇f‖22 − 2 det(∇f)

‖∇f‖22 + 2 det(∇f)
, (4.15)

where f = (y1(x1, x2), y2(x1, x2)). Note (y1)x1(y2)x2 − (y2)x1(y1)x2 = det(∇f). So

det(∇f) can be represented by the Beltrami coefficient µ(f)

det(∇f) = |fz|2(1− |µ(f)|2) (4.16)

Clearly det(∇f) > 0 if |µ(f)| < 1, and by the inverse function theorem, the map f is

locally bijective. We conclude that f is a diffeomorphism if we assume that Ω is bounded

and simply connected.

4.3.1 New Regularizer

Our new regularizer based on |µ(f)| < 1 to control the transformation to get a diffeo-

morphic mapping is

R1(y) =

∫
Ω
φ(|µ|2)dx, |µ|2 =

‖∇y‖22 − 2 det(∇y)

‖∇y‖22 + 2 det(∇y)
(4.17)

which clearly involves the Jacobian determinant of the transformation det(∇y) in a

non-trivial way and we explore the choices of φ below.

Remark 4.1. Our new regularizer has two advantages: one is that the obtained transfor-

mation y do not need to possess det(∇y)→ 1; the other one is that we only compute the

transformation and do not need to compute its Beltrami coefficient and introduce an-

other auxiliary unknown as [77]. Also, from the numerical experiments, we can see that

our new regularizer is easy to be implemented and obtains accurate and diffeomorphic

transformations.

4.3.2 The Proposed Model

The above regularizer (4.17) providing a constraint on y is ready to be combined with

an existing model. In the framework (4.2), using (4.17), the first version of our new

model takes the form

min
y

1

2

∫
Ω

(T (y)−R)2dx+
α

2

∫
Ω

2∑
l=1

|∇ul|2dx+ β

∫
Ω
φ(|µ|2)dx (4.18)
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where u = y(x)− x is the deformation field and µ = µ(y). To promote |µ(f)| < 1, our

first and simple choice is φ(v) = φ1(v) = 1
(v−1)2

, which forces (4.18) and φ(v) to reduce

v, at the initial guess v = 0 when u = 0, since φ1(v)→∞ when v → 1.

Remark 4.2. From (4.10) and (4.18), we see that the QCHR model focuses on obtaining a

smooth Beltrami coefficient, and our model focuses on the diffeomorphic transformation

itself. There are major differences between the regularizer in QCHR model and our

new regularizer: the former is characterized by the Beltrami coefficient µ directly and

gradient of this Beltrami coefficient µ, while the latter is characterized by the Beltrami

coefficient indirectly in terms of the transformation y and the gradient of u. Since

y = x + u is our desired transformation, our direct regularizers such as |∇u|2 make

more sense than indirect regularizers such as |∇µ|2.

However as long as |µ(f)| < 1, we would not give a preference to forcing |µ(f)| → 0.

To put some control on bias, similarly to [11], we are led to 2 more choices of a less

unbiased function to modify R1(y)

• φ(v) = φ2(v) = v
(v−1)2

: balance |µ(f)| between 0 and 1 as φ2(v) = φ2(1/v);

• φ(v) = φ3(v) = v2

(v−1)2
: encourage |µ(f)| → 0 and |µ(f)| 6= 1;

Below, we list first order derivatives and second order derivatives for the above different

φ(v):

• φ′1(v) = 2
(v−1)3

and φ′′1(v) = 6
(v−1)4

;

• φ′2(v) = − v+1
(v−1)2

and φ′′2(v) = 2v+4
(v−1)4

;

• φ′3(v) = − 2v
(v−1)3

and φ′′3(v) = 4v+2
(v−1)4

;

which will be used in subsequent solutions. With a general φ(v), the second version of

our proposed model takes the form:

min
u

1

2

∫
Ω

(T (x+ u)−R)2dx+
α

2

∫
Ω

2∑
l=1

|∇ul|2dx+ β

∫
Ω
φ(|µ|2)dx, (4.19)

where |µ|2 =
(∂x1u1−∂x2u2)2+(∂x1u2+∂x2u1)2

(∂x1u1+∂x2u2+2)2+(∂x1u2−∂x2u1)2
is written in component form ready for

discretization, using y1 = x1 + u1(x1, x2), y2 = x2 + u2(x1, x2), and ∂x1u1 = ∂u1/∂x1.

4.4 The Numerical Algorithm

In this section, we will present a numerical algorithm to solve model (4.19). We choose

the first-discretize-then-optimize approach. Directly discretizing this variational model

gives rise to a finite dimensional optimization problem. Then we use optimization meth-

ods to solve this resulting problem.
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4.4.1 Discretization

We use finite differences to discretize model (4.19) on a unit square domain Ω = [0, 1]2.

In implementation, we employ the nodal grid and define a spatial partition Ωh = {xi,j ∈
Ω | xi,j = (xi1, x

j
2) = (ih, jh), 0 ≤ i ≤ n, 0 ≤ j ≤ n}, where h = 1

n and the discrete

domain consists of n2 cells of size h×h (see Section 2.4.1). We discretize the displacement

field u on the nodal grid, namely ui,j = (ui,j1 , ui,j2 ) = (u1(xi1, x
j
2), u2(xi1, x

j
2)). For ease of

presentation, according to the lexicographical ordering, we reshape

X = (x0
1, ..., x

n
1 , ..., x

0
1, ..., x

n
1 , x

0
2, ..., x

0
2, ..., x

n
2 , ..., x

n
2 )T ∈ R2(n+1)2×1,

and

U = (u0,0
1 , ..., un,01 , ..., u0,n

1 , ..., un,n1 , u0,0
2 , ..., un,02 , ..., u0,n

2 , ..., un,n2 )T ∈ R2(n+1)2×1.

Discretization of Term 1 in (4.19)

According to the cell-centered partition in Figure 4.1(a) and mid-point rule, we get

D(T (x+ u), R) :=
1

2

∫
Ω

(T (x+ u(x))−R(x))2dx

≈ h2

2

n−1∑
i=0

n−1∑
j=0

(T (xi+
1
2
,j+ 1

2 + u(xi+
1
2
,j+ 1

2 ))−R(xi+
1
2
,j+ 1

2 ))2.

(4.20)

i+1,j+1i,j+1

i,j i+1,j

i+0.5,j+0.5

(a) Illustration of cell-centered partition:
Green cell denoted by Ωi,j . Nodal Grid �

i-1,j i-0.5,j i,j i+1,j

i+1,j+1

i+1,j+0.5

(b) Partition for ∂x and ∂y . The left yellow
cell is Ωx1

i,j and the right green cell is Ωx2
i,j .

Figure 4.1: Partition of domain Ω = ∪ijΩi,j . Note that solutions u1 and u2 are
defined at nodes.

Set ~R = R(PX) ∈ Rn2×1 as the discretized reference image and ~T (PX+PU) ∈ Rn2×1 as

the discretized deformed template image, where P ∈ R2n2×2(n+1)2 is an averaging matrix
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for the transfer from the nodal grid representation of U to the cell centered positions

[50, 53].

Consequently, for SSD, we obtain the following discretization:

D(T (x+ u), R) ≈ h2

2
(~T (PX + PU)− ~R)T (~T (PX + PU)− ~R). (4.21)

Discretization of Term 2 in (4.19)

For the diffusion regularizer,

RDiff(u) :=
α

2

∫
Ω

2∑
l=1

|∇ul|2dx, (4.22)

according to the the partition in Figure 4.1(b) and mid-point rule, we have∫
Ω

x1
i,j

|∂x1ul|2dx ≈ h2(∂
i+ 1

2
,j

x1 ul)
2 1 ≤ j ≤ n− 1, (4.23)

or at the boundary half-boxes∫
Ω

x1
i,j

|∂x1ul|2dx ≈ h2

2
(∂
i+ 1

2
,j

x1 ul)
2 j = 0, n. (4.24)

And for
∫

Ω
x2
i,j
|∂x2ul|2dx, l = 1, 2, we have similar results.

As designed, we use compact (short) difference schemes to compute the ∂x1ul and

∂x2ul, l = 1, 2:

∂
i+ 1

2
,j

x1 ul ≈
ui+1,j
l − ui,jl

h
, ∂

i,j+ 1
2

x2 ul ≈
ui,j+1
l − ui,jl

h
. (4.25)

Then (4.22) can be rewritten in the following formulation:

RDiff(u) ≈ αh2

2
UTATGAU. (4.26)

See Appendix 4.7.1 for details on A and G.

Remark 4.3. Note that here the matrix A is the discretized gradient matrix. So ATGA

is the discretized Laplace matrix.

Discretization of Term 3 in (4.19)

For simplicity, denote |µ(y)| = |µ(x + u)| by |µ(u)|. From (4.19), note that φ(|µ(u)|2)

involves only first order derivatives and all ui,j are available at vertex pixels. Thus

it is convenient first to obtain approximations at all cell centers (e.g. at V5 in Figure

4.2) and second to use local linear elements to facilitate first order derivatives. We
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V5

V1 V2

V3 V4

Figure 4.2: Partition of a cell, nodal point � and center point ◦. 4V1V2V5 is Ωi,j,k.

shall divide each cell (Figure 4.2) into 4 triangles. In each triangle, we construct two

linear interpolation functions to approximate the u1 and u2. Consequently, all partial

derivatives are locally constants or φ(|µ(u)|2) is constant in each triangle.

According to the partition in Figure 4.2, we get

RBeltrami(u) := β

∫
Ω
φ(|µ(u)|2)dx = β

n∑
i=1

n∑
j=1

4∑
k=1

∫
Ωi,j,k

φ(|µ(u)|2)dx. (4.27)

Set Li,j,k(x) = (Li,j,k1 (x), Li,j,k2 (x)) = (ai,j,k1 x1 +ai,j,k2 x2 + bi,j,k1 , ai,j,k3 x1 +ai,j,k4 x2 + bi,j,k2 ),

which is the linear interpolation for u in the Ωi,j,k. Note that ∂x1L
i,j,k
1 = ai,j,k1 , ∂x2L

i,j,k
1 =

ai,j,k2 , ∂x1L
i,j,k
2 = ai,j,k3 and ∂x2L

i,j,k
2 = ai,j,k4 . According to (4.19), the discretization of

Beltrami regularizer can be written into following:

RBeltrami(u) ≈ βh2

4

n∑
i=1

n∑
j=1

4∑
k=1

φ(
(ai,j,k1 − ai,j,k4 )2 + (ai,j,k2 + ai,j,k3 )2

(ai,j,k1 + ai,j,k4 + 2)2 + (ai,j,k2 − ai,j,k3 )2
). (4.28)

To simplify (4.28), define 3 vectors ~r(U), ~r1(U), ~r2(U) ∈ R4n2
by ~r(U)l = ~r1(U)l ×

~r2(U)l, ~r
1(U)l = (ai,j,k1 − ai,j,k4 )2 + (ai,j,k2 + ai,j,k3 )2, ~r2(U)l = 1

/
[(ai,j,k1 + ai,j,k4 + 2)2 +

(ai,j,k2 − ai,j,k3 )2] where l = (k − 1)n2 + (j − 1)n+ i ∈ [1, 4n2]. Hence, (4.28) becomes

RBeltrami(u) ≈ βh2

4
φ(~r(U))eT (4.29)

where φ(~r(U)) = (φ(~r(U)1), ..., φ(~r(U)4n2)) denotes the pixel-wise discretization of

u1, u2 at all cell centers, and e = (1, ..., 1) ∈ R4n2
. Here, ~r(U) is the square of the

discretized Beltrami coefficient; we rewrite it in a compact form in Appendix 4.7.2.
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Finally, combining the above three parts (4.21), (4.26) and (4.29), we get the discretiza-

tion formulation for model (4.19):

min
U
J(U) :=

h2

2
(~T (PX + PU)− ~R)T (~T (PX + PU)− ~R) +

αh2

2
UTATGAU

+
βh2

4
φ(~r(U))eT .

(4.30)

Remark 4.4. Because of the nodal grid scheme, the partition in Figure 4.1 and 4.2

and the structure of the objective functional (4.19), we do not need to introduce the

boundary condition leading to (4.30).

Remark 4.5. According to the definition of φ and ~r(U)l ≥ 0, each component of φ(~r(U))

is non-negative and differentiable.

4.4.2 Optimization Method for The Discretized Problem (4.30)

In the numerical implementation, we choose a line search method to solve the result-

ing unconstrained optimization problem (4.30). To guarantee the search direction is a

descent direction, we employ the Gauss-Newton direction as the standard direction in-

volving non-definite Hessians do not generate a descent direction. In addition, in Section

2.6, we have mentioned that the Gauss-Newton approach presents two advantages: one

is that we do not need to compute the second order term and it can save computation

time; the other one is that this Gauss-Newton matrix is more important than the second

term, either because of small second order derivatives or because of small residuals [97].

Next, we will investigate the details about the approximated Hessian Ĥ(Uk), step length

θk, stopping criteria, and multilevel strategy.

Approximated Hessian Ĥ

We consider each of the three terms in J(U) from (4.30) separately.

Firstly, we consider the discretized SSD

h2

2
(~T (PX + PU)− ~R)T (~T (PX + PU)− ~R). (4.31)

Its gradient and Hessian are respectively{
d1 = h2P T ~T T

Ũ
(~T (Ũ)− ~R) ∈ R2(n+1)2×1,

H1 = h2P T (~T T
Ũ
~TŨ +

∑n2

l=1(~T (Ũ)− ~R)l∇2(~T (Ũ)− ~R)l)P ∈ R2(n+1)2×2(n+1)2 ,

(4.32)

where Ũ = PX + PU and ~TŨ = ∂ ~T (Ũ)

∂Ũ
as the Jacobian of ~T with respect to Ũ .

For H1, we cannot ensure that it is positive semi-definite. If it is not positive definite,

we may not get a descent direction. So we omit the second order term of H1 to obtain
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the approximated Hessian of (4.31):

Ĥ1 = h2P T (~T T
Ũ
~TŨ )P. (4.33)

Remark 4.6. Evaluation of the deformed template image T must involve interpolation

because Ũ does not in general correspond with pixel points; in our implementation, as

with [92], we use B-splines interpolation to get ~T (Ũ) (see Section 3.5).

Secondly, for the discretized diffusion regularizer αh2

2 UTATGAU , its gradient and Hes-

sian are the following:{
d2 = αh2ATGAU ∈ R2(n+1)2×1,

H2 = αh2ATGA ∈ R2(n+1)2×2(n+1)2 .
(4.34)

Since H2 is positive definite when U is applied with Dirichlet boundary conditions, we

do not approximate it.

Finally, for the discretized Beltrami term

βh2

4
φ(~r(U))eT , (4.35)

the gradient and the Hessian are as follows:{
d3 = βh2

4 d~rTdφ(~r) ∈ R2(n+1)2×1,

H3 = βh2

4 (d~rTd2φ(~r)d~r +
∑4n2

l=1[dφ(~r)]l∇2~rl) ∈ R2(n+1)2×2(n+1)2
(4.36)

where dφ(~r) = (φ′(~r1), ..., φ′(~r4n2))T is the vector of derivatives of φ at all cell centers,
d~r = diag(~r1)d~r2 + diag(~r2)d~r1,

d~r1 = 2diag(A1U)A1 + 2diag(A2U)A2,

d~r2 = −diag(~r2 � ~r2)[2diag(A3U + 2)A3 + 2diag(A4U)A4],

(4.37)

� denotes a Hadamard product, d~r, d~r1,d~r2 are the Jacobian of ~r, ~r1, ~r2 with respect

to U respectively, [dφ(~r)]l is the lth component of dφ(~r) and d2φ(~r) is the Hessian of φ

with respect to ~r, which is a diagonal matrix whose ith diagonal element is φ′′(~ri), 1 ≤
i ≤ 4n2. Here diag(v) is a diagonal matrix with v on its main diagonal. More details

about ~r1, ~r2, A1, A2, A3 and A4 are shown in Appendix 4.7.2 and some illustration of

our notation is given in Appendix 4.7.3.

To extract a positive semi-definite part out of (4.36), we omit the second order term

and obtain the approximated Hessian as

Ĥ3 =
βh2

4
d~rTd2φ(~r)d~r. (4.38)
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Therefore for functional J(U) in (4.30) with any choice of φ, we obtain its gradient

dJ = d1 + d2 + d3 (4.39)

and approximated Hessian:

Ĥ = Ĥ1 +H2 + Ĥ3. (4.40)

Search Direction

At each iteration, using (4.39) and (4.40), we need to solve the Gauss-Newton system

to find the search direction of (4.30):

ĤδU = −dJ , (4.41)

where δU is the search direction. In our implementation, we use MINRES with diagonal

preconditioning to solve this linear system [3, 101].

Step Length

We use the standard Armijo strategy with backtracking to find a suitable step length

θ (see Section 2.6.1). In the implementation, we also need to check that ~r(U) (4.52) is

smaller than 1. Recall that ~r(U) is the norm square of the discretized Beltrami term.

As a safe guard, we choose T0 = 10−8 and Tol = 10−12 as the lower bound of the step
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length θ and θ‖δU‖ [11, 73, 97, 115]. The algorithm is summarized in Algorithm 9.

Algorithm 9: Armijo Line Search: (U, ID)← ALS(U, δU)

1 Step 1: Initialisation;

2 Set ID = 0, θ = 1, Tol= 10−12, T0 = 10−8 and η = 10−4. Compute J(U) and

dJ ;

3 Step 2: Feasibility checking;

4 while θ‖δU‖ ≥ Tol do

5 Unew = U + θδU ;

6 if ||~r(Unew)|| ≤ 1 then

7 If θ ≥ T0, exit this while loop and go to Step 3, else if θ < T0, go to

Step 4;

8 end

9 Reduce the factor θ by θ = θ/2;

10 end

11 Step 3: Line Search;

12 while θ‖δU‖ ≥ Tol do

13 Compute J(Unew);

14 if J(Unew) < J(U) + θηdJ
T δU then

15 If θ ≥ T0, exit this algorithm with U = Unew, else if θ < T0, go to Step

4;

16 end

17 Reduce the factor θ by θ = θ/2;

18 Unew = U + θδU ;

19 end

20 Step 4: Set ID = 1 and U = Unew.

Stopping Criteria

Here, we adopt the stopping criteria as in [92]:

(1.a) ‖J(Uk+1)− J(Uk)‖ ≤ τJ(1 + ‖J(U0)‖),

(1.b) ‖Uk+1 − Uk‖ ≤ τW (1 + ‖U0 +X‖),

(1.c) ‖dJ‖ ≤ τG(1 + ‖J(U0)‖),

(2) ‖dJ‖ ≤ eps,

(3) k ≥ MaxIter.

Here, eps is the machine precision and MaxIter is the maximal number of outer iterations.

We set τJ = 10−3, τW = 10−2, τG = 10−2 and MaxIter= 500. If any one of (1) (2) or (3)

is satisfied, the iterations are terminated. Hence, a Gauss-Newton numerical scheme with
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Armijo line search can be developed. The resulting Gauss-Newton numerical scheme by

using Armijo line search is summarized in Algorithm 10.

Algorithm 10: Gauss-Newton scheme by using Armijo line search for Image

Registration: (U, ID)← GNAIRA(α, β, U0, T,R)

1 Step 1: Set k = 0 at the solution point Uk = U0;

2 Step 2: For (4.30), compute the energy functional J(Uk), its gradient dkJ and

the approximated Hessian Ĥk by (4.40);

3 while “none of the listed 3 stopping criteria are satisfied” do

4 Solve the Gauss-Newton equation: ĤkδUk = −dkJ ;

5 (Uk+1, ID)← ALS(Uk, δUk) by Algorithm 9;

6 if ID = 1 then

7 Exit this algorithm;

8 else

9 k = k + 1;

10 Compute J(Uk), dkJ and Ĥk;

11 end

12 end

Next, we discuss the global convergence result of Algorithm 10 for our reformulated

problem (4.30). Firstly, we review some relevant theorems.

Theorem 4.7 ([73]). For the unconstrained optimization problem

min
U
J(U)

let an iterative sequence be defined by Uk+1 = Uk +θδUk, where δUk = −(Ĥk)−1dJ(Uk)

and θ is obtained by Algorithm 9. Assume that three conditions are met: (i). dJ be

Lipschitz continuous; (ii). the matrices Ĥk are SPD; (iii). there exist constants κ̄ and

ζ such that the condition number κ(Ĥk) ≤ κ̄ and the norm ||Ĥk|| ≤ ζ for all k. Then

either J(Uk) is unbounded from below or

lim
k→∞

dJ(Uk) = 0 (4.42)

and hence any limit point of the sequence of iterates is a stationary point.

Remark 4.8. In the following, we will prove our convergence result under the Dirichlet

boundary condition (namely, the boundary is fixed) and this condition is needed to prove

the symmetric and positive definite (SPD) property of the approximated Hessians. In

practical implementation, such a condition is not required as confirmed by experiments.

In addition, define an important set U := {U | ~r(U)l ≤ 1 − ε, 1 ≤ l ≤ 4n2} for small ε.

So U ∈ U means that the transformation is diffeomorphic. Under suitable β, we assume

that each Uk generated by Algorithm 10 is in U .
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Secondly we stage a simple lemma that is needed shortly for studying Ĥk.

