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ABSTRACT 25 

Simulation of fluctuating wind speed field is of paramount significance in the design of large 26 

flexible structures. To circumvent the difficulty due to the decomposition of cross power 27 

spectral density (PSD) matrix and the interpolation between discretized spatial points, a 28 

wavenumber-frequency joint spectrum based spectral representation method (SRM) has been 29 

developed recently. To further improve the efficiency and accuracy, the stochastic harmonic 30 

function (SHF) representation is extended in the present paper for the simulation of stationary 31 

and nonstationary fluctuating wind fields in two spatial dimensions. In contrast to the SRM, 32 

besides the phase angles, the frequencies and wavenumbers are also random variables over 33 

partitioned wavenumber-frequency subdomains. Further, a strategy of dependent random 34 

frequencies and wavenumbers based on the SHF is proposed so that the number of random 35 

variables can be considerably reduced by 3/7. A new acceptance-rejection criterion, which 36 

avoids the artificial intervene, is suggested based on the p-power joint spectrum, and the 37 

subdomains are correspondingly determined by the Voronoi cell partitioning. For illustrative 38 

purposes, two numerical examples for the simulation of stationary and nonstationary 39 

fluctuating wind speed fields in two spatial dimensions are addressed, demonstrating the 40 

effectiveness of the proposed method in considerably reducing the random variables as well 41 

as the computational efforts. 42 

Key words: random wind field; wavenumber-frequency joint spectrum; stochastic harmonic 43 

function; dependent random frequency-wavenumber points; stationary and nonstationary 44 
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INTRODUCTION 45 

Simulation of random fluctuating wind speed field has received a long-term attention due to its significant 46 

impact on the safety design of long-span and high-flexible structures, such as large bridges, tall buildings 47 

and wind turbines, etc. (Kareem 2008; Li et al. 2017). The spectral representation method (SRM) has been 48 

investigated and widely employed for more than four decades in the simulation of wind fields due to its 49 

high accuracy and simple algorithm (Shinozuka & Jan 1972; Di Paola 1998; Chen & Kareem 2005; Zeng et 50 

al. 2017). In the conventional methods, the space is firstly discretized into a series of spatial points, then the 51 

wind speeds at these points are regarded as correlated random vector processes. Correspondingly, the cross 52 

power spectral density (PSD) matrix is introduced to describe the statistical characteristics of the random 53 

vector process. In the simulation of wind fields, decompositions of the cross PSD matrix are needed at each 54 

discretized frequency, which is computationally inefficient if the number of discretized spatial points is 55 

large (Tao et al. 2018), or even numerically ill-posed (Benowitz & Deodatis 2015). Besides, to obtain wind 56 

speeds at other arbitrary spatial points, interpolations between the discretized spatial points are needed. This 57 

will induce additional errors (Tao et al. 2017). 58 

Since the fluctuating wind speed varies with time and space simultaneously, it is essentially a 59 

continuous temporal-spatial multi-dimensional random field. In fact, in early 1970’s, Shinozuka (1971) 60 

regarded the wind speed field in one-spatial dimension as a two-dimensional (2D) random process, and 61 

derived its wavenumber-frequency joint spectrum. Unfortunately, to this method almost no attention has 62 

been paid for decades until Benowitz & Deodatis (2015) simulated the homogeneous wind speed field in 63 

one-spatial dimension along this line. In this method, the decomposition of the cross-PSD matrix and the 64 

interpolations involved in the conventional SRM are not needed. Besides, the fast Fourier transform (FFT) 65 

technique can be adopted to considerably improve the efficiency. This method was then quickly extended to 66 

nonhomogeneous and nonstationary cases in one spatial dimension (Peng et al. 2017) and homogeneous 67 

and nonhomogeneous cases in two spatial dimensions (Chen et al. 2018b; Song et al. 2018). 68 

Despite the above advances in the SRM based on joint wavenumber-frequency spectrum, the number 69 

of the involved harmonic components is extremely large, leading to a large amount of random phase angles 70 

simultaneously (Deodatis 1996). It is usually cumbersome to handle a large number of random variables in 71 

a stochastic system. Consequently, to reduce the number of random variables while maintaining the 72 

accuracy is a critical task in the analysis of stochastic systems (Spanos et al. 2007; Li et al. 2012; Liu et al. 73 
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2018). A stochastic harmonic function (SHF) representation for one-dimensional (1D) stationary random 74 

process was proposed by Chen et al. (2013), and has been extended to 1D non-stationary random processes 75 

(Chen et al. 2017) and 2D homogenous random fields (Chen et al. 2018a). In this method, both the phase 76 

angles and discretized frequencies are regarded as random variables. It was proved that the SHF 77 

representation can reproduce the target PSD exactly no matter how many harmonic components are 78 

retained.  79 

In this paper, the SHF representation will be extended to three-dimensional (3D) random fields, and 80 

then integrated with the wavenumber-frequency joint spectra to simulate fluctuating wind fields in two 81 

spatial dimensions. The remaining sections in this paper are organized as follows. The 82 

wavenumber-frequency joint spectra for fluctuating wind fields and its expression with the SRM is firstly 83 

revisited briefly. Then, the unified form of the SHF representation for 3D homogeneous and 84 

nonhomogeneous random fields is derived, and the strategy of dependent random frequencies and 85 

wavenumbers is proposed. Further, the implementation procedures of the SHF representation are elaborated. 86 

