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We derive a necessary and sufficient condition for Poincaré Lie superalgebras in any

dimension and signature to be isomorphic. This reduces the classification problem, up

to certain discrete operations, to classifying the orbits of the Schur group on the vec-
tor space of superbrackets. We then classify four-dimensional N = 2 supersymmetry

algebras, which are found to be unique in Euclidean and in neutral signature, while in

Lorentz signature there exist two algebras with R-symmetry groups U(2) and U(1, 1),
respectively.
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1. Introduction

Supersymmetry can be defined in any space-time signature. Besides Lorentzian sig-

nature, Euclidean signature has received a good deal of attention because of its

relevance for the functional integral formalism, non-perturbative effects, and the

construction of stationary solutions through dimensional reduction to an auxiliary

Euclidean theory. Exotic signatures with more than one time-like dimension have

been less studied, but seem to be mandatory in string theory, where space-time

signature can be changed by combining time-like T-duality and S-duality [1,2,3].

On the mathematical side, N -extended Poincaré Lie superalgebras in general sig-

nature (t, s) have been constructed and classified, in arbitrary dimension and for

arbitrary N , in [4]. This work was extended to a classification of polyvector charges

1
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(BPS charges) in [5]. While this construction allows one to obtain all Poincaré Lie

superalgebras, it does not immediately provide a classification up to isomorphism,

for the following reason: the essential ingredients in extending a Poincaré Lie alge-

bra g0 = p(V ) = so(V ) + V , where V ∼= Rt,s, to a Poincaré Lie superalgebra are:

(i) the specification of a spinorial module (spin 1/2 representation) S which serves

as the odd part, g = g0 + g1 = (so(V ) + V ) + S, and (ii), the specification of the

superbracket on S. More precisely, as shown in [4], one needs to specify a real, sym-

metric, vector-valued, Spin0(V )-equivariant bilinear form Π : S × S → V , which

defines the restriction of the superbracket to S × S, [s, t] := Π(s, t) for all s, t ∈ S.

As shown in [4], a basis of the vector space of all such vector-valued bilinear forms

can be constructed in terms of so-called admissible bilinear forms β : S × S → R.

While all possible Poincaré Lie superalgebras can be obtained this way, one still

needs criteria which allow one to decide whether the algebras defined by any two

given superbrackets are isomorphic, or not. This is the problem which we address

and solve in this paper. Theorem 1 gives a necessary and sufficient condition for two

Poincaré Lie superalgebras to be isomorphic, while subsequently Corollary 1 shows

that the classification problem amounts to, essentially (see Remark 1), classifying

the orbits of the so-called Schur group C∗(S) on the space of superbrackets. The

Schur group is the subgroup of GL(S) the elements of which commute with the

action of Spin0(V ). The stabilizer subgroup of the Schur group on a given orbit is

the R-symmetry group of the corresponding supersymmetry algebra.

As an application of this general result we obtain the classification of four-

dimensional N = 2 supersymmetry algebras for all signatures (0, 4), . . . , (4, 0).

Here N = 2 supersymmetry refers to supersymmetry algebras whose odd part is

the complex spinor module S ∼= C4, that is the representation by Dirac spinors.

Note that for some signatures this is the minimal supersymmetry algebra. Since

signatures (t, s) and (s, t) are physically equivalent, as they are related by going

from a mostly plus to a mostly minus convention for the metric, or, for neutral

signature, swapping of time-like against space-like dimensions, there are three cases

to consider: Euclidean, Lorentzian and neutral signature. In all cases the space

of N = 2 superbrackets is four-dimensional, and different isomorphism classes of

N = 2 supersymmetry algebras are represented by elements in different open orbits

of the Schur group. In cases where the N = 2 supersymmetry algebra is non-

minimal, N = 1 supersymmetry algebras are related to lower-dimensional orbits.

While in Euclidean and in neutral signature the N = 2 supersymmetry algebra

is shown to be unique up to isomorphism, we find that there are two Lorentzian

N = 2 supersymmetry algebras, distinguished by their R-symmetry groups, which

are U(2) and U(1, 1) respectively. The supersymmetry algebra with non-compact

R-symmetry group is of the same type as the ‘twisted’ or ‘type-*’ supersymmetry

algebras that occur when time-like T-duality is applied to ‘conventional’ theories,

the prime example being the map between IIA/B and IIB∗/IIA∗ string theory [1].

Explicit off-shell representations for four-dimensional vector multiplets in arbitrary
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signature will be presented in a companion paper [6].

2. Classification of Poincaré Lie superalgebras in arbitrary

dimension, signature and number of supercharges

Consider the pseudo-Euclidean vector space V = Rt,s ∼= Rt+s with its standard

scalar product 〈v, w〉 = −
∑t
i=1 v

iwi +
∑t+s
i=t+1 v

iwi. We denote by S an arbitrary

non-trivial module of the Clifford algebra Cl(V ), considered as a module of the Lie

algebra so(V ) ∼= spin(V ), that is, an arbitrary sum of irreducible spinor modules.

Then γ : Cl(V ) → EndS, a 7→ γa = γ(a), denotes the corresponding Clifford

representation. Let g = so(V )+V +S be the direct sum of the vector spaces so(V ),

V , S. We endow g with the Z2 grading g0 = so(V ) + V , g1 = S.

We consider on g = g0 + g1 all possible Lie superbrackets [·, ·] of the following

form:

[A,B] = AB −BA , [A, v] = Av , [v1, v2] = 0 , [A, s] = A · s := ρS(A)s ,

[s1, s2] = Π(s1, s2) ∈ V ,

for all A,B ∈ so(V ), v, v1, v2 ∈ V and s, s1, s2 ∈ S, where ρS denotes the spinorial

representation of so(V ) on S and where Π ∈ (Sym2S∗⊗V )Spin0(V ), is a symmetric,

Spin0-equivariant vector-valued bilinear form on S.

Such Lie superalgebras (g, [·, ·]) are called Poincaré Lie superalgebras. All such

brackets Π are linear combinations of brackets of the form Πβ , where β is a super-

admissible bilinear form on S [4]. Πβ is defined as follows:

〈Πβ(s1, s2) , v〉 = β(vs1, s2) , (2.1)

for all s1, s2 ∈ S, v ∈ V . The admissibility of the form β is defined by the existence

of σ, τ ∈ {±1}, called the symmetry, and the type of β, respectively, such that

β(s1, s2) = σβ(s2, s1) ,

β(vs1, s2) = τβ(s1, vs2) , (2.2)

for all s1, s2 ∈ S, v ∈ V . An admissible form is called super-admissible if στ = 1.

All admissible bilinear forms were described in [4]. In particular, all the brackets Π

defining Poincaré Lie superalgebras are known explicitly.

In general, the space of brackets is higher-dimensional and for a given pair

Π,Π′ ∈ (Sym2S∗ ⊗ V )Spin0(V ) one needs to decide whether the corresponding Lie

superalgebras (g, [·, ·] = [·, ·]Π) and (g, [·, ·]′ = [·, ·]Π′) are isomorphic. This is the

classification problem for Poincaré Lie superalgebras up to isomorphism. In this

section we explain how this problem can be solved in general. In the next section we

will apply the method in four dimensions for the case where the spinorial module

S is the complex spinor module S, that is the representation on Dirac spinors,

regarded as a real representation.

Theorem 1. Assume that the signature (t, s) of V is different from (1, 1). Two

Poincaré Lie superalgebras (g, [·, ·]) and (g, [·, ·]′) are isomorphic if and only if there
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exists ψ = ψ′ · a ∈ Pin(V ) · C(S)∗, where ψ′ ∈ Pin(V ) and a ∈ C(S)∗, such that

Π′(ψs1, ψs2) = ϕ(Π(s1, s2)) , (2.3)

or

Π′(ψs1, ψs2) = −ϕ(Π(s1, s2)) , (2.4)

for all s1, s2 ∈ S, where ϕ is the image of ψ′ under the homomorphism Ad :

Pin(V ) → O(V ) induced by the adjoint representation of Pin(V ) on V . Here

C(S)∗ = ZGL(S)(spin(V )) denotes the group of invertible elements of the Schur

algebra C(S) = ZEnd(S)(spin(V )). The product Pin(V ) · C(S)∗ denotes the subgroup

of GL(S) generated by Pin(V ) and C(S)∗. (Notice that Pin(V ) normalizes C(S)∗.)