Lemma 4.9. Let a matrix be comprised of 3 submatrices H = H1 + H2 + H3. If H1

and H2 are symmetric and positive semi-definite and H3 is SPD, then H is SPD with

λh3 ≤ λh, where λh3 and λh are the minimum eigenvalues of H3 and H separately.

Proof. According to Rayleigh quotient, we can find a vector v such that

λh =
vTHv

vT v
. (4.43)

Then we have

λh3 ≤
vTH1v

vT v
+
vTH2v

vT v
+
vTH3v

vT v
=
vTHv

vT v
= λh, (4.44)

which completes the proof.

Theorem 4.10. Assume that T and R are twice continuously differentiable. For (4.30),

when φ = φ1, φ2 or φ3, by using Algorithm 10, we obtain

lim
k→∞

dJ(Uk) = 0 (4.45)

and hence any limit point of the sequence of iterates produced by Algorithm 10 is a

stationary point.

Proof. It suffices to show that Algorithm 10 satisfies the requirements of Theorem 4.7.

Recall ~r(U) and we can see that it is continuous. Here, we use the Dirichlet boundary

condition and we can assume that ‖U‖ is bounded. Then ~r(U) is a continuous mapping

from a compact set to R4n2×1 and ~r(U) is proper. So for some small ε > 0, U is compact.

Firstly, we show that in U , dJ of (4.30) is Lipschitz continuous. When φ = φ1, φ2 or

φ3, the term φ(~r(U))eT in the (4.30) is twice continuously differentiable with respect to

U ∈ U . In addition, T and R are twice continuously differentiable. So (4.30) is twice

continuously differentiable with respect to U ∈ U and dJ is Lipschitz continuous.

Secondly, we show that in U , Ĥk = Ĥk
1 + Hk

2 + Ĥk
3 is SPD. By the construction of Ĥk

1

and Ĥk
3 , they are symmetric positive semi-definite. Hk

2 is symmetric positive definite

under the Dirichlet boundary condition. Consequently, Ĥk is SPD.

Thirdly, we show that both κ(Ĥk) and ‖Ĥk‖ are bounded. We notice that in each itera-

tion, Hk
2 = αh2ATGA is constant and we can set ‖Hk

2 ‖ = ζ2. For Ĥk
1 = h2P T (~T T

Ũ
~TŨ )P ,

we get its upper bound ζ1 because T is twice continuously differentiable and U is com-

pact. For φ = φ1, φ2 or φ3, φ is twice continuously differentiable with respect to U ∈ U ,

then we have ‖Ĥk
3 ‖ ≤

βh2

4 ‖d~r
T ‖‖d2φ(~r)‖‖d~r‖ ≤ ζ3. Hence, we have

‖Ĥk‖ ≤ ‖Ĥk
1 ‖+ ‖Hk

2 ‖+ ‖Ĥk
3 ‖ ≤ ζ1 + ζ2 + ζ3. (4.46)
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So set ζ = ζ1+ζ2+ζ3 and ‖Ĥk‖ ≤ ζ. Set σ as the minimum eigenvalue of Hk
2 . According

to Lemma 4.9, the smallest eigenvalue λmin of Ĥk should be larger than σ. The largest

eigenvalue λmax of Ĥk should be smaller than ζ due to λmax ≤ ‖Ĥk‖. So set κ̄ = ζ
σ and

the conditional number of Ĥk is smaller than κ̄.

Finally, we can find that (4.30) has lower bound 0. So by applying Theorem 4.7, we

finish the proof.

Multi-Level Strategy

The multilevel strategy is a standard technique to provide the initial guess in image

registration illustrated in Section 3.6. The multilevel scheme representing our main

algorithm is summarized below where IhH is an interpolation operator based on bi-linear

interpolation techniques and IHh is a restriction operator for transferring information to

a coarser level.

Algorithm 11: Multilevel Image Registration: U ← MLIR(α, β, U0, T,R)

1 Step 1: Compute the largest possible number L of levels based on size of T,R;

2 Define the coarsest level as level l;

3 Work out the multilevel representation of given images R and T ;

4 RL = R, TL = T ;

5 RL−1 = IHh RL,TL−1 = IHh TL;

6 . . .;

7 Rl = IHh Rl+1, Tl = IHh Tl+1;

8 Step 2: Set the initial guess on the coarsest level;

9 UL = U0, U0
` = IHh U

0
`+1, ` = L− 1, ..., l;

10 Step 3: Apply Algorithm 10 on the coarsest level l with U0
l ;

11 (Ul, ID)←GNAIRA(α, β, U0
l , Tl, Rl);

12 if ID = 1 then

13 Exit this algorithm;

14 end

15 for ` = 2 : L do

16 Interpolate the solution from a coarser level U0
` = IhHU`−1;

17 Apply Algorithm 10 on level `: (U`, ID)←GNAIRA(α, β, U0
` , T`, R`);

18 if ID = 1 then

19 Exit this algorithm;

20 end

21 end

4.5 Numerical Results

In this section, we will give some numerical results to illustrate the performance of our

model (4.19). We hope to achieve 3 aims:
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1). Which choice of φ is the best for our model (4.19)?

2). We wish to compare with the current state-of-the-art methods (with codes listed for

readers’ benefit) in the literature for good diffeomorphic mappings:

(a) Hyperelastic Model [11]: code from http://www.siam.org/books/fa06/

(b) LDDMM [88]: code from

https://github.com/C4IR/FAIR.m/tree/master/add-ons/LagLDDMM

(c) Diffeomorphic Demons (DDemons) [124]: code from

http://www.insight-journal.org/browse/publication/154

(d) QCHR [77]; the code provided by the author Dr. Kam Chu Lam.

All of the tests are performed on a PC with 3.40 GHz Intel(R) Core(TM) i7-4770

microprocessor and with installed memory (RAM) of 32 GB.

3). Most importantly, we like to test and highlight the advantages of our new model.

Let y be the final transformation obtained by a particular model for registering two

given images T,R. We use the following three measures to quantify the performance of

this model and use them for later comparisons:

(i). Re SSD (the relative Sum of Squared Differences) which is given by

Re SSD =
‖T (y)−R‖2

‖T −R‖2
; (4.47)

(ii). min det(∇y) and max det(∇y) that are the minimum and the maximum of the

Jacobian determinant of this transformation;

(iii). Jaccard similarity coefficient (JSC) as defined by

JSC =
|DTr ∩Rr|
|DTr ∪Rr|

, (4.48)

where DTr and Rr represent respectively the segmented regions of interest (e.g.

certain image feature such as an organ) in the deformed template (after registra-

tion) and the reference. Hence, JSC is the ratio of the intersection of DTr and Rr

to the union of DTr and Rr [75]. JSC=1 shows that a perfect alignment of the

segmentation boundary and JSC=0 indicates that the segmented regions have no

overlap after registration.

In practice, we scale the intensity value of T and R to [0, 255]. Here, we state a strategy

for choosing the parameters. For our model (4.19), α should be related to energy D(u0)

where u0 is the initial guess for the displacement, and β should be related to α. Empiri-

cally, we set α ∈ [α1, α2], where α1 = 0.5D(u0)10−2 and α2 = 2D(u0)10−2. Respectively
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for φ = φ1, φ2, φ3, we set β ∈ [3α, 5α], [0.5α, 2α] and [α, 5α]. For simplicity, we denote

the model (4.19) with φ1, φ2 and φ3 by New 1, New 2 and New 3 respectively.

It should be noted that a good registration result should produce a small Re SSD, be

diffeomorphic and yield a large JSC value for a region of interest.

4.5.1 Example 1 — Improvement over The Diffusion Model

In this example, we test a pair of real medical images, X-ray Hands of resolution 128×128.

Figure 4.3 (a-b) show the template and the reference. We compare our model with the

diffusion model and study the improvement over it. In the implementation, for both

models, we use a five-step multilevel strategy.

We conduct two experiments using different parameters:

i). Fixed parameters. Our first choice uses fixed parameters. For New 1-3, we set

β = 7, β = 1 and β = 9 respectively, and fix α = 2. To be fair, we also choose α = 2

for the diffusion model. In this case, Figure 4.3 show the deformed templates T (y) from

4 models. From it, we can see that all four models can produce visually satisfactory

results. To differentiate them, we have to check the quantitative measures from Table

4.1. We can notice that the transformation obtained by the diffusion model is non-

diffeomorphic due to min det(∇y) < 0 (i.e. mesh folded, though visually pleasing and

the Re SSD is small). Figure 4.4 illustrates the transformation y = x+ u locally at its

folding point. In contrast, our New 1-3 can generate diffeomorphic transformations.

ii). Optimized parameters. The second choice uses the fine-tuned parameters for

the diffusion model. We test α ∈ [1, 500] and find the smallest α = 430 with which

the diffusion model generates a diffeomorphic transformation. Then for our model, we

also set α = 430 (which is not optimized to favor the former) and set β = 5 for New

1-3 (to test the robustness of our model). Table 4.1 shows the detailed results for this

second test. From it, we can see that the Re SSD and JSC of our model are similar to

the diffusion model. And the transformations obtained by New 1-3 are all diffeomorphic

while the diffusion model is only diffeomorphic with the help of an optimized α. This

shows that our model possesses the robustness (in the sense of not requiring optimized

α) with the help of a positive β.

Hence, this example demonstrates that our New 1-3 are robust and can all help to get

an accurate and diffeomorphic transformation.

4.5.2 Example 2 — Test of Large Deformation and Comparison of

Models

As known, if the underlying deformation is small, it is generally believed that most mod-

els can deliver diffeomorphic transformations. This belief is true if one keeps increasing

α, which in turn compromises the registration quality by increasing Re SSD (as seen in
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(a) Template (b) Reference

(c) T (y) by New 1 (d) T (y) by New 2 (e) T (y) by New 3 (f) T (y) by Diffusion
model

Figure 4.3: Example 1 results of Hand to Hand registration (α = 2): in the top
row, there are the template and reference. In the second row, there are the deformed
templates obtained by model (4.19) and the diffusion model separately. Though the

last column is visually fine, the transformation is not correct – see Table 4.1.

Table 4.1: Example 1 — Comparison of the new model (New 1-3) with the diffusion
model based a fixed α and an optimized α for the latter. Clearly the latter model can
produce an incorrect result if not tuned while New 1-3 are less sensitive to α with the

help of β.

Resolution Re SSD min det(∇y) max det(∇y) JSC time (s)

First Test α = 2
New 1 128× 128 1.85% 0.0032 20.1606 99.20% 33.3
New 2 128× 128 1.27% 0.0003 33.2371 99.54% 19.9
New 3 128× 128 1.62% 0.0014 24.4540 99.26% 30.9

Diffusion Model 128× 128 0.90% −36.7964 72.2924 98.41% 12.1

Second Test α = 430
New 1 128× 128 7.83% 0.1337 4.8247 98.28% 2.5
New 2 128× 128 7.80% 0.1300 4.8364 98.28% 2.5
New 3 128× 128 7.78% 0.1260 4.8472 98.36% 2.5

Diffusion Model 128× 128 7.75% 0.0066 4.8278 98.30% 0.9

Figure 4.4: Zooming in the transformation (obtained by the diffusion model) where
there is folding.

2 tests of α in Example 1 where the larger α = 430 achieves diffeomorphism for diffusion

with a worse Re SSD value).
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Therefore to test the capability of a registration model, we need to take an example that

requires large deformation. To this end, we consider Example 2 – a classic synthetic

example consisting of a Disc and a C shape of resolution 128×128 as shown in Figure

4.5 (a-b). We compare our 3 models (New 1-3) with 5 other models: the hyperelastic

model, LDDMM, DDemons, QCHR, and the diffusion model in registration quality and

performance. For this example, we use a five-step multilevel strategy for our model,

the hyperelastic model, and the diffusion model. For LDDMM and QCHR, we use a

three-step multilevel strategy. We use a one-step multilevel strategy for DDemons as we

find that multilevel does not improve the results.

Following our stated strategy for choosing the parameter for our models, we set β =

80, 120, 100 for New 1-3 respectively and fix α = 70. To be consistent, we also set

α = 70 for the diffusion model. For the hyperelastic model, LDDMM and QCHR, we

set respectively {αl = 100, αs = 0, αv = 18}, α = 400 and {α = 0.1, β = 1} as used in

the literature [11, 77, 88] for the same example. For the parameters of DDemons, we try

to optimize the parameters {σs, σg} in the domain [0.5, 5]× [0.5, 5] and take the optimal

choice {σs = 1.5, σg = 3.5}.

We now present the comparative results. Figure 4.5 (c-j) show that except for the diffu-

sion model, all the other models can produce the accepted registered results. Especially,

our model and LDDMM are slightly better than the hyperelastic model, DDemons and

QCHR. It is pleasing to see that the new model produces equally good results for this

challenging example. From Table 4.2, we see that our New 1-3, hyperelastic model,

LDDMM, DDemons, and QCHR produce min det(∇y) > 0, i.e., the transformations

obtained by these five models are diffeomorphic, but the diffusion model fails again with

min det(∇y) < 0.

Because New 1-3 are motivated by the QCHR model, we now discuss the results of these

two types of models. On the one hand, according to Table 4.2, we can find that our

model takes less time. This is because, as we have mentioned, the algorithm for QCHR

needs to solve alternatively two subproblems (including several linear systems) in each

iteration. Its convergence cannot be guaranteed. However, our model only needs to

solve one linear system in each iteration. In addition, we employ the Gauss-Newton

method, which can be superlinearly convergent under the appropriate conditions. As we

have also remarked, the QCHR algorithm can have convergence problems. This is now

illustrated in Figure 4.6 where we plot the relative residual of our model (New 3) and

the relative residual of QCHR. We observe that New 3 decreases to below 10−2 though

not monotonically, but the relative residual of QCHR does not decrease and is over 0.1.

On the other hand, we can compare the obtained solutions’ quality by checking the

energy functionals. Using the same QCHR functional, the QCHR solution for Example

2 has the value 702.7 while the transformation obtained by New 3 gives the value 72.3,

which is much smaller. This indicates that the result obtained by the QCHR algorithm
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Table 4.2: Example 2 — Comparison of the new model (New 1-3) with 5 other models.

Resolution Re SSD min det(∇y) max det(∇y) JSC time (s)

New 1 128× 128 0.06% 0.0053 21.8478 96.11% 5.0
New 2 128× 128 0.07% 0.0028 18.9933 96.13% 6.4
New 3 128× 128 0.05% 0.0108 25.0695 96.00% 3.2

Hyperelastic Model 128× 128 0.81% 0.2426 5.8530 94.84% 1.6
LDDMM 128× 128 0.07% 0.1050 12.1524 95.09% 14.7
DDemons 128× 128 1.02% 1.3× 10−7 8.2326 94.24% 67.8

QCHR Model 128× 128 10.17% 0.0004 69.3977 81.88% 16.8
Diffusion Model 128× 128 1.25% −10.1612 162.5034 94.21% 0.3

is not accurate. This is consistent with the fact that the Re SSD and JSC of New 3

are also better than QCHR. Both discussions reach the same conclusion: the QCHR

algorithm cannot obtain the minimizer of the original QCHR functional.

(a) Template T (b) Reference R

(c) T (y) 0.1% by New 1 (d) T (y) 0.1% by New 2 (e) T (y) 0.1% by New 3 (f) T (y) 0.8%
by Hyperelastic

(g) T (y) 0.1%
by LDDMM

(h) T (y) 1.0%
by DDemons

(i) T (y) 10.2% by
QCHR 6 landmarks

(j) T (y) 1.3%
by Diffusion model

Figure 4.5: Example 2 results of Disc to C. The percentage value shows Re SSD error.
In the top row, there are the template and reference. In the second and third row, there
are the deformed templates obtained by New 1-3 and 5 other models separately. The
landmarks in the template and reference are only used for QCHR and the last result

(j) by Diffusion is evidently not correct.
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Figure 4.6: Example 2 Relative Residual of New 3 and QCHR: The solid line indicates
the relative residual of New 3. And the dotted line shows the relative residual of the
second subproblem in QCHR. Here, we can find that in the same 50 iterations, the
relative residual of New 3 is decreasing to below 10−2. However, the relative residual
of QCHR is not decreasing and over 0.1. Hence, the convergence of the algorithm for

QCHR cannot be guaranteed.

4.5.3 Example 3 — Comparison of Models for A Challenging Test

Here, we illustrate the fact that area preservation between images can become unneces-

sary and trying to enforce it (as in the hyperelastic model) can fail to register an image.

We choose the particular template and reference images, as shown in Figure 4.7 (a-b),

having significantly different areas in their main features – here the area of ’Disc’ is much

larger than ’C’. The resolution of the images is 512 × 512. We test the performance of

New 1-3 and other models. In this example, we use a seven-step multilevel strategy for

New 1-3, the hyperelastic model, and the diffusion model. For LDDMM and QCHR, we

use a five-step multilevel strategy. We use a single level for DDemons (since multilevels

do not help).

In choosing the parameters for all the models to register this example, we first follow

our strategy to set β = 250, 50, 100 for New 1-3 respectively and fix α = 50. To be

consistent, we also set α = 50 for the diffusion model. For the hyperelastic model, we

also set αl = 50 because it contains the diffusion term, and take αs = 0. For the third

parameter αv in the hyperelastic model, we test it in the range [55, 150] and choose its

optimal value αv = 75. For LDDMM and QCHR, we set the default value α = 400 and

{α = 0.1, β = 1} as the previous example. For the parameters of DDemons, we test

the parameters {σs, σg} in the domain [0.5, 5] × [0.5, 5] and choose its optimal choice

{σs = 2, σg = 5}. Hence we would expect the hyperelastic model and DDemons to

perform well.

The test results for Example 3 are presented in Table 4.3 and Figure 4.7. Although all

models except for the diffusion model produce diffeomorphic transformations, we can

see visually that only 3 models (our New 2-3 and LDDMM) produce acceptable results,

also confirmed by the table:
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Table 4.3: Example 3 — Comparison of the new model (New 1-3) with 5 other models.

Resolution Re SSD min det(∇y) max det(∇y) JSC time (s)

New 1 512× 512 3.06% 0.0332 38.2864 79.08% 293.0
New 2 512× 512 0.23% 0.0033 64.1928 96.73% 273.2
New 3 512× 512 0.07% 0.0065 59.8003 97.82% 139.1

Hyperelastic Model 512× 512 3.87% 0.4587 6.9885 75.5% 36.6
LDDMM 512× 512 0.41% 0.0184 40.2544 95.05% 218.3
DDemons 512× 512 2.83% 9.6× 10−6 34.8529 80.56% > 5000

QCHR Model 512× 512 0.94% 0.0227 4.3830 91.47% 260.0
Diffusion Model 512× 512 0.65% −14.8361 350.4944 93.81% 3.3

• The badly deformed template generated by our New 1 shows that the model lacks

robustness;

• The hyperelastic model, though producing a diffeomorphic transform, fails (de-

spite using an optimized parameter) because this model including a regularization

term (det(∇y) − 1)4/(det(∇y))2 tends to preserve area. If we do not optimize

parameters for the hyperelastic model, our tests show that its results are even

worse.

• In the previous example, we have pointed out that QCHR needs more computing

time and, from Table 4.3, we see that the time for QCHR is about two times as

long as our New 3;

• The DDemons is trapped in a local minimum, and its CPU time is also excessive

(> 5000 seconds). We also try to apply a multilevel strategy to DDemons, but for

this example, the result is not satisfied. The Re SSD, JSC and CPU time of our

New 3 are all slightly better than the second best LDDMM;

• Both Tables 4.2 and 4.3 show that the diffusion model produces solutions having a

negative Jacobian determinant (folding) which might be viewed non-physical; this

model is included only for reference.

Hence, our model has advantages over other models for large deformation registrations

not requiring preserving area.

As remarked, the landmarks supplied to QCHR can severely affect the results. Figure

4.8 shows three sets of an increasing number of landmarks for Examples 2-3. We observe

that more landmarks lead to better results in terms of JSC values.

4.5.4 Example 4 — Comparison of The New Model with Other Models

In the final test, we test a pair of anonymized CT images in resolution 512 × 512 from

the Royal Liverpool University Hospital. Figure 4.9 (a-b) show the template and the

reference. The template was taken in September 2016, and the reference was taken in

May 2016. We want to compare the changes of our interested regions of the abdominal

aortic aneurysm with stents inserted inside them (with cross sections shown as two

white ‘circles’ in images in Figure 4.9 (a-b)) during these four months. In addition, the
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(a) Template T (b) Reference R

(c) T (y) by our model 1 (d) T (y) by our model 2 (e) T (y) by our model 3 (f) T (y) by Hyperelastic
model

(g) T (y) by LDDMM (h) T (y) by DDemons (i) T (y) by QCHR with
20 pairs of landmarks

(j) T (y) by Diffusion
model

Figure 4.7: Example 3 results of a large Disc to a small letter C: in the top row, there
are the template and reference. In the second and third row, there are the deformed
templates obtained by model (4.19) and other models separately. The landmarks in

the template and reference are only used for QCHR.

interested region is used to compute JSC. The small white region on top of the images

helps us to identify the correct slice to compare.

Here, following the previous example, we use the same multilevel strategy: a seven-step

multilevel strategy for our model, the hyperelastic model, and the diffusion model, a

five-step multilevel strategy for LDDMM and QCHR and a one-step multilevel strategy

for DDemons.

