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Abstract

The literature documents a significantly negative average vari-

ance swap payoff (VSP) for the S&P 500 index but generally not

for the constituent stocks. We show that this result is affected by

biases arising from (i) an intraday momentum effect and (ii) the use

of an incoherent measure of return variation. Accounting for these

issues, we find stronger evidence of a significant average VSP both

at the index level and also for equities. We decompose the index

variance risk premium (VRP) into factors related to the VRP of

equities and the correlation risk premium (CRP) and assess their

predictive power for aggregate stock returns.
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1 Introduction

Using daily data, Carr and Wu (2009) and Driessen et al. (2009) document a signif-

icantly negative average variance swap payoff (VSP) for the U.S. stock market index.

However, they find significant average VSPs only for a small number of individual

equities that belong to the stock index. This disconnect between the results observed

at the index and individual equities levels is surprising, because the index is a portfolio

of its constituent stocks. In addition, this finding is difficult to reconcile with theo-

retical work on the joint pricing of variance risk for the equity index and constituents

stocks. For instance, Buraschi et al. (2014b) propose a structural model that generates

a sizable market price of variance risk for both the equity index and the constituent

stocks.

This paper investigates the possibility that measurement errors may cause the

puzzling differences in the VSP estimates documented in the literature. To understand

why measurement errors may be a concern, it is useful to discuss two approaches to

estimating the market price of variance risk. The first approach assumes that the

researcher observes the time series of prices on a liquid and tradeable variance asset,

e.g., a variance swap. She can directly calculate the market price of variance risk by

analyzing the ex-post returns on this asset (Dew-Becker et al., 2017; Cheng, 2018;

Aït-Sahalia et al., 2019).1 In this case, the only source of error in the estimate of

the market price of variance risk is the price of the variance swap. Unfortunately, this

methodology is fraught with issues. To begin with, variance swap data are proprietary.

Moreover, conversations with practitioners reveal that the single-stock variance swap
1Egloff et al. (2010), Dew-Becker et al. (2017) and Aït-Sahalia et al. (2019) analyze a proprietary

dataset of S&P 500 index variance swaps traded over-the-counter (OTC). Cheng (2018) focuses on
the exchange-traded VIX futures prices.
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market has dried up since 2008, making it difficult to analyze individual equities.

Aware of these limitations, the literature has developed an alternative approach that

consists in analyzing the realized (ex-post) payoffs of synthetic variance swaps (Carr

and Wu, 2009). In this framework, the researcher needs to (i) synthesize the variance

swap rate (VSR) using observable option prices and (ii) estimate the realized return

variation. Clearly, measurement errors could arise from (i) the (synthetic) VSR and

(ii) the computation of the realized return variation. Jiang and Tian (2005) carefully

analyze the measurement errors in the computation of the synthetic VSR. Our main

focus is thus on the measurement errors in the estimates of the realized return variation

and their impact on the variance swap payoff estimates.2

Our key finding is that biases in the computation of the return variation, arising

from (i) an intraday momentum effect and (ii) the use of a measure of return variation

(for the floating leg of the variance swap contract) that is not priced by the Britten-

Jones and Neuberger (2000) estimator have contaminated the average VSP estimates of

the previous literature. Indeed, the estimates of the VSPs of individual equities change

dramatically once we correct for these two biases. For example, when realized variance

is computed using daily data and the standard estimator of realized variance, as is done,

e.g., in González-Urteaga and Rubio (2016), the average 1-month VSP of individual

equities is positive (0.03%) and statistically indistinguishable from zero. However,

when realized variance is measured using high-frequency data and the Andersen et al.

(2015) return variation estimator, the average VSP of individual equities becomes
2Throughout this paper, we refer to the VSP as the difference between the return variation,

computed ex-post, and the risk-neutral expectation of future variance. We also analyze the variance
risk premium (VRP), defined as the spread between the physical and risk-neutral expectations of
future return variation. Note that, when estimating the VRP, there is a third source of error that
stems from the forecasting model used to generate the conditional expectation of the return variation
under the physical measure.
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negative (−0.92%) and statistically significant. Similarly, the average VSP of the

S&P 500 index nearly doubles from −0.68% in the benchmark case to −1.33% when

making the bias corrections.

Leveraging our finding that there are significant negative VSPs for individual eq-

uities, we decompose the index VSP into (i) a factor that depends on the VSPs of the

individual equities that make up the index and (ii) a factor that is a function of the

correlation swap payoff (CSP). Empirically, the two factors have distinct dynamics and

are only weakly correlated. The factor related to the CSP accounts for 70.6% of the

average level of the index VSP while the factor linked to the VSP of individual stocks

captures 67.4% of the variation in the index VSP. We also dissect the index variance

risk premium (VRP), modeled as in Bollerslev et al. (2009), into the individual VRP

and the correlation risk premium (CRP) factors. Together, the two factors improve

the predictability of the S&P 500 excess returns. For instance, the index VRP yields

an adjusted R2 of 10.3% at the 3-month horizon, whereas a model that combines the

two factors achieves an adjusted R2 equal to 12.8%. This improvement in forecast

accuracy is statistically significant.

We evaluate the robustness of our results to the potential microstructure noise

introduced by sampling data at the intraday level. To this end, we use (i) different

sampling frequencies and (ii) implement the subsampling and averaging technique of

Zhang et al. (2005) when computing the return variation. The key conclusions are

similar. One concern may be that the computation of the VSR requires liquid options

covering a wide range of strike prices. This requirement may be more problematic for

single-stock than index options. Focusing on the stocks with the most active equity

options, we find that the average VSP of stocks changes from an insignificant 0.22% to
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a significant −0.89% as we switch from the standard to the bias-corrected estimator

of return variation. Finally, we check the robustness of the predictability results with

respect to the variance forecasting model.

Our research relates to the literature on the differential pricing of individual eq-

uity options relative to equity index options. Garleanu et al. (2009) document that

investors’ demand for index and individual stock options differs substantially. They

show that end-users are generally net long index options and net short individual eq-

uity options. The authors discuss how this finding can lead to index options that are

relatively expensive, whereas individual equity options appear cheaper. Driessen et al.

(2009) economically interpret the wedge between the VSP of the market index and

that of its constituents as the price to insure against correlation risk. Relative to their

work, we analyze a sample period twice as long and cover a broader range of equities.

To the best of our knowledge, we are the first to show that biases induced by (i) the

intraday momentum effect and (ii) an incoherent definition of the return variation

priced by the Britten-Jones and Neuberger (2000) implied variance (IV) materially

affect the average VSP estimates. Correcting for the biases, we find that (i) the cost

of insuring against stock level variance risk is large and significant and (ii) that of

insuring against correlation risk is larger than previously reported.

We connect the bias in the return variation estimates to the growing literature

documenting positive intraday momentum. Heston et al. (2010) show that the return

on a stock observed at a particular time of a day predicts the return on that stock

at the same time over the following days. Gao et al. (2018) show that the sum of

the overnight and first half-hour returns of the exchange-traded fund (ETF) tracking

the S&P 500 index predicts its last half-hour return. Bogousslavsky (2016) develops
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a theoretical model with infrequent rebalancing that can rationalize these empirical

findings. We show that these intraday patterns have implications that go beyond mere

market timing. They make the daily squared return an upward-biased estimate of the

sum of squared intraday returns. After correcting for the intraday autocorrelation

effects, we find average VSPs for individual equities that are larger in magnitude and

more significant.3

Our paper contributes to the growing literature that dissects the index VRP.

Todorov (2010) and Bollerslev and Todorov (2011) decompose the index VRP into

components associated with (i) continuous and (ii) discontinuous movements. Cose-

mans (2011) decomposes the index VRP into the (value-weighted) average of individual

VRP and the CRP. Bollerslev et al. (2015) show that the compensation for the discon-

tinuous movements plays an important role in the predictive power of the index VRP

for aggregate excess stock returns. Feunou et al. (2017a) and Kilic and Shaliastovich

(2019) decompose the index VRP into upside and downside parts and study their

implications for the predictability of aggregate excess returns. Feunou et al. (2017b)

extend this analysis to the cross-section of stock returns. To our knowledge, we are

the first to correct for the biases in the estimates of the VSP, decompose the index

VRP into factors linked to (i) the VRP of constituent stocks and (ii) the CRP in a

coherent manner and assess their predictive power for S&P 500 excess returns.4 Over-

all, our empirical results suggest that our two-factor structure yields more accurate
3The finding of significant average VSPs in stocks is relevant for studies that use IV to directly

forecast the return variation of individual stocks: it might be possible to improve the forecast accuracy
by accounting for the VRP in the spirit of Prokopczuk and Wese Simen (2014) and Kourtis et al.
(2016).

4By “coherent decomposition”, we mean a decomposition where the factors add up to the index
VRP. Feunou et al. (2017a) and Kilic and Shaliastovich (2019) provide a coherent decomposition
into upside and downside VRP. However, the decomposition of Cosemans (2011) is not coherent. A
coherent decomposition is very useful when it comes to quantifying the contribution of each factor to
the average of the index VRP as well as the variations in the index VRP.
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return forecasts than the two factors of Cosemans (2011), Feunou et al. (2017a) and

Kilic and Shaliastovich (2019).

The remainder of this paper is organized as follows. Section 2 presents the data

and empirical methodology. Section 3 analyzes the VSPs. Section 4 focuses on the

VRP. Section 5 presents additional results. Finally, Section 6 concludes.

2 Data and Methodology

This section begins with an overview of the dataset. It then introduces our method-

ology.

2.1 Data

We obtain options data related to the S&P 500 index and its constituents from

IvyDB OptionMetrics. The sample period ranges from January 1996 to August 2015.5

We use the Volatility Surface provided by OptionMetrics. The database contains

implied volatilities for different (i) constant time-to-maturity horizons and (ii) levels

of delta, where delta is defined as the sensitivity of the option price to a small change

in the underlying asset price.6

We process the dataset as follows. First, we only retain options that are out-of-

the-money (OTM). Essentially, this means that we only keep put and call options with

deltas that are higher than −0.5 and lower than 0.5, respectively. Second, we only
5The starting date of the sample period is forced upon us as the OptionMetrics dataset is available

from 1996 onwards. The end of our sample period reflects the data available at the time we started
this study.

6The algorithm used by IvyDB to calculate the implied volatility accounts for the early exercise
feature of options on single equities. For further information, we refer the interested reader to the
IvyDB technical document.
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keep options expiring in 1 month. Third, we download the time series of discount rates

available from OptionMetrics. We implement a cubic spline interpolation to obtain

the discount rate of the same time-to-maturity as the option. We match this time

series with our panel data so that, for each option price, there is a discount rate of

corresponding maturity.

We also obtain the daily time series of the S&P 500 index, the prices and returns

of all individual equities that make up the index. The data come from the Center for

Research in Security Prices (CRSP).

2.2 Methodology

Our analysis revolves around the variance swap. A trader with a buy and hold

position in the variance swap pays a fixed rate called the variance swap rate at ex-

piration. In return, she receives the return variation (σ2
i,t+τ ) of the underlying asset

computed over the maturity of the variance swap. Thus, the payoff to a long variance

swap with a notional amount of $1 can be computed as follows:

V SP i,t+τ = σ2
i,t+τ − V SRi,t (1)

where V SP i,t+τ is the realized payoff, on day t + τ , of the variance swap written on

the underlying asset i. τ is the time-to-maturity of the variance swap, expressed in

calendar days. σ2
i,t+τ is the return variation of the underlying asset over the life of the

variance swap, i.e., for the period starting at t and ending at t + τ . Notice that the

return variation can only be computed ex-post, i.e., at t + τ . V SRi,t is the variance

swap rate, which is fixed at inception, i.e., on day t. Because by design no money
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changes hands at the inception of the variance swap, no-arbitrage implies that the

VSR is the risk-neutral expectation of future variance (EQ
t (σ

2
i,t+τ )).7 Thus, we can

write:

V SP i,t+τ = σ2
i,t+τ − EQ

t (σ
2
i,t+τ ) (2)

In the market, the term sheets of traded variance swaps typically specify that the

floating leg be computed using the (low-frequency) realized variance (RV (LF )
i,t+τ ):8

RV
(LF )
i,t+τ =

365

τ

t+τ∑
j=t+1

r2i,j (3)

where ri,j is the (log) return on security i on day j. Throughout this paper, the factor

365
τ

annualizes the variance estimate.

However, as discussed in the Introduction, the variance swap market for individual

equities has dried up since 2008. Consequently, we need to synthetically compute the

VSR. We follow most of the empirical literature, e.g., Carr and Wu (2009), and fix the

VSR to be equal to the Britten-Jones and Neuberger (2000) IV:

EQ
t (σ

2
i,t+τ ) =

2erft
τ

365

τ
365

(∫ St

0

Pt(τ,K)

K2
dK +

∫ ∞
St

Ct(τ,K)

K2
dK

)
(4)

where rft denotes the (annualized) discount rate (of same maturity as that of the

option) on day t. Pt(τ,K) and Ct(τ,K) denote the price, on day t, of the put and call

options with time-to-maturity τ and strike price K, respectively. All options relate to
7In this paper, we often refer to the risk-neutral expectation of future total variance as the option-

implied variance.
8Using demeaned returns when computing the realized variance leads to very similar estimates

to those based on the estimator in Equation (3). See also González-Urteaga and Rubio (2016).
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the underlying asset i. If the return process is continuous and the sampling frequency

fine, the estimator in Equation (4) gives the price of the variance swap contract,

where the floating leg is defined as the sum of squared returns.9 In order to minimize

the potential errors in the computation of the synthetic VSR, we broadly follow the

numerical scheme of Chang et al. (2012).10 We begin by computing ex-dividend stock

prices. From the Volatility Surface, we interpolate implied volatilities for different

levels of moneyness between 0.3% and 300% using a cubic spline, where “moneyness”

is defined as the ratio of the strike price over the underlying price. In practice, the

moneyness range available in the market does not completely span the interval starting

at 0.3% and ending at 300%, raising the issue of extrapolation. Building on the work

of Jiang and Tian (2005), we perform a nearest neighbourhood extrapolation. To be

more specific, we assume that the implied volatility remains constant below the lowest

and above the highest moneyness points available in the market. We then use the fine

grid of interpolated/extrapolated implied volatilities to compute the Black and Scholes

(1973) prices of the out-of-the-money (OTM) options. Equipped with these prices, we

implement the trapezoidal rule to numerically compute the risk-neutral expectation of

future variance (see Equation (4)). We repeat the steps above for each security and

observation day.