To demonstrate the effectiveness of the proposed method, two numerical examples for simulation of 87 

stationary and nonstationary fluctuating wind speed fields are addressed. Concluding remarks pertaining to 88 

the entire study are provided.  89 

 90 

WAVENUMBER-FREQUENCY JOINT SPECTRA FOR WIND FIELDS AND ITS 91 

SRM EXPRESSION 92 

For clarity, the spatial-temporal coordinate system is denoted as ( , , , )x y z t , in which the , ,x y z  axes 93 

indicate the longitudinal, lateral and vertical spatial direction, respectively, and t  is the time. The 94 

longitudinal component of the fluctuating wind speed, denoted by ( , , , )u x y z t , is essentially a 95 

four-dimensional spatial-temporal random field. In fact, because of Taylor’s frozen hypothesis, only a 3D 96 

random field ( , , )u y z t  needs to be considered (Simiu & Scanlan 1996), e.g., in the analysis of rotating 97 

blades of a wind turbine (Chen et al. 2018b). For convenience, ( , , )u y z t  is called the wind speed field in 98 

two spatial dimensions and is the focus of this paper. To describe the characteristics of the 3D random field, 99 

the wavenumber-frequency joint spectra were developed recently and are briefly outlined below.  100 
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The joint spectrum for the homogeneous fluctuating wind speed field in two spatial dimensions was 101 

given by Chen et al. (2018b) 102 

 ( ) ( )(W-F) Dav W-F( , , ) ( , , )z y z yS k k ω S ω ρ k k ω= ⋅   (1) 103 

where (W-F) ( , , )z yS k k ω  denotes the joint spectrum, ( )DavS ω  denotes the Davenport spectrum, ω  is 104 

the circular frequency, ,z yk k  are the wavenumbers in ,z y  direction, respectively; ( )W-F ( , , )z yρ k k ω  105 

is the two-fold Fourier transform of the Davenport’s coherence function ( , , )z yρ ξ ξ ω  with respect to 106 

,z yξ ξ , i.e., 107 
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   (2) 108 

in which ,z yξ ξ  are the spatial coordinate differences, i.e., 1 2zξ z z= − , 1 2yξ y y= − , ,z yC C  are the 109 

exponential decay coefficients in ,z y  direction, respectively, 10U  is the mean wind speed at 10m high, 110 

and i  denotes the imaginary unit. 111 

    It was soon extended to nonhomogeneous case by introducing the concept of evolutionary spectrum 112 

(Song et al. 2018). In this case, the joint spectrum depends on the height 113 

 ( ) ( )(W-F) Kai W-F( , , , ) , ( , , )z y z yS z k k ω S z ω ρ k k ω= ⋅   (3) 114 

where ( )Kai ,S z ω  denotes the two-sided Kaimal spectrum (Kaimal et al. 1972) 115 

 
( )

2
Kai *

5/350
2π ( )

50( , )
π ( ) 1 z

U z

zuS z ω
U z ω

=
+

  (4) 116 

in which ( )U z  is the mean wind speed at the height z , and *u  is the shear velocity. 117 

   For clarity, the joint spectra of wind speed fields in two spatial dimensions, i.e. Eqs.(1) and (3), can be 118 

written in a unified form as 119 
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It is noted that, besides the Davenport spectrum and the Kaimal spectrum, the auto-PSD function 121 

( )0 ,S z ω  can take any other wind spectra, e.g., the von Karman spectrum (Benowitz & Deodatis 2015). 122 

In addition, the coherence function 
1 2

( )u uρ ω  can take other models such as the Krenk model (Benowitz & 123 

Deodatis 2015) and the IEC 61400-1 model (Peng et al. 2017).  124 

Since the spectrum for the 3D random field is obtained, the spectral representation method (SRM) can 125 

be directly utilized to generate wind speed field samples (Shinozuka & Deodatis 1996). To reduce the 126 

computational efforts, the acceptance-rejection non-uniform discretization method is suggested (Song et al. 127 

2018) and the random wind field is correspondingly expressed as 128 
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  (6) 129 

where N  is the number of discretized wavenumber-frequency points in the 3D wavenumber-frequency 130 

domain, and ( ) ( )( , , )z y
j j jk k ω  is the j-th discretized point; jV  is the representative volume of the point 131 

( ) ( )( , , )z y
j j jk k ω , which can be determined by the Voronoi cells through the schemes similar to the 132 

calculation of assigned probabilities of Li and Chen (2009). (1)
jφ , (2)

jφ , (3)
jφ  and (4)

jφ  are four different 133 

sets of independent random phases uniformly distributed in [0, 2π].  134 

In this way, approximate 1.5×105 discretized wavenumber-frequency points are needed to obtain a 135 

satisfactory simulation result. Correspondingly, the number of random phases is as large as 6×105. Though 136 

much smaller compared to the direct SRM, the number of random variables is still too large. In the present 137 

paper, the stochastic harmonic function representation is adopted and extended, and the computational 138 

efforts as well as the number of random variables can be further considerably reduced.  139 

STOCHASTIC HARMONIC FUNCTION REPRESENTATION FOR WIND SPEED 140 

FIELDS 141 
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A stochastic harmonic function (SHF) representation was proposed by Chen et al. (2013) for 1D stationary 142 

random process. It has been extended to 1D nonstationary random processes (Chen et al. 2017) and 2D 143 

homogeneous random fields (Chen et al. 2018a). In the SHF representation of the previous studies, the 144 

frequencies and wavenumbers are mutually independent random variables. In this section, the SHF 145 

representation is extended to the 3D random field case since ( , , )u z y t  is a 3D temporal-spatial random 146 

field, then, a new strategy of the dependent frequencies and wavenumbers is proposed to further reduce the 147 

number of random variables. To make it clear, the basic idea of the SHF representation for 1D random 148 

process is briefly revisited firstly. 149 

The SHF representation for 1D random process 150 

In the SHF representation, both the phase angles and discretized frequencies are taken as random variables, 151 

distinguishing it from the SRM, in which only the phase angles are random variables. According to Chen et 152 

al. (2013; 2017), the SHF representation for 1D (non-)stationary random process can be expressed in a 153 

unified form as 154 

 SHF

1
( ) (Ω , )cos(Ω )