Following our strategy for choosing the parameter of our model, we set α = 20 and

set β = 100, 40, 75 with New 1-3 respectively. For the diffusion model and LDDMM,

we test α from [100, 2000] and set the optimal value 1300 and 500 respectively. For

the hyperelastic model, we set {αl = 20, αs = 0, αv = 50}. We use the default value

{α = 0.1, β = 1} for QCHR. For the parameters of DDemons, we test the parameters

{σs, σg} in the domain [0.5, 5]× [0.5, 5] and choose {σs = 4, σg = 4.5}.

With the optimized parameters, all the models in this example generate diffeomorphic

transformations as seen from Table 4.4. DDemons and QCHR for this example are
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(a) T with
4 landmarks

(b) T with
6 landmarks

(c) T with
16 landmarks

(d) R with
4 landmarks

(e) R with
6 landmarks

(f) R with
16 landmarks

(g) T with
4 landmarks

(h) T with
8 landmarks

(i) T with
20 landmarks

(j) R with
4 landmarks

(k) R with
8 landmarks

(l) R with
20 landmarks

(m) T (y) JSC
81.88%

(n) T (y) JSC
86.69%

(o) T (y) JSC
88.64%

(p) T (y) JSC
73.30%

(q) T (y) JSC
88.49%

(r) T (y) JSC
91.47%

Figure 4.8: Tests of QCHR with different landmarks: Example 2 (row 1) and Example
3 (row 2). On the left 3 columns of row 3, we show the registered templates for row 1.
On the right 3 columns of row 3, we show the registered templates for row 2. Here, we

can see that the accuracy of QCHR improves with the increase of landmarks.

Table 4.4: Example 4 — Comparison of the new model (New 1-3) with 5 other models

Resolution Re SSD min det(∇y) max det(∇y) JSC

New 1 512× 512 4.75% 0.0124 52.6802 94.19%
New 2 512× 512 3.49% 0.0068 46.6383 94.39%
New 3 512× 512 3.47% 0.0051 49.9309 95.34%

Hyperelastic Model 512× 512 4.44% 0.4181 3.6192 93.51%
LDDMM 512× 512 5.18% 0.0319 20.8164 93.79%
DDemons 512× 512 18.89% 0.1846 2.6309 87.40%

QCHR Model 512× 512 26.71% 0.0481 16.2555 85.68%
Diffusion Model 512× 512 10.02% 0.0342 7.3450 93.65%

not as good as other models because they give worse Re SSD and JSC. A worse JSC

means the interested regions obtained by these two methods have significant differences

from the reference (Figure 4.9 (h-i)). The diffusion model obtains good JSC. However, its

deformed template is a bit far (overall) from the reference (since Re SSD= 10.02%). The

other two models (Hyperelastic, LDDMM) generate good Re SSD and JSC. However,

our models produce the lowest Re SSD and the best JSC. Hence, for this example of real

images, our model is competitive to state-of-the-art methods. Though there is a broad

agreement between Re SSD and JSC, one has to combine with segmentation models to

ensure a strict agreement.

Remark 4.11. According to the above four examples, our New 1 is not robust while

New 2-3 can both generate accurate and diffeomorphic transformations. However, we

recommend New 3 as the first choice because of the least computing time and the best
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(a) Template T (b) Reference R

(c) T (y) by New 1
JSC 94.2%

(d) T (y) by New 2
JSC 94.4%

(e) T (y) by New 3
JSC 95.3%

(f) T (y) by Hyperelastic
model JSC 93.5%

(g) T (y) by LDDMM
JSC 93.8%

(h) T (y) by DDemons
JSC 87.4%

(i) T (y) by QCHR with
5 pairs of landmarks
JSC 85.7%

(j) T (y) by Diffusion
modelJSC 93.7%

Figure 4.9: Example 4 results of a pair of CT images: the template T and the reference
R in the top row. The contours show the regions of interest. In the second and third
rows, we show the deformed templates obtained by 8 models. The 5 landmarks in the

template and the reference are only used by QCHR.

quality, and New 2 as the second choice.

4.6 Conclusion

Controlling mesh folding is a key issue in image registration models to ensure local invert-

ibility. Many existing models either do not impose any further controls on the underlying

transformation beyond smoothness (so potentially generating unrealistic or non-physical

transformations or mapping) or impose a direct (often strongly biased, e.g., towards area

or volume preservation) control on some explicit function of the measure det(∇y). This

chapter introduces a novel, unbiased, and robust regularizer, which is reformulated from

Beltrami coefficient framework to ensure a diffeomorphic transformation. Moreover, we

find that a direct approach (our New 1) from this Beltrami reformulation provides an

alternative, but less competitive method but further refinements (especially our New 3)

of this new regularizer can give rise to more robust models than the existing methods.

We highly recommend our model New 3 i.e. (4.19) with φ = φ3.
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In designing optimization methods for solving the resulting highly nonlinear variational

model, we give a suitable approximation of the exact Hessian matrix, which is necessary

to derive a convergent iterative method. Our test results can show that the new model

(New 1-3, especially New 3) is competitive with the state-of-the-art models. The main

advantage lies in robustness.

Here, in the numerical implementation, we choose the Gauss-Newton method. For

this method, in each iteration, the main computational cost is from solving the linear

system. Especially for the huge dimensional problem, solving the linear system should

be expensive. Motivated by this point, in the next chapter, we design a novel two-

step Gauss-Newton method, in which a second step is computed within each iteration

by minimizing a quadratic approximation of the objective function over a certain 2D

subspace. Numerical results on image registration problems show that the proposed

methods can outperform the standard multilevel Gauss-Newton method.

4.7 Appendix

4.7.1 Computation of Matrices A and G in (4.26)

Set B = I2 ⊗ In+1 ⊗ ∂1,h
n ∈ R2n(n+1)×2(n+1)2 , C = I2 ⊗ ∂1,h

n ⊗ In+1 ∈ R2n(n+1)×2(n+1)2 ,

∂1,h
n =

1

h


−1 1

−1 1

... ... ...

−1 1

−1 1

 ∈ Rn,n+1, A =

[
B

C

]
∈ R4n(n+1)×2(n+1)2 ,

where ⊗ denotes a Kronecker product. To represent the difference between interior and

boundary pixels, we need to introduce a diagonal matrix

G =


G1 0 0 0

0 G2 0 0

0 0 G1 0

0 0 0 G2

 ∈ R4n(n+1)×4n(n+1), (4.49)

where G1 and G2 are diagonal matrices. For G1, G1i+1+jn,i+1+jn = 1 if 0 ≤ i ≤ n−1, 1 ≤
j ≤ n − 1 or 1

2 if 0 ≤ i ≤ n − 1, j = 0, n. Similarly, for G2, G2i+1+j(n+1),i+1+j(n+1)
= 1 if

1 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1 or 1
2 if i = 0, n, 0 ≤ j ≤ n− 1.

4.7.2 Computation of The Vector ~r(U) in (4.29)

We demonstrate how to build the linear interpolation L in 4V1V2V5, in Figure 4.2.

First of all, denote the 3 vertices of this triangle by V1 = x1,1, V2 = x2,1 and V5 =

x1.5,1.5. Set L(V1) = (u1,1
1 , u1,1

2 ), L(V2) = (u2,1
1 , u2,1

2 ) at the vertex pixels, and L(V5) =
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(u1.5,1.5
1 , u1.5,1.5

2 ) at the cell centre (approximated values). Here the linear approximations

are L(x1, x2) = (a1x1 + a2x2 + b1, a3x1 + a4x2 + b2).

After substituting V1, V2 and V5 into L, we get(
x1

1 − x1.5
1 x1

2 − x1.5
2

x2
1 − x1.5

1 x1
2 − x1.5

2

)(
a1

a2

)
=

(
u1,1

1 − u
1.5,1.5
1

u2,1
1 − u

1.5,1.5
1

)
,

(
x1

1 − x1.5
1 x1

2 − x1.5
2

x2
1 − x1.5

1 x1
2 − x1.5

2

)(
a3

a4

)
=

(
u1,1

2 − u
1.5,1.5
2

u2,1
2 − u

1.5,1.5
2

)
.

Then (
a1

a2

)
=

1

det

(
x1

2 − x1.5
2 −x1

2 + x1.5
2

−x2
1 + x1.5

1 x1
1 − x1.5

1

)(
u1,1

1 − u
1.5,1.5
1

u2,1
1 − u

1.5,1.5
1

)
, (4.50)

(
a3

a4

)
=

1

det

(
x1

2 − x1.5
2 −x1

2 + x1.5
2

−x2
1 + x1.5

1 x1
1 − x1.5

1

)(
u1,1

2 − u
1.5,1.5
2

u2,1
2 − u

1.5,1.5
2

)
, (4.51)

where det =

∣∣∣∣∣x1
1 − x1.5

1 x1
2 − x1.5

2

x2
1 − x1.5

1 x1
2 − x1.5

2

∣∣∣∣∣.
According to (4.50) and (4.51), we can formulate two matrices D1 ∈ R4n2×(n+1)2 and

D2 ∈ R4n2×(n+1)2 such that

a1 − a5 = [D1,−D2]U = A1U ∈ R4n2×1,

a4 + a2 = [D2, D1]U = A2U ∈ R4n2×1,

a1 + a5 = [D1, D2]U = A3U ∈ R4n2×1,

a4 − a2 = [D2,−D1]U = A4U ∈ R4n2×1.

Here, aθ = (a1
θ, ..., a

4n2

θ )T , θ = 1, 2, 4, 5, where alθ = ai,j,kθ and l = (k−1)n2 + (j−1)n+ i.

Next using the Hadamard product �, we get a compact form for
~r1(U) = A1U �A1U +A2U �A2U,

~r2(U) = 1/((A3U + 2)� (A3U + 2) +A4U �A4U),

~r(U) = ~r1 � ~r2 ∈ R4n2×1.

(4.52)

4.7.3 Computing The Gradient and Approximated Hessian of The

Term (4.35)

Here, as an example, we set n = 2 and φ = φ1 to compute the gradient and approximated

Hessian of the discretized Beltrami term (4.35).

Because of n = 2, we have

U = (u0,0
1 , ..., u2,0

1 , ..., u0,2
1 , ..., u2,2

1 , u0,0
2 , ..., u2,0

2 , ..., u0,2
2 , ..., u2,2

2 )T ∈ R18×1.
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From (4.50)-(4.51), we can formulate two matrices D1, D2 ∈ R16×9 respectively by:

−2 2

−2 2

−2 2

−2 2

−1 1 −1 1

−1 1 −1 1

−1 1 −1 1

−1 1 −1 1

−2 2

−2 2

−2 2

−2 2

−1 1 −1 1

−1 1 −1 1

−1 1 −1 1

−1 1 −1 1



,



−1 −1 1 1

−1 −1 1 1

−1 −1 1 1

−1 −1 1 1

−2 2

−2 2

−2 2

−2 2

−1 −1 1 1

−1 −1 1 1

−1 −1 1 1

−1 −1 1 1

−2 2

−2 2

−2 2

−2 2



.

Then we can build A1, A2, A3 and A4 and compute ~r1, ~r2 and ~r by (4.52). According

to (4.37), we have d~r ∈ R16×18.

When φ(v) = φ1(v), we have φ′1(v) = 2
(v−1)3

, φ′′1(v) = 6
(v−1)4

and so dφ(~r) = ( 2
(~r1−1)3

, ..., 2
(~r16−1)3

)T

in (4.36). In (4.38), the ith diagonal element is [d2φ(~r)]ii = 6
(~ri−1)4

, 1 ≤ i ≤ 16. Sim-

ilarly, when φ(v) = φ2, dφ(~r) = ( −~r1−1
(~r1−1)2

, ..., −~r16−1
(~r16−1)2

)T and [d2φ(~r)]ii = 2~ri+4
(~ri−1)4

. And

when φ(v) = φ3, dφ(~r) = ( −2~r1
(~r1−1)3

, ..., −2~r16
(~r16−1)3

)T and [d2φ(~r)]ii = 4~ri+2
(~ri−1)4

.

Hence, we can get d3 in (4.36) and Ĥ3 in (4.38).





Chapter 5

Improved Optimization Methods

for Image Registration Problems

In this chapter, we propose new multilevel optimization methods for minimizing con-

tinuously differentiable functions obtained by discretizing models for image registration

problems [15]. These multilevel schemes rely on a novel two-step Gauss-Newton method,

in which a second step is computed within each iteration by minimizing a quadratic ap-

proximation of the objective function over a specific 2D subspace. Numerical results

on image registration problems show that the proposed methods can outperform the

standard multilevel Gauss-Newton method.

5.1 Introduction

In this chapter, following from Section 3.4, we reconsider first-discretize-then-optimize

and propose two simple techniques to improve the performance of the multilevel Gauss-

Newton method on image registration problems. The first technique consists of the

possible use of a second step within each iteration of the Gauss-Newton method. This

step is computed by minimizing a quadratic approximation of the objective function

over a 2D subspace. This subspace is spanned by the steepest descent direction and the

L-BFGS direction with respect to the current point given by the Gauss-Newton step.

If such a subspace step provides any decrease in the objective function, it is accepted;

otherwise, it is discarded. The second technique is a modification of the standard coarse-

to-fine multilevel strategy. At each level, instead of using the interpolated solution of

the previous level directly as the initial point, we try to find a better initial point

by minimizing a quadratic approximation of the objective function over the subspace

spanned by the interpolated solutions of all the previous levels. If this new point results

in a decrease of the objective function value, it is accepted as the new initial point;

otherwise, we proceed as in the standard coarse-to-fine approach.

81
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This chapter is organized as follows. In Section 5.2, we describe the methods resulting

from the two proposed techniques. We also present a convergence analysis for these

schemes. In Section 5.3, we report the results of extensive numerical experiments show-

ing the effectiveness of our new methods. Finally, in Section 5.4, we summarize the

contribution of this chapter.

5.2 Optimization Methods

In this section, we present the optimization methods resulting from the use of our two

novel subspace techniques, which are inspired by [134]. For clarity, we briefly review the

standard multilevel Gauss-Newton method used in Section 4.4.2.

5.2.1 Multilevel Gauss-Newton Method

Consider the optimization problem

min
u∈U
J (u), (5.1)

where J is a functional from an infinite-dimensional vector space U to R. Let Ul be

a finite-dimensional subspace of U with basis {φl,j}nl
j=1 at grid level l, where nl is the

dimension of Ul. By definition, this means that given any ul ∈ Ul, there exists a vector

ul = (ul,1, ..., ul,nl
) ∈ Rnl such that

ul =

nl∑
j=1

ul,jφl,j . (5.2)

Suppose that we have nested spaces UN0 ⊂ · · · ⊂ UN−1 ⊂ UN ⊂ U . For each level l, we

shall consider the discrete functional Jl : Rnl → R given by

Jl(ul) = J (ul), (5.3)

where ul is computed by (5.2). Thus, on each level l, the discretized version of (5.1) is

min
ul∈Rnl

Jl(ul). (5.4)

In the first-discretize-then-optimize approach, our goal is to obtain an approximated

solution of (5.2) by solving iteratively its discrete version (5.4) for l = N . Given an

initial guess u0
l for the solution of (5.4), Newton method generates a sequence {ukl } by

the rule uk+1
l = ukl + θkl p

k
l , with

∇2Jl(u
k
l )p

k
l = −∇Jl(ukl ), (5.5)
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where ∇Jl(ukl ) and ∇2Jl(u
k
l ) are the gradient and the Hessian of Jl at ukl respectively.

However, in many situations, the structure of the objective Jl gives

∇2Jl(u
k
l ) = Ĥk

l +Akl , (5.6)

where Ĥk
l ∈ Rnl×nl is a symmetric and positive definite matrix that is easily computed,

while Akl is difficult to compute. For these cases, the common approach is the Gauss-

Newton method, where the sequence {ukl } is defined similarly but, in contrast to (5.5),

pkl is obtained by solving the linear system

Ĥk
l p

k
l = −∇Jl(ukl ). (5.7)

If the step length θkl is computed by the Armijo line search, we have Algorithm 12.

Algorithm 12: Gauss-Newton Method: u∗l = GN(l, u0
l )

1 Compute ∇Jl(u0
l ) and Ĥ0

l ≈ ∇2Jl(u
0
l );

2 Set η = 10−4 and k = 0;

3 while the stopping criteria is not satisfied do

4 Compute pkl by solving Ĥk
l p

k
l = −∇Jl(ukl );

5 Find the smallest integer ik ≥ 0 such that θkl = (0.5)ik satisfies

Jl(u
k
l + θkl p

k
l ) ≤ Jl(ukl ) + ηθkl ∇Jl(ukl )T pkl ;

6 uk+1
l = ukl + θkl p

k
l ;

7 Compute ∇Jl(uk+1
l ) and Ĥk+1

l ≈ ∇2Jl(u
0
l );

8 i = i+ 1;

9 end

10 u∗l = ukl .

To provide the initial guess and speed up the algorithm, the multilevel Gauss-Newton

method can be summarized in the following way (Algorithm 13).

Algorithm 13: Multilevel Gauss Newton Method

1 Set uN0 = (0, ..., 0) ∈ RnN0 and l = N0 (coarsest level);

2 while l < N do

3 Compute u∗l = GN(l, u0
l );

4 u0
l+1 = I l+1

l u∗l ;

5 l = l + 1;

6 end

7 u∗N = GN(l, u0
N ).

For this method, in each iteration, the main computational cost is from solving the linear

system. Especially for huge dimensional problems, solving the linear system is likely

to be expensive. Motivated by this point, we design a novel two-step Gauss-Newton

method, in which a second step is computed within each iteration by minimizing a
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quadratic approximation of the objective function over a certain 2D subspace spanned

by the steepest descent direction and the L-BFGS direction.

5.2.2 Two-Step Gauss-Newton Method

In order to enhance the performance of the Gauss-Newton method, we consider the use

of a second step after the Gauss-Newton step within each iteration. If we obtain any

reduction in the objective function value, the new step is accepted. Otherwise, the new

step is rejected. Since we are dealing with large-scale problems, this additional step

must be cheap to compute. Therefore, we propose the following subspace procedure.

Denote by ũk+1
l the Gauss-Newton iterate computed at step 6 of Algorithm 12, that is

ũk+1
l = ukl + θkl p

k
l , with Ĥk

l p
k
l = −∇Jl(ukl ). (5.8)

Let H̃k+1
l be the Gauss-Newton approximation to∇2Jl(ũ

k+1
l ) and consider the quadratic

model of Jl around ũk+1
l :

ml(ũ
k+1
l + p) = Jl(ũ

k+1
l ) +∇Jl(ũk+1

l )T p+
1

2
pT Ĥk+1

l p. (5.9)

We compute the second step p̃k+1
l by minimizing ml(ũ

k+1
l + p) over the subspace

V = span{pk+1
l,SD, p

k+1
l,QN}, (5.10)

where pk+1
l,SD = −∇Jl(ũk+1

l ) and pk+1
l,QN = −Bk+1

l ∇Jl(ũk+1
l ) with Bk+1

l being the approx-

imation to (∇2Jl(ũ
k+1
l ))−1 given by the L-BFGS formula [82]. More specifically,

p̃k+1
l = c1p

k+1
l,SD + c2p

k+1
l,QN , (5.11)

where c = (c1, c2)T ∈ R2 is a solution of the quadratic minimization problem

min
c∈R2

(gk+1
l )T c+

1

2
cTQk+1

l c, (5.12)

with

gk+1
l =

(
∇Jl(ũk+1

l )T pk+1
l,SD

∇Jl(ũk+1
l )T pk+1

l,QN

)
(5.13)

and

Qk+1
l =

(
(pk+1
l,SD)T H̃k+1

l pk+1
l,SD (pk+1

l,SD)T H̃k+1
l pk+1

l,QN

(pk+1
l,QN )T H̃k+1

l pk+1
l,SD (pk+1

l,QN )T H̃k+1
l pk+1

l,QN

)
. (5.14)

Problem (5.12) is equivalent to the 2× 2 linear system

Qk+1
l c = −gk+1

l , (5.15)

which makes the computation of the second step p̃k+1
l in (5.11) very cheap. If Jl(ũ

k+1
l +

p̃k+1
l ) < Jl(ũ

k+1
l ), then we accept the new step and we define uk+1

l = ũk+1
l + p̃k+1

l .
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Otherwise, we reject the new step and we define uk+1
l = ũk+1

l . The resulting two-step

Gauss-Newton method can be summarized as follows.

Algorithm 14: Two-Step Gauss Newton Method: u∗l = 2SGN(l, u0
l )

1 Compute ∇Jl(u0
l ) and Ĥ0

l ≈ ∇2Jl(u
0
l );

2 Set B0
l = I, m = 3, η = 10−4 and k = 0;

3 while the stopping criteria is not satisfied do

4 Compute pkl by solving Ĥk
l p

k
l = −∇Jl(ukl );

5 Find the smallest integer ik ≥ 0 such that θkl = (0.5)ik satisfies

Jl(u
k
l + θkl p

k
l ) ≤ Jl(ukl ) + ηθkl ∇Jl(ukl )T pkl ;

6 ũk+1
l = ukl + θkl p

k
l ;

7 Compute ∇Jl(ũk+1
l ) and H̃k+1

l ≈ ∇2Jl(ũ
k+1
l );

8 (L-BFGS Direction) Compute pk+1
l,QN by Algorithm 5;

9 (Second Step) Let pk+1
l,SD = −∇Jl(ũk+1

l ), compute c = (c1, c2)T ∈ R2 by

solving (5.15) and then set p̃k+1
l = c1p

k+1
l,SD + c2p

k+1
l,QN ;

10 if Jl(ũ
k+1
l + p̂k+1

l ) < Jl(ũ
k+1
l ) then

11 uk+1
l = ũk+1

l + p̃k+1
l ;

12 Compute Jl(u
k+1
l ) and Ĥk+1

l ≈ ∇2Jl(u
k+1
l );

13 else

14 uk+1
l = ũk+1

l ;

15 Ĥk+1
l = H̃k+1

l ;

16 end

17 k = k + 1;

18 end

19 u∗l = ukl .

