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Bacterial speciation is a fundamental evolutionary process characterized by diverging 43 

genotypic and phenotypic properties. However, the selective forces impacting genetic 44 

adaptations and how they relate to the biological changes underpinning the formation of a 45 

new bacterial species remain poorly understood. Here we show that the spore-forming, 46 

healthcare-associated enteropathogen Clostridium difficile is actively undergoing speciation. 47 

Applying large-scale genomic analysis of 906 strains, we demonstrate that the ongoing 48 

speciation process is linked to positive selection on core genes in the newly forming species 49 

that are involved in sporulation and the metabolism of simple dietary sugars. Functional 50 

validation demonstrates the new C. difficile produce more resistant spores and show 51 

increased sporulation and host colonization capacity when glucose or fructose is available for 52 

metabolism. Thus, we report the formation of an emerging C. difficile species, selected for 53 

metabolizing simple dietary sugars and producing high levels of resistant spores that is 54 

adapted for healthcare-mediated transmission. 55 
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The formation of a new bacterial species from its ancestor is characterized by genetic 67 

diversification and biological adaptation1-4. For decades, a polyphasic examination5, relying 68 

on genotypic and phenotypic properties of a bacterium, has been used to define and 69 

discriminate a “species”. The bacterial taxonomic classification framework has more recently 70 

used large-scale genome analysis to incorporate aspects of a bacterium’s natural history, such 71 

as ecology6, horizontal gene transfer1, recombination2 and phylogeny3. Although a more 72 

accurate definition of a bacterial species can be achieved with whole-genome-based 73 

approaches, we still lack a fundamental understanding of how selective forces impact 74 

adaptation of biological pathways and phenotypic changes leading to bacterial speciation. In 75 

this work, we describe the genome evolution and biological changes during the ongoing 76 

formation of a new C. difficile species that is highly specialized for human transmission in the 77 

modern healthcare system. 78 

C. difficile is a strictly anaerobic, Gram-positive bacterial species that produces highly 79 

resistant, metabolically dormant spores capable of rapid transmission between mammalian 80 

hosts through environmental reservoirs7. Over the past four decades, C. difficile has emerged 81 

as the leading cause of antibiotic-associated diarrhea worldwide, with a large burden on the 82 

healthcare system7,8. To define the evolutionary history and genetic changes underpinning the 83 

emergence of C. difficile as a healthcare pathogen, we performed whole-genome sequence 84 

analysis of 906 strains isolated from humans (n = 761), animals (n = 116) and environmental 85 

sources (n = 29) with representatives from 33 countries and the largest proportion originating 86 

from the UK (n = 465) (Supplementary Fig. 1; Supplementary Table 1; Supplementary Table 87 

2). This dataset is summarized visually here https://microreact.org/project/H1QidSp14. Our 88 

collection was designed to capture comprehensive C. difficile genetic diversity9 and includes 89 

13 high-quality and well-annotated reference genomes (Supplementary Table 2). Robust 90 

maximum likelihood phylogeny based on 1,322 concatenated single-copy core genes (Fig. 91 
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1a; Supplementary Table 3) illustrates the existence of four major phylogenetic groups within 92 

this collection. Bayesian analysis of population structure (BAPS) using concatenated 93 

alignment of 1,322 single-copy core genes corroborated the presence of the four distinct 94 

phylogenetic groupings (PGs 1-4) (Fig. 1a) that each harbor strains from different 95 

geographical locations, hosts and environmental sources which indicates signals of sympatric 96 

speciation. Each phylogenetic group also harbors distinct clinically relevant ribotypes (RT): 97 

PG1 (RT001, 002, 014); PG2 (RT027 and 244); PG3 (RT023 and 017); PG4 (RT078, 045 98 

and 033).  99 

The phylogeny was rooted using closely related species (C. bartlettii, C. hiranonis, C. 100 

ghonii and C. sordellii) as outgroups (Fig. 1a). This analysis indicated that three phylogenetic 101 

groups (PG1, 2 and 3) of C. difficile descended from the most diverse phylogenetic group 102 