3 Variance Swap Payoffs

We study the S&P 500 index VSP of maturity 1 month. Each day, we compute

the 1-month IV as well as the subsequently realized 1-month return variation. Thus,
9Section 3.3 discusses the case of a discontinuous return process.

10For a detailed discussion of the errors in the synthetic VSR, we refer the interested reader to
Jiang and Tian (2005).
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we analyze the daily time series of the 1-month VSPs. We begin by documenting the

basic facts. Next, we investigate various factors that could affect these facts.

3.1 Baseline Results

Panel A of Table 1 reports that the average realized variance of the S&P 500

index is 3.85%, whereas the average S&P 500 index VSR is 4.53%. Thus, the VSP is

negative on average (−0.68%). The Newey and West (1987) corrected t-statistic (t-

stat=−2.45), computed with 21 lags, indicates that we can reject the null hypothesis

that the average index VSP is equal to zero at the 5% significance level. The positive

skewness and the large kurtosis estimates reveal that, while selling variance swaps is

generally profitable, it is also prone to crashes. These findings are consistent with

those of earlier works, e.g., Carr and Wu (2009).

Given the fat-tailed distribution of the VSP, we conduct a block-bootstrap to make

the statistical inference more robust. We split the original sample into overlapping

blocks of 22 observations each. From these blocks, we randomly generate 1,000 boot-

strap samples of the time series of VSPs. We then compute the test statistic associ-

ated with each bootstrap sample. Finally, we use the empirical distribution of the test

statistic to obtain the critical values and conduct the statistical inference. We report in

bold the statistically significant parameter estimates. Generally, the bootstrap-based

inference yields similar conclusions as to the asymptotic one.

We now turn our attention to the payoffs of the variance swaps related to the stocks

that make up the S&P 500 index. Following Driessen et al. (2009), we compute the

equal-weighted average of the fixed and floating legs of the variance swaps of all con-
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stituent stocks.11 Panel A of Table 1 documents that the average realized variance of

individual equities is higher than the corresponding IV, implying a marginally positive

average VSP (0.03%). The positive average VSP of individual equities is in contrast to

the negative estimate observed for the S&P 500 index. The t-statistic associated with

the average VSP of individual stocks reveals that we cannot reject the null hypothesis

that the mean is equal to zero. This result is consistent with the finding of Driessen

et al. (2013) who also study the S&P 500 index.

It is possible that some stocks have significantly positive VSPs while others have

significantly negative VSPs. If this is the case, the positive and negative payoffs might

offset each other, making it hard to reject the null hypothesis that the average VSP

of stocks is equal to zero. We thus ask the question: how often do we reject the null

of a zero average VSP for individual stocks?

The results, presented in Panel B of Table 1, indicate that we cannot reject the null

hypothesis of a zero average VSP for 66.9% of the stocks that make up the S&P 500

index.12 This finding is congruent with that of Driessen et al. (2009), who document

that 77.17% of the stocks in the S&P 100 index do not exhibit a significant VSP.

Similarly, Carr and Wu (2009) show that 85.71% of the stocks they analyze do not

have a significant VSP. The somewhat higher figures reported by these studies are

possibly due to the limited power of their test, that results from their shorter sample

period and their smaller cross-section of individual stocks.

Summarizing, we confirm the surprising finding of the literature: there is a signif-
11In order to minimize the effect of outliers on the average, we winsorize the RV and IV in the

cross-section at the 0.5% and 99.5% levels. The results without the winsorization are very similar.
12In conducting this analysis, we focus on stocks with at least 300 daily observations. We do this

to ensure that stocks with limited data do not bias our empirical results, since the statistical test will
not have enough power for these specific securities. 300 observations seems a reasonable sample size
in order to perform the statistical inference. This threshold is less stringent than that of Carr and
Wu (2009), who use 600 observations.
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icantly negative VSP at the index level but generally not for the constituent stocks.

Taken together, these results raise the question: what might explain the difference

between the results observed at the index and constituent levels?

3.2 Intraday Momentum?

3.2.1 Mechanism

As previously discussed, if the return process is continuous and the sampling fre-

quency high, the IV estimator in Equation (4) gives the risk-neutral expectation of

the sum of squared returns. The sum of squared intraday returns may differ from the

sum of squared daily returns because of intraday autocovariance effects. To illustrate

this effect, recall that the daily log return (ri,j) is simply equal to the sum of intraday

(log) returns (ri,j,k), which implies that:

ri,j =
m∑
k=0

ri,j,k (5)

r2i,j =
m∑
k=0

r2i,j,k +
m∑
k=0

∑
l,l 6=k

ri,j,kri,j,l︸ ︷︷ ︸
Intraday Autocovariance

(6)

365

τ

t+τ∑
j=t+1

r2i,j︸ ︷︷ ︸
RV

(LF )
i,t+τ

=
365

τ

t+τ∑
j=t+1

m∑
k=0

r2i,j,k︸ ︷︷ ︸
RV

(HF )
i,t+τ

+
365

τ

t+τ∑
j=t+1

m∑
k=0

∑
l,l 6=k

ri,j,kri,j,l︸ ︷︷ ︸
Intraday Autocovariance

(7)

where RV (LF )
i,t+τ and RV

(HF )
i,t+τ are the low-frequency and high-frequency estimators of

the annualized realized variance of asset i, calculated for the period starting at t and

ending at t+ τ , respectively.

Equation (7) reveals that the realized variance based on daily data depends on

the sum of squared intraday returns as well as the interaction between these intraday
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returns. In a frictionless world with independent and identically distributed returns,

the daily and intraday estimators are both unbiased estimators of the total quadratic

variation (McAleer and Medeiros, 2008).13 However, if there is true autocorrelation

in intraday returns, the low-frequency estimator is a biased estimator of the total

quadratic variation whereas the high-frequency estimator is unbiased. Consequently,

the VSP estimates based on low-frequency realized variance will be inaccurate. The

preceding discussion thus raises the question: is there evidence of “true” intraday

autocorrelation?14

3.2.2 Prior Evidence

Drechsler and Yaron (2011) report the summary statistics of the realized variance of

the S&P 500 index calculated separately using (i) daily and (ii) intraday returns. Table

1 of their paper documents an average (annualized) realized variance of 2.48% and

1.77% based on daily and intraday data, respectively.15 These figures are indicative of

a positive intraday momentum effect that biases the realized variance estimates based

on daily data. As a result, their average index VSP increases by 47% from −1.51%

when using daily data to −2.23% when based on high-frequency data.

More recently, Gao et al. (2018) document the intraday momentum effect, namely
13Note, however, that the intraday estimator will be more efficient than the daily estimator.
14 By “true” intraday autocorrelation, we mean autocorrelation patterns that show up after tackling

the microstructure noise issue that has been the main focus of the literature on high-frequency financial
econometrics. According to that literature, the microstructure noise may arise because of the bid–ask
bounce and differences in trade size, to name but a few. In order to minimize the microstructure
noise, the standard approach in that literature is to carefully select the sampling frequency of the
data.

15To be more precise, Table 1 of Drechsler and Yaron (2011) reports the average realized variance
estimates equal to 20.69 and 14.74 basis points per month for the daily and 5-minute data, respectively.
Since we report annualized quantities, we multiply the figures of the authors by 12. Consequently,
we obtain average realized variance estimates of 2.48% and 1.77% using daily and intraday data,
respectively. Similarly, the annualized IV, which the authors proxy with the squared of the volatility
index (VIX), averages 4.00% for their sample period.
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that the sum of the (i) first half-hour and (ii) overnight returns on the S&P 500 index

ETF reliably predicts its last half-hour returns. Bogousslavsky (2016) develops a theo-

retical model with infrequent rebalancing that can rationalize this result. Collectively,

these studies present some evidence of positive intraday autocorrelation in equity mar-

kets. If this result extends to individual equities, it will introduce a positive bias in (i)

the low-frequency realized variance and (ii) the corresponding VSP estimates.

3.2.3 Direct Evidence

We obtain high-frequency data from Thomson Reuters Tick History (TRTH) and

implement the data-cleaning steps outlined in Barndorff-Nielsen et al. (2009). First,

we use only data with a time stamp falling during the exchange trading hours, i.e.,

between 9:30 AM and 4:00 PM EST. Second, we remove recording errors in prices.

To be more specific, we filter out prices that differ by more than 10 mean absolute

deviations from a rolling centered median of 50 observations. Afterwards, we assign

prices to every 5-minute interval using the nearest previous entry that occurred at

most one day before. We sample observations at the 30-minute frequency exactly as

in Gao et al. (2018).16 Equipped with this data, we use the following high-frequency
16The choice of sampling frequency involves a trade-off. On the one hand, pushing the sampling

frequency to the highest level introduces microstructure noise in the analysis of liquid stocks. Clearly,
using a lower frequency is a good tool to guard against the microstructure noise that occurs at very
high frequencies for liquid stocks. On the other, these lower frequencies can increase the contribution
of microstructure noise for illiquid stocks due to inactive trading (Andersen et al., 2000). We use the
signature plot, which displays the average realized variance estimates as a function of the sampling
frequency, to guide our selection of sampling frequency. Our untabulated analysis shows that the
plot starts to stabilize around the 30-minute frequency, suggesting that the 30-minute frequency is
an appropriate choice for individual stocks. Because we dissect the index VSP into the VSP of
constituent stocks and a factor related to correlation terms, it is important to use the same frequency
for all assets. We also analyze the impact of the sampling frequency on the average equicorrelation
estimate. To do so, we plot the equicorrelation estimate as a function of sampling frequency. The
plot stabilizes from 30-minute onwards, confirming that this frequency is overall appropriate. As
a robustness check, we also consider an alternative frequency of 75-minute and obtain qualitatively
similar results. We also implement the two scale estimator of Zhang et al. (2005) and reach the same
conclusion. See Section 5.2 for further details.
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estimator for realized variance (RV (HF )
i,t+τ ):

RV
(HF )
i,t+τ =

365

τ

t+τ∑
j=t+1

m∑
k=0

r2i,j,k (8)

where ri,j,k is the (log) return on security i on day j and at time interval k. Note

that the case when k = 0 corresponds to an overnight return.17 Overall, we observe

m+1 intraday returns on each trading day (including the overnight return). All other

variables are as previously defined.

S&P 500 Index A comparison of Tables 1 and 2, which are separately based on the

low- and high-frequency realized variance estimators, shows that the realized variance

of the S&P 500 index based on daily and 30-minute data average 3.85% and 3.20%,

respectively.18 The average VSP based on intraday data (−1.33%) is nearly twice as

large in magnitude as that based on the low-frequency data (−0.68%).

To gauge the contribution of the intraday momentum effect to the difference be-

tween the low- and high-frequency realized variance estimates, we introduce the fol-

lowing estimator:

RV
(HF+FL)
i,t+τ = RV

(HF )
i,t+τ + 2× 365

τ

t+τ∑
j=t+1

(ri,j,0 + ri,j,1)ri,j,m︸ ︷︷ ︸
Autocovariance of First and Last Intraday Returns

(9)

where RV (HF+FL)
i,t+τ is the intraday estimator that accounts for the interaction of the

17It is standard in the literature to account for the overnight returns when computing the realized
variance with intraday data. See for instance Drechsler and Yaron (2011) and Bekaert and Hoerova
(2014). Ignoring the overnight returns would mechanically introduce a bias in the analysis since the
identity in Equation (5) would no longer hold. In other words, the close-to-close returns would no
longer be equal to the sum of intraday returns (including the overnight returns).

18Note that this spread is similar, in terms of magnitude, to that reported in Drechsler and Yaron
(2011).
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sum of the overnight and first returns with the last intraday returns.

The average index realized variance estimate based on the estimator in Equation

(9) is 3.38%. This result suggests that the intraday momentum effect documented

by Gao et al. (2018) alone accounts for 27.02% of the wedge (0.65%) between the

estimates based on low- and high-frequency data. This observation leaves open the

possibility of richer intraday autocorrelation dynamics. To verify this, we regress the

time series of intraday returns observed at a particular time of the day on a constant

and the time series of 30-minute intraday returns observed at a prior time of the day.

Table A.1 of the Online Appendix confirms that the predictability results of Gao et al.

(2018) extend to the stock index. The slope estimate is significantly positive and the

explanatory power of 2.1% is similar to the authors’ figure of 1.6%. The table also

documents statistically significant slope estimates for various lead–lag pairs, which

points to even richer intraday autocorrelation effects than documented previously.

Single Stocks We now extend our analysis to single stocks. We supplement the

TRTH database with data on stock splits and distributions from CRSP to adjust the

TRTH overnight returns.19 For every individual stock, we regress the time series of

intraday returns observed at a particular time of the day on a constant and the time

series of 30-minute intraday returns observed at an earlier time of the day. Tables

A.2 and A.3 of the Online Appendix report the fraction of stocks for which we find

evidence of a significantly positive and negative slope estimate at the 5% significance

level, respectively. Overall, these tables confirm that there are intraday autocorrelation

patterns. For instance, Table A.2 of the Online Appendix shows that the intraday
19After matching the two databases, we compare the daily stock prices from CRSP to the end-of-

day prices in the TRTH database. We only retain matches with similar end-of-day prices.
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momentum effect holds for 45.9% of stocks. The corresponding average explanatory

power is 0.7%.

