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Abstract 

Freshwater sponges are important to ecosystem functioning; however, information about their 

biogeography and interspecific variation is fragmentary, limiting our ability to assess their 

role. Although the specific epithets of two common species suggest that sponges found in 

lentic habitats are Spongilla lacustris, and those found in lotic habitats are Ephydatia 

fluviatilis, the number of sponge species in the UK is unresolved. We sampled sponges in a 

variety of habitats and used both morphological and molecular (D3 domain of 28S rDNA) 

methods to identify six species, including the first record of Trochospongilla horrida. We 

contrasted species in terms of their environmental tolerances, habitats, and variation, and we 

expanded on the limited information available about these sponges . In our study, both 

common and rarer sponges colonized a variety of substrates, but exhibited different 

distributions. The most widespread sponge, S. lacustris, was present at lower mean water 

temperatures and was more often located above a latitude of 55°N. Ephydatia fluviatilis was 

the most common species in rivers, but was also located in lentic habitats. Salinity in 

anthropogenic habitats was not a significant factor for the presence of E. fluviatilis or the 

more patchily distributed species Eunapius fragilis. Instead, these species occurred more 

frequently at sites with negative oxidation–reduction potential. Sponge biodiversity may be 

affected by substrate availability in anthropogenic habitats, invasive species, and improved 

ability to recognize sponge taxa. Crucially, we provide foundation data as a prerequisite for 

future ecological evaluation.  
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1 INTRODUCTION 

 

Despite sponges being important to freshwater ecosystem functioning (Manconi and Pronzato 

2008), studies on their distribution and biodiversity, and associated drivers of these, typically 

consist of fragmentary records relating to a single habitat or a limited number of 

microhabitats (e.g. Parfitt 1868; Carter 1868; Annandale 1908; Mellanby 1953; Clegg 1979; 

Waterston & Lyster 1979; Waterston, 1981). Given the apparent ubiquity of sponges and the 

growing appreciation of their ecological role (De Santo & Fell 1996; Økland & Økland 1996; 

Gugel 2001), there is a need to more accurately assess the distribution patterns of freshwater 

sponges. To this end, we examined distributional patterns across a model landscape: the UK. 

Specifically, we first test (and reject) the hypothesis that freshwater sponges in the UK 

comprise a small number of ubiquitous taxa, and second, explore the environmental pressures 

that dictate distributional patterns. 

One reason for the paucity of freshwater sponge documentation is the lack of clear 

morphological features enabling recognition. To resolve this, based on our observations and 

guided by the literature (e.g. Hooper & van Soest 2002), we have developed a key to all 

freshwater sponges found in the UK, and the major taxa found across Western Europe. 

However, in doing so, we recognized that species identification can be problematic. We 

therefore applied molecular methods, sequencing a section of 28S rDNA including the 

variable D3 region (Alvarez et al. 2000; Lopp et al. 2007), to assist identification and 

quantify pairwise genetic divergence rates. In this study we have resolved issues associated 

with a fragmented collection of reports, established the extent of sponge biodiversity across a 

broad landscape, and indicated factors that govern their distribution.  

 

 

2 METHODS 

 

2.1 Sampling and environmental conditions  

 



A total of 230 sites from 9 habitat types (canal, lake, river, reservoir, pond, stream, broad, 

mere, moss) were sampled between 2008 and 2012 (Figure 1A; Supporting Information, 

Table S1). Surveys were conducted at three levels. First, canals in the northwest UK were 

surveyed under bridges (n = 100, each with three sub-sites), where sponge colonies were 

characterized, and specimens (bearing gemmules where possible) were collected to a depth of 

40 cm; this method is appropriate to assess species richness (Evans 2016). We assessed these 

sites ≤10 times, and recorded measurements of water quality variables (YSI multiprobe, 

Ohio, USA): temperature, pH, salinity, dissolved oxygen, conductivity, total dissolved solids 

(TDS), and oxidation–reduction potential (ORP). Second, a UK-wide survey (n = 80), with 

more limited measurement of water quality variables , was conducted. Sponge samples from 

both the first and second survey were stored in 100% ethanol. Third, UK-wide sponge 

samples (n = 50) were obtained from the Natural History Museum, London.  

 

2.2 Taxonomy 

 

2.2.1 Microscopy 

Nitric acid digestion of a 1-cm
3
 tissue sample was used to separate siliceous spicules in 

preparation for microscopy. After three washes in water and resuspension in 100% ethyl 

alcohol, spicules were transferred to slides. Spicules were examined using a Zeiss Axiovert 

microscope at 200 magnification. Images were captured with a video camera (JVC model 

KY-F55B, 3-CCD, 750 horizontal  480 vertical line resolution) interfaced with a Pentium II 

PC equipped with an image analysis capturing program (Scion Image for Windows, Scion 

Corp., MD) and a high–resolution frame grabber (CG-7, Scion Corp., MD). Up to three types 

of siliceous spicules were analyzed for sponge identification: megascleres, which make up 

the framework of a sponge skeleton; microscleres, which are spicules with a smaller size 

range; and gemmuloscleres, which surround the gemmules. Megascleres, microscleres, and 

gemmuloscleres were examined, and minimum, maximum, and mean (±SE) length and width 

of the spicules were determined from >25 spicules of each type from several specimens 

(except for T. horrida, in which ~20 were measured). Diagnostic traits (colony morphology, 

macro- and micromorphology of skeletal mega- and microscleres, gemmule arrangement) 

were compared with data from Pronzato & Manconi (2001).  

 

2.2.2 Sequencing 



The D3 domain of 28S rDNA with ~150 bp of the 3′ core sequence (303 bp) was amplified 

using the primers of Lopp et al. (2007). A DNA extraction kit (DNeasy, Qiagen Inc, Hilden, 

Germany) was used following the manufacturer’s instructions, except that after incubation in 

lysis buffer the tubes were briefly centrifuged to remove spicules. PCRs were set up in a 20 

μl final reaction volume containing ~10 ng genomic DNA, plus 10 µl 2X GoTaq Green 

(Promega, Southampton, UK), 0.4 pmol of each primer (Eurofins MWG Operon, Germany), 

and 2.0 µl 10X BSA buffer (New England Biolabs, UK). Thermal cycling conditions were: 

94°C for 4 min, followed by 35 cycles at 94°C for 45 s, 45°C for 30 s, 72°C for 45 s, and a 

final 72°C for 8 min. PCR products were then purified with 0.15 µl shrimp alkaline 

phosphatase (1000 U/ml; USB, UK) and 0.03 μl Exonuclease I (20000 U/ml; New England 

Biolabs, UK), following manufacturer’s protocol. Sequencing was performed using BigDye 

v.3.1 chemistry (Applied Biosystems, Life Technologies, UK), with ~10 ng of PCR products 

and 1.6 pmol of primer in each reaction. Sequencing products were cleaned by ethanol 

precipitation and separated by capillary electrophoresis on an ABI3100xl. Forward and 

reverse sequences were checked by eye in Geneious v.6.1.2 (Kearse et al. 2012) to produce a 

consensus. Species’ pairwise genetic distances were calculated using Kimura’s two-

parameter (K2P) model (Kimura 1980) using MEGA v.6 (Tamura et al. 2013). Phylogenetic 

relationships among species were inferred from sequences using maximum likelihood 

(Kimura 1980), with support for nodes calculated using a bootstrap test with 500 replications. 