(PG4). This was also supported by the frequency of single-nucleotide polymorphism (SNP) 103 

differences in pairwise comparisons between strains of PG4 and each of the other PGs versus 104 

the level of pairwise SNP differences between comparisons of PGs 1, 2 and 3 to each other 105 

(Supplementary Fig. 2). Interestingly, bacteria from PG4 display distinct colony 106 

morphologies compared to bacteria from PG 1, 2 and 3 when grown on nutrient agar plates 107 

(Supplementary Fig. 3), suggesting a link between C. difficile colony phenotype and 108 

genotype that distinguishes PG 1, 2 and 3 from PG4. 109 

Our previous genomic study using 30 C. difficile genomes indicated an ancient, 110 

genetically diverse species that likely emerged 1 to 85 million years ago10. Testing this 111 

estimate using our larger dataset indicated the species emerged approximately 13.5 million 112 

years (12.7-14.3 million) ago. Using the same BEAST11 analysis on our substantially 113 

expanded collection, we estimate the most recent common ancestor (MRCA) of PG4 (using 114 

RT078 lineage) arose approximately 385,000 (297,137-582,886) years ago. In contrast, the 115 

MRCA of the PG1, 2 and 3 groups (using RT027 lineage) arose approximately 76,000 116 
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(40,220-214,555) years ago. Bayesian skyline analysis reveals a population expansion of 117 

PG1, 2 and 3 groups (using RT027 lineage) around 1595 A.D., which occurred shortly before 118 

the emergence of the modern healthcare system in the 18th century (Supplementary Fig. 4). 119 

Combined, these observations suggest that PG4 emerged prior to the other PGs and that the 120 

PG1, 2 and 3 population structure started to expand just prior to the implementation of the 121 

modern healthcare system12. We therefore refer to PG1, 2 and 3 groups as C. difficile “clade 122 

A” and PG4 as C. difficile “clade B”. 123 

 To investigate genomic relatedness, we next performed pairwise Average Nucleotide 124 

Identity (ANI) analysis (Fig. 1b). This analysis revealed high nucleotide identity (ANI > 125 

95%) between PGs 1, 2 and 3 indicating that bacteria from these groups belong to the same 126 

species; however, ANI between PG4 and any other PG was either less than the species 127 

threshold (ANI > 95%) or on the borderline of the species threshold (94.04%-96.25%) (Fig. 128 

1b). To detect recombination events, FastGEAR analysis13 was performed on whole-genome 129 

sequences of 906 strains. While analysis identified increased recombination within C. difficile 130 

clade A (PG1-PG2: 1-102, PG1-PG3: 1-214, PG2-PG3: 1-96) (Supplementary Fig. 5) a 131 

restricted number of recombination events between C. difficile clade A and clade B was 132 

observed (PG1-PG4: 1-20, PG2-PG4: 1-25, PG3-PG4: 1-46). This analysis strongly indicates 133 

the presence of recombination barriers in the core genome that further distinguishes the two 134 

C. difficile clades and could encourage sympatric speciation. Furthermore, accessory genome 135 

functional analysis also shows a clear separation between clade A and clade B 136 

(Supplementary Fig. 6; Supplementary Table 4-5). We also observe a higher number of 137 

pseudogenes in clade A compared to clade B (Supplementary Fig. 7; Supplementary Table 6-138 

11). Taken together, these results indicate different selection pressures on the genomes of C. 139 

difficile clades A and B. 140 
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In addition to reduced rates of recombination events, advantageous genetic variants in 141 

a population driven by positive selective pressures, termed positive selection, are also a 142 

marker of speciation6. We determined the Ka/Ks ratios and identified 172 core genes in clade 143 

A and 93 core genes in clade B that were positively selected (Ka/Ks >1) (Fig. 2a; 144 

Supplementary Table 12-13). Functional annotation and enrichment analysis identified 145 

positively selected genes involved in carbohydrate and amino acid metabolism, sugar 146 

phosphotransferase system (PTS) and spore coat architecture and spore assembly in clade A 147 