The remainder of Table 2 also repeats Table 1 for individual stocks using realized

variance estimates based on 30-minute (rather than daily) data. A comparison of

the two tables highlights several differences. The average realized variance based on

intraday data (14.71%) is lower than that based on daily data (15.73%), suggesting

that the positive intraday autocorrelation pattern generally dominates. In turn, this

result leads to a significantly negative average VSP based on high-frequency data

(−1.00%). This finding is in contrast to the positive average VSP (0.03%) based on

daily data (see Panel A of Table 1). Moreover, the proportion of stocks for which

we can reject the null hypothesis of an insignificant VSP rises from about 30% when

using daily returns to more than 40% when using intraday data.

Summarizing, the estimates of the VSP of individual equities reported in earlier

studies are biased by intraday autocorrelation patterns. In order to control for this

intraday momentum bias, the rest of this paper proceeds with data sampled at the

high-frequency level.

3.3 Inaccurate Measure of Return Variation?

3.3.1 Mechanism

An additional bias arises from the fact that the IV estimator in Equation (4) is the

risk-neutral expectation of the sum of the squared returns only if the return process is

continuous (Dew-Becker et al., 2017; Schneider and Trojani, 2018). However, the non-

parametric evidence presented in Lee and Mykland (2008), among others, indicates
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that the time series of both the equity index and individual equity prices contain

jumps. Given that the assumption of a continuous return process is rejected by the

data, a natural question to ask is: what measure of return variation does the IV

formula in Equation (4) correctly price?

Andersen et al. (2015) show that the floating leg of the variance swap of which the

Britten-Jones and Neuberger (2000) IV is the fixed leg is:

RV
(HF,BJN)
i,t+τ =

365

τ

t+τ∑
j=t+1

m∑
k=0

2 (eri,j,k − 1− ri,j,k) (10)

where RV (HF,BJN)
i,t+τ is the high-frequency return variation whose risk-neutral expecta-

tion is exactly given by the IV estimator presented in Equation (4).

Several points are worth highlighting. First, the IV estimator in Equation (4) prices

the return variation given in Equation (10) in a general setup where the return process

contains both continuous and discontinuous components. In the case where the return

process is continuous, it can be shown that the estimator in Equation (10) reduces to

that of Equation (8). Second, the new estimator of return variation relies on intraday

data. Using intraday data does not only improve the efficiency of the estimator but

also addresses the intraday momentum bias discussed in Section 3.2.20 Fan et al. (2018)
20To understand this, it is worth looking at the extremely good approximation proposed by An-

dersen et al. (2015):

RV
(HF,BJN)
i,t+τ ≈ 365

τ

t+τ∑
j=t+1

m∑
k=0

(
2

3
r2i,j,k +

1

3
(eri,j,k − 1)2

)

RV
(HF,BJN)
i,t+τ ≈ 2

3
RV

(HF )
i,t+τ +

1

3

365
τ

t+τ∑
j=t+1

m∑
k=0

(eri,j,k − 1)2

 (11)

Similarly, at the low-frequency, we have:

RV
(LF,BJN)
i,t+τ ≈ 2

3
RV

(LF )
i,t+τ +

1

3

365
τ

t+τ∑
j=t+1

(eri,j − 1)2

 (12)
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document that the total return variation of the S&P 500 index computed using daily

return data and the estimator in Equation (12) is equal to 3.81% per year. When

the authors use the estimator in Equation (10) instead of Equation (12), the realized

variance estimate drops to 2.93%. In relative terms, the average VSP of the S&P

500 index moves by 95.60% from −0.91% based on daily data to −1.78%, as the

authors move from daily to intraday data. This change is attributable to the intraday

momentum effect.

3.3.2 Direct Evidence

Table 3 uses both intraday return data and the Andersen et al. (2015) estimator

of return variation (see Equation (10)) to compute the main statistics. Generally, we

can see that the figures are quite different from those in our benchmark specification

(see Table 1). This difference in results could be due to (i) the change in sampling

frequency from daily to 30-minute data and/or (ii) the change in the estimator from

that of Equation (3) to Equation (10). To disentangle the two effects, it is instructive

to compare Tables 2 and 3. Since both tables are based on the same intraday sampling

frequency, any difference in result can only be attributed to the change in estimator.

There is very little to distinguish between the two tables suggesting that, at the in-

traday frequency, the estimator of the return variation does not have a major impact

on the main statistics. Table A.4 of the Online Appendix implements the estimator

in Equation (12) to compute the return variation. Again, we find that the results are

very similar to the benchmark findings of Table 1. At first glance, this result may seem

Because the intraday momentum effect biases the RV (LF )
i,t+τ estimator (see Section 3.2), the correspond-

ing RV (LF,BJN)
i,t+τ will be also affected. It is also worth pointing out that the sum of the squared daily

simple returns is likely to be different from the sum of squared intraday simple returns, introducing
another disconnect between the estimates based on low- and high-frequency returns.
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surprising since one would expect jumps to matter, especially for individual equities.

To understand this finding, it is useful to recall that we focus on the unconditional

average of the VSP. Accordingly, we aggregate the return variation measures at the (i)

time-series and (ii) cross-sectional levels, which essentially lowers the impact of jumps

on the main statistics.21

Overall, we conclude that the estimates of the earlier literature suffer from two

issues. First, they are affected by the intraday momentum effect. Second, they hinge

on a measure of return variation (as the floating leg of the swap) that is not priced by

the Britten-Jones and Neuberger (2000) formula. Given the preceding discussion, the

remainder of this paper addresses these two biases and focuses only on the Andersen

et al. (2015) estimator (see Equation (10)) implemented using 30-minute data.

3.4 Dissecting the Market Variance Swap Payoff

Since the VSPs of individual equities are not as small as previously reported, we

now ask the question: how large is their contribution to the index VSP? To tackle this

question, we start with the identity linking the variance of the equity index returns

to the sum of the weighted average of the variance of individual stock returns and
21A straightforward analysis of the estimators in Equations (8) and (10) reveals that, at a given

point in time, the estimators will yield markedly different estimates if large returns are recorded. To
be more precise, the difference between the estimates based on Equations (8) and (10) is positive
for large negative returns while it is negative for large positive returns. Thus, on aggregate there is
an offsetting effect of these large returns. For instance, on September 29, 2000, the stock price of
Apple fell by 51.9% to end at $25.75. Computing the (annualized) daily return variation on that
day, we obtain estimates equal to 111.256 and 94.053 for the estimators in Equations (8) and (10),
respectively. However, because we focus on the sample average and price movements such as those
observed on September 29, 2000 are relatively rare, the averaging across the time-series dimension
helps reduce the gap between the outputs of the two estimators. Indeed, we obtain an unconditional
average value of 0.228 and 0.225 for the daily return variation of Apple based on the estimators in
Equations (8) and (10), respectively.
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covariance terms related to the index constituents:

σ2
I,t+τ =

N∑
i=1

ω2
i,tσ

2
i,t+τ +

N∑
i=1

∑
j,j 6=i

ωi,tωj,tρt+τ

√
σ2
i,t+τ

√
σ2
j,t+τ (13)

where σ2
I,t+τ is the return variation of the index I at time t + τ . ωi,t is the market

capitalization weight of asset i at time t. σ2
i,t+τ is the return variation of asset i,

computed at time t+ τ . ρt+τ is the equicorrelation at time t+ τ . To be more precise,

ρt+τ is the correlation that, if used instead of all the pairwise correlations, yields the

same index return variation (Skintzi and Refenes, 2005). We follow previous works,

e.g., Buraschi et al. (2014b), and extract this term as a residual. That is, given the

market capitalization weights, the return variation of the index and that of individual

stocks, we can re-arrange Equation (13) to derive the formula for the equicorrelation:22

ρt+τ =
σ2
I,t+τ −

∑N
i=1 ω

2
i,tσ

2
i,t+τ∑N

i=1

∑
j,j 6=i ωi,tωj,t

√
σ2
i,t+τ

√
σ2
j,t+τ

(14)

A similar expression holds under the risk-neutral probability measure:

EQ
t (σ

2
I,t+τ ) =

N∑
i=1

ω2
i,tE

Q
t (σ

2
i,t+τ ) +

N∑
i=1

∑
j,j 6=i

ωi,tωj,tE
Q
t (ρt+τ )

√
EQ(σ2

i,t+τ )
√
EQ(σ2

j,t+τ )(15)

where EQ
t (σ

2
I,t+τ ) is the time-t risk-neutral expectation of the future variance of the

index. EQ
t (σ

2
i,t+τ ) is the time-t risk-neutral expectation of the future variance of asset

i. EQ
t (ρt+τ ) is the time-t risk-neutral expectation of the future equicorrelation. We

invert Equation (15) to express the risk-neutral expected correlation as a function of
22Throughout this paper, we use the weights computed at time t. This way, the weights are the

same for both the realized and option-implied correlations. Driessen et al. (2009) show that time-
variations in the weights of the index constituents only marginally affect the estimate of equicorrela-
tion.
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observable quantities:

EQ
t (ρt+τ ) =

EQ
t (σ

2
I,t+τ )−

∑N
i=1 ω

2
i,tE

Q
t (σ

2
i,t+τ )∑N

i=1

∑
j,j 6=i ωi,tωj,t

√
EQ
t (σ

2
i,t+τ )

√
EQ
t (σ

2
j,t+τ )

(16)

Using Equations (2), (13) and (15), it is straightforward to show that:

V SP I,t+τ = σ2
I,t+τ − EQ

t (σ
2
I,t+τ )

=
N∑
i=1

ω2
i,tV SP i,t+τ +

N∑
i=1

∑
j,j 6=i

ωi,tωj,t

(
ρt+τ

√
σ2
i,t+τ

√
σ2
j,t+τ

−EQ
t (ρt+τ )

√
EQ
t (σ

2
i,t+τ )

√
EQ
t (σ

2
j,t+τ )

)
=

N∑
i=1

ω2
i,tV SP i,t+τ︸ ︷︷ ︸

Pure V SP t+τ

+
N∑
i=1

∑
j,j 6=i

ωi,tωj,tE
Q
t (ρt+τ )

(√
σ2
i,t+τ

√
σ2
j,t+τ −

√
EQ
t (σ

2
i,t+τ )

√
EQ
t (σ

2
j,t+τ )

)
︸ ︷︷ ︸

Cross V SP t+τ

+
N∑
i=1

∑
j,j 6=i

ωi,tωj,t

√
σ2
i,t+τ

√
σ2
j,t+τ

(
ρt+τ − EQ

t (ρt+τ )
)

︸ ︷︷ ︸
CSP t+τ

= Pure V SP t+τ + Cross V SP t+τ︸ ︷︷ ︸
Individual V SP t+τ

+CSP t+τ (17)

V SP I,t+τ = Individual V SP t+τ + CSP t+τ (18)

Equation (18) reveals that the VSP of the equity index can be decomposed into

two factors. The first factor (Individual VSP) is a function of the VSP of individual
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equities.23 The second factor (CSP) is a function of the correlation swap payoff.24 We

next discuss the implications of this decomposition.

The Level of the Index Variance Swap Payoff Equation (18) shows that, if the

VSP of each stock equals 0, then the Individual VSP factor disappears. An upshot of

this is that the index VSP is equal to the CSP factor. Conversely, if the CSP is equal

to zero, the Individual VSP factor will be equal to the index VSP.

However, if (i) the VSPs of individual equities are generally different from 0 (as

Table 3 shows) and (ii) the CSPs are on average negative, as Panel B of Table A.5 in

the Online Appendix shows, it is interesting to evaluate the contribution of each factor

to the level of the index VSP. We can directly answer this question since Equation

(18) implies that the average of the index VSP equals the sum of the average values

of the two factors.

The Variance of the Index Variance Swap Payoff It is useful to recall that:

V ar(V SP I,t+τ ) = Cov(V SP I,t+τ , V SP I,t+τ )

V ar(V SP I,t+τ ) = Cov(Individual V SP t+τ + CSP t+τ , V SP I,t+τ ) (19)
23This factor comprises two terms: the Pure VSP and the Cross VSP. The Pure VSP provides

exposure to the VSPs of individual equities. To be more precise, it is the sum of the VSPs of individual
equities multiplied by the squared value of the market capitalization weights. The Cross VSP depends
on the interaction between the swaps of different stocks scaled by the market capitalization weights
and the risk-neutral expectation of the equicorrelation. In the data, the Pure VSP and the Cross VSP
series are strongly related with a correlation coefficient equal to 89.96%, suggesting that they contain
similar information. This finding motivates us to combine the two terms under the label Individual
VSP.

24The correlation swap is an OTC derivative. The agent who takes a long position in the correlation
swap (with notional of $1) pays the correlation swap rate and receives the realized correlation at
maturity. Consistent with the works of Buraschi et al. (2014a) and Faria and Kosowski (2016),
among others, Table A.5 of the Online Appendix documents a significantly negative average CSP.
This is true irrespective of whether the realized variance is affected by the biases discussed in Sections
3.2 and 3.3 or not. Interestingly, the two panels of the same table show that the average CSP falls
by 3.63 percentage points from −7.47% (Panel A) in the benchmark scenario to −11.10% (Panel B)
after correcting for the biases.
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It is straightforward to show that:

1 =
Cov(Individual V SP t+τ , V SP I,t+τ )

V ar(V SP I,t+τ )
+
Cov(CSP t+τ , V SP I,t+τ )

V ar(V SP I,t+τ )
(20)

where V ar(·) and Cov(·) are the variance and covariance operators, respectively.

