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Does the ratio of Laplace transforms of powers of a function identify

the function?

Takis Konstantopoulos∗ Linglong Yuan†‡

4 September 2019

Abstract

In auction theory, one is interested in identifying the distribution of bids based on the distribution
of the highest ones. We study this problem as a special case of the following question. Let m, n be two
distinct nonnegative integers and f a nonzero measurable function on [0,∞) of at most exponential
order. Let Hn,m ∶= f̂n/f̂m be the ratio of the Laplace transforms of fn and fm. Does knowledge of the
function Hn,m uniquely specify the function f? This is a generalization of Lerch’s theorem (Laplace
transform specifies the function). Under some rather strong assumptions on f we show that the answer
is affirmative.

1 Introduction

There are N bidders for a single item. Bidder i bids Xi units of money. We assume that X1, . . . ,XN

are random variables. They cannot be independent because there is a tacit common understanding
about the value of the item. A simple model (see [9]) is thus

Xi =X∗ + εi, i = 1, . . . ,N,

where X∗ is a random variable representing the common understanding of the item value. In auction
theory, X∗ is called “unobserved heterogeneity”. The random variable εi is the additional value of the
item as perceived by bidder i. It is called the “idiosyncratic part” of the bid. Since the bidders act
independently, it is reasonable to assume that ε1, . . . , εN are independent random variables. We also
assume that they are independent of X∗. Moreover, we assume that bidders behave identically which
means that the idiosyncratic parts have a common distribution denoted by

F (x) = P(ε ≤ x).
An identification problem appearing in practice [9] is this: Given the distributions of the two highest
bids can we find the distribution of ε? In other words, if X(1) ≤ ⋯ ≤ X(N) is the ordered version of(X1, . . . ,XN), and if we know the distributions of X(N−1) and X(N) can we find F? Quite clearly,
knowledge of the distribution of XN (which is the same as the distribution of XN−1) does not imply
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knowledge of F . The catch here is that we have information about the highest and second highest bid,
rather than two arbitrary bids; and this is what can possibly lead to an affirmative answer. To take
a concrete case, suppose that we use a parametric model, for example, suppose ε is exponential with
unknown rate. In this case,

ε(N)
(d)= ε(N−1) + η,

where η is an independent copy of ε and so we can find the distribution of η since we know its Laplace
transform:

Ee−λε = Ee−λη = Ee−λX(N)

Ee−λX(N−1)
.

But, in general, the problem is not as trivial. In fact, we do not even know whether, indeed, we can
identify the law of ε. For more information on the identification problem in auction theory, we refer
to, among others, [7, 8, 6, 1, 3, 10, 4].

It will be seen (Section 3) that this question can be answered by means of the main result of this
paper. We present this result next. We say that a nonzero measurable function f ∶ [0,∞) → R is of
exponential order if there are positive numbers C and c such that

∣f(x)∣ ≤ Cecx, x ≥ 0.
Then the Laplace transform

f̂(λ) ∶= ∫ ∞

0
e−λxf(x)dx

exists for λ > c. If n is a positive integer then fn is also of exponential order and f̂n denotes its Laplace
transform. Let m,n be nonnegative integers. Define

Hn,m(f,λ) ∶= f̂n(λ)
f̂m(λ) .

The question of interest here is the following:

Uniqueness question: For given distinct nonnegative integers n and m, does knowledge
of the function Hn,m(f, ⋅) uniquely specify f?

For m > 0, both f̂n(λ) and f̂m(λ) are analytic when λ ranges on the complex plane and the real part
of λ is large enough, see, e.g., [2, Theorem 6.1]. So Hn,m(f, ⋅) is a well-defined meromorphic function.

Clearly, if m = 0 then, by the classical theorem of Laplace transform inversion [11], we know fn

and so we know f if n is odd. But if n and m are distinct positive integers, the problem seems to be
hard. We aim at giving an answer when we restrict f to a certain class of functions. Having in mind
the probabilistic problem arising in auctions, where f plays the role of a distribution function, it is
not unreasonable to assume that f is piecewise smooth. (By this we mean a function which is analytic
except finitely many jump discontinuities.) This corresponds, e.g., to the case where ε has piecewise
smooth distribution function.