(Fig. 2b). In contrast, the sulphur relay system was the only enriched functional category in 148 

positively selected genes from clade B. Notably, 26% (45 in total) of the positively selected 149 

genes in C. difficile clade A produce proteins that are either directly involved in spore 150 

production, are present in the mature spore proteome14 or are regulated by Spo0A15 or its 151 

sporulation-specific sigma factors16 (Fig. 2c). In contrast, no positively selected genes are 152 

directly involved in spore production in C. difficile clade B; however, 22.5% (21 genes in 153 

total) are either present in the mature spore proteome or are regulated by Spo0A or its 154 

sporulation specific sigma factors (Supplementary Fig. 8). The lack of overlap between 155 

sporulation-associated positively selected genes in the two lineages suggests a divergence of 156 

spore-mediated transmission functions. In addition, these results suggest functions important 157 

for host-to-host transmission have evolved in C. difficile clade A. 158 

We found 20 positively selected genes (Supplementary Table 12) in clade A whose 159 

products are components of the mature spore14,15 and could contribute to environmental 160 

survival17. As an example, sodA (superoxide dismutase A), a gene associated with spore coat 161 

assembly, has three-point mutations which are present in all clade A genomes but absent in 162 

clade B genomes (Supplementary Fig. 9). Spores derived from diverse C. difficile clades have 163 

a wide variation in resistance to microbiocidal free radicals from gas plasma18. To investigate 164 

if the phenotypic resistance properties of spores from the new lineage have evolved, we 165 
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exposed spores from both clades to hydrogen peroxide, a commonly used healthcare 166 

environmental disinfectant17. Spores derived from clade A were more resistant to 3% (P = 167 

0.0317) and 10% hydrogen peroxide (P = 0.0317) when compared to spores from clade B, 168 

although there was no difference in survival at 30% peroxide likely due to the overpowering 169 

bactericidal effect at this concentration (P = 0.1667) (Fig. 3a). 170 

 The master regulator of C. difficile sporulation, Spo0A, is under positive selection in 171 

C. difficile clade A only. Spo0A also controls other host colonization factors, such as flagella, 172 

and carbohydrate metabolism, potentially serving to mediate cellular processes to direct 173 

energy to spore production and host colonization to facilitate host-to-host transmission15. 174 

Interestingly, the clade A genomes contain genes under positive selection that are involved in 175 

fructose metabolism (fruABC and fruK), glycolysis (pgk and pyk), sorbitol (CD630_24170) 176 

and ribulose metabolism (rep1), and conversion of pyruvate to lactate (ldh). To further 177 

explore the link between sporulation and carbohydrate metabolism in clade A, we analyzed 178 

positively selected genes using KEGG pathways19 and manual curation. Manual curation of 179 

key enriched pathways across the 172 positively selected core genes in C. difficile clade A 180 

identified a complete fructose-specific PTS pathway and identified four genes (30%, 4/13) 181 

involved in anaerobic glycolysis during glucose metabolism (Supplementary Fig. 10). Other 182 

genes associated with enriched PTS pathways include genes used for the cellular uptake and 183 

metabolism of mannitol, cellobiose, glucitol/sorbitol, galactitol, mannose and ascorbate. 184 

Furthermore, comparative analysis of carbohydrate active enzymes (CAZymes)20 identified a 185 

clear separation of CAZymes between C. difficile clade A and clade B (Supplementary Fig. 186 

11; Supplementary Table 14). Combined, these observations suggest a divergence of 187 

functions between two C. difficile clades linked to metabolism of a broad range of simple 188 

dietary sugars 21. 189 
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The simple sugars glucose and fructose are increasingly used in diets within Western 190 

societies21. Interestingly, trehalose, a disaccharide of glucose, used as a food additive has 191 

impacted the emergence of some human virulent C. difficile variants22. Based on our genomic 192 

analysis, we hypothesized that dietary glucose or fructose could differentially impact host 193 

colonization by spores from C. difficile clade A or clade B. We therefore supplemented the 194 

drinking water of mice with either glucose, fructose or ribose and challenged with clade A or 195 

clade B strains. Ribose metabolic genes were not under positive selection so this sugar was 196 

included as a control. Mice challenged with clade A spores exhibited increased bacterial load 197 

when exposed to dietary glucose (P = 0.048) or fructose (P = 0.0045) compared to clade B 198 