Finally, if at step 3 and 7 of Algorithm 13, we replace the Gauss-Newton method by our

new two-step Gauss-Newton method, we obtain the multilevel algorithm below.

Algorithm 15: Multilevel Two-Step Gauss Newton Method

1 Set uN0 = (0, ..., 0) ∈ RnN0 and l = N0 (coarsest level);

2 while l < N do

3 Compute u∗l = 2SGN(l, u0
l );

4 u0
l+1 = I l+1

l u∗l ;

5 l = l + 1;

6 end

7 u∗N = 2SGN(l, u0
N ).
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5.2.3 Convergence Analysis

The analysis of Algorithm 12 and 14 in a constrained setting can be done in a unified

framework. Consider the finite-dimensional optimization problem

min
u∈Rn

J(u), s.t. u ∈ U , (5.16)

where J : Rn → R is a differentiable function and U ∈ Rn is an open set. Clearly,

problem (5.16) may have no solution. Thus, we seek for the iterative method that

generates sequences {uk} ∈ U of feasible points such that {J(uk)} is monotonically

decreasing. By incorporating the constraint within the Armijo line search in Algorithms

12 and 14 (and omitting the level index l), the resulting algorithms can be seen as

particular cases of the following framework.

Algorithm 16: Feasible Direction Method

1 Given u0 ∈ U , B0 ∈ Rn×n symmetric and positive definite;

2 Set η ∈ (0, 1) and k = 0;

3 while the stopping criteria is not satisfied do

4 Compute pk = −Bk∇J(uk);

5 Find the smallest integer ik ≥ 0 such that θk = (0.5)ik satisfies

J(uk + θkpk) ≤ J(uk) + ηθk∇J(uk)T pk and uk + θkpk ∈ U ;

6 ũk+1 = uk + θkpk;

7 Find uk+1 ∈ U such that J(uk+1) < J(ũk+1) and choose Bk+1 ∈ Rn×n

symmetric and positive definite;

8 k = k + 1;

9 end

10 u∗ = uk.

Remark 5.1. In Algorithm 16, Bk is the inverse of the Gauss-Newton matrix, that is,

Bk = (Ĥk)−1. To better see the correspondence between Algorithm 16 and Algorithm

12 and 14, note that in Algorithm 12, we set uk+1 = ũk+1 for all k, while in Algorithms

14, we may have uk+1 6= ũk+1 if the second step is successful.

We shall study the worst-case complexity and global convergence properties of Algorithm

16. By worst-case complexity, we mean an upper bound on the maximum number of

iterations that Algorithm 16 may take to find an approximated critical point of J or

a point close to the boundary of the feasible set. Our analysis is an adaptation of the

analysis of Nesterov [96] for the gradient method. Consider the following assumptions:

A1 The objective J : Rn → R is differentiable and ∇J : Rn → R is L-Lipschitz:

‖∇J(w)−∇J(u)‖ ≤ L‖w − u‖,∀w, u ∈ Rn. (5.17)

A2 The set L(u0) = {u ∈ Rn|J(u) ≤ J(u0)} is compact.
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A3 There exist constants c1 ≥ c0 > 0 such that the largest eigenvalue λ1 and smallest

eigenvalue λ0 of Bk satisfy the following condition:

c0 ≤ λ0 ≤ λ1 ≤ c1. (5.18)

The next lemma shows that if ∇J(uk) 6= 0, then there exists ik ≥ 0 such that the step 5

in the Algorithm 16 is well-defined. The proof is based on elementary analysis arguments

and it is included here for completeness.

Lemma 5.2. Suppose that A1 holds. Given ū ∈ U,B ∈ Rn×n positive definite and

η ∈ (0, 1), let p = −B∇J(ū). If ∇J(ū) 6= 0, then there exists δ > 0 such that

J(ū+ θp) ≤ J(ū) + ηθ∇J(u)T p and ū+ θp ∈ U, (5.19)

for all θ ∈ [0, δ).

Proof. Since U is an open set, there exists ε > 0 such that

‖u− ū‖ ≤ ε =⇒ u ∈ U. (5.20)

Thus, if we consider u = ū+ θp, it follows that

0 ≤ θ ≤ ε

‖p‖
=⇒ ū+ θp ∈ U. (5.21)

Let us denote δ1 = ε/‖p‖. On the other hand, as J is differentiable and η ∈ (0, 1), we

have

lim
θ→0

J(ū+ θp)− J(ū)

θ
= ∇J(ū)T p = −∇J(ū)TB∇J(ū)

< −η∇J(ū)TB∇J(ū)

= η∇J(ū)T p.

(5.22)

Hence, there exists δ2 > 0 such that

J(ū+ θp)− J(ū)

θ
< η∇J(ū)T p, (5.23)

for all θ ∈ (0, δ2). Therefore,

J(ū+ θp) ≤ J(ū) + ηθ∇J(ū)T p, ∀θ ∈ [0, δ2). (5.24)

Finally, if we take δ = min{δ1, δ2}, it follows from (5.21) and (5.24) that

J(ū+ θp) ≤ J(ū) + ηθ∇J(u)T p and ū+ θp ∈ U , ∀θ ∈ [0, δ),

and the proof is complete.
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The lemma below gives a lower bound for the sequence {θk} and will be crucial to

establish a lower bound for the functional decrease obtained in the consecutive iterations

of Algorithm 16. Its proof is an adaptation of the proof of Lemma 11.1.1 in [115].

Lemma 5.3. Suppose that A1 holds. Then, for all k, we have

θk ≥ min

{
1,

1− η
L

(
−∇J(uk)T pk

‖pk‖2

)
,

Γ(uk)

2‖pk‖

}
, (5.25)

where , for all u ∈ U ,

Γ(u) = inf
w/∈U
‖u− w‖. (5.26)

Proof. If ik = 0, then θk = 1 and so (5.25) holds. Thus, suppose that ik > 0. If

uk+2θkpk ∈ U , then from the definition of ik, we know that uk+2θkpk = uk+(0.5)ik−1pk

does not satisfy the inequality (5.19). Thus,

J(uk + 2θkpk) > J(uk) + 2ηθk∇J(uk)T pk. (5.27)

Since ∇J is L−Lipschitz, it follows that

J(uk + 2θkpk) ≤ J(uk) + 2θk∇J(uk)T pk + 2L(θk)2‖pk‖2. (5.28)

Then, combining (5.27) and (5.28), we have

J(uk) + 2ηθk∇J(uk)T pk < J(uk) + 2θk∇J(uk)T pk + 2L(θk)2‖pk‖2 (5.29)

and

θk > −1− η
L

(
∇J(uk)T pk

‖pk‖2

)
(5.30)

and so, (5.25) also holds.

Finally, if uk + 2θkpk /∈ U , it follows from the definition of Γ(uk) that

2θk‖pk‖ ≥ Γ(uk). (5.31)

Thus, θk ≥ Γ(uk)/2‖pk‖, and once again (5.25) holds.

Now, we are in position to establish a worst-case complexity bound for Algorithm 16.

Theorem 5.4. Suppose that A1-A3 hold and let {uk} be a sequence generated by Algo-

rithm 16 such that

Γ(uk) > ε and ‖∇J(uk)‖ > ε, for k = 0, ..., T − 1, (5.32)
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for a given precision ε > 0. Then, J(u) is bounded from below by some Jlow and we

must have

T ≤
(
J(u0)− Jlow

κc

)
ε−2, (5.33)

where

κc = min

{
ηc0,

η(1− η)c2
0

Lc2
1

,
ηc0

2c1

}
. (5.34)

Proof. By step 7 of Algorithm 16, we have J(uk+1) < J(ũk+1). Thus, combining (5.19)

and the lower bound for θk in (5.25), we obtain the following lower bound for the decrease

of the function value in the consecutive iterations:

J(uk)− J(uk+1) ≥ J(uk)− J(ũk+1) ≥ ηθk(−∇J(uk)T pk)

≥ ηmin

{
−∇J(uk)T pk,

1− η
L

(
−∇J(uk)T pk

‖pk‖

)2

,
Γ(uk)

2

(
−∇J(uk)T pk

‖pk‖

)}. (5.35)

On the other hand, from A3 it follows that

‖pk‖ = ‖ −Bk∇J(uk)‖ ≤ ‖Bk‖‖∇J(uk)‖ ≤ c1‖∇J(uk)‖, (5.36)

and

−∇J(uk)T pk = ∇J(uk)TBk∇J(uk) ≥ c0‖∇J(uk)‖2. (5.37)

Hence,

− ∇J(uk)T pk

‖pk‖
≥ c0‖∇J(uk)‖2

c1‖∇J(uk)‖
=
c0

c1
‖∇J(uk)‖. (5.38)

Then combining (5.35) with (5.37), (5.38) and (5.32), we obtain

J(uk)− J(uk+1) ≥ ηmin

{
c0‖∇J(uk)‖2, (1− η)c2

0

Lc2
1

‖∇J(uk)‖2, c0

2c1
Γ(uk)‖∇J(uk)‖

}
≥ min

{
ηc0,

η(1− η)c2
0

Lc2
1

,
ηc0

2c1

}
min

{
‖∇J(uk)‖2,Γ(uk)‖∇J(uk)‖

}
= κc min

{
‖∇J(uk)‖2,Γ(uk)‖∇J(uk)‖

}
> κcε

2, for k = 0, ..., T − 1.

(5.39)

From A2, it follows that J has a global minimizer on Rn. Thus, there exists Jlow such

that J(uk) ≥ Jlow for all k. Therefore,

J(u0)− Jlow ≥ J(u0)− J(uT ) =
T−1∑
k=0

J(uk)− J(uk+1) ≥
T−1∑
k=0

κcε
2 = Tκcε

2. (5.40)

Then we have

T ≤
(
J(u0)− Jlow

κc

)
ε−2, (5.41)
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and the proof is complete.

Remark 5.5. Theorem 5.4 means that given ε > 0, Algorithm 16 takes at most O(ε−2)

iterations to generate a point uT ∈ U such that

Γ(uT ) ≤ ε or ‖∇J(uT )‖ ≤ ε. (5.42)

For U = R2, this bound agrees in order with known complexity bounds for first-order

methods [12, 47, 96]. In any case, by (5.39), we have

J(uT ) < J(uT−1) < · · · J(u1) < J(u0). (5.43)

Finally, from inequality (5.39), we can establish the following global convergence result.

Theorem 5.6. Suppose that A1-A3 hold. Then, given u0 ∈ U , the sequence {uk} ⊂ U
generated by Algorithm 16 from u0 admits a subsequence that converges either to a point

in the boundary of U or to a critical point of J in U .

Proof. Let us denote the closure of U by Ū . Note that {uk} ⊂ L(u0). Thus, by A2,

the sequence {uk} is bounded and, therefore, it admits a convergent subsequence {ukj},
with ukj → ū ∈ Ū . Since J is continuous, we also have J(ukj ) → J(ū) as j goes to

infinity. Thus, sequence {J(uk)} is monotonically decreasing and admits a convergent

subsequence. Hence, {J(uk)} must be convergent, which implies that

lim
j→∞

J(uk)− J(uk+1) = 0. (5.44)

Thus, by applying the Squeeze Theorem on inequality (5.39), we conclude that

lim
j→∞

∇J(ukj ) = 0 or lim
j→∞

Γ(ukj )∇J(ukj ) = 0. (5.45)

On the other hand, as ∇J and Γ are continuous functions, we have

lim
j→∞

∇J(ukj ) = ∇J(ū) or lim
j→∞

Γ(ukj ) = Γ(ū). (5.46)

Then, combining (5.45) and (5.46), it follows that

∇J(ū) = 0 or Γ(ū) = 0, (5.47)

that is, the limit point ū is either a point in the boundary of U or a critical point of J

in U .
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5.2.4 Subspace Multilevel Technique

In the standard coarse-to-fine multilevel strategy, the initial point u0
l+1 for level l + 1

is computed using only the solution u∗l of the previous level. To allow the finding of a

better initial point, we propose the use of all the previous solutions u∗l , u
∗
l−1, ..., u

∗
N0

by

employing again the subspace technique. Given N0 ≤ z ≤ w ≤ N , let us denote by Iwz

the prolongation operator from level z to level w. We set ũ0
l+1 = I l+1

l u∗l and we compute

∇Jl+1(ũ0
l+1) and H̃0

l+1 ≈ ∇2Jl+1(ũ0
l+1). The we obtain a search direction p̃0

l+1 by solving

the subspace quadratic problem

min
p
Jl+1(ũ0

l+1) +∇Jl+1(ũ0
l+1)T p+

1

2
pT H̃0

l+1p,

s.t. p ∈ V0
l+1 ∈ Rl−N0+1,

(5.48)

where V0
l+1 = span

{
I l+1
N0

u∗N0
, ..., I l+1

l u∗l

}
. As in the two-step Gauss-Newton method,

p̃0
l+1 can be easily computed by solving a small scale linear system. If Jl+1(ũ0

l+1 + p̃0
l+1) <

Jl+1(ũ0
l+1), we define the initial point for level l+1 as u0

l+1 = ũ0
l+1 + p̃0

l+1. Otherwise, we

set u0
l+1 = ũ0

l+1. The corresponding modification of Algorithm 13 can be summarized in

the following way.

Algorithm 17: Subspace Multilevel Gauss Newton Method

1 Set uN0 = (0, ..., 0) ∈ RnN0 and l = N0 (coarsest level);

2 while l < N do

3 Compute u∗l = GN(l, u0
l );

4 Use (5.48) to compute u0
l+1;

5 l = l + 1;

6 end

7 u∗N = GN(l, u0
N ).

Finally, if at step 3 and 7 of Algorithm 17 we replace the Gauss-Newton method by

our new two-step Gauss-Newton method, we obtain the subspace multilevel algorithm

below.

Algorithm 18: Subspace Multilevel Two-Step Gauss Newton Method

1 Set uN0 = (0, ..., 0) ∈ RnN0 and l = N0 (coarsest level);

2 while l < N do

3 Compute u∗l = 2SGN(l, u0
l );

4 Use (5.48) to compute u0
l+1;

5 l = l + 1;

6 end

7 u∗N = 2SGN(l, u0
N ).
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5.3 Numerical Experiments

In order to investigate the numerical performance of the proposed methods, we have

tested implementations of the following algorithms on the hyperelastic model (3.12):

• The standard multilevel Gauss-Newton algorithm (i.e., Algorithm 13). We shall

refer to this code as GN (from Gauss-Newton).

• The multilevel two-step Gauss-Newton algorithm (i.e., Algorithm 15). We shall

refer to this code as TS (from two-step).

• The subspace multilevel Gauss-Newton algorithm (i.e., Algorithm 17). We shall

refer to this code as SIG (from subspace initial guess).

• The subspace multilevel two-step Gauss-Newton algorithm (i.e., Algorithm 18).

We shall refer to this code as HYBRID since it can be viewed as a combination of

TS and SIG.

The algorithms are coded in Matlab (R2017a) languages, and the tests are performed

on a PC with 3.20 GHz Intel(R) Core(TM) i5-5600 microprocessor, and with installed

memory (RAM) of 8.00 GB. On all codes, the Gauss-Newton linear system is solved

by the conjugate gradient (CG) method with diagonal preconditioner. We stop the

execution of the CG method when the relative residual becomes smaller 0.1 or when the

maximum of 50 iterations is reached.

The codes are applied to image registration problems corresponding to 20 pairs of images

(reference, template): ten pairs of medical images (Figure. 5.1—5.10), and ten pairs

of medical images (Figure. 5.11—5.20). To evaluate the performance of the codes for

several problem sizes, we consider four different resolutions: 128×128, 256×256, 512×512

and 1024×1024. Specifically, we use the Matlab package FAIR as the basis for our tests

(see details in [92]). In all codes, the constraint det(∇y) > 0, for y = x + u(x), is

handled within the Armijo line search, that is, to be accepted, a trial step must provide

a sufficient decrease in the objective and the resulting point must be feasible with respect

to the referred constraint (see Algorithm 16).

(a) Reference (b) Template

Figure 5.1: Problem hand.
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(a) Reference (b) Template

Figure 5.2: Problem EPslice.

(a) Reference (b) Template

Figure 5.3: Problem brain.

(a) Reference (b) Template

Figure 5.4: Problem CT.
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(a) Reference (b) Template

Figure 5.5: Problem MRI.

(a) Reference (b) Template

Figure 5.6: Problem lung.

(a) Reference (b) Template

Figure 5.7: Problem CT1.
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(a) Reference (b) Template

Figure 5.8: Problem CT2.

(a) Reference (b) Template

Figure 5.9: Problem MRI2.

(a) Reference (b) Template

Figure 5.10: Problem breast.
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(a) Reference (b) Template

Figure 5.11: Problem circle to c.

(a) Reference (b) Template

Figure 5.12: Problem c to circle.

(a) Reference (b) Template

Figure 5.13: Problem A to R.
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(a) Reference (b) Template

Figure 5.14: Problem square to square.

(a) Reference (b) Template

Figure 5.15: Problem Lena.

(a) Reference (b) Template

Figure 5.16: Problem circle to square.
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(a) Reference (b) Template

Figure 5.17: Problem molecule.

(a) Reference (b) Template

Figure 5.18: Problem F to F.

(a) Reference (b) Template

Figure 5.19: Problem circle to I.
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(a) Reference (b) Template

Figure 5.20: Problem Rio.

The results reported below summarize more than 21 hours of numerical implementation.

Problems and results for the resolution 128× 128 are given in Table 5.1, where ”TIME”

represents the time in seconds taken by the code to solve the corresponding problem,

”IT” represents the number of nonlinear iterations performed to reach the solution, ”FE”

represents the number function evaluations performed, and ”TOTAL” provides the sum

of the values in the corresponding column of the table, where the total time is given in

seconds.

From Table 5.1, we see that TS, SIG, and HYBRID are better than GN in terms of the

total time. The fastest code is HYBRID, which outperforms GN on 16 problems (9 of

them corresponding to medical images).

GN SIG TS HYBRID
Problem Time IT FE Time IT FE Time IT FE Time IT FE
1. Hand 2.1 31 75 1.8 31 80 2.1 30 120 1.6 27 114
2. EPLslice 11.4 82 216 8.6 71 190 5.0 52 214 4.7 47 210
3. Brain 1.5 52 116 1.5 49 116 1.3 29 114 1.3 29 110
4. CT 5.9 51 116 5.6 48 116 3.9 42 166 3.7 40 162
5. MRI 3.3 56 123 3.3 56 129 2.7 38 152 2.7 38 156
6. Lung 3.3 40 95 3.7 45 112 2.5 30 123 3.5 36 153
7. CT1 8.9 82 202 7.4 79 200 4.7 51 206 3.9 47 194
8. CT2 4.1 36 82 3.1 33 82 2.7 28 112 2.2 25 106
9. MRI2 10.2 95 206 9.4 91 204 5.3 57 228 5.5 58 238
10. Breast 5.1 53 117 5.0 53 123 3.5 37 147 3.7 38 157
11. Circle to C 1.4 45 103 1.6 48 114 1.4 37 131 1.3 37 146
12. C to Circle 2.7 46 119 2.8 49 129 4.5 87 356 2.5 40 175
13. A to R 0.8 39 88 0.7 41 99 0.8 23 94 0.6 19 84
14. Square to Square 0.6 19 46 0.6 19 54 0.5 14 60 0.5 12 61
15. Lena 0.6 18 46 0.7 18 52 0.7 17 68 0.6 16 70
16. Circle to Square 0.2 12 34 0.4 14 44 0.2 11 44 0.3 13 56
17. Molecule 0.9 23 56 1.0 22 60 1.1 22 87 1.1 20 84
18. F to F 0.9 41 95 1.0 43 104 0.8 25 102 0.8 25 106
19. Circle to I 1.5 25 60 1.2 28 73 1.3 22 90 1.3 19 80
20. Rio 0.6 15 40 0.4 14 44 0.5 14 56 0.5 13 58
Total 65.6 861 2035 59.7 852 2125 45.5 666 2670 42.5 598 2511

Table 5.1: Results for resolution 128× 128.

