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Abstract

A novel characterisation of dispersive waves in a vector elastic lattice is pre-
sented in the context of wave polarisation. This proves to be especially im-
portant in analysis of dynamic anisotropy and standing waves trapped within
the lattice. The operators of lattice flux and lattice circulation provide the
required quantitative description, especially in cases of intermediate and high
frequency dynamic regimes. Dispersion diagrams are conventionally considered
as the ultimate characteristics of dynamic properties of waves in periodic sys-
tems. Generally, a waveform in a lattice can be thought of as a combination
of pressure-like and shear-like waves. However, a direct analogy with waves in
the continuum is not always obvious. We show a coherent way to characterise
lattice waveforms in terms of so-called lattice flux and lattice circulation. In
the long wavelength limit, this leads to well-known interpretations of pressure
and shear waves. For the cases when the wavelength is comparable with the
size of the lattice cell, new features are revealed which involve special direc-
tions along which either lattice flux or lattice circulation is zero. The cases of
high frequency and wavelength comparable to the size of the elementary cell are
considered, including dynamic anisotropy and dynamic neutrality in structured
solids.

Keywords: Elastic waves, Lattice structures, Dynamic anisotropy, Lattice
flux and circulation
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1. Introduction

Scaling laws and asymptotic analysis are of great importance in mathemati-
cal modelling of physical phenomena, as described in fundamental monographs
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[1–4]. Important examples include boundary layer fluid flow, reaction-diffusion
problems and fracture, especially fracture in structured media. In particular,
an elastic lattice represents a simple example of a structured solid, where prop-
agation of cracks brings qualitatively new features compared to the continuum
models, as discussed in [5–8]. Asymptotic analysis of structured solids has led
to the well-developed approach of homogenisation, which is highly efficient in
static problems [9–12]. Dynamic homogenisation, and in particular dynamic
anisotropy of certain standing waveforms, was systematically studied in [13–
15]. In dynamics a lattice, which would be considered as isotropic in a static
homogenised state, displays new features associated with wave dispersion and
dynamic anisotropy (see, for example, [16, 17]). Green’s functions in dynamic
lattices versus homogenisation approximations were considered in [18]. In re-
cent years, the questions of polarisation of elastic waves in lattice systems and
dynamic anisotropy were also raised in [19–23].

For a general periodic elastic lattice, the dispersion diagram is conventionally
considered as the ultimate characteristic of the dynamic properties of waves in
such a system. However, if one is interested in the combination of pressure
and shear in a particular lattice waveform, the answer is not always obvious.
The present paper shows a coherent way to characterise lattice waveforms in
terms of so-called lattice flux and lattice circulation. Of course, in the long
wavelength limit, this leads to well-known interpretations of pressure and shear
waves. However, for the cases when the wavelength is comparable with the size
of the lattice cell, new features are revealed which involve special directions
along which either lattice flux or lattice circulation is zero.

The structure of the paper is as follows. Section 2 presents the governing
equations and the dispersion relation for an elastic triangular lattice. Section
3 includes definitions for the dynamic lattice flux and circulation and quantita-
tive evaluations for different dynamic regimes. Wave dispersion versus lattice
flux and circulation and the dynamic anisotropy involving lines of zero lattice
flux and zero lattice circulation are discussed in Section 4. Finally, we present
illustrative examples in Section 5.

2. Governing equations and dispersion. A periodic elastic lattice

The system under consideration is an infinite, periodic triangular array of point
masses m, connected by massless elastic links of stiffness c and length l. We
assume that the masses are constrained to move in the (x1x2)-plane and that
their displacements are small. A repetitive cell of the system is shown in Fig.
1a.

In the time-harmonic regime, the governing equations of the periodic trian-
gular lattice can be written in the following matrix form [24]:(

C − ω2M
)
U = 0 , (1)

where ω is the radian frequency, U = (U1, U2)
T

is the displacement vector and
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Figure 1: (a) Periodic cell of the triangular elastic lattice; (b) lower and upper dispersion
surfaces of the discrete system.

M = mI2 is the mass matrix, with I2 being the 2×2 identity matrix. Moreover,

C = c

(
3− 2 cos(ζl + ξl)− 1

2 [cos(ζl) + cos (ξl)]
√

3
2 [cos(ξl)− cos (ζl)]√

3
2 [cos(ξl)− cos (ζl)] 3− 3

2 [cos(ζl) + cos (ξl)]

)
(2)

is the stiffness matrix, where k = (k1, k2)
T

is the wave vector, ζ = k1/2+
√

3k2/2
and ξ = k1/2−

√
3k2/2.

In the derivation of Eq. (1), Bloch-Floquet quasi-periodicity conditions have
been used, which allow a single repetitive cell to fully characterise the dispersive
properties of the infinite system. The Bloch-Floquet conditions account for a
phase shift between neighbouring cells and can be expressed by

U
(
x + n1t

(1) + n2t
(2)
)

= U (x) eik·Tn , (3)

where x = (x1, x2)
T

is the position vector, n = (n1, n2)
T

is the multi-index

and T =
(
t(1), t(2)

)
is the periodicity matrix. The vectors t(1) = (l, 0)

T
and

t(2) =
(
l/2,
√

3 l/2
)T

are shown in Fig. 1a.
In what follows, we use the normalised quantities

x̃ = x/l , Ũ = U/l , T̃ = T /l , k̃ = k l , ζ̃ = ζ l ,

ξ̃ = ξ l , M̃ = M/m , C̃ = C/c , ω̃ = ω/
√
c/m .