The analysis was performed with a heuristic strategy using Neighbor-Join and BioNJ 

algorithms to a matrix of pairwise distances estimated using the maximum composite 

likelihood approach. Sequence data from Corvomeyenia sp. (Metaniidae) taken from 

GenBank (Table S2) was used as an out-group, because this group does not have a European 

distribution (Manconi & Pronzato, 2008), and it appeared to be the sister group to other 

freshwater sponge taxa in former phylogenetic analyses (see Lavrov et al.2012, mtDNA; 

Itskovich et al. 2007, cytochrome oxidase subunit I; Meixner et al. 2007, 18S rDNA, 

cytochrome oxidase subunit I, ITS2 rDNA). 

 

2.3 Data analyses  

 

To test for ubiquitous species presence, Cochran’s Q test (for dichotomous variables; Zar 

2010) was performed, followed by a post hoc Bonferroni correction (Zar 2010), contrasting 

coexisting sponge species at sites. With a heterogeneous distribution (see Results), the degree 

of species coexistence was assessed by cluster analysis on the overall Jaccard coefficient (J), 



which is given by: J = a / (a + b + c), where a is the number of species present at two sub-

sites, and b and c are the total number of species occurring at each sub-site but not the other 

(see Clifford & Stephenson 1975; Plafkin et al. 1989). Then, to identify water quality 

variables that exhibited significant associations with sponge presence, data from the first 

survey (see "Sampling and environmental conditions," above) were analyzed. To this end, we 

applied t-tests for independent samples together with Levene’s test to examine the 

assumption of equal variances (SPSS v. 22, IBM Corp, 2013; Zar 2010). Finally, to provide 

means for UK species determination, a spicule-based dichotomous key was constructed. 

 

 

3 RESULTS 

 

3.1 Species identification 

 

Based on morphological and molecular data (Figures 2, 3; Tables 1, 2; Figure S1), six 

freshwater species were observed across the landscape. We provide the first UK record of 

Trochospongilla horrida (WELTNER 1893); the other five species had been recorded in the 

UK previously: Spongilla lacustris (LINNAEUS 1759), Ephydatia fluviatilis (LINNAEUS 1759), 

Eunapius fragilis (LEIDY 1851), Ephydatia muelleri (LIEBERKÜHN 1856), and Racekiela 

ryderii (POTTS 1882). Colonies of single or coexisting species were most commonly on brick, 

rock, or concrete (Figure 4), and there were few observations of larvae (<5% of colonies). 

Consensus rDNA 28S sequence data were obtained for five species (Figure S1, Table S2), 

with differences at 13 sites and low pairwise sequence divergence across all sequences (mean 

distance 0.007, Table 3). Sequence data for T. horrida were not obtained due to a limited 

sample and contamination, so a sequence from GenBank was substituted for phylogenetic 

analysis (Table S2). Using these consensus rDNA sequences, phylogenetic analysis suggests 

that UK sponge species are closely related, with short distances between groups (Figure 5). 

The percentage of trees in which the sponge species clustered together is fairly consistent 

(61–70%). All internal relationships between species were unresolved (Ephydatia spp.), or 

were supported by low bootstrap percentages.  

Colonies of Spongilla lacustris were generally found at sites from year to year; 

however, colonies of E. fluviatilis was absent at sites where they had previously been 

abundant. At the base of colonies of Eu. fragilis, gemmules were present, with foramina that 

were always directed upward from a pavement layer or outward from a cluster (Figure 2A). 



Some distinctive green colonies of S. lacustris suggested the presence of algal symbionts 

(Reiswig et al. 2009) (Figure 2B), whereas colonies in shaded sites were white (Figure 2E). 

Trochospongilla horrida was found at one southerly site, coexisting with E. muelleri.  

The presence of microscleres permitted identification of S. lacustris (Figure 3A, Table 

2). Although the number of rotule rays and the degree of indentation was irregular, 

gemmuloscleres of E. fluviatilis could be discrimination from E. muelleri by the presence of 

occasional spined shafts (Figure 3B). Racekiela ryderii was the only species with two distinct 

classes of gemmuloscleres (birotules and longer pseudobirotules). Distinctive 

gemmuloscleres of T. horrida were birotulates with disk-like rotules (Figure 3F). 

 

3.2 Distribution patterns 

 

Species distributions were heterogeneous (Figure 1) with significant differences in species’ 

presence at the different sites (
2
 (5) = 115.6, p < 0.01; Table 4). These data show that some 

species have a wide biogeographic range (S. lacustris), and others have a more patchy 

distribution (E. muelleri, Eu. fragilis) (p < 0.01). Racekiela ryderii was rare, occurring in 

significantly fewer sites (in lakes; Figure 6) (p < 0.01, J ranged 0.02–0.04; Table 4), and 

never in anthropogenic habitats. In addition to lakes, S. lacustris also occurred in canals 

(Figure 2E). Ephydatia fluviatilis was the most common species in rivers. However, E. 

muelleri and Eu. fragilis were also occasionally (<10% of sites examined) found in rivers 

(Figure 6). Across all types of sites, the most frequently coexisting pair of species was Eu. 

fragilis–E. muelleri, (J = 0.24). Eunapius fragilis also occurred with S. lacustris and E. 

fluviatilis (Table 4), especially at canal sites.  

Seasonal increase in colony growth of sponges was associated with significantly 

higher water temperature (mean = 12.1°C, SE ± 0.3, p > 0.01) and lower dissolved oxygen 

levels (mean = 10.56 mg/L, SE ± 0.43, p > 0.01) (Table 5). The most widespread sponge, S. 

lacustris, was present at lower mean temperatures and was more often located at latitudes 

>55°N. Salinity was a significant factor associated with the presence of S. lacustris and E. 

muelleri, despite the species' significantly different distributions, and both species occurred at 

sites with lower average salinity, conductivity, and TDS (Table 5). Spongilla lacustris 

occurred most often at sites when ORP levels were significantly more positive (mean = 4.71 

mV, SE ± 3.47, p > 0 .05) and water conductivity was significantly lower (mean = 180.48 

µS/cm, SE ± 24.04, p > 0.01). By contrast, salinity in anthropogenic habitats was not a 



significant factor for the presence of colonies of either Ephydatia fluviatilis or Eu. fragilis, 

and these species occurred more frequently at sites with negative ORP (Table 5).  

 

 

4 DISCUSSION 

 

Freshwater sponges have important ecological roles (Reiswig et al., 2009), constituting a 

food source for certain invertebrates (Bērzinš, 1950; Resh 1976; Williamson, 1979), and are 

inhabited by a variety of epibionts and symbionts (Gugel, 2001; Kamaltynov et al., 1993; 

Matteson and Zacobi, 1980; Traveset, 1990; Wilkinson 1978). Importantly, the capacity of 

sponges to remove suspended particles (<5 µm) from the water column (Reiswig et al., 2009; 

Frost, 1976, 1980) contributes to both water quality and nutrient cycling (Reiswig et al., 

2009).  