Proof: Every isomorphism φ : (g, [·, ·]) → (g, [·, ·]′) maps gi to gi, i = 0, 1. It also

maps V to V , since V is precisely the kernel of the representation of g0 on g1, which

is induced by the adjoint representation of g with either bracket. We define:

ϕ := φ|V ∈ GL(V ) , ψ := φ|S ∈ GL(S) .

It follows that φ induces an automorphism ξ of the quotient so(V ) = (so(V )+V )/V .

Even more is true. The subalgebra φ(so(V )) ⊂ so(V ) + V is conjugate to so(V ) by

a translation, as follows from H1(so(V ), V ) = 0. Therefore, up to composition of φ

with the inner automorphism of (g, [·, ·]′) induced by the above translation, we can

assume that φ(so(V )) = so(V ). Now we can identify ξ = φ|so(V ) ∈ Aut(so(V )).

Therefore φ is an isomorphism if and only if ξ, ϕ, ψ satisfy the following system of

equations:

ξ(A)ϕ(v) = ϕ(Av) , (2.5)

ξ(A)ψ(s) = ψ(As) , (2.6)

and (2.3), for all A ∈ so(V ), v ∈ V and s1, s2 ∈ S. Equation (2.5) determines

ξ ∈ Aut(so(V )) in terms of ϕ as ξ = Cϕ, where Cϕ : A 7→ ϕ ◦A ◦ ϕ−1 denotes the

conjugation by ϕ. Now (2.5) is a condition solely on ϕ:

ϕ ∈ NGL(V )(so(V )) = {A ∈ GL(V ) | A∗〈·, ·〉 = ±λ〈·, ·〉, λ > 0} .

Here we have used that a linear transformation which normalizes the Lie algebra

so(V ) (and therefore the group SO0(V )) preserves the scalar product up to a (pos-

sibly negative) factor, which is true for all signature (t, s) with the exception of

(t, s) = (1, 1). Note if t 6= s, the resulting group is precisely the linear conformal

group

CO(V ) = {A ∈ GL(V ) | A∗〈·, ·〉 = λ〈·, ·〉, λ > 0} = R∗ ·O(V ),

since anti-isometries only exist if t = s. The next lemma shows that (2.6) implies

ϕ ∈ CO(V ) for all signatures (t, s) 6= (1, 1).

Lemma 1. Assume that t = s ≥ 2, and let ξ be the automorphism of so(V )

induced by an anti-isometry ϕ ∈ GL(V ). Then there is no ψ ∈ GL(S) normalizing

the image of spin(V ) in EndS and acting on spin(V ) ∼= so(V ) as ξ.



June 26, 2020 14:59 WSPC/INSTRUCTION FILE
All˙Sign˙4d˙Part1˙revised

Vector multiplets in arbitrary signature (I) 5

Proof: Since the homomorphism Ad : Pin(V ) → O(V ) is surjective we can as-

sume without loss of generality that ϕ is given by ϕ(ei) = e′i, ϕ(e′i) = ei, where

(e1, . . . , et, e
′
1, . . . , e

′
t) is an orthonormal basis with time-like vectors ei. Then ξ in-

terchanges eiej with −e′ie′j (i 6= j) and eie
′
j with −e′iej = eje

′
i (i, j arbitrary).

We proceed by induction starting with the case t = 2 (since the claim is not

true for t = 1). Without loss of generality we can assume that the Clifford module

S is irreducible. Then we can realize S in signature (2, 2) as S = R2 ⊗ R2, where

γe1 = J ⊗ I, γe2 = K ⊗ I, γe′1 = 1 ⊗ J , γe′2 = 1 ⊗ K, where I, J,K = IJ are

pairwise anti-commuting operators on R2 such that J2 = K2 = 1 = −I2. Then ξ

preserves the elements J ⊗K,K ⊗J and interchanges 1⊗ I with −I ⊗1 and J ⊗J
with −K ⊗K. In fact, these elements obtained by pairwise multiplying the above

Clifford generators form a basis of spin(V ). Now we can write ψ ∈ End(S) in the

form

ψ = 1⊗A0 + I ⊗A1 + J ⊗A2 +K ⊗A3, (2.7)

where Aa ∈ End(R2), a = 0, . . . , 3. Now one can easily solve the system of equations

ψ ◦ (J ⊗K) = (J ⊗K) ◦ ψ, ψ ◦ (K ⊗ J) = (K ⊗ J) ◦ ψ,

ψ ◦ (1⊗ I) = −(I ⊗ 1) ◦ ψ, ψ ◦ (K ⊗K) = −(J ⊗ J) ◦ ψ,

which corresponds to (2.6). We find that the only solution is ψ = 0, showing that

for t = 2 there is no ψ ∈ GL(S) with the desired properties.

To pass from t to t + 1 we write the irreducible Clifford module in signature

(t+ 1, t+ 1) as S = R2 ⊗ (R2)⊗n, where γei = J ⊗Li, γe′i = J ⊗L′i, γen+1 = I ⊗ 1,

γ′en+1
= K ⊗ 1 and Li, L

′
i are Clifford generators in signature (t, t). Then we write

ψ ∈ End(S) as (2.7), where now Aa ∈ End((R2)⊗n). The equation (2.6) is now a

system of equations for the Aa, which contains the following equations:

AaLiLj = −L′iL′jAa (i 6= j), AaLiL
′
j = LjL

′
iAa (2.8)

and also equations involving γen+1 and γ′en+1
. By induction, the equations (2.8)

already imply Aa = 0. In fact, this system for a single A corresponds to the equation

(2.6) in signature (t, t). �
Since a homothety with factor µ on S accompanied by µ2 on V defines an

automorphism of any Poincaré Lie superalgebra, we can assume that ϕ ∈ O(V ).

It is known that the homomorphism Ad : Pin(V ) → O(V ) is surjective for dimV

even, while the image is SO(V ) if dimV is odd. Irrespective of the dimension of V ,

there either exists ψ1 ∈ Pin(V ), with Ad(ψ1) = ϕ, or there exists ψ2 ∈ Pin(V ) with

Ad(ψ2) = −ϕ, or both. Any such ψi solves equation (2.6), and all solutions are of

this type.

This shows that ψ coincides, up to an element of the Schur group C(S)∗, either

with a pre-image ψ1 of ϕ or with a pre-image ψ2 of −ϕ under the map Ad :

Pin(V ) → O(V ). In the former case (2.3) holds, whereas in the latter case the

equation

Π′(ψs1, ψs2) = −ϕ̃(Π(s1, s2))



June 26, 2020 14:59 WSPC/INSTRUCTION FILE
All˙Sign˙4d˙Part1˙revised

6 V. Cortés, L. Gall and T. Mohaupt

holds, where ϕ̃ = −ϕ is the image of ψ under Ad : Pin(V ) → O(V ). Conversely,

any solution (ψ,ϕ) of (2.3) or (2.4) defines an isomorphism from (g, [·, ·] = [·, ·]Π) to

(g, [·, ·]′ = [·, ·]Π′) or from (g, [·, ·]−Π) to (g, [·, ·]′ = [·, ·]Π′), respectively. This proves

the theorem since the Lie superalgebras (g, [·, ·]Π) and (g, [·, ·]−Π) are isomorphic.