(Fig. 3b). No difference in bacterial load was observed between C. difficile clade A and clade 199 

B without supplemented sugars or when supplemented with ribose (P = 0.2709) (Fig. 3b). 200 

The infectivity and transmission of C. difficile within healthcare settings is facilitated 201 

by environmental spore density23,24. To determine the impact of simple sugar availability on 202 

spore production rates we assessed the ability of the two lineages to form spores in basal 203 

defined medium (BDM) alone or supplemented with either glucose, fructose or ribose. While 204 

no difference was observed on the ribose control (P = 0.3095), C. difficile clade A strains 205 

exhibited increased spore production on glucose (P = 0.0317) or fructose (P = 0.0317) (Fig. 206 

3c). These results provide experimental validation and, together with our genomic 207 

predictions, suggest that enhanced host colonization and onward spore-mediated transmission 208 

with the consumption of simple dietary sugars is a feature of C. difficile clade A but not clade 209 

B. 210 

The rapid recent emergence of C. difficile as a significant healthcare pathogen has 211 

mainly been attributed to the genomic acquisition of antibiotic resistance and carbohydrate 212 

metabolic functions on mobile elements via horizontal gene transfer22,25. Here we show that 213 

these recent genomic adaptations have occurred in established, distinct evolutionary lineages 214 
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each with core genomes expressing unique, pre-existing transmission properties. We reveal 215 

the ongoing formation of a new species with biological and phenotypic properties consistent 216 

with a transmission cycle that was primed for human transmission in the modern healthcare 217 

system (Fig. 3d). Indeed, different transmission dynamics and host epidemiology have also 218 

been reported for C. difficile clade A (027 lineage26 and 017 lineage27) endemic in healthcare 219 

systems in different parts of the world, and the 078 lineage that likely enters the human 220 

population from livestock28-30. Further, broad epidemiological screens of C. difficile present 221 

in the healthcare system often highlight high abundances of C. difficile clade A as they 222 

represent 68.5% (USA), 74% (Europe) and 100% (Mainland China) of the infecting 223 

strains7,8,31,32. Thus, we report a link between C. difficile clade A speciation, adapted 224 

biological pathways and epidemiological patterns. In summary, our study elucidates how 225 

bacterial speciation may prime lineages to emerge and transmit in a process accelerated by 226 

modern human diet, the acquisition of antibiotic resistance or healthcare regimes. 227 

 228 
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 410 

Figure legends: 411 

Figure 1. Phylogeny and population structure of Clostridium difficile. (a) Maximum 412 

likelihood tree of 906 C. difficile strains constructed from the core genome alignment, 413 

excluding recombination events. Collapsed clades as triangles represent four Phylogenetic 414 

groups (PG1-4) identified by Bayesian analysis of population structure (BAPS). Number in 415 

parentheses indicates number of strains. Key PCR ribotypes in each PG are shown. Bootstrap 416 

values of key branches are shown next to the branches. Dates indicate estimated emergence 417 

of C. difficile species-13.5 million (range 12.7-14.3) years ago, PG4- 385,000 (range 418 

297,137-582,886) years ago and PG1-3- 76,000 (range 40,220-214,555) years ago. C. 419 

bartlettii, C. hiranonis, C. ghonii and C. sordellii were used as outgroups to root the tree. 420 

Scale bar indicates number of substitutions per site. (b) Distribution pattern of average 421 

nucleotide identity (ANI) for 906 C. difficile strains. Pairwise ANI calculations between 422 

different PGs are shown. Dotted red line indicates bacterial species cut-off. 423 

 424 

Figure 2. Adaptation of sporulation and metabolic genes in Clostridium difficile clade A. 425 

Positive selection analysis of C. difficile clade A and B based on 1,322 core genes. (a) 426 

