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Abstract: We calculate the contributions to the two-loop scattering amplitudes h→ gg,
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expressions are obtained by performing an asymptotic expansion near the limit of infinitely
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1 Introduction

In the Standard Model (SM) of particle physics the self-interactions of the Higgs field h are
given after electroweak (EW) symmetry breaking by

V ⊃ λvh3 +
χ

4
h4 , λ = χ =

m2
h

2v2
, (1.1)

where mh ' 125 GeV denotes the Higgs mass and v ' 246 GeV is the vacuum expectation
value (VEV). One way to constrain the coefficients λ and χ consists in measuring double-
Higgs and triple-Higgs production. Since the cross section for pp → 3h production is of
O(0.1 fb) at

√
s = 14 TeV even the high-luminosity option of the LHC (HL-LHC) will only

allow to set very loose bounds on the Higgs quartic. The prospects to observe double-
Higgs production at the HL-LHC is considerably better because the pp→ hh cross section
amounts to O(33 fb) at the same centre-of-mass energy. Measuring double-Higgs production
at the HL-LHC however still remains challenging and as a result even with the full data set
of 3 ab−1 only O(1) determinations of the trilinear Higgs coupling λ seem possible.

Besides pp→ hh, the coefficient λ is also subject to indirect constraints from processes
such as single-Higgs production [1–7] or EW precision observables [8, 9] since a modified h3

coupling alters these observables at the loop level. In order to describe modifications of the
trilinear Higgs coupling in a model-independent fashion, one can employ the SM effective
field theory and add dimension-six operators to the SM Lagrangian

L(6) =
∑
k

c̄k
v2
Ok , O6 = −λ |H|6 , (1.2)
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where H denotes the usual Higgs doublet. Under the assumption that the effective opera-
tor O6 represents the only relevant modification of the Higgs self-interactions at tree level,
one obtains instead of (1.1) the result

V ⊃ κλλvh3 + κχ
χ

4
h4 , κλ = 1 + c̄6 , κχ = 1 + 6 c̄6 . (1.3)

The second relation allows one to parameterise a modified h3 coupling via the Wilson
coefficient c̄6 = κλ − 1 or equivalent κλ. Other operators such as OH =

(
∂µ|H|2

)2 or
O8 = |H|8 also change this coupling at tree level, but will not be considered here.

Most of the existing LHC studies that derive constraints on λ have assumed that only
the h3 vertex is modified while all other Higgs interactions remain SM-like. In [10] this
assumption has been abandoned and ten parameter fits allowing for modifications κλ have
been performed. From these fits one can conclude that standard global Higgs analyses
suffer from degeneracies that prevent one from extracting robust bounds on each individual
coupling (or Wilson coefficient) once large non-standard h3 interactions are considered. The
latter analysis has however also shown that the inclusion of differential measurements in
single-Higgs production can help to overcome some of the limitations of a global Higgs-
coupling fit that are based on inclusive measurements alone.

At the differential level the loop-induced effects involving c̄6 (or κλ) are at present
known for vector boson fusion (VBF), V h [3, 4] as well as tt̄h [3] and thj [5] production, while
they have not been calculated in the case of the gluon-fusion channel. The main aim of our
work is to close this gap by calculating the relevant two-loop amplitudes for Higgs plus jet
production. The calculation of the O(λ) corrections to the two-loop h→ gg, h→ ggg and
h→ qq̄g on-shell amplitudes is a multi-scale problem, making it hard but not impossible to
obtain exact results. In this article, the computation of the two-loop amplitudes is simplified
by performing an asymptotic expansion near the limit of infinitely heavy top quark. The
analytic results of our article will be used in [11] to obtain predictions for the most relevant
differential distributions in Higgs production, such as the transverse momentum of the
Higgs (pT,h) or jet, in the presence of a modified trilinear Higgs coupling. In the latter
article also the prospects of future LHC runs to constrain the Wilson coefficient c̄6 using
Higgs plus jets events with low and moderate pT,h will be discussed.