An isomorphism is given by (A, v, s) 7→ (A,−v, s). �
The above theorem allows us to reduce the classification of Poincaré Lie super-

algebras up to isomorphism to the classification of the orbits

OΠ := C(S)∗ · Pin(V ) ·Π (2.9)

of the group C(S)∗·Pin(V )
Spin0(V ) on (Sym2S∗ ⊗ V )Spin0(V ). Notice that the finite group

Pin(V )/Spin0(V ) ∼= O(V )/SO0(V ) is isomorphic either to Z2 or to Z2 × Z2. Since

we are ultimately interested in the four-dimensional case, we will now assume that

n = t+ s = dimV is even. If this case

Pin(V )

Spin0(V )
=


{[1], [e1], [ω], [e1ω]} , if V indefinite , t, s odd ,

{[1], [e1], [et+s], [e1et+s]} , if V indefinite , t, s even ,

{[1], [e1]} , if V definite ,

where (e1, . . . , en) is an orthonormal basis of V , and where ω = e1 · · · en.

Since ω ∈ γ(Pin(V )) ∩ C(S)∗, we have

(1)

C(S)∗ · γ(Pin(V )) = C(S)∗ · γ(Spin0(V )) ∪ C(S)∗ · γ(Spin0(V )e1) ∪
C(S)∗ · γ(Spin0(V )et+s) ∪ C(S)∗ · γ(Spin0(V )e1et+s) ,

if V is indefinite and t, s are both even.

(2)

C(S)∗ · γ(Pin(V )) = C(S)∗ · γ(Spin0(V )) ∪ C(S)∗ · γ(Spin0(V )e1) ,

if V is definite, or if V is indefinite and t, s are both odd.

This proves the following:

Proposition 1. Assume that dimV is even. Then the orbit OΠ defined in (2.9)

is given by

OΠ = C(S)∗ ·Π ∪ C(S)∗ · γe1 ·Π ∪ C(S)∗ · γet+s
∪ C(S)∗ · γe1et+s

if V is indefinite and t, s are both even, and by

OΠ = C(S)∗ ·Π ∪ C(S)∗ · γe1 ·Π .

if V is definite or if V is indefinite and t, s are both odd.

Using Theorem 1 we obtain:

Corollary 1. Assume that dimV is even, with V 6∼= R1,1.
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(1) V is definite, or V is indefinite and t, s are odd. Then two Poincaré Lie super-

algebras (g, [·, ·] = [·, ·]Π) and (g, [·, ·]′ = [·, ·]Π′) are isomorphic if and only if Π,

−Π, γe1Π, or −γe1Π is related to Π′ by an element of the Schur group C(S)∗.

(2) V is indefinite and t, s are both even. Then two Poincaré Lie superalgebras

(g, [·, ·] = [·, ·]Π) and (g, [·, ·]′ = [·, ·]Π′) are isomorphic if and only if Π, −Π,

γe1Π, −γe1Π γet+sΠ, −γet+sΠ, γe1et+sΠ or −γe1et+sΠ, is related to Π′ by an

element of the Schur group C(S)∗.

Remark 1. We will find in Section 3 that in dimension four, and for S = S the

complex spinor module, the elements γe1 and γet+s
in Proposition 1 and Corollary

1 are not needed, that is OΠ = C(S)∗ · Π and two Poincaré Lie superalgebras

(g, [·, ·] = [·, ·]Π) and (g, [·, ·]′ = [·, ·]Π′) are isomorphic if and only if Π or −Π is

related to Π′ by an element of the Schur group C(S)∗.

3. Classification of Poincaré Lie superalgebras based on

four-dimensional Dirac spinors in arbitrary signature

3.1. The general setting

Now we apply the method in four dimensions for the case where the spin(V ) module

S is the complex spinor module S, regarded as a real module. According to Corollary

1, to classify the Poincaré Lie superalgebras in this case, we need to determine first

the Schur group C(S)∗ for all possible signatures (t, s), t + s = 4, and classify the

orbits of the Schur group on (Sym2S∗⊗V )Spin0(V ). Then we need to determine the

orbits of the involution induced by γe1 , and for t, s both even also of γe4 and γe1γe4 ,

on this set of orbits.

For reference, we will now list the Clifford algebras, spinor modules and Schur

algebras that are relevant in four dimensions. We use a notation where K(N) denotes

the algebra of N ×N matrices over K ∈ {R,C,H}, and where mK(N) := K(N)⊕
· · ·⊕K(N) is the m-fold direct sum of the algebras K(N). The algebra mK(N) has

precisely m inequivalent irreducible representations, given by the natural action

of one factor K(N) on KN , while the other factors act trivially. Recall that all

real Clifford algebras Ct,s are isomorphic to matrix algebras of the form mK(N),

while all complex Clifford algebas Cln are of the form mC(N), where m ∈ {1, 2}.
The same is true for the even Clifford algebras Cl0t,s and Cl0n. It follows that Cl0t,s
has either a unique irreducible module Σ (if m = 1), or precisely two irreducible

modules Σ1 6∼= Σ2 (if m = 2). The most general Cl0t,s module is of the form S = pΣ

or S = p1Σ1 ⊕ p2Σ2, and the corresponding Schur algebra is C(S) = K(p) or

C(S) = K(p1)⊕K(p2). Similar results hold for Cl0n.

Now we specialize the discussion to four dimensions and the case where S = S
is the complex spinor module. We start with the complex Clifford algebra Cl4 and

its even subalgebra Cl04, which are listed in Table 1.

The complex spinor module S, which is the Spin(C4)-module obtained by re-

stricting an irreducible Cl4-module, decomposes in even dimensions into two in-
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Table 1. The complex Clifford algebra Cl4 together with its even part Cl04, the spinor and semi-

spinor modules, S, S±, and their Schur algebras C(S), C(S±).

Complex case Cl4 Cl04 CC(S) CC(S±) S S±
C(4) 2C(2) 2C C C4 C2

equivalent irreducible complex semi-spinor modules S±. The complex Schur algebra

of S is denoted CC(S) := EndCl04(S).

In Table 2 we list the real Clifford algebras, spinor modules and Schur algebras

for all signatures that occur in four dimensions.

Table 2. The real Clifford algebras in four dimensions, together with their even subalgebras, the

Schur algebras C(S) and C(SR) of the complex and real spinor module, and the relations between
the complex and real spinor modules S, SR and semi-spinor modules S±, S±R .

Signature Clt,s Cl0t,s Ct,s(S) Ct,s(SR) S S±
(0, 4), (4, 0) H(2) 2H 2H 2H SR S±R

(1, 3) R(4) C(2) C(2) C SR ⊗ C SR

(2, 2) R(4) 2R(2) 2R(2) 2R SR ⊗ C S±R ⊗ C

(3, 1) H(2) C(2) C(2) C(2) SR = S±R ⊗ C S±R

The real spinor module SR is the Spin(t, s)-module obtained by restricting an

irreducible Clt,s-module. SR is either irreducible or decomposes into two irreducible

real semi-spinor modules S±R , which may or may not be isomorphic to one another.

The decide whether SR is reducible, we need to compare Clt,s to Cl0t,s. In four

dimensions we find by inspection that the only signature where real spinors are

irreducible is (1, 3). In the remaining cases real spinors decompose into real semi-

spinors, SR = S+
R ⊕ S

−
R . The real semi-spinor modules are isomorphic if and only

if the algebra Cl0t,s is simple. The relation between the complex spinor module S
and the real spinor module SR, and the relation between the complex semi-spinor

modules S± and real semi-spinor modules S±R follow by dimensional reasoning. We

have also listed the Schur algebras Ct,s(SR) = ZGL(SR)(spin(t, s)) = EndCl0t,s(SR)

and Ct,s(S) = ZGL(S)(spin(t, s)) = EndCl0t,s(S) of SR and S, where the latter is

considered as a real module. While the Schur algebras Ct,s(S) are relevant for our

classification problem, the Schur algebras Ct,s(SR) are included for comparison with

Table 1 of [5].

Elements a ∈ Ct,s(S)∗ of the Schur group act on vector-valued bilinear forms

Π ∈ (Sym2S∗ ⊗ Rt,s)Spin0(t,s) by the contragradient (or dual) representation

(a,Π) 7→ Π′ = a ·Π = Π(a−1· , a−1·) .
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By considering one-parameter subgroups a(u) = exp(uA), where A ∈ Ct,s(S) is an

element of the Schur algebra regarded as a Lie algebra, we obtain the corresponding

infinitesimal action

(A,Π) 7→ Π′ = A ·Π := −Π(A·, ·)−Π(·, A·) .