Although freshwater sponges are reported to be widely distributed (Manconi and 

Pronzato, 2008), to date, distributional records of freshwater sponges have been mostly based 

on serendipitous finds, with no systematic examination of species richness or habitat 

tolerances. Furthermore, records of species may have been based on habitat assumptions 

(e.g., if a sponge is in a lake, then it must be S. lacustris). With fewer sponge species than 

that of many other encrusting freshwater invertebrate taxa (e.g., 19 species of bryozoans; 

Wood and Okamura 2005), the possibility arises that sponge species are eurytopic (see 

Manconi & Pronzato 2008). Here, we tested the hypothesis that species were homogeneously 

distributed, and given that they were not, we then recognized factors that appear to drive 

occurrence. 

Paralleling, and indeed arising from, this study, we recognized the need for a 

morphology-based key (Figure 7), one that can also apply broadly to sponge species across 

Western Europe. The key relies primarily on megasclere characteristics, because they are 

always present in colonies, but this approach, although useful, has limitations (e.g., there are 

few differences between E. fluviatilis and Eu. fragilis). To accurately assess biodiversity, we 

used the D3 expansion segment of 28S rDNA; several studies have indicated that this is a 

robust method to provide distinct and effective sequences for sponge species identification 

(e.g. Alvarez et al. 2000; Lopp et al. 2007; Itskovich et al. 2013). Consensus 28S rDNA 

sequences required analysis of thirteen key bases for conclusive identification. Using genetic 

diversity to assess biodiversity is useful for invertebrates (Dudgeon et al., 2006), especially in 

taxa that are understudied, or have complicated life cycles. The main K2P genetic divergence 



values were relatively low compared with other sponge studies (Itskovich et al. 2013), 

suggesting closely related species and their recent genetic radiation.  

From this rigorous analysis that combined morphological and molecular methods, we 

demonstrate that freshwater sponge species are not ubiquitous across a landscape. Although 

the literature suggests the importance of pH in determining species distributions (Ricciardi & 

Reiswig 1993; Økland & Økland 1996; Gugel 2000), we instead show that temperature, 

dissolved oxygen, salinity and ORP have a significant impact on sponge presence. Lakes and 

canals with colonies of S. lacustris exhibited low conductivity, TDS, and salinity levels, 

suggesting that ions contributing to salinity (and indirectly to conductivity and TDS values; 

Radojevic & Bashkin 2006) restrict this species' distribution (see Harrison 1974). However, 

tolerance to lower temperatures contributed to a more northern persistence of S. lacustris than 

other UK species. Although the specific name of the other common species, E. fluviatilis 

(22% of sites) indicates occurrence in rivers, it was more ubiquitous than other species. In 

common with other surveys (Stephens 1920; Gugel 1999; Lucey & Cocchiglia 2014), some 

colonies did not form gemmules, thus reducing the potential for regrowth (Manconi & 

Pronzato 2008), restricting dispersal ability (Freeland et al. 2000), and possibly explaining 

the disappearance of colonies of E. fluviatilis from some sites.  

The patchy distribution of Eu. fragilis and E. muelleri could possibly arise due to 

colony characteristics that increase the likelihood of a species being overlooked (Dröscher & 

Waringer 2007); for example, colonies of Eu. fragilis were smaller and disintegrated earlier 

in the year than other species (Tendal 1967; Gugel 2001; Dröscher & Waringer 2007). 

However, following an initial assessment of the optimum level of sampling required for an 

unbiased survey (Evans 2016), we are confident that species were not overlooked, and our 

work supports observations of a patchy distribution of E. muelleri throughout Europe 

(Stephens 1920; Tendal 1967; Waterston 1981; Manconi & Pronzato 2008).  

Here we provide the first record of T. horrida in the UK, an extension of its range 

from central Europe. The record of T. horrida at a southern coastal canal site is consistent 

with the species' distribution in warm, brackish water (Sharapova et al. 2014; Poirrier 1969), 

its presence in navigable canals (Schletterer & Eggers 2006), and rarity (Gugel 2000; 

Richelle-Maurer et al. 1994). With no previous UK records of any Trochospongilla taxa, we 

might speculate that T. horrida is a recent invasive species from the continent, and climate 

change may contribute to newly suitable conditions. To investigate this conjecture, 

subsampling of colonies of E. muelleri along the south coast of the UK, and sampling in July, 

when T. horrida is abundant in Germany (Gugel 2000), may yield additional data. 



We provide more comprehensive distribution data for the other rare species, R. 

ryderii, which was previously known from remote sites and now includes an expanded range 

in the UK (Annandale 1908; Waterston & Lyster 1979; Waterston 1981). Perhaps this 

biogeography is not surprising, because R. ryderii is common along a similar latitudinal range 

in the Republic of Ireland (Stephens 1920; Pronzato & Manconi 2001; Lucey & Cocchiglia 

2014). Although misidentification of R. ryderii may occur because of spicule variability (as 

documented by Stephens 1920; Ricciardi & Reiswig 1993), our identification methods should 

alleviate confusion, and the data suggest that if lakes contain colonies of S. lacustris, then R. 

ryderii may also be present. We, therefore, suggest that this species is not invasive; instead 

previous taxonomic difficulties have hindered proper identification of this species.  

Clearly, the apparent absence of freshwater sponge records because of insufficient 

searching is problematic in establishing biogeographical patterns (Smith & Wilkinson 2007; 

Evans 2016). However, here, in common with other research (see De Santo & Fell 1996), 

~50% of environmentally similar sites remained unoccupied. Sponges may be absent from an 

otherwise suitable freshwater habitat because of substrate characteristics (Minshall 1984). For 

example, broad areas of solid substrate (e.g., brick and concrete in anthropogenic habitats) 

rather than substrates composed of small, loose particles (e.g., gravel in rivers) may impact 

colonization (Gugel 1999), increasing the likelihood of gemmule settlement. Therefore, 

sponges may be widely distributed, but local conditions dictate their occurrences. 

Our data suggest that an oxidizing environment has a significant effect on S. lacustris 

presence (Table 5). Oxidative–reductive potential may directly affect sponges by impacting 

physiological processes and indirectly affect them by altering the abundance of food such as 

bacteria (Barton & Northrup 2011). It might be assumed that salinity is the principle driving 

factor for all freshwater species, but salinity had a significant effect on the presence of S. 

lacustris and E. muelleri only. Stenotopic responses to water quality variables (temperature, 

salinity, ORP) lowered coexistence rates between S. lacustris and the other widespread 

species, E. fluviatilis.  The growth of sponge colonies during spring and summer is reflected 

in the significance of water temperature.   Areas with an abundance of bacteria may lead to 

the presence of lower oxygen levels as bacteria use available dissolved oxygen (Radojevic & 

Bashkin 2006). A significant negative association between dissolved oxygen level and 

presence of E. fluviatilis indicates that there is greater tolerance for lower dissolved oxygen 

level in this species than in other species, and this may allow exploitation of greater bacterial 

food supply and presence in a variety of habitat types. By contrast, in Eu. fragilis there are 

fewer factors that are significantly associated with the species' presence, which suggests a 



eurytopic response characteristic for this species with a cosmopolitan distribution (Pronzato 

& Manconi 2001). 