It is easy to see that uniqueness, in strict sense, is impossible because translations do not affect
Hn,m(f, ⋅). Suppose that, for some c > 0, the function f is identically 0 on an interval [0, c) and let

θ−cf(x) ∶= f(x + c).
Then

θ̂−cf(λ) = eλcf̂(λ).
Clearly then,

Hn,m(f, ⋅) =Hn,m(θ−cf, ⋅).
So Hn,m(f, ⋅) specifies f up to a translation. Hence, to obtain uniqueness, it is necessary to assume

inf{x ∶ f(x) ≠ 0} = 0. (1)
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Even under this condition, we cannot answer the problem in general, i.e. under the sole assumption
that the Laplace transform of f exists.

The case where f is a polynomial is of independent interest:

Theorem 1. Let m,n be distinct positive integers and f, g polynomials such that

Hn,m(f, ⋅) =Hn,m(g, ⋅).
If n−m is odd, then f is identical to g. If n−m is even, then either f is identical to g or f is identical

to −g.

For the general case, we shall restrict ourselves to functions that are a bit more general than
piecewise smooth. We consider functions f on [0,∞) that are right-continuous and with left limits at
each point (the so called càdlàg functions) and impose smoothness on the right. We say that f is right
analytic on a set A if it is right analytic at any point a ∈ A, which is defined as follows: there exists
h > 0 such that [a, a + h) ⊂ A and f has right derivatives at a of all orders, denoted by f (i)(a+), i ≥ 0,
and for all a ≤ x < a + h

f(x) = ∞∑
i=0

f (i)(a+)(x − a)i
i!

.

The series on the right also converges on a − h < x < a + h (see, e.g., [5, Prop. 1.1.1]). By [5, Cor.

1.2.3], the function g(x) ∶= ∑∞i=0 f (i)(a+) (x−a)ii!
is real analytic on (a − h, a + h). So f is right analytic

at a if and only if there exists a function g which is real analytic at a and there exists h > 0 such that
f(x) = g(x) for any x ∈ [a, a + h). The right analyticity only imposes smoothness on the right of a
point. A càdlàg and right analytic function f on [0,∞) can have countably many discontinuous point
on a compact interval. For example, take

f(x) = 1

2n
, if x ∈ [1 − 1

2n
,1 −

1

2n+1
) , n = 0,1,2, . . . ; f(x) = 2, if x ≥ 1.

The f defined above is càdlàg and right analytic on [0,∞) with discontinuities at points 1
2n
, n =

0,1,2, . . ., and at 1.

Theorem 2. Let m,n be distinct positive integers. Suppose that f, g are nonnegative nondecreasing

càdlàg functions, right analytic at every point a ≥ 0, of exponential order and such that f(x), g(x) > 0
for all x > 0. If

Hn,m(f, ⋅) =Hn,m(g, ⋅).
then f = g.

The paper is organized as follows. Theorems 1 and 2 are proved in Section 2. Their relation to the
auction theory case discussed above is presented in Section 3.

2 The uniqueness question

We start with a preliminary observation. For a function f that has sufficiently many derivatives at 0
let

I(f) ∶=min{k ≥ 0 ∶ f (k)(0) ≠ 0}.
We use the phrase “sufficiently many derivatives at 0” as equivalent to the phrase “at least as many
derivatives as required for the definition of I(f)”. So, if f(0) ≠ 0 then f is allowed to have no derivative
at 0. But if f(0) = 0 then we assume that f is at least once differentiable; if f ′(0) ≠ 0 then I(f) = 1
and f does not need to be twice differentiable. The observation is that if f and g have finite I(f) and
I(g) then Hn,m(f, ⋅) =Hn,m(g, ⋅) implies that I(f) = I(g). We explain this in the following lemma.
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Lemma 1. Suppose that f and g are of exponential order, have sufficiently many derivatives at 0,
and I(f) <∞, I(g) <∞. Let m,n be distinct positive integers. Assume Hn,m(f, ⋅) = Hn,m(g, ⋅). Then