Recall that if β is an admissible bilinear form on S, as defined in (2.2), then the

corresponding admissible vector-valued bilinear form Πβ is given by (2.1). If β is an

admissible bilinear form, then an endomorphism A ∈ End(S) is called β-admissible

if the following conditions hold:

(1) Clifford multiplication either commutes or anti-commutes with A. The type of

A is τ(A) = 1 in the first case and τ(A) = −1 in the second.

(2) A is either β-symmetric or β-skew. The β-symmetry of A is σβ(A) = 1 in the

first case and σβ(A) = −1 in the second.

(3) If S is reducible, S = S+ + S−, then either AS± ⊂ S± or AS± ⊂ S∓. The

isotropy of A is ι(A) = 1 in the first case and ι(A) = −1 in the second.

For reducible S we can also define the isotropy ι(β) of a bilinear form β to be

ι(β) = 1 if S± are mutually β-orthogonal, β(S±,S∓) = 0, and to be ι(β) = −1 if

S± are mutually β-isotropic, β(S±,S±) = 0. A non-degenerate admissible bilinear

form automatically has a well defined isotropy.

It was shown in [4] that if β is admissible and if A is β-admissible, then

βA := β(A·, ·)

is admissible. Moreover, the space of Spin0-invariant bilinear forms admits a

basis (βA1
, . . . , βAl

), consisting of admissible forms βAi
, where Ai ∈ Ct,s(S),

i = 1, . . . ,dim Ct,s(S) are the elements of a basis of the Schur algebra, and

where β is a non-degenerate admissible bilinear form [4]. The vector-valued bi-

linear form ΠβA
associated to the admissible bilinear form βA is symmetric, and

hence defines a Poincaré Lie superalgebra, if and only if βA is super-admissible,

σ(βA)τ(βA) = 1. Note that any basis of admissible forms will split into two disjoint

subsets, one consisting of super-admissible forms, the other of admissible forms with

σ(βA)τ(βA) = −1.

The following short calculation shows that the infinitesimal action of the Schur

group on vector-valued bilinear forms can be expressed as an action on the under-

lying bilinear forms:

〈Πβ(As1, s2) + Πβ(s1, As2) , v〉 = β(γvAs1, s2) + β(γvs1, As2)

= (τ(A) + σβ(A))β(Aγvs1, s2) = (τ(A) + σβ(A))βA(γvs1, s2)

= (τ(A) + σβ(A))〈ΠβA
(s1, s2), v〉 .

Therefore:

−A ·Πβ = (τ(A) + σβ(A))ΠβA
=

2τ(A)ΠβA
, if τ(A)σβ(A) = 1 ,

0 , if τ(A)σβ(A) = −1 .
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This shows that a β-admissible Schur algebra element only acts non-trivially on

a super-admissible form if it maps it to another super-admissible form. The β-

admissible Schur algebra elements A ∈ Ct,s(S) with σβ(A)τ(A) = −1 generate the

connected component of the stabilizer (or isotropy group) of Πβ ,

StabCt,s(S)∗(Πβ) = {a ∈ C(S)∗|β(γva·, a·) = β(γv·, ·)} ⊂ Ct,s(S)∗ .

Up to conjugation the stabilizer only depends on the Ct,s(S)∗-orbit of Πβ , and is

therefore isomorphic for all superbrackets which define isomorphic Poincaré Lie

superalgebras. We define the R-symmetry group GR of a Poincaré Lie superalgebra

with bracket Π as GR = StabCt,s(S)∗(Π).

3.2. Minkowski signature

Minkowski signature can be realised either with the mostly plus convention, (t, s) =

(1, 3) or with the mostly minus convention (t, s) = (3, 1). While the Clifford algebras

Cl1,3 ∼= R(4) and Cl3,1 ∼= H(2) are distinct, the even Clifford algebras Cl01,3
∼=

C(2) ∼= Cl03,1, and hence the resulting Spin0(1, 3)- and Spin0(3, 1)- representations

are equivalent. Since also the Schur algebras C1,3(S) ∼= C(2) ∼= C3,1(S) are the same,

the classification of Schur group orbits, and hence of Poincaré Lie superalgebras

will not depend on which convention we use for the signature. For definiteness we

will work in the mostly plus convention, (t, s) = (1, 3). Our conventions for Clifford

algebras and their representations are as follows: The real Clifford algebra Clt,s is

represented by matrices γµ, µ = 1, . . . t+ s = n satisfying

{γµ, γν} = 2ηµν1 , (ηµν) = diag(−1, . . . ,−1, 1, . . . 1) .

This is the same convention as in [7,8], which differs from [9] by a relative sign in

the defining relation of the Clifford algebra, and a relative sign in the definition of

ηµν . The net effect is that Clt,s refers to the same real associative algebra.

A convenient model of S for signature (1, 3) can be constructed by taking tensor

products of real factors R2, using that the real Clifford algebra can be realised as a

product: Cl1,3 ' Cl0,2 ⊗ Cl1,1 ' R(2)⊗ R(2) ' R(4). We define:

I =

 1 0

0 −1

 , J =

 0 1

1 0

 , K = IJ =

 0 1

−1 0

 .

Note that I and J are two anticommuting involutions, so that their product K is

a complex structure anticommuting with I, J . Combined with the 2 × 2 identity

matrix 1 = 12 they generate the real algebra R(2), which can be identified with

the algebra H′ of para-quaternions, see Appendix B of [8].

Clifford generators can be realised as follows:

γ0 = K ⊗ I , γ1 = I ⊗ 1 , γ2 = J ⊗ 1 , γ3 = K ⊗K .

These generators act on the real spinor module SR ' R4 ' R2⊗R2. The correspond-

ing spin(1, 3) representation is real and corresponds to Majorana spinors. We could
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proceed to construct a Poincaré Lie superalgebra of the form g = so(1, 3)+R1,3+SR,

which in physics terminology is the N = 1 supersymmetry algebras based on

Majorana spinors, and which is the minimal supersymmetry algebra in signature

(1, 3). But our main interest is to classify Poincaré Lie superalgebras of the from

g = so(1, 3) + R1,3 + S, that is N = 2 supersymmetry algebra where the super-

charges form a Dirac spinor. We will see later that in our description the N = 1

supersymmetry algebra corresponds to a special (higher co-dimension) orbit of the

Schur group. We now proceed with the N = 2 case and therefore consider two

copies of the real spinor module

SR ⊕ SR ' SR ⊗ R2

which we identify with the complex spinor module by equipping the additional

factor R2 with the complex structure K:

S ' SR ⊗ C , C ' (R2,K) .

Real bilinear forms on S can be constructed as tensor products of bilinear forms on

the three factors R2. On each factor R2 we use the following basis of bilinear forms:

g = g0 is the standard positive definite symmetric bilinear form, with representing

matrix the identity. Then we use I, J,K to define:

g1 = η = g(I·, ·) = g(·, I·) ,
g2 = η′ = g(J ·, ·) = g(·, J ·) ,
g3 = ε = g(K·, ·) = −g(·,K·) .

The symmetric bilinear forms g1 and g2 have split signature, while the antisym-

metric bilinear form g3 is the Kähler form associated to the metric g0 and complex

structure K.

For later use, we list the symmetry σβ(A) of the endomorphisms A = 1, I, J,K

with respect to the bilinear forms β = g0, g1, g2, g3 in Table 3.

Table 3. The symmetry of the endomorphims 1, I, J,K with respect to the bilinear forms g, η, η′, ε.

g0 g1 g2 g3

1 + + + +

I + + − −
J + − + −
K − + + −

On SR ∼= R2 ⊕ R2 the even Clifford algebra is realized as

Cl01,3 = Cl0,3 = 〈γ0γα|α = 1, 2, 3〉algebra = 〈J ⊗ I , I ⊗ I ,1⊗ J〉algebra .
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By inspection, K ⊗ J and 1⊗ 1 form a basis for operators commuting with Cl01,3.