Table 5.2 shows the results for resolution 256× 256. Codes TS and HYBRID are better

than GN in terms of total time. The fastest code is HYBRID, which outperforms GN

on 11 problems (7 of them corresponding to medical images).
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GN SIG TS HYBRID
Problem Time IT FE Time IT FE Time IT FE Time IT FE
1. Hand 6.4 35 85 7.1 35 92 9.9 36 144 9.2 33 140
2. EPLslice 110.1 172 480 120.6 176 500 88.0 123 548 83.2 120 534
3. Brain 4.6 61 136 4.9 56 134 5.1 35 128 4.9 34 132
4. CT 175.9 201 470 169.8 185 440 79.4 146 577 84.8 146 588
5. MRI 45.4 92 212 37.2 84 200 24.3 63 254 22.4 59 246
6. Lung 29.2 61 155 41.9 74 196 50.2 66 289 31.1 61 264
7. CT1 54.8 115 286 53.8 112 287 35.6 81 330 32.9 73 305
8. CT2 40.5 89 192 38.3 73 168 25.5 60 240 28.2 61 250
9. MRI2 60.2 136 305 60.1 132 304 42.4 97 391 43.7 99 407
10. Breast 36.6 77 176 28.8 75 177 26.8 59 241 20.4 56 233
11. Circle to C 7.0 51 117 6.3 54 130 7.2 42 148 4.9 41 166
12. C to Circle 9.8 53 135 10.9 54 142 10.1 91 374 8.3 44 193
13. A to R 2.5 41 94 3.3 44 109 4.5 28 114 2.9 22 99
14. Square to Square 1.9 21 52 6.6 26 73 3.1 17 72 4.4 16 79
15. Lena 2.2 20 52 2.6 20 60 2.6 19 76 2.8 18 80
16. Circle to Square 2.3 15 42 2.5 19 56 0.4 12 48 0.9 13 62
17. Molecule 5.2 32 76 5.7 27 74 6.1 26 101 5.2 24 101
18. F to F 3.8 46 107 3.7 47 116 3.4 28 116 3.9 28 122
19. Circle to I 6.6 32 76 5.9 32 83 5.5 26 102 5.7 23 96
20. Rio 1.4 17 46 1.7 16 52 1.8 16 64 2.0 15 68
Total 606.6 1367 3294 611.6 1341 3393 432.0 1071 4367 401.9 986 4165

Table 5.2: Results for resolution 256× 256.

Table 5.3 shows the results for resolution 512× 512. Codes TS, SIG, and HYBRID are

better than GN in terms of total time. In this case, the fastest code is HYBRID, which

outperforms GN on 13 problems (9 of them corresponding to medical images).

GN SIG TS HYBRID
Problem Time IT FE Time IT FE Time IT FE Time IT FE
1. Hand 37.6 39 95 32.8 38 102 25.9 38 152 26.3 35 150
2. EPLslice 220.3 190 525 332.3 207 586 286.2 149 666 214.0 137 617
3. Brain 18.0 64 144 15.1 58 142 15.0 37 148 15.7 36 144
4. CT 2827.4 524 1430 1700 370 988 824.3 253 1065 446.2 202 832
5. MRI 303.3 132 309 298.5 117 286 209.3 96 391 286.9 105 436
6. Lung 175.8 77 201 134.3 93 246 425.7 109 500 243.8 88 389
7. CT1 385.1 158 394 346.1 155 396 224.8 110 443 248.2 109 454
8. CT2 1083.4 208 537 1044.4 189 511 480.1 125 533 576.9 137 607
9. MRI2 339.4 167 388 270.0 157 371 204.3 125 507 249.0 130 545
10. Breast 221.2 100 234 230.6 98 239 195.5 85 347 151.1 77 319
11. Circle to C 31.2 54 125 57.2 68 162 60.9 51 172 58.9 51 197
12. C to Circle 37.9 56 144 39.9 57 150 47.3 97 401 47.4 49 210
13. A to R 26.2 49 112 13.3 46 117 17.8 30 121 14.5 24 111
14. Square to Square 16.7 25 62 17.9 27 78 26.3 20 84 20.7 18 86
15. Lena 17.2 22 58 19.1 22 68 18.3 21 84 19.7 20 90
16. Circle to Square 11.4 20 54 13.3 23 66 2.6 13 52 3.7 14 66
17. Molecule 74.3 40 95 69.7 46 116 74.5 39 145 64.7 37 150
18. F to F 12.2 48 113 7.1 48 122 6.6 29 122 7.6 29 128
19. Circle to I 32.4 43 100 53.1 42 105 45.3 33 128 64.3 31 125
20. Rio 9.5 19 52 9.6 18 60 11.8 18 72 12.5 17 78
Total 5880.7 2035 5172 4704.6 1879 4911 3202.6 1478 6133 2772.3 1346 5734

Table 5.3: Results for resolution 512× 512.

Finally, Table 5.4 shows the results for resolution 1024 × 1024. Once again, TS, SIG,

and HYBRID are better than GN in terms of total time. The fastest code is TS, which

outperforms GN on 12 problems (6 of them corresponding to medical images).

The improved performances of TS and HYBRID over GN are better highlighted in Tables

5.5— 5.7, which shows the reduction in the total time provided by the new methods.
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GN SIG TS HYBRID
Problem Time IT FE Time IT FE Time IT FE Time IT FE
1. Hand 119.9 41 101 121.2 40 110 105.3 40 160 58.2 36 156
2. EPLslice 539.9 198 550 589.5 216 612 518.2 155 693 654.2 150 677
3. Brain 49.8 65 148 91.7 63 156 52.9 38 152 46.7 37 152
4. CT 3884.8 556 1504 2299.4 390 1035 2478.2 297 1257 1526.3 235 965
5. MRI 1048.2 166 384 1094.8 136 337 908.2 120 486 696.0 118 489
6. Lung 929.0 102 258 1074.6 125 318 1615.3 140 650 2520.2 144 653
7. CT1 1246.3 181 446 1040.6 174 440 906.2 133 532 1050.3 143 585
8. CT2 6148.7 330 899 4924.8 287 796 3758.3 198 881 3865.9 215 982
9. MRI2 947.9 189 442 809.6 170 409 998.3 152 621 1088 154 652
10. Breast 515.3 107 254 477.5 105 259 760.1 100 414 1120.6 104 440
11. Circle to C 235.5 61 141 538.6 93 214 126.1 53 178 192.4 56 210
12. C to Circle 245.3 61 156 239.8 65 168 181.1 100 414 204.9 54 226
13. A to R 124.2 58 132 117.9 51 129 89.2 34 132 105.3 29 123
14. Square to Square 57.8 26 66 106.7 29 84 68.0 21 88 64.2 19 90
15. Lena 140.3 26 68 109.3 25 78 135.8 24 96 92.2 22 100
16. Circle to Square 69.6 23 62 57.1 27 76 43.4 14 56 34.1 15 70
17. Molecule 364.3 47 111 374.9 53 132 830.6 69 242 662.0 59 223
18. F to F 60.4 51 121 63.2 51 132 70.5 31 130 81.3 32 142
19. Circle to I 73.2 44 104 139.8 44 111 181.7 39 146 234.1 38 149
20. Rio 90.9 22 60 69.2 20 68 70.6 20 80 78.9 19 88
Total 16, 017.9 2354 6007 14, 340 2164 5664 13, 898 1778 7408 14, 376.6 1679 7172

Table 5.4: Results for resolution 1024× 1024.

Resolution Time GN Time SIG Reduction

128× 128 65.6 59.7 9.0%
256× 256 606.5 611.6 –
512× 512 5880.7 4704.6 20.0%
1024× 1024 16,917.9 14,340 15.2%

Table 5.5: Comparison of the total time (in seconds) to solve all 20 problems for each
resolution between GN and SIG.

Resolution Time GN Time TS Reduction

128× 128 65.6 45.5 30.6%
256× 256 606.5 432.0 28.7%
512× 512 5880.7 3202.6 45.5%
1024× 1024 16,917.9 13,898 17.8%

Table 5.6: Comparison of the total time (in seconds) to solve all 20 problems for each
resolution between GN and TS.

As mentioned above, codes TS and HYBRID behave much better when we consider only

medical images. In terms of the total time, this difference of performance is shown on

Tables 5.8—5.10.

Additional information about the codes can be obtained by using the Performance Pro-

file, which is a tool for benchmarking and comparing optimization software [31]. More

specifically, let tp,s denotes the time to solve problem p by solver s. The performance

ratio is defined as rp,s =
tp,s
t∗p

, where t∗p is the lowest time required to solve problem

p among all solvers that are being compared. Clearly, rp,s ≥ 1 for all p and s. The

performance profile for each code s is defined as

ρs(τ) =
number of problems for which rp,s ≤ τ

total number of problems
. (5.49)
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Resolution Time GN Time HYBRID Reduction

128× 128 65.6 42.5 35.2%
256× 256 606.5 401.9 33.7%
512× 512 5880.7 2772.3 52.8%
1024× 1024 16,917.9 14,376.6 15.0%

Table 5.7: Comparison of the total time (in seconds) to solve all 20 problems for each
resolution between GN and HYBRID.

Resolution Time GN Time SIG Reduction

128× 128 55.7 49.4 11.3%
256× 256 563.6 562.6 0.2%
512× 512 5611.6 4404.5 21.5%
1024× 1024 15,456 12,524 18.9%

Table 5.8: Comparison of the total time (in seconds) to solve all 10 problems with
medical images for each resolution between GN and SIG.

Resolution Time GN Time TS Reduction

128× 128 55.7 33.7 39.4%
256× 256 563.6 387.1 31.3%
512× 512 5611.6 2891.1 48.4%
1024× 1024 15,456 12,100.9 21.7%

Table 5.9: Comparison of the total time (in seconds) to solve all 10 problems with
medical images for each resolution between GN and TS.

Resolution Time GN Time HYBRID Reduction

128× 128 55.7 32.9 41.0%
256× 256 563.6 360.8 36.0%
512× 512 5611.6 2458.3 56.2%
1024× 1024 15,456 12,627.6 18.3%

Table 5.10: Comparison of the total time (in seconds) to solve all 10 problems with
medical images for each resolution between GN and HYBRID.

Therefore, the value ρs(τ) represents the percentage of problems solved by algorithm s

with a cost most τ times worse than that of the best algorithm. This means that, for a

given value of τ , the best solver is the one with the highest value of ρs(τ). In particular,

ρs(1) gives the percentage of problems for which solver s is the best.

Figure 5.21—5.23 show the performance profiles for codes GN and HYBRID taking as

references all 20 problems with medical images and resolutions of 128×128, 256×256 and

512× 512 (combined results of Table 5.1—5.3). As expected, we can see that in this set

of problems, code HYBRID is significantly more efficient than GN in terms of CPU time

and the number of iterations. It is interesting to notice that GN outperforms HYBRID

in terms of the number of function evaluations. However, the effect is compensated by

the time that HYBRID saves in the solution of a smaller number of Gauss-Newton linear

system (which is equal to the number of iterations).
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Figure 5.21: Performance Profile based on CPU Time for the set of 20 problems with
medical images and resolutions of 128× 128 and 256× 256. The red line and black line

represents HYBRID and GN respectively.
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Figure 5.22: Performance Profile based on Number of Iterations for the set of 20
problems with medical images and resolutions of 128 × 128, 256 × 256 and 512 × 512.

The red line and black line represents HYBRID and GN respectively.
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Figure 5.23: Performance Profile based on Number of Function Evaluations for the
set of 20 problems with medical images and resolutions of 128 × 128, 256 × 256 and

512× 512. The red line and black line represents HYBRID and GN respectively.

As an example, Figure 5.24 shows the registered images obtained by all codes applied

to problem MRI2 with resolution 512× 512.



Chapter 5. Improved Optimization Methods For Image Registration Problems 106

(a) Template Image. (b) Reference Image.

(c) T (y) obtained by code
GN in 468.11 seconds.

(d) T (y) obtained by code
SIG in 326.04 seconds.

(e) T (y) obtained by code TS
in 250.82 seconds.

(f) T (y) obtained by code
HYBRID in 314.29 seconds.

Figure 5.24: Registered images for problem MRI2 with resolution 512× 512.

We also tested the codes GN and HYBRID on four 3D problems from [92] (such as the

Brain Problem illustrated on Figure 5.25 and 5.26). The results are in Table 5.11.

GN HYBRID
Problem Time IT FE Time IT FE

1. Brain 1435 26 60 1249 25 97
2. Knee 937 16 40 698 13 56
3. Phantom 105 15 37 243 16 68
4. Mice 62 28 65 48 17 68
Total 2539 85 202 2238 71 289

Table 5.11: Results for 3D problems.
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Figure 5.25: 3D brain problem.

(a) Template (b) Reference

Figure 5.26: Template and Reference for the 3D brain problem.

Once again, HYBRID outperformed GN. However, it seems that the gain of HYBRID

over GN deteriorates when the problems become larger. One possible explanation is that

for larger problems, the computational cost to compute function and gradient evaluation

becomes comparable with the cost to solve the Gauss-Newton problem. In this case,

the saving obtained by performing a smaller number of iterations may be not enough

to compensate for the additional time used to evaluate the objective function and its

gradients.

Finally, it is worth to mention that the methods proposed in this work can be applied to

general smooth optimization problems. Notice that the critical component of the codes

HYBRID and TS is the Algorithm 14 embedded in them. To evaluate the performance

of this algorithm on a different class of problems, we apply it on a set of 10 test problems

from [93] (without the multilevel step). The results on Table 5.12 show that the gain

obtained with Algorithm 14 over the standard Gauss-Newton method is not restricted

to image registration problems.
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Gauss-Newton Algorithm 14
Problem IT FE IT FE

1. Extended Rosenbrock (100, 100) 50 180 32 129
2. Extended Rosenbrock (500, 500) 49 177 27 110
3. Extended Powell Singular (100, 100) 23 47 26 79
4. Extended Powell Singular (500, 500) 24 49 26 79
5. Penalty I (100, 101) 99 667 25 154
6. Penalty II (500, 501) 101 670 27 154
7. Variably Dimensioned (100, 100) 48 93 28 81
8. Discrete Integral Equation (100, 100) 15 31 02 06
9. Broyden Tridiagonal (100, 100) 20 41 11 32
10. Broyden Banded (100, 100) 24 49 15 45
Total 453 2004 219 869

Table 5.12: Results for MGH problems.

5.4 Conclusion

In this chapter, we propose a two-step Gauss-Newton method for smooth unconstrained

optimization and a modified coarse-to-fine multilevel scheme. Both methods rely on

elementary subspace techniques, and they aim to solve image registration problems by

the first-discretize-then-optimize approach. Numerical experiments are performed on a

diverse set of 20 pairs of images (Reference, Template) considering four different resolu-

tions. The results obtained correspond to more than 21 hours of numerical computation

time. For registration problems with the resolution of 128×128, 256×256 and 512×512,

a hybrid method of our two new subspace methods outperforms the standard multilevel

Gauss-Newton method, reducing the total running time in 52.8% for problems with the

resolution of 512 × 512. The advantage of the new methods over the Gauss-Newton

scheme is even bigger when we consider the registration of medical images. For exam-

ple, in our set of 10 problems from medical images with the resolution of 512× 512, our

hybrid method is faster than the multilevel Gauss-Newton method on nine problems,

reducing the total running time in 56.2%. These results are very encouraging.

In Chapter 4, we propose a new regularizer based on the Beltrami concept to control the

2D transformation. However, since the Beltrami coefficient has no definition in 3D space,

we cannot directly apply the notion of the Beltrami coefficient to 3D image registration.

Hence, in the next chapter, we present two new formulations to generalize the Beltrami

concept in 3D space and then define our new 3D registration models.



Chapter 6

An Efficient Iterative Algorithm

for A Beltrami Based 3D

Diffeomorphic Model

In this chapter, we first present two new formulations to measure the Beltrami concept

in 3D space and then define our new registration models, recommending, in particular,

the second model. We propose a converging Gauss-Newton iterative method to solve

the resulting nonlinear optimization problems. Numerical experiments show that the

new models can produce more accurate diffeomorphic transformations than competing

state-of-the-art registration models.

6.1 Introduction

In Chapter 4, we have mentioned that in image registration, folding will appear when the

deformation is large if we impose no constraint on the transformation and few models

have built-in capabilities to impose such constraints. Controlling det(∇y) > 0 is an

effective way but for some applications, it is very difficult for users to decide its upper

bound and lower bound. Another effective way to avoid the folding is to control the

Beltrami coefficient [77, 135]. The quasi-conformal theory shows that if the infinity norm

of the Beltrami coefficient is smaller than 1, the corresponding mapping is diffeomorphic.

Normally, the Beltrami coefficient is defined in the complex space and for 2D image

registration, we can consider the transformation as a complex mapping and control its

Beltrami coefficient to get a diffeomorphic transformation. However, since the Beltrami

coefficient has no definition in 3D space, we cannot directly apply the notion of the

Beltrami coefficient to 3D image registration.

In this chapter, we propose two new formulations to measure the norm of the Beltrami

coefficient in 3D space motivated by our previous work [135]. Combining the classical

109
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diffusion model, we propose new registration models that can cope with large defor-

mation registration problems and generate diffeomorphic transformations. An effective

numerical scheme is presented and numerical experimental results also, show that the

new registration models can obtain good performances and accurate transformations

and can be competitive with the other state-of-the-art registration models.

The rest of the chapter is organized as follows. In Section 6.2, we briefly review related

works and then propose our new regularizers for 3D image registration. In Section 6.3,

the new registration models are proposed and the details about the numerical imple-

mentation, including discretization and optimization method, are illustrated. Numerical

experiment results are shown in Section 6.4, and finally a conclusion is summarized in

Section 6.5.

6.2 Related Works and New Regularizers for 3D Image

Registration

In this section, we first review related works. Then based on the notion of the Beltrami

coefficient and our previous work [135], we propose our new regularizers for 3D image

registration.

6.2.1 Related Works

There exist many 3D models, though not as many as 2D models, which can produce

diffeomorphic transformations for image registration. Before proposing our new regu-

larizers for 3D image registration, we briefly review one related model.

LLL Model

In 2016, Lee, Lam and Lui in [79] extended the notion of the standard conformality

distortion K(f) for a mapping in R2 to Rn(n ≥ 3). Then they proposed a variational

model involvingK(f) to deal with the landmark-matching problem in higher dimensional

spaces. Before presenting the notion of the conformality distortion in Rn and Lee, Lam

and Lui’s model (LLL model), we first review the notion of the conformality distortion.

Any real-linear map from C to C has the complex form

f(z) = az + bz̄, (6.1)

with complex constants a and b. For orientation preserving f , the determinant is |a|2−
|b|2 > 0 and the formula can be rewritten as

f(z) = a(z + µz̄), (6.2)

where the complex numberµ = b/a is the Beltrami coefficient and |µ| < 1. In this form,

f is the stretch map S(z) = z+µz̄ postcomposed by a multiplication which is conformal
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and consists of a rotation through the angle arg a and magnification by the factor |a|.
The distortion caused by f is expressed by µ and from it we can find angles of directions

of maximal magnification and maximal shrinking: the angle of maximal magnification

is (arg µ)/2 with magnifying factor 1 + |µ| and the angle of maximal shrinking is the

orthogonal angle (argµ− π)/2 with shrinking factor 1− |µ|. Then we can define by K

the dilatation:

K(f) =
1 + |µ|
1− |µ|

. (6.3)

Here, K(f) expresses the ratio of the largest singular value of the Jacobian determinant

of f divided by the smallest singular value.

In the LLL work, the above definition of the conformality distortion K(f) of a mapping

f is generalized to the n dimensional space and is defined by

K(f) :=


1

n

(
‖∇f‖2F

det(∇f)2/n

)
if det(∇f) > 0,

+∞ otherwise

(6.4)

where f(x1, ..., xn) = (y1(x1, ..., xn), ..., yn(x1, ..., xn)) and∇f is a n×n Jacobian matrix.

Combining the conformality distortion, the LLL model is defined by

min
y
‖K(y)‖1 +

α

2
‖∆y‖22

s.t. y(pi) = qi, 1 ≤ i ≤ m,
(6.5)

where pi and qi are the given landmark points. Here, the first term controls the minimal

conformality distortion and the second term keeps the smoothness of the mapping. To

implement alternative minimization iterations in the numerical solution [79], an auxiliary

(matrix) variable s = ∇y is introduced. In 3D case, the LLL model (6.5) takes the

following equivalent form:

min
y

1

3

(
‖∇y‖2F

det(s)2/3

)
+
α

2
‖∆y‖22

s.t. s = ∇y, det(s) > 0 and y(pi) = qi 1 ≤ i ≤ m,
(6.6)

Then an alternating direction method with Lagrangian multipliers can be applied to

solve (6.6). Note that this model is designed for landmark registration. Below, we

consider adapting (6.6) to an intensity registration framework.

6.2.2 Motivation and New Regularizers for 3D Image Registration

In the LLL model, the conformality distortion is restricted. According to (6.3), con-

trolling the norm of the Beltrami coefficient should achieve the same aim, and, in the

2D case, this idea has been confirmed in [135]. Hence, we want to extend the standard

definition of the norm of the Beltrami coefficient to 3D space.
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Properties of 2D Regularizer |µ(f)|2

Through investigating |µ(f)|2 in (4.15) , we can obtain the following lemma:

Lemma 6.1. The 2D Beltrami regularizer |µ(f)|2 (4.15) possesses the following prop-

erties:

P1 If |µ(f)|2 = 0, then we have the singular values of det(∇f) are equal;

P2 0 ≤ |µ(f)|2 ≤ ∞;

P3 0 ≤ |µ(f)|2 < 1⇔ det(∇f) > 0;

P4 |µ(f)|2 = 1⇔ det(∇f) = 0;

P5 1 < |µ(f)|2 ≤ ∞⇔ det(∇f) < 0;

P6 If the singular values of det(∇f) are equal, then when det(∇f) > 0, |µ(f)|2 = 0 and

when det(∇f) < 0, |µ(f)|2 is ∞.