Distribution of Ka/Ks ratio for the positively selected genes in C. difficile clade A (n = 172 427 

genes) and clade B (n = 93 genes) is shown. Error bars are standard error of the mean (SEM). 428 
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(b) Enriched functions in the positively selected genes of C. difficile clade A (n = 172 genes) 429 

and clade B (n = 93 genes) are shown. Y–axis represents number of positive selected genes in 430 

each enriched function. All are statistically significant (sugar phosphotransferase system (q = 431 

0.00167), fructose and mannose metabolism (q = 0.001173), sporulation, differentiation and 432 

germination (q = 0.0165), cysteine and methionine metabolism (q = 0.00279), sulphur relay 433 

system (q = 0.00791)). One-sided Fisher’s exact test with P value adjusted by Hochberg 434 

method. (c) Positively selected sporulation-associated genes in C. difficile clade A are shown 435 

in blue. Of the 172 genes under positive selection, 26% (45 in total) are either involved in 436 

spore production (sporulation stages I, III, IV and V), their proteins are present in the mature 437 

spore proteome or they are regulated by Spo0A or its sporulation specific sigma factors. 438 

 439 

Figure 3. Bacterial speciation is linked to increased host adaptation and transmission 440 

ability. (a) Spores of C. difficile clade A are more resistant to widely used hydrogen peroxide 441 

disinfectant. Spores of C. difficile clade A and clade B (n = 5 different ribotypes for both 442 

lineages) were exposed to hydrogen peroxide for 5 minutes, washed and plated. Recovered 443 

CFUs representing surviving germinated spores were counted and presented as a percentage 444 

of spores exposed to PBS. Mean and range of 3 independent experiments is presented, Mann-445 

Whitney unpaired two-tailed test. (b) Intestinal colonization of clade A strains is increased in 446 

the presence of simple sugars compared to clade B strains. Comparison of vegetative cell 447 

loads between C. difficile clade A (n = 1, RT027) and clade B (n = 1, RT078) strains in mice 448 

whose diet was supplemented with different sugars before challenging with spores. CFUs 449 

from fecal samples cultured 16 hours after C. difficile challenge are presented. Mean values 450 

of 5 mice are presented from 1 representative experiment which was repeated once with 451 

similar results, standard error of the mean (SEM), unpaired two-tailed t test. (c) Clade A 452 

strains produce more spores in the presence of simple sugars. C. difficile clade A and clade B 453 
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(n = 5 different ribotypes for both lineages) strains were grown on basal defined media in the 454 

presence or absence of different sugars, vegetative cells were killed by ethanol exposure and 455 

the number of CFUs representing germinated spores were counted. The percentage of spores 456 

recovered in the presence of sugars compared to BDM alone is presented. Mean and range of 457 

3 independent experiments is presented, Mann-Whitney unpaired two-tailed test. (d) 458 

Overview of adaptations in key aspects of the C. difficile clade A transmission cycle in 459 

human population. 460 

 461 

Online Methods 462 

Collection of C. difficile strains 463 

Laboratories worldwide were asked to send a diverse representation of their C. 464 

difficile collections to the Wellcome Sanger Institute (WSI). After receiving all shipped 465 

samples the DNA extraction was performed batch-wise using the same protocol and reagents 466 

to minimize bias. Phenol-Chloroform was the preferred method for extraction since it 467 

provides high DNA yield and intact chromosomal DNA.  468 

The genomes of 382 strains designated as C. difficile, by PCR ribotyping were sequenced and 469 

combined with our previous collection of 506 C. difficile strains, 13 high quality C. difficile 470 

reference strains and 5 publicly available C. difficile RT 244 strains making a total of 906 471 

strains analyzed in this study. This genome collection includes strains from humans (n = 472 

761), animals (n =116) and the environment (n = 29) that were collected from diverse 473 

geographic locations (UK; n = 465, Europe; n = 230, N-America; n = 111, Australia; n = 62, 474 

Asia; n = 38). Details of all strains are listed in Supplementary Table 1 and Supplementary 475 

Table 2, including the European Nucleotide Archive (ENA) sample accession numbers. 476 