Since (K ⊗ J)2 = −1 the Schur algebra of the real spinor module is

C(SR) = 〈1⊗ 1 ,K ⊗ J〉algebra ' C .

The action of the above Clifford and spin generators is trivially extended, by taking

the tensor product with 1 acting on the third factor, to the complex spinor module

S = R2 ⊗ R2 ⊗ R2. Therefore, as in Table 2

C(S) = C(SR)⊗ R(2) ∼= C⊗ R(2) ' C(2) .

The simple algebra C(2) contains both the quaternions H and the para-quaternions

(aka split-quaternions) H′ ' R(2) as subalgebras, due to the following isomorphisms

of real algebras:

C⊗H′ ' C(2) ' C⊗H .

A subalgebra of C(2) isomorphic to H′ is

〈1⊗ 1⊗ I , 1⊗ 1⊗ J , 1⊗ 1⊗K〉algebra ,

and a subalgebra isomorphic to H is

〈K ⊗ J ⊗ I , K ⊗ J ⊗ J , 1⊗ 1⊗K〉algebra .

These subalgebras do not commute, and they intersect in the subalgebra 〈1⊗ 1⊗
1,1⊗ 1⊗K〉 ∼= C.

We introduce

γ∗ := iγ0γ1γ2γ3 , γ2
∗ = 1 ,

which is, up to sign, the real volume element of Cl1,3. In our model

γ∗ = −K ⊗ J ⊗K ,

where the last factor corresponds to multiplication by ‘i’ with our choice of complex

structure on S. The eigenspaces of γ∗ are the complex semi-spinor modules S±,

whose elements are the Weyl spinors.

To determine the super-admissible bilinear forms on S ∼= R2⊗R2⊗R2, we start

by identifying those bilinear forms on SR which have a definite type. Out of the

sixteen basic forms, only the two listed in Table 4 qualify. Since the Spin group

Table 4. A basis for the admissible bilinear forms on SR, listing for each basis element its symmetry
σ and type τ .

σ τ

g0 ⊗ g3 − +

g3 ⊗ g1 − −

does not act on the third factor R2, we obtain super-admissible forms by combining
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g0 ⊗ g3 with an antisymmetric form on the third factor and by combining g3 ⊗ g1

with a symmetric form. This results in a basis of four super-admissible forms on S,

which are listed with their symmetry, type and isotropy in Table 5.

Table 5. A basis for the super-admissible real bilinear forms on S, listing for each basis element

its symmetry σ, type τ and isotropy ι.

βi σ τ ι

β0 := g3 ⊗ g1 ⊗ g0 − − −
β1 := g3 ⊗ g1 ⊗ g1 − − +

β2 := g3 ⊗ g1 ⊗ g2 − − +

β3 := g0 ⊗ g3 ⊗ g3 + + −

Now we can describe the action of the Schur algebra on the space of superbrack-

ets explicitly. Since we know that Schur algebra elements A with τ(A)σβi(A) = −1

act trivially on βi, we determine the type τ(A) and βi-symmetry σβi
(A) for the

generators of the Schur algebra C(S) and list the results in Table 6.

Table 6. The type τ(A) and βi-symmetry σβi (A) of the basis elements A of the Schur algebra

C(S).

A τ(A) σβ0
(A) σβ1

(A) σβ2
(A) σβ3

(A)

Id = 1⊗ 1⊗ 1 + + + + +

E1 := 1⊗ 1⊗ I + + + − −
E2 := 1⊗ 1⊗ J + + − + −
E3 := 1⊗ 1⊗K + − + + −
I := K ⊗ J ⊗ 1 − + + + +

IE1 = K ⊗ J ⊗ I − + + − −
IE2 = K ⊗ J ⊗ J − + − + −
IE3 = K ⊗ J ⊗K − − + + −

In Table 6 we have introduced the following notation for the Schur algebra gener-

ators. Id is the identity, and I a complex structure, I2 = −Id. The endomorphisms

Ea, a = 1, 2, 3 generate a Lie subalgebra isomorphic to sl(2,R) while (Ea, IEa)

are a real basis for a Lie subalgebra isomorphic to sl(2,C) = sl(2,R) + isl(2,R) ⊂
gl(2,C) = C(S).

From the Table 6 we obtain Table 7 that shows which Schur algebra generators

act trivially, and which act non-trivially on the forms Πβi . The element Id generates
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Table 7. Inserting the endomorphism A into one argument of a super-admissible form βi cre-

ates a new superbracket ΠβiA if τ(A)σβi (A) = +1 and leaves the superbracket Πβi invariant if

τ(A)σβi (A) = −1.

A τ(A) σβ0
(A) τ(A)σβ1

(A) τ(A)σβ2
(A) τ(A)σβ3

(A)

Id = 1⊗ 1⊗ 1 + + + +

E1 = 1⊗ 1⊗ I + + − −
E2 = 1⊗ 1⊗ J + − + −
E3 = 1⊗ 1⊗K − + + −
I = K ⊗ J ⊗ 1 − − − −
IE1 = K ⊗ J ⊗ I − − + +

IE2 = K ⊗ J ⊗ J − + − +

IE3 = K ⊗ J ⊗K + − − +

a subgroup R>0 of the Schur group which acts by re-scalings. The element I =

K ⊗ J ⊗ 1 stabilizes all four super-admissible forms, which implies that the lower

half of the table is obtained from the upper half by flipping signs. Together Id and

I generate the center C∗ of the Schur group C(S)∗ = GL(2,C).

Let us first study the action of the subgroup SL(2,C) which is the universal

cover of the connected Lorentz group SO(1, 3)0. This has two (real-) inequivalent

four-dimensional representations, the vector representation and the (Weyl) spinor

representation. The latter has only one open orbit. To show that we have at least

two open orbits, we compute the stabilizer groups of the forms Πβi
, by reading off

from the above tables which endomorphisms act trivially, see Table 8.

Table 8. The stabilizer Lie algebras of the four basic superbrackets.

Πβi
Stabilizer

Πβ0 〈E3, I, IE1, IE2〉 ∼= u(1)⊕ su(2)

Πβ1 〈E2, I, IE1, IE3〉 ' u(1)⊕ su(1, 1)

Πβ2 〈E1, I, IE2, IE3〉 ' u(1)⊕ su(1, 1)

Πβ3
〈E1, E2, E3, I〉 ' u(1)⊕ su(1, 1)

Since Πβ0
has a compact stabilizer, while Πβa

, a = 1, 2, 3 have non-compact

stabilizers, we have at least two open orbits, which implies that SL(2,C) operates

in the vector representation.a In fact, the non-abelian factors are precisely the

aIt is straightforward to work out the explicit matrix representation, which is indeed the vector
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stabilizers so(3) ' su(2) and so(2, 1) ' su(1, 1) of time-like and space-like vectors

under the action of the Lorentz group. It follows that there are at least two non-

isomorphic N = 2 superalgebras with R-symmetry groups which are isomorphic to

U(2) = U(1) · SU(2) and U(1, 1) = U(1) · SU(1, 1).

Since U(1) ⊂ C(S)∗ acts trivially, we see that C(S)∗ acts as the linear conformal

pseudo-orthogonal group CSO0(1, 3) := R>0×SO0(1, 3) on the space of superbrack-

ets, which we can identify with four-dimensional Minkowski space R1,3 by choosing

the spin-invariant scalar product for which the Πβi
form an orthonormal basis. The

Schur group C(S)∗ acts with six orbits: the three open orbits of time-like future-

directed, time-like past-directed and space-like vectors, the two three-dimensional

orbits of non-zero null future or past-directed vectors, and the origin. Since the

superbrackets Πβ and Π−β define isomorphic Poincaré Lie superalgebras, there are

only four non-isomorphic Poincaré Lie superalgebra structures, distinguished by

the isomorphism type of their stabilizers in the Schur group:

(1) The time-like orbits of Π±β0
define isomorphic supersymmetry algebras with

non-degenerate superbrackets and R-symmetry group U(2). This is the stan-

dard N = 2 superalgebra.