(4)

The dispersion relation is obtained by looking for non-trivial solutions of Eq.
(1), and it is given by

ω̃4 − tr(C̃) ω̃2 + det(C̃) = 0 . (5)
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The equation above admits two positive solutions:

ω̃(1)(k̃) =

√√√√ tr(C̃)−
√

tr2(C̃)− 4det(C̃)

2
, (6a)

ω̃(2)(k̃) =

√√√√ tr(C̃) +
√

tr2(C̃)− 4det(C̃)

2
. (6b)

The two dispersion surfaces of the periodic system are presented in Fig.
1b. We note that the dispersion surfaces meet at six points, called the “Dirac
points”. The positions of the six Dirac points in the k̃-plane are indicated in
Fig. 6 by points D.

After determining the eigenfrequencies ω̃(1) = ω̃(1)(k̃) and ω̃(2) = ω̃(2)(k̃),

the corresponding eigenvectors (or eigenmodes) Ũ (1) = Ũ (1)(k̃) and Ũ (2) =

Ũ (2)(k̃) can be obtained from the vector equations of motion (1), which are
re-written below in the form{

3− 2 cos(ζ̃ + ξ̃)−
cos(ζ̃) + cos (ξ̃)

2
−
(
ω̃(j)

)2
}
Ũ

(j)
1 +


√

3
[
cos(ξ̃)− cos (ζ̃)

]
2

 Ũ
(j)
2 = 0 ,

(7a)
√

3
[
cos(ξ̃)− cos (ζ̃)

]
2

 Ũ
(j)
1 +

3−
3
[
cos(ζ̃) + cos (ξ̃)

]
2

−
(
ω̃(j)

)2

 Ũ
(j)
2 = 0 , (7b)

with j = 1, 2. We note that the eigenvectors corresponding to the lower and
upper dispersion surfaces are real and orthogonal.

3. Lattice flux and circulation

In this section, we introduce the discrete definitions of flux and circulation for
the lattice described in Section 2. These definitions will be used to characterise
the nature of the waves that can propagate in the discrete medium.

3.1. Displacements of the lattice particles

The time-harmonic displacement of a lattice particle for a given eigenmode
is obtained by multiplying the eigenvector by the phase shift in time, while
the displacements of all the other particles are shifted according to the Bloch-
Floquet conditions. If the coordinates of the central node of the lattice unit
cell shown in Fig. 1a are identified as x̃0 = (0, 0), then the coordinates of the
central node of the cell n (n ∈ Z2) are given by x̃(n,0) = x̃0 + T̃ n, where T̃
is the periodicity matrix defined in Section 2. Accordingly, the time-harmonic
displacement of a lattice particle for a given eigenmode j = 1, 2 is given by

ũ(j)(x̃, t̃) = Re
(
Ũ (j)ei(ω̃(j) t̃−k̃·T̃ n)

)
= Ũ (j) cos

(
ω̃(j)t̃− k̃ · T̃ n

)
, (8)

where time t has been normalised as t̃ = t
√
c/m and Ũ (j) is a unit vector.

From (8) it is apparent that the trajectory of a generic particle in the lattice
is a straight line.
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3.2. Definitions of lattice flux and circulation of the discrete displacement vector
field

For a triangular lattice considered here, the lattice flux and lattice circulation
of the displacement vector ũ are defined as

Φ̃ũ = i

√
3

2
ũ · f̃ (9)

and

Γ̃ũ = −i

√
3

2

(
ũ× f̃

)
· e3 , (10)

respectively, where the vector f̃ is given by

f̃ =
(

2 sin (ζ̃ + ξ̃) + sin (ζ̃) + sin (ξ̃) ,
√

3
[
sin (ζ̃)− sin (ξ̃)

])T

. (11)

Since ũ is a real time-harmonic quantity (see Eq. (8)), the flux Φ̃ũ and the
circulation Γ̃ũ are pure imaginary time-harmonic quantities. We will derive
formulae (9)-(11) in Section 3.2.1.

Since the eigenvectors calculated for the lower and upper dispersion surfaces
are real and orthogonal, Γ̃ũ(j) = −i

√
3/2

(
e3 × ũ(j)

)
· f̃ = ∓i

√
3/2 ũ(i) · f̃ =

∓Φ̃ũ(i) (with i 6= j). Therefore, the amplitude of the flux of the displacement
field determined for one dispersion surface is equal to the amplitude of the
circulation of the displacement field calculated for the other surface.

3.2.1. Interpretation of lattice flux and circulation

In a two-dimensional continuum, the flux and circulation of a vector field F
are defined by

ΦF =

∫
∂Ω

F · n ds (12)

and

ΓF =

∫
∂Ω

F · t ds , (13)

respectively. In the equations above, ∂Ω is the boundary of the area Ω where
the flux and circulation are calculated, n is the outward unit normal vector, t
is the unit tangential vector, s is the coordinate that traces the boundary ∂Ω
and e3 is the unit vector perpendicular to the (x1x2)-plane and parallel to the
x3-axis.