N

N j j j
j

Y t φA t t
=

= +   (7) 155 

where SHF ( )NY t  denotes the 1D stationary or nonstationary random process, N is the number of the 156 

harmonic components, Ω j ’s are independent random frequencies with the probability density functions 157 

(PDFs) Ω ( )
j

p ω  valued on the partitioned subintervals (distribution domain) L U
1[ , )N

j j jω ω = . The 158 

subintervals L U[ , )j jω ω  are non-overlapping such that L U L U[ , ) [ , ) ,j j k kω ω ω ω j k= ∅ ∀ ≠  and 159 

L U L U
1[ , ) [ , )N

j j jω ω ω ω= = , where L U,ω ω  are the lower and upper cut-off frequencies, respectively. 160 

jφ ’s are identically independent random phase angles uniformly distributed over [0, 2π]. When Ω j ’s are 161 

uniformly distributed over L U
1[ , )N

j j jω ω = , the amplitude (Ω , )jA t  is derived as 162 

( )U L(Ω , ) 4 (Ω , )j j j jA t S t ω ω= − , in which ( )S ⋅  is the PSD function of the random process. It was 163 

proved that the SHF representation could reproduce the target power spectral density functions even the 164 

number of harmonic components are finite and small. 165 
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The SHF Representation for 3D Random Field 166 

For simplicity of writing, define the following operational rules for two 3D vectors 1 2 3( , , )a a a=a  and 167 

1 2 3( , , )b b b=b , 168 
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−−

⋅ + +
⋅ + −
⋅ − +
⋅ −





 −

a b
a b
a b
a b

  (8) 169 

Similar to the previous studies (Chen et al. 2013; 2017; 2018a), the SHF representation for the 3D 170 

random field ( , , )u z y t  can be expressed as 171 

 
[

]

SHF (1) (2)

1
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  (9) 172 

where ( , , )z y t=x , SHF ( )Nu x  denotes the spatially homogeneous or nonhomogeneous random wind 173 

field; ( )( , ,Ω ) 1,2,z y
j j j jK K j N= = K  are independent 3D random vectors with the probability 174 

density functions (PDFs) ( )
j jpK k  valued on the partitioned subdomains (distribution domain) 175 

( 1,2,..., )jD j N= ; The subdomains ( 1,2,..., )jD j N=  are non-overlapping such that 0 1
N
j jD D==   176 

and ,j mD D j m= ∅ ∀ ≠ , where L U L U L U
0 [ , ] [ , ] [ , ]z z y yD k k k k ω ω= × ×  is the 3D 177 

wavenumber-frequency domain of interest; L U,z zk k  are the lower and upper cut-off wavenumbers of zk , 178 

respectively, similar symbols used for wavenumber yk  and frequency ω . The amplitudes ( , )jA z K ’s 179 

are the functions of random wavenumber-frequency points and height for spatially nonhomogeneous cases, 180 

while they are not dependent on the height for homogeneous cases. 181 

Based on Eq.(9) and noting that jK ’s and jφ ’s are independent, one can easily derive the 182 

correlation function of SHF ( )Nu x  183 
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where 1 2 1 2 1 2( , , ) ( , , )z yξ ξ τ z z y y t t= = − − −x  and ( )E ⋅  is the expectation operator. 185 

Meanwhile, the correlation function of the target stochastic process ( )u x  can be obtained from 186 

(Chen et al. 2017) 187 
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 (11) 188 

By comparing Eqs.(10) and (11) for each component, one can immediately find that if 189 

( ) ( )1 2 ( ) , 2 , for
j j j j j jp A z S z D= ∈K k k k k , then the correlation function of SHF ( )Nu x  is 190 

identical to that of ( )u x . Therefore, ( , )jA z K  in Eq.(9) should satisfy 191 

 
( )4 ,

( , )= , for
( )

j

j
j j j

j

S z
A z D

p
∈

K

K
K K

K
  (12) 192 

It should be noted that in the derivation of ( , )jA z K ,  SHF ( , )
Nu

R z x  exactly equals to ( , )uR z x  193 

without any restrictions on the value of N and the distribution type of Ω j ’s.  194 

Since ( )
j jpK k  can be chosen arbitrarily, the uniform distribution is usually taken for convenience. 195 

Such scheme is called the SHF of the second kind (SHF-II) (Chen et al. 2013, 2017, 2018a) and is adopted 196 

in this paper 197 
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 { }1( )
j j j j

j

p I D
V

= ⋅ ∈K k k   (13) 198 

where jV  is the volume of the subdomain jD . {}I ⋅  is the indicator function, { } 1I a =  if a is true; 199 

otherwise, { } 0I a = .  200 

Therefore, the amplitude ( , )jA z K  is  201 

 ( )( , ) 4 ,j j jA z S z V=K K   (14) 202 

In this case, the total number of random variables (frequencies and phases) is 7N, in which N for 203 

z
jK ’s, y

jK ’s, Ω j ’s, (1)
jφ ’s, (2)

jφ ’s, (3)
jφ ’s and (4)

jφ ’s, respectively. 204 

It is noted, interestingly, that in Eq.(10) the independence of random phases are necessary, but there is 205 

no requirement on whether the random wavenumber-frequency points should be independent or not. 206 