Proof. For P1, if |µ(f)|2 = 0, according to (4.15), ‖∇f‖2F = 2 det(∇f). Hence, det(∇f)

is non-negative. Set σ1 and σ2 as the singular values of det(∇f). Then we have ‖∇f‖2F =

σ2
1 + σ2

2 and det(∇f) = σ1σ2. So (σ1 − σ2)2 = 0 and we have σ1 = σ2.

For P2, since the numerator and the denominator of (4.15) are both non-negative, we

have 0 ≤ |µ(f)|2 ≤ ∞.

P3-P5 follow from (4.15).

For P6, if σ1 = σ2, when det(∇f) > 0, we have ‖∇f‖2F − 2 det(∇f) = (σ1 − σ2)2 and

‖∇f‖2F + 2 det(∇f) = (σ1 + σ2)2, then |µ(f)|2 = 0. But when det(∇f) < 0, since

det(∇f) = −σ1σ2, we have ‖∇f‖2F −2 det(∇f) = (σ1 +σ2)2 and ‖∇f‖2F + 2 det(∇f) =

(σ1 − σ2)2, then |µ(f)|2 =∞.

Since the Beltrami regularizer |µ(f)|2 gives good performances in 2D image registration

[135], better than other 2D regularizers enforcing det(∇f) > 0, we next generalize it to

3D using a similar quantity. Then we propose our new regularizers for 3D image registra-

tion, motivated by similar properties and the desire to obtain an analogous regularizer

better than competing ones in 3D.

New Regularizers for 3D Image Registration

Our starting point in generalizing to the 3D case is to construct the 3D quantity N1(f)

below that aims to satisfy some algebraic properties similar to P1-P6 of Lemma 6.1.

Since enforcing det(∇f) > 0 implicitly is the ultimate objective, linking this quantity

to det(∇f) is the key. Then after N1, we propose an improved variant N2 and a further

quality N3 based on the LLL work.
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Based on the above discussions, we first propose our new regularizer 1:

Definition 6.2. If the map f(x1, x2, x3) = (y1(x1, x2, x3), y2(x1, x2, x3), y3(x1, x2, x3))

is continuously differentiable, then we define

N1(f) =
‖∇f‖2F − 3(det(∇f))2/3

‖∇f‖2F + 3(det(∇f))2/3
(6.7)

as the new regularizer for a 3D map f .

Then, we can have the following lemma:

Lemma 6.3. Regularizer N1 from (6.7) possesses the following properties:

P1 N1(f) = 0⇔ the singular values of det(∇f) are equal;

P2 0 ≤ N1(f) ≤ 1;

P3 0 ≤ N1(f) < 1⇔ det(∇f) 6= 0;

P4 N1(f) = 1⇔ det(∇f) = 0.

Proof. For P1, if N1(f) = 0, according to (6.7), we have ‖∇f‖2F = 3(det(∇f))2/3.

Set σ1, σ2 and σ3 as the singular values of det(∇f). Since ‖∇f‖2F =
∑3

i=1 σ
2
i and

(det(∇f))2 = Π3
i=1σ

2
i , we have

∑3
i=1 σ

2
i = 3(Π3

i=1σ
2
i )

1/3. Then due to the inequality

of arithmetic and geometric means, we have σ1 = σ2 = σ3. If the singular values of

det(∇f) are equal, we have ‖∇f‖2F = 3(det(∇f))2/3 and N1 = 0.

For P2, according to the inequality of arithmetic and geometric means, the numerator is

always non-negative, and the denominator is always positive. So we have 0 ≤ N1(f) ≤ 1.

P3-P4 can be verified using the above formula (6.7).

However N1(f) is not entirely satisfactory, because P5 and P6 (of 2D) from Lemma 6.1

do not hold. Since the term 3(det(∇f))2/3 is always positive, for P5, when det∇f < 0,

we have 0 ≤ N1(f) < 1 and for P6, if the singular values of det(∇f) are equal, whether

det(∇f) is positive or negative, N1(f) is always 0. These two missing properties suggest

that we need to make further modifications. Below, we propose our new regularizer 2

to overcome this issue and to possess all the six properties.

Definition 6.4. If the map f(x1, x2, x3) = (y1(x1, x2, x3), y2(x1, x2, x3), y3(x1, x2, x3))

is continuous differentiable, then we define

N2(f) =
‖∇f‖F −

√
3(det(∇f))1/3

‖∇f‖F +
√

3(det(∇f))1/3
(6.8)

as another new regularizer for a 3D map f .

Then we have the following lemma for (6.8), which is similar to Lemma 6.1:
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Lemma 6.5. Regularizer N2 from (6.8) possesses the following properties:

P1 If N2(f) = 0, then we have the singular values of det(∇f) are equal;

P2 0 ≤ N2(f) ≤ ∞;

P3 0 ≤ N2(f) < 1⇔ det(∇f) > 0;

P4 N2(f) = 1⇔ det(∇f) = 0;

P5 1 < N2(f) ≤ ∞⇔ det(∇f) < 0;

P6 If the singular values of det(∇f) are equal, then when det(∇f) > 0, N2(f) = 0 and

when det(∇f) < 0, N2(f) is ∞;

Proof. Since N2(f) involves the term (det(∇f))1/3 which can be positive when det(∇f)

is positive or negative when det(∇f) is negative, we can obtain these 6 properties just

following the proofs of Lemma 6.1 and Lemma 6.3.

Until now, aiming to enforce the constraint det(∇f) > 0, we have proposed two new

regularizers N1(f) and N2(f) from generalizing 2D results.

Finally, making use of (6.4) from the LLL work, we shall consider the following regular-

izer for a map f also:

N3(f) =
1

3

(
‖∇f‖2F

det(∇f)2/3

)
. (6.9)

Similarly, we have the following lemma about the properties of N3(f).

Lemma 6.6. Regularizer N3 from (6.9) possesses the following properties:

P1 N3(f) = 1⇔ the singular values of det(∇f) are equal;

P2 1 ≤ N3(f) ≤ ∞;

P3 N3(f) =∞⇔ det(∇f) = 0.

Proof. Just follow the proofs of Lemma 6.3.

Now, we briefly discuss the geometric properties of our proposed regularizers. By the

definitions, the roles of N1 and N2 in 3D are similar to |µ| in 2D. Then according to

(6.3), we can define their corresponding dilatations: K1 = 1+N1
1−N1

and K2 = 1+N2
1−N2

. Here,

we can find that K1 and N3 are identical. Although N3 is derived from (6.4), K is

equal to N3 only when det(∇f) > 0, which means that N1 has a link with K only when

det(∇f) > 0. Furthermore, we consider the following three simple example functions:

f1 = (0.5x1, 0.5x2, 0.5x3), f2 = (0.9x1, 0.6x2, 0.4x3) and f3 = (0.9x1,−0.6x2, 0.4x3)

(Figure 6.1). In order to emphasize the link between 2D and 3D, we project the above

three functions into x1, x2−plane and define f̄1 = (0.5x1, 0.5x2), f̄2 = (0.9x1, 0.6x2) and
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f̄3 = (0.9x1,−0.6x2). Just according to the above mentioned definitions, we have the

following results:

• For f̄1, |µ| = 0 and K = 1. Then for f1, we have N1 = 0 and K1 = 1, N2 = 0 and

K2 = 1, and K = 1.

• For f̄2, |µ| = 0.04 and K = 1.0833. Then for f2, we have N1 = 0.1037 and

K1 = 1.2315, N2 = 0.0520 and K2 = 1.1097, and K = 1.2315.

• For f̄3, |µ| = 25 and K = −1.0833. Then for f2, we have N1 = 0.1037 and

K1 = 1.2315, N2 = 19.2280 and K2 = −1.1097, and K =∞.

Here, we can note that when det(∇f) > 0, N1 and N2 in 3D are consistent with |µ| in

2D but when det(∇f) < 0, only N2 in 3D is consistent with |µ| in 2D, which actually

has been asserted by Lemma 6.1, 6.3 and 6.5. And we will also see that N2 is a better

option than N1.
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(d) Unit ball deformed by f3

Figure 6.1: Illustration of the distortion and dilatation in 3D space. Here, we can note
that f1 and f2 are orientation-preserving but f3 is not orientation-preserving (from the

color).

In the next section, we will build our new models motivated by these three new regu-

larizers and present the details about its numerical algorithm.
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6.3 New Models for 3D Image Registration and Their Nu-

merical Algorithms

In this section, we first formulate our new models to deal with the 3D image registration

problem. Then we give the details about the numerical algorithm, such as discretization,

optimization method, stopping criteria and multilevel strategy.

6.3.1 New Models for 3D Image Registration

Here, we propose the following three new variational models for 3D image registration:

New Model 1 (NM1)

min
u

1

2

∫
Ω

(T (y)−R(x))2dx+
α

2

∫
Ω

3∑
l=1

|∇ul|2dx+ β

∫
Ω
ϕ(N1(y))dx, (6.10)

where y = y(x) = x+ u, and

New Model 2 (NM2)

min
u

1

2

∫
Ω

(T (y)−R(x))2dx+
α

2

∫
Ω

3∑
l=1

|∇ul|2dx+ β

∫
Ω
ϕ(N2(y))dx, (6.11)

where ϕ(v) = v2/((v − 1)2 + ε) is chosen and ε is a small number (such as 10−8) to

promote N1 < 1 and N2 < 1 i.e. det∇y > 0. Compared with φ(v) = v2/(v − 1)2 used

in Chapter 4, here, ϕ is infinitely continuously differentiable and bounded by 1/ε which

can help to build the existence of the solution.

New Model 3 (NM3)

min
u

1

2

∫
Ω

(T (y)−R(x))2dx+
α

2

∫
Ω

3∑
l=1

|∇ul|2dx+ β

∫
Ω
ϕ(N3(y))dx, (6.12)

where ϕ(v) = v2 because we promote N3 < ∞. Here, NM3 can be considered as a

reasonable modified LLL model under our framework, which is mainly used to make a

comparison in the later test since the N3 comes from LLL model.

We can notice that these three new models only differ in the third term of how to control

the Jacobian determinant indirectly by restricting the norm of the Beltrami coefficient.

The key message is that the resulting transformation y will be diffeomorphic under the

suitable boundary condition, such as Dirichlet boundary condition.
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6.3.2 Mathematical Analysis of The Proposed Models

Most registration models are nonconvex with respect to u and consequently, if solutions

exist, there are local minimizers or solutions are generally not unique. Below we prove

the existence of a solution for the problem (6.10) and the result can be easily extended to

(6.11). Before stating the main result, we first consider the concept of the Carathéodory

function.

Definition 6.7. Let Ω ⊂ R3 be an open set and let f : Ω×Rn×R3×n → [0,+∞). Then

f is a Carathéodory function if:

1. f(x, ·, ·) is continuous for almost every x ∈ Ω.

2. f(x,u, ψ) is measurable in x for every (u, ψ) ∈ Rn × R3×n.

Lemma 6.8 ([137]). Let Ω ⊂ R3 be an open set and f : Ω × Rn × R3×n → [0,+∞)

satisfies the following assumptions:

(i) f is a Carathéodory function.

(ii) f(x,u, ψ) is quasi-convex with respect to ψ.

(iii) 0 ≤ f(x,u, ψ) ≤ a(x) + C(|u|2 + |ψ|2) where a(x) ∈ L1(Ω), C > 0.

Then J (u) is weak lower semi-continuous (denoted by wlsc) in W 1,2(Ω).

To analyze the proposed model (6.10), we first consider the solution space where W =

{u ∈ W 1,2(Ω) : |
∫

Ω u(x) dx| ≤ |Ω| (C1 + diam(Ω))}. Then, it is convenient to rewrite

the energy J (·) by merging all terms under one integral in the following form:

J (u) =

∫
Ω
f(x,u,∇u)dx, (6.13)

where f(x,u, ψ) =
α

2
|ψ|2 + (T (x+ u)−R)2 + βϕ(N1(x+ u)).

To apply Lemma 6.8, we assume that the T and R are continuous and bounded by a

constant c > 0. Then, we have the following result:

Lemma 6.9. The energy functional J (·) is wlsc in W.

Proof. We verify that the functional f(·) fulfils the assumptions in Lemma 6.8:

i) Since the T and R are continuous and u ∈ W, the function f(·) is a Carathéodory

function.

ii) It is easy to check that f(x,u, ψ) are convex with respect to ψ, clearly implying

that it is quasi-convex.
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iii) Since the T and R are bounded by c, we have:

f(x,u, ψ) =
α

2
|ψ|2 + (T (x+ u)−R)2 + βϕ(N1(x+ u))

≤ α

2
|ψ|2 + 4c2 +

β

ε

≤ α

2
(|u|2 + |ψ|2) + 4c2 +

β

ε
.

(6.14)

Then, the function f(·) fulfils the condition (iii) of Lemma 6.8 with a(x) ≡ 4c2 + β
ε

which implies that the energy J (·), is wlsc in W.

We are now ready to prove the existence of a solution for the minimization model (6.10).

Based on Lemma 6.8 and Lemma 6.9, we have the following result:

Theorem 6.10. The minimization problem (6.10) admits at least one solution in the

space W.

Proof. Here, we just follow the steps in Section 2.2.2. Since J (u) has a lower bound 0,

there exist a minimizing sequence (un)n∈N ⊂ W of J (·) , i.e.,

lim
n→∞

J (un) = inf
u∈W

J (u).

Using the generalized Poincaré inequality, there exist two constants C,K ∈ R such that

J (u) ≥ C‖u‖2W 1,2 +K. (6.15)

The inequality (6.15) guarantees that the sequence (un)n∈N is uniformly bounded in

W. Thus, there exists a subsequence, still denoted (un)n∈N, such that limn→∞ un = u

weakly in W. Using the weak lower semi-continuity of J (·), we obtain that the limit u

is a minimizer of J (·).

6.3.3 The Numerical Algorithm

Here, we consider using first-discretize-then-optimize method to solve our proposed mod-

els (6.10), (6.11) and (6.12). Firstly, we choose a suitable discrete scheme to discretize

the variational models (6.10), (6.11) and (6.12) to derive finite-dimensional optimization

problems. Then we choose optimization methods to solve the resulting unconstrained

optimization problems.

Discretization

Here, we extend the 2D case in Section 4.4.1 to the 3D case. We discretize our proposed

models (6.10), (6.11) and (6.12) on the spatial domain Ω = [0, ω1]× [0, ω2]× [0, ω3]. In

the implementation, we employ the nodal grid (Figure 6.2) and define a spatial partition

Ωn
h = {xi,j,k ∈ Ω|xi,j,k = (xi1, x

j
2, x

k
3) = (ih1, jh2, kh3), 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, 0 ≤ k ≤
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n3}, where hl = ωl
nl
, 1 ≤ l ≤ 3 and the discrete domain consists of n1n2n3 cells of size

h1 × h2 × h3. We discretize the displacement field u on the nodal grid, namely ui,j,k =

(ui,j,k1 , ui,j,k2 , ui,j,k3 ) = (u1(xi1, x
j
2, x

k
3), u2(xi1, x

j
2, x

k
3), u3(xi1, x

j
2, x

k
3)). The transformation

field y is also discretized on the nodal grid as the same line. In order to simplify the

presentation, we denote h = h1h2h3, N = n1n2n3 and N1 = (n1 + 1)(n2 + 1)(n3 + 1)

and according to the lexicographical ordering, we reshape

X = (x0
1, ..., x

n1
1 , x0

2, ..., x
n2
2 , x0

3, ..., x
n3
3 )T ∈ R3N1×1,

U = (u0,0,0
1 , ..., un1,n2,n3

1 , u0,0,0
2 , ..., un1,n2,n3

2 , u0,0,0
3 , ..., un1,n2,n3

3 )T ∈ R3N1×1,

and

Y = (y0,0,0
1 , ..., yn1,n2,n3

1 , y0,0,0
2 , ..., yn1,n2,n3

2 , y0,0,0
3 , ..., yn1,n2,n3

3 )T ∈ R3N1×1.

Figure 6.2: Partition of the domain Ω. Nodal grid � and cell-centered grid ×.

Discretization of SSD in (6.10), (6.11) and (6.12)

Just following Section 4.4.1, we directly have the following approximation for SSD:

D(T (x+ u), R) ≈ h

2
(~T (PU + PX)− ~R)T (~T (PU + PX)− ~R). (6.16)

where P ∈ R3N×3N1 is an averaging matrix from the nodal grid to the cell-centered grid.

Discretization of The Diffusion Regularizer in (6.10), (6.11) and (6.12)

For the diffusion regularizer in (6.10), (6.11) and (6.12),

RDiff(u) :=
α

2

∫
Ω

3∑
l=1

|∇ul|2dx, (6.17)
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based on the forward difference and mid-point rule, we have the following approximation:

RDiff(u) ≈ αh

2

3∑
l=1

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

(
ui+1,j,k
l − ui,j,kl

h1

)2

+

(
ui,j+1,k
l − ui,j,kl

h2

)2

+

(
ui,j,k+1
l − ui,j,kl

h3

)2

.

(6.18)

Then (6.18) can be rewritten into the following formulation:

RDiff(u) ≈ αh

2
UTATAU, (6.19)

where A is shown in Appendix 6.6.1.

Discretization of New Regularizers in (6.10), (6.11) and (6.12)

V
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V
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V
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V
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V
2

V
3

V
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V
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Figure 6.3: Partition of a voxel. V1, ..., V8 are vertices.

Here, our new regularizer N1(y) only involves first order derivatives. Hence, we divide

each voxel into 6 tetrahedrons (V3V7V4V5, V3V1V4V5, V4V1V2V5, V7V4V5V8, V4V5V8V6, V4V2V5V6)

and in each tetrahedron, we use three linear interpolation functions to approximate y1,

y2 and y3 (Figure 6.3).

According to this partition, we can get

Rl(y) = β

∫
Ω
ϕ(Nl(y))dx = β

n1∑
i=1

n2∑
j=1

n3∑
k=1

6∑
m=1

∫
Ωi,j,k,m

ϕ(Nl(y))dx,

where l ∈ {1, 2, 3} and Ωi,j,k,m represents a tetrahedron.

SetLi,j,k,m(x) = (Li,j,k,m1 (x), Li,j,k,m2 (x), Li,j,k,m3 (x)) = (ai,j,k,m1 x1+ai,j,k,m2 x2+ai,j,k,m3 x3+

bi,j,k,m1 , ai,j,k,m4 x1 + ai,j,k,m5 x2 + ai,j,k,m6 x3 + bi,j,k,m2 , ai,j,k,m7 x1 + ai,j,k,m8 x2 + ai,j,k,m9 x3 +

bi,j,k,m3 ), which is the linear interpolation for y in the Ωi,j,k,m. Note that ∂x1L
i,j,k,m
1 =

ai,j,k,m1 , ∂x2L
i,j,k,m
1 = ai,j,k,m2 , ∂x3L

i,j,k,m
1 = ai,j,k,m3 , ∂x1L

i,j,k,m
2 = ai,j,k,m4 , ∂x2L

i,j,k,m
2 =

ai,j,k,m5 , ∂x3L
i,j,k,m
2 = ai,j,k,m6 , ∂x1L

i,j,k,m
3 = ai,j,k,m7 , ∂x2L

i,j,k,m
3 = ai,j,k,m8 , ∂x3L

i,j,k,m
3 =

ai,j,k,m9 .
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Hence, in each tetrahedron Ωi,j,k,m, we have |∇y|2F ≈
∑9

l=1(ai,j,k,ml )2 and det(∇y) ≈
ai,j,k,m1 ai,j,k,m5 ai,j,k,m9 +ai,j,k,m2 ai,j,k,m6 ai,j,k,m7 +ai,j,k,m4 ai,j,k,m8 ai,j,k,m3 −ai,j,k,m2 ai,j,k,m4 ai,j,k,m9 −
ai,j,k,m1 ai,j,k,m6 ai,j,k,m8 − ai,j,k,m3 ai,j,k,m5 ai,j,k,m7 .

Here, we construct Bl, 1 ≤ l ≤ 9:

B1 = [M1, 0, 0], B4 = [0,M1, 0], B7 = [0, 0,M1],

B2 = [M2, 0, 0], B5 = [0,M2, 0], B8 = [0, 0,M2],

B3 = [M3, 0, 0], B6 = [0,M3, 0], B9 = [0, 0,M3],

(6.20)

where M1, M2 and M3 are the discrete operators of ∂x1 , ∂x2 and ∂x3 respectively and

how to construct them is shown in Appendix 6.6.2.

Then we denote by BlY (a1,1,1,1
l , ..., an1,n2,n3,6

l )T ∈ R6N×1 and set

~q1(Y ) =
9∑
l=1

BlY �BlY,

~q2(Y ) = B1Y �B5Y �B9Y +B2Y �B6Y �B7Y +B4Y �B8Y �B3Y

−B2Y �B4Y �B9Y −B1Y �B6Y �B8Y −B3Y �B5Y �B7Y,

~r1
1(Y ) = ~q1(Y )− 3(~q2(Y ))2/3,

~r2
1(Y ) = 1./(~q1(Y ) + 3(~q2(Y ))2/3),

~r1(Y ) = ~r1
1(Y )� ~r2

1(Y ),

~r1
2(Y ) = (~q1(Y ))1/2 −

√
3(~q2(Y ))1/3,

~r2
2(Y ) = 1./((~q1(Y ))1/2 +

√
3(~q2(Y ))1/3),

~r2(Y ) = ~r1
2(Y )� ~r2

2(Y ),

~r3(Y ) = ~q1(Y )./(3(~q2(Y ))2/3),

(6.21)

where � denotes the Hadamard product of two matrices and ./ denotes the component-

wise division. Then we have the following approximation:

Rl(y) ≈ βh

6
ϕ(~rl(Y ))eT , (6.22)

where ϕ(~rl(Y )) = (ϕ(~rl(Y )1), ..., ϕ(~rl(Y )6N )), l ∈ {1, 2, 3}.