This work is organised as follows. In Section 2 we discuss the Lorentz structure of
the relevant scattering amplitudes and explain how the corresponding form factors can be
extracted. The individual steps of the computations of the form factors are briefly described
in Section 3. This section contains a brief discussion of the hard mass procedure that is
employed to obtain the systematic expansions around the limit of infinitely heavy top quark.
Our analytic results for the O(λ) corrections to the two-loop h→ gg, h→ ggg and h→ qq̄g

form factors are presented in Section 4. We conclude in Section 5.

2 Scattering amplitudes

In this section we discuss the parametrisation of the h → gg, h → ggg and h → qq̄g

scattering amplitudes in terms of invariant form factors. The extraction of the form factors
by means of projection operators is also briefly reviewed.

– 2 –



2.1 The h → gg channel

We start by considering the process h(p3) → g(p1) + g(p2) and write the corresponding
scattering amplitude as

Agg = δa1a2 εµ1 (p1)εν2(p2)Aµν , (2.1)

where a1 and a2 denote colour indices while εµ1 (p1) and εµ2 (p2) are the polarisation vectors
of the two final-state gluons. Using Lorentz symmetry and gauge invariance, one can show
that the amplitude tensor Aµν that appears in (2.1) can be expressed in terms of a single
form factor F in the following way

Aµν = (ηµν p1 · p2 − p1µp2ν)F , (2.2)

with ηµν = diag (1,−1,−1,−1).
The form factor F is most conveniently extracted by using a projection procedure. In

the case of h→ gg the appropriate projector is (see for instance [12])

Pµν =
1

(d− 2) (p1 · p2)2 (ηµν p1 · p2 − pν1 p
µ
2 − p

µ
1 p

ν
2) , (2.3)

where d = 4−2ε denotes the number of space-time dimensions. After applying the projector
one can set p2

1 = p2
2 = 0 and p1 · p2 = m2

h/2.

2.2 The h → ggg channel

In the case of the h(p4)→ g(p1) + g(p2) + g(p3) channel the relevant scattering amplitude
can be written as follows

Aggg = ifa1a2a3 εµ1 (p1)εν2(p2)ελ3(p3)Aµνλ , (2.4)

where fa1a2a3 are the fully anti-symmetric SU(3) structure constants. As before Lorentz
symmetry and gauge invariance restricts the number of possible form factors. In particular,
using the transversality conditions εi(pi) · pi = 0 for i = 1, 2, 3 and imposing a cyclic gauge
fixing condition

ε1(p1) · p2 = ε2(p2) · p3 = ε3(p3) · p1 = 0 , (2.5)

the amplitude tensor Aµνλ can be written in the following way

Aµνλ =
4∑

n=1

Gn Tnµνλ , (2.6)

with

T1µνλ = ηµν p2λ , T2µνλ = ηµλp1ν , T3µνλ = ηνλp3µ , T4µνλ = p3µp1ν p2λ . (2.7)

The four form factors Gn are functions of the dimensionless ratios

τ =
m2
h

m2
t

, x =
s

m2
t

, y =
t

m2
t

, z =
u

m2
t

, (2.8)
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where mt ' 173 GeV denotes the top-quark mass and

s = (p1 + p2)2 , t = (p1 + p3)2 , u = (p2 + p3)2 , (2.9)

are the partonic Mandelstam variables that fulfil m2
h = s+ t+ u. In terms of the variables

introduced in (2.8) the latter relation simply reads τ = x+ y + z.
Like in the case of h→ gg the form factors Gn can be found by employing an appropriate

projection procedure. Following [13, 14], we use

Pµνλ1 =
1

d− 3

[
t

su
Tµνλ1 − 1

su
Tµνλ4

]
,

Pµνλ2 =
1

d− 3

[
u

st
Tµνλ2 − 1

st
Tµνλ4

]
,

Pµνλ3 =
1

d− 3

[
s

tu
Tµνλ3 − 1

tu
Tµνλ4

]
,

Pµνλ4 =
1

d− 3

[
− 1

su
Tµνλ1 − 1

st
Tµνλ2 − 1

tu
Tµνλ3 +

d

stu
Tµνλ4

]
,

(2.10)

to project out the four different h → ggg form factors. The tensor structures Tµνλn have
been introduced in (2.7). Notice that in order to satisfy (2.5) sums over the external gluon
polarisations are taken to be∑

pol.