I(f) = I(g). Let k = I(f) = I(g). If n − m is odd then f (k)(0) = g(k)(0). If n − m is even then∣f (k)(0)∣ = ∣g(k)(0)∣.
Proof. The assumption Hn,m(f, ⋅) =Hn,m(g, ⋅) is equivalent to

f̂n(λ)ĝm(λ) = ĝn(λ)f̂m(λ) for sufficiently large λ

which is further equivalent to
fn
∗ gm = fm

∗ gn, (2)

where ∗ denotes convolution. Write the left-hand side as

(fn
∗ gm)(t) = ∫ t

0
f(s)ng(t − s)mds = t∫

1

0
f(tu)ng(t(1 − u))mdu. (3)

Define
k ∶= I(f), ℓ ∶= I(g), a ∶= f (k)(0), b ∶= f (ℓ)(0).

Divide both sides of (3) by tkn+ℓm+1. Then, as t→ 0,

(fn
∗ gm)(t)

tkn+ℓm+1
= ∫

1

0
(f(tu)

tk
)
n

(g(t(1 − u))
tℓ

)
m

du

→ ∫
1

0
(auk

k!
)
n

(b(1 − u)ℓ
ℓ!

)
m

du = anbm

k!nℓ!m
B(kn + 1, ℓm + 1), (4)

where B is the beta function. To obtain this, we used the assumption that the first nonzero derivative
of f at zero is the derivative of order k, so that f(tu)/tk → f (k)(0)uk/k! and, similarly, g(t(1−u))/tℓ →
g(ℓ)(0)(1 − u)ℓ/ℓ!. Reversing the roles of n and m, we obtain

(fm
∗ gn)(t)

tkm+ℓn+1
→

ambn

k!mℓ!n
B(km + 1, ℓn + 1), (5)

as t→ 0. Comparing (4) and (5), and in view of (2), we are forced to conclude that

p1 ∶= kn + ℓm = km + ℓn =∶ p2.
Indeed, by (2),we have fn

∗gm = fm
∗gn = h. The function h satisfies t−p1h(t)→ C1 and t−p2h(t)→ C2,

as t → 0, where C1,C2 are the constants appearing on the right-hand sides of (4) and (5), respectively.
These constants are nonzero. If p1 > p2 we obtain t−p1h(t) = tp1−p2t−p1h(t) → 0 ⋅C2 = 0. Hence C1 = 0,
which is impossible. Similarly, p1 < p2 is impossible, and thus p1 = p2. Thus, k(n −m) = ℓ(n −m) and
so

k = ℓ.
But then C1 and C2 are equal and this entails ambn = anbm, or

(a/b)n−m = 1.
If n −m is odd we have a = b. If n −m is even we can only deduce that ∣a∣ = ∣b∣.
Lemma 2. Suppose that f and g are of exponential order and have sufficiently many derivatives at

0. Assume that I(f) = I(g) = k < ∞ and f (k)(0) = g(k)(0). Let m,n be distinct positive integers. If

Hn,m(f, ⋅) =Hn,m(g, ⋅) then f (ℓ)(0) = g(ℓ)(0) for all ℓ ≥ k for which the two derivatives exist.
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Proof. Assume that, for some ℓ > k, we have

f (j)(0) = g(j)(0), k ≤ j ≤ ℓ − 1.
We will show that f (ℓ)(0) = g(ℓ)(0). With

cj ∶= f (j)(0)/j!, k ≤ j < ℓ, a ∶= f (ℓ)(0)/ℓ!, b ∶= g(ℓ)(0)/ℓ!,
we have

f(x) = ℓ−1

∑
i=k

cix
i
+ axℓ

+ f1(x), g(x) = ℓ−1

∑
i=k

cix
i
+ bxℓ

+ g1(x),
where f1(x) = o(xℓ) and g1(x) = o(xℓ) as x→ 0. We will show that a = b. We have

fn
∗ gm(t)
t

= ∫
1

0
f(tu)ng(t(1 − u))mdu

= ∫
1

0
(ℓ−1∑
i=k

ciu
iti + αuℓtℓ + f1(ut))

n

(ℓ−1∑
i=k

ci(1 − u)iti + β(1 − u)ℓtℓ + g1((1 − u)t))
m

du. (6)

Note th integrand in the last integral of (6) is a product of n +m terms. Let1

d = ℓ + k(n − 1)+ km.