In order to apply the continuum concepts of flux and circulation to the lat-
tice, which is a discrete system, we consider a generic nodal point of the lattice
and its six nearest neighbours. We can denote by Ω the domain inside the
hexagon having the six neighbouring points as vertices and by ∂Ω the boundary
of the hexagon (see Fig. 2). We consider the flux and circulation of the nor-
malised displacement vector ũ defined at the six nodal points. The vectors n
and t in (12) and (13) are identified, respectively, as the unit normal vectors and
unit tangential vectors to the sides of the hexagon, as illustrated in Fig. 2a and
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Figure 2: Hexagonal cell, occupying the domain Ω with the boundary ∂Ω, relative to a generic
point in the lattice. In (a) the unit normal vectors and in (b) the unit tangential vectors are
shown.

in Fig. 2b respectively. We observe that the vector sum of the two unit vectors
n (or t) at each nodal point is a radial (or tangential) vector with respect to the
circle circumscribing the hexagon, shown as a dashed line in Fig. 2a (or Fig.
2b).

Using the Bloch-Floquet conditions (3), the (normalised) flux and circulation
of the displacement field are given by

Φ̃ũ =

∫
∂Ω

ũ · n ds̃ =
1

2

{
ũeik̃1 ·

(√
3, 0
)T

+ ũe−ik̃1 ·
(
−
√

3, 0
)T

+ ũeiζ̃ ·
(√

3

2
,

3

2

)T

+ũe−iζ̃ ·
(
−
√

3

2
,−3

2

)T

+ ũe−iξ̃ ·
(
−
√

3

2
,

3

2

)T

+ ũeiξ̃ ·
(√

3

2
,−3

2

)T
}

= i

√
3

2

{
ũ1

[
2 sin (ζ̃ + ξ̃) + sin (ζ̃) + sin (ξ̃)

]
+ ũ2

√
3
[
sin (ζ̃)− sin (ξ̃)

]}
(14)

and

Γ̃ũ =

∫
∂Ω

ũ · t ds̃ =
1

2

{
ũeik̃1 ·

(
0,
√

3
)T

+ ũe−ik̃1 ·
(

0,−
√

3
)T

+ ũeiζ̃ ·
(
−3

2
,

√
3

2

)T

+ũe−iζ̃ ·
(

3

2
,−
√

3

2

)T

+ ũe−iξ̃ ·
(
−3

2
,−
√

3

2

)T

+ ũeiξ̃ ·
(

3

2
,

√
3

2

)T
}

= i

√
3

2

{
−ũ1

√
3
[
sin (ζ̃)− sin (ξ̃)

]
+ ũ2

[
2 sin (ζ̃ + ξ̃) + sin (ζ̃) + sin (ξ̃)

]}
,

(15)

respectively. In the definitions above, s̃ = s/l is the normalised coordinate. This
interpretation is consistent with (9)-(11).
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3.2.2. The long wavelength limit

In the long wavelength limit as
∣∣∣k̃∣∣∣→ 0, Eqs. (9) and (10) have the following

asymptotic approximations:

Φ̃ũ ∼ iÃhex ũ · k̃ for
∣∣∣k̃∣∣∣→ 0 , (16)

Γ̃ũ ∼ −iÃhex

(
ũ× k̃

)
· e3 for

∣∣∣k̃∣∣∣→ 0 , (17)

where Ãhex = 3
√

3/2 is the (normalised) area of the hexagon.
It is apparent from Eqs. (16) and (17) that in the long wavelength limit,

where the lattice approximates a continuum, shear and pressure waves are char-
acterised by Φ̃ũ = 0 and Γ̃ũ = 0, respectively. For large values of the wave
vector, we will distinguish between flux-free waves and circulation-free waves
referring to Eqs. (9) and (10), as the continuum concepts of pressure and shear

waves are inappropriate for large
∣∣∣k̃∣∣∣.

3.2.3. Properties of the vector f̃

As evident from Eqs. (9) and (10), the vector f̃ plays a key role in the
characterisation of waves in a triangular lattice, analogous to the wave vector k̃
in a continuum with respect to flux and circulation.

The components of the vector f̃ are plotted in Fig. 3. For k̃2 = 0 (part
(a)) f̃2 = 0, while for k̃1 = 0 (part (b)) f̃1 = 0. Moreover, we note that for
k̃2 = k̃1/

√
3 (part (c)) f̃2 = f̃1/

√
3, while for k̃2 = k̃1

√
3 (part (d)) f̃2 = f̃1

√
3.

The vectors f̃ and k̃ are thus parallel in the directions given by arctan
(
k̃2/k̃1

)
=

(n − 1)π/6 with n = 1, .., 12, and in the neighbourhood of the origin of the k̃-
plane where f̃ ∼ 3k̃. The relation between vectors f̃ and k̃ is also illustrated
in Fig. 3e, where both vectors f̃ and k̃ are plotted in the same diagram.