Equation (20) shows that we can decompose the variance of the index VSP into

two parts. The contribution of each factor corresponds to the slope estimate of a

regression of the factor on a constant and the index VSP.

Results Panel A of Table 4 shows that both factors make a positive contribution to

the level of the index VSP. The figures reported under “Shrvar” reveal that the CSP

and individual VSP factors account for 70.6% and 29.4% of the average index VSP,

respectively.25

Turning to the variance decomposition results, the column entitled “Shrvar” reveals

that both factors make a positive contribution to the variance of the index VSP.

The bigger contributor is the Individual VSP factor, which accounts for 67.4% of the

variability.

Taken together, the analysis reveals that the CSP factor captures a large share of

the level of the index VSP. This finding is to some extent consistent with the insight

of Driessen et al. (2009) regarding the average index VSP. However, when we analyze

the variance of the index VSP, we find that the Individual VSP (rather than the CSP)

factor is the main driving force.
25Note that the sign of the CSP factor is completely determined by that of the CSP. This is because

the weights and volatility terms are strictly positive. Thus, the negative average value of the CSP
factor indicates that the CSP is negative in general (see Table A.5 of the Online Appendix). This
finding is consistent with the works of Buraschi et al. (2014a) and Faria and Kosowski (2016).
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4 Variance Risk Premia

Bollerslev et al. (2009) establish the predictive power of the index VRP, which

we define as the spread between the physical and risk-neutral expectations of future

variance, for future aggregate excess stock returns. This finding raises the following

questions: do the decomposition results extend to the index VRP? Which of the two

factors is the main driver of this return predictability? Does separating the two factors

strengthen the predictability of aggregate excess stock returns?

4.1 Dissecting the Variance Risk Premium

Framework We define the VRP as:

V RP i,t = EP
t (σ

2
i,t+τ )− EQ

t (σ
2
i,t+τ ) (21)

where V RP i,t is the VRP of asset i at time t. EP
t (σ

2
i,t+τ ) is the physical expectation

at time t of the future variance. All other variables are as previously defined.

In order to decompose the VRP of the aggregate index into its factors, it is useful

to note the following:
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t (σ

2
I,t+τ ) =

N∑
i=1

ω2
i,tE

P
t (σ

2
i,t+τ ) +

N∑
i=1

∑
j,j 6=i

ωi,tωj,tE
P
t (ρt+τ )

√
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t (σ

2
i,t+τ )

√
EP
t (σ

2
j,t+τ ) (22)

Using Equations (15), (21) and (22), we decompose the index VRP as follows:

V RP I,t = EP
t (σ

2
I,t+τ )− EQ

t (σ
2
I,t+τ )
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︸ ︷︷ ︸
CRP t

= Pure V RP t + Cross V RP t︸ ︷︷ ︸
Individual V RP t

+CRP t (23)

V RP I,t = Individual V RP t + CRP t (24)

Two observations are in order. First, the VRP is a conditional expectation of the

future VSP. Hence, the ensuing analysis is cast in an ex-ante setting. Second, the

VRP involves the physical expectation of the future variance, which is not directly

observable. This forces us to specify a model to generate the physical expectation of

the future variance. Similar to Bollerslev et al. (2009), we assume a random walk, i.e.,

the physical expectation for the future variance is equal to its most recent realization.

This model is estimation-free, making it useful to bypass sampling errors associated

with the realized variance forecasting regressions. Furthermore, it delivers positive

variance forecasts at each point in time. This is not always guaranteed for variance

forecasting models that need to be estimated; a problem that could be acute for

individual equities.26 Finally, it yields realistic dynamics of the expectation of the

future equicorrelation.27

26The random walk model has the advantage that, in real-time, an investor would have known
and therefore considered this model. This is not necessarily the case for recently proposed variance
forecasting models such as the HAR–RV model of Corsi (2009) that we analyze in Section 5.4.

27This point is important because of the identity linking the variance of the index with that of its
constituents (see Equation (22)). Since the expectation of the future realized correlation should lie
between −1 and 1, one needs to be careful in the modeling framework to account for this constraint.
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Figure 1 summarizes the dynamics of the index VRP, as well as its two factors. The

index VRP is generally negative and takes large values during bad economic times, as

defined by the National Bureau of Economic Research (NBER). Turning to the two

factors, we notice that they exhibit distinct dynamics. The individual VRP factor is

more volatile than the CRP factor. Overall, the correlation between the two factors is

low and negative (−40.64%), suggesting that they contain different information.

Results Panel B of Table 4 reports that the level of the index VRP is significantly

negative (−1.28%) and comparable to that of the index VSP (−1.33%) documented

in Panel A of the same table. The decomposition results reveal that the CRP factor

accounts for 88.3% of the level of the index VRP. “Shrvar” shows that the Individual

VRP factor makes the larger contribution (72.1%) to the variations of the index VRP.

Overall, these findings are consistent with the insights gleaned by analyzing the

VSPs. The CRP factor is important for the level of the index VRP, whereas the

Individual VRP factor matters for the variations of the index VRP.

4.2 Implications for Return Predictability

Next, we examine the implications of the two-factor structure for the predictability

of aggregate market excess returns. In carrying out the predictability analysis, we

follow the literature and sample the VRP at the end of each month. By doing so, we

reduce the amount of overlap between consecutive observations, thus facilitating the

statistical inference.28

28We repeated our analysis of the summary statistics using end-of-month data rather than daily
observations. Overall, the main findings are not affected by this change. We do not tabulate these
results for brevity.
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We estimate the following regression:

erI,t→t+h = α + βV RP I,t + εI,t+h (25)

where erI,t→t+h is the (annualized) excess return of the stock market index for the

period starting at t and ending at t + h (h is expressed in months). Throughout this

paper, the excess return is the difference between the (log) total return and the risk-

free rate. We obtain the 1-month U.S. Treasury bill rate data from Kenneth French’s

website. We examine forecasting horizons of 1, 3, 6, 9, 12, 18 and 24 months. α and

β are the intercept and slope parameters, respectively. εI,t+h is the residual of the

regression at time t+ h.

Panel A of Table 5 reports the results of this analysis. We present the Newey and

West (1987) standard errors computed with h lags in parentheses. We also report

Hodrick (1992) standard errors in square brackets. To make the statistical inference

more robust, we report in bold the significant slope estimates based on the empir-

ical p-values from the wild bootstrap of Rapach et al. (2013). Among other things,

the procedure is robust to the Stambaugh (1999) bias, preserves the contemporaneous

correlations across residuals, and allows for general forms of conditional heteroskedas-

ticity.

The results indicate that the slope parameter is significantly negative (at the 5%

significance level) over horizons of up to 6 months. Thus, the index VRP acts as

short-term predictor of S&P 500 excess returns. The adjusted R2 enables us to gauge

the strength of predictability for different forecasting horizons. Consistent with the

theoretical model of Bollerslev et al. (2009), we observe a hump-shaped pattern, with
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the adjusted R2 peaking at the quarterly horizon (adjusted R2 = 10.3%). Overall,

these findings confirm and update the authors’ empirical findings to the more recent

period.29

The decomposition results show that we can express the index VRP as the sum

of two factors. To understand which of the two factors is relevant for the predictabil-

ity of excess returns, we directly use them in the following excess return forecasting

regression:

erI,t→t+h = α + φIndividual V RP t + γCRP t + εI,t+h (26)

where α, φ and γ are parameters to be estimated.

Panel B of Table 5 shows that the slope estimates linked to the two factors are

negative. The inference based on the bootstrap experiment suggests that the slope

associated with the CRP factor is statistically significant for all horizons, whereas

that of the individual VRP factor is significant only for horizons up to 9 months.

Viewed as a whole, these patterns indicate that the CRP factor is a reliable predictor

of aggregate excess stock returns across all horizons, whereas the individual VRP factor

acts as a short-term predictor.

If one starts with the model in Equation (26) and imposes the restriction that

φ = γ, then this model reduces to that in Equation (25). If the restriction is rejected

by the data, then a forecaster who considers the two factors directly could achieve a

higher forecasting power. Figure 2 shows that the adjusted R2 of the unconstrained

model (see Equation (26)) is almost always higher than that of the constrained model
29In comparing the sign of our parameter estimates to theirs, it is worth remembering that their

definition of the VRP is the opposite of ours. Thus, their positive slope estimate is consistent with
our negative slope estimate.
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(see Equation (25)). We compute the Wald test statistic associated with the null

hypothesis that φ = γ. The last two rows of Panel B of Table 5 show that the null

hypothesis is rejected for nearly all horizons at the 5% significance level.

We investigate whether the Individual VRP and CRP factors contain information

that is independent from that of other established predictors of aggregate excess re-

turns. We consider the following variables: CAY is the consumption-to-wealth ratio.

DFSP is the default spread, defined as the difference between BAA- and AAA-rated

corporate bond yields. log(P/D) is the logarithm of the level of the S&P 500 index

divided by the 12-month trailing sum of dividends paid by S&P 500 firms. log(P/E)

is the logarithm of the S&P 500 price index divided by the 12-month trailing sum of

earnings. RREL is the stochastically detrended risk-free rate, i.e., the 1-month U.S.

T-bill rate minus its 12-month trailing average. TMSP is the term spread, defined as

the difference between the U.S. Treasury 10-year yield and the 3-month T-bill rate. We

obtain the data on these predictors from Amit Goyal’s website.30 Tables A.6–A.12 of

the Online Appendix confirm that the predictability results of the two factors are even

stronger following the inclusion of these control variables. In particular, the bootstrap

inference shows that the slope estimates associated with the Individual VRP and CRP

factors are significant for all horizons. Furthermore, these slope estimates are similar

both in terms of sign and magnitude to those obtained by estimating the regression in

Equation (26).
30The data is available at the following address: http://www.hec.unil.ch/agoyal/.
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5 What About ...

This section presents several robustness checks. First, we discuss how our two-

factor model compares to alternative decompositions. Second, we assess the robustness

of our measure of the return variation to the microstructure noise inherent in high-

frequency data. Third, we analyze the impact of the liquidity of option contracts on

our results. Fourth, we assess the sensitivity of our results to the choice of the variance

forecasting model.

5.1 Alternative VRP Decompositions?

Section 4.1 decomposes the index VRP into an individual VRP factor and a CRP

factor. It is, however, interesting to see how this decomposition compares to alterna-

tives proposed in the literature.31 For example, Cosemans (2011) decomposes the index

VRP into an average VRP component (AVRP), defined as the value-weighted average

of the VRP of all constituent stocks and the raw CRP (CRPRAW ). Although related to

our decomposition, there are important conceptual and empirical differences. On the

theoretical front, our decomposition highlights that the second factor is the CRPRAW

variable interacted with a factor equal to
∑N

i=1

∑
j,j 6=i ωi,tωj,t

√
EQ
t (σ

2
i,t+τ )

√
EQ
t (σ

2
j,t+τ ).

In the data, a regression of our CRP factor on a constant and the CRPRAW variable

yields an R2 equal to 0.40. Clearly, this result suggests that CRP and CRPRAW factors

are different quantities.

Moreover, the decomposition of Cosemans (2011) is not coherent in the sense that

the sum of the proposed two factors does not yield the index VRP. Indeed, the author

reports average values of −1.91% and 0.15% for the AVRP and CRPRAW , respec-
31We thank an anonymous referee for encouraging us to pursue this analysis.
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tively.32 Clearly, the sum of the two factors (−1.76%) does not match the 1.38%

figure reported by the author for the average index VRP. In a similar vein, Driessen

et al. (2013) argue that the average index VSP is completely determined by the av-

erage CSPRAW . Our decomposition highlights that, at the minimum, CSPRAW must

be weighed by a term corresponding to
∑N

i=1

∑
j,j 6=i ωi,tωj,t

√
σ2
i,t+τ

√
σ2
j,t+τ . Absent

this term, there will be a mismatch between the average index VSP and the average

CSPRAW . Indeed, the authors find an average CSPRAW of −6.87%, more than 6 times

the magnitude of the VSP of the S&P 100 index (−1.05%). A coherent decomposition

is very useful to get a good understanding of the level and variance of the index VSP.

Our results suggest that the CSP factor is important to understand the average of

the index VSP. However, the CSP factor makes a small contribution to the fluctua-

tions of the index VSP. It is the individual VSP factor that accounts for most of these

time-variations.

Table A.13 of the Online Appendix summarizes the predictability results associated

with the AVRP and CRPRAW computed as in Cosemans (2011). In particular, we

investigate whether the AVRP and CRPRAW variables contain information that is

independent from that of the following predictors of aggregate excess returns: CAY,

DFSP, log(P/D), log(P/E), RREL and TMSP. Comparing the result of this table with

the corresponding last columns of Tables A.6–A.12 of the Online Appendix, we can

see that our decomposition yields more accurate forecasts of excess returns than that
32The author presents statistics that are expressed on a per month basis. We annualize the variance

estimates by multiplying them by 12. Since the author computes the VRP as the difference between
the risk-neutral and physical expectations of future variance, their estimates suggest that the AVRP
has the “wrong” sign. This finding arises because the Cosemans (2011) estimates are affected by
the use of a measure of return variation (as the floating leg to the swap) that is not priced by the
Britten-Jones and Neuberger (2000) IV formula. Moreover, the author uses a sampling frequency of 5
minutes that is likely too high for single stocks, thus introducing microstructure noise in the analysis.
Furthermore, the author uses an equal-weighted average to compute the AVRP instead of using the
squared of the market capitalization weight, as is done in our decomposition.
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of Cosemans (2011), as evidenced by the adjusted R2. Moreover, our two factors are

always associated with significant slope parameters, whereas this is not the case for the

two factors of Cosemans (2011). For instance, the AVRP factor of Cosemans (2011) is

not significant beyond the 3-month horizon. Overall, this set of findings suggests that

our decomposition is different both from a conceptual standpoint as well as empirically

from that of Cosemans (2011).