(2) The space-like orbit, which contains Πβa , a = 1, 2, 3, defines a supersymmetry

algebra with non-degenerate superbracket and R-symmetry group U(1, 1). This

is a non-standard ‘twisted’ N = 2 supersymmetry algebra similar to the twisted

supersymmetry algebra of type-II∗ string theories described in [1].

(3) The orbits generated by null vectors correspond to isomorphic supersymmetry

algebras with partially degenerate superbrackets. Without loss of generality, we

can consider the bracket Π 1
2 (β0+β1). We note that 1

2 (β0+β1) = β0( 1
2 (1+E1)·, ·).

Since E2
1 = 1, ΠE1

± := 1
2 (1±E1) are projection operators onto the eigenspaces of

E1 with eigenvalues ±1. The bilinear form Π 1
2 (β0+β1) has the four-dimensional

kernel ΠE1
− S and by restriction defines a Poincaré Lie superalgebra with spinor

module SR = ΠE1
+ S. The isotropy group of this bracket in the Schur group

C∗(SR) = C∗ is the U(1) generated by IE1. Since in our classification there

is no other non-trivial supersymmetry bracket with a non-trivial kernel, this

supersymmetry algebra must be the standard N = 1 supersymmetry algebra.

(4) The zero vector defines a completely degenerate superbracket corresponding to

the trivial supersymmetry algebra.

3.3. Neutral signature

In signature (2, 2) the real Clifford algebra is Cl2,2 ∼= R(4), and the real spinor

module is SR = R4, which will allow us to use a real model similar to signature

(1, 3). Since the even real Clifford algebra is 2R(2), real spinors decompose into

inequivalent real semi-spinors, SR = S+
R + S−R , S+

R 6∼= S−R . The real and complex

representation of SO0(1, 3). In the following we will not need an explicit matrix representation.
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spinor and semi-spinor modules are related by S = SR ⊗ C and S± = S±R ⊗ C. The

Schur algebras are

C(S±R ) = R , C(S±) = R(2) = H′ , C(SR) = 2R , C(S) = 2R(2) = 2H′ .

We used that R(2) = H′ are the para-quaternions, to emphasize that S carries

two invariant real structures (which preserve chirality). The complex semi-spinor

modules are the complexifications of the real semi-spinor modules, hence of real

type, and self-conjugate as complex Cl02,2 modules.

In physics terminology, elements of SR, S± and S±R are Majorana spinors, Weyl

spinors and Majorana-Weyl spinors respectively. Due to the absence of invariant

quaternionic structures on S, we cannot define symplectic Majorana spinors. The

Majorana condition allows one to define an N = 1 superalgebra, which we will

recover when classifying the orbits of the Schur group. The existence of Majorana-

Weyl spinors is consistent with the existence of an even smaller ‘N = 1/2’ superal-

gebra, which would be chiral in the sense of only involving superbrackets between

supercharges of the same chirality. We will be able to decide later whether such a

supersymmetry algebra exists.

As in signature (1, 3) we take S ∼= R2 ⊗R2 and S ∼= R2 ⊗R2 ⊗R2. On R(2) we

choose the following basis:b

1 =

 1 0

0 1

 , I =

 0 −1

1 0

 , J =

0 1

1 0

 , K = IJ ,

where now I is a complex structure on R2, while J,K are involutions. Since I, J,K

anti-commute they satisfy the para-quaternionic algebra, making manifest that

R(2) ' H′ as associative algebras, where H′ is the algebra of para-quaternions.

On R2 we choose the following basis of bilinear forms: g0 = g, g1 = gI, g2 =

gJ, g3 = gK, where g is the standard symmetric positive definite bilinear form, and

where gI = g(I·, ·), etc. The symmetry of these basic bilinear forms is listed in

Table 9 together with the gi-symmetry of the basic endomorphisms.

It is straightforward to verify that

γ1 = J ⊗ I , γ2 = K ⊗ I , γ3 = 1⊗ J , γ4 = 1⊗K

are generators of Cl2,2 acting on S = R2 ⊗ R2,

The resulting generators of spin(2, 2) are

γ1γ2 = −I ⊗ 1 , γ1γ3 = J ⊗K , γ1γ4 = −J ⊗ J ,
γ2γ3 = K ⊗K , γ2γ4 = −K ⊗ J , γ3γ4 = −1⊗ I .

By inspection, the only endomorphisms commuting with the spin generators are

linear combinations of 1⊗ 1 and I⊗ I. The Schur algebra of the real spinor module

bNote that this basis is different from the one we used for signature (1, 3) in Section 3.2.
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Table 9. The symmetry of the four basic bilinear forms gi, and the gi-symmetry of the endomor-

phisms I, J,K.

σ(gi) σgi(I) σgi(J) σgi(K)

g0 + − + +

g1 − − − −
g2 + + + −
g3 + + − +

is

C(SR) = EndCl02,2(SR) = 〈1⊗ 1 , I ⊗ I〉 ∼= R⊕ R .

Likewise by inspection, only two out of the sixteen bilinear forms gi ⊗ gj , i, j =

0, 1, 2, 3 are admissible, namely those listed in Table 10.

Table 10. List of admissible forms on SR.

σ τ

g0 ⊗ g1 − −
g1 ⊗ g0 − +

We can realize the complex spinor module as S ∼= SR ⊗ R2 ∼= R2 ⊗ R2 ⊗ R2,

where the complex structure of S is defined by 1 ⊗ 1 ⊗ I. The Clifford generators

are extended trivially as γµ ⊗ 1. For notational simplicity we will write γµ instead

of γµ⊗1 in the following. Since the Clifford algebra does not act on the third factor

R2, we obtain eight admissible bilinear forms on S by tensoring the two admissible

forms on SR with the four basic bilinear forms. Out of these, the four forms listed

in Table 11 are super-admissible.

Table 11. List of super-admissible bilinear forms on S.

σ τ

β1 = g0 ⊗ g1 ⊗ g0 − −
β2 = g0 ⊗ g1 ⊗ g2 − −
β3 = g0 ⊗ g1 ⊗ g3 − −
β4 = g1 ⊗ g0 ⊗ g1 + +

Generators of the Schur algebra C(S) are obtained by tensoring the two genera-

tors of C(SR) with the four basic endomorphisms acting on the third factor R2. In
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other words we have the following direct decomposition of vector spaces:

C(S) = (1⊗ 1⊗H′)⊕ (I ⊗ I ⊗H′) ,

where H′ = 〈1, I, J,K〉. To obtain a decomposition C(S) = C(S)+⊕C(S)− ∼= H′⊕H′
as an algebra it suffices to apply the projectors

P± =
1

2
(1⊗ 1⊗ 1± I ⊗ I ⊗ 1) .

The two H′ factors C(S)± are spanned by the operators

1± = P±(1⊗ 1⊗ 1) , I± = P±(1⊗ 1⊗ I) ,

J± = P±(1⊗ 1⊗ J) , K± = P±(1⊗ 1⊗K) .

We choose the basis vi = Πβi , i = 1, 2, 3, 4 in the space of superbrackets. The

infinitesimal action of the generators of the Schur algebra on superbrackets is sum-

marized in table 12. It preserves the scalar product on the space of vector-valued

bilinear forms for which the basis (v1, . . . , v4) is orthonormal, with v1, v4 time-like

and v2, v3 space-like.

Table 12. Action of the generators of the Schur algebra on the basis of the space of superbrackets.