3.3. Evaluation of lattice flux and circulation using lattice derivatives

The expressions (14) and (15) for lattice flux and lattice circulation, respec-
tively, can also be derived using the notions of divergence and curl of a discrete
field. In a continuum, the definitions (12) and (13) for flux and circulation can
be written as

ΦF =

∫
Ω

∇ · F dΩ (18)

and

ΓF =

∫
Ω

(∇× F ) · e3 dΩ , (19)

respectively, using the divergence theorem and Stokes’ theorem. In this sec-
tion, we show that the definitions of lattice flux and lattice circulation are fully
consistent with the notion of lattice derivatives through the discrete forms of
divergence theorem and Stokes’ theorem.

In order to define the divergence and curl of a vector field in a discrete
system, we use the definition of lattice derivatives given in [25]. Referring to
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Figure 3: Components of the vector f̃ , calculated for k̃2 = 0 (a), k̃1 = 0 (b), k̃2 = k̃1/
√

3 (c),
k̃2 = k̃1

√
3 (d). Vector plots in the k̃-plane of f̃ and k̃ (e).
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Figure 4: Oriented link vectors for the hexagonal unit cell of the discrete system.

Fig. 4, we denote by bj (j = 1, .., 6) the oriented link vectors of the hexagon
sides, which are given by

b1 = −b4 =

(
−1

2
,

√
3

2

)T

, b2 = −b5 = (−1, 0)
T
, b3 = −b6 =

(
−1

2
,−
√

3

2

)T

.

(20)
The (normalised) lattice derivatives associated with the links are then defined
as follows:

∇̃1g = g(x̃B)− g(x̃A) , ∇̃2g = g(x̃C)− g(x̃B) , ∇̃3g = g(x̃D)− g(x̃C) ,

∇̃4g = g(x̃E)− g(x̃D) , ∇̃5g = g(x̃F)− g(x̃E) , ∇̃6g = g(x̃A)− g(x̃F) ,
(21)

where g is a generic lattice quantity, that is assumed to satisfy Bloch-Floquet
conditions. We note that

∑6
j=1 ∇̃jg = 0. The Cartesian discrete forms ∇̃x̃1

and

∇̃x̃2 of the derivatives ∂̃x̃1 and ∂̃x̃2 are defined as

∂̃x̃1
→ ∇̃x̃1

≡ 2

6

6∑
j=1

(b1)j∇̃j ,

∂̃x̃2 → ∇̃x̃2 ≡
2

6

6∑
j=1

(b2)j∇̃j ,

(22)

where (b1)j and (b2)j are the components of bj in the x1- and x2-direction,
respectively.

Substituting Eqs. (20) and (21) into (22) and using the Bloch-Floquet con-
ditions (3) for the lattice quantity g, the Cartesian lattice derivatives take the
following forms:

∇̃x̃1
g =

i

3

[
2 sin (ζ̃ + ξ̃) + sin (ζ̃) + sin (ξ̃)

]
,

∇̃x̃2
g =

i
√

3

3

[
sin (ζ̃)− sin (ξ̃)

]
.

(23)
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Accordingly, we define the (normalised) lattice divergence and lattice curl of the
displacement field ũ as

∇̃ · ũ = ∇̃x̃1
ũ1 + ∇̃x̃2

ũ2

=
i

3

[
2 sin (ζ̃ + ξ̃) + sin (ζ̃) + sin (ξ̃)

]
ũ1 +

i
√

3

3

[
sin (ζ̃)− sin (ξ̃)

]
ũ2

(24)

and(
∇̃ × ũ

)
· e3 = ∇̃x̃1

ũ2 − ∇̃x̃2
ũ1

=
i

3

[
2 sin (ζ̃ + ξ̃) + sin (ζ̃) + sin (ξ̃)

]
ũ2 −

i
√

3

3

[
sin (ζ̃)− sin (ξ̃)

]
ũ1 ,

(25)

respectively.
Comparing Eqs. (24) and (25) with Eqs. (14) and (15), we notice that the

lattice flux Φ̃ũ and the lattice circulation Γ̃ũ have the form

Φ̃ũ = Ãhex ∇̃ · ũ , Γ̃ũ = Ãhex

(
∇̃ × ũ

)
· e3 , (26)

which is consistent with the continuum definitions of flux and circulation given
by (18) and (19), respectively.

4. Wave characterisation in the k̃-plane

As shown in Section 3.1, the trajectories of the lattice particles are straight
lines. Generally, these lines are neither parallel nor perpendicular to the vector
f̃ , defined in (11). This implies that flux and circulation are generally non-zero,
according to (9) and (10), for a general mode.

We denote by β(j) (j = 1, 2) the acute angle between the vector f̃ and
the displacement ũ(j), corresponding to the lower (j = 1) or upper (j = 2)
dispersion surface.

In a continuum, the angle between the displacements of the lattice particles
and the wave vector k̃ is used to identify the type of waves travelling in the
medium. In particular, if this angle is 0 (or π/2), we refer to pressure (or shear)
waves. The discrete medium considered here represents a good approximation

of a continuum only when
∣∣∣k̃∣∣∣→ 0. In this limit, vectors f̃ and k̃ are parallel, as

discussed in Section 3.2.2. This means that β = 0 (or β = π/2) indicates pure
pressure (or pure shear) waves. Accordingly, in the long wavelength limit where
the discrete medium approximates a continuum, flux-free and circulation-free
waves represent shear and pressure waves, respectively.