Feunou et al. (2017a) and Kilic and Shaliastovich (2019) propose a coherent dissec-

tion of the index VRP into the up VRP (VRPUP ) and down VRP (VRPDOWN) and

explore the information content of these components for future returns. They report

that the VRPDOWN predicts future aggregate stock returns. Feunou et al. (2017a)

also document the predictive power of the difference between the up and down VRP

(VRPUP–VRPDOWN), which they interpret as a proxy for the skewness risk premium.

We compute these variables as in Feunou et al. (2017a). One might conjecture that

the CRP factor merely proxies for the VRPDOWN or VRPUP–VRPDOWN measure.

This motivates us to regress the CRP factor on a constant and the VRPDOWN . We

obtain an R2 of 0.16, indicating that the CRP factor and VRPDOWN do not contain the

same information. We carry out a similar analysis replacing VRPDOWN by VRPUP–

VRPDOWN and obtain an explanatory power of 0.30, leading us to the conclusion that

the CRP factor is different from VRPUP–VRPDOWN .

Tables A.14–A.16 of the Online Appendix summarize the predictability results as-

sociated with (i) VRPUP and VRPDOWN , (ii) VRPUP–VRPDOWN and (iii) VRPDOWN .

Each regression model controls for the effect of the established predictors of stock mar-

ket excess returns discussed already. Consistent with Feunou et al. (2017a) and Kilic

and Shaliastovich (2019), the VRPUP and VRPDOWN predict future aggregate stock
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excess returns with opposite signs. Looking at the predictive results associated with

VRPUP–VRPDOWN , we observe that this variable is generally not associated with a

significant slope parameter.33 This is true for most horizons. Comparing Tables A.6–

A.12 and A.14–A.16 of the Online Appendix, we can see that the Individual VRP and

CRP factors generally yield the higher explanatory power for most horizons, with both

factors being associated with significant slope estimates. This finding suggests that,

after controlling for well-documented predictors of excess returns, our two factors are

more informative about future aggregate excess returns than the factors independently

proposed by Feunou et al. (2017a) and Kilic and Shaliastovich (2019).

5.2 Alternative Sampling Frequencies?

Up to this point, the computation of realized variance and its physical expectation

revolves around returns sampled at a frequency of 30 minutes. In order to analyze

the sensitivity of our results to the sampling frequency, we repeat the main tests using

a sampling frequency of 75 minutes as in Bollerslev et al. (2016). Tables A.17 and

A.18 of the Online Appendix point to results that are very similar to those of Tables

3 and 4. The predictability results summarized in Table A.19 of the Online Appendix

confirm that explicitly accounting for the two factors strengthens the predictability of

aggregate excess returns.

A comparison of Tables 1 and 3 reveals that the biases discussed in Sections 3.2

and 3.3 seem to have a larger effect on the results of the index than those of individual

equities. It is likely that a sampling frequency of 30 minutes is too low for the index.
33This result is different from that of Feunou et al. (2017a). The difference likely arises from the

fact that we control for other established predictors of aggregate stock excess returns, whereas the
authors do not. In light of this, we can conclude that the information content of VRPUP –VRPDOWN

is already contained in established forecasting variables.
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To remedy this issue, we repeat our analysis of the index VSPs using frequencies of

5 and 15 minutes. Table A.20 of the Online Appendix shows the results. Briefly, the

magnitude of the average index VSP is −1.17% and −1.11% at the 5- and 15-minute

frequency, respectively. This is quite similar to the average of −1.33% based on the

30-minute frequency (see Table 3).

As an additional check, we implement the subsampling and averaging technique of

Zhang et al. (2005). Briefly, we create various subgrids of 30-minute spaced returns

with different starting times. For each of these subgrids, we estimate the return vari-

ation. Next, we average these estimates across all the subgrids and implement the

bias-correction of Zhang et al. (2005) to obtain the return variation estimate that we

use for the calculation of the VSPs. As Tables A.21–A.23 of the Online Appendix

show, the results of this approach are qualitatively similar to those in the main part

of the paper.

5.3 The Liquidity of Individual Equity Options?

The implementation of the IV formula in Equation (4) requires liquid options as

well as a broad range of strike prices. While this is not a big issue for the S&P 500

index, it could be a concern for individual equity options, potentially introducing a

bias in the estimates of the VSR and, thus, the average VSP.

To alleviate this concern, we restrict our focus to the individual equities that satisfy

the following two criteria. The first criterion is that the stock belongs to the list of the

80 equity options with the highest average option trading volume. The second criterion

is that the stock must be part of the 80 equities with the highest average number of

option strike prices per maturity during the sample period. Table A.24 of the Online
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Appendix summarizes the results linked to the average VSP of these stocks. Panel A

shows the results for the benchmark specification as well as those based on intraday

data. To be clear, the benchmark results are based on the low-frequency estimator of

realized variance (see Equation (3)). The second set of results obtains when we replace

the low-frequency estimator of variance with the Andersen et al. (2015) estimator (see

Equation (10)). Since we study very active securities, we implement the subsampling

and averaging technique of Zhang et al. (2005). Overall, our main conclusion is the

same. By changing the estimator of the return variation and sampling at the intraday

level, we observe a meaningful change in the average VSP of stocks from 0.22% in the

benchmark setting to −0.89%.

5.4 The Physical Expectation of Variance?

An analysis of the VRP involves taking a stance on a model to generate the physical

expectation of variance. While our baseline analysis uses the estimation-free random

walk model, Bekaert and Hoerova (2014) caution that the predictability results weaken

when using alternative models for the realized variance.

To shed light on this, we replace the random walk model with the Heterogeneous

Autoregressive Realized Variance (HAR–RV) model of Corsi (2009).34,35 In this model,

the conditional expectation of next-month’s realized variance is a function of a con-

stant, the latest observation of the daily realized variance, the most recent weekly
34We also considered the HAR–RV–C–J model of Andersen et al. (2007) that decomposes each

variance term in the HAR–RV into continuous and discontinuous components. This model underper-
formed the HAR–RV, with the difference in the mean squared error being statistically significant. As
a result, we do not tabulate the corresponding results and focus on the HAR–RV model.

35Ideally, one would want to find the best forecasting model for each asset and then use this model
to generate the conditional expectation of the realized variance. We caution that this approach is
challenging because it may yield implausible forecasts of the equicorrelation. Our experimentation
with this approach resulted in correlation forecasts that were often greater than 1 in absolute value.
Moreover, these forecasts were too volatile to be plausible.
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realized variance, and the most recent monthly realized variance:

RV
(HF,BJN)
i,t+τ = α + βRV

(HF,BJN,D)
i,t + γRV

(HF,BJN,W )
i,t + φRV

(HF,BJN)
i,t + εt+τ (27)

where α is the intercept. β, γ and φ are slope parameters. RV
(HF,BJN,D)
i,t and

RV
(HF,BJN,W )
i,t denote the daily and weekly realized variance, respectively:

RV
(HF,BJN,D)
i,t = 365

m∑
k=0

2(eri,t,k − 1− ri,t,k) (28)

RV
(HF,BJN,W )
i,t =

365

7

t∑
j=t−6

m∑
k=0

2(eri,t,k − 1− ri,t,k) (29)

We estimate the model using an expanding window initialized with the first 300

observations. We do this at each point in time, thus yielding the time series of pa-

rameter estimates.36 We then use the time series of the parameter estimates, together

with the relevant variables, to generate the expected value of the realized variance

and repeat our key analyses. By construction, there is no look-ahead bias since the

expectation is computed in real time.

Table 6 confirms that the CRP factor is the main contributor to the average of

the index VRP, while the individual VRP captures a sizable part of the variation in

the index VRP. Consistent with the results of Bekaert and Hoerova (2014), Table 7

shows that the strength of the predictability observed at the quarterly horizon hinges

on the model of expected realized variance. The predictive power of the index VRP

drops from 10.3% when the expected realized variance is modeled as a random walk

(Table 5) to 7.9% when using the HAR–RV model. However, the Wald test reveals
36We use daily observations in order to obtain more precise parameter estimates.
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that a model that explicitly decomposes the index VRP into the individual VRP and

the CRP factors yields superior forecasts compared to a constrained forecasting model

that includes only the index VRP. This finding is consistent with our earlier conclusion.

Since we estimate a variance forecasting model to generate the premiums that are

then used as forecasting variables in the return predictability regression, the analysis

may be subject to sampling error. In order to investigate the impact of the generated

regressor problem, we follow the steps of Bekaert and Hoerova (2014). We estimate

each HAR–RV model as before. We save the parameter estimates as well as their

asymptotic covariance matrix. We draw 500 alternative coefficients from the distri-

bution of these parameters, which we use to generate the relevant return forecasting

variables. We do this at the end of each calendar month and thus obtain alternative

time series of the return forecasting variable(s). Finally, we estimate the excess re-

turn forecasting model using each of the alternative time series of predictive variables.

Our untabulated results indicate that the sampling errors do not materially affect the

results. This is consistent with the conclusion of Bekaert and Hoerova (2014).

6 Conclusion

We analyze the measurement errors present in the average variance swap payoff

estimates documented in the literature. We show that the puzzling conclusion of

insignificant VSPs for stocks reported in earlier works (Carr and Wu, 2009; Driessen

et al., 2009) is materially affected by measurement errors in the estimates of the return

variation. Correcting for these biases, we find significantly negative average VSPs for

the constituent stocks.
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We decompose the index variance risk premium into two factors and assess their

importance. The Individual VRP factor makes a sizable contribution to the variation

in the 1-month index VRP, while the CRP factor captures a significant proportion of

the level of the index VRP. Jointly accounting for these factors significantly improves

the predictability of aggregate excess returns.
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Figure 2: Regression R2s: Constrained vs. Unconstrained Regressions

This figure plots the adjusted R2s of the constrained excess return predictability regression (solid line)

and unconstrained excess return predictability regression (dashed line) for various horizons, ranging

from 1 to 24 months. The constrained model involves regressing the h months excess return on the

S&P 500 index on a constant and the lagged index VRP. The unconstrained model entails regressing

the h months excess return on the index on a constant and the (lagged) two factors that make up the

index VRP, namely the CRP and Individual VRP factors.
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Table 1: Variance Swap Payoffs: Daily RV

This table reports summary statistics on the daily time series of the 1-month VSPs. Panel A presents

the results linked to the S&P 500 index, as well as the equal-weighted average of the constituent

stocks. RV and IV report the average (annualized) low-frequency realized and Britten-Jones and

Neuberger (2000) option-implied variances, respectively. We use daily return data to compute the

realized variance (see Equation (3)). V SP shows the average VSP, defined as the spread between

RV and IV . Std Dev, Skew, Kurt and AR(1) denote the standard deviation, skewness, kurtosis

and first-order autocorrelation of the VSP, respectively. Median, q0.05 and q0.95 are the median, 5%

and 95% quantiles of the VSP, respectively. *, **, and *** indicate significance at the 10%, 5%,

and 1% level based on Newey and West (1987) corrected standard errors (with 21 lags), respectively.

We highlight, in bold, the significant estimates of the VSP based on a block-bootstrap. The rows

in Panel B relate to stocks with insignificant, significantly negative and significantly positive VSPs

(at the 5% significance level), respectively. Share indicates the fraction of firms for which the VSP

satisfies the condition [name in row].

Panel A: Market Variance Swap Payoff

RV IV V SP t-stat Std Dev Skew Kurt AR(1) Median q0.05 q0.95

S&P 500 0.0385 0.0453 -0.0068** -2.45 0.048 6.26 66.8 0.96 -0.0100 -0.0451 0.0330
Avg. Stocks 0.1573 0.1571 0.0003 0.04 0.109 6.15 55.9 0.98 -0.0172 -0.0756 0.1167

Panel B: Stock Variance Swap Payoff

Share RV IV V SP Std Dev Skew Kurt AR(1) Median q0.05 q0.95

= 0 not rejected 0.669 0.2100 0.1868 0.0232 0.340 4.02 42.94 0.94 -0.0251 -0.1766 0.3348
> 0 rejected 0.301 0.1069 0.1363 -0.0295 0.100 1.11 21.85 0.92 -0.0329 -0.1516 0.1077
< 0 rejected 0.030 0.3868 0.2910 0.0959 0.362 3.16 19.23 0.95 -0.0062 -0.1796 0.7802
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Table 2: Variance Swap Payoffs: 30-Minute RV

This table reports summary statistics on the daily time series of the 1-month VSPs. Panel A presents

the results linked to the S&P 500 index, as well as the equal-weighted average of the constituent

stocks. RV and IV are the average (annualized) high-frequency realized and Britten-Jones and

Neuberger (2000) option-implied variances, respectively. We use high-frequency return data sampled

at the 30-minute frequency to compute the realized variance (see Equation (8)). V SP denotes the

average VSP, defined as the spread between RV and IV . Std Dev, Skew, Kurt and AR(1) denote

the standard deviation, skewness, kurtosis and first-order autocorrelation of the VSP, respectively.

Median, q0.05 and q0.95 are the median, 5% and 95% quantiles of the VSP, respectively. *, **, and

*** indicate significance at the 10%, 5%, and 1% level based on Newey and West (1987) corrected

standard errors (with 21 lags), respectively. We highlight, in bold, the significant estimates of the

VSP based on a block-bootstrap. The rows in Panels B relate to stocks with insignificant, significantly

negative and significantly positive VSPs (at the 5% significance level), respectively. Share indicates

the fraction of firms for which the VSP satisfies the condition [name in row].