In summary, a landscape pattern of freshwater sponges is more complex than 

expected. Our study demonstrates morphological and genetic distinctions among species, 

clarifies distributional patterns, and identifies factors associated with species' presence. 

Overall, the distribution of sponges across the landscape seems to be regulated by both 

habitat and substrate characteristics, as well as water quality tolerances of each species. 

Furthermore, by rigorously evaluating an extensive and diverse landscape, our guidance for 

identification and data collection provide a foundation for the continued evaluation of sponge 

biodiversity, both at local and global scales. Critically, we have shown that all the species in 

the present study have wider distributions than previously appreciated.  

Across Europe sponge species have disappeared from water bodies because of 

changes in water chemistry, potentially due to anthropogenic pollution that increases 

conductivity (Dröscher & Waringer 2007). We might speculate that, with climate change, 

southern European species may invade more northern sites, such as the UK. Consequently, 

the continued assessment of sponges, as we have done, should provide useful indication of 

how our changing environment will alter freshwater biodiversity. 
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SUPPORTING INFORMATION 

 

Additional supporting information may be found online in the Supporting Information tab for 

this article. 

 

Table S1 Survey sites (with latitude, longitude, and habitat type) comprising canal survey 

sites, UK survey sites, and sites of Natural History Museum (MS) samples. Following 

preliminary rarefaction sampling (see Evans, 2016), data collection for canal survey sites 

were performed in shaded areas underneath or near canal bridges along 15 canals at 100 

stations. All stations were located along the water line and under a bridge; three stations were 

equally spaced along a 5-m stretch 

 

Table S2 Accession numbers for nucleotide sequences analyzed. Accession numbers of 28S 

rDNA sequences for Trochospongilla horrida and Corvomeyenia sp. from GenBank. 



 

Figure S1 Alignment of the extended 28S rDNA D3 domains from Ephydatia fluviatilis, E. 

muelleri, Eunapius fragilis, Spongilla lacustris, and Racekiela ryderii. Identities have been 

indicated by dots, and gaps by hyphens 

 

 

FIGURE LEGENDS 

 

Figure 1 Distribution of freshwater sponges in the UK. A. All sites, showing locations of 

sponge occurrence, sampling areas, and data sources used to determine sponge distribution. 

Sites where water quality data were collected are shaded symbols, sites generally without 

water data are open symbols, and sites for which data from the Natural History Museum were 

available are dark symbols. B. Distribution of Spongilla lacustris. C. Distribution of 

Ephydatia fluviatilis. D. Distribution of E. muelleri. E. Distribution of Eunapius fragilis. F. 

Distribution of Racekiela ryderii and Trochospongilla horrida (star). UK islands not included 

on maps were not sampled. 

 

Figure 2 Examples of freshwater sponges from the UK. A. Gemmular arrangement of Eu. 

fragilis, showing “carpet” formation with foramina facing upwards, and a group of four 

gemmules (lower left) with foramina facing away from the cluster. B. Spongilla lacustris, 

with astrorhiza surface. C. Side view of a colony of E. muelleri covering large area of vertical 

substrate. D. Brown and white gemmules in degenerating colony of E. muelleri. E. Side view 

of a colony of S. lacustris on vertical brick substrate. Scale bars: A = 1 mm; B,D,E = 10 mm; 

C = 50 mm 

 

Figure 3 Spicule ultrastructure of freshwater sponges. A. Spongilla lacustris. B. Ephydatia 

fluviatilis. C. Eunapius fragilis. D. Ephydatia muelleri. E. Racekiela ryderii with two classes 

of gemmuloscleres. F. Trochospongilla horrida. Scale bars = 10 µm. g, gemmulosclere; M, 

megasclere; m, microsclere; r, rotule   

 

Figure 4 Frequency of sponge presence (white) on different substrate types (rock; rock with 

zebra mussels; brick; brick plus rocks; concrete; concrete and bricks; wood with other plant 

materials) at sites in canal survey (sampling method 1; see Methods). Percentages above each 



bar indicate the proportion of survey sites at which each substrate type occurred. On average, 

sponges were absent from 51% of survey sites 

 

Figure 5 Phylogenetic analysis of 28S rDNA sequences for freshwater sponge species using 

Corvomeyenia sp. as an outgroup. Genus names Ephydatia, Eunapius, Racekiela, Spongilla, 

and Trochospongilla have been abbreviated. Bootstrap values (500 replications) for the 

percentage of trees in which the associated taxa clustered together using maximum likelihood 

method are indicated to the left of a node. The tree with the highest log likelihood (-

465.2500) is drawn to scale, with branch lengths measured in the number of substitutions per 

site. 

 

Figure 6 Species presence at canal, river, or lake habitats. Species were recorded alone at a 

site, or co-occurring with other species. Number of habitat sites sampled shown below axis. a, 

Spongilla lacustris; b, Ephydatia fluviatilis; c, E. muelleri; d, Eunapius fragilis; e, Racekiela 

ryderii; f, Trochospongilla horrida 

 

Figure 7 Key to six freshwater sponge species found in the UK, using megasclere 

morphology as an initial determinant 
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FRESHWATER SPONGES

Smooth megascleres Spined or micro-spined megascleres

Microscleres 
present  

Spongilla lacustris

No

microscleres

Ephydatia

fluviatilis

Eunapius 

fragilis

Gemmuloscleres 

birotulate with 

>10 rays

Rod- shaped 

gemmuloscleres

Variable 

gemmuloscleres 

where length > 

maximum width

Gemmuloscleres 

birotulate

where maximum 

diameter 

> length 

Racekiela ryderii

Megascleres have 

microspines and 

gemmuloscleres 

have < 10 rays 

Megascleres

have spines and

gemmuloscleres 

have smooth discs 

Ephydatia 

muelleri

Trochospongilla 

horrida



 Table 1.  Distribution patterns and colony characteristics of the species identified in this 

study.   

 

  

Sponge 

species 
Distribution  Colony characteristics 

Spongilla 

lacustris 

Widely 

distributed 

Encrusting colonies (l to 2.5 cm thick) with irregular, 

rounded edges.  Occasionally large colonies (> 1 m long) 

between June and August.  Occasionally formed arborescent 

projections (10 x 1 cm).  Often green with astrorhiza or 

ribbed surface, disintegrating in Oct to Nov, leaving white or 

brown gemmules in former basal parts.  This species 

occasionally (< 33% of sites) occurred with or on zebra 

mussels (Dreissena polymorpha). 

Ephydatia 

fluviatilis 

Widely 

distributed 

Encrusting colonies with an irregular outline and rounded 

edges.  Occasionally large green, lobate colonies (>0.3 m 

long) formed in canals.  The most common species in rivers, 

where colonies were smaller and ecru (<10 cm diameter).  