Finally, combining formula (6.16), (6.19) and (6.22), we get the discretized formulation

for (6.10), (6.11) and (6.12):

min
U
Jl(U) =

h

2
(~T (PY )− ~R)T (~T (PY )− ~R) +

αh

2
UTATAU +

βh

6
ϕ(~rl(Y ))eT , (6.23)

where PY = PU + PX, l ∈ {1, 2, 3}.

Remark 6.11. In the implementation, we impose the Dirichlet boundary condition,
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namely, u(x) = 0 when x ∈ ∂Ω, which means that we assume that the transforma-

tion is deformed in the interior region and fixed on the boundary. This is a suitable

assumption in image registration because the main information is usually located in

the interior region, especially for the medical imaging. If there is information near the

boundary, we can assume that this boundary can be moving and choose the Neumann

boundary condition.

Optimization Method

Here, in the numerical implementation, we choose a Gauss-Newton algorithm with a line

search method to solve the resulting unconstrained optimization problems (6.23). The

most important part is to approximate the Hessian and solve the Gauss-Newton system.

Next, presenting how to construct the approximated Hessian Ĥk, we only investigate

the relevant details about solving Model 1 since solving Model 2 and Model 3 follow the

same lines.

Directly following Section 4.4.2, the gradients and approximated Hessians of the dis-

cretized SSD and the discretized diffusion regularizer are respectively:{
d1 = hP T ~T T

Ũ
(~T (Ũ)− ~R),

Ĥ1 = hP T ~T T
Ũ
~TŨP,

(6.24)

and {
d2 = αhATAU,

H2 = αhATA.
(6.25)

The gradient and the approximated Hessian of the discretized new regularizer are as

follows: {
d3 = βh

6 d~rT1 dϕ(~r1),

Ĥ3 = βh
6 d~rT1 d2ϕ(~r1)d~r1,

(6.26)
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where dϕ(~r1) = (ϕ′((~r1)1), ..., ϕ′((~r1)6N ))T is the vector of derivatives of ϕ at all tetra-

hedrons,

d~r1 = diag(~r1
1)d~r2

1 + diag(~r2
1)d~r1

1,

d~r1
1 = d~q1 − 2diag(1./~q2)d~q2,

d~r2
1 = −diag(~r2

1 � ~r2
1)[d~q1 + 2diag(1./~q2)d~q2],

d~q1 = 2
∑9

l=1 diag(BlY )Bl,

d~q2 = diag(B5Y �B9Y −B6Y �B8Y )B1

+ diag(B6Y �B7Y −B4Y �B9Y )B2

+ diag(B4Y �B8Y −B5Y �B7Y )B3

+ diag(B8Y �B3Y −B2Y �B9Y )B4

+ diag(B1Y �B9Y −B3Y �B7Y )B5

+ diag(B2Y �B7Y −B1Y �B8Y )B6

+ diag(B2Y �B6Y −B3Y �B5Y )B7

+ diag(B4Y �B3Y −B1Y �B6Y )B8

+ diag(B1Y �B5Y −B2Y �B4Y )B9,

(6.27)

� denotes the Hadamard product, d~r1,d~r
1
1, d~r

2
1,d~q

1, d~q2 are the Jacobian of ~r1, ~r
1
1, ~r

2
1, ~q

1, ~q2

with respect to U respectively, d2ϕ(~r1) is the Hessian of ϕ with respect to ~r1, which is

a diagonal matrix whose ith diagonal element is ϕ′′((~r1)i), 1 ≤ i ≤ 6N . Here, diag(v)

is a diagonal matrix with v on its main diagonal.

So the Gauss-Newton system is

ĤδU = −dJ , (6.28)

where Ĥ = Ĥ1 + H2 + Ĥ3 and dJ = d1 + d2 + d3. In each iteration, we choose MIN-

RES to solve this resulting Gauss-Newton system [3, 101]. In the implementation, the

maximum number of inner iterations of MINRES is set to 50 and the tolerance for the

relative residual is set to 0.1. Except for the diagonal preconditioner, we also consider a

preconditioner, which is a band matrix L shown in Figure 6.4. By using the Cholesky

decomposition and two back substitutions, the computational cost of solving Lx = b is

only O(n). Here, we provide a matrix-free version which can speed up the algorithm

since we do not need to formulate and store the matrix. In the Appendix 6.6.3 and

6.6.4, we illustrate the details about how to compute the matrix-vector product Ĥv, the

diagonal of Ĥ and the preconditioner L.

For the step length, we use the Armijo strategy with backtracking to find a suitable step

length θ, which has been summarized in Algorithm 9. In addition, when the change

in the objective function, the norm of the update and the norm of the gradient are all

sufficiently small, the iterations are terminated. Hence, a Gauss-Newton scheme with

Armijo line search can be developed (Algorithm 19). For the resulting Gauss-Newton

scheme by using Armijo line search, we have the following global convergence result.
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Figure 6.4: The structure of the preconditioner L. L is composed of the diagonals
of blocks of the approximated Hessian Ĥ. The dimension of the problem is 14739 (3×

17× 17× 17).

Theorem 6.12. Let T and R be twice continuously differentiable. If each Uk generated

by Algorithm 19 is in the U , we obtain

lim
k→∞

dJ(Uk) = 0 (6.29)

and hence any limit point of the sequence of iterates generated by Algorithm 19 is a

stationary point. Here,

U = {U | (~r1(U))l ≤ 1− ε, 1 ≤ l ≤ 6N} (6.30)

and ε is a small constant.

Proof. According to Theorem 4.7, we just need to prove that the following conditions

are satisfied:

1). dJ is Lipschitz continuous;

2). For all k, Ĥk is symmetric and positive definite;

3). There exist constants κ̄ and ζ such that the condition number κ(Ĥk) ≤ κ̄ and the

norm ‖Ĥk‖ ≤ ζ for all k;

4). J1(U) has a lower bound.

Here, we use the Dirichlet boundary conditions and assume that ‖U‖ is bounded. Then

~r1(U) is a continuous mapping from a compact set to R6N×1. Hence, for some small

ε > 0, U is compact. Then just follow the proof of Theorem 4.10.

Remark 6.13. Theorem 6.12 is also valid for Model 2 and we only need to change U into

U = {U | (~r2(U))l ≤ 1− ε, 1 ≤ l ≤ 6N}. (6.31)
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Algorithm 19: Gauss-Newton scheme by using Armijo line search for Image

Registration: (U, ID)← GNAIRA(α, β, U0, T,R)

1 Step 1: Set k = 0 at the solution point Uk = U0;

2 Step 2: For (6.23), compute the energy functional J(Uk), its gradient dkJ and

the approximated Hessian Ĥk;

3 while “the stopping criteria is not satisfied” do

4 Solve the Gauss-Newton equation: ĤkδUk = −dkJ ;

5 (Uk+1, ID)← ALS(Uk, δUk) by Algorithm 9;

6 if ID = 1 then

7 Exit this algorithm;

8 else

9 k = k + 1;

10 Compute J(Uk), dkJ and Ĥk;

11 end

12 end

For providing reliable initial guesses, the multi-level strategy is also used in the numerical

implementation.

6.4 Numerical Experiments

In this section, we demonstrate the performance of our new models (6.10) and (6.11) by

two 3D examples. Specifically we shall compare these models:

• NM1 from (6.10);

• NM2 from (6.11);

• NM3 LLL from (6.12);

• Hyper1 from (3.11);

• Hyper2 from (3.12);

• LDDMM from (4.7).

All the numerical experiments are run in Matlab 2018a on a PC with 3.40 GHz Intel(R)

Core(TM) i7-4770 microprocessor and 32 GB of memory. As a comparison, we compare

our models (6.10) and (6.11) with the state-of-the-art methods, the hyperelastic models

(Hyper1 and Hyper2)[11, 33], LDDMM [88] and modified LLL model (NM3).

For the choice of the parameters of Hyper1 and Hyper2, we just use the default param-

eters αl = 100 (length regularizer), αs = 10 (surface regularizer) and αv = 100 (volume

regularizer) [88]. In addition, for Hyper1, we also set α1 = 0.5 and α2 = 1. For NM1,

NM2, and NM3, we first fix α = 100 to be consistent with Hyper1 and Hyper2 and the
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choices of β will be discussed later. For LDDMM, in these two examples, we set the

parameter α = 400 to control the smoothness of the velocity; this value was found to be

an empirically optimal choice.

6.4.1 Example 1

In this example, we construct a synthetic example (a big ball and a small collapsed ball)

to highlight the advantage of our models (6.10) and (6.11) over the other models. Figure

6.5 shows the template and the reference. Here, the dimension of the given images is

64× 64× 64 and the domain of the images is [0, 64]3. In the implementation, we employ

a four-step multilevel strategy for all methods and discretize the images by using regular

meshes with 8 × 8 × 8, 16 × 16 × 16, 32 × 32 × 32 and 64 × 64 × 64 respectively. On

the finest level, the number of the unknowns in this example is 823875. For the choices

of β of NM1, NM2 and NM3, we set β = 1.5× 103, 2.7× 103 and 100 respectively. For

LDDMM, we set Nt = 10 as the number of time step for computing the characteristic

and nt = 1 as the number of cells in space-time grid [88].

Figure 6.6 shows the deformed templates obtained by these six models and Table 6.1

gives the corresponding measurements. Using the symbol > to denote ‘better than’, the

comparisons may be summarized as follows

• Visual differences. From Figure 6.6, we can see that NM1, NM2, NM3, and

LDDMM have all generated visually acceptable deformed templates (similar to

the reference), but Hyper1 and Hyper2 have not. That is,

NM1, NM2, NM3 and LDDMM > Hyper1 and Hyper2.

• Error (accuracy) differences. Column 2 of Table 6.1 shows the relative errors

of six models to inform accuracies of this example. Hyper1 and Hyper2 are less

satisfactory than all others. Precisely, we see that

NM2 > NM1 > NM3 > LDDMM > Hyper1 > Hyper2.

• Diffeomorphisms differences. Columns 3 − 4 of Table 6.1 show the minimum

and maximum of the Jacobian determinant of the transformation obtained by

each model. Although we only require min det(∇y) > 0 to ensure a diffeomorphic

transformation and in this regard all six models are satisfactory, we can notice

that the range of the Jacobian determinant of the transformations obtained by

NM1, NM2, NM3, and LDDMM are larger than Hyper1 and Hyper2 since the

latter explicitly aims for 1 which is not a reasonable condition in this example.
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• Solution speed differences. Columns 5 − 6 of Table 6.1 show the CPU times

and iterations of these six models. We see that

NM1, NM2, NM3 and Hyper1 > Hyper2 and LDDMM.

Here, for LDDMM, since the deformation is large, the main part of its computing

time is spent on computing the characteristic of the transport equation accurately.

Hence, for the large deformation problems where volume preservation is not required,

our new models NM1 and NM2 can show the advantages over other models, and NM2

may be recommended.

(a) Template (b) Reference

(c) The slices of Template (d) The slices of Reference

Figure 6.5: Example 1: the left column and the right column show the template and
the reference respectively.

Table 6.1: Example 1 — Comparison of the new models with Hyper1, Hyper2 and
LDDMM.

Re SSD min det∇(y) max det∇(y) time (s) Iterations on each level

NM1 0.10% 0.1557 33.6275 13.8 11, 3, 3, 3
NM2 0.08% 0.1593 47.9578 13.2 12, 4, 3, 3
NM3 0.13% 0.1521 36.9822 17.3 11, 4, 3, 4

Hyper1 15.4% 0.1630 5.3095 61.0 5, 3, 4, 3
Hyper2 19.7% 0.1968 5.0623 115.0 9, 6, 3, 4

LDDMM 0.55% 1.18e−4 38.1383 1286.8 11, 4, 2, 3
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(a) T (yNM1)(0.10%) (b) T (yNM2)(0.08%)

(c) T (yNM3)(0.13%) (d) T (yHyper1)(15.4%)

(e) T (yHyper2)(19.7%) (f) T (yLDDMM)(0.55%)

Figure 6.6: The results of Example 1: the top row shows the deformed templates
obtained by NM1 (left) and NM2 (right). The second row shows the deformed templates
obtained by NM3 (left) and Hyper1 (right). The bottom row shows the deformed
template obtained by Hyper2 (left) and LDDMM (right). The percentage represents

the relative error.

6.4.2 Test of The Convergence and Parameters’ Sensitivity

Here, we use Example 1 to investigate the preconditioner, convergence of the algorithm

and the parameters’ sensitivity of our new models.

We first investigate the preconditioner mentioned in section 6.3.3 for NM1, NM2 and
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NM3. Since the Gauss-Newton matrix in each iteration is symmetric and positive def-

inite, we also compare the performance of the conjugate gradient method (CG). From

Figure 6.7, we can find that for these three models, MINRES is better than CG. In

addition, when we apply the diagonal preconditioner and L preconditioner, they can

accelerate the convergence significantly. Here, MINRES with L preconditioner can give

the best convergence performance among these solvers. Further, from Table 6.2, we can

still find that MINRES with L preconditioner uses the least number of iterations and

computational time to reach the termination in NM2 and NM3. In NM1, the number

of iterations and computational time derived by MINRES with L preconditioner and

CG with preconditioner are very similar. Hence, MINRES with L preconditioner is an

effective solver for solving the Gauss-Newton system in the proposed new models.
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Figure 6.7: The performance of different solvers with different preconditioners for
NM1, NM2 and NM3 in Example 1. Here, MINRES, MINRESD and MINRESL repre-
sent that the solver is MINRES without preconditioner, with diagonal preconditioner
and with L preconditioner respectively. And CG, CGD and CGL represent that the
solver is conjugate gradient method without preconditioner, with diagonal precondi-

tioner and with L preconditioner respectively.

Table 6.2: The number of iterations needed to reach the termination for different
solver with different preconditioner in Example 1.

NM1 NM2 NM3
No. of Iter Time(s) No. of Iter Time(s) No. of Iter Time(s)

MINRES 34 8.2 22 5.6 10 4.5
MINRESD 6 1.8 4 1.4 5 2.6
MINRESL 5 1.7 3 1.2 4 2.3

CG 46 11.6 49 11.6 18 7.5
CGD 13 3.4 6 1.8 9 4.0
CGL 5 1.6 4 1.4 5 2.7

We next illustrate the convergence of the algorithm, for NM1, NM2, and NM3. Forcing

the algorithm to run until the relative norms of the gradients reach 10−6 (note the al-

gorithm can satisfy the stopping criteria in only several iterations with a large tolerance

e.g. 10−2), Figure 6.8 shows the relative norm of the gradient from the first order con-

dition, as shown in Figure 6.8 (a), and the relative energy functional values (Figure 6.8

(b)). We see that the relative norm of the gradient of NM1, NM2, and NM3 are reduced

to 10−6. Clearly, the algorithm for NM1, NM2, and NM3 is convergent, as predicted
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by Theorem 6.12. The convergence is not monotone, which is the usual behaviour of an

optimization approach for a nonconvex problem [97].
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Figure 6.8: The relative norm of the gradient and relative function values of NM1,
NM2 and NM3 in Example1.

We finally test the sensitivity of parameters α and β in NM1, NM2 and NM3. We

test α and β in these specific domains: [50, 150] × [100, 104], [50, 150] × [100, 104] and

[50, 150] × [50, 2500] respectively for NM1, NM2 and NM3 with a view to identify (if

possible) a range of parameters that lead to stable results. According to Figure 6.9,

we can see that for these three models, they all generate diffeomorphic transformations

under the specific parameter region. Hence, the three new models are robust with respect

to the diffeomorphism. Furthermore, Figure 6.10 (b) shows that NM2 can give best

Re SSD which is not sensitive with respect to the parameters. At the same time, Figure

6.10 (a,c) show that the Re SSD generated by NM1 and NM3 will change dramatically

when the parameters change. Hence, NM2 is the best model among these three new

models in terms of parameters’ sensitivity.
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Figure 6.9: Parameters’ sensitivity test of NM1, NM2 and NM3 (with regard to
diffeomorphism, using Example 1). Here, for the three models, they all generate dif-
feomorphic transformations in the specific parameter domain. Hence, they are robust

with respect to the diffeomorphism.
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Figure 6.10: Test of sensitivity of relative residuals of NM1, NM2 and NM3 in their
respective feasible regions from Figure 6.9. Here, we can observe that the relative
residual generated by NM2 is not sensitive with respect to the parameters. However,
for NM1 and NM3, when the parameters change, the relative residual generated by
them will change dramatically. Hence, NM2 is the best model in terms of parameters’

sensitivity.

6.4.3 Example 2

We illustrate the performance of our recommended model NM2 in registering a pair of

3D real-life images. For completeness, we also compare it with the other five models

(NM1, NM3, Hyper1-2, LDDMM). We choose the human brain images from the data

accompanying the software FAIR [92]. The template and the corresponding reference

are shown in Figure 6.11. The size of the given images is 128× 64× 128 and the domain

of the images is [0, 20] × [0, 10] × [0, 20]. In the implementation, for all six models, we

employ a four-step multilevel strategy which is to discretize the images in the following

different resolutions: 16 × 8 × 16, 32 × 16 × 32, 64 × 32 × 64 and 128 × 64 × 128. The

number of unknowns on the finest level in this example is 3244995, making the task a

large scale computing problem. Here, for the parameters for NM1, NM2 and NM3, we

choose respectively β = 1.5× 103, 2.5× 103 and 100 respectively. For LDDMM, we set

Nt = 2 as the number of time step for computing the characteristic and nt = 1 as the

number of cells in space-time grid [88].

Figure 6.12 shows the deformed templates obtained by these models and Table 6.3 gives

the corresponding quantitative measurements.

Similar to Example 1 results, we observe that although the deformed templates obtained

by these six methods are visually good and the resulting transformations are all diffeo-

morphic (since the minimums of the Jacobian determinant of the transformations are

positive), NM2 gives the smallest relative residual and NM1, NM2, NM3, and Hyper1

need much fewer iterations than Hyper2 and LDDMM with the total running times

being about half or less of Hyper2 and LDDMM. In addition, the relative residual of

Hyper1 is much larger than NM2 and the speed is also much slower than the newly

proposed models.
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Hence, this example demonstrates that our new model NM2 can be more advantageous

than (and competitive to) the state-of-the-art models, Hyper1, Hyper2, LDDMM and

NM3 (LLL) in terms of the computational time and the accuracy.

(a) Template (b) Reference

(c) The slices of Template (d) The slices of Reference

Figure 6.11: Example 2: the left column and the right column show the template
and the reference respectively.

Table 6.3: Example 2 — Comparison of the new models with Hyper1, Hyper2 and
LDDMM.

Resolution Re SSD min det∇(y) max det∇(y) time (s) Itertions on each level

NM1 128× 64× 128 11.09% 0.0177 30.8891 268.2 6, 10, 14, 16
NM2 128× 64× 128 8.39% 0.0033 77.1879 317.1 9, 11, 13, 13
NM3 128× 64× 128 10.61% 0.0200 85.0400 254.9 5, 8, 10, 12

Hyper1 128× 64× 128 24.7% 0.1223 2.6815 471.2 3, 4, 5, 6
Hyper2 128× 64× 128 17.1% 0.0960 2.7777 1447.6 11, 8, 14, 23

LDDMM 128× 64× 128 24.9% 0.0570 10.5899 1254.1 27, 17, 11, 9

From tests done above and other experiments we conducted, we highly recommend the

users to choose NM2 in terms of faster speed and higher accuracy.

6.5 Conclusion

Computing a non-folding transformation in image registration is very important in many

applications, such as medical imaging. The visual comparison is not a reliable way to
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(a) T (yNM1)(11.09%) (b) T (yNM2)(8.39%)

(c) T (yNM3)(10.61%) (d) T (yHyper1)(24.7%)

(e) T (yHyper2)(17.1%) (f) T (yLDDMM)(24.9%)

Figure 6.12: The results of Example 2: the top row shows the deformed templates
obtained by NM1 (left) and NM2 (right). The second row shows the deformed templates
obtained by NM3 (left) and Hyper1 (right). The bottom row shows the deformed
template obtained by Hyper2 (left) and LDDMM (right). The percentage represents

the relative error.

assess effectiveness. To achieve this aim, many models control the Jacobian determinant

of the transformation explicitly which includes the state-of-the-art registration models.

However, for some registration problems requiring larger deformation, controlling the

Jacobian determinant of the transformation and forcing it close to 1 is not always rea-

sonable; this can be seen from large fitting errors, though the underlying transformations
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are diffeomorphic. This chapter explores the alternative method of generalizing the 2D

Beltrami coefficient in quasi-conformal theory to 3D. Among the three new models,

we have demonstrated that NM2 is the best choice (partly because the underlying 3D

regularizer inherits all essential properties of a 2D Beltrami regularizer). To solve the

new models efficiently, we design a converging Gauss-Newton scheme. The numerical

experiments illustrate that our new models can have advantages over the hyperelastic

models, LDDMM and NM3 (LLL). According to the performance of the running time

and accuracy, we highly recommend NM2 as the first choice.