Panel A: Market Variance Swap Payoff

RV IV V SP t-stat Std Dev Skew Kurt AR(1) Median q0.05 q0.95

S&P 500 0.0320 0.0453 -0.0133*** -6.12 0.038 5.16 67.9 0.95 -0.0124 -0.0512 0.0168
Avg. Stocks 0.1471 0.1571 -0.0100* -1.93 0.089 5.44 56.5 0.97 -0.0202 -0.0847 0.0956

Panel B: Stock Variance Swap Payoff

Share RV IV V SP Std Dev Skew Kurt AR(1) Median q0.05 q0.95

= 0 not rejected 0.584 0.2030 0.1922 0.0108 0.291 4.07 48.71 0.94 -0.0256 -0.1797 0.2843
> 0 rejected 0.400 0.1163 0.1461 -0.0298 0.099 1.27 24.61 0.92 -0.0316 -0.1512 0.1001
< 0 rejected 0.016 0.3601 0.2588 0.1013 0.273 2.09 16.45 0.92 0.0248 -0.1588 0.5678
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Table 3: Variance Swap Payoffs: 30-Minute Andersen et al. (2015) RV

This table reports summary statistics on the daily time series of the 1-month VSPs. Panel A presents

the results linked to the S&P 500 index, as well as the equal-weighted average of the constituent

stocks. RV and IV report the average (annualized) realized and Britten-Jones and Neuberger (2000)

option-implied variances, respectively. We use high-frequency return data sampled at the 30-minute

frequency to compute the Andersen et al. (2015) return variation (see Equation (10)). V SP shows the

average VSP, defined as the spread between RV and IV . Std Dev, Skew, Kurt and AR(1) denote

the standard deviation, skewness, kurtosis and first-order autocorrelation of the VSP, respectively.

Median, q0.05 and q0.95 are the median, 5% and 95% quantiles of the VSP, respectively. *, **, and

*** indicate significance at the 10%, 5%, and 1% level based on Newey and West (1987) corrected

standard errors (with 21 lags), respectively. We highlight, in bold, the significant estimates of the

VSP based on a block-bootstrap. The rows in Panels B relate to stocks with insignificant, significantly

negative and significantly positive VSPs (at the 5% significance level), respectively. Share indicates

the fraction of firms for which the VSP satisfies the condition [name in row].

Panel A: Market Variance Swap Payoff

RV IV V SP t-stat Std Dev Skew Kurt AR(1) Median q0.05 q0.95

S&P 500 0.0320 0.0453 -0.0133*** -6.11 0.038 5.19 68.2 0.95 -0.0124 -0.0512 0.0168
Avg. Stocks 0.1479 0.1571 -0.0092* -1.77 0.089 5.47 56.9 0.97 -0.0192 -0.0841 0.0976

Panel B: Stock Variance Swap Payoff

Share RV IV V SP Std Dev Skew Kurt AR(1) Median q0.05 q0.95

= 0 not rejected 0.591 0.2007 0.1901 0.0106 0.278 4.07 49.55 0.94 -0.0243 -0.1732 0.2775
> 0 rejected 0.393 0.1170 0.1458 -0.0288 0.097 1.22 25.08 0.92 -0.0303 -0.1477 0.0981
< 0 rejected 0.017 0.4647 0.3104 0.1543 0.331 2.08 14.95 0.93 0.0528 -0.1737 0.7487
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Table 4: Decomposition Results: 30-Minute Andersen et al. (2015) RV

This table presents the results of the decomposition of the daily time series of the 1-month index

variance swap payoff (Panel A) and variance risk premium (Panel B) into two factors. The variance

swap payoff is the difference between the (annualized) Andersen et al. (2015) realized and Britten-

Jones and Neuberger (2000) option-implied variance. We use high-frequency return data sampled at

the 30-minute frequency to compute the Andersen et al. (2015) return variation (see Equation (10)).

The variance risk premium is the difference between the physical expectation of the future variance,

using a random walk model (Bollerslev et al., 2009), and the Britten-Jones and Neuberger (2000)

option-implied variance. Mean is the average value. *, **, and *** indicate significance at the 10%,

5%, and 1% level based on the Newey and West (1987) corrected standard errors (with 21 lags),

respectively. We highlight, in bold, the significant estimates of the mean based on a block-bootstrap.

Shrmean reports the fraction of the mean of the (i) variance swap payoff (Panel A) or (ii) variance

risk premium (Panel B) of the S&P 500 index associated with the factor [name in row]. Std Dev

is the standard deviation. Shrvar reports the share of the variance of the (i) variance swap payoff

(Panel A) or (ii) variance risk premium (Panel B) of the S&P 500 index associated with the factor

[name in row]. Skew, Kurt and AR(1) denote the skewness, kurtosis and first-order autocorrelation,

respectively. Median, q0.05 and q0.95 relate to the median, 5% and 95% of the distribution of the

variable [name in row].

Panel A: Variance Swap Payoff

Mean t-stat Shrmean Std Dev Shrvar Skew Kurt AR(1) Median q0.05 q0.95

Index VSP -0.0133*** -6.11 1.000 0.038 1.000 5.19 68.2 0.95 -0.0124 -0.0512 0.0168

Individual VSP -0.0039** -2.28 0.294 0.030 0.674 4.56 61.7 0.96 -0.0046 -0.0321 0.0230
CSP -0.0094*** -10.2 0.706 0.017 0.326 -1.01 35.2 0.92 -0.0069 -0.0310 0.0021

Panel B: Variance Risk Premium

Mean t-stat Shrmean Std Dev Shrvar Skew Kurt AR(1) Median q0.05 q0.95

Index VRP -0.0128*** -10.9 1.000 0.024 1.000 5.99 96.3 0.87 -0.0117 -0.0404 0.0070

Individual VRP -0.0015 -1.08 0.117 0.026 0.721 8.24 112 0.94 -0.0038 -0.0205 0.0228
CRP -0.0113*** -14.1 0.883 0.015 0.279 -5.80 76.2 0.88 -0.0078 -0.0341 0.0006
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Table 5: Predictability of S&P 500 Excess Returns: 30-Minute Andersen
et al. (2015) RV

This table summarizes the results of the regression of S&P 500 (annualized) excess returns measured

over a horizon of h months on a constant and the lagged forecasting variable(s). Panel A considers

the forecasting power of the market index variance risk premium. The index variance risk premium

is the difference between the physical expectation of the future Andersen et al. (2015) variance,

computed based on 30-minute data and using a random walk model (Bollerslev et al., 2009), and the

Britten-Jones and Neuberger (2000) option-implied variance. Panel B considers the two factors of the

index variance risk premium, namely the CRP and Individual VRP factors. We consider forecasting

horizons (h) of 1, 3, 6, 9, 12, 18 and 24 months. All the variables are sampled at the end of each

month. The entries in parentheses and square brackets indicate Newey and West (1987) corrected

standard errors (with h lags) and Hodrick (1992) corrected standard errors, respectively. *, **, and

*** indicate significance at the 10%, 5%, and 1% level, respectively. We highlight, in bold, the

significant regression coefficient estimates based on the bootstrap of Rapach et al. (2013). Adj. R2

reports the adjusted R2. Wald presents the results of a Wald test of the null hypothesis that the

two slope parameters are equal. p-value reports the corresponding Newey and West (1987) corrected

p-value.

Panel A: Index VRP

Horizon (in Months) 1 3 6 9 12 18 24

Constant -0.0050 0.0135 0.0317 0.0437 0.0468 0.0477 0.0454

(s.e.) (NW) (0.037) (0.029) (0.032) (0.035) (0.036) (0.038) (0.039)

[s.e.] (Hod) [0.038] [0.037] [0.038] [0.037] [0.037] [0.036] [0.037]

Index VRP -4.6033 -3.5612 -1.8849 -0.9661 -0.6613 -0.4313 -0.3715

(s.e.) (NW) (1.310)*** (0.814)*** (0.667)*** (0.593) (0.499) (0.424) (0.328)

[s.e.] (Hod) [1.487]*** [1.090]*** [0.921]** [0.734] [0.611] [0.483] [0.407]

Adj. R2 0.061 0.103 0.048 0.015 0.007 0.003 0.002

Panel B: CRP and Individual VRP Factors

Horizon (in Months) 1 3 6 9 12 18 24

Constant -0.0346 -0.0350 -0.0102 0.0104 0.0224 0.0259 0.0248

(s.e.) (NW) (0.043) (0.035) (0.037) (0.038) (0.040) (0.043) (0.045)

[s.e.] (Hod) [0.044] [0.035] [0.036] [0.036] [0.036] [0.035] [0.036]

Individual VRP -4.4471 -3.3051 -1.6661 -0.7949 -0.5378 -0.3266 -0.2777

(s.e.) (NW) (1.120)*** (0.448)*** (0.336)*** (0.341)** (0.325)* (0.267) (0.191)

[s.e.] (Hod) [1.266]*** [0.992]*** [0.941]* [0.746] [0.611] [0.469] [0.390]

CRP -6.9035 -7.3318 -5.1273 -3.5232 -2.5194 -2.0663 -1.8879

(s.e.) (NW) (2.810)** (1.313)*** (0.995)*** (0.920)*** (0.887)*** (0.816)** (1.014)*

[s.e.] (Hod) [2.976]** [1.531]*** [1.672]*** [1.588]** [1.642] [1.567] [1.463]

Adj. R2 0.061 0.128 0.082 0.044 0.025 0.022 0.023

Wald 0.563 7.446*** 9.828*** 7.477*** 4.454** 3.931** 2.408

p-value [0.453] [0.006] [0.002] [0.006] [0.035] [0.047] [0.121]
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Table 6: Decomposition Results: HAR–RV

This table presents the results of the decomposition of the daily time series of the 1-month index

variance risk premium into two factors. The variance risk premium is the difference between the

physical expectation of the future variance, using the HAR–RV model (Corsi, 2009), and the Britten-

Jones and Neuberger (2000) option-implied variance. We use high-frequency return data sampled at

the 30-minute frequency to compute the Andersen et al. (2015) realized variance (see Equation (10)).

Mean is the average value. *, **, and *** indicate significance at the 10%, 5%, and 1% level based

on the Newey and West (1987) corrected standard errors (with 21 lags), respectively. We highlight, in

bold, the significant estimates of the mean based on a block-bootstrap. Shrmean reports the fraction

of the mean of the variance risk premium of the S&P 500 index associated with the factor [name in

row]. Std Dev is the standard deviation. Shrvar reports the share of the variance of the variance risk

premium of the S&P 500 index associated with the factor [name in row]. Skew, Kurt and AR(1)

denote the skewness, kurtosis and first-order autocorrelation, respectively. Median, q0.05 and q0.95

relate to the median, 5,% and 95% of the distribution of the variable [name in row].

Mean t-stat Shrmean Std Dev Shrvar Skew Kurt AR(1) Median q0.05 q0.95

Index VRP -0.0143*** -11.9 1.000 0.023 1.000 0.31 24.6 0.82 -0.0096 -0.0533 0.0036

Individual VRP 0.0011 1.33 -0.079 0.016 0.384 -2.10 28.0 0.87 0.0053 -0.0225 0.0154
CRP -0.0155*** -21.8 1.079 0.014 0.616 3.63 62.0 0.84 -0.0145 -0.0359 -0.0017
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Table 7: Predictability of S&P 500 Excess Returns: HAR–RV

This table summarizes the results of the regression of S&P 500 (annualized) excess returns measured

over a horizon of h months on a constant and the lagged forecasting variable(s). Panel A considers the

forecasting power of the market index variance risk premium. The index variance risk premium is the

difference between the physical expectation of the future variance, computed based on 30-minute data

and using the HAR–RV model (Corsi, 2009), and the Britten-Jones and Neuberger (2000) option-

implied variance. Panel B considers the two factors of the index variance risk premium, namely the

CRP and Individual VRP factors. We consider forecasting horizons (h) of 1, 3, 6, 9, 12, 18 and 24

months. All the variables are sampled at the end of each month. The entries in parentheses and

square brackets indicate Newey and West (1987) corrected standard errors (with h lags) and Hodrick

(1992) corrected standard errors, respectively. *, **, and *** indicate significance at the 10%, 5%,

and 1% level, respectively. We highlight, in bold, the significant regression coefficient estimates based

on the bootstrap of Rapach et al. (2013). Adj. R2 reports the adjusted R2. Wald presents the results

of a Wald test of the null hypothesis that the two slope parameters are equal. p-value reports the

corresponding Newey and West (1987) corrected p-value.