Generator Action

Id = 1⊗ 1⊗ 1 scaling

1⊗ 1⊗ I rotation 2R23

1⊗ 1⊗ J boost −2B12

1⊗ 1⊗K boost −2B13

γ1γ2γ3γ4 = I ⊗ I ⊗ 1 trivial

I ⊗ I ⊗ I rotation −2R14

I ⊗ I ⊗ J boost −2B34

I ⊗ I ⊗K boost −2B24

In table 12 Rij denotes the rotation by 90 degrees in the plane spanned by

vi, vj , and Bij the boost vi 7→ vj , vj 7→ vi. To determine the action of the full,

non-connected Schur group

C(S)∗ = GL(2,R)×GL(2,R) = (R>0 × SL±(2,R))× (R>0 × SL±(2,R))

where SL±(2,R) is the subgroup of GL(2,R) consisting of matrices A with

|det(A)| = 1, it suffices to determine the action of the two group elements P−+J+

and P+ + J− on the four-dimensional space of Lie superbrackets. In fact these two

elements generate a subgroup Z2 × Z2 of the Schur group which acts simply tran-

sitively on the four components of the Schur group. A straightforward calculation
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shows that P−+J+ interchanges v1 and v2 as well as v3 and −v4. Similarly P+ +J−
interchanges v1 and v2 as well as v3 and v4. This implies that the image of the Schur

group under the representation on the four-dimensional space of superbrackets is

precisely CO0(2, 2) ∪ ξCO0(2, 2), where ξ = P+ + J− is the involution which maps

v1 to v2 and v3 to v4, and

CO0(2, 2) = R>0 × SO0(2, 2) = R>0 × SL(2,R) · SL(2,R)

is the connected component of the identity of the conformal linear group. Note that

ξ is an anti-isometry and therefore interchanges space-like and time-like vectors.

The action of the connected group CO0(2, 2) has four orbits: the two open

orbits of time-like and space-like vectors separated by the lightcone, the three-

dimensional orbit of non-zero null vectors, and the origin. The two open orbits

cannot be distinguished by the isomorphism type of their stabilizers, which are

CO0(2, 1) ∼= CO0(1, 2) = R>0 × SO0(1, 2). Under the full Schur group there are

only three orbits since the orbits of time-like and space-like vectors are mapped to

each other by ξ. The open orbit of the full Schur group corresponds to a unique

N = 2 supersymmetry algebra in signature (2, 2). The connected R-symmetry

group is R>0× Spin0(1, 2) ∼= R>0× SL(2,R). Note that Spin0(1, 2) ⊂ Spin0(2, 2) ∼=
SL(2,R)× SL(2,R) is a diagonally embedded SL(2,R)-subgroup of the maximally

connected Schur group C(S)∗0 = GL+(2,R)×GL+(2,R).

Consider next the orbit of non-zero null vectors. Without restriction of gener-

ality, consider the bilinear form

1

2
(β1 + β2) =

1

2
(g0 ⊗ g1 ⊗ (g0 + g2)) = g0 ⊗ g1 ⊗ g0

(
1

2
(1+ J)·, ·

)
.

Since J2 = 1, the operators ΠJ
± = 1

2 (1⊗1⊗ (1+ J)) are projection operators onto

the eigenspaces ΠJ
±S of 1⊗ 1⊗ J with eigenvalues ±1. Since 1⊗ 1⊗ J commutes

with the Clifford generators, the vector-valued bilinear form Π 1
2 (β1+β2) has a four-

dimensional kernel ΠJ
−S and defines a non-trivial Poincaré Lie superalgebra with

spinor module SR = ΠJ
+S. Therefore there is a unique N = 1 supersymmetry

algebra in signature (2, 2). Its connected R-symmetry group, that is the stabilizer

of Π 1
2 (β1+β2) in the identity component of the Schur group C(SR)∗, is the group

SO0(1, 1) generated by I ⊗ I ⊗ J .

The volume element ω of the Clifford algebra isc

ω = −γ∗ = γ1γ2γ3γ4 = I ⊗ I .

All four super-admissible bilinear forms βi have isotropy ι(βi) = 1, that is

βi(S±,S∓) = 0. Since ω anti-commutes with the Clifford generators, the corre-

sponding vector valued bilinear forms are isotropic, Πβi(S±,S±) = 0. This implies

that one cannot define a non-trivial ‘N = 1
2 ’ supersymmetry algebra where the

cThe definition of γ∗ includes a minus sign, which is needed for consistency with our conventions

in the companion paper [6].
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independent supercharges form a single Majorana-Weyl spinor. This also follows

from our classification of orbits. The absence of chiral supersymmetry algebras in

four dimensions reflects a general principle. As follows from the commutation re-

lations between the charge conjugation matrix C and the chirality matrix γ∗ [10],

super-brackets are isotropic in dimensions d = 4n, n = 1, 2, 3, . . ., and orthogonal

(Πβi
(S±,S∓) = 0) in dimensions d = 4n+ 2, irrespective of signature. This implies

that chiral supersymmetry algebras can only exist in dimensions d = 2, 6, 10, . . .. A

chiral supersymmetry algebra requires in addition that S+
R 6∼= S−R , which is a sig-

nature dependent condition. Signatures with chiral supersymmetry algebras have

a larger number of inequivalent supersymmetry algebras and associated physical

theories than other signatures.

3.4. Euclidean signature

In signature (0, 4) the real Clifford algebra is Cl0,4 = H(2) and the real spinor

module is SR = H2 ∼= C4. This shows that SR carries a quaternionic, and therefore

a complex structure, and is equal to the complex spinor module, SR = S. Since the

even Clifford algebra is Cl00,4 = 2H, the real spinor module decomposes into two

inequivalent real semi-spinor modules, SR = S+
R + S−R , S+

R 6∼= S−R , which coincide

with the complex semi-spinor modules, S±R = S±. The semi-spinor modules carry a

quaternionic structure, and therefore are self-conjugate as complex modules, S± ∼=
S±. The complex spinor module is also self-conjugate, S ∼= S. Since the semi-spinor

modules are not equivalent the Schur algebra of S = SR is

C(S) = C(SR) = 2H .

Due to the absence of an invariant real structure, there are no Majorana spinors.

The existence of an invariant quaternionic structure allows us to rewrite a Dirac

spinor as a pair of symplectic Majorana spinors, and since the quaternionic structure

preserves chirality (maps S± to S±), Weyl spinors can be rewritten as pairs of

symplectic Majorana-Weyl spinors. Since Cl0,4 ∼= Cl4,0, we do not need to consider

signature (4, 0) explicitly.

Since Cl0,4 is a quaternionic matrix algebra, we will use a different type of model

than for the other signatures. We define the following operators on H2:

(Ia)a=0,1,2,3 = (Id, Ri, Rj , Rk) , (I ′a)a=0,1,2,3 = (Id, Li, Lj , Lk) ,

where Rq, Lq, with q ∈ H denotes right and left multiplication by quaternions,

respectively. We also introduce the following matrix operators which act on H2

from the left:

D =

 0 1

1 0

 , E =

1 0

0 −1

 .

We note that Ia, I
′
a span quaternionic algebras which commute with each other and

with D,E. The operators D and E are two anti-commuting involutions,

D2 = Id , E2 = Id and {D,E} = 0 ,



June 26, 2020 14:59 WSPC/INSTRUCTION FILE
All˙Sign˙4d˙Part1˙revised

Vector multiplets in arbitrary signature (I) 21

and therefore their product is a complex structure, (DE)2 = −Id, which anti-

commutes with D and E. Hence they generate an algebra isomorphic to the para-

quaternionic algebra H′ ∼= R(2).

It is straightforward to verify that

γα = IDI ′α , α = 1, 2, 3 , γ4 = IDE ,

where I = I1, satisfy the relations of generators for Cl0,4. The generators

γ1γ2 = −Lk , γ1γ3 = Lj , γ
1γ4 = −LiE , γ2γ3 = −Li ,

γ2γ4 = −LjE , γ3γ4 = −LkE

of spin(4) act diagonally on H2. We also note that the Cl0,4 volume element

γ∗ = γ1γ2γ3γ4 = −E (3.1)

is proportional to the identity on the factors of S = SR = H+H, which are therefore

the semi-spinor modules S±R = S±R = H.

We remark that by adding γ0 = IE, we obtain a set of generators for the

five-dimensional Clifford algebra Cl1,4, which is associated to a theory in signature

(1, 4). By dimensional reduction over time one can then obtain a theory in signature

(0, 4) [7]. The model used in this paper differs from the one used in [7] by exchanging

D and E. The representation used in the present paper is a ‘Weyl’ representation

where the volume element acts diagonally on SR = S+
R + S−R .