Therefore, it is promising to further reduce the number of random variables by using dependent random 207 

wavenumber-frequency points.  208 

The SHF Representation with Dependent Random Wavenumber-Frequency Points 209 

To this end, the random wavenumber-frequency vector jK  can be written as the functions of basic 210 

random vectors jl ’s, i.e.,  211 

 ( )( ) 1,2j j j j N= = K K l   (15) 212 

where ( , , )j j j jα β γ=l , jα ’s, jβ ’s and jγ ’s are three sets of dependent random variables identically 213 

uniformly distributed over [0, 1] with the PDFs ( ) 1
jα

p α = , ( ) 1
jβ

p β =  and ( ) 1
jγ

p γ = , respectively. 214 

However, the components of jl , i.e. jα , jβ  and jγ , are independent. Therefore, the PDFs for 215 

( 1,2,..., )j j N=l  is ( ) 1
j jp =l l  with the support domain [0,1] [0,1] [0,1]

j
D = × ×l .  216 

In this case Eq.(9) becomes 217 
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Accordingly, Eqs.(10) and (11) are rewritten as, respectively, 219 
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where ( )j jJ l  is the Jacobian determinate 224 
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Comparing Eqs.(17) and (18) term to term yields 226 

 ( )[ ] ( )[ ]4 , ( ), j jj jj jS zA z J=K Kl l l   (20) 227 

In this case, ( , , )u z y t  is represented by 228 



12 
 

( )[ ] ( )[ ] ( )[ ]{

( )[ ] ( )[ ]}

SHF (1) (2)

1

(3) (4)

( ) 4 , ( ) cos cos

cos cos

N

N j j j j j j j j j j
j

j j j j j j

u S z J φ φ

φ φ

++ +−

=

−+ −−

= ⋅ + + ⋅ +

+ ⋅ + + ⋅ +

x K K x K x

K x K x

l l l l

l l
 229 

  (21) 230 

Since , ( 1, 2,..., )( , , )j j j j j Nα β γ ==l  are random vectors identically uniformly distributed over 231 

[0,1] [0,1] [0,1]× × , one can easily find that: (1) when jl ’s are mutually independent, the number of the 232 

random variables for Eq. (21) is 7N (N for jα ’s, jβ ’s, jγ ’s, (1)
jφ ’s, (2)

jφ ’s, (3)
jφ ’s and (4)

jφ ’s, 233 

respectively), which means the random wavenumber-frequency points are mutually independent and is the 234 

same as those in the preceding section ; and (2) when jl ’s take the same value, i.e. 235 

0 0 0 0( , , ) ( 1,2,..., )j α β γ j N= = =l l , the number of the random variables is only 4N+3 (4N for (1)
jφ ’s, 236 

(2)
jφ ’s, (3)

jφ ’s and (4)
jφ ’s, and 3 for 0α , 0β  and 0γ ), reduced by a factor of almost 3/7.  237 

To determine the Jacobian determinate ( )j jJ l , the function relationships between jK ’s and 238 

jl ’s, i.e., ( )jjK l  must be given, which will be specified in next section. 239 

It is noted that such generated stochastic processes are non-ergodic, as in the previous SHF scheme 240 

(Chen et al 2013). However, because the number of harmonic components is not as few as only several, this 241 

will not be a problem for practical applications. On the other hand, it should also be noted that the 242 

ergodicity is an extra property or assumption compared to the stationarity. For non-stationary processes the 243 

ergodicity does not exist. 244 

 245 

IMPLEMENTATION PROCEDURES OF THE SHF REPRESENTATION FOR 246 

FLUCTUATING WIND FIELD SIMULATION 247 

According to the discussions in the preceding section, to adopt the SHF representation for wind field 248 

simulation, three key steps need to be implemented and some parameters should be specified, i.e.,  249 

(1) Determine the cut-off wavenumbers and frequency to construct 0D ; 250 

(2) Determine the subdomains jD ’s, i.e. how to partition 0D  into a set of non-overlapping 251 



13 
 

subdomains; and  252 

(3) Generate the frequency-wavenumber point jK  in the subdomain jD  for a given basic random 253 

vector jl , i.e., determine the function ( )jjK l  such that the Jacobian determinate ( )j jJ l  can be 254 

specified simultaneously. 255 

The implementation procedures are interpreted in the following three subsections, respectively. 256 

Determination of 0D  257 

The lower cut-off frequency and wavenumbers usually take zero. While for the upper cut-off values, on the 258 

one hand, they depend on the frequency of the structures subjected to the wind field (Ke et al. 2015), on the 259 

other hand, the following criterion can be adopted (Shinozuka & Deodatis 1996). 260 

 
U U U

0 0 0 0 0 0
( , , , )d d d (1 ) ( , , , )d d dz yk k ω

z y y z z y y zS z k k ω ω k k ε S z k k ω ω k k
+∞ +∞ +∞

= −       (22) 261 

where ε  denotes a truncated error which is far less than 1, e.g., ε  = 0.05 or 0.01. 262 

Determination of jD ’s 263 

Theoretically, the partition of 0D  is arbitrary as long as j
D ’s satisfy 0 1

N
j jD D==   and264 

,j mD D j m= ∅ ∀ ≠ . A simplest case is the cuboid grid partitioning, in which each subdomain jD  is 265 

a small cuboid 266 

 [ , ] [ , ] [ , ]z z y y
j j j j j j jD k k k k ω ω= × ×   (23) 267 

where ,z z
j jk k  are the lower and upper bounds of wavenumber zk  of the subdomain jD , similar 268 

symbols used for wavenumber yk  and frequency ω . However, a large number of subdomains are 269 

needed in such partition because for multi-dimensional random fields a tensor product scheme is essentially 270 

adopted here. 271 

An alternative partition scheme is the Voronoi cell partitioning (Li & Chen 2009), in which the 272 

subdomain jD  is usually a convex polyhedron. To this end, a set of representative points 273 