The displacement vector can be decomposed into a component parallel to
the vector f̃ , characterised by zero circulation, and a component perpendicular
to the vector f̃ , for which the flux is zero. When β = 0 (or β = π/2) only
the former (or latter) component is different from zero. In this case, waves are
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circulation-free (or flux-free). We shall see that there are also some special cases
where both the flux and circulation are zero. In general, waves in the lattice
may be thought as a “mixture” of circulation-free and flux-free waves. This
mixture can be characterised by the value of the angle β. Polarisation of elastic
waves in continuous media and in crystals is discussed, for example, in [26] and
[27], respectively. The notion of polarisation of elastic waves in a chiral lattice
is presented in [21].

We indicate by ũ
(j)
T (or ũ

(j)
N ), where j = 1, 2, the component of the displace-

ment vector that is parallel (or perpendicular) to the vector f̃ . We emphasise

that Γ̃
(j)
ũT

= 0 and Φ̃
(j)
ũN

= 0. Accordingly, the total circulation Γ̃
(j)
ũ = Γ̃

(j)
ũN

, while

the total flux Φ̃
(j)
ũ = Φ̃

(j)
ũT

.
As discussed in Section 3.2, flux and circulation vary harmonically in time

with the same frequency as the displacement ũ. Flux and circulation differ in
phase; however, the phase difference is not relevant for our purposes. Hence
it will not be examined in this paper. In what follows, we denote by |g| the
amplitude of a generic time-harmonic quantity g.

From Eqs. (9)-(11) we obtain the following expressions for the amplitudes
of lattice flux and lattice circulation:∣∣∣Φ̃ũ

∣∣∣ =

√
3

2

∣∣∣f̃ ∣∣∣ cos (β) , (27a)

∣∣∣Γ̃ũ

∣∣∣ =

√
3

2

∣∣∣f̃ ∣∣∣ sin (β) , (27b)

where
∣∣∣f̃ ∣∣∣ =

√
f̃2

1 + f̃2
2 and β is taken between 0 and π/2:

β = arccos
(
Ũ · f̃/

∣∣∣f̃ ∣∣∣) if Ũ · f̃ > 0 , (28a)

β = π − arccos
(
Ũ · f̃/

∣∣∣f̃ ∣∣∣) if Ũ · f̃ < 0 . (28b)

The diagrams of the amplitudes of flux and circulation in the k̃-plane are
shown in Figs. 5a and 5b. We note that only two diagrams are presented in

Fig. 5 because
∣∣∣Φ̃(1)

ũ

∣∣∣ =
∣∣∣Γ̃(2)

ũ

∣∣∣ and
∣∣∣Φ̃(2)

ũ

∣∣∣ =
∣∣∣Γ̃(1)

ũ

∣∣∣, as discussed in Section 3.2.

When
∣∣∣k̃∣∣∣→ 0, the flux and circulation for both surfaces tend to zero, while

the ratios
∣∣∣Φ̃(1)

ũ

∣∣∣ / ∣∣∣Γ̃(1)
ũ

∣∣∣ → 0 and
∣∣∣Γ̃(2)

ũ

∣∣∣ / ∣∣∣Φ̃(2)
ũ

∣∣∣ → 0. This means that waves

associated with the lower dispersion surface are flux-free (or of shear-type in the
continuum definition) and those corresponding to the upper dispersion surface
are circulation-free (or of pressure-type in the continuum definition). For large
values of the wave vector, the flux and the circulation strongly depend on k̃.

Fig. 5c shows how the angles β(1) and β(2) change with the wave vector k̃.

When
∣∣∣k̃∣∣∣→ 0, β(1) → π/2 while β(2) → 0. Interestingly, there are 12 directions,

given by arctan
(
k̃2/k̃1

)
= (n − 1)π/6 with n = 1, .., 12, where β(1) = π/2 and
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Figure 5: Three-dimensional representations in the k̃-plane of the amplitudes
∣∣∣Φ̃(1)

ũ

∣∣∣ =
∣∣∣Γ̃(2)

ũ

∣∣∣
(a) and

∣∣∣Φ̃(2)
ũ

∣∣∣ =
∣∣∣Γ̃(1)

ũ

∣∣∣ (b), as well as the angles β(1) (c) and β(2) (d), calculated in the

triangular lattice.
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Figure 6: Stationary and Dirac points of the dispersion surfaces, whose properties are given
in Tables 1 and 2. The crosses represent stationary points (points A) and Dirac points (points
D) for both surfaces, while the dots indicate stationary points (points F) only for the upper
surface.

β(2) = 0. Accordingly, waves characterised by a wave vector falling on one of
these lines are either flux-free or circulation-free. This is extremely important,
since we maintain “pure” flux-free or circulation-free waves even though the
magnitude of the wave vector is not small, as in the long wavelength limit. We
also note that β(1) = 0 and β(2) = π/2 on the sides of the hexagon having
its vertices at the six Dirac points of the lattice (see points D in Fig. 6).
This hexagon has considerable significance in characterising the nature of wave
propagation, as will be seen in the following sections.