After multiplication and integration, we shall keep track of the monomial terms of degree at most
d and combine everything else into terms of order o(td). Notice that if f1 or g1 is involved in the
multiplication and integration, the resulting term must be of order o(td). That means if we keep track
of the monomial terms of degree at most d, f1 and g1 are not involved. So we can write

fn
∗ gm(t)
t

= Pn,m(t) + o(td).
Note that Pn,m(t) can be obtained if we set f1 and g1 to zero in the last integral of (6) and integrate
so that we obtain a polynomial in t of degree nℓ +mℓ, and keep only the monomials up to power td.
We now split Pn,m(t) into a polynomial Qn,m(t) of degree at most d − 1 and a monomial of degree d

whose coefficient is split into two parts:

Pn,m(t) =Qn,m(t) + (Cn,m(a, b) +Dn,m)td.
The first coefficient Cn,m(a, b) contains all terms that depend on a or b. Explicitly,

Cn,m(a, b)td = ∫ 1

0
auℓtℓ(n

1
)(ckuktk)n−1(ck(1 − u)ktk)mdu

+∫
1

0
b(1 − u)ℓtℓ(m

1
)(ck(1 − u)ktk)m−1(ckuktk)ndu

= tk(n+m−1)+l

l!(k!)n+m−1 ∫
1

0
(anuk(n−1)+l(1 − n)km + bm(1 − u)k(m−1)+lukn)du

= tk(n+m−1)+l

l!(k!)n+m−1 (anB(k(n − 1)+ l + 1, km + 1) + bmB(k(m − 1) + l + 1, kn + 1)). (7)

The coefficient Dn,m is obtained as the coefficient in td when we set a and b to zero. In other words,
Dn,m is the coefficient of td in the following polynomial (in t)

∫
1

0
(ℓ−1∑
i=k

ciu
iti)

n

(ℓ−1∑
i=k

ci(1 − u)iti)
m

du.

1Ignoring for the moment the terms f1 and g1, so that the integrand is a polynomial, we can easily see that the term td

of this polynomial has a coefficient that depends on α or β, whereas all smaller degree terms do not.
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Notice that Qn,m(t) does not involve a or b neither, because when a or b is involved in the multiplication
and integration, the resulting term must be at least of order td. So Dn,m is the coefficient of td−1 in
the above polynomial. By symmetry, Dn,m = Dm,n,Qn,m = Qm,n. Reversing the roles of m and n we
obtain

fm
∗ gn(t)
t

= Pm,n(t) + o(td) =Qm,n(t) + (Cm,n(α,β) +Dm,n)td + o(td),
as t→ 0. The assumptions imply that fn

∗ gm = fm
∗ gn. We thus have

Qn,m(t) + (Cn,m(α,β) +Dn,m)td + o(td) = Qm,n(t) + (Cm,n(α,β) +Dm,n)td + o(td),
in a neighbourhood of 0. Since Dn,m =Dm,n,Qn,m =Qm,n,

Cn,m(a, b) = Cm,n(a, b).
Looking at the expression for Cn,m from equation (7) we obtain

(a − b)[nB(k(n − 1)+ ℓ + 1, km + 1) −mB(k(m − 1)+ ℓ + 1, kn + 1)] = 0.
To conclude that a = b we only have to show that the coefficient in the bracket is nonzero. To see this,
recall that ℓ > k, assume that n >m ≥ 1, and use the notation (p)q ∶= p(p−1)⋯(p− q+1) to obtain that

nB(k(n − 1) + ℓ + 1, km + 1)
mB(k(m − 1) + ℓ + 1, kn + 1) =

n

m

(km)!
(kn)!

(kn + ℓ − k)!
(km + ℓ − k)! =

n

m

(kn + ℓ − k)(k(n−m))
(kn)k(n−m)

is the product of 1 + k(n −m) integers all strictly bigger than 1. Similarly, the ratio is strictly smaller
than 1 if n <m.