* * * *
0( , ,Ω ) ( 1,2,..., )z y

j j j jK K D j N= ∈ =K  should be specified such that 0D  can be partitioned into a 274 
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number of N Voronoi subdomains. *
jK ’s can be obtained by the acceptance-rejection method (Li & Chen 275 

2009; Song et al. 2018), which results in taking denser representative points where the joint PSD value is 276 

greater. In other words, the region where the joint PSD is greater will be partitioned into more subdomains.  277 

However, it is found from the radial formulation of wind speed joint PSD (Song et al. 2018) that in the 278 

range close to the origin the spectral value is far greater by several orders of magnitude than that in the 279 

range away from the origin (Fig.1). When the acceptance-rejection method is directly adopted over 0D , 280 

there is almost no representative points distributed in the range away from the origin as shown in Fig.2. 281 

This is unreasonable and will induce errors in simulation. To alleviate this problem, Song et al. (2018) and 282 

Chen et al. (2018b) partition 0D  into some (no more than five) regular subdomains firstly, then 283 

implement the acceptance-rejection method over each subdomains. However, such artificial intervening 284 

may lead to multiple empirical trials which reduces the efficiency. In the present paper, a new 285 

acceptance-rejection scheme is proposed as follows: the p-power of ( , , , )z yS z k k ω  (0 < p <1) is 286 

suggested to be used for the acceptance-rejection criterion instead of ( , , , )z yS z k k ω  itself being used in 287 

the original acceptance-rejection method. The value of p is suggested to take 0.5~0.6 according to 288 

experiences. In this case, the difference of the values of [ ]( , , , ) p
z yS z k k ω  over 0D  is not that huge so 289 

that the acceptance-rejection (A-R) can be performed over 0D  directly.  290 

To this end, a set of uniformly scattered points ( ){ } 1, , , nz y
n i i i i i iM ζ k k ω == =h  in the 291 

four-dimensional hyper-rectangle [ ] [ ] [ ] [ ]U U U0, 0, 0, 0,z ya k k ω× × ×  should be firstly specified, where n 292 

is the number of points in nM . Here [ ]{ }maxmax ( , , , ) p
z ya S z k k ω> , maxz  is the maximum vertical 293 

coordinate of the positions to be simulated. This point set can be specified by an affine transform of the 294 

point set ( ) ( ) ( ) ( )( ) [ ]{ }41 2 3 4
1, , , 0,1

n

n i i i i i iM η η η η == = ∈ h   uniformly scattered over the unit cube [ ]40,1 , 295 

i.e. ( )1
i iζ aη= , ( )U 2z

i z ik k η= , ( )U 3y
i y ik k η= , ( )U 4

i iω ω η= . The Sobol’ point set, which features a small 296 

discrepancy (Dick & Pillichshammer 2010), can be chosen as nM . Then the following criterion is adopted: 297 

if [ ]max( , , , ) pz y
i i i iζ S z k k ω> , the point ih  will be deleted from the point set nM . For clarity, the 298 
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remaining points in nM  are denoted by ( ){ }
1

, , , Nz y
j j j j j j

M ζ k k ω
=

′ = =h , where N denotes the number 299 

of points in M ′ . Then the projection of this point set in the wavenumber-frequency space, i.e. 300 

( )
1

, , Nz y
j j j j

k k ω
=

 is the finally determined representative point set, i.e., * * * *
1( , ,Ω )z y N

j j j j jK K ==K . The 301 

value of [ ]( , , ) p
rS z k ω  and the selected representative points based on [ ]( , , , ) p

z yS z k k ω  when p = 0.6 302 

are shown in Fig.3 and Fig.4, respectively.  303 

In Fig.1 and Fig.3, the radial formulation of the joint spectrum has the following expression (Song et al. 304 

2018) 305 

 

( ) ( )

( )
( ) ( )( )10 10

W-F

2 3 222 1
2π 2π

( , , ) , ( , )
1,

1

r r

r
ω

z y U r U

S z k ω S z ω ρ k ω
kS z ω

C C k ω

=

=
+

  (24) 306 

where ( ) ( )2 2
r y y z zk k C k C= +  is the radial coordinate. It is noted that the parameters needed for 307 

implementing the acceptance-rejection in the above two cases take the values of the first numerical 308 

example in the section of numerical examples. 309 

Since *
jK ’s (j =1,2,…,N) have been specified, 0D  can be partitioned into a number of N Voronoi 310 

subdomains as shown in Fig.5. 311 

Generation of jK ’s for Given jl ’s 312 

When the cuboid grid partitioning is adopted, ( )j jK l  can be specified by the following simple 313 

transform in each small cuboid subdomain [ , ] [ , ] [ , ]z z y y
j j j j j j jD k k k k ω ω= × ×  314 

 

( , , ) ( )
( , , ) ( )

Ω ( , , ) ( )

z z z z
j j j j j j j j
y y y y
j j j j j j j j

j j j j j j j j

K α β γ k α k k
K α β γ k β k k

α β γ ω γ ω ω

= + −
 = + −
 = + −

  (25) 315 

Therefore, the Jocobian determinate is 316 
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( )

Ω

Ω
( ) ( )( )( )

Ω

z y
j j j

j j j

z y
j j j j j z z y y

j j j j j j j j
j j j j

z y
j j j

j j j

K K
α α α

K K
J k k k k ω ω

β β β

K K
γ γ γ

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
= = = − − −

∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

K l
l

l
  (26) 317 

When the Voronoi cell partitioning is adopted, the scheme of determining ( )jjK l  is shown in Fig.6 318 

and interpreted as follows:  319 

(a) Determine the lower and upper bounds of frequency ω  in the subdomain jD , which is denoted 320 

by jω  and jω , respectively. Then, specify Ω j  by the following transform 321 

 Ω ( , , ) ( )j j j j j j j jα β γ ω α ω ω= + −   (27) 322 

a simple case is shown in Fig.6(a), in which the subdomain jD  is a pentagon prismoid.  323 