Some colonies lacked gemmules. 

Eunapius 

fragilis 

Patchily 

distributed 

Colonies formed low crusts (~ l-2 cm thick), with an 

irregular, rounded outline.  Surface was ribbed, with 

noticeable oscula.  Numerous, small (rarely >20 cm), ecru 

colonies were recorded at some sites, disintegrating in Sep to 

Oct.  Gemmules in a pavement layer (“carpets”), or in 

individual clusters (2-4).   

Ephydatia 

muelleri 

Patchily 

distributed 

Firm, thickly encrusting (2-3 cm thick) colonies, with 

irregular, rounded edges, peaking between Jul and Aug 

especially at undisturbed sites.  Colonies were yellow, 

brown, or pale grey and often hispid.  Colonies partially 

disintegrated in winter, leaving gemmules in former basal 

parts. 

Racekiela 

ryderii 
Rare 

Colonies formed thin hemispherical encrustations (<1 cm 

thick), with rounded edges and a hard, brittle consistency.  

Growth in lakes was on the top surface of rocks, and peaked 

during Jul to Aug, with only a few gemmules present. 

Trocho-

spongilla 

horrida 

Rare 
Colonies formed thin (<5 mm), flat, light yellow 

encrustations. 



Table 2.  Variation in spicule dimensions (n >25) with comparison to available data from 

Pronzato and Manconi (2001), indicating shorter gemmulosclere sizes in Spongilla lacustris, 

Eunapius fragilis, Ephydatia muelleri, and Racekiela ryderii.   

 

 

 

Spicules 

Length 

(µm) 

Width 

(µm) 

Rotule 

diameter 

(µm) 

Max Min Max Min Max Min 

S
p
o
n
g
il

la
 l

a
cu

st
ri

s Megascleres slightly 

curved, smooth 

This study 278 140 15 4 ___ ___ 

P - M 300 90 18 2 ___ ___ 

Microscleres  slightly 

curved with 

microspines 

This study 91 35 7 2 ___ ___ 

P - M 178 25 8 2 ___ ___ 

Gemmuloscleres 

curved, spined  

This study 89 29 9 2 ___ ___ 

P - M 130 21 10 1 ___ ___ 

E
p
h
yd

a
ti

a
 

fl
u
vi

a
ti

li
s 

Megascleres slightly 

curved, smooth 

This study 419 244 16 5 ___ ___ 

P - M 400 210 19 6 ___ ___ 

Gemmulosclere 

birotulate > 10 rays 

This study 33 23 6 2 25 17 

P - M 30 26 n/a n/a 21 18 

E
u
n
a
p
iu

s 

fr
a
g
il

is
 

Megascleres slightly 

curved, smooth 

This study 360 175 21 2 ___ ___ 

P - M 270 180 15 4 ___ ___ 

Gemmuloscleres 

slightly curved or 

straight, with spines 

This study 87 54 8 3 ___ ___ 

P - M 140 75 8 3 ___ ___ 

E
p
h
yd

a
ti

a
 

m
u
el

le
ri

 

Megascleres slightly 

curved with micro-

spines 

This study 270 158 16 4 ___ ___ 

P - M 350 200 20 9 ___ ___ 

Gemmulosclere 

birotulate < 10 rays 

This study 14 7 17 2 23 12 

P - M 10 5 n/a n/a 20 12 

R
a
ce

ki
el

a
 r

yd
er

ii
 

Megascleres variable 

with spines 

This study 352 160 14 4 ___ ___ 

P - M 431 141 26 12 ___ ___ 

Birotule  

gemmulosclere 

This study 23 25 5 3 21 15 

P - M 49 28 8 3 29 20 

Pseudo-birotule  

gemmulosclere   

This study 41 25 6 2 17 9 

P - M 92 47 10 5 23 17 

T
ro

ch
o
sp

o
n
g
il

la
 

h
o
rr

id
a

 

Megascleres with 

spines that have 

rounded tips 

This study 230 187 10 7 ___ ___ 

P - M 235 170 15 11 ___ ___ 

Gemmuloscleres 

birotulate, with smooth 

margins 

This study 20 8 5 2 17 9 

P - M n/a n/a n/a n/a n/a n/a 



Table 3. The number of base substitutions per site as K2P (Kimura 2 parameter) between 28S 

sequences of sponge species (Spongilla lacustris, Ephydatia muelleri, E. fluviatilis, Eunapius 

fragilis, Racekiela ryderii) are shown.  

 

K2P E. muelleri E. fluviatilis Eu. fragilis R. ryderii 

S. lacustris 0.007 0.007 0.017 0.003 

E. muelleri  0.000 0.010 0.003 

E. fluviatilis   0.010 0.003 

Eu. fragilis    0.014 

 

  



Table 4.  Occurrence and co-existence of sponges across sites.  Variations in percentage of 

sites occupied (%) indicated a significant difference in presence of sponge species (Spongilla 

lacustris, E. fluviatilis, Eunapius fragilis, Ephydatia muelleri, Racekiela ryderii and 

Trochospongilla horrida) at sites.  On the top diagonal are Bonferroni corrected pairwise 

comparisons between species, where significant differences (p < 0.01) in distribution were 

found.  On bottom diagonal are the Jaccard coefficient measures of mean similarity, assessing 

co-existence of sponge species. 

  

 % 
S. 

lacustris 

E. 

fluviatilis 

Eu. 

fragilis 

E. 

muelleri 

R. 

ryderii 

T. 

horrida 

S. lacustris 34.1  
Not 

different 
different different different different 

E. fluviatilis 22.0 0.09  
Not 

different 

Not 

different 
different different 

Eu. fragilis 18.4 0.17 0.17  
Not 

different 
different different 

E. muelleri 16.6 0.15 0.09 0.24  different different 

R. ryderii 5.8 0.04 0.00 0.00 0.02  different 

T. horrida 0.4 0.00 0.00 0.00 0.03 0.00  



Table 5.  Independent t-test analyses of differences in water quality variables including 

temperature (°C), conductivity (µScm
-1

), total dissolved solids salinity (g l
-1

), salinity (psu), 

oxygen (mg l
-1

), pH, and oxidation reduction potential (mV; ORP) at sites where all sponge 

species were present or all were absent, and at sites where one species was present or absent.  

Note:*p<0.05, **p<0.01. 