(
εµ1 (p1)

)∗
εν1(p1) = −ηµν +

pµ1 p
ν
2 + pν1 p

µ
2

p1 · p2
,

∑
pol.

(
εµ2 (p2)

)∗
εν2(p2) = −ηµν +

pµ2 p
ν
3 + pν2 p

µ
3

p2 · p3
,

∑
pol.

(
εµ3 (p3)

)∗
εν3(p3) = −ηµν +

pµ1 p
ν
3 + pν1 p

µ
3

p1 · p3
,

(2.11)

in these projections.

2.3 The h → qq̄g channel

The scattering amplitude describing h(p4)→ q(p1) + q̄(p2) + g(p3) takes the form

Aqq̄g = taij ε
µ
3 (p3)Aµ , (2.12)

where taij are the colour generators of the fundamental representation of SU(3) with i

and j the colour indices of the quark and the anti-quark, respectively, and a denotes the
colour index of the external gluon. The most general ansatz for Aµ consistent with Lorentz
symmetry, transversality and parity involves two form factors Hm. It reads

Aµ =
2∑

m=1

Hm Tmµ , (2.13)
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with

T1µ = ū(p1)
(
/p3
p2µ − p2 · p3 γµ

)
v(p2) , T2µ = ū(p1)

(
/p3
p1µ − p1 · p3 γµ

)
v(p2) , (2.14)

where ū(p1) and v(p2) are four-component spinors that describe the external quark fields
while γµ are the usual Dirac matrices.

The two form factors entering (2.13) can be extracted by applying the following pro-
jection operators [13, 15]

Pµ1 =
1

2 (d− 3)

[
d− 2

st2
(Tµ1 )

† − d− 4

stu
(Tµ2 )

†
]
,

Pµ2 =
1

2 (d− 3)

[
d− 2

su2
(Tµ2 )

† − d− 4

stu
(Tµ1 )

†
]
,

(2.15)

with the tensor structures Tµm given in (2.14). After applying these projectors one has to
calculate sums over quark, anti-quark and gluon polarisations. For this purpose we employ∑

pol.

u(p1)ū(p1) = /p1
,

∑
pol.

v(p2)v̄(p2) = /p2
,

∑
pol.

(
εµ3 (p3)

)∗
εν3(p3) = −ηµν . (2.16)

Note that it is allowed to use an unphysical result for the sum over the gluon polarisation
since the Dirac structures introduced in (2.14) are independently transversal.

3 Calculation of form factors

Using the projection procedures outlined in the previous section one can compute each
of the h → gg, h → ggg and h → qq̄g form factors separately. Given that the form
factors are independent of the external polarisation vectors, all the standard techniques
employed in multi-loop computations can be applied. In practice, we proceed as follows.
We generate the relevant one-loop and two-loop Feynman diagrams with FeynArts [16].
Representative examples of two-loop graphs are shown in Figure 1. The actual calculation
of the Feynman diagrams is performed in two ways. In the first approach the projection
operators are applied diagram by diagram and the resulting loop integrals are then evaluated
using the FORM [17] package MATAD [18]. In intermediate steps of the calculation we also
make use of the tensor reduction procedures described in [19–21] and the Mathematica
package LiteRed [22] for the reduction of some of the loop integrals. The same techniques
have recently also been employed in [23]. The second approach relies entirely on an in-
house Mathematica package which calculates the amplitudes algebraically and extracts the
form factors at the very end. The agreement of the final results between the two approaches
serves as a powerful cross-check of our computations.