Metadata of this C. difficile collection have been made freely publicly available through 477 

Microreact33 (https://microreact.org/project/H1QidSp14).  478 
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Bacterial culture and genomic DNA preparation 479 

C. difficile strains were cultured on blood agar plates for 48 hours, inoculated into 480 

brain–heart infusion broth supplemented with yeast extract and cysteine and grown overnight 481 

(16 hours) anaerobically at 37 °C. Cells were pelleted, washed with PBS, and genomic DNA 482 

preparation was performed using a phenol–chloroform extraction as previously described34. 483 

All culturing of C. difficile took place in anaerobic conditions (10% CO2, 10% H2, 80% N2) 484 

in a Whitley DG250 workstation at 37 °C. All reagents and media were reduced for 24 485 

hours in anaerobic conditions before use. 486 

DNA sequencing, assembly and annotation 487 

Paired-end multiplex libraries were prepared and sequenced using Illumina Hi-Seq 488 

platform with fragment size of 200-300 bp and a read length of 100 bp, as previously 489 

described35,36. An in-house pipeline developed at the WSI (https://github.com/sanger-490 

pathogens/Bio-AutomatedAnnotation) was used for bacterial assembly and annotation. It 491 

consisted of de novo assembly for each sequenced genome using Velvet v1.2.1037, SSPACE 492 

v2.038 and GapFiller v1.139 followed by annotation using Prokka v1.5-140. For the 13 high-493 

quality reference genomes, strains Liv024, TL178, TL176, TL174, CD305 and Liv022 were 494 

sequenced using 454 and Illumina sequencing platforms, BI-9 and M68 were sequenced 495 

using 454 and capillary sequencing technologies with the assembled data for these 8 strains 496 

been improved to an ‘Improved High Quality Draft’ genome standard41. Optical maps using 497 

the Argus Optical Mapping system were also generated for Liv024, TL178, TL176, TL174, 498 

CD305 and Liv022. The remaining strains are all contiguous and were all sequenced using 499 

454 and capillary sequencing technologies except for R20291 which also had Illumina data 500 

incorporated and 630 which was sequenced using capillary sequence data alone. 501 

Phylogenetic analysis, Pairwise SNP distances analysis and Average Nucleotide Identity 502 

analysis 503 
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The phylogenetic analysis was conducted by extracting nucleotide sequence of 1,322 504 

single copy core gene from each C. difficile genome using Roary42. The nucleotide sequences 505 

were concatenated and aligned with MAFFT v7.2043. Gubbins44 was used to mask 506 

recombination from concatenated alignment of these core genes and a maximum-likelihood 507 

tree was constructed using RAxML v8.2.845 with the best-fit model of nucleotide substitution 508 

(GTRGAMMA) calculated from ModelTest embedded in TOPALi v2.546 and 500 bootstrap 509 

replicates. The phylogeny was rooted using a distance-based tree generated using Mash 510 

v2.047, R package APE48 and genome assemblies of closely related species (C. bartlettii, C. 511 

hiranonis, C. ghonii and C. sordellii). All phylogenetic trees were visualized in iTOL49. 512 

Genomes of closely related C. difficile were downloaded from NCBI. Pairwise SNP distances 513 

analysis was performed on concatenated alignment of 1,322 single-copy core genes using 514 

SNP-Dist (https://github.com/tseemann/snp-dists). Average nucleotide analysis (ANI) was 515 

calculated by performing pairwise comparison of genome assemblies using MUMmer50. 516 

Population structure and recombination analysis 517 

Population structure based on concatenated alignment of 1,322 single-copy core genes 518 

of C. difficile was inferred using the HierBAPS51 with one clustering layers and 5, 10 and 20 519 

expected numbers of clusters (k) as input parameters. Recombination events across the 520 

whole-genome sequences were detected by mapping genomes against a reference genome 521 