 
Significant 

abiotic factor 

Presence 

range  

Mean values ±SE 

Presence Absence 

Overall 

sponge  

presence 

or absence 

Temperature** 7.18 -18.12 12.10 ± 0.33 9.69 ± 0.56 

Conductivity 60.00 – 921.67 223.76±25.51 271.25± 22.43 

TDS 0.05 – 0.74 0.19±0.02 3.02±2.35 

Salinity* 0.04 - 0.57 0.15 ± 0.02 0.26 ± 0.04 

Oxygen** 4.84 - 17.97 10.56 ± 0.43 13.01 ± 0.41 

pH 6.12 – 8.87  7.62±0.07 7.83±0.96 

ORP -64.80 – 94.10 -0.45±3.60 -5.02±2.61 

Spongilla 

lacustris 

Temperature * 7.18 - 18.12 11.97 ± 0.41 10.42 ± 0.45 

Conductivity** 60.00 - 687.67 180.48 ± 24.04 275.35 ± 21.15 

TDS 0.05 – 0.67 0.16±0.02 2.24±1.69 

Salinity** 0.04 - 0.46 0.12 ± 0.02 0.24 ± 0.03 

Oxygen* 4.91 - 15.60 11.06 ± 0.49 12.41 ± 0.38 

pH 6.75 – 8.87 7.60±0.08 7.79±0.08 

ORP* -19.05 - 47.07 4.71 ± 3.47 -5.91 ± 2.71 

Ephydatia 

muelleri 

Temperature** 9.34 - 16.00 12.50 ± 0.45 10.36 ± 0.41 

Conductivity 68.50 – 921.67 195.32±34.60 264.32 ±19.31 

TDS 0.05 – 0.74 0.16±0.03 2.10 ±1.57 

Salinity* 0.04 - 0.57 0.12 ± 0.02 0.23 ± 0.03 

Oxygen** 4.88 - 15.60 10.19 ± 0.55 12.56 ± 0.35 

pH 6.12 – 8.87 7.63±0.10 7.76 ±0.07 

ORP -53.23 - 94.10 6.20±5.67 -5.49 ±2.25 

Ephydatia 

fluviatilis 

Temperature * 7.86 - 18.12 12.43 ± 0.58 10.52 ± 0.39 

Conductivity 79.83 – 921.67 322.93±55.32 231.41±16.44 

TDS 0.07 – 0.74 0.27±0.05 1.95±1.47                                                                                                                                                                                                                                                                                                                                     

Salinity 0.05 – 0.57 0.22±0.04 0.20 ± 0.02 

Oxygen** 4.84 - 14.73 9.83 ± 0.64 12.51 ± 0.33 

pH 6.77 – 8.48 7.64±0.09 7.75±0.07 

ORP -64.80 – 47.07 -5.09±6.73 -2.24 ± 2.25 

Eunapius 

fragilis 

Temperature** 7.18 - 18.12 12.35 ± 0.49 10.36 ± 0.42 

Conductivity 61.00 – 921.67 233.42±41.73 253.08 ±18.01 

TDS 0.05 – 0.74 0.20±0.04 2.13 ±1.61 

Salinity 0.04 – 0.57 0.15±0.03 0.22 ±0.03 

Oxygen 4.84 – 17.97 11.26±0.62 12.28 ±0.36 

pH 6.77 – 8.48 7.65±0.08 7.76 ±0.07 

ORP -64.80 – 47.07 -2.70±5.20 -2.80 ±2.39 
  



Supporting Information 

Table S1.  Survey sites (with latitude, longitude, and habitat type) comprising Canal survey 

sites, UK survey sites and sites of Natural History Museum samples. Following preliminary 

rarefaction sampling (see Evans, 2016), data collection for Canal survey sites were performed 

in shaded areas underneath or near canal bridges along 15 canals at 100 stations.  All stations 

were located along the water line and under a bridge; three stations were equally spaced 

along a 5 m stretch.  Natural History Museum samples obtained from Darwin centre 

(catalogue number:  1938.5.4.1., 2005.06.15.01, 1936.1.22.2, 25.11.1., 1954.9.16, 

2005.06.08.01/02, 32.10.24.10, 1965.9.21.1, 1937.06.15.01., 32.12.24.4., 

25.11.1.1598.01/02/03, 1936.1.21.1, 1955.2.4.1., 2004.10.16, 2005.06.08.04), sponge slide 

collections (shelves 1- 5), and dried sponge specimens (drawers 484-501).   

 