(b) Determine the bounds of the intersections between the plane Ω jω =  and the subdomain jD , 324 

which form a convex polygon denoted as α
jB  and is shown in Fig.8(a) and Fig.8 (b). Then z

jK  can be 325 

specified by 326 

 
( ) ( ) ( )[ ]

L U L

L U L

( , , ) ( )z z z z
j j j j j j j j

z z z
j j j j j j j

K α β γ K β K K

K α β K α K α

= + −

= + −
  (28) 327 

where L U,z z
j jK K  are the lower and upper bounds of zk  in α

jB , respectively. 328 

(c) Determine the two points ( )L,z y
j jK K  and ( )U,z y

j jK K , L Uy y
j jK K< , which are the 329 

intersections between the line z
z jk K=  and the bounds of α

jB . Therefore, y
jK  can be specified by 330 

 
( ) ( ) ( )[ ]

L U L

L U L

( , , ) ( )

, , ,

y y y y
j j j j

j j

j j

j j j j

j j

y y y
j j jj

α β γ γ

α β γ α β α β

K K K K

K K K=

= + −

+ −
  (29) 331 

Thus, the Jacobian determinate is 332 
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( )

( )( )U L U L

Ω

Ω
( ) ( )

Ω

z y
j j j

j j j

z y
j j j j j z z y y

j j j j j j j j
j j j j

z y
j j j

j j j

K K
α α α

K K
J ω ω K K K K

β β β

K K
γ γ γ

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
= = = − − −

∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

K l
l

l
 (30) 333 

In this way, jK  can be specified using Eqs.(27) (28) and (29) for a given random vector jl  334 

(j=1,2,…,N).  335 

 336 

NUMERICAL EXAMPLES 337 

For illustrative purposes, two numerical examples of wind field simulation are addressed. The first one is a 338 

stationary and nonhomogeneous case for the rotating blades of wind turbines in two spatial dimensions, and 339 

the second one is a nonstationary and homogeneous case in two spatial dimensions. For each cases, the 340 

SRM, the SHF with different jl ’s and the SHF with the same 0l  are adopted for comparisons. Since 341 

the Voronoi cell partitioning scheme integrated with the acceptance-rejection method is more efficient 342 

(Song et al. 2018), it will be employed in the SRM and SHF for the two cases. 343 

Stationary and Nonhomogeneous Case  344 

Consider a 5-MW wind turbine (Jonkman et al. 2009), the hub is at the height of 90m, and the diameter of 345 

blades is about 120m. In this case, the joint spectrum in Eq.(5) is adopted, in which ( )0 ,S z ω  takes the 346 

Kaimal spectrum in Eq.(4). The other parameters are: 10 20 m/sU = , * 1.691 m/su = , 0 0.005 mz = ; 347 

7z yC C= =  (Chen et al. 2018b); U U π rad/mz yk k= = , U 2π rad/sω =  (Ke et al. 2015); 600 sT = , 348 

and Δ 0.5 st = . For illustrative purposes, the fluctuating wind speeds at the spatial points P1(0,30), 349 

P2(60,90), and P3(0,150) in the rotating blade plane are to be simulated for a wind field sample, which are 350 

shown in Fig.7. 351 

The SRM in Eq.(6) and the SHF in Eq.(31) are adopted for the simulation, respectively. 352 
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( )[ ] ( )( ) ( )[ ]{

( )[ ] ( )[ ] ( )[ ]}

SHF U L U L (1)

1

(2) (3) (4)

( ) 4 , ( ) cos

cos cos cos

N
z z y y

N j j j j j j j j j j j
j

j j j j j j j j j

u S z ω ω K K K K φ

φ φ φ

++

=

+− −+ −−

= − − − ⋅ +

+ ⋅ + + ⋅ + + ⋅ +

x K K x

K x K x K x

l l

l l l
 353 

  (31) 354 

It seems that all the needed parameters have been specified and the random field is readily to be 355 

simulated by now. However, the number of the harmonic components, N, is still undetermined, which may 356 

have effects on the accuracy of simulation results. In this numerical example, two cases with different N are 357 

considered. 358 

 359 

Case 1: N=4900 360 

In this case, take p=0.6 and a total of 9×108 basic four-dimensional Sobol’s points is involved, around 361 

4900 points (i.e., N = 4900) are retained after the acceptance-rejection operation, which is shown in Fig.4. 362 

Totally, 500 samples are generated by the three methods, respectively. The typical fluctuating wind speed 363 

time histories at P3 are shown in Fig.8. Then, the auto-PSD function, the cross correlation function and the 364 

coherence function of the fluctuating wind speed process can be estimated (Bendat & Piersol 2010; Chen et 365 

al 2018b). The comparison between the reproduced auto-PSD at P3 by 500 samples and the target Kaimal 366 

spectrum is shown in Fig.9. The comparisons between the reproduced and target cross-correlation function 367 

and coherence function between the fluctuating wind speed processes at P1 and P2 are shown in Fig.10 and 368 

Fig.11, respectively. 369 

It is seen that the time histories of fluctuating wind speed generated by the three methods are almost 370 

identical. However, the performance of the SRM in the assemble characteristics including the auto-PSD 371 

function, the cross correlation and the coherence function is not as good as the SHF representation. In 372 

addition, the accuracy of the simulation results by the SHF with independent and dependent random 373 

wavenumber-frequency points is almost the same.  374 

Codes are written in MATLAB platform and run on a PC with Intel (R) Core (TM) i7-4790K CPU @ 375 