We now classify the nature of a propagating wave as a function of its wave
vector. There are regions of “pure” flux-free wave propagation, regions of “pure”
circulation-free wave propagation and regions where the waves have non-zero
flux and circulation. The stationary points of the dispersion surfaces and the
hexagon through the Dirac points will be seen to have special significance.

4.1. Stationary points and Dirac points

The stationary and Dirac points of the lower and upper dispersion surfaces
are indicated in Fig. 6. Points D denote the Dirac points, which are at the
vertices of a hexagon. Points A coincide with the middle points of the hexagon
sides. Points A and D are characteristic of both dispersion surfaces, while points
F are stationary points only for the upper dispersion surface. The properties of
the stationary and Dirac points of the lower (upper) dispersion surface for the
triangular lattice are detailed in Table 1 (Table 2).

At the points A and D, both the flux and the circulation are zero for both
dispersion surfaces. This is due to the fact that the vector f̃ = 0 at those
points (see also Fig. 3). Furthermore, at the Dirac points D, the coefficients
of Ũ1 and Ũ2 in (7) are equal to zero, implying that the eigenvectors can be

13



Table 1: Stationary points of the lower dispersion surface of the triangular lattice.

Point k̃1 k̃2 ω̃1 Type

A ±2π 0
√

2 saddle point

0 ± 2π√
3

±π ± π√
3

D ± 4π
3

0 3√
2

maximum

± 2π
3

± 2π√
3

Table 2: Stationary points of the upper dispersion surface of the triangular lattice.

Point k̃1 k̃2 ω̃2 Type

A ±2π 0
√

6 maximum

0 ± 2π√
3

±π ± π√
3

D ± 4π
3

0 3√
2

minimum

± 2π
3

± 2π√
3

F ±4 arccos
√

7
4

0 9
4

saddle point

±4 arccos 3
4

± 2π√
3

±
[
2π − arccos −1

8

]
±
[

2π√
3
−
√

3 arccos −1
8

]
± arccos −1

8
±
√

3 arccos −1
8
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Figure 7: Characterisation of waves in the triangular lattice for the lower dispersion surface
(a) and the upper dispersion surface (b).

chosen arbitrarily. This is consistent with the Dirac points being associated
with isotropy.

At the points F, which are stationary points only for the upper dispersion

surface, Φ̃
(1)
ũ = Γ̃

(2)
ũ = 0 while Φ̃

(2)
ũ = Γ̃

(1)
ũ 6= 0. This occurs because the points

F lie on the radial lines of zero flux for the lower surface and on the radial lines
of zero circulation for the upper surface.

4.2. Wave characterisation in the k̃-plane

In Fig. 7 we detail the wave type for any value of the wave vector inside
the hexagon passing through the Dirac points for the lower (a) and upper (b)
dispersion surface. The diagram is repeated in a doubly periodic array outside
the hexagon. The values of k̃ where waves are flux-free or circulation-free are
shown as dashed and dot-dashed lines, respectively, while the points where
waves are characterised by both zero flux and zero circulation are indicated by
crosses. In the grey regions, waves have both non-zero flux-free and non-zero
circulation-free components.

We observe that the crosses, where both the flux and the circulation are
zero, are at the intersections between the dashed and dot-dashed lines, where
either the flux or the circulation is zero.

4.2.1. Lines of zero flux or zero circulation

In what follows, we give the analytical description of the results presented
in Fig. 7.
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Eq. (1) can be written in normalised form as

B̃Ũ =

B̃11 B̃12

B̃21 B̃22


Ũ1

Ũ2

 = 0 with B̃ = C̃ − ω̃2M̃ , (29)

that leads to Ũ1 = −B̃12Ũ2/B̃11 if B̃11 6= 0 or Ũ2 = −B̃21Ũ1/B̃22 if B̃22 6= 0.
According to (9) and (29), flux is zero if one of the following conditions is met:

B̃11f̃2 = B̃12f̃1 if B̃11 6= 0 ; (30a)

B̃21f̃2 = B̃22f̃1 if B̃22 6= 0 . (30b)

We note that B̃11 = B̃11(ω̃) and B̃22 = B̃22(ω̃), while B̃12, B̃21, f̃1, f̃2 are
independent of ω̃.

We start by proving that Φ̃
(2)
ũ = 0 in the hexagon passing through the Dirac

points. The left-hand side and right-hand side terms of (30a) are given by

B̃11(ω̃(2))f̃2 =
√

3 cos

(
k̃1

2

)
sin

(√
3k̃2

2

)[
2 cos

(
k̃1

2

)
cos

(√
3k̃2

2

)

− 2 cos (k̃1)−
√

2

{
3− cos (k̃1) + cos (2k̃1) +

[
2 cos (k̃1)− 1

]
cos (
√

3k̃2)

−2

[
cos

(
k̃1

2

)
+ cos

(
3k̃1

2

)]
cos

(√
3k̃2

2

)}1/2


(31)

and

B̃12f̃1 = 2
√

3

[
2 cos

(
k̃1

2

)
+ cos

(√
3k̃2

2

)]
sin2

(
k̃1

2

)
sin

(√
3k̃2

2

)
, (32)

respectively. We will investigate the horizontal and inclined lines of the hexagon
separately.