Corollary 1. Suppose that f and g are of exponential order and that they have sufficiently many

derivatives at 0. Let m,n be distinct positive integers. Suppose Hn,m(f, ⋅) = Hn,m(g, ⋅). Assume

k = I(f) = I(g) < ∞. If f (k)(0) = g(k)(0), then f (j)(0) = g(j)(0) for all j ≥ 0 for which the two

derivatives exist. If f (k)(0) = −g(k)(0), then f (j)(0) = −g(j)(0) for all j ≥ 0 for which the two derivatives

exist.

Proof. If f (k)(0) = g(k)(0), by Lemma 2, f (j)(0) = g(j)(0) for all j ≥ k and hence for all j ≥ 0
for which the derivatives exist. If f (k)(0) = −g(k)(0), by Lemma 1, n − m must be even. Then
Hn,m(f, ⋅) = Hn,m(−g, ⋅). Using f (k)(0) = (−g)(k)(0) and Lemma 2, f (j)(0) = (−g)(j)(0) for any j ≥ 0
for which the derivatives exist.

Proof of Theorem 1. Since f, g are polynomials they are infinitely differentiable and are of expo-
nential order. Moreover, I(f) <∞, I(g) <∞. By Lemma 1, I(f) = I(g) =∶ k, say. Moreover, we have
f (k)(0) = g(k)(0), if n−m is odd; ∣f (k)(0)∣ = ∣g(k)(0)∣, if n−m is even. Suppose first that n−m is odd.
By Corollary 1, f (j)(0) = g(j)(0) for all j ≥ 0. Since polynomials are determined by their derivatives of
all orders at zero, we have f identical to g. Suppose next that n−m is even. We have two possibilities,
i.e., either f (k)(0) = g(k)(0) or f (k)(0) = −g(k)(0). Consequently, we have either f (j)(0) = g(j)(0) for
all j ≥ 0, or f (j)(0) = −g(j)(0) for all j ≥ 0. Hence f is identical to g or identical to −g.

We now aim at proving Theorem 2. We need the preliminary result of Lemma 3 below. This lemma
is inspired by the approach taken in [9].

Lemma 3. Suppose that f and g are of exponential order, càdlàg and nondecreasing with f(x) >
0, g(x) > 0 for any x > 0. Assume that Hn,m(f, ⋅) = Hn,m(g, ⋅). Assume further that there exists a > 0
such that f(x) = g(x) for any x ∈ [0, a). Then f (i)(a+) = g(i)(a+) for any i ≥ 0 if they exist.
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Proof. We argue by contradiction. Assume there exists i ≥ 0 such that f (j)(a+), g(j)(a+) exist for
any 0 ≤ j ≤ i, and f (j)(a+) = g(j)(a+) for any 0 ≤ j ≤ i − 1 and f (i)(a+) ≠ g(i)(a+). Without loss of
generality we assume f (i)(a+) > g(i)(a+). Then there exists a small number 0 < h < a such that

f(x) > g(x), x ∈ (a, a + h). (8)

Recall that
f(x) = g(x), x ∈ [0, a). (9)

By assumption, f and g satisfy that

f(x) > 0, for any x > 0 and f(0) ≥ 0; g(x) > 0, for any x > 0 and g(0) ≥ 0. (10)

The equality Hn,m(f, ⋅) =Hn,m(g, ⋅) yields the convolution equality at a + h

fn
∗ gm(a + h) − gn ∗ fm(a + h) = 0.

In terms of integrals

∫
a+h

0
(f(a + h − u)ng(u)m − g(u)nf(a + h − u)m)du

=∫
h

0
f(a + h − u)mg(u)m(f(a + h − u)n−m − g(u)n−m)du
+∫

a+h

h
f(a + h − u)mg(u)m(f(a + h − u)n−m − g(u)n−m)du

=I1 + I2 = 0 (11)

where I1 corresponds to the first integral and I2 to the second. Recall 0 < h < a. When u ∈ (0, h), we
have a + h − u ∈ (a, a + h). Then

f(a + h − u) > g(a + h − u) ≥ g(u), for any u ∈ (0, h),
where the first inequality is due to (8) and the second is due to the fact that g is a nondecreasing
function. Taking into account (10), we conclude that

I1 > 0.
When u ∈ (h, a + h), we have a + h − u ∈ (0, a). Then by (9), f(a + h − u) = g(a + h − u). So I2 becomes

I2 = ∫
a+h

h
g(a + h − u)mg(u)m(g(a + h − u)n−m − g(u)n−m)du

= ∫
a+h

h
(g(a + h − u)ng(u)m − g(a + h − u)mg(u)n)du = 0.