We now turn to the construction of admissible bilinear forms. On SR = H + H
we obtain a non-degenerate spin(4)-invariant positive definite scalar product g by

taking the direct sum of the standard scalar products on the factors. The group

Spin0(4) ∼= SU(2)×SU(2) acts isometrically on H2 by left multiplication, while the

Schur algebra

C(S) = C(SR) = 〈Ia, IaE|a = 0, 1, 2, 3〉 ∼= 2H

acts by multiplication from the right. On each factor S± ∼= H, Lq and Rq with

q = i, j, k are isometries of the standard scalar product, and therefore leave the

scalar product g on H2 invariant. Since L2
q = −1, these operators are g-skew. D

and E are isometries of g, but since they are involutions, they are g-symmetric.

The Clifford generators act isometrically with respect to g, and since they are

involutions, (γα)2 = Id = (γ4)2, they are g-symmetric. Hence g is super-admissible:

σg = τg = 1. To obtain a basis of admissible forms for the space of Spin(4)-invariant

real bilinear forms, we take gA := g(A·, ·), where A runs over a basis of the Schur

algebra which consists of admissible endomorphisms. To show that we can choose

{Ia, IaE|a = 0, 1, 2, 3} as such a basis, we compute the g-symmetry and type of

these endomorphisms. Obviously the complex structures Iα are g-skew, wheras D

and E are g-symmetric. Since Iα and E commute, σg(IαE) = −1. With regard

to the type we note that I = I1 commutes with γα = IDI ′α and γ4 = IDE,

while I2,3 anticommute: τ(I1) = 1, τ(I2,3) = −1. Since E anticommutes with D it
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Table 13. The g-symmetry and type of the generators of the Schur algebra, where g is the standard
positive definite bilinear form. If σg(A)τ(A) = 1, then gA = g(A·, ·) is super-admissible and defines

a superbracket.

A I0 I1 I2,3 E EI1 EI2,3

σg(A) + − − + − −
τ(A) + + − − − +

σg(A)τ(A) + − + − + −

anticommutes with γα and γ4: τ(E) = −1, and τ(I1E) = −1, τ(I2,3E) = 1. See

Table 13 for a summary.

Using that with σg = τg = 1 we have σ(gA) = σgσg(A) = σg(A) and τ(gA) =

τgτ(A) = τ(A), it follows from the table that all eight forms are admissible, and

that four of them, namely

{βi|i = 1, 2, 3, 4} = {g , g(I2·, ·) , g(I3·, ·) , g(EI1·, ·)}

are super-admissible. Therefore Πβi form a basis for the space of symmetric Spin(4)-

equivariant bilinear forms on S with values in the vector representation, and there-

fore for the space of Poincaŕe Lie superalgebra structures. To make explicit the

action of the Schur algebra on this space, we need the symmetry of all eight Schur

generators with respect to the four super-admissible forms. This follows from the

previous data upon using that

σgB (A) =

+σg(A) if [A,B] = 0 ,

−σg(A) if {A,B} = 0 .

The relevant information has been collected in table 14.

Table 14. This table lists, for all Schur algebra generators, their type and their symmetry with

respect to the super-admissible forms.

A τ(A) σg(A) σgI2 (A) σgI3 (A) σgEI1
(A)

I0 + + + + +

I1 + − + + −
I2 − − − + +

I3 − − + − +

E − + + + +

EI1 − − + + −
EI2 + − − + +

EI3 + − + − +
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Table 15. Entries + in this table indicate that the Schur algebra generator A displayed in the first
column acts non-trivially on the bilinear form gB indicated by the first row. Entries − indicate

that A leaves the corresponding bilinear form gB invariant; such A generate the R-symmetry

group of the corresponding superbracket.

A τ(A)σg(A) τ(A)σgI2 (A) τ(A)σgI3 (A) τ(A)σgEI1
(A)

I0 + + + +

I1 − + + −
I2 + + − −
I3 + − + −
E − − − −
EI1 + − − +

EI2 − − + +

EI3 − + − +

To see how the Schur algebra acts on the four super-admissible forms it is

convenient to convert Table 14 into 15. I0 acts by an overall rescaling on all forms,

while E generates the one-dimensional kernel of the representation. The stabilizers

of all forms are four-dimensional with Lie algebra R + su(2). By factorizing the

one-dimensional kernel of the representation, we obtain the seven-dimensional Lie

algebra

〈Id, Iα, EIα〉 ∼= R⊕ su(2)⊕ su(2) .

The group SO(4) ∼= SU(2) · SU(2) generated by su(2) + su(2) acts in a four-

dimensional irreducible representation. Since both factors su(2) act non-trivially,

this is the vector representation, and we see that the Schur group acts as the linear

conformal orthogonal group

CSO(4) := R>0 × SO(4)

on the four-dimensional space of superbrackets. This action is transitive once we

remove the origin. Therefore there are two orbits: the open orbit of non-zero vectors

and the origin. There is one non-zero superbracket up to isomorphism, correspond-

ing to a unique Euclidean N = 2 supersymmetry algebra. Its R-symmetry group

is R>0 × Spin(3) ∼= R>0 × SU(2), where Spin(3) ⊂ Spin(4) ∼= SU(2) × SU(2) is

a diagonally embedded SU(2)-subgroup of the Schur group C(S)∗ = H∗ × H∗ =

R>0 × SU(2)× R>0 × SU(2).

We close this section by showing explicitly how each of the brackets Πβi
, i =

1, 2, 3 can be obtained from Πβ0
= Πg. This amounts to finding A ∈ C(S)∗ such

that

A−1 ·Πg = Πg(A·, A·) = Πgf(A)
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with f(A) = I2, I3, EI1. We consider invertible elements of the Schur algebra of the

form

A = aId+ bI1E + cI2 + dI3 , a2 + b2 + c2 + d2 6= 0 .

We compute

g(γvAs,At) = (a2 − b2 − c2 − d2)g(γvs, t)− 2abg(I1Eγvs, t)

−2acg(I2γvs, t)− 2adg(I3γvs, t) ,

using the symmetry and type of the various automorphisms. This determines:

f : A = aId+ bI1E + cI2 + dI3

7→ f(A) = (a2 − b2 − c2 − d2)Id− 2abI1E − 2acI2 − 2adI3 .

Now we can read off how to obtain the basis Πβi
by action with elements of the

Schur group on Πg, see Table 16. Note that the overall sign of A is free, since we

insert it twice into the bilinear form.

Table 16. This table shows how the four basic bilinear forms Πβi can be obtained from Πg by the
action of the Schur group.

Form Coefficients Schur group element

Πg a = 1, b = c = d = 0 ±A = Id

ΠgI1E
c = d = 0 , a = −b = 1√

2
±A = 1√

2
(Id− I1E)

ΠgI2
b = d = 0 , a = −c = 1√

2
±A = 1√

2
(Id− I2)

ΠgI3
b = c = 0 , a = −d = 1√

2
±A = 1√

2
(Id− I3)

We remark that the semi-spinor modules are g-orthogonal, g(S±,S∓) = 0. Since

the operators EI1, I2, I3 commute with the volume element γ1γ2γ3γ4 = −E, all

superbrackets vanish on S+ ⊗ S+ + S− ⊗ S−.

4. Outlook

In this paper we have derived the necessary and sufficient condition for Poincaré

Lie superalgebras to be isomorphic, and we have obtained a complete classification

of isomorphism classes of supersymmetry algebras whose odd part is the complex

spinor module S for all possible space-time signatures in four dimensions. In a com-

panion paper [6] we will present physical theories which realize all these algebras

as symmetries. The fields of these theories will belong to N = 2 vector multi-

plets, which can be viewed as an extensions of Maxwell theory by fermions and

scalars. Based on earlier work on five-dimensional vector multiplets with arbitrary

signature [8] we will obtain representations of the four-dimensional supersymmetry
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algebras on fields which close ‘off-shell’, that is without imposing equations of mo-

tions. In addition, we will also present the corresponding supersymmetry invariant

Lagrangians. We will also show how one can explicitly construct field redefinitions

which relate the supersymmetry transformations and Lagrangians representing iso-

morphic supersymmetry algebras to one another.
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