• k̃2 = (2n+ 1)2π/
√

3 (n ∈ Z). The equation in (30a) is clearly satisfied since

here sin
(√

3k̃2/2
)

= 0. However,

B̃11(ω̃(2)) =

{
−2
[
cos
(
k̃1
2

)
+ cos (k̃1)

]
if − 2π

3
+ 4nπ ≤ k̃1 ≤ 2π

3
+ 4nπ ,

0 otherwise .
(33)

Hence, (30a) is valid only on the horizontal sides of the hexagons connecting
the Dirac points of the lattice. For 2π

3 +4nπ ≤ k̃1 ≤ 10π
3 +4nπ, B̃22(ω̃(2)) 6= 0,

but (30b) is not satisfied.
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• k̃2 = ±
√

3k̃1 + (2n+ 1)4π/
√

3 (n ∈ Z). In this case, Eqs. (31) and (32) be-
come

B̃11(ω̃(2))f̃2 = ∓2
√

3 cos

(
k̃1

2

)
sin2

(
k̃1

2

)
sin

(
3k̃1

2

)[
1 + 2 cos (k̃1) +

∣∣∣2 + 4 cos (k̃1)
∣∣∣]
(34)

and

B̃12f̃1 = ±
√

3 csc (k̃1) sin2

(
k̃1

2

)[
sin (k̃1) + sin (2k̃1)

]2
, (35)

respectively. Formulae (34) and (35) are identical for 2π
3 + 2nπ ≤ k̃1 ≤

4π
3 + 2nπ, namely at the inclined sides of the hexagons passing through the

Dirac points. We also point out that

B̃11(ω̃(2)) = − sin2

(
k̃1

2

)[
1 + 2 cos (k̃1) +

∣∣∣2 + 4 cos (k̃1)
∣∣∣] , (36)

which is zero only in a countable set of points of the k̃-plane.

Next, we focus on the 12 directions passing through the origin of the k̃-plane,

given by arctan
(
k̃2/k̃1

)
= (n − 1)π/6 (n = 1, .., 12). We want to prove that

Φ̃
(1)
ũ = 0 along these lines. For ω̃ = ω̃(1), the right-hand side of (30a) is the

same as in (32), while the left-hand side of (30a) is given by

B̃11(ω̃(1))f̃2 =
√

3 cos

(
k̃1

2

)
sin

(√
3k̃2

2

)[
2 cos

(
k̃1

2

)
cos

(√
3k̃2

2

)

− 2 cos (k̃1) +
√

2

{
3− cos (k̃1) + cos (2k̃1) +

[
2 cos (k̃1)− 1

]
cos (
√

3k̃2)

−2

[
cos

(
k̃1

2

)
+ cos

(
3k̃1

2

)]
cos

(√
3k̃2

2

)}1/2


(37)

• k̃2 = n4π/
√

3 (n ∈ Z). The equation in (30a) is clearly satisfied, because both

(31) and (32) are zero considering that on these lines sin
(√

3k̃2/2
)

= 0. Since

B̃11(ω̃(1)) =

{
2
[
cos
(
k̃1
2

)
− cos (k̃1)

]
if − 4π

3
+ 4nπ ≤ k̃1 ≤ 4π

3
+ 4nπ ,

0 otherwise ,
(38)

the relation (30a) is valid only inside the hexagons, as shown in Fig. 7. In
the ranges of k̃1 where B̃11(ω̃(1)) = 0, the relation (30b) is not satisfied.

• k̃1 = n4π (n ∈ Z). B̃11(ω̃(1)) = 0, hence relation (30a) cannot be used. How-

ever, relation (30b) is satisfied, because B̃21 = 0, f̃1 = 0 and

B̃22(ω̃(1)) = 2− 2 cos

(√
3k̃2

2

)
, (39)
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which is zero only in a countable set of points.

• k̃2 = ±k̃1/
√

3 + n4π/
√

3 (n ∈ Z). In this case, Eq. (30a) is satisfied every-
where apart from a countable set of points. In particular,

B̃11(ω̃(1))f̃2 = B̃12f̃1 = ±3
√

3 sin2

(
k̃1

2

)
sin (k̃1) (40)

and

B̃11(ω̃(1)) = 3 sin2

(
k̃1

2

)
. (41)

• k̃2 = ±
√

3k̃1 + n4π/
√

3 (n ∈ Z). Along these lines, the left-hand side and

right-hand side terms of (30a) are given by

B̃11(ω̃(1))f̃2 = ∓
√

3
[
1 + 2 cos (k̃1)−

∣∣∣2 + 4 cos (k̃1)
∣∣∣] sin2

(
k̃1

2

)[
sin (k̃1) + sin (2k̃1)

]
(42)

and

B̃12f̃1 = ±
√

3 csc (k̃1) sin2

(
k̃1

2

)[
sin (k̃1) + sin (2k̃1)

]2
, (43)

respectively. The last two formulae are equivalent if −2π/3 + 2nπ ≤ k̃1 ≤
2π/3 + 2nπ. In this case,

B̃11(ω̃(1)) =
1

2

{
2
∣∣∣cos (k̃1)− cos (2k̃1)

∣∣∣− [cos (k̃1)− cos (2k̃1)
]}

, (44)

which is not zero except in a countable set of points.

5. Illustrative examples

Here, we show how waves with specific values of the wave vector k̃ propagate
in the triangular lattice.