The calculation of the O(λ) corrections to the two-loop h→ gg, h→ ggg and h→ qq̄g

form factors is a multi-scale problem and obtaining exact expressions for the corresponding
on-shell amplitudes is therefore notoriously difficult. To simplify the computations we
apply the method of asymptotic expansions (for a review see [24]). Specifically, we work
in the limit m2

t � m2
h, s, t, u and employ a hard mass procedure to obtain systematic
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Figure 1. Examples of two-loop Feynman diagrams with an insertion of an effective trilinear Higgs
coupling (black square) that contribute to the h→ gg (left), h→ ggg (middle) and h→ qq̄g (right)
channel, respectively.

expansions of the relevant two-loop form factors in powers of the ratios τ , x, y and z(
see (2.8)

)
. Considering the three Feynman diagrams shown in Figure 1, it is not difficult

to convince oneself that only two types of subgraphs contribute to such an expansion in
the case at hand. The first type of contributions arises if the complete diagram is taken
to be the subgraph and corresponds to configurations where the external momenta but
not the loop momenta are small compared to mt. In this case the asymptotic expansion
results in two-loop vacuum integrals with one mass scale that are known analytically since
some time [25]. The second type of contributions is obtained by taking only the top-quark
loop as a subgraph. Expanding this subgraph in terms of the external as well as the loop
momentum running through the Higgs triangle leaves one with one-loop massive vacuum
integrals. The corresponding co-subgraphs are one-loop self-energy diagrams that depend
on mh as well as the external momenta but not on mt. The analytic expressions for such
integrals can be found in many textbooks. Combining the two types of contributions and
including all diagrams leads to an ultraviolet finite result for the O(λ) corrections to the
h→ gg, h→ ggg and h→ qq̄g form factors.

4 Analytic results

Below we present the analytic results for the O(λ) corrections to the h→ gg, h→ ggg and
h → qq̄g form factors. Our results have been obtained by the techniques described in the
preceding section.

4.1 The h → gg form factor

The O(λ) contribution to the form factor entering (2.2) can be written as follows

F = −αs
πv

λ

(4π)2

 6∑
p=0

τp
(
Z

2
F (p)

1 + c̄6F (p)
2

) . (4.1)

Here αs = g2
s/(4π) is the strong coupling constant while

Z =
(

9− 2
√

3π
)
c̄6 (c̄6 + 2) , (4.2)

– 6 –



denotes the O(λ) contribution to the Higgs wave function renormalisation constant [2, 3].
The one-loop and two-loop coefficients of the asymptotic expansion in τ of the h→ gg form
factor read

F (0)
1 =

1

3
, F (0)

2 = −L− π√
3

+
23

12
,

F (1)
1 =

7

360
, F (1)

2 = −7L

10
− 7π

20
√

3
+

259

240

F (2)
1 =

1

504
, F (2)

2 = −349L

1008
− 23π

240
√

3
+

464419

1058400
,

F (3)
1 =

13

50400
, F (3)

2 = −1741L

10800
− 13π

525
√

3
+

31795373

190512000
,

F (4)
1 =

2

51975
, F (4)

2 = −10817L

138600
− 1789π

277200
√

3
+

40370773

614718720
,

F (5)
1 =

19

3027024
, F (5)

2 = −2798759L

68796000
− 439357π

252252000
√

3
+

2551088981767

90901530720000
,

F (6)
1 =

1

917280
, F (6)

2 = −1981193L

86486400
− 991π

2038400
√

3
+

277211420687

20977276320000
,

(4.3)

where we have introduced the shorthand notation L = ln τ . The coefficients F (p)
1 can be

easily obtained by a Taylor expansion in τ from the well-known expression for the top-
quark contribution to the on-shell one-loop h → gg form factor (see for instance [2]). For
p = 0, 1, 2, 3 the two-loop coefficients F (p)

2 agree with [3], while the terms with p = 4, 5, 6

are presented here for the first time. For the physical value of τ ' 0.52 the terms τpF (p)
2

with p = 4, 5, 6 not included in [3] amount to an effect of a mere +0.7%, rendering these
new higher-order terms in the asymptotic expansion irrelevant for all practical purposes.