Then we obtain I1 + I2 > 0 which is in contradiction to (11).

We now pass on to the proof of the main theorem.

Proof of Theorem 2. If f (i)(0) = 0 for all i ≥ 0 then, by right analyticity, there exists a > 0 such that
f(x) = 0 for all x ∈ [0, a). This is in contradiction to the assumption that f(x), g(x) > 0 for all x > 0.
Hence f (j)(0) ≠ 0 for some j. Similarly, g(j)(0) ≠ 0 for some j. As f, g are nonnegative functions,
applying Lemma 1 and Corollary 1, we have

f (i)(0) = g(i)(0), i ≥ 0.
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Due to right real analyticity, there exists a > 0 such that f(x) = g(x) for any x ∈ [0, a). Let
A ∶= sup{a ∶ f(x) = g(x) for all x ∈ [0, a)}.

Assume that A <∞. By Lemma 3 and right analyticity

f (i)(A) = g(i)(A), i ≥ 0.
Again by right analyticity, there exists h > 0 such that f(x) = g(x) for any x ∈ [A,A + h). This fact is
in contradiction to the definition of A. So we have A =∞ which means f(x) = g(x) for all x ≥ 0.

3 The auction problem

To see why Theorem 2 partially answers the question about auctions, posed in the introduction, con-
sider again the following scenario. Let ε1, . . . , εN be i.i.d. nonnegative random variables with common
distribution function F (x) = P(ε ≤ x) and let X∗ be an independent nonnegative random variable.
Bidder i offers

Xi =X∗ + εi.
Ordering the Xi is equivalent to ordering the εi:

X(i) =X∗ + ε(i).
We assume that we know the distributions of the two largest bids, i.e., the distributions of X(N) and
X(N−1). Therefore we know the ratio of their Laplace transforms, and this ratio can be expressed in
terms of the unknown distribution F :

Ee−λX(N)

Ee−λX(N−1)
= Ee−λε(N)

Ee−ε(N−1)
.

Integrating by parts in a Lebesgue-Stieltjes integral we obtain

Ee−λε(N) = ∫
[0,∞)

e−λxP(ε(N) ∈ dx) = ∫ ∞

0
λe−λxP(ε(N) ≤ x)dx = ∫ ∞

0
λe−λxF (x)Ndx = λF̂N(λ),

where F̂N is the Laplace transform of the function x ↦ F (x)N (and not of the measure induced by
this function). Since

P(ε(N−1) ≤ x) = P(ε(N) ≤ x) − P(ε(N−1) < x < ε(N))
= F (x)N −NF (x)N−1(1 − F (x))
= NF (x)N−1 − (N − 1)F (x)N

we similarly have

Ee−λε(N−1) = ∫
∞

0
λe−λx(NF (x)N−1 − (N − 1)F (x)N)dx = λNF̂N−1(λ) − λ(N − 1)F̂N(λ).

By simple algebra, the quantity

HN−1,N(F,λ) = F̂N(λ)
F̂N−1(λ) = N (

Ee−λX(N−1)

Ee−λX(N)
+N − 1)

−1

is known and thus the problem reduces to the one studied above.
Economists [9] are interested in determining F once HN−1,N(F,λ) is known. Note that the condi-

tions in Theorem 2 allow the distribution function F to be piecewise smooth; for example, the mixture
of a Gamma random variable and a discrete random variable. So, if, say, bidders use a random variable
ε that is, say, exponential(θ) with probability p or geometric(α) with probability 1− p then knowledge
of the distribution of X(N) and X(N−1) implies knowledge of the distribution of ε uniquely. Of course,
nothing has been said about the computation of this distribution in this paper.
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