We start by considering a large value of
∣∣∣k̃∣∣∣, in particular k̃1 = 2.15 and

k̃2 = 3.19. This wave vector lies in one of the grey regions of Fig. 7, characterised
by “mixed” non-zero flux-free and non-zero circulation-free components. The
corresponding frequencies in the lower and upper dispersion surface are ω̃(1) =
1.96 and ω̃(2) = 2.24, respectively. The components of the vector f̃ are given
by f̃1 = 0.04 and f̃2 = 0.61. Using (27), we derive the amplitudes of flux and

circulation, namely
∣∣∣Φ̃(1)

ũ

∣∣∣ =
∣∣∣Γ̃(2)

ũ

∣∣∣ = 0.386 and
∣∣∣Φ̃(2)

ũ

∣∣∣ =
∣∣∣Γ̃(1)

ũ

∣∣∣ = 0.366. The

angles between the vector f̃ and the straight-line trajectories of the particles
for the two dispersion surfaces are β(1) = 0.76 rad and β(2) = 0.81 rad. The
trajectory of a lattice particle calculated for the lower (upper) dispersion surface
is shown in Fig. 8 by a dashed (dot-dashed) line. We point out that the
two trajectories are perpendicular to each other, because the corresponding
eigenvectors are orthogonal.
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Figure 8: Trajectory of a generic particle in the lattice corresponding to the lower (dashed
line) and upper (dot-dashed line) dispersion surface, determined for k̃1 = 2.15 and k̃2 = 3.19.
The wave vector k̃, the vector f̃ and the angles β(j) are also plotted in the figures.

The motions of the particles in the lattice for the two dispersion surfaces,
both calculated for k̃1 = 2.15 and k̃2 = 3.19, are shown in the videos included
in the Supplementary Material (see [28]). The total displacements and the
components of the displacements tangential to f̃ and normal to f̃ are displayed
in the videos. The magenta and green arrows represent the wave vector k̃ and
the vector f̃ , respectively. Video1a-Video1f illustrate that the total motion of
each lattice particle is the superposition of a flux-free and a circulation-free
component.

For a smaller value of the wave vector, say k̃1 = 0.20 and k̃2 = 0.30, the
lattice approximates a continuum. In this case, the vectors k̃ and f̃ are parallel
to each other. The motion is of shear (or pressure) type in the lower (or upper)
dispersion surface. Accordingly, the tangential (or normal) component of the
displacement vector is very small (see Video2a-Video2f in the Supplementary
Material [28]).

In Video3a-Video3f, the wave vector
(
k̃1, k̃2

)T

= (2.15, 1.24)
T

, which is on

the line inclined by 30◦ with respect to the k̃1-axis. Although the modulus
of the wave vector is large, the lattice motions corresponding to the lower and
upper surfaces are similar to those observed in Video2a-Video2f for a small wave
vector. The reason is that on the line k̃1/k̃2 =

√
3 the flux (or circulation) is

zero in the lower (or upper) surface, as shown in Fig. 7a (or Fig. 7b), hence the
tangential (or normal) component to f̃ is null.

We note that flux-free waves in Video2a represent the case of small
∣∣∣k̃∣∣∣ and

hence are similar to shear waves in a continuum. On the other hand, in Video3a,
which also illustrates flux-free waves, the wavelength is comparable to the size of

the elementary cell and
∣∣∣k̃∣∣∣ is finite. Similar observations apply to circulation-

free waves, shown in Video2d and Video3d for small and finite values of
∣∣∣k̃∣∣∣,

respectively.
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Video4a-Video4f show the lattice motion at the stationary point A with
coordinates k̃1 = π and k̃2 = π/

√
3 (see Fig. 6 and Table 1). Standing waves

are clearly visible from the videos. In addition, we note that the tangential
(normal) component of the displacement is zero in the lower (upper) dispersion
surface, because β(1) = π/2 rad (β(2) = 0 rad).

Finally, Video5a-Video5f present the motion of the lattice particles when the
wave vector is on the hexagon connecting the Dirac points, shown in Fig. 6.
For the calculations, we have taken k̃1 = 3.67 and k̃2 = 0.91. In this case, the
normal (tangential) component of the displacement is equal to zero in the lower
(upper) dispersion surface, since β(1) = 0 rad (β(2) = π/2 rad).

6. Conclusions

The paper has addressed a fundamental issue of quantitative and graphical
characterisation of the dynamic anisotropy of waves in a vector elastic lattice.
Compared to the earlier work [21], which discussed wave polarisation in elastic
structured media, an additional viewpoint has been proposed and fully imple-
mented to take into account effects of pressure and shear in the dynamic elastic
lattice. Although in the long-wave regime corresponding to a continuum approx-
imation the matter appears to be straightforward, additional lattice constraints
make coupling complex in the intermediate and high frequency regimes.

In particular, we have identified quantitative characteristics of waveforms
in an elastic lattice to generalise the notion of pressure and shear waves used
in the continuum. The cases of high frequency and wavelength comparable to
the size of the elementary cell are considered in detail. These include dynamic
anisotropy and dynamic neutrality in the context of waveforms classified by the
lattice flux and lattice circulation attributed to them.
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