(NCTC 13366; RT027) and using FastGear13 with default parameters. 522 

Functional genomic analysis  523 

To explore accessory genome and identify protein domains in a genome, we 524 

performed RPS-BLAST using COG database (accessed February 2019)52. All protein 525 

domains were classified in different functional categories using the COG database52 and were 526 

used to perform Discriminant Analysis of Principle Components (DAPC)53 implemented in 527 
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the R package Adegenet v2.0.154. Domain and functional enrichment analysis was calculated 528 

using one-sided Fisher’s exact test with P value adjusted by Hochberg method in R v3.2.2. 529 

Carbohydrate active enzymes (CAZymes) in a genome were identified using dbCAN 530 

v5.055 (HMM database of carbohydrate active enzyme annotation). Best hits include hits with 531 

E-value < 1 × 10-5 if alignment > 80 aa and hits with E-value < 1 × 10-3 if alignment < 80 aa, 532 

and alignment coverage > 0.3. Best hits were used to perform Discriminant Analysis of 533 

Principle Components (DAPC)53 implemented in the R package Adegenet v2.0.154.  534 

Functional annotation of positively selected genes was carried out using the Riley 535 

classification system56, KEGG Orthology57 and Pfam functional families58.  536 

Analysis of selective pressures.  537 

The aligned nucleotide sequences of each 1,322 single copy core genes were extracted 538 

from Roary's output. The ratio between the number of non-synonymous mutations (Ka) and 539 

the number of synonymous mutations (Ks) was calculated for the whole alignment and for 540 

the respective subsets of strains belonging to the PG1, 2, 3 as a group and PG4. The Ka/Ks 541 

ratio for each gene alignment was calculated with SeqinR v3.1. A Ka/Ks > 1 was considered 542 

as the threshold for identifying genes under positive selection.  543 

Pseudogenes analysis  544 

Nucleotide annotations of genes within a genome within each phylogenetic group 545 

were mapped against the protein sequences of the reference genome for its phylogenetic 546 

group (PG1: NCTC 13307(RT012), PG2: SRR2751302 (RT244), PG3: NCTC 14169 547 

(RT017), PG4: NCTC 14173 (RT078)) using TBLASTN as previously described59. 548 

Pseudogenes were called based on following criteria: genes with E value > 1 × 10-30 and 549 

sequence identity < 99% and which are absent in 90% members of a phylogenetics group. 550 

Genes in the reference genomes annotated as a pseudogene were also included in addition to 551 

genes in query genomes. 552 
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Analysis of estimating dates 553 

The aligned nucleotide sequences of each 222 core genes of C. difficile which are 554 

under neutral selection (Ka/Ks = 1) were extracted from Roary’s output. Gubbins44 was used 555 

to mask recombination from concatenated alignment of these core genes and used as an input 556 

for Bayesian Evolutionary Analysis Sampling Trees (BEAST) software package v2.4.111. In 557 

BEAST, the MCMC chain was run for 50 million generations, sampling every 1,000 states 558 

using the strict clock model (2.50 × 10−9 - 1.50 × 10−8 per site per year)10 and HKY four 559 

discrete gamma substitution model, each run in triplicate. Convergence of parameters were 560 

verified with Tracer v1.560 by inspecting the Effective Sample Sizes (ESS > 200). 561 

LogCombiner was used to remove 10% of the MCMC steps discarded as burn-ins and 562 

combine triplicates. The resulting file was used to infer the time of divergence from the most 563 

recent common ancestor for C. difficile, C. difficile clade A and clade B. The Bayesian 564 

skyline plot was generated with Tracer v1.560.  565 

C. difficile growth in vitro on selected carbon sources 566 

Basal defined medium (BDM)61 was used as the minimal medium to which selected 567 

carbon sources (2 g/l of glucose, fructose or ribose from Sigma-Aldrich) were added. C. 568 

difficile strains were grown on CCEY agar (Bioconnections) for two days; 125-ml 569 

Erlenmeyer flasks containing 10 ml of BDM with or without carbon sources were inoculated 570 

with C. difficile strains and incubated in anaerobic conditions at 37 ºC shaking at 180 rpm. 571 

After 48 hours, spores were enumerated by centrifuging the culture to a pellet, carefully 572 

decanting the BDM and re-suspending in 70% ethanol for 4 hours to kill vegetative cells. 573 