4.2 The h → ggg form factors

We write the O(λ) corrections to the form factors appearing in (2.6) as follows

Gn = −gs
αs
πv

λ

(4π)2

 3∑
p=0

(
Z

2
G(p)
n1 + c̄6G(p)

n2

) . (4.4)

In the case of G1 the coefficients of the asymptotic expansion of the one-loop contribu-
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tion proportional to the Higgs wave function renormalisation constant Z read

G(0)
11 =

(τ − z) (x+ z)

3xz
,

G(1)
11 =

7τ2 (x+ z)− τz (10x+ 7z) + 3xz (x+ z)

360xz
,

G(2)
11 =

10τ3 (x+ z)− τ2z (13x+ 10z) + 3τ xz (2x+ z)− 3x2z (x+ z)

5040xz
,

G(3)
11 =

1

151200xz

[
39τ4 (x+ z)− 3τ3z (19x+ 13z) + τ2xz (74x+ 61z)

− 2τ xz
(
38x2 + 71xz + 43z2

)
+ xz (x+ z)

(
20x2 + 43xz + 43z2

) ]
,

(4.5)

while the two-loop coefficients take the form

G(0)
12 = 3G(0)

11 F
(0)
2 ,

G(1)
12 = 3τG(0)

11 F
(1)
2 + y

[
3

40

(
L+

π√
3

)
− 4

25

]
,

G(2)
12 = 3τ2G(0)

11 F
(2)
2 + y

[
2x+ 3 (y + z)

140

(
L+

π

2
√

3

)
− 53903x+ 54421 (y + z)

705600

]
,

G(3)
12 = 3τ3G(0)

11 F
(3)
2 − y

[
10463x2 + 16575x (y + z) + 5312y2 + 12441yz + 5312z2

378000
L

+
804x2 + 1175x (y + z) + 271y2 + 1163yz + 271z2

126000

π√
3

+
8287709x2 + 19944825x (y + z) + 11339441y2 + 19028208yz + 11339441z2

952560000

]
,

(4.6)

with the functions F (p)
2 given earlier in (4.3).

The form factor G2 is obtained from the above expression for G1 through the replace-
ments x→ y, y → z and z → x, while in the case of G3 the appropriate crossings are x→ z,
y → x and z → y.
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Our one-loop and two-loop results needed to determine G4 are

G(0)
41 = −2 (xy + xz + yz)

3syz
,

G(1)
41 = −

7x2 (y + z) + x
(
7y2 + 18yz + 7z2

)
+ 7yz (y + z)

180syz
,

G(2)
41 = −

τ
(
10x2 (y + z) + x

(
10y2 + 27yz + 10z2

)
+ 10yz (y + z)

)
2520syz

,

G(3)
41 = − 1

75600syz

[
39x4 (y + z) + 3x3

(
39y2 + 85yz + 39z2

)
+ x2 (y + z)

(
117y2 + 358yz + 117z2

)
+ x

(
39y4 + 255y3z + 475y2z2 + 255yz3 + 39z4

)
+ 39yz (y + z)3

]
,

(4.7)

and

G(0)
42 = 3G(0)

41 F
(0)
2 ,

G(1)
42 = 3τG(0)

41 F
(1)
2 − x

s

[
3

20

(
L+

π√
3

)
− 8

25

]
,

G(2)
42 = 3τ2G(0)

41 F
(2)
2 − x

s

[
3τ

70

(
L+

π

2
√

3

)
− 54421τ

352800

]
,

G(3)
42 = 3τ3G(0)

41 F
(3)
2 +

x

s

[
5312τ2 + 1817 (x (y + z) + yz)

189000
L

+
271τ2 + 621 (x (y + z) + yz)

63000

π√
3

+
11339441τ2 − 3650674 (x (y + z) + yz)

476280000

]
.