4.00GHz and 16GB main memory under the WIN7 operating environment. The multi-core parallel 376 

computing technique is activated during the simulation. The consumed time for the simulation of such a 377 

wind field sample of the three methods is listed in Table 1. It is seen that with the same N, the SRM is more 378 

efficient than the SHF. Besides, the consumed time of the SHF with independent and dependent random 379 
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wavenumber-frequency points is nearly identical. Therefore, only the SHF with dependent 380 

wavenumber-frequency points is compared with the SRM in case 2. 381 

 382 

Case 2: N=9,800 and 98,000  383 

In this case, take p=0.6 and a total of 1.8×109 and 1.8×1010 basic four-dimensional Sobol’s points are 384 

involved, respectively. Then around 9,800 and 98,000 points (i.e., N=9,800 and 98,000) are respectively 385 

retained after the acceptance-rejection operation. The simulation results by the SRM and the SHF with 386 

dependent wavenumber-frequency points are shown from Fig.12 through Fig.15. 387 

It is seen that the accuracy of the SRM with N = 98,000 is almost identical with that of the SHF with N 388 

= 9,800, both of which are quite consistent with the target values. In contrast, there exists obvious 389 

difference between the results of the SRM with N = 9,800 and the target values. Therefore, the number of 390 

discretized wavenumber-frequency points for the SRM and the SHF is suggested to be around 100,000 and 391 

10,000, respectively. 392 

The consumed time for the simulation of such a wind field is listed in Table 1. It can be seen that the 393 

simulation efficiency of the SHF with N = 9,800 is quite close to that of the SRM with N = 98,000. 394 

 395 

Nonstationary and Homogeneous Case 396 

To verify the effectiveness of the proposed method for the simulation of nonstationary wind speed field, the 397 

fluctuating wind speed time histories at the three points in Fig.7 during a typhoon process is simulated in 398 

this section. 399 

According to Huang et al. (2015), it is reasonable to simulate the fluctuating wind speed process during 400 

a typhoon as a uniformly modulated process. A simplified nonstationary wind spectrum model is suggested 401 

as (Huang et al. 2015) 402 

 ( ) ( ) ( ) ( )
( )

2
nor nor, ;

1

γ

βα

AnS n t σ t S n S n
Bn

= =
+

  (32) 403 

where ( ),S n t  is the evolutionary spectrum of the nonstationary wind speed; n  denotes the natural 404 

frequency (Hz); ( )σ t  is the time-varying standard deviation of the fluctuating wind speed; ( )norS n  is 405 

the normalized wind spectrum and its integration with n  is unity; A , B , α , β  and γ  are constants 406 
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and can be identified based on observation data. 407 

The Davenport coherence model is still valid for the fluctuating wind field during a typhoon process 408 

(Huang et al. 2015). Therefore, the wavenumber-frequency joint spectrum for the nonstationary wind speed 409 

field in two spatial dimensions can be expressed as 410 

( ) ( )

( ) ( )

( )[ ] ( ) ( ) ( ) ( )( )
3
2

10
10

W-F

2

21 2 221 1 12π 2π

( , , , )= , ( , , )

2π 1 1 1
2π 2π1 2π 1

y z

z y z y

γ

βα
z y U y zC C U

S k k ω t S ω t ρ k k ω

σ t A ω
C C ωB ω k k ω

⋅

= ⋅
+ + +  

411 

   (33) 412 

Correspondingly, the nonstationary wind field represented by the SRM and SHF is given by, 413 

respectively,  414 

 

( ) ( )

( ) ( )[ ( ) ( )

( ) ( ) ( ) ( ) ]

1

(1) (2)

(3) (4)

( , , ) 4 ( , , , )

cos( ) cos( )

cos( ) cos( )
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z y

j j j j
j

z y z y
j j j j j j j j

z y z y
j j j j j j j j
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k z k y ω t φ k z k y ω t φ

k z k y ω t φ k z k y ω t φ
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=

× + + + + + − +

+ − + + + − − +


  (34) 415 

( )[ ] ( )( ) ( )[ ]{

( )[ ] ( )[ ] ( )[ ]}

SHF U L U L (1)

1

(2) (3) (4)

( ) 4 , ( ) cos

cos cos cos

N
z z y y

N j j j j j j j j j j j
j

j j j j j j j j j

u S t ω ω K K K K φ

φ φ φ
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=

+− −+ −−

= − − − ⋅ +
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l l

l l l
 416 

  (35) 417 

The time-varying standard deviation ( )σ t  is identified from the wind speed records during a 418 

typhoon process (Huang et al. 2015). In the present simulation, only a duration of 1200s of ( )σ t  is 419 

employed, which can be fitted by the superposition of finite sinusoidal series, 420 

 ( ) ( ) ( ) ( )1 1 1 2 2 2 3 3 3sin sin sinσ t a b t c a b t c a b t c= + + + + +   (36) 421 

in which 1 18.76a = , 1 0.002057b = , 1 0.3878c = , 2 15.59a = , 2 0.002271b = , 2 3.455c = ,422 

3 0.1864a = , 3 0.006924b = , 3 3.216c = . The process of the 1200s duration of ( )σ t  is shown in 423 

Fig.16.  424 

   The parameters in Eq.(32) are identified as  45.135A = , 51.474B = , 0.9242α = , 1.788β =  425 

and 46.376 10γ −= ×  (Huang et al. 2015).  The other parameters for the simulation are the same as the 426 
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above stationary cases.  427 

 428 

Case 3: N = 4600 429 

   Based on the acceptance-rejection method, about 4600 points (i.e., N = 4600) are retained. A number of 430 