6.6 Appendix

6.6.1 Computation of A in (6.19)

To simplify the formulation (6.18), we build a matrix A:

A =



D1

D2

D3

D1

D2

D3

D1

D2

D3


, (6.32)

where D1 = I(n3+1)⊗I(n2+1)⊗∂
1,h1
n1 , D2 = I(n3+1)⊗∂

1,h2
n2 ⊗I(n1+1), D3 = ∂1,h3

n3 ⊗I(n2+1)⊗
I(n1+1) and

∂1,hl
nl

=
1

hl

−1 1

· ·
−1 1

 ∈ Rnl,nl+1, 1 ≤ l ≤ 3. (6.33)

Here, ⊗ indicates Kronecker product.

6.6.2 Computation of M1, M2 and M3 in (6.20)

We first investigate the linear approximation L(x1, x2, x3) = a1x1 + a2x2 + a3x3 + b in

the tetrahedron V3V4V5V7 (Figure 6.3). Denote these 4 vertices of this tetrahedron by

V3 = x1,1,1, V4 = x2,2,2, V5 = x3,3,3 and V7 = x4,4,4. Set L(x1,1,1) = y1,1,1, L(x2,2,2) =

y2,2,2, L(x3,3,3) = y3,3,3 and L(x4,4,4) = y4,4,4. Substituting V3, V4, V5 and V7 into L, we

get 
x1

1 x1
2 x1

3 1

x2
1 x2

2 x2
3 1

x3
1 x3

2 x3
3 1

x4
1 x4

2 x4
3 1



a1

a2

a3

b

 =


y1,1,1

y2,2,2

y3,3,3

y4,4,4

 . (6.34)
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Then eliminating b, we obtainx
1
1 − x4

1 x1
2 − x4

2 x1
3 − x4

1

x2
1 − x4

2 x2
2 − x4

2 x2
3 − x4

2

x3
1 − x4

3 x3
2 − x4

2 x3
3 − x4

3


a1

a2

a3

 =

y
1,1,1 − y4,4,4

y2,2,2 − y4,4,4

y3,3,3 − y4,4,4

 . (6.35)

Set

C =

x
1
1 − x4

1 x1
2 − x4

2 x1
3 − x4

1

x2
1 − x4

2 x2
2 − x4

2 x2
3 − x4

2

x3
1 − x4

3 x3
2 − x4

2 x3
3 − x4

3

 . (6.36)

Then we have a1

a2

a3

 =
1

det

C11 C21 C31

C12 C22 C32

C13 C23 C33


y

1,1,1 − y4,4,4

y2,2,2 − y4,4,4

y3,3,3 − y4,4,4

 , (6.37)

where det is the determinant of C and Cij is the (i, j) cofactor of C. Since the domain

Ω has been divided into N voxels, in order to find all a1 in the tetrahedron with the

same position of each voxel, we can make it as the following way:
a1

1
...

aN1

 =
1

det
(C11(E3Y − E7Y ) + C21(E4Y − E7Y ) + C31(E5Y − E7Y )), (6.38)

where El, l ∈ {3, 4, 5, 7} is a matrix which extracts the corresponding positions of the

vertices. Set G1 = 1
det(C11(E3 − E7) + C21(E4 − E7) + C31(E5 − E7)). For other 5

tetrahedrons, we can also build Gl, l ∈ {2, ..., 6}. Then we get

M1 =


G1

...

G6

 . (6.39)

Similarly, we can obtain M2 and M3.

6.6.3 Computation of The Matrix-Vector Product Ĥv

Recall that Ĥ = Ĥ1 +H2 + Ĥ3 and we have Ĥv = Ĥ1v +H2v + Ĥ3v.

Firstly, for Ĥ1v = hP T ~T T
Ũ
~TŨPv, we need to compute v1 = Pv, v2 = ~TŨv1, v3 = ~T T

Ũ
v2

and Ĥ1v = P T v3. Since P is an averaging matrix from the nodal grid to the cell-centered

grid, then as an example, the first component of Pv is

(Pv)1 =
1

8
((v)1 + (v)2 + (v)1+n1 + (v)2+n1 + (v)1+(n1+1)(n2+1)

+ (v)2+(n1+1)(n2+1) + (v)1+n1+(n1+1)(n2+1) + (v)2+n1+(n1+1)(n2+1)).
(6.40)
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~TŨ has the following structure:

~TŨ = [diag(w1), diag(w2), diag(w3)]. (6.41)

Then we have ~TŨv1 = Σ3
l=1wl � v1l and ~T T

Ũ
v2 = ((w1 � v2)T , (w2 � v2)T , (w3 � v2)T )T ,

where v1 = (vT11, v
T
12, v

T
13)T . Similarly, it is easy to implement P T v3.

Secondly, in order to compute H2v = αhATAv and recall (6.32), we just consider how

Dl and DT
l , l ∈ {1, 2, 3} multiply a vector. For simplicity, we only investigate the details

of D1. Since D1 = I(n3+1)⊗I(n2+1)⊗∂
1,h1
n1 , (∂1,h1

n1 v′)l = ((v′)l+1−(v′)l)/h1, l ∈ {1, ..., n1}
and

(∂1,h1
n1

)T v′ =


− (v′)1/h1;

((v′)l−1 − (v′)l)/h1, l ∈ {2, ...n1};

(v′)n1/h1;

(6.42)

we can fast implement the multiplication of D1 and DT
1 with a vector.

Finally, because Ĥ3 = βh
6 d~rT1 d2ϕ(~r1)d~r1 and d2ϕ(~r1) is a diagonal matrix, we only need

to consider computing d~r1v and d~rT1 v
′. According to the (6.21), substituting d~r1

1, d~r2
1,

d~q1 and d~q2 into d~r1, we have

d~r1 =

9∑
l=1

ΛlBl, (6.43)

where

Λ1 = 2Γ1diag(B1Y ) + 2Γ2diag(B5Y �B9Y −B6Y �B8Y ),

Λ2 = 2Γ1diag(B2Y ) + 2Γ2diag(B6Y �B7Y −B4Y �B9Y ),

Λ3 = 2Γ1diag(B3Y ) + 2Γ2diag(B4Y �B8Y −B5Y �B7Y ),

Λ4 = 2Γ1diag(B4Y ) + 2Γ2diag(B8Y �B3Y −B2Y �B9Y ),

Λ5 = 2Γ1diag(B5Y ) + 2Γ2diag(B1Y �B9Y −B3Y �B7Y ),

Λ6 = 2Γ1diag(B6Y ) + 2Γ2diag(B2Y �B7Y −B1Y �B8Y ),

Λ7 = 2Γ1diag(B7Y ) + 2Γ2diag(B2Y �B6Y −B3Y �B5Y ),

Λ8 = 2Γ1diag(B8Y ) + 2Γ2diag(B4Y �B3Y −B1Y �B6Y ),

Λ9 = 2Γ1diag(B9Y ) + 2Γ2diag(B1Y �B5Y −B2Y �B4Y ),

(6.44)

Γ1 = diag(−d~r1
1 � d~r2

1 � d~r2
1 + d~r2

1) and Γ2 = diag((−d~r1
1 � d~r2

1 � d~r2
1 − d~r2

1)./~q2). Fur-

thermore, because of (6.20), (6.43) can be reformulated into the following formulation:

d~r1 = [Λ1M1 + Λ2M2 + Λ3M3,Λ4M1 + Λ5M2 + Λ6M3,Λ7M1 + Λ8M2 + Λ9M3]. (6.45)
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Hence, we only need to compute Mlvk, where l, k ∈ {1, 2, 3} and v = (vT1 , v
T
2 , v

T
3 )T . For

simplification, we only consider M1v1. Recall that (6.39) and we can get

M1v1 =


G1v1

...

G6v1

 . (6.46)

Since Gl, l ∈ {1, ..., 6} is just the linear combination of the matrix El, l ∈ {1, ..., 8},
finally we only compute Elv1, l ∈ {1, ..., 8} which is very easy to be implemented.

Similarly, in order to compute d~rT1 v
′, we only need to compute MT

l v
′, l ∈ {1, 2, 3}

and it can be decomposed to compute ETl v
′
k, l ∈ {1, ..., 8} and k ∈ {1, ..., 6}, where

v′ = ((v′1)T , ..., (v′6)T )T .

6.6.4 The Diagonal of Ĥ

According to the structure of Ĥ1, the diagonal of Ĥ1 is h(P T � P T )ς, where ς is the

diagonal of ~T T
Ũ
~TŨ.

The diagonal of H2 is αh(AT �AT )e, where e is a vector whose components are all equal

to 1.

From (6.45) and Ĥ3 = βh
6 d~rT1 d2ϕ(~r1)d~r1, the diagonal of Ĥ3 is βh

6 (ςT1 , ς
T
2 , ς

T
3 )T , where

ς1 = the diagonal of (Λ1M1 + Λ2M2 + Λ3M3)Td2ϕ(~r1)(Λ1M1 + Λ2M2 + Λ3M3),

ς2 = the diagonal of (Λ4M1 + Λ5M2 + Λ6M3)Td2ϕ(~r1)(Λ4M1 + Λ5M2 + Λ6M3),

ς3 = the diagonal of (Λ7M1 + Λ8M2 + Λ9M3)Td2ϕ(~r1)(Λ7M1 + Λ8M2 + Λ9M3).

(6.47)

Now we only need to compute the diagonal of MT
i1

Λj1d2ϕ(~r1)Λj2Mi2 , where i1, i2 ∈
{1, 2, 3} and j1, j2 ∈ {1, 2, 3}, {4, 5, 6} or {7, 8, 9}. Since Λj1d2ϕ(~r1)Λj2 is a diagonal ma-

trix and set ς as the diagonal of Λj1d2ϕ(~r1)Λj2 , then the diagonal ofMT
i1

Λj1d2ϕ(~r1)Λj2Mi2

is (MT
i1
�MT

i2
)ς which is very easy to be implemented following Appendix 6.6.3.

The structure of the preconditioner L isdiag(Ĥ11) diag(Ĥ12) diag(Ĥ13)

diag(Ĥ21) diag(Ĥ22) diag(Ĥ23)

diag(Ĥ31) diag(Ĥ32) diag(Ĥ33)

 . (6.48)

Since Ĥ is symmetric and we have got the diagonal of Ĥ, we only need to compute

diag(Ĥ12), diag(Ĥ13) and diag(Ĥ23). Actually, they are also computed easily just fol-

lowing the above mentioned steps.





Chapter 7

Conclusion and Future Research

This thesis describes a new framework for diffeomorphic image registration based on

Beltrami coefficients and introduces a fast numerical algorithm based on a subspace

strategy.

7.1 Conclusion

Firstly, motivated by the Beltrami concept, we propose a novel regularizer based on

the Beltrami coefficient. Just combining this new regularizer with the diffusion model,

we establish a novel diffeomorphic registration model. By applying the first-discretize-

then-optimize method, we propose an iterative method to solve the resulting nonlinear

optimization problem and prove the convergence of the method. Numerical experiments

demonstrate that the new model can not only get a diffeomorphic registration even

when the deformation is large, but also possess good accuracy in comparison with the

current best models. Because there is no definition of the Beltrami coefficient in 3D

space, we cannot directly generalize our idea to 3D image registration. Hence, we define

a modulus, possessing the same properties as the 2D proposed regularizer, to measure

the ‘Beltrami-like’ coefficient in 3D space. Then we build a new framework for 2D and

3D diffeomorphic image registration.

Secondly, in order to speed up the Gauss-Newton method, motivated by the subspace

strategy, we propose a two-step Gauss-Newton method. This technique consists of the

possible use of a second step within each iteration of the Gauss-Newton method. In

addition, at each level, we try to find a better initial point by minimizing a quadratic

approximation of the objective function over the subspace spanned by the interpolated

solutions of all the previous levels rather than using the interpolated solution of the

previous level directly as the initial point. These techniques show better numerical

performance compared with the standard Gauss-Newton method.

139
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In conclusion, this thesis focuses on the 2D and 3D diffeomorphic models and their fast

algorithms for image registration problems.

7.2 Future Research

In the future, we could further extend the ideas in this thesis, such as, building a 3D

‘Beltrami-like’ coefficient, generalizing our framework to the multimodality image reg-

istration, considering other regularizers, designing fast algorithms (considering ADMM

and the multigrid method) and applying deep learning to image registration.

3D ‘Beltrami-like’ Coefficient.

From Beltrami equation (4.8), we have the explicit relation between a Beltrami coefficient

and a quasi-conformal mapping. However, since there is no definition of the Beltrami

coefficient in 3D space, in Chapter 6, we define a modulus to measure the ‘Beltrami-like’

coefficient in 3D space. Although we have the modulus of 3D ‘Beltrami-like’ coefficient,

building this 3D ‘Beltrami-like’ coefficient is hard because of the ill-posedness. Recently,

the quaternion has successfully been applied to colour image processing [35, 103]. If we

consider combining the quaternion with the 3D space, then the quaternion will poten-

tially provide a way to build this 3D ‘Beltrami-like’ coefficient.

Multimodality Image Registration

Since the images are taken from different machineries (such as CT/PET), the key point

in the multimodality image registration is to design an effective fitting term. Hence,

generalizing our framework

min
u∈U
J (u) = D(T (x+ u), R) + αR(u) + βC(y) (7.1)

to the multimodality image registration only needs to replace SSD with a suitable mea-

sure, where R is the regularizer and C is the control term mentioned in Chapter 4 and 6.

In Chapter 3, we have reviewed the most widely used fitting terms in the multimodal-

ity image registration: mutual information and normalized gradient fields. For mutual

information, how to accurately estimate probability distributions of the grey values is

difficult and for normalized gradient fields, [117] has pointed that it will not work well

when the gradients are null or very weak. Hence, in our preliminary work, we choose

the ‘gradient field difference’ (GF) and ‘Triangular Measure’ (TM) proposed in [117] as

fitting terms:

DGF (u) =

∫
Ω
|∇nT (x+ u)−∇nR|2dx,

DTM (u) =

∫
Ω

(|∇T (x+ u)|+ |∇R| − |∇T (x+ u) +∇R|)2dx.

(7.2)



Chapter 7. Conclusion and Future Research 141

We have applied this generalizing model to a pair of MRI images (T1 and T2) (Figure 7.1

(a, b)), whose dimension is 128×128. From Figure 7.1, we observe that this generalizing

model shows a visually satisfied deformed template and the resulting transformation is

diffeomorphic. How to design a better fitting term and how to tune the parameters in

the variational model still need to be considered carefully.

(a) Reference (b) Template (c) Overlay of T and R

(d) T (y)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) y min det(∇y) = 0.0235 (f) Overlay of T (y) and R

Figure 7.1: A pair of MRI images (T1 and T2). The resulting transformation is
diffeomorphic and the deformed template is also visually satisfied.

Regularizers

In this thesis, we mainly consider the diffusion regularizer. We could further investigate

other regularizers reviewed in Chapter 3, which have been used in image registration,

or some other regularizers, such as infimal convolution regularizer and total generalized

variation regularizer, which have been used in image processing but not used in image

registration. Through investigating the geometric properties of the regularizers, we could

design new regularizers or decide which regularizer is likely to be useful in our variational

framework for any specific application.
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Table 7.1: Measurements of 2D Brain example.

α 10 20 30 40 50 60 70 80 90 100

GN
time (s) 5.66 0.85 0.74 0.83 0.76 0.66 0.64 0.86 0.70 0.91
Re SSD 0.75% 0.30% 0.34% 0.41% 0.46% 0.52% 0.56% 0.62% 0.67% 0.72%

ADMM
time (s) 0.28 0.33 0.44 0.40 0.38 0.35 0.35 0.39 0.44 0.52
Re SSD 0.37% 0.43% 0.42% 0.48% 0.55% 0.63% 0.66% 0.69% 0.74% 0.75%

ADMM

For the joint variational model (3.3), just following Section 2.6.2, ADMM can be applied

as follows:

zk+1 := argmin D(x+ z) + (λk)T (z − uk) +
1

2σ
‖z − uk‖22,

uk+1 := argmin αR(u) + (λk)T (zk+1 − u) +
1

2σ
‖zk+1 − u‖22,

λk+1 := λk +
1

σ
(zk+1 − uk+1),

(7.3)

where λ is the Lagrangian multiplier and σ > 0 is a penalty parameter. By exploiting

the structure of the fitting term and the regularization term and with the help of the

penalty parameter, the speed of ADMM may be faster than standard Gauss-Newton

method. For example, if the fitting term is SSD, in each iteration, for the subproblem

z, we only need to solve a linear system whose coefficient matrix is a tridiagonal matrix

in 2D (a pentadiagonal matrix in 3D) and which can be solved by O(n) operations;

if the regularization term is the diffusion term, finding the solution of the subproblem

for u only requires to solve the discrete Laplace equation which can be solved fast by

iterative solvers. In our preliminary work, we first apply ADMM to the diffusion model

and Table 7.1 shows the results of a pair of MRI images (Figure 7.2). From Table 7.1,

we observe that under different parameters α, ADMM is much faster than GN and keeps

the quality simultaneously. However, there still exist a lot of work to do, such as, how

we give criteria to choose an efficient value for the penalty parameter σ and how we

extend the linear constraint to a nonlinear constraint when dealing with the Jacobian

determinant of the transformation.

(a) Reference (b) Template

Figure 7.2: A pair of MRI images.
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Multigrid Method.

In 2000, Nash [95] proposed the multigird approach for the discretized optimization

problem. The basic idea is to find the suitable search direction in the coarse grid. Given

an initial optimization problem on the fine grid

min
uh

fh(uh) (7.4)

and an initial guess uh0 , one iteration of this algorithm consists of:

• If this is the coarsest grid, solve

min
uh

fh(uh). (7.5)

• Otherwise, apply N0 iteration of an optimization algorithm to the original problem,

to obtain uh1 .

• Compute

uH0 = IHh u
h
1

gh1 = ∇fh(uh1)

gH0 = ∇fH(uH0 )

v̄ = gH0 − IHh gh1

(7.6)

• Apply the multigrid method, with initial guess uH0 to

min
uH

fH(uH)− v̄TuH (7.7)

and let uH1 be the result.

• Compute eh = IhH(uH1 − uH0 ).

• Perform a line search to obtain uh2 ← uh1 + αeh.

• Apply N1 iterations of an optimization algorithm to the original problem, with

initial guess uh2 to obtain uh3 .

In the implementation, the core part is to ensure that eh is a descent direction. This is

true when the each individual optimization problem is convex, the multigrid subproblems

are solved ‘accurately enough’ and the interpolation and restriction operators satisfy:

IhH = Ch,H(IHh )T , where Ch,H is some positive constant that may depend on h and H.

However, for the nonconvex problem, although we can get the descent direction by mod-

ifying the subproblem or employing the line search strategy [95, 128], the performance

for the hyperelastic model is not very good according to our testing experiments. We
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may consider applying the multigrid method based on first-optimize-then-discretize and

then motivated by [119], design a good smoother to speed up the computation time.

Deep Learning

Applying deep learning to image registration is a new trend [113, 116, 130]. Through

combining deep learning with our variational framework, we could construct a network

for image registration. When the network is trained well, computing the deformed

template and the transformation will be very fast.
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large deformation metric mappings via geodesic flows of diffeomorphisms, Interna-

tional journal of computer vision 61 (2005), no. 2, 139–157.

[5] Lipman Bers, Quasiconformal mappings, with applications to differential equa-

tions, function theory and topology, Bulletin of the American Mathematical Society

83 (1977), no. 6, 1083–1100.

[6] Francisco Bonin-Font, Alberto Ortiz, and Gabriel Oliver, Visual navigation for

mobile robots: A survey, Journal of intelligent and robotic systems 53 (2008),

no. 3, 263–296.

[7] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.,

Distributed optimization and statistical learning via the alternating direction

method of multipliers, Foundations and Trends R© in Machine learning 3 (2011),

no. 1, 1–122.

[8] Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge univer-

sity press, 2004.

[9] Chaim Broit, Optimal registration of deformed images, Ph.D. thesis, University of

Pennsylvania, 1981.

[10] Lisa Gottesfeld Brown, A survey of image registration techniques, ACM computing

surveys (CSUR) 24 (1992), no. 4, 325–376.

145



Bibliography 146

[11] Martin Burger, Jan Modersitzki, and Lars Ruthotto, A hyperelastic regularization

energy for image registration, SIAM Journal on Scientific Computing 35 (2013),

no. 1, B132–B148.

[12] Coralia Cartis, Nicholas IM Gould, and Ph L Toint, On the complexity of steepest

descent, newton’s and regularized newton’s methods for nonconvex unconstrained

optimization problems, Siam journal on optimization 20 (2010), no. 6, 2833–2852.

[13] Caihua Chen, Bingsheng He, Yinyu Ye, and Xiaoming Yuan, The direct extension

of admm for multi-block convex minimization problems is not necessarily conver-

gent, Mathematical Programming 155 (2016), no. 1-2, 57–79.

[14] Ke Chen, Matrix preconditioning techniques and applications, vol. 19, Cambridge

University Press, 2005.

[15] Ke Chen, Geovani Nunes Grapiglia, Jinyun Yuan, and Daoping Zhang, Improved

optimization methods for image registration problems, Numerical Algorithms 80

(2019), no. 2, 305–336.

[16] Yunmei Chen, Jiangli Shi, Murali Rao, and Jin-Seop Lee, Deformable multi-modal
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