 Lat Long 
Habitat 

type 
Site Name 

1 52.803 -2.301 Canal Norbury Junction 

2 52.844 -2.400 Canal Park Heath Bridge 

3 52.847 -2.416 Canal Soundley Bridge 

4 52.851 -2.422 Canal Fox Bridge 

5 52.861 -2.439 Canal Goldstone Bridge 

6 52.887 -2.459 Canal Tyrley Bridge 

7 52.901 -2.482 Canal Market Drayton 

8 52.913 -2.478 Canal Victoria Bridge 

9 52.958 -2.495 Canal Hawsmoor Bridge 

10 52.975 -2.510 Canal Bagley Lane Bridge 

11 53.043 -2.541 Canal Baddington Bridge 

12 53.105 -2.574 Canal Bremilow Bridge 

13 53.139 -2.756 Canal Crows Nest Bridge 

14 53.150 -2.778 Canal Golden Nook Bridge 

15 53.172 -2.816 Canal Egg Bridge 

16 53.282 -2.889 Canal Stanlow Bridge 

17 53.286 -2.891 Canal Powells Bridge 

18 52.906 -2.757 Canal Starks Lift 

19 52.903 -2.756 Canal Dobsons Bridge 

20 53.036 -2.588 Canal Swanley Ridge 

21 53.069 -2.575 Canal Wrenbury Heath Bridge 

22 53.028 -2.613 Canal Wrenbury Church Bridge 

23 53.007 -2.667 Canal Marbury Church Bridge 

24 53.730 -2.686 Canal Quoisley 

25 52.980 -2.710 Canal Grindley Bridge 

26 52.971 -2.708 Canal Whitchurch 

27 52.968 -2.707 Canal Chemistry, Whitchurch 



28 52.952 -2.720 Canal Duddleston Bridge 

29 52.949 -2.726 Canal Canbrian Railway Bridge 

30 52.947 -2.723 Canal Blackoe Bridge 

31 52.923 -2.729 Canal Platt Lane Bridge 

32 52.914 -2.805 Canal Bettisfield Bridge 

33 52.904 -2.818 Canal Hampton Bank Bridge 

34 52.902 -2.831 Canal Lyneal Lane Bridge 

35 52.896 -2.835 Canal Little Mill Bridge 

36 52.900 -2.876 Canal Ellesmere Tunnel 

37 52.894 -2.913 Canal White Mill Bridge 

38 52.880 -2.936 Canal Peters Bridge 

39 52.890 -2.958 Canal Maestermyn House 

40 52.890 -2.990 Canal Hindford 

41 52.920 -3.046 Canal Gledrid Bridge 

42 52.927 -3.055 Canal Monks Bridge 

43 52.930 -3.070 Canal Chirk Tunnel 

44 52.957 -3.065 Canal Whitehouse Bridge 

45 52.959 -3.064 Canal Irish Bridge 

46 52.970 -3.120 Canal Plas Ifan 

47 52.970 -3.140 Canal Wenffrwd 

48 52.980 -3.180 Canal Pentrefelin 

49 52.927 -3.055 Canal Monks Bridge 

50 52.880 -2.937 Canal G. Palmer Lock 

51 52.818 -3.020 Canal Maesbury Marsh 

52 52.817 -3.033 Canal Gronwyn Bridge 

53 52.780 -3.090 Canal Llanymynech 

54 52.780 -3.095 Canal Walls Bridge 

55 52.770 -3.110 Canal Carreghofa Locks 

56 52.760 -3.090 Canal Four Crosses 

57 52.719 -3.119 Canal Bank Lock 

58 52.632 -3.169 Canal Sweeps Bridge 

59 52.612 -3.184 Canal Brithdir 

60 52.586 -3.192 Canal Garthmyl Bridge 

61 52.578 -3.198 Canal Near Garthmyl Aqueduct 

62 52.560 -3.229 Canal Glanhafren Bridge 

63 52.842 -2.965 Canal Heath House Bridge 

64 52.839 -2.972 Canal Corbett's Bridge 

65 52.834 -2.982 Canal A5 Bridge 

66 52.910 -3.021 Canal St Martin's Moor Bridge 

67 52.910 -3.036 Canal Belmont Bridge 

68 52.772 -2.380 Canal Newport Central 

69 52.771 -2.384 Canal Newport Channel 

70 52.772 -2.389 Canal Tickethouse Lock 

71 53.354 -2.632 Canal Golborne 

72 53.362 -2.602 Canal Walton 

73 53.367 -2.579 Canal London Road, Grappenhall 

74 53.373 -2.549 Canal Grappenhall Bridge 



75 53.431 -2.312 Canal Whites Bridge 

76 53.451 -2.301 Canal Trafford Park 

77 53.552 -2.169 Canal Oldham Road Bridge 

78 53.549 -2.169 Canal Chadderton 

79 53.527 -2.160 Canal White Gate Bridge 

80 53.509 -2.158 Canal Failsworth Railway Bridge 

81 53.130 -2.374 Canal Wheelock 

82 53.171 -2.418 Canal Sandbach 

83 53.200 -2.457 Canal Middlewich 

84 53.270 -2.539 Canal Soote Bridge 

85 53.480 -2.264 Canal Middlewood Lock 

86 53.479 -2.262 Canal Margaret Fletcher Lock 

87 53.558 -2.380 Canal Farnworth 

88 53.554 -2.375 Canal Bridge14 

89 53.556 -2.378 Canal Opposite Carlisle Close 

90 53.560 -2.387 Canal Near Hall Lane 

91 51.652 -3.816 Canal Crown Food, Metal Box 

92 51.650 -3.820 Canal Tricks bridge 

93 51.647 -3.825 Canal Neath Junction Rail Bridge 

94 51.694 -3.898 Canal Pont John 

95 51.737 -3.824 Canal Ynysmeudwy 

96 51.742 -3.814 Canal Cilmaengwyn 

97 51.737 -3.824 Canal Cilmaengwyn Lock 

98 52.974 -3.139 Canal Sebastopol Panteg bridge 

99 51.678 -3.025 Canal Crown bridge 

100 51.642 -3.027 Canal Ty Coch Cwmbran 

101 53.949 -2.016 Canal Horse Close Bridge 

102 53.940 -2.012 Canal Snaygill Stone Bridge 

103 53.848 -1.830 Canal Bingley, stretch 18 

104 53.115 -2.548 Canal Cholmondeston 

105 53.142 -2.493 Canal Church Minshall 

106 50.668 -3.468 Canal Turf Inn Lock  

107 52.716 -2.694 Canal Kiln Bridge 

108 52.704 -2.694 Canal Preston Tunnel 

109 52.700 -2.679 Canal Berwick Wharf 

110 54.044 -2.801 Canal Lancaster 

111 51.432 -0.326 Canal Teddington 

112 51.510 -0.538 Canal Iver 

113 51.655 -0.425 Canal Rickmansworth 

114 52.686 -1.102 Canal Leicester Line   

115 51.513 -0.036 Canal Regent’s Canal 

116 52.924 -1.051 Canal Cotgrave 

117 51.319 -2.210 Canal Hilperton Marina 

118 51.762 -1.270 Canal Walton Well 

119 51.762 -1.270 Canal Rugby  

120 51.267 -0.781 Canal Basingstoke Canal 

121 53.507 -2.039 Canal Huddersfield Canal 



122 53.319 -0.941 Canal Retford Town Lock 

123 55.930 -3. 233 Canal Union Canal, Edinburgh 

124 50.689 -3.488 Canal Countess Wear Bridge 

125 52.405 -2.744 River River Corve, Stanton Lacy 

126 52.373 -2.721 River River Corve, Ludlow 

127 52.836 -2.673 River River Roden, Lee Brockhurst 

128 52.817 -2.657 River River Roden, Moreton View 

129 52.801 -2.634 River River Roden, Mill Farm 

130 52.867 -1.336 River Trent Bridge 

131 52.757 -1.358 River Grace Dieu Wood 

132 50.780 -3.624 River River Creedy 

133 50.914 -3.290 River River Culm 

134 52.170 1.472 River River Alde, Langham Bridge 

135 52.872 -3.733 River Afon Lliw, Llanwchllyn 

136 52.948 -3.688 River Afon Tryweryn, Frongoch 

137 52.782 -1.971 River River Trent 

138 52.199 0.114 River River Cam, Newnham Millpond 

139 50.764 -1.872 River River Stour, Bournemouth  

140 50.634 -3.438 River River Exe, Near Exeter 

141 51.993 1.390 River River Deben, Suffolk 

142 51.536 -0.900 River Henley-on-Thames 

143 51.568 -0.712 River River Thames, Cookham 

144 51.523 -0.702 River River Thames, Maidenhead 

145 51.382 -0.456 River River Thames, Weybridge  

146 51.567 -0.773 River River Thames, Marlow Lock 

147 52.054 -3.178 River River Wye 

148 51.380 -0.954 River Swallowfield River, Reading  

149 51.972 0.774 River River Stour At Burs, Suffolk 

150 51.319 -2.210 River River Biss, Trowbridge 

151 51.208 -2.939 River River Brue, Bason Bridge 

152 52.110 -3.106 River River Wye, Clifford 

153 51.890 -2.801 River River Morrow, Skenfrith 

154 51.490 -3.294 River River Ely, St Fagans 

155 50.949 -0.502 River River Arun, Pulborough 

156 53.478 -2.259 River River Lock 

157 52.984 -3.665 Lake Llyn Hesgyn 

158 52.916 -3.870 Lake Llyn Hiraethlyn 

159 53.053 -4.224 Lake Llyn Nantlle Uchaf 

160 53.015 -4.016 Lake Llyn Llagi 

161 53.072 -4.151 Lake Llyn Cwellyn 