Panel A: Index VRP

Horizon (in Months) 1 3 6 9 12 18 24

Constant -0.0234 -0.0137 0.0012 0.0174 0.0231 0.0255 0.0195

(s.e.) (NW) (0.036) (0.033) (0.034) (0.035) (0.037) (0.040) (0.042)

[s.e.] (Hod) [0.033] [0.034] [0.035] [0.034] [0.034] [0.034] [0.036]

Index VRP -4.5368 -4.1438 -2.8509 -1.7248 -1.2584 -0.9938 -1.1684

(s.e.) (NW) (1.752)** (0.837)*** (0.825)*** (0.777)** (0.685)* (0.579)* (0.522)**

[s.e.] (Hod) [1.772]** [1.200]*** [0.811]*** [0.704]** [0.703]* [0.652] [0.554]**

Adj. R2 0.032 0.079 0.065 0.032 0.021 0.017 0.034

Panel B: CRP and Individual VRP Factors

Horizon (in Months) 1 3 6 9 12 18 24

Constant -0.0739 -0.1438 -0.0945 -0.0646 -0.0461 -0.0517 -0.0736

(s.e.) (NW) (0.086) (0.060)** (0.056)* (0.052) (0.052) (0.054) (0.055)

[s.e.] (Hod) [0.082] [0.062]** [0.061] [0.057] [0.056] [0.051] [0.053]

Individual VRP -2.9193 0.0938 0.2739 0.9419 0.9774 1.5273 1.8280

(s.e.) (NW) (3.254) (1.633) (1.558) (1.363) (1.254) (1.283) (1.253)

[s.e.] (Hod) [3.159] [2.019] [1.493] [1.357] [1.315] [1.133] [1.091]*

CRP -6.9289 -10.521 -7.6003 -5.7823 -4.6559 -4.8309 -5.7745

(s.e.) (NW) (4.077)* (2.100)*** (1.807)*** (1.748)*** (1.827)** (1.691)*** (1.508)***

[s.e.] (Hod) [3.830]* [2.513]*** [2.345]*** [2.205]*** [2.147]** [1.934]** [1.746]***

Adj. R2 0.030 0.131 0.114 0.083 0.067 0.104 0.198

Wald 1.199 41.616*** 24.360*** 17.313*** 13.436*** 29.174*** 60.061***

p-value [0.274] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
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Appendix to

“Variance Risk: A Bird’s Eye View”

Not Intended for Publication!

Will be Provided as Online Appendix
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Table A.4: Variance Swap Payoffs: Daily Andersen et al. (2015) RV

This table reports summary statistics on the daily time series of the 1-month VSPs. Panel A presents

the results linked to the S&P 500 index, as well as the equal-weighted average of the constituent

stocks. RV and IV report the average (annualized) low-frequency realized and Britten-Jones and

Neuberger (2000) option-implied variances, respectively. We use daily return data to compute the

return variation based on Equation (12). V SP shows the average VSP, defined as the spread between

RV and IV . Std Dev, Skew, Kurt and AR(1) denote the standard deviation, skewness, kurtosis

and first-order autocorrelation of the VSP, respectively. Median, q0.05 and q0.95 are the median, 5%

and 95% quantiles of the VSP, respectively. *, **, and *** indicate significance at the 10%, 5%,

and 1% level based on Newey and West (1987) corrected standard errors (with 21 lags), respectively.

We highlight, in bold, the significant estimates of the VSP based on a block-bootstrap. The rows

in Panels B relate to stocks with insignificant, significantly negative and significantly positive VSPs

(at the 5% significance level), respectively. Share indicates the fraction of firms for which the VSP

satisfies the condition [name in row].

Panel A: Market Variance Swap Payoff

RV IV V SP t-stat Std Dev Skew Kurt AR(1) Median q0.05 q0.95

S&P 500 0.0384 0.0453 -0.0068** -2.46 0.048 6.26 66.9 0.96 -0.0100 -0.0450 0.0329
Avg. Stocks 0.1568 0.1571 -0.0002 -0.04 0.107 6.11 56.0 0.98 -0.0172 -0.0753 0.1159

Panel B: Stock Variance Swap Payoff

Share RV IV V SP Std Dev Skew Kurt AR(1) Median q0.05 q0.95

= 0 not rejected 0.673 0.2096 0.1883 0.0212 0.320 3.94 41.77 0.94 -0.0250 -0.1765 0.3339
> 0 rejected 0.298 0.1061 0.1355 -0.0294 0.099 1.08 21.73 0.92 -0.0326 -0.1504 0.1071
< 0 rejected 0.029 0.3452 0.2528 0.0924 0.356 3.42 21.23 0.95 -0.0074 -0.1528 0.7051
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Table A.5: Correlation Swap Payoffs

This table presents the summary statistics of the daily time series of the 1-month correlation swap

payoff (CSP) and correlation risk premium (CRP). CSP is computed by taking the difference between

the realized equicorrelation, denoted by RC (see Equation (14)), and the implied equicorrelation

(IC), computed as in Equation (15). CRP is the difference between the physical expectation of the

future equicorrelation (EP(RC)) and IC. Panels A and B use the low-frequency realized variance (see

Equation (3)) and the Andersen et al. (2015) return variation based on the 30-minute frequency (see

Equation (10)), respectively. Mean denotes the sample average. t-stat is the Newey and West (1987)

corrected t-statistic (with 21 lags). *, **, and *** indicate significance at the 10%, 5%, and 1%

level, respectively. We highlight, in bold, all estimates that are statistically significant based on a

block-bootstrap. Std Dev, Skew, Kurt and AR(1) denote the standard deviation, skewness, kurtosis

and first-order autocorrelation, respectively. Median, q0.05 and q0.95 are the median, 5% and 95%

quantiles, respectively.

Panel A: Low-Frequency Realized Variation

Mean t-stat Std Dev Skew Kurt AR(1) Median q0.05 q0.95

RC 0.3218*** 36.8 0.141 0.85 3.48 0.98 0.2904 0.1386 0.6126
IC 0.3965*** 48.8 0.131 0.56 3.25 0.96 0.3843 0.1977 0.6371
CSP -0.0747*** -11.5 0.121 0.22 4.89 0.93 -0.0729 -0.2668 0.1198
EP(RC) 0.3233*** 36.7 0.142 0.84 3.40 0.98 0.2920 0.1407 0.6058
CRP -0.0733*** -13.8 0.101 -0.11 3.22 0.92 -0.0713 -0.2470 0.0884

Panel B: Andersen et al. (2015) Return Variation

Mean t-stat Std Dev Skew Kurt AR(1) Median q0.05 q0.95

RC 0.2855*** 38.1 0.118 0.97 3.75 0.99 0.2597 0.1387 0.5205
IC 0.3965*** 48.8 0.131 0.56 3.25 0.96 0.3843 0.1977 0.6371
CSP -0.1110*** -20.5 0.099 -0.26 6.28 0.92 -0.1034 -0.2692 0.0246
EP(RC) 0.2800*** 38.6 0.113 0.97 3.84 0.99 0.2533 0.1363 0.4920
CRP -0.1165*** -25.1 0.087 -0.62 4.36 0.90 -0.1051 -0.2631 0.0090
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Table A.17: Variance Swap Payoffs: 75-Minute Andersen et al. (2015) RV

This table reports summary statistics on the daily time series of the 1-month VSPs. Panel A presents

the results linked to the S&P 500 index, as well as the equal-weighted average of the constituent

stocks. RV and IV report the average (annualized) high-frequency realized and Britten-Jones and

Neuberger (2000) option-implied variance, respectively. We use high-frequency return data sampled at

the 75-minute frequency to compute the Andersen et al. (2015) realized variance (see Equation (10)).

V SP shows the average VSP, defined as the spread between RV and IV . *, **, and *** indicate

significance at the 10%, 5%, and 1% level based on Newey and West (1987) corrected standard

errors (with 21 lags), respectively. We highlight, in bold, the significant estimates of the VSP based

on a block-bootstrap. Std Dev, Skew, Kurt and AR(1) denote the standard deviation, skewness,

kurtosis and first-order autocorrelation of the VSP, respectively. Median, q0.05 and q0.95 are the

median, 5% and 95% quantiles of the VSP, respectively. The rows in Panel B relate to stocks

with insignificant, significantly negative and significantly positive VSPs (at the 5% significance level),

respectively. Share indicates the fraction of firms for which the VSP satisfies the condition [name in

row].

Panel A: Market Variance Swap Payoff

RV IV V SP t-stat Std Dev Skew Kurt AR(1) Median q0.05 q0.95

S&P 500 0.0314 0.0453 -0.0138*** -6.55 0.038 4.70 65.4 0.95 -0.0127 -0.0520 0.0171
Avg. Stocks 0.1465 0.1571 -0.0105** -2.09 0.087 5.41 58.8 0.97 -0.0196 -0.0844 0.0966

Panel B: Stock Variance Swap Payoff

Share RV IV V SP Std Dev Skew Kurt AR(1) Median q0.05 q0.95

= 0 not rejected 0.557 0.2050 0.1932 0.0118 0.293 4.12 49.69 0.94 -0.0249 -0.1777 0.2823
> 0 rejected 0.427 0.1189 0.1485 -0.0296 0.100 1.13 24.69 0.92 -0.0309 -0.1515 0.1013
< 0 rejected 0.016 0.3606 0.2312 0.1293 0.303 2.24 17.06 0.93 0.0378 -0.1461 0.6798
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Table A.18: Decomposition Results: 75-Minute Andersen et al. (2015) RV

This table presents the results of the decomposition of the daily time series of the 1-month index

variance swap payoff (Panel A) and variance risk premium (Panel B) into two factors. The VSP

is the difference between the (annualized) realized and Britten-Jones and Neuberger (2000) option-

implied variance. We use high-frequency return data sampled at the 75-minute frequency to compute

the Andersen et al. (2015) realized variance (see Equation (10)). The VRP is the difference between

the physical expectation of the future variance, using a random walk model (Bollerslev et al., 2009),

and the Britten-Jones and Neuberger (2000) option-implied variance. Mean is the average value. *,

**, and *** indicate significance at the 10%, 5%, and 1% level based on the Newey and West (1987)

corrected standard errors, respectively. We highlight, in bold, the significant estimates of the mean

based on a block-bootstrap. Shrmean reports the fraction of the mean of the (i) VSP (Panel A) or

(ii) VRP (Panel B) of the S&P 500 index associated with the variable [name in row]. Std Dev is the

standard deviation. Shrvar reports the share of the variance of the (i) VSP (Panel A) or (ii) VRP

(Panel B) of the S&P 500 index captured by the variable [name in row]. Skew, Kurt and AR(1)

denote the skewness, kurtosis and first-order autocorrelation, respectively. Median, q0.05 and q0.95

relate to the median, 5% and 95% quantiles of the distribution of the variable [name in row].

Panel A: Variance Swap Payoff

Mean t-stat Shrmean Std Dev Shrvar Skew Kurt AR(1) Median q0.05 q0.95

Index VSP -0.0138*** -6.55 1.000 0.038 1.000 4.70 65.4 0.95 -0.0127 -0.0520 0.0171

Individual VSP -0.0044*** -2.69 0.316 0.029 0.660 4.11 62.0 0.95 -0.0049 -0.0322 0.0242
CSP -0.0095*** -10.4 0.684 0.016 0.341 -0.70 33.9 0.92 -0.0069 -0.0320 0.0018

Panel B: Variance Risk Premium

Mean t-stat Shrmean Std Dev Shrvar Skew Kurt AR(1) Median q0.05 q0.95

Index VRP -0.0132*** -12.0 1.000 0.024 1.000 4.65 75.7 0.87 -0.0118 -0.0414 0.0075

Individual VRP -0.0027** -2.23 0.205 0.024 0.685 7.21 97.2 0.93 -0.0044 -0.0217 0.0196
CRP -0.0105*** -14.1 0.795 0.014 0.315 -4.71 58.1 0.87 -0.0073 -0.0333 0.0010
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Table A.19: Predictability of S&P 500 Excess Returns: 75-Minute
Andersen et al. (2015) RV

This table summarizes the results of the regression of S&P 500 (annualized) excess returns measured

over a horizon of h months on a constant and the lagged forecasting variable(s). Panel A considers the

forecasting power of the market index VRP. The index VRP is the difference between the physical

expectation of the future variance, computed based on 75-minute data and using a random walk

model (Bollerslev et al., 2009), and the Britten-Jones and Neuberger (2000) option-implied variance.

Panel B considers the two factors of the index VRP, namely the CRP and Individual VRP factors.

We examine forecasting horizons (h) of 1, 3, 6, 9, 12, 18 and 24 months. All the variables are sampled

at the end of each month. The entries in parentheses and square brackets indicate Newey and

West (1987) corrected standard errors (with h lags) and Hodrick (1992) corrected standard errors,

respectively. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. We

highlight, in bold, the significant regression coefficient estimates based on the bootstrap of Rapach

et al. (2013). Adj. R2 reports the adjusted R2. Wald presents the results of a Wald test of the null

hypothesis that the two slope parameters are equal. p-value reports the corresponding Newey and

West (1987) corrected p-value.

Panel A: Index VRP

Horizon (in Months) 1 3 6 9 12 18 24

Constant -0.0065 0.0136 0.0308 0.0432 0.0457 0.0465 0.0443

(s.e.) (NW) (0.036) (0.029) (0.031) (0.034) (0.036) (0.039) (0.039)

[s.e.] (Hod) [0.036] [0.036] [0.037] [0.037] [0.036] [0.036] [0.036]

Index VRP -4.5747 -3.4378 -1.9041 -0.9792 -0.7304 -0.5121 -0.4423

(s.e.) (NW) (1.188)*** (0.720)*** (0.655)*** (0.580)* (0.507) (0.465) (0.353)

[s.e.] (Hod) [1.329]*** [0.940]*** [0.847]** [0.674] [0.572] [0.455] [0.375]

Adj. R2 0.053 0.085 0.044 0.014 0.008 0.004 0.004

Panel B: CRP and Individual VRP Factors

Horizon (in Months) 1 3 6 9 12 18 24

Constant -0.0254 -0.0227 -0.0039 0.0166 0.0254 0.0280 0.0276

(s.e.) (NW) (0.042) (0.035) (0.035) (0.036) (0.038) (0.042) (0.044)

[s.e.] (Hod) [0.042] [0.035] [0.036] [0.035] [0.035] [0.034] [0.035]

Individual VRP -4.3837 -3.0717 -1.5547 -0.7141 -0.5300 -0.3366 -0.2894

(s.e.) (NW) (1.104)*** (0.468)*** (0.358)*** (0.373)* (0.362) (0.324) (0.241)

[s.e.] (Hod) [1.183]*** [0.917]*** [0.931]* [0.730] [0.595] [0.450] [0.364]

CRP -6.1631 -6.4824 -4.8097 -3.1897 -2.4084 -2.0131 -1.7761

(s.e.) (NW) (2.904)** (1.791)*** (1.102)*** (0.977)*** (0.886)*** (0.813)** (0.953)*

[s.e.] (Hod) [2.973]** [1.768]*** [1.739]*** [1.627]* [1.660] [1.570] [1.444]

Adj. R2 0.051 0.099 0.068 0.033 0.022 0.019 0.018

Wald 0.310 3.482* 7.152*** 5.644** 4.201** 3.637* 2.523

p-value [0.577] [0.062] [0.007] [0.018] [0.040] [0.057] [0.112]
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Table A.20: Index Variance Swap Payoffs: 5- and 15-Minute Andersen
et al. (2015) RV

This table reports summary statistics on the daily time series of the 1-month index VSPs. RV and

IV report the average (annualized) high-frequency realized and Britten-Jones and Neuberger (2000)

option-implied variance, respectively. We separately use high-frequency return data sampled at the 5-

and 15-minute frequency to compute the Andersen et al. (2015) realized variance (see Equation (10)).