5000 wind speed field samples are generated by the three methods, respectively. The time histories of 431 

fluctuating wind speed at P3 of a wind field sample are shown in Fig.17.  432 

   Then, the time dependent auto-correlation function of P3 can be estimated by (Bendat & Piersol 2010) 433 

 ( ) ( ) ( )es ,
2 2
τ τR t τ E u t u t = − +  

  (37) 434 

The comparisons between the estimated and target auto-correlation function of P3 at different time are 435 

shown in Fig.18. 436 

   Further, the estimated value of time-varying auto-PSD function of P3 is obtained by (Bendat & Piersol 437 

2010) 438 

 ( ) ( ) i
es es

1, , d
2π

ωτS t ω R t τ e τ
+∞ −

−∞
=    (38) 439 

The comparisons between the estimated and target auto-PSD function of P3 at different time are shown 440 

in Fig.19. 441 

   Besides, the cross-correlation function between P1 and P2 can be estimated by (Bendat & Piersol 2010) 442 

 ( ) ( ) ( )es
12 1 2,

2 2
τ τR t τ E u t u t = − +  

  (39) 443 

The comparisons between the estimated and target cross-correlation function between P1 and P2 at 444 

different time are shown in Fig.20.   445 

As can be seen from Fig.17 to Fig.20, the results are quite similar to the temporal stationary cases. The 446 

performance of the three methods in a single wind speed field sample is almost identical, while the SHF 447 

representation exhibits obvious advantages over the SRM in the reproduction of the second order statistics. 448 

Besides, there is no influence on the accuracy of the simulation results of the SHF whether the 449 

wavenumber-frequency points are independent or dependent. The consumed time for the three methods in 450 

this case is listed in Table 1. 451 

 452 



22 
 

Case 4: N=9,200 and 92,000  453 

   In this case, more discretized wavenumber-frequency points are used for the simulation. The dependent 454 

random wavenumber-frequency points are used in the SHF in this case. The time histories of wind speeds 455 

and the comparisons between estimated and target values of auto-correlation function, auto-PSD function 456 

as well as the cross-correlation function are shown from Fig.21 through Fig.24. 457 

It is seen that the simulation results of the SHF with N = 9200 and the SRM with N = 92000 are well 458 

consistent with the target values, while the results of the SRM with N = 9200 are not that satisfactory. As a 459 

result, approximate 10,000 and 100,000 discretized points are suggested for the SHF and SRM respectively, 460 

in the simulation of nonstationary wind speed field. The consumed time in this case is also listed in Table 1. 461 

In addition, the number of the random variables in all above cases is included in Table 1. One can 462 

observe that in the case that around 10,000 dependent random wavenumber-frequency points are used for 463 

the SHF and around 100,000 discretized points are used for the SRM, the consumed time and the accuracy 464 

of simulation results are quite similar. However, the number of random variables in the SRM is ten times 465 

that of the SHF, and theoretically the latter can reproduce the target spectrum exactly when the number of 466 

harmonic components are finite or even small. 467 

 468 

CONCLUDING REMARKS 469 

The stochastic harmonic function (SHF) representation method has been extended to 3D random field cases 470 

so as to simulate the fluctuating wind speed fields in two spatial dimensions. In this method, based on the 471 

wavenumber-frequency joint spectra, both the phase angles and frequencies (wavenumbers) are regarded as 472 

random variables. In particular, the random frequencies (wavenumbers) can be dependent so that the 473 

number of random variables can be further reduced considerably. The p-power of the joint spectrum is 474 

adopted in the acceptance-rejection method for the determination of uneven discretized points in the 475 

wavenumber-frequency domain. The Voronoi cells, and thus the supports of random frequencies 476 

(wavenumbers), are then determined accordingly. Simulation of stationary and nonstationary wind speed 477 
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fields are carried out. The conclusions include: 478 

(1) The SHF representation method for random fields can reproduce the target PSD and EPSD exactly by a 479 

very finite number of harmonic components. Numerical examples show that the integration of 480 

wavenumber-frequency joint spectrum and SHF representation for fluctuating wind field simulation is 481 

of high accuracy and efficiency. 482 

(2) The introduction of p-power joint spectra in the acceptance-rejection method provides a rational 483 

approach that almost no artificial intervening is needed in the determination of the Voronoi cells. Very 484 

importantly, the value p = 0.6 is suitable for different wind speed spectra. 485 

(3) There is almost no effect on the efficiency and accuracy of the SHF representation whether the random 486 

wavenumber-frequency points are independent or not, while the number of random variables can be 487 

reduced by 3/7 when the dependent wavenumber-frequency points are adopted. 488 

(4) To obtain the accuracy that is not much different from the target values, the consumed time of the SRM 489 

and the SHF is quite similar, while the number of random variables of the SRM is around ten times that 490 

of the SHF with dependent random wavenumber-frequency points. 491 
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Table 1. Consumed time and number of random variables in different simulation cases 563 

Case  
Number of 

discretized points 
(N) 

Method 
Consumed time for 
single sample (s) 

Number of random 
variables 

Stationary 
(600s) 

4900 

SHF-independent 4.2 7N=3.43×104 

SHF-dependent 4.5 4N+3≈1.96×104 

SRM 0.4 4N=1.96×104 

9800 
SHF-dependent 8.4 4N+3≈3.92×104 

SRM 0.7 4N=3.92×104 

98000 SRM 7.3 4N=3.92×105 

Nonstationary 
(1200s) 

4600 

SHF-independent 4.5 7N=3.22×104 

SHF-dependent 4.6 4N+3≈1.84×104 

SRM 0.9 4N=1.84×104 

9200 
SHF-dependent 9.0 4N+3≈3.68×104 

SRM 1.5 4N=3.68×104 

92000 SRM 10.7 4N=3.68×105 
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