162 53.126 -4.129 Lake Llyn Padarn 

163 51.640 -3.006 Lake Cwmbran boating lake 

164 56.058 -5.499 Lake Dunardry Burn 

165 56.914 -3.441 Lake Baddoch Burn 

166 55.093 -4.431 Lake Round Loch of Glenhead 

167 57.491 -5.431 Lake Loch Coire, Fionnaraich 

168 54.543 -7.989 Lake Mallybreen Lough 



169 54.100 -2.165 Lake Malham Tarn 

170 54.430 -3.262 Lake Burnmoor Tarn 

171 50.276 -3.655 Lake Slapton Ley 

172 52.291 -0.315 Lake Grafham Water 

173 51.437 -1.018 Lake Holybrook 

174 51.739 -1.258 Lake Oxford 

175 50.963 -2.811 Lake Lambrook 

176 51.432 -2.031 Lake Calne 

177 54.343 -3.071 Lake Coniston Water, Lake District 

178 54.372 -2.991 Lake Priest's Pot, Lake District  

179 50.609 -2.501 Lake Little Sea Lagoon, Dorset  

180 52.229 0.839 Lake Drinkstone Park, Suffolk 

181 57.229 -7.347 Lake South Uist 

182 56.969 -7.494 Lake Barra, Outer Hebrides 

183 56.549 -6.066 Lake Isle of Mull 

184 54.351 -7.647 Lake Lough  Erne, Enniskillen 

185 51.878 -0.210 Lake Knebworth Park, Hertfordshire  

186 54.363 -2.986 Lake Esthwaite, Lake District 

187 54.410 -2.890 Lake Bletham Beach, Lake District 

188 54.469 -3.087 Lake Codale Tarn, Lake District 

189 50.649 -2.093 Lake Little Pea Lagoon, Dorset 

190 52.262 0.203 Lake Mere Fen Road, Waterbeach 

191 56.632 -3.577 Lake Loch Ordie 

192 54.535 -3.122 Lake Watendlath Tarn, Lake District 

193 54.430 -3.010 Lake Loughrigg Tarn, Lake District 

194 51.145 -0.347 Lake Vann Lake, Ockley 

195 54.374 -2.938 Lake Windermere, Lake District  

196 57.710 -5.531 Lake Loch Maree 

197 58.178 -4.937 Lake Loch Fleodach Coire 

198 57.579 -5.669 Lake Upper Diabaig, 

199 51.437 0.223 Lake Brooklands Lake, Kent 

200 54.740 -7.006 Lake Coney Glen Burn 

201 56.080 -4.532 Lake Loch Lomond 

202 56.240 -4.102 Lake Loch Mahaick 

203 56.200 -3.439 Lake Loch Leven 

204 51.462 -3.166 Lake Cardiff Bay Wall 

205 52.634 -2.774 Stream Cound Brook, Stapleton 

206 52.487 -2.777 Stream Byne Brook, Wolverton 

207 52.497 -2.763 Stream Eaton Brook, Harton 

208 52.497 -2.754 Stream Eaton Brook, New Hall Farm 

209 52.506 -2.739 Stream Eaton Brook, Eaton 

210 52.372 -2.723 Stream Linney Brook, Ludlow 

211 52.366 -2.684 Stream Ledwyche Brook 

212 52.474 -2.816 Stream Quinny Brook, Craven Arms 

213 52.873 -2.664 Stream Soulton Brook 

214 51.929 0.978 Reservoir Ardleigh 

215 50.900 -2.639 Reservoir Sutton Bingham 



217 51.590 -0.046 Reservoir Walthamstow Waterworks  

218 51.417 -0.460 Reservoir Conduit Littleton Reservoir  

219 52.594 1.492 Broad Buckenham Hassingham 

220 52.716 1.461 Broad Burntfen Broad 

221 52.723 1.606 Broad Heigham Sound 

222 52.665 1.537 Broad Upton Little Broad 

223 52.723 1.515 Broad Cromes Broad 

224 52.766 1.520 Broad Stalham Broad 

225 50.709 -3.526 Pond Salmon Pool, Exeter 

226 51.554 0.495 Pond Fish Farm Tanks, Haselmere 

227 51.450 -0.554 Pond Wraysbury gravel pit 

228 52.648 -3.150 Pond Welshpool fishing pool 

229 53.052 -2.688 Mere Deer Park Mere, Cheshire 

230 53.048 -2.460 Moss Wybunbury 

 

  



TableS2. Accession numbers for nucleotide sequnces analysed. 

   28S rDNA nucleotide sequence accession number 

Ephydatia fluviatilis MK423202 

Ephydatia muelleri MK423203 

Eunapius fragilis MK423204 

Spongilla lacustris MK423205 

Racekiela ryderii MK423206 

Trochospongilla horrida MH569483 

Corvomeyenia sp. DQ178649 



 

 

Figure  S1.  Alignment of the extended 28S rDNA D3 domains from Ephydatia fluviatilis, E. 

muelleri, Eunapius fragilis, Spongilla lacustris and Racekiela ryderii.  Identities have been 

indicated by dots and hyphens. 

 

 

                              10         20         30         40         50         60         70                    

                     ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

E. fluviatilis       CCAAGGAGTG CAACATGCGC GCGAGTCTTT GGGTGAGACG AAAAGCCCTG TGGCGCAATG AAAGTGAAGC   

E. muelleri          .......... .......... .......... .......... .......... .......... ..........   

Eu.fragilis          .......... ........C. .......... .......... .......... .......... ..........   

S. lacustris         .......... .......... .......... .......... .......... .......... ..........   

R. ryderii           .......... .......... .......... .......... .......... .......... ..........   

 

                              80         90        100        110        120        130        140               

                     ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

E. fluviatilis       GTCGGCTTGC CGACGCGAGG CGAGAGCCCT CTTCGCGGGG GCCCATCGTC GACCGATCCT ATTCACTTGT   

E. muelleri          .......... .......... .........C TC...G...T .......... .......... ..........   

Eu.fragilis          .......... ...T...... .......A.C .CC..G.--T .......... .......... ..........   

S. lacustris         .C........ ..G....... .........C TCA..G.--T .......... .......... ..........   

R. ryderii           .......... ..G....... .........C TCG..G.--T .......... .......... ..........   

 

                             150        160        170        180        190        200        210             

                     ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

E. fluviatilis       GAAGGGATTC GAGTGAGAGC GTGCCTGTTG CGACCCGAAA GATGGTGAAC TATGCCTGAG TAGGGTGAAG   

E. muelleri          .......... .......... .......... .......... .......... .......... ..........   

Eu.fragilis          .......... .......... .......... .......... .......... .......... ..........   

S. lacustris         .......... .......... .......... .......... .......... .......... ..........   

R. ryderii           .......... .......... .......... .......... .......... .......... ..........   

 

                             220        230        240        250        260        270        280             

                     ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

E. fluviatilis       CCAGAGGAAA CTCTGGTGGA AGCTCGTAGC GATTCTGACG TGCAAATCGA TCGTCAAACT TGGGTATAGG   

E. muelleri          .......... .......... .......... .......... .......... .......... ..........   

Eu.fragilis          .......... .......... .......... .......... .......... .......... ..........   

S. lacustris         .......... .......... .......... .......... .......... .......... ..........   

R. ryderii           .......... .......... .......... .......... .......... .......... ..........   

 

                             290        300     

                     ....|....| ....|....| ... 

E. fluviatilis       GGCGAAAGAC TAATCGAACC ATC  

E. muelleri          .......... .......... ...  

Eu.fragilis          .......... .......... ...  

S. lacustris         .......... .......... ...  

R. ryderii           .......... .......... ...  

 