Following ethanol shock, spores were washed twice in PBS and plated in a serial dilution on 574 

YCFA media62 supplemented with 0.1% sodium taurocholate. Colony forming units 575 

(representing germinated spores) were counted 24 hours later. The experiment was performed 576 

independently 3 times for each strain. Clade A strains used were TL178 (RT002/ PG1), 577 
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TL174 (RT015/ PG1), R20291 (RT027/ PG2), CF5 (RT017/ PG3) and CD305 (RT023/ 578 

PG3). Clade B strains used were MON024 (RT033), CDM120 (RT078), WA12 (RT291), 579 

WA13 (RT228) and MON013 (RT127). Data were presented using GraphPad Prism v7.03. 580 

C. difficile spore resistance to disinfectant 581 

Spores were prepared by adapting the previous protocol18. In brief, C. difficile strains 582 

were streaked on CCEY media, the cells were harvested from the plates 48 hours later and 583 

subjecting to exposure in 70% ethanol for 4 hours to kill vegetative cells. The solution was 584 

then centrifuged, ethanol was decanted and the spores were washed once in 5 ml sterile saline 585 

(0.9% w/v) solution before being suspended in 5 ml of saline (0.9% w/v) with Tween20 586 

(0.05% v/v). 300 µl spore suspensions (at a concentration of approximately 106 spores) were 587 

exposed to 300 µl of 3%, 10% and 30% hydrogen peroxide (Fisher Scientific UK Limited) 588 

solutions for 5 minutes in addition to 300 µl PBS. The suspensions were then centrifuged, 589 

hydrogen peroxide or PBS was decanted and the spores were washed twice with PBS. 590 

Washed spores were plated on YCFA media with 0.1% sodium taurocholate to stimulate 591 

spore germination and colony forming units were counted 24 hours later. The experiment was 592 

performed independently 3 times for each strain. Clade A strains used were TL178 (RT002/ 593 

PG1), TL174 (RT015/ PG1), R20291 (RT027/ PG2), CF5 (RT017/ PG3) and CD305 594 

(RT023/ PG3). Clade B strains used were MON024 (RT033), CDM120 (RT078), WA12 595 

(RT291), WA13 (RT228) and MON013 (RT127). Data were presented using GraphPad 596 

Prism v7.03. 597 

In vivo C. difficile colonization experiment 598 

Five female 8-week-old C57BL/6 mice were given 250 mg/l clindamycin (Apollo 599 

Scientific) in drinking water. After 5 days, clindamycin treatment was interrupted and 100 600 

mM of glucose, fructose or ribose was added to mouse drinking water for the rest of the 601 

experiment; no sugars were given to control mice. After 3 days, mice were infected orally 602 
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with 6 × 103 spore/mouse of C. difficile R20291 (RT027) or M120 (RT078) strain. Fecal 603 

samples were collected from all mice before infection to check for pre-existing C. difficile 604 

contamination. Spore suspensions were prepared as described above18. After 16 hours, fecal 605 

samples were collected from all mice to determine viable C. difficile cell counts by serial 606 

dilution and plating on CCEY agar supplemented with 0.1% sodium taurocholate. The mean 607 

values of 5 mice are presented from 1 representative experiment which was repeated once 608 

with similar results. Data were presented using GraphPad Prism version 7.03. Ethical 609 

approval for mouse experiments was obtained from the Wellcome Sanger Institute.  610 

Reporting Summary 611 

Further information on research design is available in the Life Sciences Reporting 612 

Summary linked to this article. 613 

Data Availability 614 

Genomes have been deposited in the European Nucleotide Archive. Accession codes 615 

are listed in Supplementary Table 1. The 13 C. difficile reference isolates (Supplementary 616 

Table 2) are publicly available from the National Collection of Type Cultures (NCTC) and 617 

the annotation of these genomes are available from the Host-Microbiota Interactions Lab 618 

(HMIL; www.lawleylab.com), Wellcome Sanger Institute.  619 
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