(4.8)

Notice that all leading-order terms in the asymptotic expansion of the two-loop contri-
bution to the h→ ggg form factors can be written as G(0)

n2 ∝ G
(0)
n1 F

(0)
2 . This is an expected

feature because these terms can, due to dimensional reasons, only arise from a single effec-
tive interaction of the form hGaµνG

aµν . Here Gaµν denotes the SU(3) field strength tensor.
In the heavy top-quark mass limit the same operator however provides the leading con-
tribution to the h → gg form factor in terms of the function F (0)

2 . The terms G(0)
n2 hence

necessarily have to factorise into the two contributions G(0)
n1 and F (0)

2 where the former
terms describe the leading corrections in the asymptotic limit to the one-loop h → ggg

form factors.

4.3 The h → qq̄g form factors

The O(λ) corrections to the form factors in (2.13) can be expressed as

Hm = −gs
αs
πv

λ

(4π)2

 3∑
p=0

(
Z

2
H(p)
m1 + c̄6H(p)

m2

) . (4.9)
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In the case of the form factor H1 the coefficients of the asymptotic expansion of the
one-loop contribution read

H(0)
11 =

1

3s
,

H(1)
11 =

18x+ 7 (y + z)

360s
,

H(2)
11 =

24x2 + 18x (y + z) + 5 (y + z)2

2520s
,

H(3)
11 =

100x3 + 110x2 (y + z) + 60x (y + z)2 + 13 (y + z)3

50400s
,

(4.10)

while the corresponding two-loop contributions are given by

H(0)
12 = 3H(0)

11 F
(0)
2 ,

H(1)
12 = 3τH(0)

11 F
(1)
2 − x

s

[
11L

45
+

11π

60
√

3
− 863

3600

]
,

H(2)
12 = 3τ2H(0)

11 F
(2)
2 − x

s

[
x

(
307L

1008
+

211π

1680
√

3
− 273977

1058400

)
+ (y + z)

(
1271L

5040
+

167π

1680
√

3
− 266837

1058400

)]
,

H(3)
12 = 3τ3H(0)

11 F
(3)
2 − x

s

[
x2

(
9637L

37800
+

503π

8400
√

3
− 4878607

27216000

)
+ x (y + z)

(
12407L

30240
+

4667π

50400
√

3
− 16065397

47628000

)
+ (y + z)2

(
125863L

756000
+

9109π

252000
√

3
− 1480511

9720000

)]
.

(4.11)

The same results hold also for the form factor H2. As expected the leading term of the
asymptotic expansion of the two-loop pieces again factorises as H(0)

m2 ∝ H
(0)
m1F

(0)
2 , since

in the infinite top-quark mass limit only the operator hGaµνGaµν can contribute to the
two-loop h→ qq̄g form factors.

5 Conclusions

In this article we have presented analytic results for the O(λ) corrections to the two-loop
scattering amplitudes h → gg, h → ggg and h → qq̄g. These corrections arise in the
presence of a modified trilinear Higgs coupling and have been obtained in the form of
systematic expansions in the limit m2

t � m2
h, s, t, u. By a numerical study of the Higgs

transverse momentum pT,h [11], we have found that our results show excellent convergence
for pT,h < mt. We thus expected them to provide a reliable approximation to the full on-
shell O(λ) contributions to Higgs plus jet production at low and moderate values of pT,h.
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For pT,h > mt the condition m2
t � m2

h, s, t, u is obviously not satisfied and as a result
including more terms in the asymptotic expansion of the form factors (4.4) and (4.9) would
not improve the calculation of the differential Higgs plus jet production cross section above
the top-quark threshold. In this phase space region a full calculation of the O(λ) corrections
to the on-shell two-loop scattering amplitudes h → ggg and h → qq̄g would be needed to
obtain meaningful predictions for Higgs plus jet production.

With the amplitudes derived in this work, it is now possible to compute the loop-
induced effects involving c̄6 (or κλ) to the Higgs boson transverse momentum at low and
moderate pT,h not only in the VBF, pp→ V h [3, 4], pp→ tt̄h [3] and pp→ thj [5] channels
but also for pp → hj. The phenomenological implications of our results will be studied
elsewhere [11]. In particular, a detailed analysis of the prospects of future LHC runs to
constrain the Wilson coefficient c̄6 using differential information in Higgs plus jets events
will be presented there.
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