V SP shows the average VSP, defined as the spread between RV and IV . *, **, and *** indicate

significance at the 10%, 5%, and 1% level based on Newey and West (1987) corrected standard errors

(with 21 lags), respectively. We highlight, in bold, the significant estimates of the VSP based on a

block-bootstrap. Std Dev, Skew, Kurt and AR(1) denote the standard deviation, skewness, kurtosis

and first-order autocorrelation of the VSP, respectively. Median, q0.05 and q0.95 are the median, 5%

and 95% quantiles of the VSP, respectively.

S&P 500 RV IV V SP t-stat Std Dev Skew Kurt AR(1) Median q0.05 q0.95

5-Minute 0.0336 0.0453 -0.0117*** -5.03 0.041 5.41 64.9 0.95 -0.0120 -0.0495 0.0205
15-Minute 0.0342 0.0453 -0.0111*** -4.80 0.040 5.35 63.9 0.95 -0.0115 -0.0487 0.0240
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Table A.21: Variance Swap Payoffs: 30-Minute Andersen et al. (2015) RV
(Subsampling and Averaging)

This table reports summary statistics on the daily time series of the 1-month VSPs. Panel A presents

the results linked to the S&P 500 index, as well as the equal-weighted average of the constituent

stocks. RV and IV report the average (annualized) high-frequency realized and Britten-Jones and

Neuberger (2000) option-implied variance, respectively. We use high-frequency return data sampled

at the 30-minute frequency to compute the Andersen et al. (2015) realized variance (see Equation

(10)). In doing so, we implement the subsampling and averaging technique of Zhang et al. (2005).

V SP shows the average VSP, defined as the spread between RV and IV . *, **, and *** indicate

significance at the 10%, 5%, and 1% level based on Newey and West (1987) corrected standard

errors (with 21 lags), respectively. We highlight, in bold, the significant estimates of the VSP based

on a block-bootstrap. Std Dev, Skew, Kurt and AR(1) denote the standard deviation, skewness,

kurtosis and first-order autocorrelation of the VSP, respectively. Median, q0.05 and q0.95 are the

median, 5% and 95% quantiles of the VSP, respectively. The rows in Panel B relate to stocks

with insignificant, significantly negative and significantly positive VSPs (at the 5% significance level),

respectively. Share indicates the fraction of firms for which the VSP satisfies the condition [name in

row].

Panel A: Market Variance Swap Payoff

RV IV V SP t-stat Std Dev Skew Kurt AR(1) Median q0.05 q0.95

S&P 500 0.0324 0.0453 -0.0129*** -6.51 0.036 3.55 52.1 0.94 -0.0118 -0.0509 0.0189
Avg. Stocks 0.1469 0.1570 -0.0101** -2.14 0.082 4.54 48.8 0.96 -0.0178 -0.0828 0.0906

Panel B: Stock Variance Swap Payoff

Share RV IV V SP Std Dev Skew Kurt AR(1) Median q0.05 q0.95

= 0 not rejected 0.565 0.2000 0.1901 0.0099 0.274 3.86 49.50 0.94 -0.0235 -0.1704 0.2673
> 0 rejected 0.414 0.1183 0.1465 -0.0282 0.098 1.00 26.04 0.92 -0.0288 -0.1476 0.0954
< 0 rejected 0.021 0.4926 0.3130 0.1796 0.336 1.79 11.04 0.93 0.0820 -0.1628 0.8256
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Table A.22: Decomposition Results: 30-Minute Andersen et al. (2015) RV
(Subsampling and Averaging)

This table presents the results of the decomposition of the daily time-series of the 1-month index VSP

(Panel A) and VRP (Panel B) into two factors. The VSP is the difference between the (annualized)

realized and Britten-Jones and Neuberger (2000) option-implied variance. We use high-frequency

return data sampled at the 30-minute frequency to compute the Andersen et al. (2015) realized

variance (see Equation (10)). In doing so, we implement the subsampling and averaging technique

of Zhang et al. (2005). The VRP is the difference between the physical expectation of the future

variance, using a random walk model (Bollerslev et al., 2009), and the Britten-Jones and Neuberger

(2000) option-implied variance. Mean is the average value. *, **, and *** indicate significance at the

10%, 5%, and 1% level based on the Newey and West (1987) corrected standard errors (with 21 lags),

respectively. We highlight, in bold, the significant estimates of the mean based on a block-bootstrap.

Shrmean reports the fraction of the mean of the (i) VSP (Panel A) or (ii) VRP (Panel B) of the

S&P 500 index associated with the factor [name in row]. Std Dev is the standard deviation. Shrvar
reports the share of the variance of the (i) VSP (Panel A) or (ii) VRP (Panel B) of the S&P 500 index

associated with the factor [name in row]. Skew, Kurt and AR(1) denote the skewness, kurtosis and

first-order autocorrelation, respectively. Median, q0.05 and q0.95 relate to the median, 5% and 95%

of the distribution of the variable [name in row].

Panel A: Variance Swap Payoff

Mean t-stat Shrmean Std Dev Shrvar Skew Kurt AR(1) Median q0.05 q0.95

Index VSP -0.0129*** -6.51 1.000 0.036 1.000 3.55 52.1 0.94 -0.0118 -0.0509 0.0189

Individual VSP -0.0040** -2.57 0.310 0.028 0.679 3.29 53.6 0.95 -0.0045 -0.0309 0.0245
CSP -0.0089*** -11.2 0.690 0.015 0.321 -1.11 31.4 0.91 -0.0068 -0.0292 0.0027

Panel B: Variance Risk Premium

Mean t-stat Shrmean Std Dev Shrvar Skew Kurt AR(1) Median q0.05 q0.95

Index VRP -0.0124*** -13.2 1.000 0.021 1.000 3.36 59.7 0.84 -0.0110 -0.0403 0.0085

Individual VRP -0.0024** -2.16 0.192 0.022 0.674 6.20 81.5 0.92 -0.0041 -0.0213 0.0213
CRP -0.0100*** -14.6 0.808 0.013 0.327 -5.73 77.0 0.87 -0.0072 -0.0299 0.0010
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Table A.23: Predictability of S&P 500 Excess Returns: 30-Minute
Andersen et al. (2015) RV (Subsampling and Averaging)

This table summarizes the results of the regression of S&P 500 (annualized) excess returns measured

over a horizon of h months on a constant and the lagged forecasting variable(s). Panel A considers the

forecasting power of the market index VRP. The index VRP is the difference between the physical

expectation of the future variance, computed based on 30-minute data and using a random walk

model (Bollerslev et al., 2009), and the Britten-Jones and Neuberger (2000) option-implied variance.

In computing the return variation, we implement the subsampling and averaging technique of Zhang

et al. (2005). Panel B considers the two factors of the index VRP, namely the CRP and Individual

VRP factors. We consider forecasting horizons (h) of 1, 3, 6, 9, 12, 18 and 24 months. All the variables

are sampled at the end of each month. The entries in parentheses and square brackets indicate Newey

and West (1987) corrected standard errors (with h lags) and Hodrick (1992) corrected standard errors,

respectively. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. We

highlight, in bold, the significant regression coefficient estimates based on the bootstrap of Rapach

et al. (2013). Adj. R2 reports the adjusted R2. Wald presents the results of a Wald test of the null

hypothesis that the two slope parameters are equal. p-value reports the corresponding Newey and

West (1987) corrected p-value.

Panel A: Index VRP

Horizon (in Months) 1 3 6 9 12 18 24

Constant -0.0106 0.0097 0.0287 0.0421 0.0446 0.0452 0.0431

(s.e.) (NW) (0.036) (0.030) (0.031) (0.034) (0.036) (0.039) (0.039)

[s.e.] (Hod) [0.037] [0.037] [0.038] [0.037] [0.037] [0.036] [0.037]

Index VRP -5.2529 -4.0125 -2.2066 -1.1312 -0.8758 -0.6528 -0.5698

(s.e.) (NW) (1.274)*** (0.601)*** (0.569)*** (0.584)* (0.555) (0.508) (0.395)

[s.e.] (Hod) [1.521]*** [1.173]*** [0.978]** [0.794] [0.671] [0.535] [0.447]

Adj. R2 0.054 0.090 0.045 0.014 0.010 0.007 0.006

Panel B: CRP and Individual VRP Factors

Horizon (in Months) 1 3 6 9 12 18 24

Constant -0.0243 -0.0280 -0.0081 0.0113 0.0197 0.0210 0.0199

(s.e.) (NW) (0.047) (0.034) (0.035) (0.037) (0.039) (0.043) (0.045)

[s.e.] (Hod) [0.048] [0.035] [0.036] [0.035] [0.035] [0.035] [0.036]

Individual VRP -5.1483 -3.7229 -1.9290 -0.9011 -0.6927 -0.4816 -0.4142

(s.e.) (NW) (1.214)*** (0.572)*** (0.316)*** (0.329)*** (0.342)** (0.294) (0.196)**

[s.e.] (Hod) [1.382]*** [1.120]*** [1.037]* [0.832] [0.684] [0.526] [0.434]

CRP -6.4336 -7.2807 -5.3801 -3.7726 -2.9917 -2.6919 -2.4843

(s.e.) (NW) (3.604)* (1.694)*** (1.222)*** (1.047)*** (0.928)*** (0.880)*** (1.053)**

[s.e.] (Hod) [3.779]* [1.879]*** [1.869]*** [1.756]** [1.800]* [1.705] [1.563]

Adj. R2 0.051 0.104 0.071 0.039 0.029 0.032 0.035

Wald 0.099 4.295** 6.582** 6.165** 5.169** 5.017** 3.566*

p-value [0.753] [0.038] [0.010] [0.013] [0.023] [0.025] [0.059]
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Table A.24: Variance Swap Payoffs: Active Individual Equity Options
(Subsampling and Averaging)

This table analyzes the VSPs associated with the individual equities that have a high average trading

volume as well as a broad coverage of strike prices per maturity. To be more specific, these equities

are found as the intersection of (i) the 80 firms with the highest average option trading volume and (ii)

the 80 firms with the highest average number of strikes per maturity during our sample period. Panel

A reports summary statistics associated with the equal-weighted average of the selected equities. RV

and IV report the average (annualized) realized and Britten-Jones and Neuberger (2000) option-

implied variances, respectively. We use 30-minute return data to compute the Andersen et al. (2015)

realized variance (see Equation (10)). In doing so, we implement the subsampling and averaging

technique of Zhang et al. (2005). V SP shows the average VSP, defined as the spread between RV

and IV . Std Dev, Skew, Kurt and AR(1) denote the standard deviation, skewness, kurtosis and

first-order autocorrelation of the VSP, respectively. Additionally, Median, q0.05 and q0.95 are the

median, 5% and 95% quantiles of the VSP, respectively. *, **, and *** indicate significance at the

10%, 5%, and 1% level based on Newey and West (1987) corrected standard errors (with 21 lags),

respectively. We highlight, in bold, the significant estimates based on a block-bootstrap. The rows

in Panel B relate to stocks with insignificant, significantly negative and significantly positive VSPs

(at the 5% significance level), respectively. Share indicates the fraction of firms for which the VSP

satisfies the condition [name in row].

Panel A: Average Variance Swap Payoff

RV IV V SP t-stat Std Dev Skew Kurt AR(1) Median q0.05 q0.95

Benchmark Results 0.1725 0.1703 0.0022 0.39 0.105 4.12 34.4 0.96 -0.0134 -0.0906 0.1326
30 Minute Data 0.1614 0.1703 -0.0089* -1.75 0.095 2.94 32.6 0.95 -0.0183 -0.1018 0.1186

Panel B: Stock Variance Swap Payoff

Share RV IV V SP Std Dev Skew Kurt AR(1) Median q0.05 q0.95

Benchmark Results
= 0 not rejected 0.706 0.1896 0.1876 0.0020 0.200 4.26 41.41 0.94 -0.0231 -0.1544 0.2271
> 0 rejected 0.206 0.1008 0.1183 -0.0175 0.098 0.44 23.57 0.94 -0.0195 -0.1067 0.1063
< 0 rejected 0.088 0.2670 0.2136 0.0534 0.338 4.57 31.69 0.94 -0.0130 -0.1515 0.4377

30 Minute Data
= 0 not rejected 0.559 0.1849 0.1828 0.0020 0.215 4.22 46.09 0.94 -0.0203 -0.1495 0.2175
> 0 rejected 0.441 0.1435 0.1663 -0.0228 0.107 1.59 21.66 0.93 -0.0265 -0.1450 0.1259
< 0 rejected 0.000 0.0000 0.0000 0.0000 0.000 0.00 0.00 0.00 0.0000 0.0000 0.0000
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